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Preface

With the discovery of the directional dependence of elastic and optical phe-
nomena in the early 19th century, the special nature of the physical behavior
of crystalline bodies entered the consciousness of the natural scientist. The
beauty and elegance, especially of the crystal-optical laws, fascinated all out-
standing physicists for over a century. For the founders of theoretical physics,
such as, for example, Franz Neumann (1798-1895), the observations on crys-
tals opened the door to a hidden world of multifaceted phenomena. F. Pockels
(1906) and W. Voigt (1910) created, with their works Lehrbuch der Kristallop-
tik (Textbook of Crystal Optics) and Lehrbuch der Kristallphysik (Textbook of
Crystal Physics), respectively, the foundation for theoretical and experimen-
tal crystal physics. The development of lattice theory by M. Born, presented
with other outstanding contributions in Volume XXIV of Handbuch der Physik
(Handbook of Physics, 1933), gave the impetus for the atomistic and quantum
theoretical interpretation of crystal-physical properties. In the shadow of the
magnificent success of spectroscopy and structural analysis, further develop-
ment of crystal physics took place without any major new highlights. The ap-
plication of tensor calculus and group theory in fields characterized by sym-
metry properties brought about new ideas and concepts. A certain comple-
tion in the theoretical representation of the optical and elastic properties was
achieved relatively early. However, a quantitative interpretation from atom-
istic and structural details is, even today, only realized to a satisfactory extent
for crystals with simple structures. The technological application and the fur-
ther development of crystal physics in this century received decisive impulses
through the following three important discoveries: 1. High-frequency tech-
niques with the use of piezoelectric crystals for the construction of frequency
determining devices and in ultrasound technology. 2. Semiconductor tech-
niques with the development of transistors and integrated circuits based on
crystalline devices with broad applications in high-frequency technology and
in the fields of information transmission as well as computer technology. 3.
Laser techniques with its many applications, in particular, in the fields of opti-
cal measurement techniques, chemical analysis, materials processing, surgery,
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and, not least, the miniaturization of information transmission with optical
equipment.

In many other areas, revolutionary advances were made by using crystals,
for example, in radiation detectors through the utilization of the pyroelectric
effect, in fully automatic chemical analysis based on X-ray fluorescence spec-
troscopy, in hard materials applications, and in the construction of optical and
electronic devices to provide time-delayed signals with the help of surface
acoustic waves. Of current interest is the application of crystals for the vari-
ous possibilities of converting solar energy into electrical energy. It is no won-
der that such a spectrum of applications has broken the predominance of pure
science in our physics institutes in favor of an engineering-type and practical-
oriented research and teaching over the last 20 years. While even up to the
middle of the century the field of crystallography-apart from the research cen-
ters of metal physics-mainly resided in mineralogical institutes, we now have
the situation where crystallographic disciplines have been largely consumed
by physics, chemistry, and physical chemistry. In conjunction with this was
a tumultuous upsurge in crystal physics on a scale which had not been seen
before. With an over 100-fold growth potential in personnel and equipment,
crystal physics today, compared with the situation around 1950, has an en-
tirely different status in scientific research and also in the economic impor-
tance of the technological advances arising from it. What is the current state of
knowledge, and what do the future possibilities of crystal physics hold? First
of all some numerical facts: of the approximately 45,000 currently known crys-
tallized substances with defined chemical constituents and known structure,
we only have a very small number (a few hundred) of crystal types whose
physical properties may largely be considered as completely known. Many
properties, such as, for example, the higher electric and magnetic effects, the
behaviour under extreme temperature and pressure conditions and the simul-
taneous interplay of several effects, have until now-if at all-only been studied
on very few crystal types. Apart from working on data of long known sub-
stances, the prospective material scientist can expect highly interesting work
over the next few decades with regard to the search for new crystal types with
extreme and novel properties. The book Kristallphysik (Crystal Physics) is in-
tended to provide the ground work for the understanding of the distinctive-
ness of crystalline substances, to bring closer the phenomenological aspects
under the influence of symmetry and also to highlight practical considera-
tions for the observation and measurement of the properties. Knowledge of
simple physical definitions and laws is presumed as well as certain crystal-
lographic fundamentals, as found, for example, in the books Kristallgeometrie
(Crystal Geometry) and Kristallstrukturbestimmung (Crystal Structure Deter-
mination). The enormous amount of material in the realm of crystal physics
can, of course, only be covered here in an exemplary way by making certain
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choices. Fields in which the crystal-specific anisotropy effects remain in the
background, such as, for example, the semiconductors and superconductors,
are not considered in this book. A sufficient amount of literature already exists
for these topics. Also the issue of inhomogeneous crystalline preparations and
the inhomogeneous external effects could not be discussed here. Boundary
properties as well as the influence of defects connected with growth mecha-
nisms will be first discussed in the volume Kristallwachstum (Crystal Growth).
The approaches to the structural interpretation of crystal properties based on
lattice theory were only touched on in this book. The necessary space for this
subject is provided in the volume Kristallchemie (Crystal Chemistry) as well as
thermodynamic and crystal-chemical aspects of stability. A chapter on meth-
ods of preparation is presented at the beginning, which is intended to intro-
duce the experimenter to practical work with crystals. We clearly focus on
the problem of orientation with the introduction of a fixed ”crystal-physical”
reference system in the crystal. For years a well-established teaching method
of separating the physical quantities into inducing and induced quantities has
been taken over. The connection between these allows a clear definition of
the notion of ”property.” The properties are classified according to the cat-
egories ”tensorial” and ”nontensorial, ” whereby such properties which can
be directly calculated from tensorial properties, such as, for example, light or
sound velocity, can be classified as ”derived tensorial” properties. A large
amount of space is devoted to the introduction of tensor calculus as far as it
is required for the treatment of crystal-physical problems. Important proper-
ties of tensors are made accessible to measurement with the intuitive concepts
of ”longitudinal effect” and ”transverse effect.” The treatment of group theo-
retical methods is mainly directed towards a few typical applications, in or-
der to demonstrate the attractiveness and the efficiency of this wonderful tool
and thus to arouse interest for further studies. The reader is strongly recom-
mended to work through the exercises. The annex presents tables of proven
standard values for a number of properties of selected crystal types. Refer-
ences to tables and further literature are intended to broaden and consolidate
the fields treated in this book as well as helping in locating available data.
My special thanks go to Dr. P. Preu for his careful and critical reading of the
complete text and his untiring help in the production of the figures. A. Möws
through her exemplary service on the typewriter was of great support in com-
pletion of the manuscript. Finally, I would also like to express my thanks to
the people of Chemie Verlag, especially Dr. G. Giesler, for their understanding
and pleasant cooperation.

Cologne, summer 1983 S. Haussühl
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Preface to the English Edition

In the first edition of Kristallphysik it was assumed that the reader possessed
basic knowledge of crystallography and was familiar with the mathematical
tools as well as with simple optical and X-ray methods. The books Kristallge-
ometrie (Crystal Geometry) and Kristallstrukturbestimmung (Crystal Structure
Determination), both of which have as yet only been published in German,
provided the required introduction. The terms and symbols used in these
texts have been adopted in Crystal Physics. In order to present to the reader
of the English translation the necessary background, a chapter on the ba-
sics of crystallography has been prefixed to the former text. The detailed
proofs found in Kristallgeometrie (Crystal Geometry) and Kristallstrukturbes-
timmung (Crystal Structure Determination) were not repeated. Of course,
other books on crystallography are available which provide an introduction
to the subject matter. Incidentally, may I refer to the preface of the first edi-
tion. The present text emerges from a revised and many times amended new
formulation. Some proofs where I have given the reader a little help have
been made more accessible by additional references. Furthermore, I have in-
cluded some short sections on new developments, such as, for example, the
resonant ultrasound spectroscopy (RUS) method as well as some sections on
the interpretation of physical properties. This last measure seemed to make
sense because I decided not to bring to print the volumes Kristallchemie (Crys-
tal Chemistry) and Kristallzüchtung (Crystal Growth) announced in the first
edition, although their preparations were at an advanced stage. An important
aspect for this decision was that in the meantime several comprehensive and
attractive expositions of both subjects appeared and there was therefore no
reason, alone from the scope of the work, to publish an equivalent exposition
in the form of a book. In addition, the requirement to actualize and evaluate
anew the rapid increase in crystallographic data in ever shorter time intervals
played a decisive role in my decision. The same applies to the experimental
and theoretical areas of crystal growth. Hence, the long-term benefit of an all
too condensed representation of these subjects is questionable. In contrast, it
is hoped that the fundamentals treated in the three books published so far will
provide a sufficient basis for crystallographic training for a long time to come.
I thank Dr. Jürgen Schreuer, Frankfurt, for his many stimulating suggestions
with respect to the new formulation of the text. In particular, he compiled the
electronic text for which I owe him my deepest gratitude. Finally, I wish to
thank Vera Palmer of Wiley-VCH for her cooperation in the publishing of this
book.

Siegfried Haussühl
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1
Fundamentals

1.1
Ideal Crystals, Real Crystals

Up until a few years ago, crystals were still classified according to their mor-
phological properties, in a similar manner to objects in biology. One often
comes across the definition of a crystal as a homogenous space with direction-
ally dependent properties (anisotropy). This is no longer satisfactory because
distinctly noncrystalline materials such as glass and plastic may also possess
anisotropic properties. Thus a useful definition arises out of the concept of an
ideal crystal (Fig. 1.1):

An ideal crystal is understood as a space containing a rigid lattice arrangement of
uniform atomic cells.

A definition of the lattice concept will be given later. Crystals existing in
nature, the real crystals, which we will now generally refer to as crystals, very
closely approach ideal crystals. They show, however, certain deviations from
the rigid lattice arrangement and from the uniform atomic cell structure. The
following types of imperfections, i.e., deviations from ideal crystals, may be
mentioned:

Imperfections in the uniform structure of the cells. These are lattice vacan-
cies, irregular occupation of lattice sites, errors in chemical composi-
tion, deviations from homogeneity by mixed isotopes of certain types

Figure 1.1 Lattice-like periodic arrangement of unit cells.
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(a) (b)
Figure 1.2 (a) Parallelepiped for the definition of a crystallographic
reference system and (b) decomposition of a vector into components
with respect to the reference system.

of atoms, different excitation states of the building particles (atoms), not
only with respect to bonding but also with respect to the position of
other building particles (misorientation of building particles).

Imperfections in the lattice structure. These refer to displacement, tilt-
ing and twisting of cells, nonperiodic repetition of cells, inhomogenous
distribution of mechanical deformations through thermal stress, sound
waves, and external influences such as electric and magnetic fields. The
simple fact that crystals have finite dimensions results in a departure
from the ideal crystal concept because the edge cells experience a differ-
ent environment than the inner ones.

At this point we mention that materials exist possessing a structure not cor-
responding to a rigid lattice-type arrangement of cells. Among these are the
so-called quasicrystals and substances in which the periodic repetition of cells
is impressed with a second noncommensurable periodicity.

To characterize a crystal we need to make some statements concerning
structural defects.

One must keep in mind that not only the growth process but also the com-
plete morphological and physical appearance of the crystal is crucially deter-
mined by the structure of the lattice, i.e., the form of the cells as well as the
spatial arrangement of its constituents.

A unit cell in the sense used here is a parallelepiped, a space enclosed by
three pairs of parallel surfaces (Fig. 1.2). The edges originating from one of the
corner points determine, through their mutual positions and length, a crystal-
lographic reference system. The edges define the basis vectors a1, a2, and a3. The
angle between the edges are α1 = ∠(a2, a3), α2 = ∠(a1, a3), α3 = ∠(a1, a2).
The six quantities {a1, a2, a3, α1, α2, α3} form the metric of the relevant cell and
thus the metric of the appropriate crystallographic reference system which
is of special significance for the description and calculation of morphologi-
cal properties. The position of the atoms in the cell, which characterizes the
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structure of the corresponding crystal species, is also described in the crys-
tallographic reference system. Directly comprehensible and useful for many
questions is the representation of the cell structure by specifying the position
of the center of gravity of the atoms in question using so-called parameter vec-
tors. A more detailed description is given by the electron density distribution
ρ(x) in the cell determined by the methods of crystal structure analysis. The
end of the vector x runs through all points within the cell.

In an ideal crystal, the infinite space is filled by an unlimited regular repeti-
tion of atomistically identical cells in a gap-free arrangement. Vector methods
are used to describe such lattices (see below).

1.2
The First Basic Law of Crystallography (Angular Constancy)

The surface of a freely grown crystal is mainly composed of a small number of
practically flat surface elements, which, in the following, we will occasionally
refer to as faces. These surface elements are characterized by their normals
which are oriented perpendicular to the surface elements. The faces are more
precisely described by the following:

1. mutual position (orientation),

2. size,

3. form,

4. micromorphological properties (such as cracks, steps, typical microhills,
and microcavities).

The orientation of a certain surface element is given through the angles which
its normal makes with the normals of the other surface elements. One finds
that arbitrary angles do not occur in crystals. In contrast, the first basic law of
crystallography applies:

Freely grown crystals belonging to the same ideal crystal, possess a characteristic
set of normal angles (law of angular constancy).

The members belonging to the same ideal crystal form a crystal species. The
orientation of the surface elements is thus charcteristic, not, however, the size
ratios of the surface elements.

The law of angular constancy can be interpreted from thermodynamic con-
ditions during crystal growth. Crystals in equilibrium with their mother
phase or, during growth only slightly apart from equilibrium, can only de-
velop surface elements Fi possessing a relatively minimal specific surface en-
ergy σi. σi is the energy required to produce the ith surface element from 1
cm2 of the boundary surface in the respective mother phase. Only then does



4 1 Fundamentals

the free energy of the complete system (crystal and mother phase) take on a
minimum. The condition for this is

∑ Fiσi = Minimum(Gibbs’ condition),

where the numerical value for Fi refers to the size of the ith surface element.
From this condition one can deduce Wulff’s theorem, which says that the cen-
tral distances Ri of the ith surface (measured from the origin of growth) are
proportional to the surface energy σi. According to Gibbs’ condition, those
surfaces possessing the smallest, specific surface energy are the most stable
and largest developed. From simple model calculations, one finds that the
less prominent the surface energy becomes, the more densely the respective
surface is occupied by building particles effecting strong mutual attraction.
The ranking of faces is thus determined by the occupation density. In a lat-
tice, very few surfaces of large occupation density exist exhibiting prominent
orientations. This is in accord with the empirical law of angular constancy.

A crude morphological description follows from the concepts tracht and
habit. Tracht is understood as the totality of the existent surface elements
and habit as the coarse external appearance of a crystal (e.g., hair shaped, pin
shaped, stem shaped, prismatic, columned, leafed, tabular, isometric, etc.).

1.3
Graphical Methods, Stereographic Projection

For the practical handling of morphological findings, it is useful to project the
details, without loss of information, onto a plane. Imagine surface normals
originating from the center of a sphere intersecting the surface of the sphere.
The points of intersection Pi represent an image of the mutual orientation of
the surface elements. The surface dimensions are uniquely determined by the
central distances Ri of the ith surface from the center of the sphere (Fig. 1.3).
One now projects the points of intersection on the sphere on to a flat piece of

Figure 1.3 Normals and central distances.
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Figure 1.4 Stereographic projection P. of a point P.

paper, the plane of projection. Thus each point on the sphere is assigned a
point on the plane of projection. In the study of crystallography, the following
projections are favored:

1. the stereographic projection,

2. the gnomonic projection,

3. the orthogonal projection (parallel projection).

Here, we will only discuss the stereographic projection which turns out to
be a useful tool in experimental work with crystals. On a sphere of radius R
an arbitrary diameter is selected with intersection points N (north pole) and S
(south pole). The plane normal to this diameter at the center of the sphere is
called the equatorial plane. It is the projection plane and normally the drawing
plane. The projection point P. belonging to the point P is the intersection point
of the line PS through the equatorial plane (Fig. 1.4).

The relation between P and P. is described with the aid of a coordinate
system. Consider three vectors a1,a2, and a3 originating from a fixed point,
the origin of the coordinate system. These we have already met as the edges
of the elementary cell. The three vectors shall not lie in a plane (not coplanar,
Fig. 1.2b). The lengths of ai (i = 1, 2, 3) and their mutual positions, fixed by the
angles αi, are otherwise arbitrary. One reaches the point P with coordinates
(x1, x2, x3) by starting at the origin O and going in the direction a1 a distance
x1a1, then in the direction a2 a distance x2a2, and finally in the direction a3 by
the distance x3a3. The same end point P is reached by taking any other order
of paths.

Each point on the sphere is now fixed by its coordinates (x1, x2, x3). The
same applies to the point P. with coordinates (x.

1, x.
2, x.

3). For many crystallo-
graphic applications it is convenient to introduce a prominent coordinate sys-
tem, the Cartesian coordinate system. Here, the primitive vectors have a length
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of one unit in the respective system of measure and are perpendicular to each
other (αi = 90◦). We denote these vectors by e1, e2, e3. The origin is placed
in the center of the sphere and e3 points in the direction ON. The vectors e1
and e2 accordingly lie in the equatorial plane. It follows always that x.

3 = 0.
If P is a point on the sphere, then its coordinates obey the spherical equation
x2

1 + x2
2 + x2

3 = R2. For R = 1 one obtains the following expressions from the
relationships in Fig. 1.5:

x.
1 =

x1

1 + x3
, x.

2 =
x2

1 + x3
.

These transform to

x1 =
2x.

1
1 + x.

1
2 + x.

2
2 , x2 =

2x.
2

1 + x.
1

2 + x.
2

2 , x3 =
1− x.

1
2 − x.

2
2

1 + x.
1

2 + x.
2

2 .

In polar coordinates, we define a point by its geographical longitude η and
latitude (90◦ − ξ). Therefore, from Fig. 1.5 we have

x3 = cos ξ, r = OP. = sin ξ, x1 = r cos η = sin ξ cos η,

x2 = r sin η = sin ξ sin η.

Thus

x.
1 =

sin ξ cos η

1 + cosξ
, x.

2 =
sin ξ sin η

1 + cosξ
,

and

tan η =
x2

x1
=

x.
2

x.
1

and cos ξ = x3 =
1− x.

1 − x.
2

1 + x.
1 + x.

2
.

Figure 1.5 Stereographic projection.
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Figure 1.6 Wulff’s net.

The stereographic projection is distinguished by two properties, namely the
projections are circle true and angle true. All circles on the surface of the
sphere project as circles in the plane of projection and the angle of intersec-
tion of two curves on the sphere is preserved in the plane of projection. This
can be proved with the transformation equations above. In practice, one uses
a Wulff net in the equatorial plane, which is a projection of one half of the
terrestrial globe with lines of longitude and latitude (Fig. 1.6). Nearly all prac-
tical problems of the geometry of face normals can be solved to high preci-
sion using a compass and ruler. Frequently, however, it suffices only to work
with the Wulff net. The first basic task requires drawing the projection point
P. = (x.

1, x.
2) of the point P = (x1, x2, x3) (Fig. 1.7). Here, the circle on the

sphere passing through the points P, N, and S plays a special role (great circle
PSN). It appears rotated about e3 with respect to the circle passing through the
end point of e1 and through N and S by an angle η, known from tan η = x2/x1.
The projection of this great circle, on which P. also lies, is a line in the projec-
tion plane going through the center of the equatorial circle and point Q, the

Figure 1.7 Construction of P.(x.
1, x.

2) from P(x1, x2x3).
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intersection point of the great circle with the equatorial circle. The point Q
remains invariant in the stereographic projection. It has an angular distance
of η from the end point of e1. If one now tilts the great circle PSN about the
axis OQ into the equatorial plane by 90◦ one can then construct P. directly as
the intersection point of the line OQ with the line P̄S̄. P̄ and S̄ are the points P
and S after tilting. One proceeds as follows to obtain a complete stereographic
projection of an object possing several faces: the normal of the first face F1 is
projected parallel to e1, so that its projection at the end point of e1 lies on the
equatorial circle. The normal of F2 is also projected onto the equatorial circle
at an angular distance of the measured angle between the normals of F1 and
F2. For each further face F3, etc. the angles which their normals make with two
other normals, whose projections already exist, might be known. Denote the
angles between the normals of Fi and Fj by ψij. The intersection point P3 of face
F3 then lies on the small circles having an angular distance ψ13 from P1 and an
angular distance ψ23 from P2. Their projections can be easily constructed. One
of the two intersection points of these projections is then the sought after the
projection point P.

3. The reader is referred to standard books on crystal ge-
ometry to solve additional problems, especially the determination of angles
between surface normals whose stereographic projections already exist.

1.4
The Second Basic Law of Crystallography (Law of Rational Indices)

Consider three arbitrary faces F1, F2, F3 of a freely grown crystal with their
associated normals h1, h2, h3. The normals shall not lie in a plane (nontauto-
zonal). Two faces respectively form an intercept edge ai (Fig. 1.8). The three
edge directions define a crystallographic reference system.

Figure 1.8 Fixing a crystallographic reference system from three non-
tautozonal faces.
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The system is

a1 ‖ edge(F2, F3),

a2 ‖ edge(F3, F1),

a3 ‖ edge(F1, F2),

in other words ai ‖ edge(Fj, Fk). The indices i, j, k run through any triplets of
the cyclic sequence 123123123 . . ..

ai are perpendicular to the normals hj and hk since they belong to both
surfaces Fj and Fk. On the other hand, aj and ak span the surfaces Fi with their
normals hi. The system of ai follows from the system of hi and, conversely,
the system of hi from that of ai by the operation of setting one of these vectors
perpendicular to two vectors of the other respective system. Systems which
reproduce after two operations are called reciprocal systems. The edges ai thus
form a system reciprocal to the system of hi and vice versa.

The crystallographic reference system is first fixed by the three angles αi =
angle between aj and ak. Furthermore, we require the lengths | ai |= ai for
a complete description of the system. This then corresponds to our definition
of the metric which we introduced previously. We will return to the determi-
nation of the lengths and length ratios later. Moreover, the angles αi can be
easily read from a stereographic projection of the three faces Fi. In the same
manner, the projections of the intercept points of the edges ai and thus their
orientation can be easily determined.

We consider now an arbitrary face with the normal h in the crystallographic
basic system of vectors ai (Fig. 1.9). The angles between h and ai are denoted
by θi. We then have

cos θ1 : cos θ2 : cos θ3 =
1

OA1
:

1
OA2

:
1

OA3
=

1
m1a1

:
1

m2a2
:

1
m3a3

,

where we use the Weiss zone law to set OAi = miai. The second basic law of
crystallography (law of rational indices) now applies.

Two faces of a freely grown crystal with normals hI and hI I , which enclose
angles θ I

i and θ I I
i with the crystallographic basic vectors ai, can be expressed

as the ratios of cosine values to the ratios of integers

cos θ I
1

cos θ I I
1

:
cos θ I

2
cos θ I I

2
:

cos θ I
3

cos θ I I
3

=
mI I

1
mI

1
:

mI I
2

mI
2

:
mI I

3

mI
3

.

mi/mj are thus rational numbers. The law of rational indices heightens the
law of angular constancy to such an extent that, for each crystal species, the
characteristic angles between the face normals are subject to an inner rule of
conformity. This is a morphological manifestation of the lattice structure of
crystals. A comprehensive confirmation of the law of rational indices on nu-
merous natural and synthetic crystals was given by René Juste Hauy (1781).
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Figure 1.9 Axial intercepts and angles of a face having the normal h.

It was found advantageous to introduce the Miller Indices (1839) hi = t/mi
instead of the Weiss indices mi which fully characterize the position of a face. t
is an arbitrary factor. The face in question is then symbolized by h = (h1h2h3).
The so-called axes’ ratio a1 : a2 : a3 now allows one to specify, by an arbitrary
choice of indices, a further face F4 defined by h(4) = (h(4)

1 h(4)
2 h(4)

3 ). For each
face then

cos θ1 : cos θ2 : cos θ3 =
h1

a1
:

h2

a2
:

h3

a3
.

If the angles of the fourth face are known, one obtains the axes ratio

a1 : a2 : a3 =
h(4)

1

cos θ
(4)
1

:
h(4)

2

cos θ
(4)
2

:
h(4)

3

cos θ
(4)
3

.

Moreover, the faces F1, F2, and F3 are specified by the Miller indices (100),
(010), and (001), respectively.

Now the path is open to label further faces. One measures the angles θi and
obtains

h1 : h2 : h3 = a1 cos θ1 : a2 cos θ2 : a3 cos θ3.

As long as morphological questions are in the foreground, one is allowed to
multiply through with any number t, so that for hi the smallest integers, with
no common factor, are obtained satisfying the ratio.

1.5
Vectors

1.5.1
Vector Addition

Vectors play an important and elegant role in crystallography. They ease the
mathematical treatment of geometric and crystallographic questions. We de-
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Figure 1.10 Addition of two vectors x and y.

fine a vector by the specifications used earlier for the construction of a point P
with coordinates (x1, x2, x3) and a second point Q with coordinates (y1, y2, y3).
Now consider the point R with the coordinates (x1 + y1, x2 + y2, x3 + y3) (Fig.
1.10). We reach R after making the construction (x1, x2, x3) and finally attach-
ing the distances y1a1, y2a2 and y3a3 directly to P. One can describe this
construction of R as the addition of distances OP and OQ. We now assign to
the distance OP the vector x, to the distance OQ the vector y, and to the dis-
tance OR the vector z. We then have x + y = z. The coordinates are given by
xi + yi = zi. Quantities which can be added in this manner are called vectors.
The order of attaching the vectors is irrelevant.

A vector is specified by its direction and length. Usually it is graphically
represented by an arrow over the symbol. Here we write vectors in boldface
italic letters. The length of the vector x is called the magnitude of x, denoted
by the symbol x =| x |. Vectors can be multiplied with arbitrary numbers
as is obvious from their component representation. Each component is mul-
tiplied with the corresponding factor. A vector of length one is called a unit
vector. We obtain a unit vector ex in the direction x by multiplication with 1/x
according to ex = x/x.

From the above definition we now formulate the following laws of addition:

1. commutative law: z = x + y = y + x (Fig. 1.11),

2. associative law: x + (y + z) = (x + y) + z,

3. distributive law: q(x + y) = qx + qy.

The validity of these three laws shall be checked in all further discussions
on vector combinations.

Since −x can be taken as a vector antiparallel to x with the same length
(−x + x = 0), we have the rule for vector subtraction z = x− y (Fig. 1.11).

Examples for the application of vector addition are as follows.
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Figure 1.11 Commutative law of vector addition; vector substraction.

1. Representation of a point lattice by r = r1a1 + r2a2 + r3a3, where ri run
through the integer numbers. The end point of r then sweeps through
all lattice points. We use the symbol [|r1r2r3|] for a lattice point and for
a lattice row, also represented by r, the symbol [r1r2r3]. As before, we
denote any point with coordinates xi by (x1, x2, x3).

2. Decomposition of a vector into components according to a given reference
system. One places through the end points of x planes running parallel
to the planes spanned by the vectors aj and ak. These planes truncate,
on the coordinate axes, the intercepts xiai thus giving the coordinates
(x1, x2, x3). This decomposition is unique. We thus construct the paral-
lelepiped with edges parallel to the vectors ai and with space diagonals
x (Fig. 1.12).

3. The equation of a line through the end points of the two vectors x0 and x1
is given by x = x0 + λ(x1 − x0). λ is a free parameter.

4. The equation of a plane through the end points of x0, x1, and x2 is given by
x = x0 + λ(x1 − x0) + µ(x2 − x0). λ and µ are free parameters. In com-
ponent representation, these three equations correspond to the equation
of a plane in the form u0 + u1x1 + u2x2 + u3x3 = 0, which one obtains af-
ter eliminating λ and µ (Fig. 1.13). If the components of the three vectors

Figure 1.12 Decomposition of a vector into components of a given
reference system.
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Figure 1.13 Equation of a plane through three points.

have integer values, i.e., we are dealing with a lattice plane, then ui take
on integer values.

1.5.2
Scalar Product

Linear vector functions hold a special place with regard to the different pos-
sibilities of vector combinations. They are, like all other combinations of vec-
tors, invariant with respect to the coordinate system in which they are viewed.
Linear vector functions are proportional to the lengths of the vectors involved.
The simplest and especially useful vector function is represented by the scalar
product (Fig. 1.14):

The scalar product x · y = |x||y| cos(x, y) is equal to the projection of a vector on
another vector, multiplied by the length of the other vector.

For simplification we use the symbol (x, y) for the angle between x and y.
The commutative law x · y = y · x is satisfied as well as the associative and
distributive laws, the latter in the form x · (y + z) = x · y + x · z.

The scalar product can now be determined with the aid of the distributive
law when the respective vectors in component representation exist in a basic
system of known metric. We have x = ∑ xiai = xiai (one sums over i, here

Figure 1.14 Definition of the scalar product of two vectors.
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from i = 1 to 3; Einstein summation convention!) and y = yjaj. Then x · y =
(xiai) · (yjaj) = xiyj(ai · aj). The products ai · aj are, as assumed, known
(ai · aj = a2

i for i = j and ai · aj = aiaj cos αk for i 6= j, k 6= i, j).
Examples for the application of scalar products are as follows.

1. Calculating the length of a vector. We have

x · x = x2 = |x|2 = xixj(ai · aj).

2. Calculating the angle between two vectors x and y. From the definition of
the scalar product it follows that cos(x, y) = (x · y)/(|x||y|).

3. Determining whether two vectors are mutually perpendicular. The condition
for two vectors of nonzero lengths is x · y = 0.

4. Equation of a plane perpendicular to the vector h and passing through the
end point of x0: (x− x0) · h = 0.

5. Decomposing a vector x into components of a coordinate system. Assume that
the angles δi (angles between x and ai) are known. Then one also knows
the scalar products x · ai = |x|ai cos δi. This gives the following system
of equations:

x = xiai

x · aj = xiai · aj for j = 1, 2, 3.

The system for the sought after components xi always has a solution
when ai span a coordinate system.

1.5.3
Vector Product

Two nonparallel vectors x and y fix a third direction, namely that of the nor-
mals on the plane spanned by x and y. The vector product of x and y generates
a vector in the direction of these normals.

The vector product of x and y, spoken “x cross y” and written as x × y,
is the vector perpendicular to x and y with a length equal to the area of the
parallelogram spanned by x and y, thus |x × y| = |x||y| sin(x, y). The three
vectors x, y, and x× y form a right-handed system (Fig. 1.15). The vector x× y
lies perpendicular to the plane containing x and y and in such a direction that
a right-handed screw driven in the direction of x × y would carry x into y
through a clockwise rotation around the smaller angle between x and y.

The vector product is not commutative. In contrast, we have x × y =
−y × x. From the definition, one immediately recognizes the validity of the
associative law. It is more difficult to prove the distributive law x× (y + z) =
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Figure 1.15 Vector product.

x× y + x× z. We refer the reader to standard textbooks like Kristallgeometrie
for a demonstration.

For two vectors specified in the crystallographic reference system, i.e., x =
xiai and y = yiai, we find

x× y = (xiai)× (yjaj) = (x2y3 − x3y2)a2 × a3 + (x3y1 − x1y3)a3 × a1

+ (x1y2 − x2y1)a1 × a2. (1.1)

Thus the vector products of the basis vectors appear. These we have met be-
fore. They are the normals on the three basic faces Fi. It is found useful to
introduce these vectors as the base vectors of a new reference system, the so-
called reciprocal system (see Section 1.3). For this purpose we need to nor-
malize the length of the new vectors so that the reciprocal of the reciprocal
system is in agreement with the basic system. This is accomplished with the
following definition of the basic vectors a∗i of the reciprocal system

a∗i =
1

V(a1, a2, a3)
aj × ak,

where i, j, k should observe a cyclic sequence of 1, 2, 3, 1, 2, 3,. . .. V(a1, a2, a3)
is the volume of the parallelepiped spanned by the basic vectors. a∗i is spoken
as “a-i-star.”

Correspondingly, for the basic vectors we have ai = a∗j × a∗k /V(a∗1 , a∗2 , a∗3).
The proof that (a∗i )

∗ = ai is given below.
To calculate V we use the so-called scalar triple product of three vectors:

V = base surface times the height of the parallelepiped

= (y× z) · x = |y| |z| | sin(y, z)| e · x.

Here e is the unit vector of y× z. If one considers another basic face, then the
same result is found, i.e.,

(y× z) · x = (x× y) · z = (z× x) · y = x · (y× z) and so on.
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The order of the factors may be cyclically interchanged as well as the oper-
ations of the scalar and the vectorial products. A change in the cyclic order
results in a change of sign of the product. For x · (y× z) we use the notation
[x, y, z]. Thus

V(a1, a2, a3) = a1 · (a2 × a3) = [a1, a2, a3].

The vector product can be calculated formally using the rules for the calcula-
tion of determinants. A third-order determinant D(uij) with the nine quanti-
ties uij has the solution

D(uij) =

∣∣∣∣∣∣
u11 u12 u13
u21 u22 u23
u31 u32 u33

∣∣∣∣∣∣
= u11(u22u33 − u23u32)− u12(u21u33 − u23u31)

+ u13(u21u32 − u22u31).

Now using the vectors x = xiai and y = yiai we construct the corresponding
scheme and obtain

x× y = V(a1, a2, a3)

∣∣∣∣∣∣
a∗1 a∗2 a∗3
x1 x2 y3
y1 y2 y3

∣∣∣∣∣∣ .

V can be directly calculated from the scalar products of the basic vectors with
the aid of Grams determinant. The solution is

V2(a1, a2, a3) =

∣∣∣∣∣∣
a1 · a1 a1 · a2 a1 · a3
a2 · a1 a2 · a2 a2 · a3
a3 · a1 a3 · a2 a3 · a3

∣∣∣∣∣∣ = a2
1a2

2a2
3

∣∣∣∣∣∣
1 cos α3 cos α2

cos α3 1 cos α1
cos α2 cos α1 1

∣∣∣∣∣∣ .

