Kilopower: Small Fission Power Systems for Mars and Beyond

Lee Mason

Principal Technologist for Power & Energy Storage Space Technology Mission Directorate

Future In-Space Operations (FISO) Seminar Feb 1, 2017

STMD Power Technology Needs

1) Power for Human Surface Missions

Stationary Power:

40 kW continuous power, day & night High system specific power >5 W/kg Nuclear fission or PV with energy storage Human-rated (safety and fault tolerance) Robotically-deployed (pre-crew arrival) Survivable for multiple crew campaigns >10 yrs

Mobile Power:

6 to 10 kW rechargeable power, up to 120 kWh Advanced batteries/fuel cells >300 Wh/kg, >200 cycles Maximum commonality with other surface assets Grid-compatible (with stationary power)

Both: Mars gravity, wind, dust, CO2, temperature, diurnal period

3) Power for Robotic Science Probes Orbiters, Landers & Rovers:

Power levels from 100 to 600 W at EOM Possibly kWs for ice melting, comm relays, EP Very long life >10 yrs and high reliability Low mass power systems >5 W/kg High performance RPS/fission >15% eff. Low intensity/low temperature PV >25% eff. Advanced batteries >300 Wh/kg, >200 cycles Extreme environments (low/high temperature, low/high solar intensity, high radiation)

2) Power for Electric Propulsion

Near Earth Systems:

30 to 50 kW solar array wings >100 W/kg Compact array stowage >40 kW/m3 High deployed strength >0.1g and frequency >0.1 Hz High operating voltage >160V, PPU-compatible Long life >7 yrs with reuse

Mars and Beyond:

100 to 300 kW solar array wings >150W/kg Radiation tolerant solar cells Compact array stowage >60 kW/m3 1 to 5 MW fission reactors <5 kg/kW High operating voltage >300V, PPU-compatible Long life >5 yrs (Earth to Mars)

4) Power for Small Spacecraft

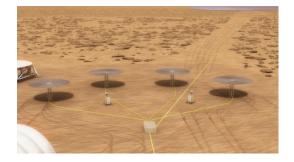
Near Earth Systems:

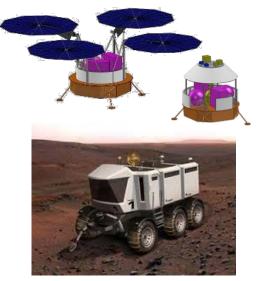
Power levels from 100 to 500W Body-mounted or deployable solar arrays >200 W/kg Advanced batteries >200 Wh/kg, >200 cycles Compatible with 2U to 24U Cubesat platforms Highly integrated systems with shared structure

Deep Space Systems:

Power levels from milliwatts up to 60W (nuclear) Small RPS using multiple RHUs or single GPHS Advanced conversion (TE, Stirling, Alpha/Beta-voltaic) >15% eff

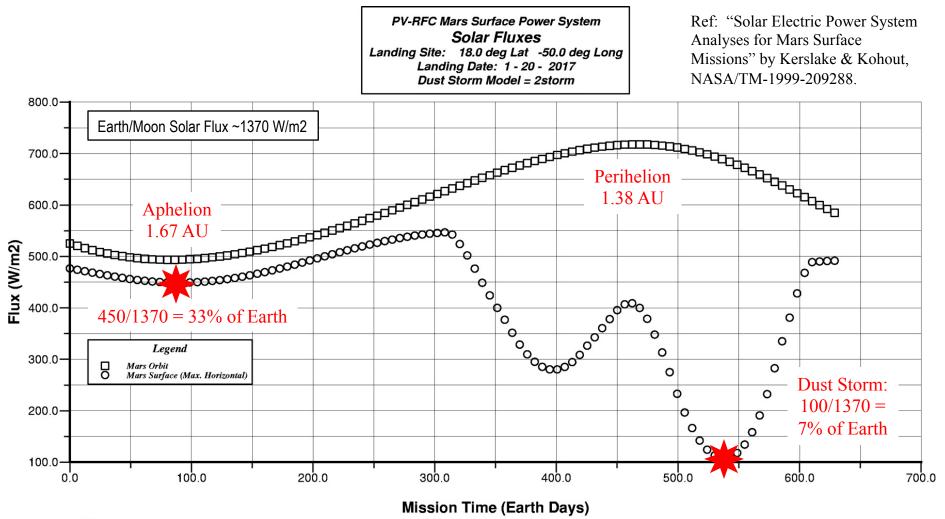
Power for Human Surface Missions


- Primary Target is Mars, but extensibility to Moon desired
 - Environment challenges include:
 - Mars gravity (0.38g), CO2, dust, wind, temperature (170 to 270K), diurnal period (25 hrs)
 - Lunar gravity (0.16g), vacuum, dust, temperature (100 to 370K), diurnal period (29.5 days)


Stationary Power

- Need: Up to 40 kW day/night continuous power
- Power for ISRU propellant production (pre-crew arrival)
- Power for landers, habitats, life support, rover recharging (during crew operations)
- Technology options: Nuclear Fission or PV with Energy Storage
- Need compact stowage, robotic deployment, survivable for multiple crew campaigns (>10 yrs)
- Potential EDL/ISRU/Power Demo (late 2020s) 5 to 10 kW on Single Lander w/ISRU

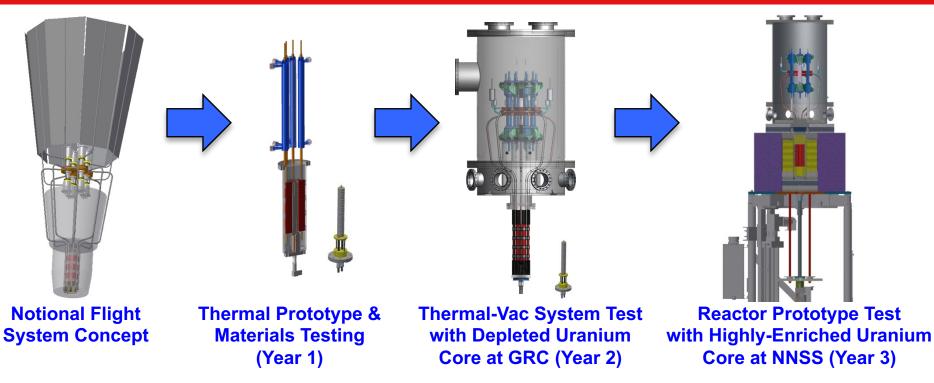
• Mobile Power


- Need: Up to 120 kWh for rovers and construction equipment
- Technology options: Batteries or Fuel Cells
- Desire maximum commonality with other surface assets: multi-use, interchangeable components, shared reactants, grid-compatible

Mars Solar Flux

land02

- Compact fission electric power system with common design approach for Mars surface or deep space science applications
 - 93% enriched cast UMo fuel, heat pipe reactor, Stirling power conversion
 - Baseline surface power option for Evolvable Mars Campaign
 - 2017 reactor ground test planned at Nevada National Security Site to demonstrate technology
- Leverages existing DOE/NNSA nuclear materials, manufacturing capabilities, test facilities, and nuclear safety expertise (in which NASA is a minor user)
 - U235 provided free-of-charge to NASA from large stockpile surplus
 - DOE/NNSA co-funding (~\$5M) to complete nuclear prototype test
- Provides pathway for NASA to transition from >\$70M/yr Pu238 fuel production/ operations commitment (in which NASA is primary user)



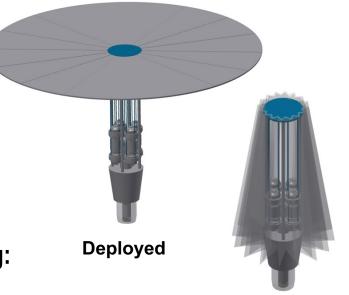
Kilopower was selected for a 2013 R&D 100 Award

Kilowatt Reactor Using Stirling Technology (KRUSTY)

- Verify system-level performance of flight-like U-Mo reactor core, sodium heat pipes, and Stirling power conversion at prototypic operating conditions (temperature, heat flux, power) in vacuum
- Establish technical foundation for 1 to 10 kWe-class fission power systems

Proposed Follow-on: Kilopower II

• Proposed FY18 STMD New Start Project


- Possible candidate for TDM Ground Demo
- Contingent on successful TRL5 KRUSTY test under GCD Project

• Focus is on Surface Power for Mars

- Joint technology development with STMD/HEOMD as co-sponsors
- Technology should be extensible to lunar surface and deep space science missions

• Potential Project content to include the following:

- Mars system scalability study (up to 10 kWe)
- Detailed reactor design using KRUSTY validated computer models
- Experiments to demonstrate in-core heat pipe integration
- Contracts to design/build/test kilowatt-class power conversion units
- Culminates in high-fidelity (non-nuclear) system ground test operated in simulated Mars surface environment (potentially in combination with an ISRU ground test)
- Includes studies to evaluate nuclear launch safety and crew radiation safety
- Includes option for possible nuclear flight demonstration on lunar or Mars precursor
- NNSA remains as primary DOE partner assuring direct access to Los Alamos, Y12, and the Nevada National Security Site

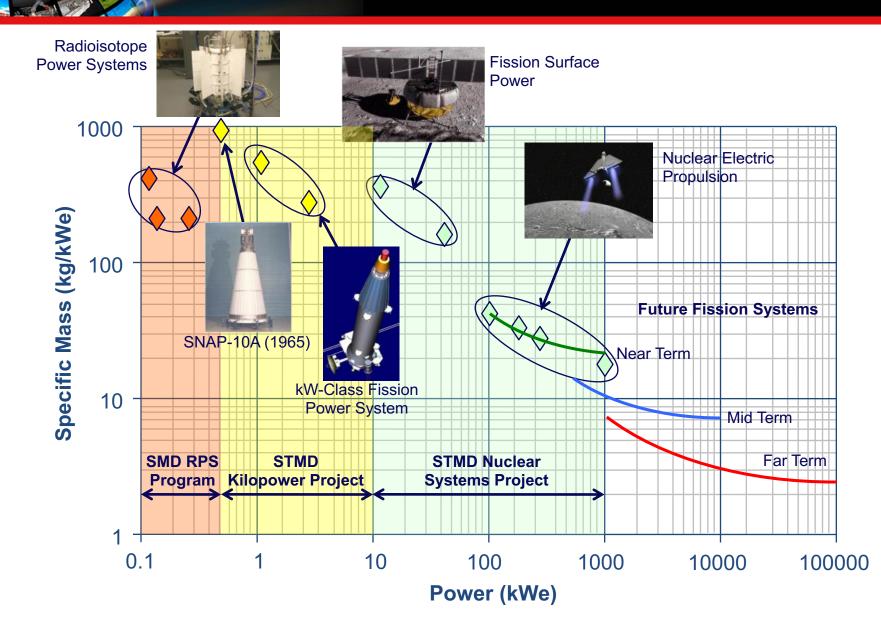
How Did We Get Here?