The vector product has three important applications:

1. Parallel vectors x and y form a vanishing vector product x× y = 0.

2. The normals h of the plane spanned by the vectors x and y are parallel
to x× y.

3. The intercept edge u of two planes with the normals h and g is parallel
to h× g.

The fundamental importance of the reciprocal system for crystallographic
work is made clear by the following statement:

A normal h with the Miller indices (h1h2h3) has the component representa-
tion h = h1a∗1 + h2a∗2 + h3a∗3 .

As proof, we form the scalar product of this equation with ai and obtain
h · ai = hi, where hi are rational numbers. From the definition of the scalar
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product it follows that h · ai = |h||ai| cos θi and thus cos θ1 : cos θ2 : cos θ3 =
h1/a1 : h2/a2 : h3/a3, i.e., the corresponding face obeys the law of rational
indices and hi correspond to the reciprocal axial intercepts.

Now we consider the length of h. The length is related to the distance
OD = dh of the plane from the origin (Fig. 1.9). We have cos θi = OD/OAi =
dh/(miai) = dhhi/ai with mi = 1/hi. One does not sum over i! On the other
hand, from h · ai = hi = |h|ai cos θi we get the value cos θi = hi/|h|ai. Thus
the lattice plane distance is OD = dh = 1/|h|. It may be calculated from the
so-called quadratic form (1/dh)2 = |h|2 = (hia∗i ) · (hja∗j ). Here we encounter
other triple products which we will now turn to.

1.5.4
Vector Triple Product

The scalar triple product of three vectors [x, y, z] was our first acquaintance
with triple products. A further expression is the vector product of a vector
with a vector product given by the following theorem, which is called Ent-
wicklungssatz:

x× (y× z) = (x · z)y− (x · y)z.

Applications of the commutability of scalar and vector multiplication are as
follows.

1. Scalar product of two vector products

(u× v) · (x× y) = u · {v× (x× y)} = (u · x)(v · y)− (u · y)(v · x),

2. Vector product of two vector products

(u× v)× (x× y) = {(u× v) · y}x−{(u× v) · x}y = [u, v, y]x− [u, v, x]y.

With the aid of these identities it is easy to prove that V(a∗1 , a∗2 , a∗3) =
1/V(a1, a2, a3). For the metric of the reciprocal system we have

a∗i = ajak sin αi/V(a1, a2, a3)

and

a∗1 : a∗2 : a∗3 = sin α1/a1 : sinα2/a2 : sinα3/a3

as well as

cos α∗k =
cos αi cos αj − cos αk

sin αi sin αj
,

with i 6= j 6= k 6= i.
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1.6
Transformations

Often it is practical to turn to another reference system that, e.g., is more
adapted to the symmetry of the respective crystal or is easier to handle. Let
us designate the basic vectors of the old system with ai and those of the new
system with Ai. Correspondingly, we write all quantities in the new system
with capital letters.

We are now confronted with the following questions:

1. How do we get to the new basic vectors from the old ones, i.e., what
form do the functions Ai(aj) have?

2. What do the old basic vectors look like in the new system, i.e., what form
has the inverse transformation ai(Aj)?

3. How do position vectors transform in the basic system x = xiai = X =
Xi Ai and what form do the functions Xi(xj) have?

4. How does one get the inverse transformation xi(X j)?

5. How do position vectors transform in the reciprocal system h = hia∗i =
Hi A∗

i and what form do the functions Hi(hj) have?

6. What form does the inverse transformation hi(H j) have?

To (1) imagine that the basic vectors of the new system are decomposed into
components of the old system; thus Ai = uijaj. Decomposition is possible
with the aid of the scalar products ai · Aj. For that purpose, the length of the
new basic vectors and the angle between ai and Aj must be known. We collect
the resulting uij in the transformation matrix U; thus

U = (uij) =

u11 u12 u13
u21 u22 u23
u31 u32 u33

 .

To (2) the inverse transformation is given by ai = Uij Aj = Uijujkak. This
means Uijujk = 1 for i = k and = 0 for i 6= k. A similar expression is known
from the expansion of a determinant D(uij) = ujkU′

ij with U′
ij = (−1)i+j Aji

for i = k and U′
ij = 0 for i 6= k. Here, D(uij) is the determinant of the

transformation matrix and Aji is the subdeterminant (adjunct) after elimi-
nating the jth row and ith column. Thus Uij = (−1)i+j Aji/D(uij). We call
(Uij) = U−1 = (uij)−1 the inverse matrix of (uij).

To (3) in the basic system we have x = xiai and with ai = Uij Aj we find
x = xiUij Aj = Xj Aj, i.e., Xi = Ujixj (after interchanging the indices). The
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components of the position vector x are transformed with the transposed in-
verse matrix (Uij)T = (Uji).

To (4) we have x = Xi Ai = Xiuijaj = xjaj and thus xi = ujiXj. The trans-
posed transformation matrix is used for the inverse transformation.

To (5) the position vector in the reciprocal system is h = hja∗j = Hi A∗
i . Scalar

multiplication with Ai gives Ai · h = Hi = uijaj · (hka∗k ) = uijhj. Because
aj · a∗k = 0 for j 6= k and = 1 for j = k it follows that Hi = uijhj, i.e., the Miller
indices transform like the basic vectors. This result deserves special attention.

To (6) h = Hj A∗
j = hia∗i . Scalar multiplication with ai gives ai · h = hi =

Uij Aj · (Hk A∗
k ) = UijHj and thus hi = UijHj. The inverse transformation

occurs naturally as with the corresponding inverse transformation of the basic
vectors with the inverse matrix.

1.7
Symmetry Properties

1.7.1
Symmetry Operations

Symmetry properties are best suited for the systematic classification of crys-
tals. Furthermore, the symmetry determines the directional dependence
(anisotropy) of the physical properties in a decisive way. Many properties
such as, e.g., the piezoelectric effect, the pyroelectric effect, and certain non-
linear optical effects, including the generation of optical harmonics, can only
occur in the absence of certain symmetry properties.

We meet the concept of symmetry in diverse fields. The basic notion stems
from geometry. Symmetry in the narrow sense is present when we recog-
nize uniform objects in space, which can be transferred by a movement into
each other (coincidence) or which behave like image and mirror image. Mor-
phological features of plants and animals (flowers, starfishes, most animals)
are examples of the latter. The concept of symmetry may be carried over to
nongeometric objects. Accordingly, symmetry in a figurative sense means the
repetition of uniform or similar things. This can occur in time and space as,
e.g., in music. Also the repetition of a ratio, as in the case of a geometric series,
the father–son relationship in a line of ancestors, or the generation of a num-
ber sequence from a recursion formula and the relationship of the members
between themselves, belong to this concept.

Although it may be fascinating to search for and contemplate such sym-
metries, we must turn to a narrower concept of symmetry when consider-
ing crystallography. We are interested in symmetry as a repetition of similar
or uniform objects in space and distinguish between two types of manifesta-
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Figure 1.16 Translation.

tions, which, however, exhibit an internal association, namely the geometric
symmetry in the narrow sense and the physical symmetry in space. The first
case is concerned with the relationship between distances of points and angles
between lines that repeat themselves. The second case refers to physical prop-
erties of bodies that repeat themselves in different directions. This symmetry
arises in part from the structural symmetry of the crystals and in part from
the intrinsic symmetry of the physical phenomena. We will come to these
questions later. First, we will concern ourselves with geometric symmetry.

Two or more geometric figures or bodies shall be called geometrically uni-
form (or equivalent) when they differ only with respect to their position.
Moreover, figures arising from reflection and centrosymmetry, such as, e.g.,
right and left hand or a right and left system of the same metric, shall be al-
lowed to be equivalent. Each point specified by the end point of a vector yi of
the first figure shall be assigned a vector y′i of the second or a further figure
such that |yi − yj| = |y′i − y′j| and ∠(yi − yj, yk − yl) = ∠(y′i − y′j, y′k − y′l)

′

(i, j, k, l specify four arbitrary points). The respective figures then exhibit cor-
respondingly equal lengths and angles.

The geometric symmetries are now distinguished by the fact that one can
describe the association of the equivalent figures with a few basic symmetry
operations. Only those operations are permitted that allow an arbitrary rep-
etition. In this sense, an arrangement of equivalent figures in an arbitrary
position does not possess symmetry. There are three types of basic symmetry
operations

1. Translation: We displace each point yi (considered as the end point of
a vector) of a given geometric form by a fixed vector t, the translation
vector, and come to a second figure with the points y′i = yi + t (Fig. 1.16).
The required repetition leads to an infinite chain of equivalent figures.
The symmetry operation is defined by the vector t.
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Figure 1.17 Rotation about an axis.

2. Rotation about an axis: A rotation through an angle ϕ about a given
axis carries the points yi of a given geometric figure or body over to
the points y′i of a symmetry-equivalent figure, where the correspond-
ing points have the same distance from the axis of rotation and lie in a
plane normal to the axis of rotation (Fig. 1.17). In this type of operation,
the points coincide as with translation. Characteristic for the rotation is
the position of the axis and the angle of rotation ϕ. We call n = 2π/ϕ,
where ϕ is measured in radians, the multiplicity of the given axis. The
axis of rotation has the symbol n. We write for the operation of rotation
y′i = Rn(yi). An axis of rotation is known as polar when the direction
and reverse direction of the axis of rotation are not symmetry equivalent.

3. Rotoinversion: In this operation there exists an inseparable coupling be-
tween a rotation as in (2) and a so-called inversion. The operation of in-
version moves a point y, through a point (inversion center) identical to
the origin of coordinates, to get the point y′ = −y (Fig. 1.18). The order
of both operations is unimportant. We specify the rotoinversion opera-
tion by the symbol n̄ (read “n bar”). Thus y′i = −Rn(yi) = Rn(−yi) =
Rn̄(yi). Occasionally we will introduce a rotation–reflection axis instead
of a rotation–inversion axis, i.e., a coupling of rotation and mirror sym-
metry, normal to the plane of the given axis of rotation. Both operations

Figure 1.18 Inversion.
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Figure 1.19 Identity of 2̄ and m (mirror plane).

lead to the same results; however, the multiplicity may be different for
the given rotations.

Important special cases of rotoinversion are the inversion 1̄, in other
words, the mirror image about a point, and the rotoinversion 2̄. The
latter is found to be identical to the mirror image about a plane normal
to the 2̄-axis (mirror plane or symmetry plane; Fig. 1.19). The expres-
sions inversion center or center of symmetry are also used for the inversion.
The preferred notation of the mirror image about a plane is m (mirror)
instead of 2̄.

How do these operations express themselves in the components of the vec-
tors y and y′? This will first be demonstrated for the case of a Cartesian refer-
ence system. The axis of rotation is parallel to e3. The rotation carries the basic
system {ei} over to a symmetry-equivalent system {e′i} (Fig. 1.20).

e′1 = cos ϕ e1 + sin ϕ e2

e′2 = − sin ϕ e1 + cos ϕ e2

e′3 = e3.

Figure 1.20 Rotation about an axis en of a Cartesian reference sys-
tem.
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Figure 1.21 Vector relations for a rotation about an arbitrary axis en.

Thus the transformation matrix is

(uij) =

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

 .

What do the coordinates of a point, generated by the rotation, look like in the
old system? As we saw in Section 1.6, the inverse transformation is described
by the transposed matrix:

y′1 = cos ϕ y1 − sin ϕ y2

y′2 = sin ϕ y1 + cos ϕ y2

y′3 = y3.

We symbolize this by writing

Rn‖e3
=

cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

 = (vij) and y′i = vijyj.

The general case of an arbitrary position of the n-fold axis of rotation en
may be understood with the aid of vector calculus (Fig. 1.21). Let ϕn be the
angle of rotation. We agree upon the clockwise sense as the positive direction
of rotation when looking in the direction +en. One finds

y′ = [(y · en)en](1− cos ϕn)] + cos ϕn y + (en × y) sin ϕn.

The individual steps are y′ = w′ + z; z = y − x = (y · en)en; w′ =
(w/|w|)|x| = w cos ϕn; w = x + v; v = (en × x) tan ϕn = (en × y) tan ϕn. If
one decomposes the above equation for y′ into components of an arbitrary co-
ordinate system, whereby the unit vectors of the axis of rotation are en = niai
and y = yiai, one gets the corresponding transformation matrix Rn = (vij).
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For the case of a rotoinversion, we have Rn = (−vij), when the origin of the
coordinates is taken as the center of symmetry.

To obtain all symmetry-equivalent points, arising from multiple repetitions
of the symmetry operations on y, one must use the same Rn on y′ according
to y′′ = Rn(y′) = R2

n(y) and so on. In general, we have y′m = Rm
n (y). These

matrices are obtained through multiple matrix multiplication.

1.7.2
Point Symmetry Groups

We now turn to the question of which of the three types of symmetry opera-
tions discussed above are compatible with each other, i.e., what combinations
are simultaneously possible. As a first step we consider only such combina-
tions where at least one point of the given space possessing this symmetry
property remains unchanged (invariant). We call these combinations of sym-
metry operations point symmetry groups. When dealing with crystals, the ex-
pression crystal classes is often used as a matter of tradition.

We should point out that a satisfactory treatment of symmetry theory and
its applications to problems in crystal physics and also to problems in atomic
and molecular physics is possible especially with the help of group theory. In
what follows, we will give preference to group theoretical symbols (see also
Section 8). Important methods of group theory for crystal physics are treated
in Sections 8 and 9.

Textbooks on crystallography give a detailed analysis of the compatibility
of different symmetry operations (e.g., Kristallgeometrie). Here we will only
remark on the essential procedures and present the most significant results.

The whole complex reduces to the following questions:

(a) In which way are n or n̄ compatible with 1̄, 2, and 2̄ = m?

(b) Under which conditions can n or n̄ simultaneously exist with p or p̄
when n, p ≥ 3? p specifies a second rotation axis of p-fold symmetry.

(c) In (b) can 1̄, 2, and 2̄ also occur?

(d) How can operations n, n̄ and those combinations permitted under (a),
(b), and (c) be combined with a translation?

We will defer case (d) because the invariance of all points is lifted by the trans-
lation. With respect to question (a), the following seven cases can be decided
at once by direct inspection of stereographic projections:

1. n or n̄ with 1̄,

2. n or n̄ parallel to 2,
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3. n or n̄ perpendicular to 2,

4. n or n̄ forms an arbitrary angle with 2.

5. n or n̄ parallel to 2̄ (=m),

6. n or n̄ perpendicular to 2̄ (=m),

7. n or n̄ forms an arbitrary angle with 2̄ (=m).

With a single principal axis n or n̄, the following 7 permissible combinations
result from the 14 possibilities above:

n (only one n-fold axis),

n/m (read “n over m,” symmetry plane perpendicular to an n-fold axis),

nm (symmetry plane contains the n-fold axis),

n2 (2-fold axis perpendicular to the n-fold axis),

n/mm (symmetry plane perpendicular to the n-fold axis, a second symmetry
plane contains the n-fold axis),

n̄ (only one n-fold rotoinversion axis),

n̄2 (2-fold axis perpendicular to the n-fold rotoinversion axis).

All other combinations turn out to be coincidences to the seven just men-
tioned. One finds that apart from the “generating” symmetry operations,
other symmetry operations are necessarily obtained which can also be used to
generate the given combination. For example, n̄2 = n̄m or 21̄ = 2/m. Normally
we use the shorthand symbols with the respective generating symbols. The
complete symbols, which comprise all compatible symmetry operations of a
certain combination, play an important role in some areas of crystallography
(structure determination, group theoretical methods). The Hermann–Mauguin
notation used here is the international standard. The older notation of Schoen-
flies is still used by chemists and spectroscopists but will not be discussed in
this book.

Before we turn our attention to case (b) let us consider which n-fold rotation
axes or n-fold rotoinversion axes can occur in crystals, i.e., in lattices. From
experience, one deduces the third basic law of crystallography:

In crystals one observes only 1-, 2-, 3-, 4-, and 6-fold symmetry axes.
The proof that no other n-fold symmetry is compatible with the lattice ar-

rangement of uniform cells is as follows: We consider two parallel axes A1
and A2 of n- (or n̄) fold symmetry which possess the smallest separation of
such symmetry axes in the given lattice. We allow the symmetry operations to
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Figure 1.22 Compatibility of n-fold axes in lattices.

Table 1.1 Compatible multiplicities of n-fold axes in lattices.

n ϕ |r′/r| |r′′′/r|
1 360◦ 1 0
2 180◦ 3 2
3 120◦ 2

√
3

4 90◦ 1
√

2
5 72◦ ≈0,38 ≈1,18
6 60◦ 0 1

n > 6 <60◦ 0 < |r′/r| < 1 0 < |r′′′/r| < 1

work on each other and get further symmetry axes according to A1(A2) → A′
2,

A2(A1) → A′′
1 and A′′

2 and A′
1 by a rotation in the opposite sense (Fig. 1.22).

The new symmetry axes must either coincide or at least have the same sepa-
ration as the axes A1 and A2. Using the notation in Fig. 1.22 we have

r = A1 A2;

r′ = A′
1 A′

2 = 2r cos ϕ− r;

r′′ = A′
1 A′′

2 =
√

r2 + 4r2 sin2 ϕ = r
√

5− 4 cos ϕ ≥ r;

r′′′ = A2 A′
2 =

√
(r− r cos ϕ)2 + r2 sin2 ϕ = r

√
(2(1− cos ϕ) = 2r sin ϕ/2.

Table 1.1 presents the values |r′/r| and |r′′′/r| as a function of the multiplicity.
They must be ≥1 or 0.

Similar considerations for rotoinversion axes lead to the same end result,
namely, that crystals can only have 1-, 2-, 3-, 4-, and 6-fold symmetry axes.
Other n-fold symmetries can, however, exist in noncrystalline forms. Even
molecules can possess, e.g., 5-fold and higher symmetry axes not permitted
in crystals. From the combinations in (a) and under the restrictions just men-
tioned, only 27 crystallographic point symmetry groups exist. These are listed
in the annex.

Now to case (b): The combination of rotation axes n (or rotoinversion axes
n̄) with rotation axes p (or p̄) for the case n, p ≥ 3 leads to a mutual multiplicity
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Figure 1.23 Compatibility of n-fold and p-fold axes.

of the axes, namely to at least n different p axes and p different n axes. In a
Cartesian coordinate system let one axis n lie parallel to e3 and a second axis
p lie in the plane spanned by e1 and e3 perpendicular to e2 (Fig. 1.23). Let the
angle between these axes be α. Applying the operation n on the axis p gives us
a second axis p′. Let the unit vectors along these axes be en, ep, and e′p. With
ep = sin αe1 + cos αe3 and

Rn‖e3
=

cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1


one gets ep′ = Rn(ep) = sin α cos ϕ e1 + sin α sin ϕ e2 + cos α e3. We now
calculate the angle β between p and p′. The result is ep · e′p = cos β =
sin2 α cos ϕ + cos2 α = 1 + sin2 α (cos ϕ − 1). From this equation and with
(1− cos u) = 2 sin2 u/2 we derive the relationship sin β/2 = ± sin α sin ϕ/2,
where ϕ = 2π/n.

We first consider the simple case of the combination of a 3-fold axis with
another axis p ≥ 2, where for p = 2 the condition α = 0 or 90◦ was already
discussed. Thus several symmetry-equivalent 3-fold axes are created, which
on a sphere, whose center is the common intercept point, fix an equal-sided
spherical triangle, whose center also specifies the intercept point of a 3-fold
axis. In this spherical triangle α = β (Fig. 1.24). For the case n ≥ 4 let α be
the smallest angular distance between two of the symmetry equivalent axes n.
Then the angular distance α′ between two axes resulting from the application
of one on the other axis, respectively, must either vanish, i.e., both axes must
coincide, or we have α′ ≥ α. However, the largest possible angular distance is
90◦. As one can easily see from a stereographic projection (Fig. 1.25), the only
possibility for n ≥ 4 rotation axes is that both axes coincide since α′ < α in
each case.

This means that in case (b) the intercept points of the symmetry-equivalent
n-fold axes (n ≥ 3) always form an equal-sided spherical triangle (α =
β). From the relationship derived above, we have for α = β: cos α/2 =
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Figure 1.24 Combination of two 3-fold axes.

Figure 1.25 Combination of two n-fold axes with n ≥ 4.

±1/(2 sin ϕ/2). Table 1.2 lists the possible angles α as a function of the n-fold
symmetry.

A combination of several symmetry-equivalent rotation axes with n ≥ 3 is
only allowed for n = 1, 2, 3, 4, 5, 6. The angles appearing are prescribed.

To case (c): The discussion of the combinations of n-fold axes (n ≥ 3) re-
quires a complement, since with the n-fold axes only the case α = β was set-
tled. In the center of the equilateral spherical triangle, formed by the intercept
points of the 3-fold axes on the sphere, there exists a further 3-fold axis, which
with the other axes specifying the spherical triangle includes the angle α′ with
sin α′ = 2

√
2/3, cos α′ = 1/3. This is recognized by applying the formula

Table 1.2 Angles between possible n-fold axes. Concerning 2-fold axes see the results ob-
tained in case a).

n ϕ = 2π/n cos α/2 α = β

2 180◦ ±1/2 120◦; 240◦

3 120◦ ±1/
√

3 109, 47◦; 250, 53◦

4 90◦ ±1/
√

2 90◦; 270◦

5 72◦ ±1/(2 sin 36◦) 63, 43◦; 296, 57◦

6 60◦ ±1 0◦; 360◦

n > 6 <60◦ | cos α/2 > 1| –
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Figure 1.26 Symmetry of a cube.

derived above for the rotation about an n-fold axis according to Fig. 1.24. The
result is α′ ≈ 70.53◦. The question is now whether even with this small an-
gular distance, 3-fold axes exist whose intercept points on a sphere also form
an equilateral spherical triangle. With the same formula just used, one gets
in this case, for a further 3-fold intercept axis in the center of the triangle, the
angle α′′ ≈ 41.81◦ from sin α′′ = 2/3. This is in fact the smallest angle of two
3-fold axes occurring in the icosahedral groups through the combination of
several 3-fold axes.

Just as with the case of the 3-fold axes, the equilateral spherical triangles of
the intercept points of the symmetry-equivalent n-fold axes n′1, n′2, and n′′1 also
possess a 3-fold axis in their centers (Fig. 1.25). Thus in all combinations of n-
fold axes (n >3), 3-fold axes are always present, which mutually include the
angles just discussed. For further discussions of the combination possibilities
of n-fold axes (n >3) with other symmetry operations it is useful to consider
the symmetry properties of a cube. Let ei be the edge vectors of a unit cube
(identical to the Cartesian basis vectors); then the directions of the space di-
agonals of the cube may be represented by r = ±e1 ± e2 ± e3 (Fig. 1.26). One
obtains for the angle α between three different space diagonals cos α = ±1/3.
The values −1/3 and +1/3 give for α approximately 109.47◦ and the com-
plementary angle of 180◦. In Table 1.2 we had cos α/2 = ±1/

√
3; therefore

cos α = −1/3 (with cos u = −1 + 2 cos2 u/2). Thus the space diagonals of the
cube, themselves 3-fold rotation axes, intersect at angles identical to those for
3-fold axes given in Table 1.2.

The system of four space diagonals of the cube represents the simplest point
symmetry group (abbreviated as PSG in what follows) of the combination of
two polar 3-fold axes (“polar” means direction and inverse direction are not
equivalent). As one can easily show with the aid of the transformation formu-
lae or a stereographic projection, this arrangement also contains three 2-fold
axes, which run parallel to the cube edges, that is, at half the angle of the larger
angle between two 3-fold axes. This PSG is given the Hermann–Mauguin
symbol 23 (Fig. 1.27).
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PSG 23 PSG 2/m3̄

PSG 4̄3m PSG 432

PSG 4/m3̄2/m PSG 235

Figure 1.27 Stereographic projection of the symmetry operations in
cubic point symmetry groups and in icosahedral PSG 235. The sym-
metry operations as well as the intercept points of the assembly of
symmetry-equivalent normals are drawn. The intercept points on the
northern hemisphere are indicated by a cross, those on the southern
hemisphere with an empty circle.
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The combination of 23 with symmetry planes perpendicular to the 2-fold
axes or with 1̄ leads to PSG 2/m3̄ (Fig. 1.27). With symmetry planes, each
containing two 3-fold axes, we get PSG 4̄3m, where the 2-fold axes of 23 turn
into 4̄-axes (Fig. 1.27). In 2/m3̄, short symbol m3, the 3-fold axes are nonpo-
lar; in 4̄3m, short symbol 4̄3, they are polar just as in 23. If we introduce 4-fold
axes instead of 2-fold axes we get PSG 432, short symbol 43 (Fig. 1.27). Here,
additional 2-fold axes are generated at half of the smaller angles between two
3-fold axes. The 3-fold axes are nonpolar. Moreover, the 4-fold axes form an
angle of 90◦, as demanded in Table 1.2. Finally, symmetry planes perpendicu-
lar to the 4-fold axes can also be combined. This leads to PSG 4/m3̄2/m, short
symbol 4/m3 or m3m, the highest symmetry group in crystals (Fig. 1.27). We
also obtain 4/m3 with the inclusion of 1̄ to 43. The five point symmetry groups
just discussed comprise the cubic crystal system.

For completion, let us discuss the noncrystallographic PSG of the combina-
tion of 5-fold axes. The basic framework here is also the arrangement of four
space diagonals of the cube. In each field of the cube two further 3-fold axes
are constructed so that the intercept points of neighboring axes mark spherical
triangles on the sphere with the angular distance α′ ≈ 70.52◦ (sin α′ = 2

√
2/3)

just discussed. This results in a smallest angular distance of α′′ ≈ 41.81◦

(sin α′′ = 2/3) between the inserted axes and the axes along the space di-
agonals. Thus arrangements of five 3-fold axes are formed whose intercept
points on the sphere give the corners of regular pentagons (Fig. 1.27). The
angle between two 5-fold axes may be easily calculated from the known an-
gular distance of the 3-fold axes with the aid of the rotation formula. It is in
agreement with the result of Table 1.2, namely cos α/2 = ±1/(2 sin 36◦). This
symmetry group has the symbol 235. It exhibits six 5-fold, ten 3-fold, and
fifteen 2-fold axes. Introducing symmetry planes perpendicular to the 2-fold
axes results in PSG 2/m35. Both these so-called icosahedral groups play an
important role in the structure of viruses, in certain molecular structures, such
as, e.g., in the B12-structures of boron and in certain quasicrystals.

There exist a total of 32 different crystallographic PSGs. These are divided
into seven crystal systems depending on the existence of a certain minimum
symmetry (Table 1.3). These systems are associated with the seven distin-
guishable symmetry classes of the crystallographic reference systems. These
systems are specified by prominent directions, the so-called viewing directions,
along which possibly existing symmetry axes or normals on symmetry planes
are running. It turns out that each system has at most three different viewing
directions.
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Table 1.3 The seven crystal systems.

System Minimal Conditions for lattice parameters PSG
symmetry of symmetry-adapted reference system

(viewing directions)
Triclinic 1 ai , αi not fixed 1, 1̄

(1. arbitrary, 2. arbitrary, 3. arbitrary)
Monoclinic 2 or α1 = α3 = 90◦ 2, m, 2/m

m = 2̄ (1. a2 ‖ 2 or 2̄, 2. arbitrary, 3. arbitrary)
Orthorhombic 22 or αi = 90◦ 22, mm, 2/mm

mm = 2̄2̄ (1. a1 ‖ 2 or 2̄, 2. a2 ‖ 2 or 2̄,
3. a3 ‖ 2 or 2̄ )

Trigonal 3 or 3̄ ai = a, αi = α 3, 3m, 32,
(rhombohedral) (1. a1 + a2 + a3 ‖ 3 or 3̄, 2. a1 − a2 ⊥ 3, 3̄,

and a3, 3. 2a3 − a1 − a2 ⊥ 3 and a1 − a2 ) 3̄m = 3̄2
Tetragonal 4 or 4̄ a1 = a2, αi = 90◦ 4, 4/m, 4m,

(1. a3 ‖ 4 or 4̄, 2. a1, 42, 4/mm,
3. a1 + a2 ) 4̄, 4̄m = 4̄2

Hexagonal 6 or 6̄ a1 = a2, α1 = α2 = 90◦, α3 = 120◦ 6, 6/m, 6m,
(1. a3 ‖ 6 or 6̄, 2. a1, 62, 6/mm,
3. 2a1 + a2 ⊥ a2 ) 6̄, 6̄m = 6̄2

Cubic 23 ai = a, αi = 90◦ 23, 4̄3,
(1. a1 ‖ edge of cube, 43, m3,
2. a1 + a2 + a3 ‖ 3, 3. a1 + a2 ) 4/m3 = m3m

1.7.3
Theory of Forms

We will now turn to the discussion of morphological properties. The com-
plete set of symmetry-equivalent faces to a face (h1h2h3) in a point symme-
try group is designated as a form with the symbol {h1h2h3}. The entirety
of the symmetry-equivalent vectors to a lattice vector [u1u2u3] is symbolized
as 〈u1u2u3〉; correspondingly, 〈|u1u2u3|〉 means the entirety of the symmetry-
equivalent points to the point [|u1u2u3|].

To calculate the symmetry-equivalent faces, lattice edges, or points we use
the transformations already discussed with a transition from the basic system
to a symmetry-equivalent system (Section 1.6).

In a symmetry-equivalent system the cotransformed face normals and vec-
tors, respectively, possess the same coordinates as in the basic system. Thus
one gets the symmetry-equivalent faces and vectors respectively or points by
enquiring about the indices or coordinates of the transformed quantities in the
old system. These result from the inverse transformation, thus in the case of
the Miller indices, with the inverse transformation matrix U−1 and in the case
of the vectors or points, with the transposed matrix UT . We will call the num-
ber of symmetry-equivalent objects generated by a symmetry operation the
order h of the given operation. Repeated application gives us all symmetry-
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Figure 1.28 Symmetry operations of PSG 3m in a trigonal–hexagonal
reference system.

equivalent quantities; thus {h1h2h3} = {(U−1)m(h1h2h3)} = {U−m(h1h2h3)}
and correspondingly 〈u1u2u3〉 = 〈(UT)m[u1u2u3]〉 with m = 1, 2, . . . , h.

If several symmetry-generating operations exist, then the calculation of all
symmetry-equivalent quantities requires that the additional symmetry op-
erations be applied to the quantities already generated by the other opera-
tions. This is demonstrated by the example LiNbO3, PSG 3m (Fig. 1.28). In a
trigonal–hexagonal reference system, with a metric defined by a1 = a2, α1 =
α2 = 90◦, α3 = 120◦, we have

U(3||a3) =

0 1 0
1̄ 1̄ 0
0 0 1

 , U(3)−1 =

1̄ 1̄ 0
1 0 0
0 0 1

 ,

U(3)T =

0 1̄ 0
1 1̄ 0
0 0 1

 , U(2̄||a1) =

1̄ 0 0
1 1 0
0 0 1

 = U(2̄||a1)−1.

With U(3)−1 one finds for {h1h2h3} the faces (h1h2h3), (h̄1 + h̄2.h1h3), (h2.h̄1 +
h̄2.h3) and with U(2̄||a1)−1 the additional faces (h̄1.h1 + h2.h3), (h1 + h2.h̄2h3),
(h̄2h̄1h3). These six faces together form, in the general case, a ditrigonal pyra-
mid (Fig. 1.28). A two-digit or combined Miller index is separated by a dot
from the other indices.

If one selects a trigonal–rhombohedral reference system with a1 = a2 = a3
and α1 = α2 = α3 = α, which is permitted for trigonal crystals, then the
symmetry operations of the PSG 3m have the following form:

U3||(a1+a2+a3) =

0 1 0
0 0 1
1 0 0

 and U2̄||(a1−a2
=

0 1 0
1 0 0
0 0 1

 .
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Table 1.4 The meroedries of the seven crystal systems.

System tri- mono- ortho- tri- tetra- hexa- cubic
clinic clinic rhombic gonal gonal gonal

Holoedrie 1̄ 2/m 2/mm 3̄m 4/mm 6/mm 4/m3
Hemimorphie – – 2m 3m 4m 6m –
Paramorphie – – – 3̄ 4/m 6/m m3
Enantiomorphie 1 2 22 32 42 62 43
Hemiedrie II – m – – 4̄2 6̄2 4̄3
Tetartoedrie – – – 3 4 6 23
Tetartoedrie II – – – – 4̄ 6̄ –

For {h1h2h3} one finds, with the inverse operations, the faces (h1h2h3),
(h2h3h1), (h3h1h2), (h2h1h3), (h3h2h1) and (h1h3h2). The difference clearly
indicates that one must also specify the reference system used when charac-
terizing faces of trigonal crystals.

Let us now consider the different forms in the different PSGs of a system.
For this purpose, we will first investigate the relationships between the PSG
of highest symmetry and the PSGs of lower symmetry in the same system.
These PSGs, the holohedries, are 1̄, 2/m, 2/mm, 3̄m, 4/mm, 6/mm, 4/m3. If
one removes single minor symmetry elements from the holohedries, one gets
the PSGs of lower symmetry of the same system. If 2-fold axes are missing
or symmetry planes (only one in each case), the resulting forms are hemi-
hedries, that is PSGs, in which only half the number of surfaces occur as in the
holohedries. If one removes two minor symmetry elements, one gets the tetar-
tohedries, PSGs with a quarter of the number of faces as in the holohedries.
These are known as merohedral PSG depending on the type of symmetry el-
ements removed or remaining. Each system has a maximum of seven PSGs
including the holohedries. These are classified in Table 1.4.

The following holds true: In each holohedry there exists a spherical trian-
gle whose repetition by the generating symmetry elements covers the whole
sphere just once. In the merohedries, the symmetry elements cover only one
part, namely, half the sphere in the hemihedries and a quarter of the sphere
in the tetartohedries. The triangles are referred to as elementary triangles and
represented in Fig. 1.29 . The arrangement of these triangles is characteristic
for each point symmetry group. Their number corresponds to the order of the
point symmetry group. Each face normal is associated with one of the follow-
ing seven distinguishable positions in the spherical triangle of the holohedries
(Fig. 1.30):

1. Corner 1,

2. Corner 2,

3. Corner 3,
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triclinic monoclinic orthorhombic tetragonal

trigonal-rhombohedral hexagonal cubic

Figure 1.29 Elementary triangles in the seven crystal systems.

Figure 1.30 The seven positions in an elementary triangle.

4. On the side between 1 and 2,

5. On the side between 2 and 3,

6. On the side between 3 and 1,

7. Inside the triangle.

In each system, except triclinic and monoclinic, positions 1, 2, and 3 are asso-
ciated with a fixed direction, i.e., the given faces have distinct Miller indices.
The side positions 4, 5, and 6 possess one degree of freedom. Only the third
position is not bound to any restrictions (two degrees of freedom). Special
forms evolve from the first six positions. Position 7 generates general forms,
characteristic for the given PSG and also for the distribution of the elemen-
tary triangles. Tables 1.5 and 1.6 present the seven forms for the orthorhombic
and cubic systems. The forms have the following nomenclature (according to
Groth):
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Table 1.5 The seven forms of the orthorhombic PSG.

Pos. 22 2m 2/mm
1 {100} pinacoid pinacoid pinacoid
2 {010} pinacoid pinacoid pinacoid
3 {001} base pinacoid base pedion base pinacoid
4 {h10h3} prisma II. position doma II. position prisma II. position
5 {h1h20} prisma III. position prisma III. position prisma III. position
6 {0h2h3} prisma I. position doma I. position prisma I. position
7 {h1h2h3} disphenoid pyramide dipyramide

Pedion: Single face, not possessing another symmetry-equivalent face.

Pinacoid: Face with a symmetry-equivalent counter face, generated by 1̄,
2, or m.

Dome: Pair of faces generated by a mirror plane.

Prism: Tautozonal entirety of symmetry-equivalent faces (all faces inter-
cept in parallel edges, which define the direction of the zone axis).

Pyramid: Entirety of symmetry-equivalent faces, whose normals, with a
prominent direction, the pyramid axis, enclose the same angle.

Dipyramid: Double pyramid, generated by a mirror plane perpendicular
to the pyramid axis.

Sphenoid: A pair of nonparallel faces generated by a 2-fold axis.

Disphenoid: Two sphenoids evolving separately from a further 2-fold
axis.

Scalenohedron: Two pyramids evolving from n̄2 with n 6= 4q − 2 (n, q
integers). Dipyramids are generated for the case n = 4q− 2 (n > 2).

Streptohedron: Two pyramids, mutually rotated by half the angle of the
rotation axes (n odd number). This form is called rhombohedron in den
PSGs 3̄, 3̄m, and 32.

The special nomenclature of the forms of the cubic system is mentioned in Ta-
ble 1.6. Parallel projections of these forms are presented in Fig. 1.31. Table 1.7
gives an overview of the 32 crystallographic point symmetry groups.
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cube tetrakis- tetrahedral penta-
hexahedron gondodecahedron

rhombic triste- hexakis-
dodecahedron trahedron tetrahedron

tetrahedron deltoidicosi- pentagonicosi-
tetrahedron tetrahedron

octahedron deltoiddo- disdodeca-
decahedron hedron

pentagon- trisoctahedron hexakis-
dodecahedron trisoctahedron octahedron

Figure 1.31 The 15 different forms of the cubic system.
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1.7.4
Morphological Symmetry, Determining the Point Symmetry Group

Sometimes the morphological symmetry of the freely grown crystals is lower
than the associated point symmetry group. This case is called hypomorphy.
It can occur when the mother phase, from which the crystals grow, possesses
asymmetric molecules (e.g., from an aqueous solution of potassium sulfate
with orthorhombic disphenoids, which simulate the PSG 22; but the true sym-
metry is mmm). If the crystals show a morphologically higher symmetry than
the corresponding point symmetry group, then we have a hypermorphy, such
as, e.g., with the α-alums. The hypermorphy is much more prevalent than the
hypomorphy.

The PSG of a crystal can be determined as follows:

1. Morphological diagnosis with the aid of general forms or certain combi-
nations of special forms. If the result is not unequivocal, one can try to
obtain general forms by means of spherical growth experiments. This
is done by preparing probes with spherically shaped regions from the
crystal to be analyzed, and placing them in a slightly supersaturated so-
lution of the given substance for further growth. One gets small plane
surface elements (spherical caps) with normals belonging to faces with
relatively minimal surface energy. The PSG can often, but not always,
be derived from the distribution of these spherical caps.

2. Investigating the surface symmetry of different forms (growth assessories,
etch figures, epitaxial growth figures, impact and pressure figures, di-
rectional dependence of the mechanical, chemical or physical erosion).

3. Investigating the physical properties. The suitable measures are discussed
in Section 12.3.

1.7.5
Symmetry of Space Lattices (Space Groups)

1.7.5.1 Bravais Types

We return now to point (d) of Section 1.7.2. The discussion concerned the com-
bination of rotation axes and rotoinversion axes with translations. Since the
operation of translation can be repeated an arbitrary number of times, bodies
with translational symmetry always possess unlimited extension in the rigor-
ous sense. If only one translation vector t1 exists, then we are dealing with
a one-dimensional lattice (lattice chain), whose symmetry-equivalent objects
may take three-dimensional forms. Two different translations t1 and t2 result
in a two-dimensional lattice (net). The general three-dimensional translation
lattice exhibits three noncoplanar translations t1, t2, and t3, which, repeated
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any number of times, always reproduce the lattices. For the description of the
symmetry relationships and the consideration of the properties of the lattice,
and thus that of the ideal crystal, it suffices to investigate a single cell of the
lattice, the elementary cell.

We represent the entirety of the lattice with the end points of the vectors
r = r1a1 + r2a2 + r3a3 = riai, where r1, r2, r3 are arbitrary integers and a1,
a2, a3 form a basic system of three nonplanar vectors. An elementary cell
of this lattice is the parallelepiped spanned by a1, a2, a3. This translation is
called simple primitive because one cell contains just one lattice point. How
do these translation lattices differ with respect to their symmetry properties?
As we have already seen in our discussion of crystal systems, there exist, due
to symmetry properties, only seven distinguishable metric types, and thus
only seven distinguishable systems of primitive cells. These seven systems
are called primitive Bravais types after the French mathematician Auguste Bra-
vais. Each possesses the holohedral symmetry of the given crystal system (Fig.
1.32).

The question now remains to be answered, whether for primitive lattices
with specific metric values, further distinguishable types exist. One can also
pose this question in another light. Do certain axes ratios a1:a2:a3 and angles
αi of the primitive Bravais types exist such that in the given lattice one finds
larger cells with higher symmetry than the primitive cells? These larger cells,
however, can only possess the holohedral symmetry of the crystal system.
They contain more than one lattice point per cell and are thus designated as
multiple-primitive Bravais types. How many different types of these exist? We
imagine that a multiple-primitive cell is constructed from a simple-primitive
cell by the addition of further lattice points. This new lattice must also be a
translation lattice. Let r = riai be a first primitive lattice. If one joins at the
end point of p, itself not a lattice vector, a further lattice of the same type, then
one constructs a lattice consisting of points r and r′ = r + p. A repetition of
the translation p must again lead to a lattice point, if the constructed lattice
is to represent a translation lattice. Thus r′ + p = r + 2p = r′′ and therefore
2p = r′′ − r = r′′′ is a lattice vector of the first translation lattice, i.e., p must
be equal to half a lattice vector of the first lattice. One now selects p so that it
lies within the unit cell of the first lattice. This is not a restriction, since each
other cell can be considered as an elementary cell. For p, we then have the
following possibilities:

p = half basic vector, thus p = ai/2 with i = 1, 2, 3.
p = half diagonal vector of a basic face of the unit cell, thus p =

(±ai ± aj)/2 with i 6= j.
p = half space-diagonal vector of the elementary cell, thus p =

(±a1 ± a2 ± a3)/2.
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P 1̄ P 2/m P 2/mm P 4/mm

R 3̄m H 6/mm P 4/m3 C 2/m

B 2/mm F 2/mm I 2/mm I 4/mm

F 4/m3 I 4/m3

Figure 1.32 The 14 Bravais types, 7 primitive, and 7 multiple primitive.

This operation of construction is called centering. One can distinguish a total
of seven multiple-primitive lattices, also presented in Fig. 1.32.

The following symbols are used to specify Bravais types:
P: primitive lattice
A, B, C: one-sided face-centered lattice, depending on the orientation of
the face parallel to (100), (010), or (001),
R: instead of P in a lattice with trigonal–rhombohedral unit cell,
H: instead of P in a hexagonal lattice with trigonal–hexagonal unit cell,
F: face-centered lattice,
I: body-centered lattice.

These symbols are provided with the Hermann–Mauguin symbols for the
holohedral symmetry of the given cell (Fig. 1.32).
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1.7.5.2 Screw Axes and Glide Mirror Planes

Consider an arbitrary translation lattice with the properties of an ideal crys-
tal. In primitive translation lattices the space is empty except for the lattice
points. We now imagine that the cells of a general translation lattice are occu-
pied with an arrangement (motif) which is described by further discrete points
inside the primitive cells. These are represented by the parameter vectors pi
associated with a property Ai. For example, occupation by the center of grav-
ity of certain types of atoms or by a continuous function A(x) is dependent
on the position vector such as, e.g., a time-averaged electron density. Which
symmetry properties can now appear in such general lattices? Apart from the
symmetry operations already discussed for the point symmetry groups, one
must now consider the possible combinations resulting from translations with
rotations and rotoinversions.

First we consider the combination of rotation axes n with a translation t ap-
plied to the end point of an arbitrary vector y in a general translation lattice.
The transformation is thus y′ = Rn(y) + t. We call this a screw operation (Fig.
1.33a). It turns out that only the component t‖n (parallel to the screw axis)
brings anything new. After an n-fold screw operation, any point along the
screw axis is displaced by nt. Arbitrary repetition creates a chain of equidis-
tant points. The distance between points must be equal to the length a of
a lattice vector in the direction of the screw axis or a multiple thereof; thus
nt = pa, where p = 0, 1, 2, 3, . . . , n − 1. We obtain the condition t = pa/n.
We introduce the symbol np for such a screw operation (screw axis). A total
of 15 rotation and screw axes exist: 2, 21, 3, 31, 32, 4, 41, 42, 43, 6, 61, 62, 63, 64,

(a) (b)
Figure 1.33 (a) Screw axis np with screw component ‖ a3; (b) screw
operation 31 and 32 (right and left screw).
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Figure 1.34 Glide plane.

65. The screw axes np and n(n−p) are distinguished only by the sense of screw
rotation (right and left screws). Examples are presented in Fig. 1.33b.

The combination of translation and rotoinversion only leads, in the case of 2̄
= m (mirror plane), to new operations with the component t‖m (perpendicular
to 2̄, i.e., lying in the mirror plane). A repetition of the operation y′ = Rm(y)
results in a zigzag chain of points with a separation of 2t. These chains must
have the period a of a lattice vector, i.e., t = a/2. These operations are called
glide planes (Fig. 1.34). Here, it also suffices to restrict oneself to lattice vectors
lying within the elementary cell.

1.7.5.3 The 230 Space Groups

We now ask which distinguishable combinations of all the operations dis-
cussed so far exist in general translation lattices (with arbitrary motif of the
elementary cells). One must also examine the compatibility of the different
operations in a similar manner as with the derivation of the point symme-
try groups. This work was completed independently by Fedorow (1890) and
Schoenflies (1891). The result was 230 distinguishable combinations, the space
groups. The symbols used today follow the Hermann–Mauguin symbols for
the point symmetry groups. The first symbol represents the Bravais type of
the lattice, hence P, R, H, A, B, C, F, I. These are followed by the symbols for
the symmetry operations, ordered according to the three prominent viewing
directions. Here also, it suffices in most cases only to give the symbol for
the generating operation. To avoid alternative interpretations one should cor-
rectly note the absence of symmetry operations in a certain viewing direction
with the symbol 1. Detailed explanations on the arrangement of the symme-
try elements in the space groups and the selection of the origin as well as an
overview on equivalent settings and further properties are found in the Inter-
national Tables for X-ray Crystallography.

The important question of how one derives from a space group the appro-
priate point symmetry group, which describes the macroscopic symmetry of a
finite space lattice, is quite simple to answer. In the macroscopic world, screw
axes appear as ordinary rotation axes and glide mirror planes as ordinary sym-
metry planes. Rotoinversion axes are also directly expressed in the symmetry
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of the point groups. In the macroscopic world an eventual centering of the
unit cells seems to remain hidden. However, the Bravais-type as well as the
screw axes and glide mirror planes often manifest themselves quite clearly in
morphological and other macroscopic properties.

For the determination of the space group of a crystal, knowledge of the
point symmetry group, the morphological metric and morphological details,
especially the existence or absence of an inversion center, is an advantage.
However, modern methods of structure analysis, especially with the aid of
X-ray and neutron diffraction techniques, supported by computers and sim-
ulations, practically always allow us to disclose the symmetry of the space
groups.

1.8
Supplements to Crystal Geometry

Many aspects of crystal geometry could not be taken up in the previous sec-
tion. It may, however, be useful to point out some special features for the
material scientist working in the field of crystal physics.

• Bravais indices. According to a suggestion from Bravais one can intro-
duce in the trigonal–hexagonal coordinate system a fourth basic vector
a′1 = −a1− a2 apart from the three base vectors a1, a2, and a3, produced
by a rotation of a2 about a3 by an angle of 120◦. The direction of a′1 is
symmetry equivalent to a1 and a2. One can thus obtain, e.g., the sym-
bols of symmetry-equivalent faces by the permutation of the first three
Miller indices. Since the Miller indices transform as the basic vectors,
we have h′1 = −h1 − h2. From the normal triple indices (h1h2h3) we get
the Bravais indices (h1h2h′1h3). In order to avoid confusion, one should
always specify the reference system with triple indices used for trigonal
or hexagonal crystals.

• Twin formation. The regular growth of several individuals of a crystal
species orientated with respect to one another according to distinct rules
is called twinning. Twin formation can be recognized using optic po-
larization microscopy and X-ray methods, and often macroscopically by
re-entrant angles. A careful analysis of the mutual orientations of the
parts leads to the corresponding twinning rule that the metric of the first
part connects with the metric of the second part. A detailed presentation
of twin and domain formation is given in Volume D, International Tables
for Crystallography (2003).

• Plane groups, line groups. If one limits the translation symmetry to two
vectors or one vector, one gets 17 or 2 different combination possibilities,
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respectively, the so-called plane groups and line groups. They play a
special role in the projection of space groups onto a plane.

• Black–white groups, color groups. The purely geometrical notion of sym-
metry may be broadened by connecting the geometric symmetry oper-
ations with the change of a certain property. The simplest type occurs
when one generates a geometric symmetry-equivalent arrangement and
simultaneously reverses the sign of a property. Thus one generates from
+1 the sign −1 and vice versa. Instead of +1 and −1, other arbitrary
two-valued properties, such as, e.g., black–white, on–off, up–down (spin
orientation), can occur. Further broadening of the notion of symmetry
leads to the color groups, in which the geometric symmetry operation is
connected with a change in color or other multivalent properties, which
repeats itself with the order of symmetry of the given operation. A clear
representation of the color groups is made possible, e.g., when one at-
taches a fourth coordinate q to the geometric operation which delivers
the value qm+1 with the m-fold application of the operation, where, e.g.,
in the case of the n-fold rotation axis qn+1 = q and thus we must have
qn = 1. Here, the possible color values are specified by the unit roots
e2πim/n (1 ≤ m ≤ n). The associated transformation matrix is then

RF
n =


v11 v12 v13 0
v21 v22 v23 0
v31 v23 v33 0
0 0 0 eiα


with eiα = cos α + i sin α, i =

√
−1 and α = 2π/n.

There exist a total of 58 real black–white symmetry groups apart from
the ordinary 32 PSGs, as well 32 further groups, the so-called gray point
symmetry groups, created from the ordinary PSGs by the simultaneous
inclusion of a negative property to a positive property. Thus we have
a total of 122 distinguishable PSGs. The space groups have 1651 distin-
guishable cases, the Heesch–Shubnikov groups.

1.9
The Determination of Orientation with Diffraction Methods

The orientation of a macroscopic crystal, with a well-developed natural mor-
phology, can very often be found with the help of the angles measured be-
tween neighboring faces or face normals. Additional information is obtained
by studying thin slices under the polarization microscope. Finally, other prop-
erties, such as the propagation velocity of elastic waves in a certain direction
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can contribute to the determination of orientation when the given elastic prop-
erties of the crystal are already known. Further details will be discussed in the
following sections. More precise statements and with fundamentally higher
certainty are obtained with the aid of X-ray methods. These, however, must
be directly applicable to large crystals, or one must try to produce very small
crystals of dimensions less than 1 mm as used in X-ray structure analysis, with
a fixed relation to the object under study. This measure, however, requires spe-
cial care. Thus, we will only outline the two most important methods for large
crystals. These are the Laue method and the Bragg method.

In the Laue method, discussed at length in many textbooks, a beam of non-
monochromatic X-rays (essentially the spectrum of the Bremsstrahlung) is in-
cident on a probe and one observes the scattered reflections in different direc-
tions, each of which can be assigned to a certain assembly of lattice planes.
This occurs with the aid of photographic films or sensitive detector systems,
which also allow automatic evaluation. The respective gnomonic or stereo-
graphic projections of the normals of the lattice planes derived from the anal-
ysis allow us to determine the orientation of the crystallographic reference
system of the object. The preferred method is to conduct the investigation in
the transmission technique because, in general, it delivers more and sharper
diffraction reflections than in the reflexion technique.

In the Bragg method one observes the diffraction in reflection with mono-
chromatic radiation. The crystal is rotated in small steps about different axes,
at a fixed direction of the primary X-ray beam, until the first reflection occurs
with sufficient intensity. From the Bragg condition 2d(h) sin θ = λ, where λ is
the wavelength of the radiation and 2θ is the diffraction angle (angle between
the incident beam and the reflected beam), one gets, because of d(h) = 1/|h|,
not only the orientation of the given lattice plane, but also the associated lattice
plane spacing. If one succeeds in obtaining further reflections after directed
rotation or tilting, then the orientation of the crystallographic reference system
can be fixed. If the crystal possesses well-developed faces, one can measure
the d-value at these without further manipulation, thus considerably simpli-
fying the work. Nowadays, automatic equipment is available for this task.
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2
Sample Preparation

The success of an experimental investigation often depends crucially on
whether suitable objects are available. Therefore, special attention must be
paid to the production and preparation of the specimens. In the next two sec-
tions we will discuss established methods for the preparation and orientation
of crystals. Prospective material scientists should make themselves familiar
with these methods.

2.1
Crystal Preparation

Specimens for measurement purposes as well as discrete devices for various
applications are mainly required in the form of thin plates, thin rods, or rect-
angular parallelepipeds. The production of these and also more complicated
forms out of a crystal blank takes place through the following processes: cleav-
ing, sawing, drilling, turning on a lathe, grinding, and polishing.

(a) Cleaving when a cleavage exists with a suitable orientation of the cleav-
age planes. Many crystals, such as, e.g., alkali halides of NaCl type, CaF2,
diamond, mica, MoS2, and especially crystals with layered structures, possess
a cleavage or a direction of preferred crack tendency. Cleavage planes are
always crystallographically prominent faces parallel to net planes of large oc-
cupation density. The cleaving process must be practised with great care. Soft
crystals can be cleaved with a razor blade, harder crystals with a stable blade,
whereby the blade is held parallel to the cleavage plane. When cleaving soft
crystals such as guanidinium iodide or gypsum, the blade is slowly pressed
through the specimen, whereas cleaving harder crystals, such as, e.g., LiF or
CaF2, requires a short and fast impact. The cleavage can be easily guided in
the desired direction by making a fine notch along the cleavage plane. In any
case, a massive base plate is of advantage.

(b) Sawing with a thread saw. When working with a thread saw, the me-
chanical stress on the crystal is practically negligible as opposed to cleaving.
The thread saw should be used for the stress-free preparation of specimens,
as well as with all specimens possessing good solubility or where chemical
dissolution is possible. The thread, moistened with a suitable solution, is
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moved automatically back and forth by commercial equipment and the crys-
tal clamped in a moveable holder is pressed with an adjustable force against
the thread. Cooling occurring during endothermal dissolution processes must
be suppressed as far as possible when working with delicate crystals. This is
done, for example, by using an almost saturated solution and by stripping off
drops of liquid on the thread immediately in front of the crystal. This is espe-
cially important with highly volatile solvents such as ethyl alcohol or acetone.
Difficult to dissolve crystals, such as calcite (CaCO3) or quartz (SiO2), can be
cut using diluted hydrochloric acid or hydrofluoric acid. Suitable sawing ma-
terials are twisted natural fibers. Synthetic fibers can be used with neutral or
alkaline solutions. Metal wires, e.g., made from tungsten (∅ 0.1–0.2 mm) are
still well proven and work with a water solution, especially with crystals that
are hardly dissoluble. In the case of very hard crystals, such as silicates or met-
als, one uses a solution consisting of a suspension of corundum or diamond
powder (grain size ca. 10 µm) in a highly viscous liquid such as paraffin oil or
dextrin boiled in water.

(c) Sawing with a blade saw (normally diamond coated). The usual blade saw
with outside peripheral cut and also such saws which cut with the inner pe-
riphery of a circular ring to improve the stability of the blade are only suitable
for materials of low mechanical and thermal sensitivity. In any case, one must
work with minimal sawing pressure and ample cooling liquid.

(d) Spark erosion techniques. Spark discharge methods can be used on some
materials, such as alloys, to preferentially divide and separate individuals.
This method also plays an important role in the smoothing of surfaces and
can even achieve the quality of polishing.

(e) Laser ablation. Some substances allow a targeted ablation of material by
laser bombardment; mainly used on very small objects in microtechnology
applications.

(f) Drilling and turning. As in wood and metal working, crystals with dif-
ferent mechanical properties can also be machined with a drill or lathe. In
general, sharp and fine diamond cutting tools should be used. Furthermore,
when working on the lathe, one has the possibility of using grinding paste and
emery paper. Hollow drills have also been found useful in the machining of
cylindrical specimens of various thicknesses. Just like drilling in glass, these
must operate with a plentiful supply of abrasives and cooling fluid. The drill
core is then the desired specimen. Other tools such as fret saws and files are
only used in special cases.

(g) Surface grinding. This requires flat grinding plates, which one can pro-
duce with high precision preferentially from glass or brass. Other grinding
forms, e.g., with concave or convex surfaces can be produced in a similar man-
ner. A suitable grinding plate should be provided for each grain size of the
abrasive and if possible a separate working surface so that coarse grains do
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not mix with the fine grains in the grinding process. Thus a high degree of
cleanliness is necessary. Flat grinding plates with diamond coatings, where
the danger of carrying over coarse grains is minimal, are also commercially
available. For the preparation of single specimens it is still appropriate to
work by hand. Only in series production it is worthwhile to work simultane-
ously with several objects on the grinding machine. When working by hand,
the expenditure of fastening the piece in a grinding holder can be spared as
long as the pieces are large enough. Small crystals and exacting work demand
the use of a grinding holder, a brass ring, where the underside is machined
flat. The specimen is imbedded in the ring with the aid of a suitable cement
(beeswax, synthetic resins which harden or melt at low temperatures depend-
ing on the thermal stability of the crystal), so that the underside of the ring,
which limits the grinding process, fixes the desired flat surface. These holders
can also be fastened in automatic grinding machines.

The grain size of the abrasive must be relatively homogenous to prevent
deep mechanical damage to the surface. For this reason, grinding with coarse
grain should be avoided as far as possible. In any case, one should use am-
ple amount of grinding fluid. Water, propanol, and ethyl glycol have been
found to be especially useful. The grinding process must be continuously con-
trolled. For this purpose one uses precision angles made of steel, goniometers,
straightedges, micrometers, and thickness gauges for the quantitative deter-
mination of thickness. These instruments can measure, or keep to specifica-
tions, angles to an accuracy of a few arcseconds and lengths to an accuracy of
0.5 µm. Employing optical interferometer devices a still better precision can
be achieved.

Polishing is often required as the last step in the preparation. The meth-
ods used are mainly those proven in optics. The process can be considered
as a refined form of grinding when we work with polishing plates made of
plastic or pitch (for optical purposes). The only polishing fluids one can use
are those which do not attack the polishing plate and have little aggressive
effect on the specimen. Ethyl alcohol or higher alcohols are often used for
water-soluble crystals. The recommended polishing agent is a fine wash of
suspended chromium oxide, iron oxide, cerium oxide, aluminum oxide, or di-
amond paste. The polishing process is also carried out in several steps, from
coarse- to fine-grained agents. Medium-hard crystals such as fluorite require
a grain size of about 0.5 µm. The special measures needed to achieve an optic
polish of the highest quality, e.g., with a flatness of 1/20 of the wavelength in
the visible spectrum, must be learned in special training courses. They, how-
ever, are only more refined methods of those discussed above.

In the technical application of crystals, the method of preparation can be
considerably simplified when one succeeds in getting the desired form al-
ready during the manufacturing process.
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2.2
Orientation

The term ‘orientation’ is used in the passive sense for the description of the ge-
ometrical position of a crystal referred to a crystallographic reference system,
and in the active sense for the alignment of certain faces to the crystallographic
reference system by cutting or grinding. We can, for example, search for the
orientation of the basic vectors of a prominent crystallographic reference sys-
tem by studying morphological details or by means of X-ray analysis (Laue
method, Bragg method). The investigation of physical properties, especially
with optical and piezoelectric methods, which we will come to later, can be of
great help in this regard. At present, we will assume that the orientation of
the crystal, in the passive sense, is known and the task is now to prepare an
oriented specimen, e.g., a parallelepiped, with specified faces. We proceed as
follows: first, instead of the crystallographic reference system defined by the
three vectors ai, which is normally associated with one of the seven prominent
crystallographic systems due to the given minimum symmetry, we introduce
a new reference system, the crystal-physical reference system. This is a Carte-
sian system with basic vectors ei attached to the vectors ai according to the
following convention:

e2 ‖ a∗2 , e3 ‖ a3, e1 ‖ e2 × e3

(a∗2 is normal to the surface (010) and is the second basic vector of the recip-
rocal system!)

We use, practically without exception, this Cartesian reference system for
the description of physical properties as opposed to morphological properties
and diffraction phenomena. If another orientation of the reference system is
selected, this must be specially noted. It is often convenient to specify the faces
in the crystal-physical reference system by their Miller indices. To distinguish
between the crystallographic Miller indices, we use a symbol with a dash, e.g.
(110)′ means a face whose normal bisects the angle between e1 and e2.

Now to get from an arbitrary crystal, say a melt boule, where often no mor-
phological details are recognizable, to a defined reference base for further ori-
entation work, it is useful to introduce another reference system which we
shall call the laboratory system. This system with the Cartesian vectors eL

i is
randomly assigned to the object, however, matched as far as possible to the
crystal-physical system. This is done by grinding two arbitrary surfaces FL

1
and FL

2 on the object, preferentially perpendicular to each other. Let eL
1 run

parallel to the normal of the surface FL
1 and eL

3 parallel to the intercepting edge
of both faces. eL

2 is thus perpendicular to both vectors in such a way that
just like in the ei system, a right-handed system is created. The situation is
sketched in Fig. 2.1.
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Figure 2.1 (a) Orientation of the Cartesian crystal–physical reference
system in the crystallographic basic system. (b) The laboratory refer-
ence system.

To prepare the oriented specimen it is now practical to find the relationship
between both Cartesian systems in order to carry out quickly and clearly all
the required calculations. Thus one must set up the system ei = uijeL

j (where
i = 1, 2, 3) with the coefficients uij. This occurs with the help of the Laue
method or the Bragg method.

The task is often to represent the unit vector of a face normal h = hia∗i or
the unit vector of a lattice line u = uiai in the crystal-physical system. For
this purpose we calculate the unit vectors h/|h| = u1iei = e′1 and u/|u| =
v1iei = e′1, respectively. From the definition of the crystal-physical system
e1 = e2 × e3, e2 = a∗2/|a2 ∗ | and e3 = a3/|a3| and with the help of the known
scalar products h · ei and u · ei, we have

u11 =
1

Va∗2 |h|
(h1a3 − h3a1 cos α2),

u12 =
1
|h| (h1a∗1 cos α∗3 + h2a∗2 + h3a∗3 cos α∗1),

u13 =
h3

a3|h|
,

v11 =
1

V∗a3|u|
(u1a∗2 − u2a∗1 cos α∗3),

v12 =
u2

a∗2 |u|
,

v13 =
1
|u| (u1a1 cos α2 + u2a2 cos α1 + u3a3).

ai, αi, and V and a∗i , α∗i , and V∗, respectively, are the values of the metric
of the basic system and the reciprocal system. These relationships also allow,
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without further requisites, additional measurements, referred to the selected
crystallographical system, in the direction of the normals of natural crystal
faces or along natural crystal edges.

All the required angle data for a special cut can now be expressed in the
laboratory system and controlled by simple angle measurements during the
grinding process. The practical procedure is explained below with the help of
three typical examples of melt boules of cubic crystals, which often show no
morphological details with respect to the determination of orientation.

(a) Melt boule of an alkali halides of NaCl type. These crystals possess an excel-
lent cleavage of the cubic faces {100}. We therefore try to discover, by care-
fully cleaving at the edge of the boule, a cleavage face recognizable by a flat,
mirror-smooth fracture. We then search for a second surface perpendicular
to this face. The normal to these faces defines the crystal-physical reference
system. The laboratory system, in this case, is for reasons of practicality, also
fixed by the cleavage faces (ei = eL

i ).
(b) Melt boule of CsBr or CsI. These crystals exhibit no well-developed cleav-

age. If one inserts the melt boule in a saturated aqueous solution of CsBr or CsI
and cools the system down to several degrees, one observes after a few hours
mirror-smooth surface elements of the rhombododecahedron {110}. The cu-
bic basic vectors bisect the angles between the normals of such surface ele-
ments, which form angles of 90◦. Thus the orientation of the crystal-physical
system is known.

(c) Melt boule of AgCl or AgBr. These crystals do not possess a well-developed
cleavage at room temperature nor sufficient solubility in water. In a saturated
ammoniacal solution of AgCl or AgBr, they form, after a short time of evapo-
ration, mirror-smooth surface elements of the cube faces {100}. As in (a) these
allow a direct determination of crystal orientation.

The accuracy of the determination of crystal orientation can be easily
checked using X-ray techniques such as the Laue method or the Bragg
method.

We now imagine that the fixed crystal-physical reference system is estab-
lished in space in the crystal. We thus speak of an initial reference system.
During measuring processes or in technical applications, the crystal can expe-
rience certain changes which often have an effect on the quantities used to fix
the orientation. Normally, we assume that the influence of such processes is
so small that the orientation of the reference system, as well as the properties
of the crystal, measured in this system, is only affected to a nonmeasurable
extent. If this is not true, then one requires a careful analysis of the special sit-
uation, as in the case of nonlinear elasticity (see Section 4.6.3), where primary
mechanical deformations are superimposed by secondary deformations.
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3
Definitions

3.1
Properties

The physical phenomena of matter are made apparent in experiments and
their quantitative formulation in measurements. The results of such measure-
ments can often lead to direct statements concerning the so-called properties
of the given substance. We now want to look more closely at the term prop-
erty. For this purpose, we imagine those actions, embracing the group of in-
dependent or inducing quantities, which we can arbitrarily perform on a probe.
Let these be specified by the symbol Aj′ j′′ j′′′ ..., or in short notation Aj, where
the indices j′, j′′, and so on are introduced to more precisely characterize the
quantities. Such independent quantities are, for example, volume, tempera-
ture, temperature gradients, hydrostatic pressure, pressure gradients, general
mechanical stress states, velocity, rotational velocity, electric, and magnetic
field strengths.

The inducing quantities give rise to effects which we measure with the aid
of dependent or induced quantities Bi′i′′i′′′ ..., in short notation Bi. Examples for
Bi are: caloric heat content, mechanical deformation, heat flow density, mass
flow density, electric current density, electric polarization, and magnetization.
The relationship between inducing and induced quantities is described by

Bi = fi;jkl...(Aj, Ak, Al , . . .).

Consequently, the function fi;jkl... specifies those properties of the body
which under the action of the quantities Aj, Ak, Al , and so on produce the
quantities Bi. This concept for the definition of properties has been found to
be sufficient for most macroscopic phenomena as we shall see in the following.

There also exists a further group of properties, which are derived as func-
tions g( f1, f2, . . .) of certain fi (here, e.g., f1, f2 . . .) such as light velocity and
sound velocity. We shall call These properties derived properties. Sometimes
the question has to be settled as to whether the role of the inducing and in-
duced quantities, which may be assigned to each other in pairs, e.g., mechan-
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ical stress and mechanical deformation or electric field strength and current
density, is interchangeable. The formal description often allows such inver-
sions; however, the physical realization of the inversion is often not easy to
achieve, as one knows from the example of mechanical deformation and me-
chanical stress. We will return to this matter in detail in the discussion of
actual properties.

As a simple example for the concept of inducing and induced quantities let
us consider specific heat and electric conductivity. The specific heat Cp (per g, at
constant pressure) connects an arbitrary temperature rise ∆T, as an inducing
quantity, to the consequent appearance of an increase in the caloric capacity
∆Qp (per g, at constant pressure) according to

∆Qp = Cp∆T.

Here, f is a linear function of the independent variable ∆T. This association is
approximately valid in a small temperature interval. An exchange of inducing
and induced quantities is not only formally but also physically feasible.