Space Nuclear Power History

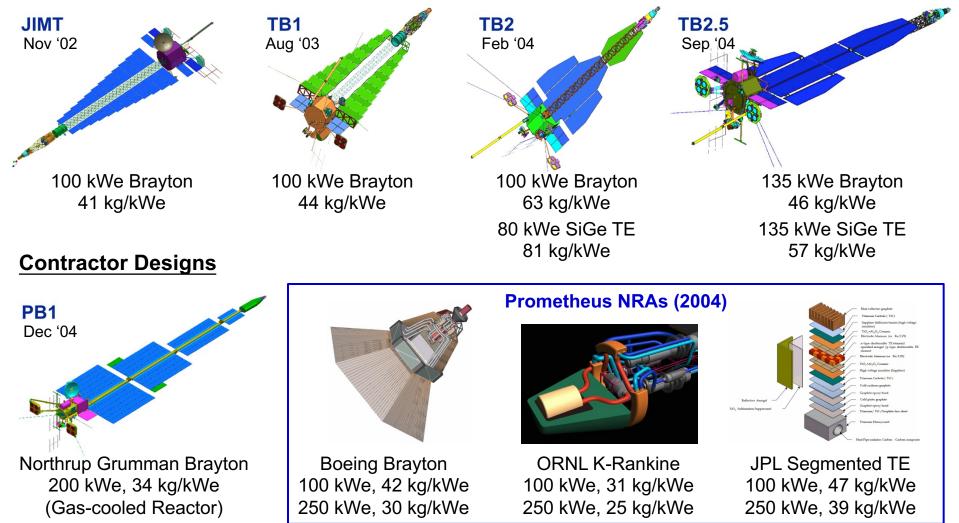
- Fission Power Systems
 - SNAP-10A (launched 1965)
 - Soviet Space Reactors (1967-88)
 - SP-100 (1985-1992)
 - Jupiter Icy Moons Orbiter (2000-2005)
 - Fission Surface Power and KiloPower (Present)

Radioisotope Power Systems

- 45 Successful U.S. Radioisotope Thermoelectric Generators (RTG) Flown Since 1961, e.g.
 - » Apollo SNAP-27 (1969-72)
 - » Viking SNAP-19 (1975)
 - » Voyager MHW-RTGs (1977)
 - » Cassini GPHS-RTGs (1997)
 - » New Horizons GPHS-RTG (2005)
- Multi-Mission RTG and Stirling Radioisotope Generators (Present)



Nuclear Power Performance Regimes



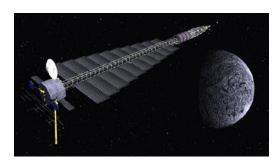
JIMO/Prometheus Concepts

Government Team Designs

All specific mass values are based on overall power system including reactor, shield, power conversion, heat rejection, and PMAD.

Affordable Fission Surface Power

	Jupiter Icy Moons Orbiter 60 m \$3.5-\$5B	Lunar FSP System 30 m 4 state \$1.4B
Power & Life	• 200 kWe, 15-20 years	• 40 kWe, 5-8 years
Design Approach	 1300K gas-cooled reactor with UN fuel (no terrestrial design basis), 15 MWt-yrs Direct 1150K Brayton conversion, ~100 kWe each 500K water or liquid-metal radiators, >400 m2 400V transmission, 6000V bus for thrusters 	 900K liquid-metal cooled reactor with UO2 fuel (terrestrial design basis), 1 MWt-yrs Indirect 850K Stirling conversion, ~10 kWe each 400K water radiators (ISS-derived), <200 m2 400V transmission, 120V bus (ISS-derived) for loads
Technology Needs	 High temperature refractory alloys & joints Reactor fuel development (life & burnup) High power, high temperature Brayton converters Integrated reactor-Brayton control verification Rad-hard parts & thruster electrical load integration End-to-end system performance test Multiple, sustained, ground nuclear tests 	 Liquid metal primary loop & Stirling hot-end interface End-to-end system performance test (TDU) Reactor criticality benchmarking tests
Launch & Startup	Three launches, on-orbit assemblyReactor startup after final stage Earth escape burn	 Single launch, up to (2) units in a single LSAM Reactor startup after installation and crew inspection
Mission & Environment	 Sole power source; Full autonomy due to comm delays; Reactor shutdown results in mission failure Jovian radiation, no solar heating, 120K sink, MMOD 	 One of several power sources for crew and equipment; backup power and crew provide contingency options Lunar day/night cycle, 50 to 350K sink, dust