The electrical conductivity s establishes the connection between electric
charge current density I (unit: charge per s and mm2) and the electric field
strength E as the inducing quantity according to

I = sE.

This form of Ohm’s law is approximately correct for isotropic, i.e., direction-
ally independent, conductivity. With crystals of lower symmetry, as e.g., ar-
senic, antimony or bismuth (PSG 3̄m) or with LiIO3 (PSG 6) one observes
in the direction of the threefold or sixfold axis other values of electric con-
ductivity as in the direction perpendicular to these. Related to the crystal-
physical system, the conductivity along the three- or sixfold axis is described
by I3 = s33E3 and perpendicular to these by I1 = s11E1. We thus find an
anisotropy, represented by the introduction of the mutually independent com-
ponents of the electric field Ei and of the current density vector Ii (i = 1, 2, 3).
We will discuss in detail the question of how the anisotropy looks like in gen-
eral, i.e., which relationship exists between I and E in an arbitrary direction.

The functions f and therefore the properties are divided into two groups:
I. Tensor Properties. A multilinear relationship exists between Bi and the Aj

of the type

Bi = f 0
i;j Aj + f 0

i;jk Aj Ak + f 0
i;jkl Aj Ak Al + · · ·

(One sums according to the summation convention.) The f 0
i;jkl... are constant

coefficients and all nonaffected inducing quantities are held constant. This
representation corresponds to a Taylor series in Bi according to

Bi = ∑
ν

1
ν!

∂νBi
∂Aj∂Ak · · ·

Aj Ak · · · ,
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with the characteristic that no constant term is present. The expansion occurs
at the zero value of all Aj.

The coefficients f 0
i;jkl... with fixed indices jkl · · · represent a certain property.

In the case of a single index j we are dealing with a property of the first order,
with index pairs jk we are dealing with properties of the second order, and so
on. Many mechanical, electrical, optical, and thermal properties, also those of
a very complicated nature, belong to the tensor properties.

II. Nontensor Properties. Here, the relationship between inducing and in-
duced quantities is more complicated. Nontensor properties are, e.g., growth
properties, rate of dissolution (etching behavior), boundary surface proper-
ties, plasticity, abrasive hardness, scratch hardness, and properties connected
with energetic activation thresholds, e.g., in emission and absorption pro-
cesses.

3.2
Reference Surfaces and Reference Curves

Many properties, especially the tensor properties, possess an anisotropy,
which can be represented by a surface in space.

In the case of a simple directional dependence, the reference surface fur-
nishes an overview of the complete anisotropy. We obtain the reference sur-
face as the entirety of the end points of radius vectors r, spreading from a
fixed point, with lengths equal to the value of the property for the given di-
rection. As an example we mention the rate of dissolution which describes the
etching behavior on a given face of a crystal in a distinct solvent (see Fig. 3.1;
the measurement method is described in Section 6.2.

In the same manner as with the rate of dissolution, one can also represent,
e.g., abrasive strength, indentation hardness (a measure for the plasticity), and
the tensile strength of thin cylinders with the aid of a simple reference surface.
A special reference surface is generated by a freely growing crystal through its
outer boundary surface, which represents the mean velocity of crystallization
in any direction.

If there exists, for each measurement direction, several values of the given
property, then one gets a multishell reference surface. For example, one needs
for the representation of the velocity of light in crystals a double-shelled ref-
erence surface because for each propagation direction two different values of
the velocity of light exist. In the case of sound velocity, a triple-shell surface
is required because for each propagation direction three different values of
sound velocity are possible. We will handle these and other examples in more
detail later.

For some properties, in which several directions simultaneously come into
play as, for example, with sawing velocity and scratch hardness, a compli-
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Figure 3.1 Anisotropy of dissolution velocity of
Sr(HCOO)2 · 2H2O, PSG 22, in water at 293 K. The radial dis-
tances give the loss in weight in mg per 100 ml H2O in directions
within the zone [11̄0]. A distinct minimum is observed on the prin-
cipal growth faces {110}. The anisotropy reflects the symmetry
of the twofold axis along [001]. The lack of a center of inversion is
immediately recognizable.

cated representation in the form of reference curves must be chosen, because
the measurement results depend not only on the orientation of the crystal face
but also on the cutting direction of the saw or the direction of scratching (Sec-
tion 6.3 ).

3.3
Neumann’s Principle

The consequences of crystal symmetry on the physical properties, in which
the influence of boundaries can be neglected, are governed by a fundamen-
tal postulate of crystal physics, known as Neumann’s principle (F. Neumann,
1798–1895):

“The space symmetry of the physical properties of a crystal cannot be less than the
structural symmetry of the crystal.”

As a justification, it suffices to note that the given property is a consequence
of the atomic arrangement of the lattice particles and their bonding, i.e., the
electronic states. Other reasons for the occurrence of the properties do not ex-
ist, as long as we look at the empty space, in which the material is embedded,
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as an intrinsically isotropic medium. This assumption is essentially fulfilled
for our purposes. In all macroscopic properties, the point group symmetry
replaces the position of the structural symmetry described by the space group
symmetry. This is due to the fact that translation symmetry is macroscopi-
cally not immediately recognizable and the special operations of screw axes
and glide mirror planes, in the macroscopic sense, act as ordinary symmetry
axes or mirror planes. From Neumann’s principle we learn immediately that
the reference surfaces must at least possess the point symmetry group of the
given crystal as long as boundary-independent properties are considered. The
mathematical formulation for this fact is as follows: the reference surfaces are
invariant under the transformations of the point symmetry group.

Thus each continuous reference surface is to be approximated to an arbi-
trary degree by symmetry-fitted fundamental polynomials of the given sym-
metry group (Exercise 2). In order to make use of this relationship, it is im-
portant, as far as possible, to define the properties so that they are boundary
independent. Furthermore, we always assume that the observed properties
fulfill this requirement if no special indications are given for another situation.
When nothing else is said, we also assume that the properties of the crystal,
and therefore also their intrinsic symmetry are not measurably changed by the
action of the inducing quantities. Thus for the description of the phenomena
we will also view the crystal-physical reference system as fixed and invari-
able.

3.4
Theorem on Extreme Values

In directions of symmetry axes with n ≥ 3 the properties take on relative ex-
treme values, i.e., in all sufficiently adjacent directions we find either larger or
smaller values of the given properties, except for the isotropic case which does
not concern us here. In directions of twofold axes, the properties take on either
extreme values or saddle point values, i.e., the reference surface possesses at
such points along the principal curvature lines perpendicular to one another
relative extreme values that can also be of a different character (maximum or
minimum). In all directions within a symmetry plane, each property takes on
a relative extreme value when passing through the principal curvature line
perpendicular to the symmetry plane. There is no general rule for extreme
values in other directions or the position of absolute extreme values.

As proof we imagine that the reference surface is differentiable to sufficient
order. Then in each point there exist two defined principal curvatures, a max-
imum and a minimum. We now replace the reference surface by an elliptic
or hyperbolic paraboloid tangential to the surface in the given point and with
principal curvatures corresponding to those of the surface (Dupin indicatrix).
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In the coordinate system, whose basic vectors e′1 and e′2 are given by the tan-
gents along the directions of principal curvature (e′3 is perpendicular to the
tangential plane), the paraboloid is given by

ax′1
2 + bx′2

2 + cx′3 = 0.

In the case of n-fold axes with n ≥ 3, the paraboloid has the form of a ro-
tation paraboloid (a = b). All points of the reference surface in a certain
neighborhood of the intercept point of an n-fold axis lie approximately on
the paraboloid, that again, in the point of contact, is to be approximated by
a sphere of a radius corresponding to the principal curvature. This radius
is either smaller or larger than the length of the radius vector of the reference
surface, i.e., the radius vector leads either to a maximum or a minimum. In the
intercept point of a twofold axis, the axis e′3 of the Dupin indicatrix runs par-
allel to the twofold axis. This is compatible with the existence of an extreme
value or a saddle point. For directions within a symmetry plane, the vectors
e′1 and e′2 of the Dupin indicatrix lie parallel and perpendicular, respectively,
to the symmetry plane. Thus it follows, as stated, that when passing through
the principal curvature line perpendicular to the symmetry plane there must
appear a relative extreme value for all directions in the symmetry plane. Fur-
thermore, in the directions within a symmetry plane there exist an even quan-
tity of relative extreme values with the same number of maxima and minima.
There exists at least one maximum and one minimum.

3.5
Tensors

As previously mentioned, many important physical properties can be de-
scribed by tensors. In the next few sections we will get to know some proper-
ties of tensors, which will be extremely useful for further work. The beginner
should familiarize himself with this mathematical tool as soon as possible. Of-
ten the endeavor to evoke a picture of the nature of tensors is futile and leads
to a certain aversion. For this reason, such attempts should not be stimulated
at the beginning. Rather it is recommended, at first only to pay attention to
the definitions that follow and the rules of calculation resulting from these.
We will then derive those quantities which provide us a useful conception of
tensors. As a first step we will introduce tensors on the basis of their transfor-
mation properties. For this purpose we will recapitulate the behavior of basic
vectors and coordinates of the position vector when changing a reference sys-
tem. The introduction of a new reference system with the basic vectors a′i
takes place advantageously with the help of the transformation matrix (uij)
which generates the new basic vectors from the old according to a′i = uijaj.
The reverse transformation as well as the transformation of the position vec-
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Table 3.1 Formulae for the transformation into a new reference system. The coordinates of the
position vector in the reciprocal system are designated by x∗i for the sake of uniformity. In crys-
tallography normally the symbols hi are used. (Uij), the inverse matrix of (uij), is obtained by
Uij = (−1)i+j Aji/|uij|, where Aji is the adjunct determinant resulting from the transformation
matrix after dropping the jth row and ith column. |uij| is the determinant of the transformation
matrix.

a′i = uijaj ai = Uija′j x′i = Ujixj xi = ujix′j
a∗i
′ = Ujia∗j a∗i = ujia∗j

′ x∗i
′ = uijx∗j x∗i = Uijx∗j

′

tors in the old and new systems and also in the associated reciprocal systems
is compiled in Table 3.1 (refer to Section 1.6 for the derivation of the formulae).

Quantities that transform as the basic vectors of the initial system with the
matrix (uij) are called covariant, and those that transform as the basic vec-
tors of the associated reciprocal system with the matrix (Uji) are called con-
travariant. The coordinates of the position vector in the basic system are the
contravariant coordinates, and the coordinates of the same position vector in
the reciprocal system are the covariant coordinates. A simplification of the
situation occurs when Cartesian reference systems are used. We consider the
transformation e′i = uijej with the reverse ei = Uije′j. Then we have

e′i · ej = uij = ej · e′i = Uji.

Thus in Cartesian systems, covariant and contravariant transformations are
not distinguishable. This is a good reason to prefer Cartesian reference sys-
tems in practical crystal physics. Transformation matrices with the above
properties are called unitary (U = (U−1)T).

We now consider the ensembles of quantities tijk...s, where each individual
attribute, labeled by the index positions i, j, k . . . s, runs through a certain
range of values. An example for such quantities is index cards of a file system,
as used, for example in animal husbandry. The first index is provided, let us
say, for the date of birth, the second for gender, the third for the breed, and
so on. Under all these varieties there exists a marked group, whose members,
also called elements, exhibit a special internal relationship. We are dealing
with tensors. The individual quantities tijk...s are called tensor components. We
specify the ensemble of components, the tensors, by {tijk...s}. If the tensor com-
ponents possess m index positions, then we are dealing with a tensor of the mth
rank. The range of values of all indices covers the numbers 1, 2, 3, . . ., n, where
n is the dimension of the associated space. The tensors are thus assigned to an
n-dimensional space, which, for example, is spanned by the Cartesian vectors
ei (i = 1, 2, . . . , n). The tensors distinguish themselves from the other quan-
tities by their transformation behavior when changing the reference system.
The definition of tensors in this way may, at first, seem artificial. We will see,
however, that just this property of tensors is of fundamental importance for
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all further work, especially for direct applications. The definition reads as fol-
lows: Ensembles, whose components tijk...s transform like the corresponding
coordinate products during a change of the reference system, are tensors. With
a covariant transformation of all index positions, the components tijk...s are as-
signed to the product x∗i x∗j x∗k · · · x∗s , and with a contravariant transformation
they are assigned to the product xixjxk · · · xs. In principle, a certain transfor-
mation behavior (covariant or contravariant) is allowed for each individual
index position. When changing the reference system tijk...s converts in

t′ijk...s = uii∗ujj∗ukk∗ · · · uss∗ ti∗ j∗k∗ ...s∗

with a covariant transformation and to

t′ijk...s = Ui∗iUj∗ jUk∗k · · ·Us∗sti∗ j∗k∗ ...s∗

with a contravariant transformation.
One sums over all indices i∗, j∗, k∗, . . . , s∗ from 1 to n. This results directly

from

x′i x
′
jx
′
k · · · x′s = Ui∗iUj∗ jUk∗k · · ·Us∗sxi∗xj∗xk∗ · · · xs∗

and the corresponding expression for the covariant coordinate product. The
indices primed with a star only serve to distinguish the indices and are not
to be confused with those used to specify the quantities of the reciprocal sys-
tem. In mixed variant transformations, the component of the corresponding
transformation matrix is to be inserted for each index position.

The inverse transformation is carried out in an analogous manner. We have

tij...s = Uii∗Ujj∗ · · ·Uss∗ t′i∗ j∗ ...s∗

for the covariant transformation and

tij...s = ui∗iuj∗ j · · · us∗st′i∗ j∗ ...s∗

for the contravariant transformation.
If we work in Cartesian reference systems, which we will do in the fol-

lowing almost without exception, no difference between both transformation
methods exists. Moreover, the introduction of general coordinates, such as
cylindrical or polar coordinates, brings advantages only in exceptional cases.

In practical work we are always confronted with the question of whether
a tensorial connection exists between inducing and induced quantities. For
example, are we dealing with tensor components with quantities sij obeying
a linear relationship Ii = sijEj between the components of the current density
vector and the electric field? Situations like these can be elegantly handled
with the help of the following theorem.
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3.6
Theorem on Tensor Operations

If in an arbitrary reference system the mth rank tensor pij...s is connected to the
nth rank tensor qαβ...σ according to

pij...s = rij...s;αβ...σqαβ...σ

by the quantities rij...s;αβ...σ, which carry a total of (m + n) index positions, then
the ensemble {rij...s;αβ...σ} also represents a tensor. The proof is as follows: We
imagine having performed a transformation in a Cartesian basic system with
the basic vectors e′i = uii∗ei∗ . The relation given above then reads

p′ij...s = r′ij...s;αβ...σq′αβ...σ.

We have

p′ij...s = uii∗ujj∗ · · · uss∗ pi∗ j∗ ...s∗ .

For pi∗ j∗ ...s∗ we insert the above expression and obtain after exchanging indices

p′ij...s = uii∗ujj∗ · · · uss∗ri∗ j∗ ...s∗ ;α∗β∗ ...σ∗qα∗β∗ ...σ∗ .

Now we substitute the components qα∗β∗ ...σ∗ with the help of the inverse trans-
formation by

uαα∗uββ∗ · · · uσσ∗q′αβ...σ,

and get

p′ij...s = uii∗ujj∗ · · · uss∗uαα∗uββ∗ · · · uσσ∗ri∗ j∗ ...s∗ ;α∗β∗ ...σ∗q′αβ...σ.

Comparing this with the expression given above in an arbitrary Cartesian ref-
erence system yields

r′ij...σ = uii∗ujj∗ · · · uσσ∗ri∗ j∗ ...σ∗ .

This relation is nothing else but the transformation rule for tensors. Thus the
rij...σ are in fact components of a tensor.

Let us now consider some examples of such tensor connections which will
illustrate the special usefulness of the theorem just discussed.

We will proceed with increasing rank and distinguish between the group of
inducing and induced quantities and the group of tensor properties.

As a general example, consider the Taylor expansion of a scalar function

F(x) = ∑
(ij...s),n

1
n!

∂nF
∂xi∂xj · · · ∂xs

xixj · · · xs
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about the point x = 0. As is well known, one sums over all permutations of
the indices for each n. If we go over to a new reference system F(x) = F(x′)
is preserved. On the left-hand side we have a zero-rank tensor, a quantity
that does not change with a transformation. The individual differential quo-
tients for each fixed n are tensor components because they are connected with
the coordinate products xixj · · · xs which themselves represent tensor compo-
nents.

It is obvious that the coordinate products of a vector or arbitrary vectors
are also tensor components, likewise the differential quotients of tensors with
respect to the components of other tensors, as e.g., the differential quotients
with respect to time, temperature, pressure or with respect to the components
of the position vector, and so on. Furthermore, the products of components of
two or more tensors also represent tensor components just as the differential
quotients of components of a vector or of different vectors or tensors, respec-
tively. A further possibility of creating tensors from existing tensors is the op-
eration of tensor contraction. Let there be two tensors {aij...rs} and {bαβ...ρσ}
of arbitrary rank. The connection of these tensors according to

cij...r;αβ...ρ = aij...rsbαβ...ρs,

which contains a summation over a common index position (or in the general
case, several common index positions: multiple contraction), leads also to a
tensor, whose rank for each summation position is two less than the sum of
the ranks of both initial tensors. The proof for a simple contraction is based
upon the transformation behavior. We write on the right-hand side of the
above equation the inverse transformations

aij...rs = ui∗iuj∗ j · · · ur∗rus∗sa′i∗ j∗ ...r∗s∗

and

bαβ...ρs = uα∗αuβ∗β · · · uρ∗ρuσ∗sb′α∗β∗ ...ρ∗σ∗

and get

cij...rαβ...ρ = a′i∗ j∗ ...r∗s∗b′α∗β∗ ...ρ∗σ∗ui∗iuj∗ j · · · ur∗ruα∗αuβ∗β · · · uρ∗ρ(us∗suσ∗s).

The expression in the brackets represents a summation over s. When trans-
forming from Cartesian systems, it takes on the value 0 for s∗ 6= σ∗ and the
value 1 for s∗ = σ∗. Thus

cij...rαβ...ρ = a′i∗ j∗ ...r∗s∗b′α∗β∗ ...ρ∗s∗ui∗iuj∗ j . . . ur∗ruα∗αuβ∗β . . . uρ∗ρ.

This is the formula for the inverse transformation of the tensor components
c′i∗ j∗ ...ρ∗ ; thus the contraction process results in a new tensor. The proof is car-
ried out in a corresponding manner for the case of several contractions with
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arbitrarily chosen index positions. If one works in a non-Cartesian system,
the index positions, over which one sums, must have different transforma-
tion behavior (covariant or contravariant) in both tensors {a} and {b}. The
contraction operation plays an important role in the generation of invariants
which we will consider later.

We should note that the theorem on tensor operations represents nothing
else but multiple contraction operations. The formulation of the problem,
however, is different to the contraction case just discussed.

We now come to concrete examples which will be discussed in detail in
later sections. For the sake of brevity, we will specify inducing or induced
quantities with I and properties with II.

Zero-Rank Tensors (Scalars)
I: Temperature, pressure, volume, electrical potential, as well as differences

and differential quotients of these quantities,
II: Specific weight ρ, specific heat Cp and other energy densities, all mean

values of anisotropic properties in space, e.g., mean speed of light, mean abra-
sive strength, mean electrical conductivity; scalar invariants; all properties of
isotropic substances.

First-Rank Tensors (Vectors)
I: Position vector x, differential quotient of vectors with respect to scalars

(e.g., velocity, acceleration), angular vector u, impulse, angular momentum
L, gradients of scalar fields (temperature, pressure), electric field strength E,
magnetic field strength H, current density vectors (heat, charge, mass), electric
moment, magnetic moment. (Explanation: the gradient of a scalar function F
is the vector grad F(x) = ∂F

∂xi
ei ).

II: Pyroelectric effect {πi}: Change in electric polarization P induced by a
change in temperature ∆T according to ∆Pi = πi∆T. Since the left side rep-
resents a tensor of rank 1 and ∆T is a scalar, the quantities πi are components
of a tensor of rank 1. A crystal possessing such a property is assigned a fixed
vector. Similarly, there exists a pyromagnetic effect and the piezoelectric effect
by a change in the hydrostatic pressure ∆p according to ∆Pi = qi∆p.

Second-Rank Tensors
I: Products of components of a vector or components of two vectors {xixj}

or {xiyj}; differential quotients of components of a vector { ∂Ei
∂xj
} (vector gradi-

ent) and differential quotients of types { ∂2F
∂xi∂xj

}, { ∂2F
∂xi∂yj

}, { ∂F
∂tij
}; deformation

tensor {εij} and mechanical stress tensor {σij}; quadrupole moment; differen-
tial quotients of second-rank tensors with respect to a scalar.

II: Thermal Conductivity {λij}: Qi = −λij(grad T)j; Q is the heat current
density vector. In this case, as with some of the following examples, the com-
bination of two vectors is by means of a second-rank tensor {λij}.
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Electrical Conductivity {sij}: Ii = sijEj = −sij(grad U)j; I is the charge den-
sity vector, U the electric potential.

Mass Permeability {qij}: Si = −qij(grad p)j; S is the mass density vector.
Dielectricity {εij}: Di = εijEj; D is the vector of the electric displacement, E

the vector of the electric field strength.
Magnetic Permeability {µij}: Bi = µijHj; B is the vector of magnetic induc-

tion, H the vector of magnetic field strength.
Thermal Expansion {αij}: εij = αij∆T; the mechanical deformations εij are

proportional to the scalar ∆T. Thus {αij} is also a second-rank tensor, since
{εij} is a tensor as will be shown later.

Volta Striction {βij}: εij = βij∆U; this is analogous to thermal expansion.
∆U is the electrical potential difference.

Linear Compressibility at Hydrostatic Pressure {Kij}: εij = Kij∆p; this is also
analogous to thermal expansion. ∆p is the hydrostatic pressure difference.

Moment of Inertia {Θij}: Li = Θijuj; u is the angular vector, L the angular
momentum vector.

First-Order Displacement Vector {vij}: ξi = vijxj; ξ is the displacement vector
describing the displacement of the end point of x.

Third-Rank Tensors
I: Coordinate products {xixjxk} or {xiyjzk} and the differential quotients of

the types{
∂3F

∂xi∂xj∂xk

}
,

{
∂2Ei

∂xj∂xk

}
,

{
∂Ei
∂tjk

}
, and

{
∂EiEj

∂xk

}

and so on.
II. Piezoelectric Tensor {dijk}: Pi = dijkσjk; P is the vector of the electric polar-

ization, {σjk} the mechanical stress tensor. Here we see the combination of a
second-rank tensor with a first-rank tensor.

Inverse Piezoelectric Tensor {d̂ijk}: εij = d̂ijkEk. The deformation {εij} pro-
portional to the electric field strength is called first-order electrostriction. It is
directly related to the piezoelectric effect.

First-Order Electrooptic Tensor {rijk}: ∆aij = rijkEk; {∆aij} describes the
change of the dielectric behavior in the optical region and thus {rijk} the vari-
ation of the velocity of light as a function of the components of the electric
field.

Nonohmic Conductivity {sijk}: Ii = sijEj + sijkEjEk; the first term on the right
describes the ohmic conductivity, the tensor {sijk} the deviation from Ohm’s
law in quadratic dependence of the components of the electric field strength.

Hall Tensor {Rijk}: Ei = Rijk IjHk; the electric field strength generated by
a current in the presence of a magnetic field is represented by a third-rank
tensor.
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Nonlinear Dielectric Tensor {εijk}: Di = εijEj + εijkEjEk; {εijk} describes the
deviation from linear behavior.

Fourth-Rank Tensors
I: Product of the coordinates of vectors (also mixed) and their differential

quotients as well as the products of tensor components and corresponding
differential quotients analogous to third-rank tensors e.g.,

{xixjxkxl},

{
∂4F

∂xi∂xj∂xk∂xl

}
,

{
∂2F

∂tij∂tkl

}
,

{
∂3Ei

∂xj∂xk∂xl

}
.

II. Elasticity Tensor {cijkl}: σij = cijklεkl ; there exists a linear combination of
the components of the mechanical deformation tensor with the components of
the mechanical stress tensor. The reversal is εij = sijklσkl . In static experiments,
the second expression is mostly used and in dynamic experiments the first
expression is favored.

Nonlinear Fourth-Rank Dielectric Tensors {εijkl} and { fijkl}:

Di = εijklEjEkEl or Di = fijklEj
∂Ek
∂xl

.

The first tensor describes, to a third-order approximation, the dielectric behav-
ior in homogenous electric fields. The second tensor describes the dependence
of products of the field strength and its variation (vector gradient).

Piezooptic and Photoelastic Tensors {pijkl} and {qijkl}: ∆aij = qijklσkl or ∆aij =
pijklεkl ; the change of the optical polarization constants ∆aij under the influ-
ence of mechanical stresses or deformations is described to a first-order ap-
proximation by a fourth-rank tensor.

Second-Order Electrostriction {d̂ijkl}: εij = d̂ijklEkEl ; this is the second-order
approximation of electrostriction mentioned above.

Piezoelectric Effect by Electric Prepolarization {Dijkl}: Pi = DijklEjσkl ; electric
polarization is generated by mechanical stress in the presence of an electric
field.

Change in Magnetic Resistance {Rijkl}: Ei = Rijkl IjHk Hl ; this is a property
similar to the Hall effect, however, to second order of the components of the
magnetic field strength.

Higher Rank Tensors
I: Products of tensor components and their differential quotients, especially

those of mixed quantities.
II: Second-Order Piezoelectric Effect {dijklm}: Pi = dijklmσjkσlm; the second-

order approximation of the piezoelectric effect is described by a fifth-rank ten-
sor and the following approximations by tensors of odd rank.

Nonlinear Elasticity Tensor (Deviation from Hooke’s law) {cijklmn}: for higher
approximations, the relationship between deformation and stress is given by

σij = cijklεkl + cijklmnεklεmn + cijklmnopεklεmnεop + · · ·
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Especially the easily observed nonlinear acoustic effects are reproduced
with the help of sixth- and eighth-rank tensors.

Most higher tensor properties occur as higher approximations of simpler
properties. Their tensorial representations follow analogous to the examples
presented above.

3.7
Pseudo Tensors (Axial Tensors)

Our definition of tensors requires a supplement. Some quantities exist which
only transform like normal tensor components when the coordinate system
keeps its chirality (right- or left-handed system). We will explain this by con-
sidering the vector products z = x× y of two position vectors x and y in the
basic system. In the definition of the vector products, the handedness of the
system spanned by three vectors x, y, and x × y is involved. Thus a change
in the handedness of the reference system in a transformation must be taken
into consideration. When applying a rotation–inversion operation Rn̄, which
corresponds to the product of a normal rotation and an inversion, the right-
handed reference system goes over into a left-handed system and vice versa.
In the case of the inversion R1̄, described by the transformation matrix

R1̄ = (uij) =

 1̄ 0 0
0 1̄ 0
0 0 1̄

 ,

we have a′i = −ai, x′i = −xi, and y′i = −yi. According to the prescription for
calculating the vector product

z = x× y = V

∣∣∣∣∣∣
a∗1 a∗2 a∗3
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ = zia∗i

we also form, with the vectors x′ = −xiai and y′ = −yiai, which results from
the inversion of x and y, the vector product and get x′ × y′ = z.

Thus z′i = zi as opposed to x′i = −xi. According to this convention, the
vector product produces a change in sign by an inversion compared to the
transformation of a normal vector. The same applies to the case of an arbi-
trary rotation–inversion, as one can easily confirm. A change in sign does
not occur with pure rotations. This special feature of the transformation of a
vector, represented as the vector product of two normal vectors, is taken into
consideration by multiplying the transformation formulae with the determi-
nant |uij| of the transformation matrix, which takes on the value +1 with a
pure rotation, and the value −1 with a rotation–inversion.
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Because of this difference to a normal vector, one designates the vector prod-
uct of normal vectors as a pseudo vector or a first-rank pseudo tensor. Sometimes
the designation “axial vector” is used contrary to a normal tensor, which is then
termed “polar.” This designation stems from the rotation vector u, whose
length specifies the rotation velocity or rotation angle and whose direction
specifies the rotation axis, whereby the rotation is defined as clockwise, seen
along the rotation vector.

Even with pseudo vectors of higher rank, which are always connected with
first-rank tensors, a change in sign occurs with a change of handedness of the
reference system, when the transformation formulae used so far are applied.
The correct transformed quantities are also obtained when, in addition, the
factor |uij| is applied. For the transformation of pseudo tensors we then have

t′ij...s = |uij|uii∗ujj∗ · · · uss∗ ti∗ j∗ ...s∗ .

With the aid of a second-rank asymmetric tensor, where tij = −tji, we can
represent the vector product z = x× y by zi = tijyj. We assume the second-
rank tensor written as a matrix:

(tij) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 .

When we perform an inversion in this representation of the vector product
we get z′i = t′ijy

′
j = zi, where t′ij = −tij and thus the sign is different from

t′ij = uii∗ujj∗ ti∗ j∗ . As a consequence, we can consider the vector product of
two normal vectors (first-rank tensors) as a tensorial combination of a vector
with a second-rank asymmetric pseudo tensor. The axial character of a ten-
sor is propagated through the tensor operation. The following relationships
derivable directly from the transformation behavior hold:

(p) = (p)(p), (a) = (p)(a), (a) = (a)(p), (p) = (a)(a)

as well as further products derived from the above relationships. Here p and
a are symbols for a polar (normal) and an axial tensor, respectively.

The most important group of pseudo tensors is associated with magnetic
quantities. The vector of the magnetic field strength H and the vector of mag-
netic induction B are pseudo vectors.

One recognizes the axial character of H and B from Maxwell equations, the
fundamental equations of electrodynamics. The equations are

1
c

∂D
∂t

+ I = rot H,

1
c

∂B
∂t

= −rot E.
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where t is the time, D, I, and E are the vectors of electric displacement, cur-
rent density, and electric field, and c the velocity of light; the symbol rot (read
“rotation”) represents the differential operator ∇×, where ∇ signifies the dif-
ferentiation vector ∇ = ∂

∂xi
ei, which we became acquainted with in the con-

struction of gradients. In a Cartesian coordinate system, we have, for example,

rot E = ∇× E =

∣∣∣∣∣∣∣
e1 e2 e3
∂

∂x1
∂

∂x2
∂

∂x3
E1 E2 E3

∣∣∣∣∣∣∣
a pseudo vector (because of the vector product); on the other hand rot H is
not a pseudo vector, because the axiality of H and rot compensate each other
according to (a)(a) = (p).

Further examples of pseudo tensors are the optical activity in the represen-
tation of the gyration tensor {γij}, the scalar triple product of three vectors
and the Levi-Cività symbol

eijk = ei · (ej × ek) with i, j, k = 1, 2, 3.

3.8
Symmetry Properties of Tensors

This section deals with the question of how far mathematical or physical ar-
guments as well as symmetry properties of the crystals lead to relationships
among the tensor components. In particular, we have to examine how these
relationships reduce the number of independent tensor components.

3.8.1
Mathematical and Physical Arguments: Inherent Symmetry

Tensors often exhibit internal relationships among the index positions inde-
pendent of the medium and its symmetry. For example, consider the so-called
“symmetric” second-rank tensor whose components obey tij = tji (six inde-
pendent components). Each second-rank tensor can be decomposed into a
symmetric part t(ij) and an antisymmetric part t[ij], according to

tij =
tij + tji

2
+

tij − tji

2
= t(ij) + t[ji].

t[ij] has only three independent components.
Symmetric and antisymmetric tensors keep their symmetry character even

with a change in the reference system, as can be easily checked. We previously
pointed out the connection between the vector product and an antisymmet-
ric second-rank tensor. In higher rank tensors, symmetric and antisymmetric
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parts can be separated with respect to certain pairs of positions, as, for exam-
ple, with a third-rank tensor

dijk =
dijk + dikj

2
+

dijk − dikj

2
= di(jk) + di[jk].

A completely symmetric n-rank tensor exists when

tij...s = t(ij···s),

where (ij . . . s) is an arbitrary permutation of the arrangement ij . . . s. Such a
tensor is termed total symmetric. An example is the tensor of the products of
the coordinates of a vector x with the components

tij...s = t(ij...s) = xixj · · · xs = xjxi · · · xs = · · ·

and so on.
One can also define higher rank antisymmetric tensors in a similar manner.

If, for example,

tijk = t[ijk] =
1
3!

(tijk + tjki + tkij − tikj − tjik − tkji),

we are dealing with a fully antisymmetric tensor. As an example, we mention
the Levi-Cività symbol {eijk}. This property is also conserved in each new
reference system.

Apart from the permutation of indices within certain pairs of index posi-
tions, permutations of pairs or certain groups of pairs can also occur. As an
example, we mention the elasticity tensor {cijkl} with the property cijkl =
c(ij)(kl) = c(kl)(ij), i.e., the elasticity tensor is symmetric in the pairs of the 1
and 2 positions as well as the 3 and 4 positions, whereby the pairs are mutu-
ally permutable, too. An explanation will be given later.

Some quantities connected with the transport processes of charges, heat
quantities or masses, for example, current densities and related properties
such as magnetic fields, change their sense of direction when the time scale
is reversed (time reversal). Accordingly, we distinguish between two groups:

• time invariant properties with f (−t) = f (t), (t time) and

• non time invariant properties with f (−t) = − f (t).

The generalization of these properties is such that one assigns, e.g., to each
index position of a tensor a certain behavior with respect to time reversal. We
will return to this point in Section 5.3.
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3.8.2
Symmetry of the Medium

According to Neumann’s principle, the property tensors must at least possess
the symmetry group of the given crystal. This means that the tensor compo-
nents must be invariant with respect to all symmetry operations of the given
point symmetry group. In crystals, the only macroscopic symmetry opera-
tions that come into consideration are rotations Rn and rotation–inversions
Rn̄.

For these special symmetry operations, the following relations must be ful-
filled if they appear in the given point symmetry group:

t′ijk...s = uii∗ujj∗ · · · uss∗ ti∗ j∗ ...s∗ = tij...s.

If h symmetry operations exist and if the maximum number of independent
components is Z (= nm with an m-rank tensor in an n-dimensional space),
then one gets a total of hZ such linear equations.

If h is the order of the symmetry group, the system of equations also con-
tains the identity for each tensor component once, resulting in a total of
(h− 1)Z nontrivial equations. In principle, it suffices only to apply the gener-
ators of the symmetry group. However, it is often useful to apply further sym-
metry operations such as, e.g., powers R2

n, R3
n, and so on, in order to simplify

solving the system. If h ≥ 3, the equations exhibit a strong linear dependence,
often resulting in an enormous reduction in the number of independent com-
ponents.

As a first example we consider the operation of an inversion center 1̄, whose
transformation matrix is given by

R1̄ =

 1̄ 0 0
0 1̄ 0
0 0 1̄

 .

As a result we have

tij...s = (−1)mtij...s

because uii = −1 and uij = 0 for all i 6= j. This means that all odd-rank ten-
sors completely vanish, when an inversion center exists. In particular, there
exist no pyroelectric and piezoelectric effects. Furthermore, first-order electro-
optical effects and the first-order nonlinear optical effects, as well as the devi-
ation from first-order ohmic conductivity do not occur.

The situation is different with odd-rank pseudo tensors. They exist in the
presence of 1̄ and the even-rank pseudo tensors vanish.

The inversion center has no influence on even-rank tensors. We can there-
fore say that these tensors are centro-symmetric, independent of the symmetry
of the medium.
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As a second example we consider the operation of a twofold axis parallel
to e1 and a symmetry plane perpendicular to e1, represented as a rotation–
inversion 2̄ parallel to e1. The associated transformation matrices are

R2‖e1
=

 1 0 0
0 1̄ 0
0 0 1̄

 and R2̄‖e1
=

 1̄ 0 0
0 1 0
0 0 1

 .

The transformation of the tensor components gives

tij...s = (−1)ptij...s and tij...s = (−1)qtij...s, respectively,

where p stands for the number of the indices 2 and 3 and q for the number of
the indices 1.

For p and q even we get the identity, i.e., these tensor components are not
affected by the symmetry properties. The tensor components vanish for odd
p and q. With even-rank tensors, if p is even or odd we also have q even or
odd respectively. This means that even-rank tensors exhibit, in the case of a
twofold axis or a mirror plane, the combined symmetry of a twofold axis and
a symmetry plane perpendicular to this axis, in other words 2/m symmetry.
With odd-rank tensors, the situation is different. If p is even, then q must be
odd and vice versa because p + q = m = 2r + 1 (r integer). The components
which vanish in the case of a twofold axis, exist in the case of a symmetry
plane and vice versa. Thus the odd-rank tensors behave complementary with
respect to the operation of a twofold axis or a symmetry plane. We will now
consider, how large is the number of nonvanishing tensor components in both
cases.

We first inquire for the number Zm(p) of components of an m-rank tensor
possessing p times the index 1. For p = 1 we can choose the index 1 at m
different positions. The other positions, namely (m− 1), can take on the index
2 or 3, thus having two degrees of freedom. This gives a total of Z1 = m ·
2(m−1) tensor components with an index 1. We proceed in the same manner
for p > 1. There exists m possibilities for the choice of the first index 1, for the
second only (m − 1), for the third (m − 2), and so on. The number of these
possibilities must, however, be divided by the number of nondistinguishable
arrangements created, namely p!. The other index positions again have two
degrees of freedom, so that a total of

Zm(p) =
m(m− 1)(m− 2) · · · (m− p + 1)

p!
2m−p =

m!
p!(m− p)!

2m−p

components are concerned.
For the quotient we introduce the symbol (m

p) used in combinatorial analy-
sis. Thus the total number of tensor components possessing an odd number
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of indices 1 is

Z′m = ∑
p′

(
m
p′

)
2(m−p′),

where p′ runs through all odd numbers in the interval 1 ≤ p′ ≤ m.
Accordingly, one gets for the number of components where the index 1 ap-

pears an even number of times

Z′′m = ∑
p′′

(
m
p′′

)
2(m−p′′) with 0 ≤ p′′ ≤ m; p′′ even.

Since the index 1 occurs either an even or odd number of times in a component
we have

Z′m + Z′′m = Z = 3m.

From this equation one finds for m = 0, 1, 2, . . .:

Z′m = (3m − 1)/2 and hence also Z′′m = (3m + 1)/2.

If one investigates the operation of a twofold axis parallel to e1 or a symmetry
plane perpendicular to e1 on a tensor in an n-dimensional space, where the
transformation matrix is given by u11 = 1, uii = −1 for i 6= 1 and uij = 0 or
u11 = −1, uii = 1 and uij = 0 (i 6= j), respectively, one gets

Z′m = ∑
1≤p′≤m

(
m
p′

)
(n− 1)(m−p′) = (nm − (n− 2)m)/2

for the number with odd m and

Z′′m = (nm + (n− 2)m)/2

for the number with even m. Our equations above are thus special cases for
n = 3. The general validity of the equations for arbitrary m and n is easy to
show with the help of a proof by induction when one substitutes(

m + 1
p

)
=
(

m
p

)
+
(

m
p− 1

)
in the summation and checks the validity of the equation for m = 0 and 1 be-
forehand. We can now immediately specify the number of nonvanishing and
independent tensor components Z2 and Z2̄ when a twofold axis or symmetry
plane is present. We have

Z2 = Z2̄ = (nm + (n− 2)m)/2 for even m,
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however

Z2 = (nm − (n− 2)m)/2

and

Z2̄ = (nm + (n− 2)m)/2 for odd m.

Now we include a second twofold axis parallel to e2 or a second symmetry
plane perpendicular to e2. We then get for the point symmetry group 22 or
2̄2̄=mm the number of nonvanishing independent components of tensors in a
three-dimensional space

Z22 = Z2̄2̄ = (3m + 3)/4 for even,

however,

Z22 = (3m − 3)/4 and Z2̄2̄ = (3m + 1)/4 for odd m.

As proof we use the result for the number of components where one distinct
index occurs an odd number of times, Z′ = (Z− 1)/2. If two indices should
occur an odd number of times—here, the indices 1 and 2—then instead of Z
one writes Z′ and gets

(Z′)′ = (Z′ − 1)/2 = ((3m − 1)/2− 1)/2 = (3m − 3)/4.

This is identical to the number of nonvanishing and independent components
Z22 of an odd-rank tensor.

When two indices i and j are only allowed to occur an odd number of times,
the third index must also occur an odd number of times. This means that Z22
and Z2̄2̄ complement each other to Z = nm for odd m. For even m, all indices
must occur an even number of times. Thus one must eliminate from the col-
lection Z2 those with an odd number of index 2, namely Z′ = (Z2 − 1)/2.
This is accordingly Z22 = Z2̄2̄ = Z2 − Z′ = (3m + 3)/4. Table 3.2 presents
an overview of the number and type of independent tensor components for
tensors up to rank 4.

For symmetry operations of three-, four- or sixfold rotation axes or rotation–
inversion axes, the general relations are more complicated. We will treat these
cases later in concrete examples. In all symmetry groups containing 2, 2̄, 22,
or 2̄2̄ as subgroups, the symmetry reduction is naturally only to be applied to
tensor components existing in the respective subgroups. In Section 8.3 we will
become acquainted with a group theoretical method to calculate the number
and type of independent tensor components for arbitrary symmetry groups.
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Table 3.2 Independent and non-vanishing tensor components for the cases of a twofold axis
(2) parallel to e1, a mirror plane (2̄) perpendicular to e1, two twofold axes (22) parallel to e1 and
e2 and two mirror planes (2̄2̄ = mm) perpendicular to e1 and e2. The number of independent
tensor components is given in parentheses.

Conditions for existing tij...s:
a) 2 or 2̄ parallel ek, m even: index k even times.
b) 2 parallel ek, m odd: index k odd times.
c) 2̄ parallel ek, m odd: index k odd times.
d) 22 or 2̄2̄ parallel ek and el , m even: indices k and l even times.
e) 22 parallel ei, m odd: all indices even times.
f) 2̄2̄ parallel ek and el , m odd: indices k and l even times.

2 ‖ e1 2̄ ‖ e1 22 ‖ e1 and e2 2̄2̄ ‖ e1 and e2
Zm, m even (3m + 1)/2 (3m + 1)/2 (3m + 3)/4 (3m + 3)/4
Zm, m odd (3m − 1)/2 (3m + 1)/2 (3m − 3)/4 (3m + 1)/4
m = 0 t (1) t (1) t (1) t (1)
m = 1 t1 (1) t2, t3 (2) (0) t3 (1)
m = 2 t11, t22, t33, t11, t22, t33, t11, t22, t33 t11, t22, t33

t23, t32 t23, t32 (3) (3)
(5) (5)

m = 3 t123, t132, t231, t112, t121, t211, t123, t132, t231, t113, t131, t311,
t213, t312, t321, t113, t131, t311, t213, t312, t321, t223, t232, t322,
t122, t212, t221, t223, t232, t322 (6) t333
t133, t313, t331, t332, t323, t233, (7)
t111 t222, t333
(13) (14)

m = 4 t1111, t1122, t1133, t1111, t1122, t1133, t1111, t1122, t2211, t1111, t1122, t2211,
t2211, t3311, t1123, t2211, t3311, t1123, t1212, t1221, t2121, t1212, t1221, t2121,
t1132, t2311, t3211, t1132, t2311, t3211, t2112, t1133, t3311, t2112, t1133, t3311,
t1213, t1321, t1231, t1213, t1321, t1231, t1313, t1331, t3113, t1313, t1331, t3113,
t1321, t2131, t3121, t1321, t2131, t3121, t3131, t2222, t2233, t3131, t2222, t2233,
t2311, t3211, t1212, t2311, t3211, t1212, t3322, t2323, t2332, t3322, t2323, t2332,
t1221, t2112, t2121, t1221, t2112, t2121, t3223, t3232, t333 t3223, t3232, t333
t1313, t1331, t3113, t1313, t1331, t3113, (21) (21)
t3131, t2222, t2233, t3131, t2222, t2233,
t3322, t2223, t2232, t3322, t2223, t2232,
t2322, t3222, t2323, t2322, t3222, t2323,
t2332, t3223, t3232, t2332, t3223, t3232,
t3333, t3332, t3323, t3333, t3332, t3323,
t3233, t2333 t3233, t2333
(41) (41)

2̄ parallel e1 signifies a mirror plane perpendicular to e1.

3.9
Derived Tensors and Tensor Invariants

Through the operation of multiplication and tensor contraction with itself as
well as with nonspecific tensors, such as the tensors of the Kronecker symbol
(spherical tensor), the Levi-Cività tensor, the position vector, and their com-
binations, one obtains, according to the rules just discussed, new tensors that
are often more accessible to an interpretation than the given initial tensor.
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The group of tensor powers comes into play, with respect to the generating
quantities, in higher order effects, e.g., the tensor {EiEj} of the components of
the electric field strength. For an m-rank tensor, the quadric tensor is

t2
ij...s,i∗ j∗ ...s∗ = tij...sti∗ j∗ ...s∗

a 2m-rank tensor. In an analogous manner, one can form the zth power of a
tensor

tij...s,i∗ j∗ ...s∗ ,i∗∗ j∗∗ ...s∗∗ ... = tij...sti∗ j∗ ...s∗ ti∗∗ j∗∗ ...s∗∗ ....

In self-contraction, one deals with the generation of tensors of the type

tij...ri∗ j∗ ...r∗ = tij...rsti∗ j∗ ...r∗s contraction over the mth position (index s).

Multiple contractions can also occur, whereby the indices, over which are to
be summed, can take on different positions. Of importance is the complete
contraction over all positions

Q = tij...stij...s,

a scalar invariant, independent of the reference system. In the case of a vec-
tor x, Q corresponds to the square of the magnitude (length) of the vector
Q = xixi = x2

1 + x2
2 + x2

3. Accordingly, Q can in general be designated as
the square of the magnitude of a tensor. With respect to the contraction with
other tensors, special emphasis is paid to the total contraction with tensors of
the corresponding products of the components of the position vector:

F = tij...sxixj · · · xs.

This expression represents for a fixed F a surface of mth order, the so-called
tensor surface. If one inserts, instead of tij...s, the components of the associated
total symmetric tensor, one gets the same tensor surface. This means that the
tensor surface reproduces the complete tensor properties only in the case of a
total symmetric tensor. The tensor surface allows one to represent one of the
most important tensor properties, the so-called longitudinal effect, in a quite
instructive manner as we shall see in the next section.

Further interesting contractions can be generated with the help of the ten-
sors of the Kronecker symbol δij = 1 for i = j and = 0 for i 6= j or the
Levi-Cività symbol eijk = ei · (ej × ek). As an example, we mention the scalar
invariants for even-rank tensors

I = tijkl...rsδijδkl · · · δrs.

The operation tij...sδim = tmj...s exchanges an index. This can be carried out
any number of times. Important contraction types for fourth-rank tensors are

Ajl = tijklδik, Bkl = tijklδij, Cik = tijklδjl , and Dij = tijklδkl ;
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here we are dealing with second-rank tensor invariants arising from fourth-
rank tensors.

As an example of the application of the Levi-Cività symbol, we consider
the vector q (pseudo vector), assigned to a second-rank tensor, possessing the
components qk = tijeijk as well as the vector product of the vectors x and y,
namely z = x× y, that can also be represented by zk = xiyieijk in a Cartesian
reference system. The triple vector product of x, y, and z gives x · (y× z) =
xiyizkeijk, an invariant representation in any Cartesian reference system.

Furthermore, we should mention invariants derived from fourth-rank ten-
sors

Smn = tijkleijmekln and Tmn = tijkleikmejln

as well as similar operations, which in part, are of practical importance.
Other examples will be treated in our discussion of concrete properties.

Here we want to emphasize the special importance of scalar invariants be-
cause they indicate a directionally independent value, which can normally be
interpreted as a spatial mean value of a certain tensor property.

At this point we must forgo a systematic discussion of invariants, although
just now a number of very fascinating problems emerge, e.g., the question
of the number of independent variables of a tensor, the decomposition and
construction of a tensor with a basis of invariants. Naturally, we can safely
answer the first question by saying that the number of independent invariants
cannot be larger than the number of independent tensor components. Useful
aids in the discussion of such relationships are available from group theory,
which we shall return to in a later section.

3.10
Longitudinal and Transverse Effects

If two vectors A and B are connected via a second-rank tensor according to
Bi = tij Aj, then both vectors run parallel only in distinct directions. For arbi-
trary directions of A we can analyze the decomposition of B into components
parallel and perpendicular to A. We get

B‖A = Bi Ai A/A2 = tij Ai Aj A/A2.

We specify the unit vector in the direction of A by e′1 = A/A = u1iei. We then
get

B‖A = u1iu1jtij A.

We call the quantity u1iu1jtij = t′11 the longitudinal effect of the given tensor
property. It describes, e.g., in the case of electrical conductivity, the conductiv-
ity in the direction of the electric field strength. We now emphasize that this
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longitudinal effect is normally easily amenable to measurements. By transfor-
mation, it can be immediately calculated for any direction. Correspondingly,
there exists a transverse effect for a component of B perpendicular to A in the
direction e′2, which can be arbitrarily chosen to be perpendicular to e′1. We get
the quantity t′21, in which the vector A as the generating quantity parallel to e′1
and the part B parallel to e′2 are connected to each other. We call t′21 = u2iu1jtij
the transverse effect in the direction e′2 by excitation in the direction e′1.

The general definition of longitudinal and transverse effects looks like this:
We consider the longitudinal component A′

111...1 of a generating quantity in
the direction e′1 and observe the associated longitudinal component of the
generated quantity B′111...1 or the component B′222...2 in the direction e′1 or e′2,
respectively.

In the operation B′111...1 = t′111...1 A′
111...1, t′111...1 = u1iu1j · · · u1stij...s is

the longitudinal component for the direction e′1 = u1iei, and in B′222...2 =
t′222...2111...1 A′

111...1, t′222...2111...1 is the transverse component for the direction
e′2 = u2iei by excitation in the direction e′1 = u1iei. Although there exists only
one longitudinal effect for a direction e′1, one can calculate transverse effects
in directions perpendicular to e′1.

An interesting relation exists between the tensor surface and the longitudi-
nal effect. We consider a direction along the position vector x = xiei = |x|e′1.
Here, e′1 = u1iei with u1i = xi|x|−1. Thus for the longitudinal component of
an m-rank tensor we get

t′111...1 = u1iu1j . . . u1stij...s = xixj . . . xstij...s|x|−m.

We substitute the numerator of the quotient by F = xixj · · · xstij...s, the scalar
invariant of the tensor surface, and get t′111...1 = F|x|−m. This means that
the longitudinal component in the direction x is equal to F divided by the
mth power of the distance of the end point of x on the tensor surface from
the origin of the reference system. Thus the tensor surface gains an intuitive
physical meaning.



This Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left Blank



Physical Properties of Crystals. Siegfried Haussühl.
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4
Special Tensors

In this chapter we will discuss the more important tensors and tensor proper-
ties. We begin with zero-rank tensors and work our way through tensors of
higher rank. The sequence is essentially chosen according to physical aspects.

4.1
Zero-Rank Tensors

We investigate two types of zero-rank tensors, namely, the intrinsic isotropic
properties, such as, e.g., the specific heat at constant hydrostatic pressure, the
specific weight and the chemical composition, on the one hand and the spatial
mean values of anisotropic properties as well as all other scalar invariants on
the other hand. We also look at all differential quotients of these properties
with respect to scalar quantities, such as hydrostatic pressure, temperature,
and electric potential.

In order to achieve a certain degree of completeness in the discussion of
the more important experimental methods, let us consider the comparatively
simple measurement methods for the specific weight 1 and the specific heat.

One obtains a precision value of the specific weight with a sufficiently accu-
rate measurement of the crystallographic metric given by

ρ =
Z ·molar weight

V · L
,

where Z is the number of stoichiometric units in the unit cell, V the volume
of the elementary cell and L Avogadro’s number 6.0222×1023 molecules per
mole. V can normally be determined to a fraction of one-tenth of a percent
from high-precision measurements of the lattice constants and thus also the
specific weight. Very small crystals with dimensions of about 0.1 mm are
suitable for these measurements.

1) In practice, the difference between the specific weight and density
does not play a role when the weights used for measurement are
calibrated in mass units (g).
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Today, such precision measurements are possible within about an hour with
the aid of an automatic diffractometer as long as the crystals are homogenous
and their chemical composition is reliably known. If problems occur, or if a
higher precision is required, one must employ the methods of direct density
determination. Here we will discuss the buoyancy method that, especially
with large crystals with a weight of at least 10 g, allows the highest accuracy
with a relative error of less than 10−5. If possible, the specimen should be
large. It should not possess inclusions and its surface should be smooth and
free of impurities. The specimen is first weighed in air and then in a homoge-
nous, practically nonsolvent liquid. It is important to ensure that the surface
is completely wetted (no gas bubbles). Let both weights be GA and GL. The
crystal is again weighed in air to check that no loss has occurred due to dis-
solution. The actual weight G is determined from GA after the addition of the
buoyancy in air, or the buoyancy in the liquid, respectively:

G = GA + ρAVB = GL + ρLVB.

Thus

ρ =
G
VB

=
GA

GA − GL
(ρL − ρA) + ρA.

VB is the volume of the body, ρL and ρA are the specific weights of the liq-
uid and the air, respectively (ρA at 293 K and normal pressure is about 1.21 g
per liter). In practice, it has been found expedient to use a calibrated stan-
dard liquid that remains unchanged over many years, e.g., xylene or petrol.
Crystal samples of known density, such as quartz or LiF, are suitable for the
measurement of ρL. For many materials water does not come into consider-
ation, despite its well-known density, because of its good solvent power and
the necessity to degas it by boiling before each measurement. Therefore, it is
only suitable in special cases. If a pure liquid, with sufficiently low solubility,
cannot be found, one can, as a last resort, use a saturated solution of the given
crystal.

Measurements with the suspension method, where a liquid composed of
two components is mixed such that a specimen just floats in the mixture, as
well as pycnometer measurements for powder specimens usually yield inac-
curate values, so that these methods are not normally taken into consideration.

Excellent commercial equipment is available for the measurement of the spe-
cific heat under constant pressure. For precision measurements, as required,
e.g., in the determination of the transition enthalpy, an exact and highly sen-
sitive temperature measurement is decisive. Thermistors (semiconductors)
where the resistance exhibits an extremely high temperature dependence are
well proven for this task. These elements must be calibrated by the experi-
mentalist. This is done appropriately with the help of calibrated quartz ther-
mometers, where the temperature dependence of the resonant frequencies of
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α-quartz plates is used for the temperature measurement. Temperature differ-
ences of up to 10−4 K can be measured, fulfilling essentially all requirements
for a highly precise measurement of the specific heat, provided the crystals are
of sufficient size and quality, with weights of at least 0.05 g.

Of the few pseudo scalars playing a role in practical work, we mention the
optical activity of isotropic media which will be discussed in more detail in
Section 4.3.6.7.

4.2
First-Rank Tensors

4.2.1
Symmetry Reduction

As we have already seen, odd-rank polar tensors vanish in centro-symmetric
point symmetry groups. Also in all acentric point symmetry groups, contain-
ing the subgroup 22 (22, 42, 4̄2, 62, 23, 43, 4̄3), the existence of a first-rank
polar tensor is impossible, as is evident from Table 3.2. We also know the ef-
fect of 2, 2̄, and 2̄2̄ from Table 3.2. Consequently, we have only to check the
three- and four-fold rotation axes and rotation–inversion axes and their com-
binations with 2, 2̄ and 2̄2̄. We place these rotation axes parallel to e3. With

R±3‖e3
=

 −1/2 ±
√

3/2 0
∓
√

3/2 −1/2 0
0 0 1



one finds t′1 = t1 = −1/2 t1 ±
√

3/2 t2, thus t1 = t2 = 0. + applies to a
clockwise (right) rotation, and − to a counter-clockwise (left) rotation. t′3 = t3
remains as the only independent component. In PSG 32 and 3/m≡ 6̄, the two-
fold axis and the symmetry plane, respectively, also destroy the existence of
t3. All ti vanish for 3̄ (Laue-class!).

With

R4 =

 0 1 0
1̄ 0 0
0 0 1


one gets t′1 = t1 = t2, t′2 = t2 = −t1, and thus t1 = t2 = 0, which is already
a consequence of the two-fold axis parallel to 4. On the other hand t′3 = t3
exists.
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In 4̄ with

R4̄ =

 0 1̄ 0
1 0 0
0 0 1̄


we have t3 = 0.

With first-rank pseudo tensors, the inversion center provides no reduction.
2̄ parallel to ei (symmetry plane perpendicular to ei) only allows the existence
of ti. The same component is also preserved by a rotation about ei. Thus
first-rank pseudo tensors have the same form in all symmetry groups of type
n/m.

Finally, let us discuss the effect of cylindrical symmetry. Here, the rotation
through an arbitrary angle ϕ about a fixed axis, running, e.g., parallel to e3,
gives rise to a symmetry-equivalent situation. The transformation matrix is

R∞ =

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

 .

Thus t′1 = t1 = cos ϕ t1 + sin ϕ t2 for each value of ϕ, in other words t1 = t2 =
0. However, the component t3 does not vanish.

The result of these considerations is noted in Table 4.1. It should be stressed
that a polar vector, except in triclinic and monoclinic system, always takes on
a distinct orientation, namely that of the given principal axis. The ten PSGs
with nonvanishing first-rank polar tensors are called pyroelectric groups (1, 2,
m, mm, 3, 3m, 4, 4m, 6, 6m).

4.2.2
Pyroelectric and Related Effects

As a concrete example we discuss the pyroelectric effect. If one heats certain
crystals, e.g., tourmaline, in which the effect was first observed, opposite elec-
tric charges are generated at certain opposed face elements ∆F. Within a cer-
tain temperature interval, one observes, to a first approximation, a linear rela-
tionship between the change in charge density and the temperature difference.
We describe the electric polarization accompanying a change in charge ∆Q by
the vector

∆P = K
∆Q
∆F

f ;

f is the unit vector of the face normal on ∆F, K is the constant of the given
system of measurement (in the MKS system: K = 1, in the CGS system: K =
4π). We compare this quantity to the electric moment M = KQx, where x
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Table 4.1 Non-vanishing components of first-rank tensors in the 32 point symmetry groups
(t = tiei).

PSG Polar Pseudo PSG Polar Pseudo
tensor tensor tensor tensor

1 t1, t2, t3 t1, t2, t3 6 ‖ e3 t3 t3
1̄ − t1, t2, t3 62 − −
2 ‖ e3 or e2 t3 or t2 t3 or t2 6m t3 −
m ≡ 2̄ ‖ e3 or e2 t1, t2 or t1, t3 t3 or t2 6/m − t3
2/m ‖ e3 or e2 − t3 or t2 6̄ − t3
22 − − 6̄m − −
2̄2̄ ≡ mm2, 2 ‖ e3 t3 − 6/mm − −
2/mm − − 23 − −
3 ‖ e3 t3 t3 m3 − −
32 − − 43 − −
3m t3 − 4̄3m − −
3̄ − t3 4/m3 − −
3̄m − − ∞ ‖ e3 t3 t3
4 ‖ e3 t3 t3 ∞2 − −
42 − − ∞m t3 −
4m t3 − ∞/m − t3
4/m − t3 ∞̄ − t3
4̄ − t3 ∞̄m − −
4̄m − − ∞/mm − −
4/mm − −

specifies the distance vector of the center of charge on the opposite faces. A
rectangular parallelepiped probe with edges xi parallel to the Cartesian basic
vectors ei then has an electric moment with the components

∆Mi = K∆Qixi,

where the charges on the opposed faces are +∆Qi/2 and−∆Qi/2. The electric
moment per volume element is then

∆Mi
∆V

= K
∆Qixi
xixjxk

= K
∆Qi
∆Fi

= ∆Pi with ∆Fi = xjxk (i 6= j, k).

A change in the electric moment per volume element caused by a change in
temperature should be recognized as a change in the electric polarization ∆P.

Thus we describe the pyroelectric properties of a crystal by the relation

∆Pi = πi∆T + ρi(∆T)2 + σi(∆T)3 + · · · ,

where the tensors {πi}, {ρi}, {σi} · · · give the pyroelectric effect to first-,
second-, third- and further-order approximations.

This definition also provides a simple measurement procedure, an aspect,
which should be carefully noted with the introduction of any new property.
For the practical realization of the measurement of the pyroelectric effect, it is
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appropriate to use a plane-parallel thin plate with a rather large diameter-to-
thickness ratio. The plate is to be metallized on both sides, where the bound-
ary parts remain free for the purpose of insulation of both electrodes. One
now measures the change in charge density after a change in temperature,
e.g., with the aid of a commercial charge amplifier or via the electric voltage
produced at the electrodes. Note, however, that the dielectric constant of the
plate in the direction of the normals must be considered (see Section 4.3.3).

Hence, one directly obtains the longitudinal component of the pyroelectric
effect in the direction e′i of the plate normals. It is

π′1 = u1iπi.

The reference face F = πixi, a plane perpendicular to the vector π = πiei,
represents the longitudinal effect through

π′1 = F/|x|;

on the other hand F is equal to the scalar product of π and x, thus π′i =
|π| cos ζ, where ζ is the angle between the normals on the reference face (par-
allel to π) and x. From this, one recognizes the decrease of the pyroelectric ef-
fect with increasing deviation from the direction of the maximum effect. Any
other form of the test object, e.g., a partially metallized sphere, would result in
a complicated relationship between measured quantity and tensor property.

The determination of the pyroelectric effect is possible in all PSGs, except 1
and m, by means of a single measurement along the respective principal axis
in which π also lies. In PSG 1 we carry out the measurement of the longitudi-
nal effect along three noncoplanar directions e′j = ujiei and get the following
system of equations for the determination of the three components πi:

π′1 = u1iπi,

π′2 = u2iπi,

π′3 = u3iπi

(here, the directions e′i need not be chosen to be orthogonal). The solution is:

π =
1
D

∣∣∣∣∣∣
π′1 u12 u13
π′2 u22 u23
π′3 u32 u33

∣∣∣∣∣∣ e1 −
1
D

∣∣∣∣∣∣
π′1 u11 u13
π′2 u21 u23
π′3 u31 u33

∣∣∣∣∣∣ e2 +
1
D

∣∣∣∣∣∣
π′1 u11 u12
π′2 u21 u22
π′3 u31 u32

∣∣∣∣∣∣ e3.

D is the determinant of the matrix (uij). In PSG m, two measurements in
directions within the symmetry plane will be sufficient.

The pyroelectric effect consists of two parts: the primary or true pyroelectric
effect resulting from a change in the arrangement of dipole moments and the
secondary effect, resulting from a change in charge density due to thermal
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expansion (see Section 4.3.11). All crystals with large pyroelectric effects, such
as triglycine sulfate (NH2CH2COOH)3H2SO4, and its analogs, where H2SO4
is substituted by H2SeO4 or H2BeF4, and in addition LiNbO3 and Pb5Ge3O11
also show ferroelectric properties (see Section 4.3.4). Pyroelectric constants of
some important crystal species are listed in Table 12.5 (annex).

In the last few years pyroelectric crystals have found special interest in the
construction of highly sensitive radiation detectors in all spectral regions, es-
pecially for high energy radiation. With the aid of very small crystal plates it
is possible to count individual photons (even in the visible spectral range) and
from the magnitude of the pyroelectric effect to measure the energy of the pho-
tons (energy discrimination). A further application is possible in connection
with the conversion of thermal energy into electrical energy when the charges
appearing due to a temperature change are collected and stored. For exam-
ple, the natural day–night temperature variations, which can be artificially
modulated by suitable control processes, offer a simple and cheap inducing
source. The efficiency, i.e., that fraction of the required heat input per heat-
ing cycle, that can be converted into electrical energy, is at present still under
1%. If one could succeed in finding crystals with substantially larger effects,
a broad commercial utilization of the pyroelectric effect to generate electrical
energy would be conceivable, provided production and processing costs are
sufficiently low.

Further examples of first-rank tensors are the piezoelectric effect under hy-
drostatic pressure ∆p as well as both analogous magnetic effects:

Bi = βi∆T pyromagnetic effect and

Bi = γi∆p piezomagnetic effect.

{βi} and {γi} are pseudo tensors, of which at present no reliable results are
known.

4.3
Second-Rank Tensors

4.3.1
Symmetry Reduction

First we want to gain a general view of the form of the polar tensors and
the pseudo tensors in all point symmetry groups. We choose the Cartesian
reference system according to the convention introduced in Section 2.2. With
the polar tensors of even rank it is sufficient to discuss only the 11 Laue groups
due to their centrosymmetric behavior. Pseudo tensors of even rank vanish in
the Laue groups. In the enantiomorphic PSGs they take on the same form as
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Table 4.2 Non-vanishing components of second-rank tensors in standard setting.

PSG Polar tensor Pseudo tensor
1 tij, i, j = 1, 2, 3 tij, i, j = 1, 2, 3
1̄ tij, i, j = 1, 2, 3 −
2 ‖ e2 t11, t22, t33, t13, t31 t11, t22, t33, t13, t31
2̄ ‖ e2 t11, t22, t33, t13, t31 t12, t21, t23, t32
2/m ‖ e2 t11, t22, t33, t13, t31 −
22 t11, t22, t33 t11, t22, t33
mm2 t11, t22, t33 t12, t21
2/mm t11, t22, t33 −
3 ‖ e3 t11 = t22, t33, t12 = −t21 t11 = t22, t33, t12 = −t21
32 t11 = t22, t33 t11 = t22, t33
3m t11 = t22, t33 t12 = −t21
3̄ t11 = t22, t33, t12 = −t21 −
3̄m t11 = t22, t33 −
4 ‖ e3 t11 = t22, t33, t12 = −t21 t11 = t22, t33, t12 = −t21
42 t11 = t22, t33 t11 = t22, t33
4m t11 = t22, t33 t12 = −t21
4/m t11 = t22, t33, t12 = −t21 −
4̄ t11 = t22, t33, t12 = −t21 t11 = −t22, t12 = t21
4̄m, 2 ‖ e1 t11 = t22, t33 t11 = −t22
4/mm t11 = t22, t33 −
6 ‖ e3, ∞ ‖ e3 t11 = t22, t33, t12 = −t21 t11 = t22, t33, t12 = −t21
62, ∞2 t11 = t22, t33 t11 = t22, t33
6m, ∞m t11 = t22, t33 t12 = −t21
6/m, ∞/m t11 = t22, t33, t12 = −t21 −
6̄, ∞ t11 = t22, t33, t12 = −t21 −
6̄m, ∞m t11 = t22, t33 −
6/mm, ∞/mm t11 = t22, t33 −
23 t11 = t22 = t33 t11 = t22 = t33
m3 t11 = t22 = t33 −
43 t11 = t22 = t33 t11 = t22 = t33
4̄3 t11 = t22 = t33 −
4/m3 t11 = t22 = t33 −
isotropic without 1̄ t11 = t22 = t33 t11 = t22 = t33
isotropic with 1̄ t11 = t22 = t33 −

the polar tensors. Thus we have to study only the 11 enantiomorph PSG’s (1,
2, 22, 3, 32, 4, 42, 6, 62, 23, 43) for all even-rank tensors and, in addition, the
remaining ten non-Laue groups (m, 2m = mm, 3m, 4m, 4̄, 4̄m, 6m, 6̄, 6̄m, 4̄3)
for even-rank pseudo tensors.