An Evolutionary Development Path

Fission Surface Power

- 10 to 100 kWe
- 900 K Liquid metal (NaK) cooled reactor with UO₂ fuel and stainless steel structure
- Stirling or Brayton power conversion
- 400 K composite radiators with H₂O heat pipes

Moderate Power NEP

- 100 kWe to 1 MWe
- 1200 K Liquid metal (Li) cooled reactor with UN fuel and refractory alloy structure
- Brayton or Stirling power conversion
- 500 K composite radiators with H₂O heat pipes

High Power NEP

- Multi-Megawatt
- 1500 K Liquid metal (Li) cooled reactor with UN or other advanced fuel and refractory alloy structure
- Brayton or Rankine power conversion
- 600 K composite radiators with Na or K heat pipes

These mission classes share 3 basic building blocks that will be validated in the Fission Technology Demonstration Unit (TDU):

≻Liquid metal-cooled, fast-spectrum reactors with pin-type fuel

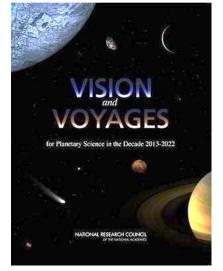
- >Dynamic power conversion with AC power mgmt & distribution
- >Large-scale, lightweight heat pipe radiator panels

FSP Technology Demonstration Unit

TDU Components:

- Reactor Simulator with Electrical Pin Heaters
- 850 K NaK Heat Transfer Loop with EM Pump
- 12 kWe Stirling Power Conversion Unit
- 400 Vac Stirling Electrical Controller
- 375 K H2O Heat Rejection Loop

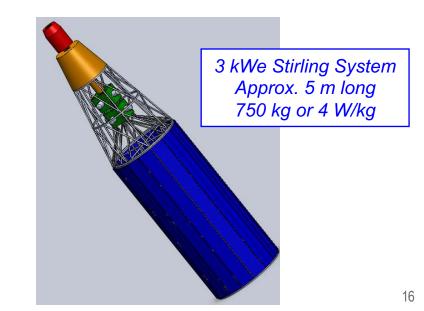
TDU Timeline:

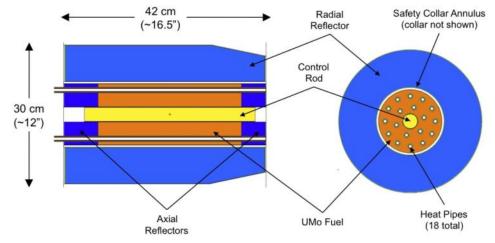

- 2008 Initiated TDU development and completed SRR
- 2009 Completed System Specification, PDR, and FDR
- 2010 Developed DOE/NASA dynamic system model
- 2011 Completed H2O cooling loop and buildup assembly platform; built and operated first of two 6 kWe Stirling engines
- 2012 Completed reactor simulator testing at MSFC; built and operated 2nd 6 kWe Stirling engine
- 2013 Completed flight-like structure and received reactor simulator from MSFC; operated dual opposed Stirling PCU at Sunpower
- 2014 Completed final assembly of reactor simulator into flight-like structure and demonstrated NaK operations at GRC
- 2015 Completed NaK heat exchanger, Stirling PCU integration, and system test produced full power!

Small Fission Power

- NRC Planetary Science Decadal Survey commissioned Small Fission Power System Feasibility Study in early 2010
 - Results presented to Giant Planets Panel in Apr 2010
 - Final report delivered and appended to NRC Vision and Voyages Report
- Follow-on informational briefings provided to SMD, HEOMD, and Office of Administrator
- Concept was refined and published at several IECEC and NETS technical conferences

- OCT initiated FY12 Formulation Study under the Game Changing Development Program, Nuclear Systems Project
 - Concept development and small-scale component testing continued at GRC and MSFC
- Los Alamos National Lab sponsored a nuclear-heated power generation proof-ofconcept test at the DOE Nevada Test Site
 - Test was completed in Sept 2012 using Flattop reactor and GRC Stirling engine assembly
- Selected for FY15 New Start Project under STMD/GCD Program
 - Three-year project to design, build, and test a 1 kW system with technology that is relevant for systems up to 10 kW

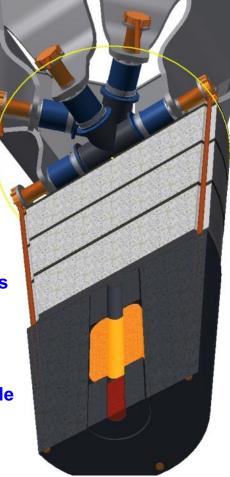

Decadal Study Concepts

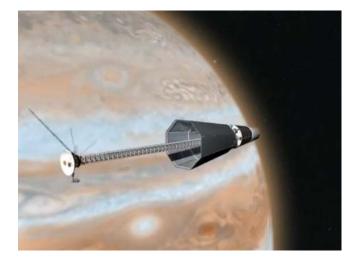

Ideally suited for flagship science missions or human exploration precursors with power requirements that exceed current radioisotope power system limits

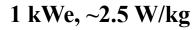
- 0.5 To 10 kWe; 10 Year Design Life
- Common Reactor Design with Solid Block U-Mo Core & Na Heat Pipe Cooling
- Thermoelectric (TE) or Stirling Power Conversion
- Aluminum Radiator and Truss

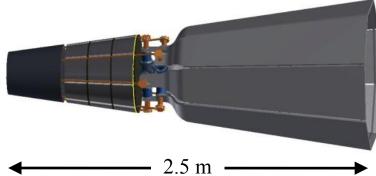
Reactor Core and Reflector Assembly

Even Smaller and Simpler...