We now show the symmetry reduction for the most important PSG’s. The
reader can handle all other cases with ease. A complete survey of all second-
rank tensors is given in Table 4.2. For better clarity, it is often useful to write
the components of a second-rank tensor in matrix notation, thus

{tij} =

t11 t12 t13
t21 t22 t23
t31 t32 t33

 .
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Monoclinic System (PSG 2, m = 2̄, 2/m)
The effect of two-fold rotation axes and rotation–inversion axes parallel to ei
for polar tensors of even rank was previously discussed in Section 3.8.2. The
result is: the indices i may only occur with even numbers.

We choose the standard setting e2 ‖ a2 parallel to the two-fold rotation axis
or rotation–inversion axis, respectively (normal on the mirror plane). Thus for
polar tensors there exists only the following five components containing the
index 2 even numbered: t11, t22, t33, t13 and t31. With a symmetric tensor we
have t13 = t31 (four independent components). For a pseudo-tensor {tij} in
PSG 2 there exists no difference to a polar tensor. This is not the case in PSG
m. Using the transformation condition for pseudo tensors we have

t′ii = tii = −tii, t′12 = t12, t′21 = t21, t′13 = t13 = −t13,

t′31 = t31 = −t31 as well as t′23 = t23 and t′32 = t32.

Thus all tensor components vanish in PSG m except t12, t21, t23, and t32. Polar
tensors and pseudo tensors show complementary forms in PSG m.

Orthorhombic System (PSG 22, mm, 2/mm)
In the standard setting ei ‖ ai only such components exist in PSG 22 where
the indices 1 and 2 (and hence 3) occur an even number of times, namely t11,
t22, and t33.

In PSG mm one gets for the pseudo tensors in the standard setting (e1 and
e2 perpendicular to the symmetry planes) only the two nonvanishing compo-
nents t12 and t21.

Trigonal System (PSG 3, 32, 3m, 3̄, 3̄m)
The three-fold rotation axis or rotation–inversion axis may run parallel to e3.
The respective symmetry operations are

R±3‖e3
=

 −1/2 ±
√

3/2 0
∓
√

3/2 −1/2 0
0 0 1


and

R±3̄‖e3
=

 1/2 ∓
√

3/2 0
±
√

3/2 1/2 0
0 0 1̄

 .

The signs + and − designate a clockwise or anti-clockwise rotation, respec-
tively.
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The conditions for polar tensors in the case of a three-fold rotation axis are

t′11 = t11 = 1/4 t11 + 3/4 t22 ∓
√

3/4(t12 + t21)

t′22 = t22 = 3/4 t11 + 1/4 t22 ±
√

3/4(t12 + t21)

t′23 = t23 = −1/2 t23 ∓
√

3/2 t13

t′13 = t13 = −1/2 t13 ±
√

3/2 t23

(and analogous equations for t′32 and t′31),

t′33 = t33.

The result must be independent of the direction of rotation. Thus the terms
with alternating signs vanish. For the PSG’s 3 and 3̄ it follows that (t12 + t21) =
t23 = t13 = t32 = t31 = 0. Consequently, the following tensor components
exist: t11 = t22, t33, and t12 = −t21.

The PSG 32 with the two-fold axis parallel to e1 (standard setting) also re-
quires t12 = t21 = 0 (index 1 must occur even numbered!). If e1 is not placed
along the two-fold axis, but anywhere perpendicular to the three-fold axis,
one obtains the same result.

Pseudo tensors of PSG 3m must simultaneously satisfy the conditions for
PSG 3 and PSG m. Hence only the components t12 and t21 remain with t12 =
−t21.

Tetragonal System (PSG 4, 4/m, 42, 4m, 4̄, 4̄m, 4/mm)
The symmetry operations of the four-fold rotation axis or rotation–inversion
axis parallel to e3 are

R±4‖e3
=

 0 ±1 0
∓1 0 0
0 0 1

 and R±4̄‖e3
=

 0 ∓1 0
±1 0 0
0 0 1̄

 .

Since the operations 4 and 4̄ also contain a two-fold axis parallel to e3, it suf-
fices to consider only the tensor components containing the index 3 even num-
bered, namely t11, t22, t33, t12, and t21. For polar tensors of PSG 4 the transfor-
mation gives

t′11 = t11 = t22, t′22 = t22 = t11, t′33 = t33 and t′12 = t12 = −t21.

Accordingly, only three independent components exist: t11 = t22, t33, and
t12 = −t21. 2 or 2̄≡m parallel to e1 causes t12 to vanish.

Pseudo tensors of PSG 4m fulfill the conditions for PSG 4 as well as for PSG
mm. Hence only t12 = −t21 remain as nonvanishing components. Pseudo
tensors of PSG 4̄ are subject to the conditions t11 = −t22, t33 = 0, t12 = t21,
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t23 = t13 = t32 = t31 = 0. The PSG 4̄m (≡ 4̄2m) contains the subgroup 22,
thus of those components existing in PSG 4̄ only t11 = −t22 6= 0 remain. If we
chose the base vectors e′1 and e′2 perpendicular to the symmetry planes, only
the components t′12 and t′21 with t′12 = t′21 would exist.

Hexagonal System (PSG 6, 6/m, 62, 6m, 6̄, 6̄m, 6/mm)
Since a six-fold axis is equivalent to two- and three-fold axes with the same
orientation, the symmetry reduction can be considerably simplified. In PSG
6, the conditions for the subgroups 2 and 3 in the case of polar tensors result
in the following independent components: t11 = t22, t33, t12 = −t21. In PSG
62, t12 vanishes with e1 parallel to the two-fold axis (index 1 odd-numbered
occurence).

For pseudo tensors of PSG 6m, the symmetry plane perpendicular to e1
demands: tii = 0, t12 = −t21. Pseudo tensors in PSG 6̄≡ 3/m and 6̄m do not
exist, because the subgroup m (normals of the symmetry plane parallel to e3)
only allows components to exist containing the index 3 once. The three-fold
axis does not allow such components, as we have seen.

Cubic System (PSG 23, m3, 4̄3, 43, m3m)
The three-fold axis common to all cubic PSG’s is represented by

R3‖[111] =

0 1 0
0 0 1
1 0 0

 .

Since all cubic PSG’s contain the subgroup 22, only the components tii can ap-
pear. These are transformed into each other by the three-fold axis so that only
one independent component t11 = t22 = t33 is possible. With polar tensors,
addition of further symmetry operations does not result in new conditions.
The pseudo tensors vanish totally in PSG 4̄3, because the operation 4̄ with the
condition t11 = −t22 contradicts the relation t11 = t22 = t33.

Furthermore, all cubic crystals behave like isotropic substances with respect
to second-rank tensor properties. In particular, a pure longitudinal effect ex-
ists in all directions.

The case of the cylindrical symmetry groups is homologous to the situation
in the corresponding PSG’s of the hexagonal system (see Exercise 4).

4.3.2
Tensor Quadric, Poinsots Construction, Longitudinal Effects, Principal Axes’
Transformation

The quadric tijxixj = F is fixed by the six independent quantities t11, t22,
t33, t12 + t21, t13 + t31, t23 + t32. They completely represent the symmetrical
part of a second-rank tensor. As we shall see, almost all important second-
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Figure 4.1 Poinsot construction. The tangent plane to the ellipsoid
stands perpendicular to the plane of projection.

rank tensors are symmetric. The representation quadric provides an instruc-
tive geometric visualization of the tensor in a way which cannot be achieved
with higher rank tensors. In the following, we assume a certain knowledge
concerning the form of these second-order surfaces (ellipsoids, hyperboloids,
paraboloids, spheres, cylinders, and their degeneracies). Let the tensor {tij}
operate on the vectors A and B according to Ai = tijBj. With symmetric ten-
sors, one can then recognize the position of the vector A with known B from
the quadric with the help of the Poinsot construction. Let the vector B, start-
ing at the origin of the coordinate system, intercept the quadric at point P
(Fig. 4.1). We imagine the tangent plane drawn at this point on the quadric.
The normal on this tangent plane then runs parallel to the wanted vector A.
The proof for this relationship is as follows: We first consider the differential
∆F = (dF/dxi) ∆xi, the first-order approximation of the Taylor expansion of
F with respect to the coordinates xi. We can write ∆F as a scalar product:

∆F = grad F · ∆x = (grad F)i∆xi,

where grad F (read “Gradient F”) denotes the vector (dF/dxi) ei. If the end
point of the vector x + ∆x also lies in the quadric, then ∆x is parallel to the
tangential plane, thus ∆F = 0 and hence the scalar product grad F · ∆x = 0.
Therefore grad F is perpendicular to the quadric and thus runs parallel to the
normal on the tangent plane. From F = tijxixj one gets dF/dxi = 2tijxj.
Because x = cB (c is a constant) we have (grad F)i = 2ctijBj = 2cAi, thus
grad F = 2cA.

A second important property of the quadric is to read for every direction the
corresponding longitudinal effect. As shown in Section 3.10, for any arbitrary
direction e′i, the corresponding longitudinal effect is t′ii = F|x|−2. The vector x
runs from the origin, in the direction e′i, to point P on the quadric.
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The complete measurement of symmetric second-rank tensors or the sym-
metric part of second-rank tensors is possible with the help of longitudinal
effects. These possess the advantage that they can be easily measured in prac-
tice with sufficient accuracy. Let us demonstrate the procedure on the general
example of a symmetric tensor in the triclinic system. The tensor is repre-
sented in the crystal-physical reference system by the basic vectors ei. The
measurement of the longitudinal effect along ei leads directly to the compo-
nents tii (t11, t22, t33). Further measurements of longitudinal effects along the
bisectors of any two basic vectors, that is, in the direction e′i± =

√
2/2(ej ± ek)

with i 6= j, k and i, j, k cyclic, deliver the longitudinal effects

t′ii± = 1
2 (tjj + tkk)± tjk

(application of the transformation formula). The unknown components tjk are
found from

t′ii+ − t′ii− = 2tjk.

The sums t′ii+ + t′ii− = tjj + tkk allow a control of the first series of measure-
ments. Hence, all six independent components can be determined. Since the
three principal components t11, t22, and t33 are already known from the mea-
surements along ei, only a few measurements are needed in the direction of
the bisectors to obtain tjk. In another version, only the longitudinal effects
along the six different bisectors are used. Of course, one can also choose lon-
gitudinal effects in other directions. The evaluation is then less transparent.
We will come to concrete examples later. The measurement of the asymmetric
part of a second-rank tensor is not possible without the inclusion of transverse
effects.

A transformation of the reference system can bring a second-order surface
into a special position in which all geometric parameters are directly evident.
This is the principal axes’ transformation. In such a principal axes’ reference
system, the longitudinal effects along the basic vectors of the reference system
take on extreme values. An equivalent statement is that in the direction of the
basic vectors pure longitudinal effects appear, i.e., no transverse effects occur
when the inducing quantities act along these basic vectors. The condition for
a pure longitudinal effect in the tensor relation Ai = tijBj is Ai = λBi, where λ

is the corresponding longitudinal effect (eigenvalue). Hence one obtains three
equations Ai = λBi = tijBj for i = 1, 2, 3 or (tij − λδij)Bj = 0, where δij is the
Kronecker symbol.

For the calculation of the extreme values of the longitudinal effect, which are
connected with the square of the radius vector x of the quadric F = tijxixj, we
construct, according to the rules of variational calculus, an auxiliary function
H = F − λx2, which also takes on an extreme value, as long as F remains
constant. That is, the end point of x lies on the quadric and in addition, x2
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itself takes on an extreme value. λ is still an open factor, not dependent on x,
a so-called Lagrangian multiplier. The condition for an extreme value is then
∂H/∂xi = 0, thus

∂H
∂xi

=
∂F
∂xi

− λ2xi = 2tijxj − 2λxi = 0 for i = 1, 2, 3,

where we here assume {tij} to be a symmetric tensor. We write this system
of three linear equations in the form (tij − λδij)xj = 0. These conditions are
identical with those of a pure longitudinal effect. The system with x 6= 0 only
has a solution when the associated determinant vanishes, that is∣∣∣∣∣∣

t11 − λ t12 t13
t12 t22 − λ t23
t13 t23 t33 − λ

∣∣∣∣∣∣ = 0.

We obtain a third-order equation in λ, the so-called characteristic equation.
It is an invariant, as one recognizes from the transformation behavior of de-
terminants. In particular, the coefficients of the characteristic equation are
also scalar invariants of the tensor, i.e., quantities that assume the same value
in any arbitrary Cartesian reference system. The characteristic equation pos-
sesses three solutions specified by λ1, λ2, and λ3. Written out, the characteris-
tic equation is

− λ3 + λ2(t11 + t22 + t33)− λ(−t2
23 + t22t33 − t2

13 + t11t33 − t2
12 + t11t22)

+ |tij| = 0,

where |tij| stands for the determinant of the matrix of the tensor components.
From the alternative writing of the characteristic equation in the form (λ1 −
λ)(λ2 − λ)(λ3 − λ) = 0 we see that the three invariants have the following
form:

I1 = t11 + t22 + t33 = λ1 + λ2 + λ3,

I2 = t11t22 + t22t33 + t11t33 − t2
12 − t2

13 − t2
23 = λ1λ2 + λ2λ3 + λ1λ3,

I3 = |tij| = λ1λ2λ3.

The solution of the characteristic equation can be quickly found with the aid
of an iteration method using the prescription A(n+1)

i = tij A
(n)
j which pro-

duces the new vector A(n+1) of the next iteration step from the vector A(n).
For increasing n, A(n+1) more closely approaches a direction with an extreme
radius vector of the quadric, as one can read from the Poinsot construction.
With this method, one obtains the direction for the maximum longitudinal ef-
fect. In practice, this is today naturally carried out with the help of a personal
computer, which gives the solutions in a few seconds. For each eigenvalue λ
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one obtains the direction of the associated basic vector (eigenvector) from the
system of equations according to

x1 : x2 : x3 =

[(t22− λ)(t33− λ)− t2
23] : [(t23t13− t12(t33− λ)] : [t12t23− t13(t22− λ)].

This follows from the representation of our system of equations in the form
of scalar products of the vector x with the vectors Ci, having the components
Cij = tij − λδij. We have Ci · x = 0 for i = 1, 2, 3, i.e., x is perpendicular to the
vectors Ci and thus runs parallel to one of the vector products of two of these
vectors Ci. The above proportionality results from x ‖ C2 ×C3. The directions
of the extreme values are mutually perpendicular. This is recognized as fol-
lows: Let λ′ and λ′′ be two arbitrary eigenvalues of the characteristic equation
and x′ and x′′ the associated eigenvectors. We then have the equations

tijx′j − λ′x′i = 0, tijx′′j − λ′′x′′i = 0.

We multiply the ith equation of the first system with x′′i , the second with x′i ,
sum the three equations and get

tijx′jx
′′
i − λ′x′i x

′′
i = 0 and tijx′′j x′i − λ′′x′′i x′i = 0.

We form the difference of these expressions and note that

tijx′jx
′′
i = tijx′′j x′i (because tij = tji);

thus

(λ′ − λ′′)x′i x
′′
i = 0.

If λ′ 6= λ′′, it follows that

x′i x
′′
i = x′ · x′′ = 0;

therefore the eigenvectors x′ and x′′ are mutually perpendicular. If we place
the basic vectors of our Cartesian reference system parallel to these eigenvec-
tors, the transverse components t′ij (i 6= j) vanish and the relationship between
the vectors A and B is Ai = t′iiBi with t′ii = λi. This means that the physi-
cal efficacy of a symmetric second-rank tensor is fully described by the three
eigenvalues (also called principal values) when, in addition, the position of
the principal axes (eigenvectors) of the tensor in the crystal-physical system is
known.

The symmetry properties of crystals also determine of course, according
to Neumann’s principle, the form and position of the quadric in the crys-
tal. For example, the quadric of all second-rank tensors with a three-, four-
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Figure 4.2 Principal axes transformation within a plane perpendicu-
lar to ek.

or six-fold rotation- or rotation–inversion axis possesses rotational symmetry
with just this symmetry axis as the rotation axis. In the orthorhombic sys-
tem, the principal axes of the quadric run parallel to the basic directions of the
orthorhombic system (parallel to the two-fold rotation- or rotation–inversion
axes respectively). Furthermore, the arrangement of the crystals, as based on
the specifications in Table 4.2, corresponds in all systems, except the triclic and
monoclinic, to the principal axes’ system of second-rank tensors.

Of special practical importance is the plane principal axis transformation. We
consider a cut through the quadric perpendicular to the basic vector ek. An
example of such a cut is represented by the ellipse in Fig. 4.2. The other two
basic vectors e′i and e′j shall be placed parallel to the principal axes of the given
sectional plane by a rotation of an angle ϕ (positive in the clockwise direction
looking along ek!) about ek. The transformation formulae are

e′i = cos ϕ ei + sin ϕ ej, e′j = − sin ϕ ei + cos ϕ ej, e′k = ek.

The principal axis position is reached when the tensor components t′ij (i 6= j)
vanish. For a symmetric tensor we get by tensor transformation

t′ii = cos2 ϕ tii + sin2 ϕ tjj + 2 sin ϕ cos ϕ tij

t′jj = sin2 ϕ tii + cos2 ϕ tjj − 2 sin ϕ cos ϕ tij

t′ij = − sin ϕ cos ϕ tii + sin ϕ cos ϕ tjj + (cos2 ϕ− sin2 ϕ)tij

(with tij = tji).
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With 2 sin ϕ cos ϕ = sin 2ϕ and cos2 ϕ− sin2 ϕ = cos 2ϕ, we have from the
condition t′ij = 0 the angle of rotation

tan 2ϕ =
2tij

tii − tjj
.

From this and with the help of the relations

cos2 ϕ =
1 + cos 2ϕ

2
and sin2 ϕ =

1− cos 2ϕ

2

one finds

t′ii =
tii + tjj

2
+

tij

sin 2ϕ
,

t′jj =
tii + tjj

2
−

tij

sin 2ϕ
.

It is also interesting that with each arbitrary rotation about the axis ek the
sum of the principal components remains constant: t′ii + t′jj = tii + tjj. In
the monoclinic system, plane and general principal axes’ transformations are
identical, if ek is laid parallel to 2 or 2̄, respectively. Examples will follow in
the following sections.

4.3.3
Dielectric Properties

An electric field induces in matter a charge displacement described by the
electric polarization P which we introduced previously. The electric field is
represented by the vector of the electric field strength. This points into the
direction of the force K experienced by a positive electric point charge q in
the electric field according to K = qE. The relationship between the electric
charge density and the electric field strength in a plate capacitor leads us to the
vector of the electric displacement. One plate of the capacitor with the surface
F and charge Q possesses a charge density of Q/F (ignoring boundary effects).
The vector D = K Q

F e perpendicular to the plate, where e specifies the surface
normal of the plate, is in this case the vector of electric displacement. K is a
constant dependent on the system of units (MKSA system: K = 1; cgs system:
K = 4π). The field strength E takes on the same direction. Inside the capacitor
the field strength is practically constant, so that the potential difference of a
unit charge on one plate in relation to the charge on the opposite plate is

U =
∫ x2

x1

E · dx = |E|d,

where d is the distance between the plates. The electric voltage U at the ca-
pacitor determines the field strength. The charge Q and thus the magnitude
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of the electric displacement is proportional to the applied voltage, as one can
demonstrate experimentally as well as by a simple consideration of electro-
statics. Accordingly, in vacuum D and E are parallel, hence D = ε0E. The
quantity ε0 is called the absolute dielectric constant. Its numerical value in the
MKSA system is

ε0 =
1

4π · c2 107 = 8.854× 10−12AsV−1m−1

(c is the velocity of light in vacuum 2.998×108ms−1); in the cgs system

ε0 = 1 (dimensionless).

If we now place an isotropic medium between the plates, D and E remain
parallel. The total electric displacement is determined by the contribution of
the polarization of the medium and we have the relationship D = ε0E + P.
Since, to a first approximation, P may be considered as proportional to the
electric field, we can write D = εE with P = (ε− ε0)E. We call ε the absolute
dielectric constant of the given isotropic medium. It is useful to refer ε to the
value of the vacuum constant ε0. εrel = ε/ε0 is the relative dielectric constant
(DC). Sometimes it is advantageous to use the relation P = χε0E. χ is called
the electric susceptibility. With the above relation we have χ = εrel − 1.

In anisotropic media, instead of D = εE we must introduce the general
vector function Di = εijEj. {εij} is the dielectric tensor. {εij} is symmetric, as
one can recognize from the energy density Wel of the electric field in a plate
capacitor.

A change in the electric displacement ∆Di leads to a reversible change of
the energy density

∆Wel = Ei∆Di = εijEi∆Ej;

hence

∂Wel
∂Ej

= εijEi.

The total energy density is

Wel =
∫

EidDi =
∫

EiεijdEj =
1
2

εijEiEj.

Because

∂2Wel
∂Ej∂Ei

=
∂2Wel
∂Ei∂Ej

we have εij = εji.
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The measurement of the dielectric properties takes place preferably with the
help of the longitudinal effect of thin crystal plates which fill the inner space
of a plate capacitor. The capacitance of a simple plate capacitor is described to
a good approximation by C = εrelC0. C0 is the capacitance of the evacuated
capacitor. It is expedient to measure the capacitance as a frequency determin-
ing term of a high frequency oscillator via a bridge circuit. In order to keep
the highly interfering depolarization phenomena at the boundary regions of
the specimens small, the diameter-to-thickness ratio of the plates should be at
least 10.

The plate capacitor is realized by metallization of the large surfaces of a thin
plane-parallel crystal plate (coated with a conducting silver paste or vacuum
evaporated by silver or gold). In this case C = εrelε0F/d, where d and F
refer to the thickness and area of the plate, respectively. If the weight G of
the plate and the density ρ are known, one obtains very accurate values for
F = V/d = G/ρd (V being the volume of the plate).

For many purposes, the immersion method (Fig. 4.3a) achieves sufficient ac-
curacy. The specimen, in the form of a thin plate, is placed in a cylindrical
measurement cell. The isolated main electrode should be nearly fully cov-
ered by the specimen. The remaining space in the cell is filled, bubble free,

(a) (b)

Figure 4.3 (a) Immersion cell for the measurement of the dielectric
constant of thin plates (longitudinal effect along the plate normal).
H main electrode, I isolation, K crystal plate, F immersion liquid,
Z1 external cylinder, Z2 internal cylinder. Z1 and Z2 represent the
base electrode. (b) Graphic evaluation of the data obtained by the
immersion method. C is the measured capacity of the arrangement
in arbitrary units.
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Figure 4.4 Arrangement of the electrodes for the measurement of
the longitudinal dielectric constant of thin plates. I main electrode,
A outside or guard electrode, and S free gap.

with a liquid of known dielectric constant. Using a bridge circuit, one now
measures the capacitance of this capacitor, filled with crystal and liquid and
only with liquid, respectively. The knowledge of the absolute capacitance is
not necessary; rather it suffices to read a reproducible setting of the variable
plate capacitor in the bridge circuit. This procedure is carried out with several
liquids. The liquids are selected such that the effective dielectric constant of
the specimen lies between those of the liquids. One now plots the measured
readings of the compensation capacitor against the known dielectric constants
of the liquids and gets to a good approximation a straight line (Fig. 4.3b). In
all measurements, the cell is to be adjusted to the thickness of the specimen.
Now the measured values for the specimen are plotted as a function of the
dielectric constants of the liquids. The line connecting the points may show a
slight curvature. The abscissa of the intersection point of both curves yields
the wanted longitudinal effect.

If the specimens are homogenous, an accuracy of up to 1 per mille can be
achieved with this method without further precautions when the values for
the liquids are sufficiently well known. In this case, the specimens need not
be prepared with conducting electrodes. Within limits, reasonable values can
also be obtained using plates of ill-defined geometry with pieces broken off
and unequal thickness. This applies, in particular, to cubic crystals with their
isotropic behavior.

If one requires higher accuracy, as, e.g., for the measurement of the pressure-
or temperature dependence of the dielectric properties, a method using a
guard electrode is recommended in which nearly all interferences due to
boundary effects are suppressed (see Fig. 4.4). An arrangement for highly
precise measurements was described by Andeen et al. (1971). This so-called
substitution method with a three-electrode arrangement works on a principle
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similar to the immersion method. The capacitance C is measured between
the main electrode and the base electrode, whereby, in magnitude and phase,
the same alternating voltage present at the main electrode is applied to the
guard electrode, separated by a small gap from the main electrode. As a con-
sequence, a largely parallel and homogenous electric field forms in the region
of the crystal above the main electrode. Altogether, one requires the following
four measurements: 1. Filling with air:

C1 = ε0εAF/d0,

2. filling with crystal plate and air:

1/C2 = (d0 − d1)/(ε0εAF) + d1/(ε0ε′rel,11F),

3. filling with liquid:

C3 = ε0εFlF/d0,

4. filling with crystal and liquid:

1/C4 = (d0 − d1)/(ε0εFlF) + d1/(ε0ε′rel,11F),

where ε0 is the absolute dielectric constant of the vacuum, εA, εFl, ε′rel,11
are the relative dielectric constants of air, the liquid, and the crystal along the
plate normal e′1. d0 is the separation between main and base electrode, d1 is
the thickness of the plane-parallel crystal plate, and F is the effective area of
the main electrode. The capacitances in cases 2 and 4 result from the formula
of capacitances in serial connection (1/C = 1/Ca + 1/Cb). The four relations
allow the elimination of d0, d1, εFl, and F.

The wanted dielectric constant of the plate (longitudinal effect) is then

ε′rel,11 =
1− C3/C1 + C3/C2 − C3/C4

C1/C2 − C3/C4
εA.

For εA one can write, to a sufficient approximation, the value 1.000 53 for 293 K
and atmospheric pressure.

Up to now we assumed that the dielectric tensor possesses real components.
Let us give a short comment on the general case of a complex dielectric con-
stant. It only plays a role in time-dependent processes. Let the components εij
be represented as εij = ε′ij + iε′′ij, where ε′ij and ε′′ij are real quantities.

We imagine a periodic electric field E = E0e2πiνt producing an electric dis-
placement D = D0e2πiνt−iδ in a crystal. ν is the frequency and δ the phase
difference of both waves. For simplicity, we consider the situation of a pure
longitudinal effect with D = εE, where ε = ε′ + iε′′. We then have

D0

E0
e−iδ = (ε′ + iε′′)
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and hence

ε′′ =
−D0

E0
sin δ and tan δ =

−ε′′

ε′

(because e−iδ = cos δ− i sin δ).
We now calculate the dielectric loss per second, the dissipated energy

L =
1
T0

∫ T0

0
I · Edt.

T0 is the period of oscillation.
Here we require the relation between the current density vector I and the

electric field strength as expressed in Ohm’s law (see Section 4.3.7).
We have Ii = (s′ij + is′′ij)Ej, where the conductivity may also be described by

a complex tensor quantity. In the case of a pure longitudinal effect , one has
I = (s′ + is′′)E. Furthermore, the current density is proportional to the time
derivative of the electric displacement, thus

I = K−1 dD
dt

= K−1(ε′ + iε′′)
dE
dt

.

As a result we have s′ = −K−1 · 2πνε′′ and s′′ = K−1 · 2πνε′. K is the constant
of the chosen system of units.

Only the real part is relevant for the calculation of the dissipated energy.
Hence we obtain

L =
1
T0

∫ T0

0
s′E2

0 cos2 2πνtdt =
1
2

E2
0s′ = K−1πνD0E0 sin δ.

Thus, a fraction of the energy of the electric field, proportional to sin δ, is con-
tinuously converted into ohmic heat. The measurement of sin δ follows di-
rectly from the comparison of the phase position of E and the displacement
current or by a comparison of the reactive power and effective power.

As an example, we discuss the measurement of the dielectric tensor on tri-
clinic lithium hydrogenoxalate-hydrate (LiHC2O4 ·H2O), PSG 1. Table 4.3
presents the measured longitudinal effects for altogether eight different di-
rections.

The crystal-physical reference system is connected to the crystallographic
reference system used by Thomas (1972) according to the convention de-
scribed in Section 2.2.

The measurements were made on circular plates with diameters of about
20 mm and thicknesses of about 1.5 mm. The immersion liquids used were
m-xylene (εrel =2.37), chlorobenzene (εrel =5.71), and ethyl dichloride (εrel
= 10.65). A plate of NaCl with εrel =5.87 was used for control. The data are
valid for 20◦C.
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Table 4.3 Dielectric measurements on triclinic LiHC2O4 ·H2O at 293 K. Values of the longitu-
dinal effect ε′rel,11 along the direction e′1 = u1iei (plate normal) for a frequency of 10 MHz.

Nr. u11 u12 u13 ε′rel,11
1 1 0 0 6.77
2 0 1 0 5.43
3 0 0 1 4.91
4 0

√
2/2

√
2/2 4.70

5 0
√

2/2 −
√

2/2 5.33
6 −0.6996 0.7145 0 6.58
7∗) −0.4591 0.1662 0.873 3.89
8 −0.2767 0.8035 0.5263 4.71
∗) Normal on the cleavage face (1̄01)

Measurements 1, 2, and 3 directly yield εrel,11, εrel,22, and εrel,33. From 4 and
5 and using the relation mentioned in Section 4.3.2 one gets εrel,23 = −0.41;
similarly, from 6 εrel,12 = −0.54. Applying the general formula for the longi-
tudinal effect of measurement in direction 7 εrel,13 = +1.73 is obtained. The
longitudinal effect in direction 8, calculated from these values of the dielectric
constants, is in good agreement with the experimental value.

Through a principal axes’ transformation one finds the principal values

ε′rel,11 = 8.10, ε′rel,22 = 5.26 ; and ε′rel,33 = 3.75.

The associated eigenvectors, referred to the crystal-physical reference system
are

e′1 = 0,822e1 − 0,246e2 + 0,514e3,

e′2 = −0,232e1 − 0,968e2 − 0,094e3,

e′3 = 0,520e1 − 0,044e2 − 0,853e3.

We thus find a distinct anisotropy with an absolute maximum in a direction
close to the cleavage surface and a minimum slightly perpendicular to the
cleavage plane (1̄01) (see Table 4.3). We will return to these anisotropy effects
when discussing other properties.

A simple model has proved successful for the interpretation of the dielectric
properties of isotropic media. It merely takes into account the polarizability
of quasi-spherically shaped lattice particles as invariant quantities in the local
electric field. The local electric field is composed of the external field and the
field produced by the polarized dielectric. The local electric field is approxi-
mately given by Eloc

Eloc = E +
1

3ε0
P.

Let an isotropic lattice particle contribute the amount pj = αjEloc to the to-
tal polarization, under the assumption that the local field has about the same
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strength for each atomistic lattice particle within the medium; αj is the polar-
izability of the jth particle. The total polarization P is then

P = Eloc ∑
j

Njαj,

where Nj represents the number of the jth particle per volume unit. Taking
into account the relation P = (ε− ε0)E, one finds

εrel − 1
εrel + 2

=
1

3ε0
∑

j
Njαj.

If one is dealing with a substance composed of equal particles, as, e.g., with
molecular crystals, one obtains the Clausius–Mosotti formula

εrel − 1
εrel + 2

=
Lρ

3ε0M
α,

where L = 6.022 × 1023mol−1 denotes Avogadro’s number, M the molar
weight, ρ the density, and α the polarizability of the molecule. Let N be the
number of molecules per volume element, then ρL = NM. The quantity

εrel − 1
εrel + 2

M
ρ

=
L

3ε0
α

is termed the molar polarization.
It enables us to experimentally determine the polarizability of simple com-

pounds from the dielectric constant. If one knows the polarizability of the
lattice particles, then with the help of the general formula, one can also esti-
mate the mean dielectric constant of these materials. An important aspect here
is the law of addition of polarizability, which, however, does not take into ac-
count the mutual interaction of the lattice particles nor the anisotropy of the
polarizability.

4.3.4
Ferroelectricity

The temperature dependence of the polarizability and thus also of the dielec-
tric constants of many isotropic substances may be described, according to
Debye’s approach, approximately by α = α0 + p̄2/3kT. p̄ is a mean value of
the dipole moment, k is Boltzmann’s constant. If p̄ 6= 0 and ∂α0/∂T is suf-
ficiently small, then the polarizability and hence the dielectric constants de-
crease weakly with increasing temperature, as one recognizes from ∂εrel/∂α

according to the Clausius–Mosotti relation. On the other hand, in crystals
with vanishing p̄ one often observes, over a wide temperature range, a slight,
approximately uniform increase of εrel with increasing temperature.
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A totally different behavior of the temperature dependence is observed in
certain crystal species, such as potassium calcium tartrate-dihydrate (Rochelle
salt), triglycine sulfate, BaTiO3, or KH2PO4. An example is shown in Fig. 4.5.
When approaching a certain transition temperature, extremely large dielec-
tric constants (DC) are observed, in some cases several powers of ten higher
than in normal substances, where DC values rarely surmount the value of 50
(see Tables 12.6, 12.7). In addition, one also finds a rapid decrease of the DC
with increasing frequency. In many cases, the temperature dependence of the
susceptibility can be approximately represented by a Curie–Weiss law of the
type

χ =
C0

T − T0
,

where C0 is the Curie–Weiss constant and T0 the Curie temperature.
One just about always sees a hysteresis, i.e., the electric polarization follows

the electric field with a certain delay up to the transition point of saturation.
Often one also sees a remenance, i.e., the polarization remains unchanged by a
change in the direction of the electric field. From the analogy to ferromagnetic
properties, this anomalous dielectric behavior was given the name ferroelec-
tricity. In the meantime, several hundred ferroelectric substances are known,
which even between themselves exhibit very different dielectric properties.
Some materials, such as BaTiO3, Rochelle salt, and NH4H2PO4 (ADP) as well
as their structural derivatives have found wide technical application not only
because of their dielectric properties but also because of their piezoelectric
properties (see Section 4.4.1).