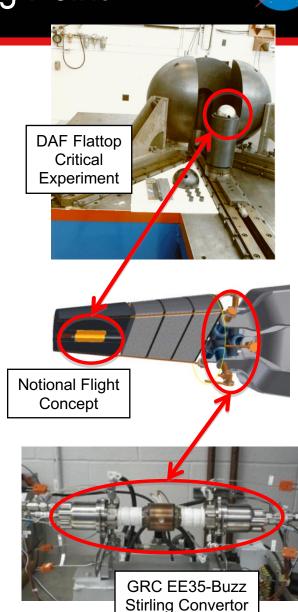



Radial Core Heat Spreaders and Ti-H2O Heat Pipe Radiators


Advanced Stirling Convertors from ASRG Flight System

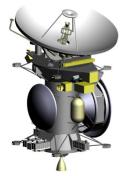

Reactor Heat Transfer via Ex-core Na Heat Pipes in Be Reflector

> Highly-Enriched U-235 Core and Single B4C Control Rod

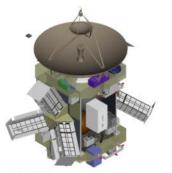


A "Critical" Starting Point

- Proof-of-Concept Test
 - LANL-sponsored test at DOE Nevada Test Site, Device Assembly Facility (DAF)
- Test Configuration
 - Highly enriched uranium core with central hole to accommodate heat pipe
 - Heat transfer via single water heat pipe
 - Power generation via two Stirling convertors developed during early phases of ASRG Project
- Significance
 - First-ever use of a heat pipe to extract thermal power from a fission reactor
 - First-ever use of a Stirling convertor to produce electric power with a fission heat source
 - Demonstration of nuclear reactivity feedback and dynamics with representative components
- Sept 13, 2012: Success! 24 Watts produced
 - Completed in less than 6 months with a total cost <\$1M
 - Proof that a nuclear reactor ground test can be conducted quickly and affordably



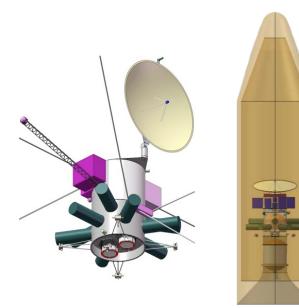
Assembly



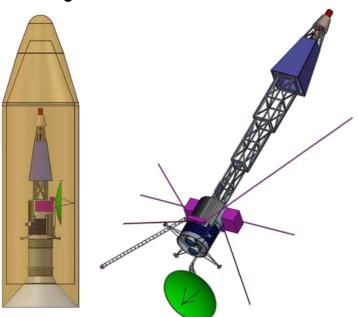
- High power systems enable expanded science and new Decadal Survey missions (examples below)
- Potential benefits to SMD include:
 - Orbiters instead of flybys, landers instead of orbiters, multiple targets
 - More instruments, bigger instruments, increased duty cycles
 - High rate communications, real time tele-operations, in-situ data analysis
 - Electric propulsion, lower launch mass, greater mission flexibility

Titan Saturn System Mission ~600 We 5 MMRTGs 4 ASRGs 1 Small Fission System

Trojan Tour ~800 We 8 MMRTGs 6 ASRGs 1 Small Fission System


Neptune Systems Explorer ~3 kWe 28 MMRTGs 6 Large SRGs 1 Small Fission System

Kuiper Belt Object Orbiter ~4 kWe 36 MMRTGs 8 Large SRGs 1 Small Fission System


Kilopower NEP Example

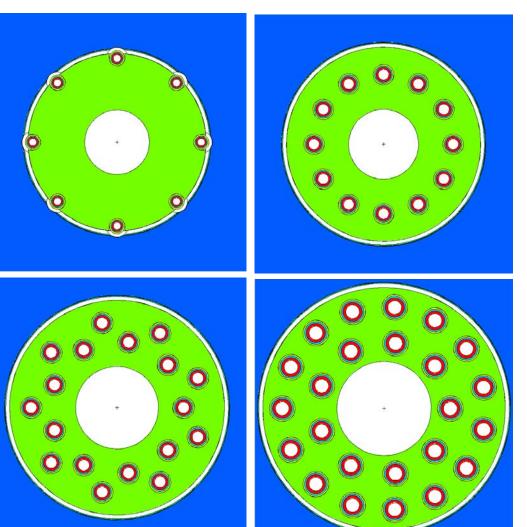
- REP Kuiper Belt Object Orbiter with Advanced Stirling RPS
 - 16 yr mission to Kuiper Belt Asteroid
 - 4 kWe; (9) 550W ASRG
 - 782 kg power system (5 We/kg)
 - 3000W NEXT ion propulsion
 - 27 kg Pu238

- NEP Kuiper Belt Object Orbiter with Kilopower FPS
 - Same mission
 - 8 kWe; (1) Reactor (8) Stirling convertors
 - 1162 kg power system (7 We/kg)
 - 7000W NEXT ion propulsion
 - 75 kg U235

- Current MMRTGs and planned Pu-238 production levels fulfill a subset of SMD mission needs, but with little margin
- Additional programmatic flexibility achieved through maturation of high efficiency advanced thermoelectric and Stirling conversion technologies
- SMD has no current requirements for a mission at the 1 kWe level or higher, and so no current requirement for a Fission Power System exists

Class	Туре	Power (We BOL*)	Power (W _e EOM**)	Mass (kg)	Specific Power (W _e /kg BOL)	Specific Power (W _e /kg EOM)
Existing RPS	MHW-RTG	157	89***	38	4.1	2.3***
	GPHS-RTG	290	227	58	5.0	3.9
	MMRTG	115	55	45	2.6	1.2
RPS	eMMRTG	154	101	45	3.4	2.2
	6-GPHS SRG	370	297	47	7.9	6.3
	16-GPHS ARTG	456	347	54	8.4	6.4
FPS	1 kW _o Stirling FPS	1,000	1,000	406	2.5	2.5
	5 kW _o Stirling FPS	5,000	5,000	1,049	4.8	4.8
	10 kW _o Stirling FPS	10,000	10,000	1,559	6.4	6.4
	1 k₩₀ TE FPS	1,000	1,000	604	1.7	1.7

* BOL is Beginning of Life: when the unit is fuelled, typically 3 years before launch for RPS.

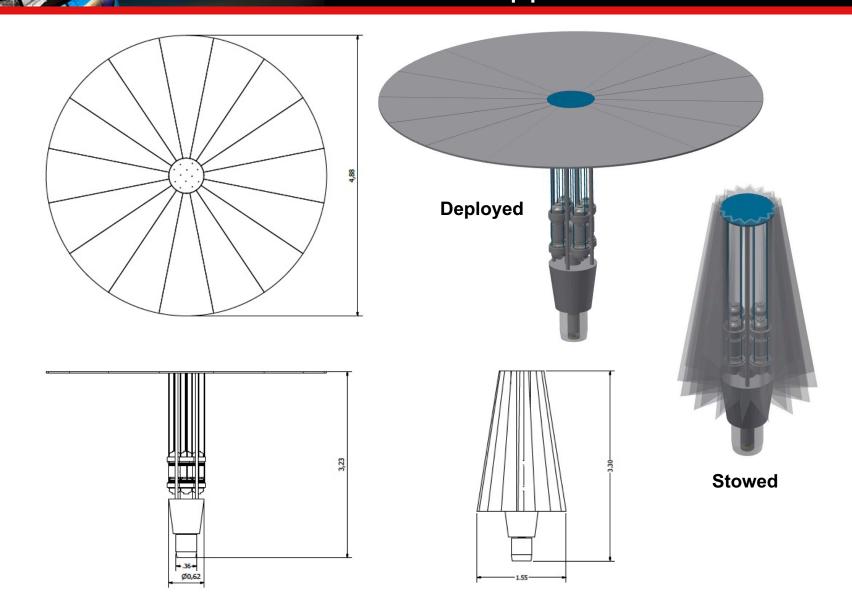

** EOM is End of Mission defined as 17 years after fueling, typically 14 years of operation for RPS.

*** MHW-RTG values come from Voyager data at 34 years of operation, rather than 14 years of operation.

Kilopower Reactor Scaling

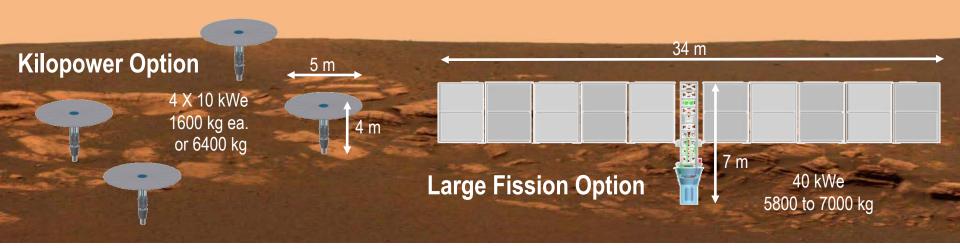
4.3 kWt, 1 kWe 11 cm Fuel OD 28.4 kg U235 0.09% Burnup 8X 3/8" HPs