The atomistic interpretation of ferroelectricity presumes that the crystals
possess permanent dielectric dipoles belonging to individual particle or par-
ticle complexes. An external electric field can order these dipoles in a parallel
direction. The temperature change works against this order. Below a certain
temperature T0, most ferroelectrics self-order these dipoles in parallel direc-
tions within domains. Thus these domains possess a primary electric moment
and belong to one of the ten pyroelectric point symmetry groups (see Sec-
tion 4.2.2). The different domains can be considered as electric twins. Above
the temperature T0, the domains vanish and the distribution of the dipoles is
static (paraelectric phase). When the pyroelectric easy-axis direction vanishes,
the crystal takes on a higher symmetry group which must be a supergroup
of the symmetry group of the ferroelectric phase. The total moment per vol-
ume element due to the parallel ordering of the dipoles is called spontaneous
polarization. This normally occurs along a distinct crystallographic direction.

If the dipoles order themselves in a regular sequence of alternating sign,
one talks about antiferroelectricity analogous to the situation with antiferro-
magnetic effects.
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4.3.5
Magnetic Permeability

Although the origin of magnetism is quite different certain magnetic phenom-
ena can be described analogously to electrostatic ones. The magnetic quantity

(a) (b)

(c) (d)

Figure 4.5 Dependence of the dielectric
constants on temperature (a) and hydro-
static pressure (b) in Li2Ge7O15 (paraelec-
tric phase: PSG mmm, ferroelectric phase:
PSG mm2; Preu & Haussühl, 1982). ε33
exhibits a steep anomalous increase at
the phase transition. (c) and (d) ferroelec-
tric hysteresis of polarization and external
electric field in C(NH2)3Al(SO4)2 · 6H2O

(GASH) and triglycine sulfate (TGS) in the
ferroelectric phase (PSG 3m and 2, re-
spectively; E ‖ 3 and ‖ 2, respectively).
The oscillograms have been recorded at
293 K employing the arrangement sug-
gested by Schubring et al. (1964). GASH
shows the rather rare case of an asymmet-
ric hysteresis loop.
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corresponding to the electric field strength is the magnetic field strength H
pointing into the direction of the force F which the magnetic field exerts on an
imaginary magnetic point-like north pole of strength p:

F = pH.

The field strength at an arbitrary position around a bar magnet points in the
direction of the field lines leaving the north pole and ending in the south pole.
The quantity p corresponds to the electric charge as in the definition of the
electric field strength. Since no isolated point-like magnetic poles exist, the ef-
fect of the magnetic field is demonstrated simply by considering the force ex-
erted by a magnetic field on a small bar magnet of magnetic momentM = pl.
l is a vector pointing from the imaginary point-like south pole of the magnet
to the point-like north pole. The north pole is pulled in the direction of the
magnetic field while the south pole experiences a corresponding repulsion.
The resulting torque M, perpendicular to H and to the magnetic moment M
has the magnitude |H||l|| sin ϕ|, where ϕ is the angle between l and H. Thus
M = M× H (Fig. 4.6).

If we now place a body in a magnetic field, the magnetic moments of the
atoms or molecules also experience a torque which may lead to an alignment
of the magnetic moments. The total magnetic moment of the body per vol-
ume element is called the magnetization C. This corresponds to the vector
of the electric polarization. In weak magnetic interactions one expects a lin-
ear relationship between the magnetic field H and the magnetization, thus
Ci = χijµ0Hj. {χij} is the tensor of magnetic susceptibility and µ0 is the perme-
ability of the vacuum. By analogy to the electric case, we introduce a further
quantity, the magnetic induction B, corresponding to the vector of the electric
displacement. The definition is

Bi = µijHj = χijµ0Hj + µ0Hi = (χij + δij)µ0Hj.

Figure 4.6 Body torque M, which is exerted on a bar magnet M =
pl in a magnetic field H.
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{µij} is the tensor of the magnetic permeability.
The tensors {χij} and {µij} are of polar character because H as well as C

and hence B are pseudo tensors (axial vectors). The latter is a consequence of
the 2. Maxwell equation

rot H = I +
1
c

∂D
∂t

;

I specifies the electric current density (Ampère’s law). Since I and D are polar
vectors, rot H must also be polar (see Section 3.7).

Essentially, one distinguishes three groups of magnetic behavior.
1. Diamagnetism: Primarily, the given substances possess no magnetic mo-

ment. In a magnetic field, a weak magnetization is induced opposing the field.
The magnetization is only slightly temperature dependent. Diamagnetic sub-
stances are repelled by a magnetic field, the χ-values are negative (of the order
10−6). Typical representatives are most salts of the A subgroup of the periodic
table with inorganic anions. Bismuth possesses a particularly large effect.

2. Paramagnetism: The magnetization induced by the field is aligned paral-
lel to the field. The magnetization is more strongly temperature dependent
than in the case of diamagnetism. Atoms or molecules in the medium pos-
sess a magnetic moment. Paramagnetic substances are attracted towards the
magnetic field. The χ-values are positive (of the order 10−5). Typical repre-
sentatives are the transition elements, in particular those of the iron group and
the rare earths as well as their salts.

3. Ferromagnetism: The magnetic moments possess, within certain tempera-
ture ranges, opposite orientations, e.g., parallel or antiparallel arrangements
(ferro, antiferromagnetism) or a combination of both (ferrimagnetism). Due
to the cooperative alignment of the magnetic moments, the magnetization is
much stronger than in the case of paramagnetism. If all moments are aligned
parallel, no further increase in magnetization is possible (saturation). From
this we recognize that the linear relationship Bi = µijHj is not sufficient for
ferromagnetic substances. Rather, the components µij are quite complicated
functions of H.

In addition, hysteresis effects also occur, i.e., the magnetization lags be-
hind the external magnetic field. The persistence of the magnetization after
switching off the external magnetic field is called remanence. Hysteresis is a
characteristic phenomenon of ferromagnetism, analogous to the situation of
ferroelectricity. In some iron alloys the χ-values can rise up to 106. Typical fer-
romagnetics are iron, nickel, cobalt, and rare earth metals as well as the alloys
of these elements. Furthermore, ferromagnetic properties appear in certain
compounds of otherwise nonferromagnetic transition elements such as CrTe
or MnP.

The measurement of magnetic properties is based on the magnetization
generated in the magnetic field. For ferromagnetic substances with large val-
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ues of susceptibility simple arrangements are sufficient. For example, one can
measure the change of magnetic induction inside a cylindrical coil after insert-
ing the probe in a way that is similar to measuring the change in capacitance
of a capacitor. The resulting torque experienced by a magnetometer needle is a
direct measure of the change in B. Calibration with known probes then allows
the determination of the susceptibility. The measurement of the inductance of
a coil allows a simple and reliable determination of the frequency dependence
of the susceptibility.

With diamagnetic and paramagnetic substances, the sensitivity of this
method is too low. In order to detect the expected anisotropy in noncu-
bic crystals it is necessary to generate, as far as possible, purely longitudi-
nal effects of magnetization, i.e., the magnetic field and the magnetization
should be aligned parallel through the whole probe. We now consider the
simplest case of a dia- or paramagnetic crystal without primary magnetic mo-
ment. A small probe in a magnetic field experiences a magnetic moment of
M = Vχeffµ0H = pl. V is the volume of the probe and χeff is the longitudinal
effect of the susceptibility in the direction of the magnetic field. In the case
of an inhomogenous magnetic field we imagine H represents a mean value
over the volume of the probe. Let the magnetic field possess the strength H1
at the south pole and the strength H2 at the north pole, with H2 ‖ H1 ‖ l. The
resulting force on the probe is then

F = p(H2 − H1) = p|l| (H2 − H1)
|l| ≈ Vχeffµ0|H|

dH
dx

,

where (H2 − H1)/|l| is replaced by the differential quotient dH/dx for the
transition to infinitesimal l. x is the coordinate along the vector of the magne-
tization. For practical measurements it is desirable to achieve, as far as pos-
sible, a constant value of dH/dx over the whole probe. A particularly simple
arrangement is again the cylindrical coil, in which one suspends a cylindrical
probe symmetric to the coil axis. A large part of the probe remains outside
the coil in order to make the region of the inhomogenous field as effective as
possible (Fig. 4.7).

If one works with a cylindrical probe of length L and cross-section Q and
sets up the magnetic field so that dH/dx is constant over each cross-section
perpendicular to the cylindrical axis, then one can calculate the total force on
the probe according to

|F| =
∫

V
χeffµ0|H|

∣∣∣∣dH
dx

∣∣∣∣ dV =
Q
2

χeffµ0|H2 − H2
0|,

where dV is replaced by Q dx. H and H0 are the field strengths at the top and
bottom ends of the probe respectively, and can be measured with calibrated
probes. The force F due to the vertical field gradients dH/dx of the cylindrical
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Figure 4.7 Measurement of the magnetization of a cylindrical probe
in an inhomogeneous magnetic field.

coil is measured by weighing, in the case of horizontal field gradients with the
aid of a torsion balance.

4.3.6
Optical Properties: Basic Laws of Crystal Optics

The optical properties of crystals are essentially determined by their dielec-
tric behavior. In view of the fundamental importance of these properties for
practical crystal optics, e.g., in polarization microscopy as well as for many
crystal-physical effects, in particular higher order optical effects (e.g., electro-
optics, piezo-optics, nonlinear optics) and spectroscopic phenomena, we must
carefully discuss some of the basic laws of crystal optics in this section. We
will restrict ourselves mainly to the phenomena of wave propagation, which
is coupled with the vibrations of the electric displacement vector D. These are
easier to handle theoretically than energy propagation.

Let us first consider the case of a nonabsorbing (electrically nonconduct-
ing) and centrosymmetric medium. The material properties are given by the
dielectric tensor and the tensor of the magnetic permeability, hence by the re-
lations Di = εijEj and Bi = µijHj, whereby all quantities are to be understood
as frequency-dependent functions. Other material properties which interact
with electromagnetic waves, as represented by light rays, are excluded for
the present. In a further simplification we assume that the tensor {µij} at the
high frequencies of the optical range is quasi-isotropic and for all crystals, de-
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scribed to sufficient accuracy by the vacuum value µ0 according to Bi = µ0Hi.
This is also in agreement with experimental observations.

The electrical processes of light propagation obey the fundamental equa-
tions of electrodynamics (Maxwell’s equations, which in the cgs system are
(with µ0 = 1):

rot E = −1
c

∂H
∂t

(induction law)

rot H =
1
c

∂D
∂t

(Ampères law of current density and magnetic field)

div D = 0 (no free charge density; otherwise div D = 4πρ′,

where ρ′ specifies the electric charge density)

div H = 0 (no magnetic charges exist).

c is the velocity of light, and t the time. The reader is referred to a standard
physics textbook for the derivation of Maxwell equations. The most important
experimental situation is the propagation of a plane wave, which to a good
approximation occurs when the dimensions of the homogenous medium per-
pendicular to the direction of propagation are far greater than the wavelength
of the given radiation. For the magnetic field we take a plane wave of the form

H = H0e2πi(k·x−νt).

k is the propagation vector, perpendicular to the wave front with length
|k| = 1/λ. λ is the wavelength, ν the frequency. With rot v = ∇ × v and
the differential operator

∇ = ej
∂

∂xj
(summed over j!)

we obtain from Ampères law

rot H = 2πik× H =
1
c

∂D
∂t

.

Hence, it follows that H and D possess the same time and space dependence,
thus

D = D0e2πi(k·x−νt) and hence only
∂D
∂t

= −2πiνD.

Because Di = εijEj and Bi = µijHj we also have

E = E0e2πi(k·x−νt) and B = B0e2πi(k·x−νt).

We recognize further that D is perpendicular to k and H and the vectors k, D,
H form a right-handed system. From

div H =
∂Hj

∂xj
= 2πik j Hj = 2πik · H = 0
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follows that k and H are orthogonal. This means the waves of D and H are
always of pure transversal type.

To which conditions are now D and E subject? Differentiation with respect
to time gives, from Ampères law,

∂2D
∂t2 = c rot

∂H
∂t

and after inserting ∂H/∂t, we get from the induction law

∂2D
∂t2 = −c2 rot rot E.

Using the expansion rule, we find

rot rot E = ∇× (∇× E) = ∇(∇ · E)−∇2E

= grad 2πik · E−∑
j

∂2E
∂x2

j
= −4π2(k · E)k + 4π2k2E.

Thus we have

∂2D
∂t2 = −4π2ν2D = c24π2{(k · E)k− k2E},

hence

ν2

c2 D = k2E− (k · E)k.

After introducing the unit vector in the propagation direction g = k/|k|, we
obtain the wave equation

v2

c2 D = E− (g · E)g,

where νλ = v is the propagation velocity of the wave.
If one eliminates D by Di = εijEj, one obtains a system of three linear equa-

tions for Ei. The system only has solutions for E 6= 0 when its determinant
vanishes. We then obtain, for any arbitrary propagation direction g, an equa-
tion for v2/c2 = 1/n2. The ratio n of the velocity of light c in vacuum and
propagation velocity v in the medium is known as the refractive power or refrac-
tive index. The equation referred to is therefore also called the index equation.

Assume now the axes of our Cartesian reference system have been chosen
parallel to the principal axes of the dielectric tensor, where we have Dj = εjjEj
and εij = 0 for i 6= j. We can then replace Ej by Dj/εjj in the above equation
and for each component write

Dj

{
v2

c2 −
1

εjj

}
= −(g · E)gj.
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In the directions of the principal axes we have D ‖ E, thus because g · D = 0
we also have g · E = 0; in addition we have 1/εjj = v2/c2, in case Dj 6= 0. We
then obtain for the accompanying propagation velocity vj

v2
j =

c2

εjj
.

The quantities c/vj = nj are the principal refractive indices. For these nj = √
εjj

is true in the system of units selected here. Especially for the vacuum n = 1 =√
ε0 and thus nj = √

εrel,jj (Maxwell’s relation for µ = 1).
Consider now the general case where E does not run parallel to D. From

the above equation, we have for an arbitrary g

D1 : D2 : D3 =
g1

v2
1 − v2

:
g2

v2
2 − v2

:
g3

v2
3 − v2

,

where v is the velocity of the wave propagating in direction g.
For the determination of v2 as a function of g we form D · g = 0 and obtain

g2
1

v2
1 − v2

+
g2

2
v2

2 − v2
+

g2
3

v2
3 − v2

= 0,

resulting in a second-order equation in v2

∑
i=1,2,3

g2
i (v2

j − v2)(v2
k − v2) = 0 (j = i + 1, k = i + 2 mod 3).

For an arbitrary direction g, this equation yields two intrinsic values v′2 and
v′′2, which in general, are different. A total of four solutions exist v = ±v′ and
v = ±v′′. The propagation velocities in the direction g and in the opposite
direction−g are equal in magnitude. How are now the accompanying vectors
D′ and D′′ oriented to v′ and v′′? They are mutually perpendicular as seen by
forming the scalar product D′ · D′′. We have

D′ · D′′ = ∑
j

Q′Q′′ g2
j

(v2
j − v′2)(v2

j − v′′2)

=
Q′Q′′

(v′2 − v′′2
∑

j

[
g2

j

(v2
j − v′2)

−
g2

j

(v2
j − v′′2)

]
= 0,

provided v′2 6= v′′2.
Q′ and Q′′ are factors determining the length of D′ and D′′; the terms in

the square brackets vanish individually. The case v′2 = v′′2 leaves the posi-
tion of D′ and D′′ open (degeneracy!). Furthermore, D′ and D′′ lie parallel to
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the half axes of the sectional ellipse cut out of the tensor quadric F = aijxixj
(ellipsoid) by the central plane perpendicular to the propagation direction g,
characterized by g · x = 0 and containing the center of the ellipsoid.

The components aij establish the connection of E and D according to Ej =
ajkDk. They are called polarization constants. As proof we calculate the direc-
tions in which the radius vector of the sectional ellipse takes on an extreme
value; these directions coincide with the directions of the major and minor
half axes of the ellipse. Similar to the principal axes’ transformation, the con-
ditions for extreme values here are: x2 = extremum, auxiliary condition
g · x = 0 (ellipse lies in the plane perpendicular to g) and aijxixj = F (ellipse
belongs to the tensor quadric). Again we assume that our coordinate system
is the principal axes’ system of the dielectric tensor. We then have ajj = 1/εjj,
ajk = 0 for j 6= k. The tensor quadric is then ∑j x2

j /εjj = F and with n2
j = εjj

and F = 1

∑
j

x2
j

n2
j

= 1.

In this form it is called the indicatrix. We now introduce an auxiliary function
H, which also takes on an extreme value:

H = ∑
j

x2
j − λ1g · x− λ2

(
∑

j
x2

j /n2
j − 1

)
.

The conditions ∂H/∂xj = 0 give for j = 1, 2, 3

2xj − λ1gj − 2λ2xj/n2
j = 0.

We multiply the jth equation with xj, sum over j = 1, 2, 3, and obtain

∑
j

2x2
j (1− λ2/n2

j )− λ1 ∑
j

gjxj = 0.

The second term vanishes because g · x = 0. Therefore

∑
j

x2
j = λ2 ∑

j
x2

j /n2
j , hence λ2 = ∑

j
x2

j = x2.

We recognize the meaning of x2 as follows: by scalar multiplication of the
wave equation with D one gets

D2/n2 = E · D− (g · E)(g · D).

The last term vanishes. Furthermore,

D2/n2 = E · D = ∑
j

ajjD2
j ,
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and thus

1/n2 = ∑
j

ajjD2
j /D2 = a′11,

where a′11 represents the longitudinal effect along e′1 = D/|D|. On the other
hand this is obtained from the radius vector of the tensor quadric according to
a′11 = F/x2. With F = 1 we have x2 = n2, i.e., the lengths of the major and mi-
nor half axes of the sectional ellipse are equal to the refractive indices of both
possible waves propagating along g. From the above system of equations, one
obtains for the coordinates of the half axes

2xj = λ1gj

/(
1− n2

n2
j

)

and thus

x1 : x2 : x3 =
g1

1− n2/n2
1

:
g2

1− n2/n2
2

:
g3

1− n2/n2
3

.

This ratio is identical to the relation derived above for D1 : D2 : D3. This is
recognized when one substitutes the refractive indices by the corresponding
velocities. Hence the directions of vibrations D′ and D′′ run parallel to the
half axes of the sectional ellipse.

We summarize these results to the basic law of crystaloptics for nonconducting
centrosymmetric crystals:

For each propagation direction g in a crystal there exist two linear polarized
waves, whose D-vectors (directions of vibration)) run parallel to the half axes
of the associated sectional ellipse of the indicatrix. The associated refractive
indices are equal to the lengths of these half axes. If the refractive indices n′

and n′′ belonging to g are equal, then the sectional ellipse is in the form of a
circle and the direction of vibrations within the plane of the circle is not fixed
(degenerate).

Thus the propagation of light in a crystal is determined only by the form
and position of the indicatrix. We can divide the centrosymmetric crystals
into the following optical classes (see also Section 4.3.6.4):

1. Optically isotropic: cubic crystals. The indicatrix is a sphere. The position
of the D-vectors is not fixed.

2. Optically uniaxial: trigonal, tetragonal, and hexagonal crystals. The indi-
catrix is an ellipsoid of revolution; the axis of revolution runs parallel to the
three-, four-, or six-fold axis.

3. Optically biaxial: orthorhombic, monoclinic, and triclinic crystals. The in-
dicatrix is a triaxial ellipsoid. In orthorhombic crystals the principal axes of
the indicatrix lie parallel to the orthorhombic basic vectors. In monoclinic
crystals the distinct monoclinic basic vector a2 (parallel to a two-fold axis or
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to a normal on the symmetry plane) must run parallel to one principal axis of
the indicatrix. In triclinic crystals the indicatrix is not fixed by any symmetry
considerations. (The term “biaxial” refers to the existence of two directions
called optic axes, in which the sectional ellipse takes on the form of a circle; see
Section 4.3.6.4).

As we have seen, the vector of the electric displacement D, also within the
crystal, is perpendicular to the propagation direction k of the electromagnetic
wave and to the vector of the magnetic field strength H. In crystals, as op-
posed to isotropic media, the vector of the electric field strength E usually de-
viates from D. However, E is also perpendicular to H, as one recognizes from
the Maxwell equation rot E = − 1

c ∂H/∂t after introducing the expression for
plane waves. Hence the three vectors D, E, and k lie in the plane perpendicu-
lar to the magnetic field H. The position of E with given k and D is obtained
by the Poinsot construction (see Section 4.3.2) in the plane perpendicular to H.
For this purpose we draw the ellipse cut out by the plane perpendicular to H
and passing through the center of the tensor quadric (Fig. 4.8). E is then per-
pendicular to the tangent of this ellipse at the intercept point of the vector D
(tensor quadric F = aijxixj, Ei = aijDj). For our description thus far we have
given preference to the D-vector because it allows a simpler representation of
the crystal-optic properties.

The flow of energy of the electromagnetic wave is described by the Poynting
vector S = (c/4π)E× H. S shows the direction of the ray s along which the
electromagnetic energy (per second and unit area) propagates. In the Poinsot
construction we can now draw directly the position of S, namely perpendicu-
lar to H and E (see Fig. 4.8).

Ray vector s and propagation vector k thus stand in a close geometrical
relationship from which one can derive a set of interesting rules which we are
unable to pursue here. The phenomenon of double refraction is taken up in
Exercise 5 (see Section 4.3.2).

4.3.6.1 Reflection and Refraction

An electromagnetic wave, incident on a boundary surface, causes two phe-
nomena: reflection and refraction. Both phenomena may be considered as
sufficiently well known for the case of isotropic media. Law of reflection: Angle
of incidence αI = Angle of reflection αIr,

Snellius’ law of refraction:
sin αI

sin αII
=

vI

vII
=

nII

nI
,

where vI and vII are the wave velocities in media I and II (Fig. 4.9). In order
to also calculate the intensities of the reflected and refracted waves we draw
upon the boundary conditions for the quantities H, D, and E. We imagine a
plane boundary surface of a crystal II being struck by a wave with the wave
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Figure 4.8 Construction of ray vector s (‖ Poynting vector) accord-
ing to the Poinsot construction from the position of D and k within
the plane perpendicular to the magnetic field H.

Figure 4.9 Refraction at the boundary surface of two isotropic me-
dia I and II.

normal kI coming from an external isotropic medium I. The plane spanned by
the normal on the boundary surface and kI is called the incidence plane. At
first, let the direction of vibration of DI be arbitrary. In general, the tangential
components of E and H, i.e., the projection of E or H on the boundary sur-
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face, pass through the boundary surface continuously, in other words, with-
out spontaneous change. The reason for this behavior is that the closed line
integral

∮
E · dx vanishes since the path of integration outward runs along one

border of the boundary surface and returns along the other border. We then
have

Etg(I)∆x− Etg(II)∆x = 0,

hence Etg(I) = Etg(II); ∆x is the path of integration along the border. The
contributions from crossing the boundary surface twice can be neglected. The
same applies to H. In contrast to E and H, the normal components of the
vectors of the electric displacement D and of the magnetic induction B pass
continuously through the boundary surface. As proof, we make use of the
condition div D = 0 (for nonconducting media) and integrate over a thin plate
whose parallel surfaces enclose the boundary surface on both sides. Accord-
ing to Gauss’s law, the volume integral is∫

Plate
div DdV =

∫
Surface

D · d f ,

where dV is a volume element of the plate and d f is the normal on a surface
element of area |d f |. For the limiting value of an arbitrarily thin plate one
obtains∫

Surface
D · d f = DIn∆ f − DIIn∆ f ;

∆ f is the surface of one side of the plate. Since div D = 0 we have DIn = DIIn.
Analogously for B we have BIn = BIIn. With the help of these conditions the
relations at the boundary surface can now be elucidated.

Let the three participating waves, namely the incident wave from medium
I, the wave reflected back into medium I and the wave refracted into medium
II be specified by their propagation vectors kI, kIr, and kII (Fig. 4.10). Let the
basic vectors of a Cartesian reference system be selected such that e1 and e2 lie
in the boundary surface, whereby e1 is perpendicular to the plane of incidence.
e3 points in the direction of the normal on the boundary surface.

In the following, we discuss the important case of an isotropic medium I
adjacent to an anisotropic medium II. At first we prove that kI, kIr, and kII lie
in the plane of incidence. We imagine the electric field strength E is resolved
into components perpendicular and parallel to the plane of incidence (Etg ‖ e1,
E⊥ · e1 = 0). As we shall see, both components behave differently with respect
to reflection and refraction.

In the case EI ‖ e1 we also have DI ‖ e1, and furthermore HI · e1 = 0 and
H ‖ B. From DI ‖ DIr and DIr · kIr = 0 we note that kIr also lies in the plane of
incidence. The condition DIn = DIIn means here that DII lies in the boundary
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Figure 4.10 Propagation vectors in reflection and refraction on a
boundary surface.

surface. HII remains in the plane of incidence as a consequence of HIItg = HItg.
Because HII ·DII = 0 we also have DII perpendicular to the plane of incidence.
Hence kII lies in the plane of incidence (DII · kII = 0!).

In the case EI · e1 = 0, HI and hence BI are perpendicular to the plane of
incidence (HI ‖ e1). In medium I we have HI ‖ HIr. Because HIr · kIr = 0, kIr
must lie in the plane of incidence. The condition BIn = BIIn requires that BII
lies in the boundary surface and hence also HII. Conservation of the tangential
component of H, thus, HI = HIItg (HI = HItg!), means that we have HII ‖ HI
and that kII also lies in the plane of incidence (HII · kII = 0!).

For the following derivation of the formulae for the amplitude of the re-
flected and refracted waves we assume that both media are isotropic.

A. E perpendicular to the plane of incidence, H in the plane of incidence
Let the incident wave be given by

EI = EI0e2πi(kI·x−νt),

the reflected wave by

EIr = EIr0e2πi(kIr·x−νt),

and the refracted wave by

EII = EII0e2πi(kII·x−νt).
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The k’s are of the form k = k2e2 + k3e3. Because of the continuity of Etg we
then have for x3 = 0:

EI0e2πikI2x2 + EIr0e2πikIr2x2 = EII0e2πikII2x2 .

This condition can only be satisfied for arbitrary EI and kI when the expo-
nential factors are equal, hence kI2 = kIr2 = kII2. This means, the tangential
component of the propagation vector remains conserved. Because

kI2 = |kI| sin αI, kIr2 = |kIr| sin αIr, and kII2 = |kII| sin αII

one obtains for both conditions

αI = αII(law of reflection) and

sin αI

sin αII
=
|kII|
|kI|

=
nII

nI
(law of refraction).

Furthermore, we have EI0 + EIr0 = EII0. A second condition is gained from
the continuity of the tangential component of H. Since k, E, and H form a
right-handed system, one finds for x3 = 0

− cos αIHI0e2πikI2x2 + cos αIHIr0e2πikIr2x2 = − cos αIIHII0e2πikII2x2 .

This also applies in the case that medium II is anisotropic and two refracted
waves arise, because the exponential factors must be equal in each case. Now
in order to connect this condition and the one above, it is necessary to use
the relationship between the amplitudes of the electric and magnetic field
strengths of an electromagnetic wave. From the induction law

rot E = −1
c

∂H
∂t

we get k× E =
ν

c
· H.

For the absolute values in isotropic media one gets

|H| = |E||k|(c/ν) and with |k|/ν = 1/v (because λν = v),

|H| = c
v
|E| = n|E|.

Thereby we convert the condition for the tangential component of H into

nI cos αI(−EI0 + EIr0) = −nII cos αIIEII0.

Together with EI0 + EIr0 = EII0 and with nII/nI = sin αI/ sin αII, one obtains
for E perpendicular to the plane of incidence the first Fresnel formula

EI0 : EII0 : EIr0 = sin(αI + αII) : (sin(αI + αII) + sin(αII − αI)) : sin(αII − αI).
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B. E in the plane of incidence, H perpendicular to the plane of incidence.
We can proceed analogously to the previous derivation when we correspond-
ingly exchange E and H. Preserving the tangential component of H and E,
respectively, gives

HItg + HIrtg = HIItg (here H = Htg !) and

EItg = cos αIEI0e2πikI2x2 − cos αIEIr0e2πikIr2x2 = cos αIIEII0e2πikII2x2 .

If we again substitute the amplitudes of the magnetic field strength by those
of the electric field strength and use the addition theorem of trigonometric
functions we get for E in the plane of incidence the second Fresnel formula

EI0 : EII0 : EIr0 = tan(αI + αII) :
{

tan(αI + αII)
cos(αI − αII)

+
tan(αII − αI)
cos(αI + αII)

}
: tan(αI− αII).

With the aid of the Fresnel formulae we can now calculate the intensity of the
reflected and refracted waves for the case of isotropic media by constructing
the respective Poynting vectors and also take into account the change of the
ray cross-section. The cross-section qII in medium II is

qII = qI cos αII/ cos αI,

where qI is the cross-section of the incident ray. Moreover, the energy conser-
vation of course holds. This is guaranteed by the Fresnel equations, as one can
easily check (|SI| = |SIr|+ |SII|).

We have for the intensity IIr of the reflected wave in the case E perpendicu-
lar to the plane of incidence

IIr

II
=
(

sin(αI − αII)
sin(αI + αII)

)2

=

1− nII

nI

cos αII

cos αI

1 +
nII

nI

cos αII

cos αI


2

using sin αI/ sin αII = nII/nI.
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The result for perpendicular incidence (αI = 0) is

IIr

II
=
(

1− nII/nI

1 + nII/nI

)2
.

For the reflection at a plate of refractive index 1.50 adjacent to vacuum or air
one thus obtains only the small fraction of about 4%. On the other hand, one
observes for glancing incidence (αI = 90◦) independent of nII/nI

IIr
II

= 1, hence
the full reflection of the incident wave. From the second Fresnel formula one
gets the same result for both these limiting cases. The course of IIr/II between
both limiting values is, however, different for both directions of vibration. In
particular, as a consequence of the second formula for E in the plane of inci-
dence, the amplitude of the reflected wave

IIr = II

(
tan αII − αI)
tan(αII + αI)

)2

vanishes,

as (αII + αI) approaches 90◦, that is, the reflected and refracted waves are per-
pendicular to one another.

If one substitutes in the law of refraction sin αI/ sin αII = nII/nI the angle
αII by (90− αI), we get Brewster’s law for the vanishing of the reflected wave
tan αI = nII/nI. Because of the conservation of energy, the whole intensity of
the incident wave goes into the refracted wave. If the incident wave is com-
posed of light with arbitrary directions of vibration then the ray reflected un-
der the Brewester angle contains only the direction of vibration perpendicular
to the plane of incidence. This is the simplest method to produce polarized
light.

A further phenomena is the case of total reflection. If nII < nI, there exists a
limiting angle for αI, above which no refracted wave can occur. The condition
is αI I = 90◦ and thus sin α′I = nII/nI. A method to determine refractive indices
is based on the measurement of the angle α′I of the total reflection.

We now return to refraction when a light wave is incident upon an aniso-
tropic medium. According to the above, with a known plane of incidence,
we merely have to take into account the condition for the preservation of the
tangential component of the propagation vector of the incident wave. With
the help of the index surface we establish which refractive indices in the plane
of incidence are consistent with the condition kItg = kIItg. The index surface
is a double-shelled centrosymmetric surface, constructed such that the lengths
of the radius vectors x are equal to the refractive indices of the given directions
of propagation, hence xi = ngi. In the principal axes’ reference system of the
indicatrix, one obtains the index surface from the velocity equation derived
above for a given direction of propagation ∑i g2

i /(v2
i − v2) = 0, when we

write v = c/n, vi = c/ni, xi = ngi, and x2 = n2. The result is the equation for
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the index surface:

∑
i

x2
i n2

i

∑j x2
j − n2

i
= 0

or after multiplication with the common denominator and separation of a fac-
tor ∑i x2

i

(x2
1n2

1 + x2
2n2

2 + x2
3n2

3)(x2
1 + x2

2 + x2
3)− x2

1n2
1(n2

2 + n2
3)

− x2
2n2

2(n2
3 + n2

1)− x2
3n2

3(n2
1 + n2

2) + n2
1n2

2n2
3 = 0.

The index surface of an isotropic medium, hence also cubic crystals, is a sphere
of radius n. In optical uniaxial crystals (one principal symmetry axis 3,4, or 6),
the index surface consists of a sphere x2

1 + x2
2 + x2

3 = n2
1 = n2

2 and the ellipsoid
x2

1/n2
3 + x2

2/n2
3 + x2

3/n2
1 = 1, as is seen by setting n1 = n2. With these crystals

of trigonal, tetragonal, and hexagonal symmetry we have accordingly for each
direction of propagation a wave with the fixed refractive index n1. This wave
is called the ordinary wave. If n1 < n3, the crystal is said to be optical positive
(optical positive character) and in the other case n1 > n3 optical negative.
We will return to the diagnostic value of this classification and the general
definition of the optical character later.

Now to construct the refracted wave, we place the center of the index sur-
face on the intercept line of the boundary surface and the plane of incidence.
The curves of intersection of the plane of incidence with the index surface are
cut, in medium II, by the line parallel to the axis of incidence at an interval of
nI sin αI = (c/ν)kItg (Fig. 4.11). The lines from the center of the index surface
to the intersection points give the propagation direction of the wave refracted
in medium II. Therefore, the condition for the conservation of the tangential
component of kI and hence the law of refraction is fulfilled:

nI sin αI = (c/ν)kItg = (c/ν)kIItg = nII sin αII.

In anisotropic media, two waves appear in the general case, except in total
reflection.