13 kWt, 3 kWe 12 cm Fuel OD 32.9 kg U235 0.22% Burnup 12X 1/2" HPs

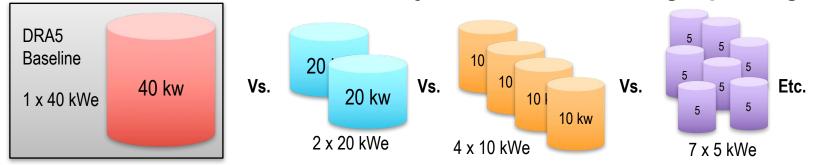

43.3 kWt, 10 kWe 15 cm Fuel OD 43.7 kg U235 0.56% Burnup 24X 5/8" HPs

21.7 kWt, 5 kWe

13.2 cm Fuel OD37.9 kg U2350.32% Burnup18X 0.525" HPs


Preliminary 10 kWe Kilopower Concept for Surface Power Applications

HEOMD Mission Pull for Small Fission



- Kilopower systems can be used in multiples to address human surface missions as an alternative to a large single power plant
 - Smaller unit size and mass permits easier packaging in surface landers and simplified startup process
 - Multiple units provide a greater level of redundancy and fault tolerance
 - Units can be deployed as needed in timeline for flexibility in buildup approach
 - Individual units can be shut down & relocated to address evolving mission needs; e.g. rover charging station to extend crew exploration radius

HAT Study: 40 kW Fission Surface Power vs. Multiple Kilopower Units

Mars surface mission needs ~40 kW of surface power ...but it doesn't necessarily have to be in a single package

"Kilopower" design is similar to the FSP, but with lower mass, less volume, easier logistics, and fewer moving parts

KILOPOWER DESIGN	3.3 m Deployed	Turne	Power	Mass	Dimensions (m)		Dedictore	
			Туре	(kWe)	(kg)	Dia.	Height	Radiators
		Deployed		3	751	1.2	2.2	9.6 m ²
			5	1,017	1.3	2.7	13.5 m ²	
		34 m →	KP	7	1,259	1.4	3.0	17 m ²
	184 m ²			10	1,572	1.5	3.3	20 m ²
	FSP DESIGN	7 m	FSP	10	3,300	1.0	7 m tall	37 m ²
				40	7,000	2.7	7 m tall	184 m ²

Kilopower Baseline for EMC

Assumptions Agreed to at January HAT TIF

For the purpose of FY15 EMC studies, assume a crewed Mars mission will employ 10 kWe Kilopower systems for surface power

- Kilopower units have many advantages over the baseline FSP in a crewed surface mission scenario
- Although 3, 5 or 7 kWe units would all work for the crewed surface mission, the 10 kWe option trades best for landed mass, stowed volume, and operational complexity
- STMD's 10 kWe technology demonstrator will provide firm (not hypothetical) data for this option

2.As a point of departure, assume 4 each 10 kWe Kilopower units to support a 4 crew, 500+ day surface mission with ISRU return propellant

 Rationale: Both DRA 5.0 and the integrated surface power study concluded that such a mission would require -40 kWe surface power, but results could vary pending FY15 MAV deep dive analysis

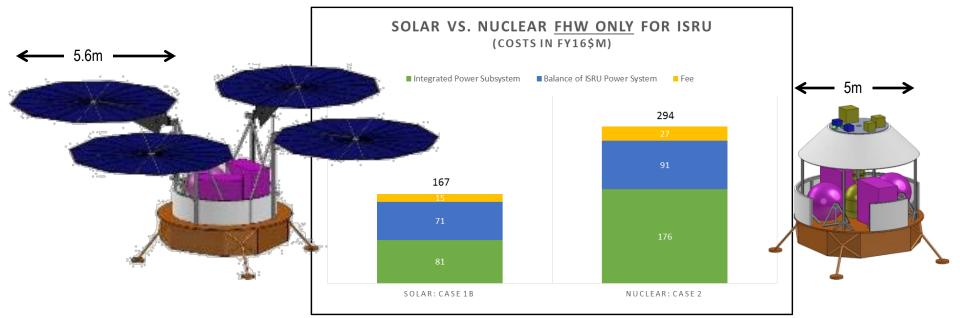
3.As a point of departure, assume 1 each spare 10 kWe Kilopower unit

Rationale: Unlikely that all 4 primary units will fail, but it's prudent to have at least one spare, pending
more detailed risk analysis

4.As a point of departure, assume 4 each 10 kWe Kilopower units will be needed to extend rover traverse 250 km from the Landers/Habitat

- Rationale: Based on power study, which found co-located, daisy-chained units provide optimum traverse
 - Note: we don't have to use the power units in this way, but if our operations scenarios dictate this
 type of traverse, this is what we should assume for power

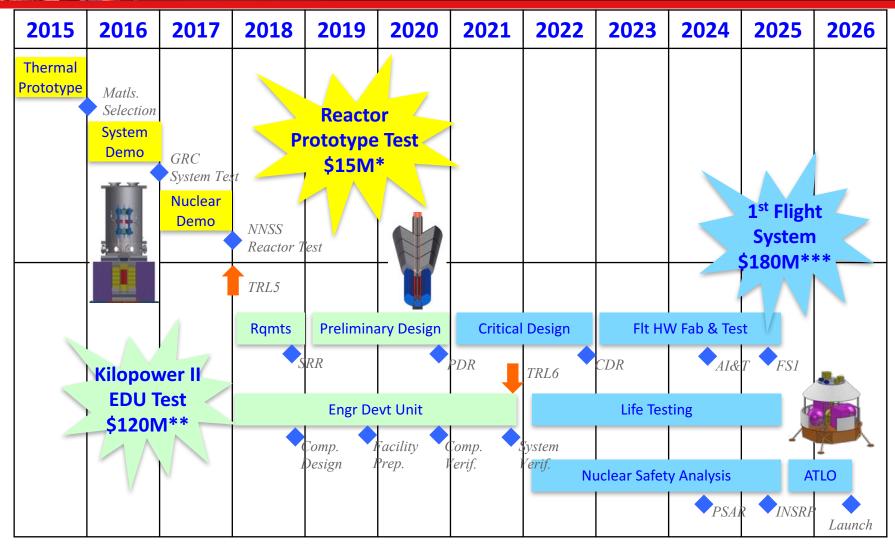
ISRU Demo Lander Study



Solar version:

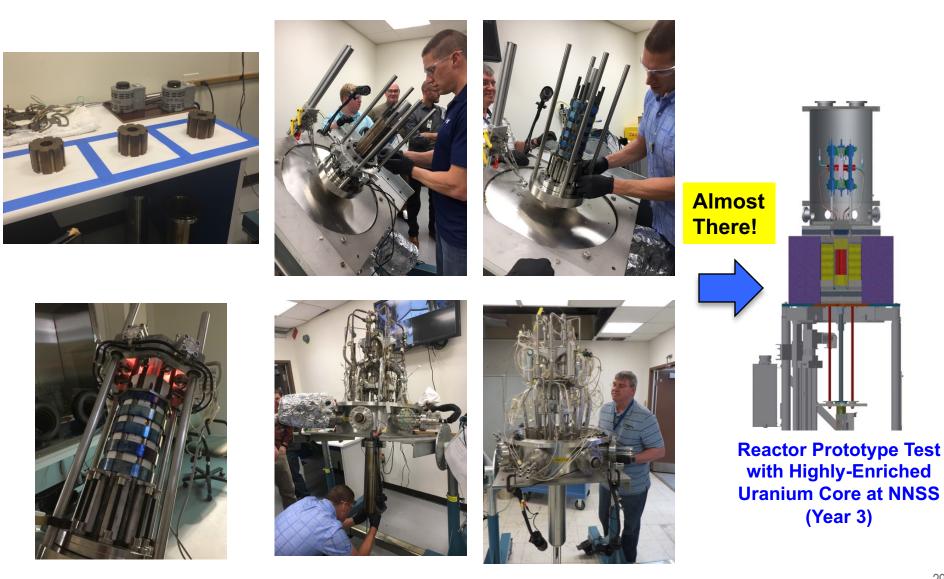
- 4X 5.6m Ultraflex arrays
- Daytime ISRU only (1098 days to produce 4400 kg LOX*)
- Requires 4X 7.5m arrays and 1100 kg Li batteries for day/night ISRU ops excluding dust storm (527 days to produce 4400 kg LOX*)

Nuclear version:


- 1X 10 kW Kilopower reactor operated at 70% power
- Continuous ISRU operations (407 days to produce 4400 kg LOX*)
- Co-located reactor results in elevated radiation levels for ISRU equipment on lander deck

* 4400 kg LOX represents 1/5 total needed for crew ascent stage; deemed sufficient quantity to demo ISRU process for crewed mission.

Notional Flight Development Timeline


* Includes \$5M funding from Department of Energy, National Nuclear Security Administration

** Expected cost sharing between STMD and HEOMD for Mars-specific design and test

*** ROM costs based on preliminary estimates for Kilopower flight hardware on notional ISRU demo mission

KRUSTY Dry Run with DU Cores (Dec. 2016)

Summary

- Kilopower Technology Development on-going under STMD/GCD Program
 - Fully-funded, 2017 Nuclear Ground Test at Nevada Test Site
 - Cost shared with DOE National Nuclear Security Administration
- Scalable fission technology from 1-10 kWe for Science and Exploration
- New paradigm for space reactors with design based on affordability rather than performance
- Smaller and simpler than Constellation-era Fission Surface
 Power system concepts
- Leverages available materials and components; sized for existing ground test faciities
- Proposed high-fidelity EDU in simulated Mars environment
- Potential for flight test in less than 10 years

- GRC Don Palac, Marc Gibson, Jim Sanzi, Max Briggs, Max Chaiken
- MSFC Tom Godfroy, Kenny Webster, Mike Houts
- JSC Michelle Rucker
- Los Alamos Patrick McClure, Dave Poston
- Y12 Chris Robinson, Jim Henkel, Hollie Longmire
- NNSA Steve Clement, Angela Chambers, Jerry McKamy (ret.)
- NNSS Chip Martin, Tim Beller, Rene Sanchez, David Hayes
- Sunpower, Inc. Gary Wood
- Advanced Cooling Technologies, Inc. Bill Anderson
- STMD Lanetra Tate, Jeff Sheehy, Mary Beth Wusk & GCD Program
- HEOMD Chris Moore, John Warren & AES Program
- SMD David Schurr, Len Dudzinski, John Hamley & RPS Program