The associated ray vectors are obtained with the aid of the Poinsot construc-
tion. For this purpose, the directions of vibrations of both refracted waves
must be constructed. This occurs with the help of the indicatrix and the sec-
tional ellipses perpendicular to both propagation vectors k′II and k′′II analo-
gous to Fig. 4.8. Besides wave double refraction, one also observes ray dou-
ble refraction. In the case of perpendicular incidence of the wave we have
αI = αII = 0, i.e., the refracted waves keep the direction of the incident wave,
although they possess different propagation velocities and different directions
of vibration of the D-vector. Hence we observe no wave double refraction. If
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Figure 4.11 Construction of the refraction at the transition from an
isotropic medium I into a double-refracting medium II. Intersection
of the incident plane with the double-shelled index surface. Con-
servation of the tangential component of kI.

the principal axes of the indicatrix lie oblique to the axis of incidence, then
with perpendicular incidence, we also have ray double refraction. When con-
structing the refracted waves at the reverse side of the plate we merely have
to take into account the conservation of the tangential component of the k-
vectors as before.

Fig. 4.12 shows the separation of rays through a plane-parallel plate under
perpendicular incidence. This arrangement also allows, in a simple manner,
the production of linearly polarized light.

We now calculate the angle of ray double refraction at perpendicular inci-
dence. The position of both D-vectors results from the condition

D1 : D2 : D3 = g1n2
1/(n2 − n2

1) : g2n2
2/(n2 − n2

2) : g3n2
3/(n2 − n2

3),

where for n we set the values n′ and n′′ from the index equation for the given
direction of propagation.

With the notation Ei = aijDj one finds the directions of the associated E-
vectors (aij are the polarization constants; in the principal axes’ system aii =
1/n2

i and aij = 0 for i 6= j). Both ray vectors s′ and s′′ are given by s′ ‖ E′ × H ′

and s′′ ‖ E′′ × H ′′, whereby the vectors H ′ and H ′′ run parallel to D′′ and D′

respectively. Thus, one finds for the angle of ray double refraction ζ, with the
help of the scalar product s′ · s′′:

cos ζ =
(E′ × H ′) · (E′′ × H ′′)
|E′ × H ′||E′′ × H ′′|

(see also Exercise 11).



4.3 Second-Rank Tensors 127

Figure 4.12 Ray double refraction and ray
separation on a plane-parallel plate of an
optical uniaxial crystal at perpendicular
incidence (the indicatrix is a rotation el-
lipsoid!). The ordinary ray so (direction of
vibration perpendicular to the plane of in-
cidence) experiences no refraction. The
direction of vibration of the extraordinary

ray se lies within the plane of incidence. se
itself runs within the crystal parallel to the
trace of the tangent of the indicatrix at the
piercing point of De (Poinsot construction).
The ray separation after refraction at the
reverse side is q = L tan ζ (L thickness of
plate).

4.3.6.2 Determining Refractive Indices

Besides the possibilities discussed above (e.g., total reflection or reflection co-
efficients using the Fresnel formulae), the practical determination of refractive
indices is mainly made by deflection through a prism. In isotropic media, min-
imal deflection allows very exact measurements, whereby the light ray runs
symmetric to the prism. Furthermore, the adjustment of the minimal deflec-
tion is, to a first approximation, noncritical with respect to small deviations
from the exact position for minimal deflection (see Exercise 12).

On the other hand, for anisotropic crystals, perpendicular incidence has
proven rather successful, because here no wave double refraction takes place,
i.e., the wave normals of both possible waves in the crystal run parallel to the
normal on the front prism face (Fig. 4.13a). Hence, we know with high relia-
bility the direction of the wave normals in the crystal. Let the prism angle be
ϕ. Because sin αI/ sin αII = nII/nI and αII = ϕ one obtains for the deflection
angle α = αI− ϕ and thus sin(α + ϕ)/ sin ϕ = nII/nI. The deflection angle can
be directly determined with the help of a goniometer, where a detector system
is moved on the periphery of a circle, or by the aid of length measurements
(Fig. 4.13b).
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(a) (b)
Figure 4.13 (a) Prism method with perpendicular incidence. (b)
Measurement of the deflection angle by a goniometer or by the aid
of a measurement of the lengths A and B.

We now discuss the general case of the measurement of the complete set of
refractive indices of a triclinic crystal. We start with the crystal-physical refer-
ence system and prepare three prisms with the refractive edge ej (j = 1, 2, 3)
and a face perpendicular to ei, the respective transmission direction at perpen-
dicular incidence (Fig. 4.14). In a first step, we determine for each transmission
direction ei the directions of vibrations of both possible D-vectors, D′ and D′′.
This is performed best on a thin, plane-parallel crystal plate by the aid of po-
larization microscope under crossed polarizers. If the direction of vibration of
D′ or D′′ agrees with the transmission direction of the first or second polar-
izer, the plate appears completely dark after the second polarizer: Extinction
position (see Section 4.3.6.3). Let the angle between ej and the transmission di-
rection of the first polarizer in the extinction position be ψi, whereby the fixed
position of the respective vectors as shown in Fig. 4.14 is to be maintained.
In order to avoid confusion, the indices i, j, k are to be chosen in a cyclic se-
quence. In a second step we measure the deflection angles α′i and α′′i for each
of the three transmission directions. From these we obtain the associated re-
fractive indices n′i und n′′i . The assignment of the extinction angle ψi to D′

is to be controlled by the aid of a polarizer placed in front of the prism. The
polarizer is rotated until the intensity of the respective ray (deflection angle
α′) vanishes. D′ is then perpendicular to the transmission direction of the po-
larizer. We now have available a total of nine quantities, namely ψi, n′i and
n′′i (i = 1, 2, 3), for the determination of the six coefficients aij of the indicatrix.
The sectional ellipse perpendicular to ei is given in the crystal-physical system
by

ajjx2
j + akkx2

k + 2ajkxjxk = 1

(do not sum!; xi = 0 in the equation aijxixj = 1!).
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Figure 4.14 Measurement of indices of refraction on triclinic crys-
tals by the prism method with perpendicular incidence. Pay at-
tention to the sense of rotation of the angle ψi when applying the
inverse transformation.

A plane principal axes’ transformation

e′i = ei

e′j = cos ψiej + sin ψiek

e′k = − sin ψiej + cos ψiek

transforms the equation of the sectional ellipse into a′jjx
′2
j + a′kkx′2k = 1. We

have a′jj = 1/n′2i and a′kk = 1/n′′2i .
We find the necessary coefficients with the help of the inverse transforma-

tion (see Section 4.3.2)

ajj = cos2 ψia′jj + sin2 ψia′kk;

akk = sin2 ψia′jj + cos2 ψia′kk;

ajk = akj = 1
2 (a′jj − a′kk) sin 2ψi.

One then obtains the three principal coefficients a11, a22, and a33, each twice,
independent of one another and thus we have a good control of the reliability
of the measurement.

In a third step we perform a general principal axes’ transformation and find
the principal refractive indices n1, n2, and n3 as well as the associated direc-
tions of vibrations of the D-vectors. With this method one can achieve, with-
out special measures, an accuracy of about 10−4 for the principal refractive
indices, when the specimens are homogenous and adequately oriented and
prepared. The dimensions of the prisms play an important role with respect to
the quality of the preparation, particularly with soft crystals. The edge lengths
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of the prisms should not be essentially smaller than 6 mm and the prism an-
gles should be selected to be as large as possible up to just about the limit for
total reflection.

The determination of the indicatrix of crystals of higher symmetry is sub-
stantially easier. For example, with optical uniaxial crystals one needs only
one prism, in which the entrance face of the light ray contains the respective
principal symmetry axis.

4.3.6.3 Plane-Parallel Plate between Polarizers at Perpendicular Incidence

In the practical application of crystal optics, the plane-parallel plate is the
most important standard preparation in polarization microscopy as well as
in technical components. This also applies to the investigation of higher op-
tical effects (electro-optics, piezo-optics). The transmission takes place almost
exclusively in perpendicular incidence. Here we derive the intensity formula
for the transmitted ray dependent on the position of the direction of vibration.

A linear polarized wave emerging from the first polarizer P1 strikes the crys-
tal plate. There it is split into components parallel to the directions of vibra-
tions of the associated sectional ellipse. After passing through a thickness
L both waves leave the plate and unify themselves to an elliptically polarized
wave. This means, that we have a wave composed of two plane-polarized par-
tial waves with the same propagation vector (and hence the same frequency),
however, with different directions of vibration and phase (time difference of
the maximum amplitude). A second polarizer P2 transmits only that compo-
nent, whose direction of vibration corresponds to the transmission direction
of P2. From the square of the amplitude of this component we then obtain a
measure for the intensity of the transmitted light.

We introduce the following notations for the calculation (Fig. 4.15):

• Normal on the boundary surface: e3,

• Direction of vibration of the first polarizer P1: e1,

• Directions of vibration of the sectional ellipse (directions of major and
minor semiaxis): e′ and e′′,

• Direction of vibration of the second polarizer P2: e′1,

• Angle between e1 and e′: φ,

• Angle between e1 and e′1: ψ.

We describe the incident wave by D = D0e2πi(k·x−νt)e1, whereby k = k3e3.
When the wave enters the crystal (x3 = 0), D it is split into components

parallel to e′ and e′′,

D0e1 = D′
0e′ + D′′

0 e′′ with D′
0 = D0 cos ϕ, D′′

0 = −D0 sin ϕ.
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Figure 4.15 Plane-parallel plate between two polarizers P1 and P2.

After passing through a distance x3 = L both partial waves combine on the
top side of the plate to

D = D0 cos ϕe2πi(k′3L−νt)e′ − D0 sin ϕe2πi(k′′3 L−νt)e′′.

After reentering in air or vacuum, respectively, we have

D = D0 cos ϕe2πiMe′ − D0 sin ϕe2πi(M+d)e′′ with

M = L/λ′ + (x3 − L)/λ0 − νt

and d = L(n′′ − n′)/λ0, whereby λ0 means the wavelength in air or vacuum
(n = λ0/λ!), respectively.

Because

e′ = cos(ψ− ϕ)e′1 − sin(ψ− ϕ)e′2,

e′′ = sin(ψ− ϕ)e′1 + cos(ψ− ϕ)e′2 (with e′2 · e′1 = 0)

we obtain for the amplitude of the wave transmitted through the second po-
larizer

D‖P2
= D0 cos ϕ cos(ψ− ϕ)e2πiM − D0 sin ϕ sin(ψ− ϕ)e2πi(M+d).

If we ignore reflection losses at both boundary surfaces, we obtain for the time
average of the transmitted intensity I the following value:

I = I0 cos2 ϕ cos2(ψ−ϕ)(1−tan ϕ tan(ψ−ϕ)e2πid)(1−tan ϕ tan(ψ−φ)e−2πid).
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Here we have used the fact that the time average of the intensity is propor-
tional to the square of the magnitude of the complex amplitude of D, hence
I = qD‖P2

D̄‖P2
, and I0, the intensity of the primary wave, is to be correspond-

ingly represented by I0 = qD0D̄0. q is a proportionality factor.
With the help of the relations

eis + e−is = 2 cos s, cos s = 1− 2 sin2(s/2),

sin(u + v) = sin u cos v + sin v cos u and

cos(u + v) = cos u cos v− sin u sin v

we can write the intensity formula in a much simpler form:

I = I0(cos2 ψ + sin 2ϕ sin 2(ψ− ϕ) sin2 πd).

The quantity d = L(n′′ − n′)/λ0 is called the optical path difference, mea-
sured in wavelengths (for air or vacuum, respectively). Of special practical
importance is the case of crossed polarizers ψ = 90◦.

Here

I = I0 sin2 2ϕ sin2 πd.

This relationship is the basis of polarization microscopy as well as of the quan-
titative measurement of the optical path difference and its variation under
external conditions. If e′ is parallel or perpendicular to e1 or e′1 = e2, the di-
rections of vibrations of the polarizers, then I vanishes completely (ϕ = 0 or
90◦; extinction position). In the so-called diagonal position ϕ = 45◦ (and odd
multiples thereof), I takes on a maximum. The factor sin2 πd causes a strong
dependence on the wavelength of the primary radiation. If one works with
white light, then those regions of the spectrum are attenuated or extinguished
for which πd = mπ (m integer), hence d = m or λ0 = L(n′′ − n′)/m. As
a consequence, one observes the characteristic color phenomena, from which
the experienced polarization microscopist, at least in the range of small values
of m, can draw quantitative conclusions about the existing path difference.

If one places an arrangement of several crystal plates with parallel direc-
tions of vibration between the polarizers, the path differences di add accord-
ing to d = ∑i di. The application of the so-called compensators is based on this
fact. Compensators are crystal plates whose effective path difference can be
varied within certain limits by changing the active thickness (quartz-wedge
compensator, Fig. 4.16) or by rotating a plate perpendicular to the transmis-
sion direction (rotatory compensator).
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Figure 4.16 Quartz-wedge compensator. The effective thickness
Leff can be varied by translation of the wedges. In order to achieve
high resolution the edge angle ε should be chosen to be suffi-
ciently small. The wedges possess the same orientation. The optic
axis is oriented within the outside faces of the plate.

4.3.6.4 Directions of Optic Isotropy: Optic Axes, Optic Character

In each crystal there exist directions having a circle as the sectional ellipse.
The associated directions of vibration of the D-vectors are, in this case, not
fixed by the sectional ellipse. The refractive indices of all waves with this
propagation direction are the same. We call these directions of isotropy of
wave propagation optic axes. We consider the case of an arbitrary indicatrix in
the principal axes’ system:

∑
i

x2
i /n2

i = 1 with n1 < n2 < n3.

If we vary the position of the propagation directions perpendicular to e2,
then one principal axis, respectively, of the sectional ellipse remains unaltered,
namely that parallel to e2 with a length of n2. The other principal axis changes
its position between the values n1 and n3. Since n2 lies between these values,
there exists one direction in which n′ = n′′ = n2.

Let the given propagation directions form an angle V with the direction e3
(Fig. 4.17). We thus have cos V = x1/n2.

The condition for the circular section is

x2
1 + x2

3 = n2
2 and x2

1/n2
1 + x2

3/n2
3 = 1.

After eliminating x3 we find

cos V =
x1

n2
= ±n1

n2

√
n2

3 − n2
2

n2
3 − n2

1
= ±

√√√√√√√√
n2

3
n2

2
− 1

n2
3

n2
1
− 1

.

The angle 2V between both these equivalent optical axes is called the axial an-
gle. We call the bisector of the smaller angle between the optical axes the acute
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Figure 4.17 Construction of the optic axes A1 and A2 in the plane
perpendicular to the medium semiaxis e2 (axial plane). In the
present case the acute bisectrix runs parallel to e3 (optically posi-
tive, if n3 > n1).

bisectrix, the other bisector is called the obtuse bisectrix. The plane spanned
by both axes is called the axial plane, their normal (parallel e2) is called the
optical binormal. We can now define the optic character in general:

optically positive, if acute bisectrix parallel to largest semiaxis n3
(largest refractive index),

optically negative, if acute bisectrix parallel to shortest semiaxis n1.
In crystals with a three-, four-, or six-fold principal axis, the indicatrix takes

on the form of an ellipsoid of revolution. Both optical axes converge to one
optical axis. Such crystals are therefore called optical uniaxial as opposed to
the orthorhombic, monoclinic, and triclinic crystals which are referred to as
optical biaxial.

The optic character is an important and easily accessible criterion for the di-
agnosic work. If a crystal plate, cut approximately perpendicular to an optic
axis and aligned between crossed polarizers, is irradiated by a divergent beam
of light, one can observe simultaneously the change of the path difference as
a function of the deviation of the transmission direction from the optic axis
(conoscopic imaging). With optic uniaxial crystals, the directions of identical
path difference lie in cones around the optic axis and are identified by concen-
tric rings around the piercing point of the optic axis. If one works with white
light, one observes color phenomena which correspond to the progress of in-
terference colors of a plane-parallel plate with increasing path difference. For
this reason the curves are termed isochromates. Furthermore, the directions,
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(a) (b) (c)
Figure 4.18 Conoscopic images around optical axes taken
under crossed polarizers. (a) uniaxial, not optically active
(C(NH2)3Al(SO4)2 · 6H2O); (b) uniaxial, optical active (cesium
tartrate); (c) biaxial, not optical active (calcium formiate, diagonal
position).

in which the principal axes of the sectional ellipse run parallel to the directions
of vibration of the polarizers, show extinction. These directions converge in
the image field to dark lines called isogyres. In optical biaxial crystals, the
isochromates and the isogyres deviate in a characteristic manner from the im-
age of uniaxial crystals (Fig. 4.18). If one now places an auxiliary crystal, with
a path difference of around a quarter of a wavelength, in the ray path, one ob-
serves in different directions addition or subtraction of the path difference and
thus a characteristic change of the interference colors. One can immediately
recognize the optical character from the increase or decrease of the effective
path difference in the vicinity of an optical axis, dependent on the position of
the major semiaxis of the sectional ellipse of the auxiliary crystal.

The characteristic axis images can also be used for a fast and convenient
determination of the orientation of large crystals. For this purpose, one places
the crystal to be investigated in a cuvette with a liquid possessing a refractive
index roughly coincident with that of the crystal. Two polarizers are then
placed in front and behind the cuvette in crossed position. With divergent
white light coming directly from a light bulb in front of the first polarizer, the
position of the optical axis(es) can be located, with high accuracy, within a few
minutes by turning the crystal.

The optical axes play a role in the determination of the directions of vibra-
tion of the D-vectors for an arbitrary propagation direction g with the aid of
Fresnel’s construction in a stereographic projection. We draw the optical axes
A1 and A2 as well as the propagation vector g from the center of the indi-
catrix. The normals L1 and L2 on the planes spanned by A1 and g as well
as A2 and g intercept the indicatrix in points possessing a distance n2 from
the center. This means, both normals lie symmetric to one of the semiaxes of
the sectional ellipse (perpendicular to g). The bisectors of the normals L1 and
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Figure 4.19 Fresnel’s construction of the directions of vibration D′

and D′′, respectively, from the position of the propagation vector
g and the optical axes A1 and A2. The construction can be per-
formed conveniently by the aid of the stereographic projection.

L2 then deliver the associated directions of vibration (Fig. 4.19). In uniaxial
crystals, the position of the directions of vibrations is particularly easy to rec-
ognize. The D-vector of the extraordinary wave vibrates in the plane spanned
by g and the optical axis (principal section), and the D-vector of the ordinary
wave vibrates perpendicular to the principal plane.

4.3.6.5 Sénarmont Compensator for the Analysis of Elliptically Polarized Light

Any number of waves with a fixed frequency ν and a common direction of
propagation g, but with different directions of vibration and arbitrary phase
combine in isotropic media to form an elliptically polarized wave. One can
imagine this wave as composed of two linear polarized waves with mutually
perpendicular directions of vibration and with a phase difference of 90◦. This
is recognized as follows. Let arbitrary waves Dj = Dj0e2πi(k·x−νt+αj) with
Dj · k = 0 unite to the resultant D = ∑j Dj. In a Cartesian reference system let
Dj0 be resolved into components

Dj0 = Dj0 cos ϕjeI + Dj0 sin ϕjeII (k ‖ eIII).

We then have

D= e2πi(k·x−νt)(DI0e2πiϕI +DII0e2πiϕII)= e2πiA(DI0+DII0e2πiδ)= DI+DII,
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where

DI0e2πiϕI = ∑
j

Dj0 cos ϕje
2πiαj eI,

DII0e2πiϕII = ∑
j

Dj0 sin ϕje
2πiαj eII,

A = (k · x− νt + ϕI) and δ = (ϕII − ϕI).

The resultant of D to a certain value of A is obtained from the real part of D
in the directions eI and eII. Thus

Re(DI) = DI = DI0 cos 2πA and

Re(DII) = DII = DII0 cos 2π(A + δ).

Elimination of A using

cos 2π(A + δ) = cos 2πA cos 2πδ− sin 2πA sin 2πδ

gives

DII/DII0 − DI/DI0 cos 2πδ = −
√

1− (DI/DI0)2 sin 2πδ.

After squaring we have

D2
I /D2

I0 + D2
II/D2

II0 − 2DIDII cos 2πδ/DI0DII0 = sin2 2πδ.

This is the equation of an ellipse. The resultant of D passes through the ellipse
once per vibration. The position of the principal axes of the ellipse and the
extreme values of D are calculated with the help of a plane principal axes’
transformation. The result for an angle of rotation ψ around eIII is

tan 2ψ =
2DI0DII0 cos 2πδ

D2
I0 − D2

II0
.

The associated extreme values are D′
I0 and D′′

II0. In the rotated reference sys-
tem, the equation of the ellipse is (D′

I/D′
I0)

2 + (D′
II/D′

II0)
2 = 1. This means,

the elliptic polarized wave can also be represented as a superposition of two
linear polarized waves with mutually perpendicular directions of vibration.
These exhibit a phase difference of 90◦, as one recognizes from the equivalence
of the equation of the ellipse in the principal axes’ system with the parameter
representation

D′
I = D′

I0 cos 2πA′ and D′′
II = D′

II0 sin 2πA′.

We use the Sénarmont compensator to analyze elliptic polarized light. This
consists of a crystal plate with a path difference of λ0/4 (e.g., a cleavage
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lamella of mica or a quartz plate of corresponding thickness) and a polarizer,
both of which can be rotated independently around their common normal. In
order to analyze the incident elliptic polarized light, one rotates the λ0/4-plate
and the direction of vibration of the polarizer until complete extinction occurs.
From the position of the directions of vibration of the semiaxes of the λ0/4-
plate and the direction of vibration of the polarizer one obtains the amplitude
ratio D′

I0/D′
II0 and the position of the principal axes.

We explain the relation first for elliptically polarized light emerging from a
double refracting crystal plate exposed to a linear polarized wave with a di-
rection of vibration e1, which bisects the principal axes of the sectional ellipse
(diagonal position). After leaving the plate, both waves have amplitudes

D′ = D0
1√
2

cos 2πAe′ and D′′ = D0
1√
2

cos 2π(A + d)e′′

with d = L(n′′ − n′)/λ0.
D0 is the amplitude of the incident wave. We now split both waves into

components parallel and perpendicular to the direction of vibration of the po-
larizer according to

D1 =
D0

2
cos 2πA +

D0

2
cos 2π(A + d)

D2 = −D0

2
cos 2πA +

D0

2
cos 2π(A + d).

With the aid of

cos u + cos v = 2 cos
(

u + v
2

)
cos

(
u− v

2

)
and

cos u− cos v = −2 sin
(

u + v
2

)
sin
(

u− v
2

)
we obtain

D1 = D0 cos(πd) cos 2π(A + d/2)

D2 = −D0 sin(πd) sin 2π(A + d/2).

This is the normal representation of an elliptically polarized wave (partial am-
plitudes vibrate mutually perpendicular and have a phase difference of 90◦).
If we now place the λ0/4-plate in the ray path such that its directions of vi-
bration correspond to those of D1 and D2, hence parallel and perpendicular
to the direction of vibration of the polarizer, the phase difference changes by a
further 90◦. If the direction of vibration of the slower wave of the compensator
lies parallel to e1(n′′), the phase difference of both partial waves increases to
180◦. In the converse case, the phase difference vanishes (e1(n′)). In each case,
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we obtain a plane-polarized wave as a superposition of both partial waves.
The position of the resultant

Dres = ∓D0 cos(πd)e1 − D0 sin(πd)e2

( − for n′′ of the compensator parallel to e1, + for n′ perpendicular to e1,
n′′ > n′) can be determined with the help of the second rotatable polarizator,
which is rotated to the extinction position. The angle ψ between resultant and
e1 is given by

tan ψ = ε =
(

D2

D1

)
res

= sin(πd)/ cos(πd) = tan πd,

where ε specifies the eccentricity of the ellipse. Hence, one can not only an-
alyze the elliptically polarized light emerging from the crystal plate but also
measure the path difference of the given crystal plate, if it lies in the range of
up to one wavelength. This method finds its most important application in
the measurement of induced changes of the path difference, such as, e.g., in
electro-optic or piezo-optic effects (see Section 4.4.2). In order to improve the
accuracy, further devices of similar type have been developed. With the aid of
a left-quartz right-quartz double plate after Nakamura, the extinction position
can be most precisely fixed.

Circular polarized light is present, when |ε| = 1, i.e., when both partial
waves possess the same amplitude. One specifies elliptically polarized light as
left or right rotating depending on the sense of rotation of the resultant on the
ellipse. When facing in the propagation direction of the wave, one observes
right-rotating light, if the sense of rotation is counterclockwise, otherwise left-
rotating light. Often also the terms laev- and dextro-rotating are used.

4.3.6.6 Absorption

In isotropic absorbing substances one notes that the relative change in in-
tensity ∆I/I of a light ray is proportional to the infinitesimal thickness ∆x
through which it passes, thus ∆I/I = −µ∆x. µ is the absorption coefficient.
On integrating one finds I = I0e−µL, that is, an exponential decline with thick-
ness L (Lambert’s absorption law).

How can we describe this behavior in the material constants of wave prop-
agation? If one introduces, instead of the refractive power n, which up to now
was considered as a real quantity, a complex refractive index n = n0 + in0κ,
where n0 and κ are real quantities, a wave propagating in the direction e3 at-
tains the form

D = D0e2πi(nx3/λ0−νt) = D0e−2πn0κx3/λ0 e2πi(n0x3/λ0−νt).

The quantity 4πn0κ/λ0 then corresponds to the absorption coefficient men-
tioned above (I ∼ |D|2).
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The phenomenological description of absorption in the framework of
Maxwell’s equations is provided by the relation between refractive index and
the dielectric constant εrel,jj = n2

j (Maxwell’s relation, see Section 4.3.6). As
was shown in 4.3.3, there exists a relationship between the real part of the
electric conductivity and the imaginary part of the dielectric constant. Let
εij = ε′ij + iε′′ij. If we set

εrel,ij = n2
ij, with nij = nij0 + inij0κij,

we get by multiplying

ε′rel,ij = n2
ij0(1− κ2

ij) and ε′′rel,ij = 2κijn2
ij0.

The derivation of the basic equations for the propagation of plane waves runs
analogously to the procedure for nonabsorbing media, whereby all quantities
may now be complex. We will not display this here in detail, but will men-
tion the most important results. The basic law of crystal optics takes the fol-
lowing form: In an absorbing medium, two elliptically polarized waves with
D-vectors perpendicular to the propagation direction can propagate in any di-
rection. The major semiaxes of the elliptically polarized waves are mutually
perpendicular; the ellipses possess the same eccentricity and their D-vector
moves in the same sense.

A derivation of this law is found, e.g., in Szivessy (1928). For the quanti-
tative determination of the optical properties of absorbing crystals, two refer-
ence surfaces must be considered, the indicatrix, which reflects the real part of
the dielectric tensor and a second surface for the absorption coefficient, which
is also to be thought of as a second-order surface. In case the position of the
indicatrix is fixed by symmetry conditions, then the absorption surface is also
fixed by symmetry. One has to assign to each of the three principal refrac-
tive indices a principal absorption coefficient, with the help of which one can
describe the complete optical behavior. In monoclinic and triclinic crystals,
only one or none of the principal axes of both reference surfaces, respectively,
coincide.

With weak absorption, as, e.g., in most crystals with low electric conductiv-
ity, the law of crystal optics is valid, to a sufficient degree, for nonabsorbing
media. This means that for each direction of propagation, there exist two lin-
ear polarized vibrations with D-vectors lying parallel to the principal axes of
the sectional ellipse. However, the absorption coefficients of both waves are,
in general, different. Such a crystal plate shows, in linear polarized white light,
color phenomena dependent on the position of the direction of vibration of the
polarizer. This phenomenon is called pleochroism. In many crystals, e.g., in
certain varieties of tourmaline, the absorption for one of the two directions
of vibration is so strong that such a crystal plate can be directly used for the
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production of polarized light. Commercial polarization foils contain strongly
pleochroitic, parallel oriented crystals, which already in thin films give rise to
almost complete absorption in one of the two directions of vibration.

Fresnel’s formulae can also be directly adopted for absorbing media when
one allows complex indices of refraction. The law of refraction for light waves
passing through the boundary surface from a nonabsorbing medium I into an
absorbing medium II takes the form

sin αI

sin αII
=

nII

nI
=

nII0(1 + iκII)
nI

.

In the case of perpendicular incidence, we obtain from the amplitude ratio
with nI = 1 (vacuum)

EIr

EI
=

nII − 1
nII + 1

the reflectance

R =
∣∣∣∣nII − 1
nII + 1

∣∣∣∣2 =
(nII0 − 1)2 + n2

II0κ2
II

(nII0 + 1)2 + n2
II0κ2

II
.

In strongly absorbing media (κ � nII0) R approaches the value 1 (metallic
reflection).

If the medium II is anisotropic, one observes, in general, even with perpen-
dicular incidence, a dependence of the reflectance on the direction of vibration
of the incident linear polarized light. This phenomenon is called reflection
pleochroism. With oblique incidence such effects are even more prominent.
One can determine the optic constants of such crystals from an analysis of the
reflected light, which in absorbing media is usually elliptically polarized.

4.3.6.7 Optical Activity

In certain acentric crystals, as e.g., quartz or LiIO3, one observes a rotation
of the direction of vibration of the D-vector when a wave propagates in a
certain direction. The rotation is proportional to the thickness of the medium
traversed. This effect, which can also occur in cubic crystals and in liquids, is
called optical activity. The phenomenological description of optical activity is
achieved with the help of an extension of the relationship between E and D
according to

Di = εijEj + gijk
∂Ej

∂xk
.

What must be the nature of the tensor {gijk} so that, corresponding to obser-
vation, it does not change the energy content of an electromagnetic wave

E = E0e2πi(k·x−νt)
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by a reversal in propagation direction?
The electric energy density is calculated according to

Wel = ∑
i

∫
EidDi =

∫
∑
i,j

EiεijdEj +
∫

∑
i,j

Ei2πigijkkkdEj

with
dEj

dxk
= 2πikkEj.

The second term vanishes when gijk = −gjik. {gijk} must, therefore, be anti-
symmetric in the first two indices, if the energy density is to be independent of
the direction of the propagation vector. If one substitutes gijk by γlk according
to 2π

λ gijk = γlk or −γlk with l 6= i, j and i, j, l cyclic or anticyclic in 1, 2, 3,
respectively, one arrives at a clearer representation

gijk
dEj

dxk
= gijk · 2πikkEj = −i(G× E)i,

whereby G, the gyration vector, possesses the components Gi = γijgj. g
is as previously, the unit vector in the direction k. Thus we have Di =
εijEj − i(G × E)i. While {gijk} represents, in both first index positions, an
antisymmetric polar tensor, the tensor γij derived from this as well as the vec-
tor G are pseudo tensors. G × E delivers a polar vector because D and E are
polar; hence G is a pseudo tensor. From symmetry, the prescribed form of
the tensor in the point symmetry groups is found in Table 4.2. Recall that the
existence of an inversion center lets all components γij vanish, in agreement
with experimental findings.

We will now discuss at least some essentials of the propagation of plane
electromagnetic waves in optically active crystals in order to be prepared for
an understanding of higher order optical effects in a later section.

We get the index equation as follows. We proceed from the relation derived
from Maxwell’s equations

v2

c2 Dj = Ej − (g · E)gj.

With

v2

c2 = n−2, εrel,jj = n2
j and Di = εijEj − i(G× E)i.

The following equations are then valid in the principal axes’ system of the real
dielectric tensor:

Ej(n2
j − n2(1− g2

j )) + Ej+1(n2gjgj+1 + iGj+2)

+ Ej+2(n2gj+2gj − iGj+1) = 0 for j = 1, 2, 3.
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This homogenous system of equations has a solution for E 6= 0 only when its
determinant vanishes. From this condition, and after appropriate collection,
we obtain the index equation for optically active crystals

n4

(
∑

j
n2

j g2
j

)
−n2

(
∑

j
n2

j n2
j+1(1−g2

j+2)−(g×G)2

)
+n2

1n2
2n2

3−∑
j

n2
j G2

j =0.

The coefficient for n6 cancels out. A solution with given direction of propa-
gation g requires the knowledge of the principal refractive indices and of the
gyration vector. In the form

n4 − n2 ∑j n2
j n2

j+1(1− g2
j+2)

∑j n2
j g2

j
+

n2
1n2

2n2
3

∑j n2
j g2

j
=

∑j n2
j G2

j − n2(g ×G)2

∑j n2
j g2

j
= q2

the left-hand side corresponds to the index equation without activity (see Sec-
tion 4.3.6.1; with xi = ngi). Let the solutions be n′0 and n′′0 . Hence the index
equation has the form (n2 − n′20 )(n2 − n′′20 ) = q2. From this, one can find ap-
proximations for n′ and n′′, both possible refractive indices for the direction
of propagation g, when one writes in q2 for n2 an approximate value, e.g., n′20
or n′′20 . Experiments have shown that in almost all crystals investigated so far,
it suffices to calculate q2 under the assumption n1 = n2 = n3 = n. Then q2

becomes

q2
0 = (g ·G)2 because G2 − (g ×G)2 = (g ·G)2.

As a result, for n′ and n′′ we have

n′2, n′′2 =
1
2

{
n′20 + n′′20 ±

√
(n′20 − n′′20 )2 + 4q2

0

}
,

where

n′ > n′′ and n′0 > n′′0 .

If one enters n′ and n′′ into the basic equations and keeps the condition
n1 = n2 = n3 = n̄ for the terms connected with the gyration vector, whereby
n̄ is a mean refractive index, one finds the following approximation law for
the propagation of plane waves in optically active nonabsorbing crystals:

Two elliptically polarized transverse waves of the same ellipticity, but with
opposite sense of rotation can propagate in any arbitrary direction g. The
associated refractive indices are n′ and n′′. The major semiaxes of both ellipses
of vibration are mutually perpendicular and lie parallel to the directions of
vibration that would exist without optical activity in the given direction of
propagation (see, e.g., Szivessy, p. 811).
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Table 4.4 Optic properties of optical active crystals of trigonal, tetragonal and hexagonal sym-
metry.

PSG 3, 4, 6 (n1 = n2) PSG 32, 42, 62 (n1 = n2)
γ11 = γ22, γ33, γ12 = −γ21 γ11 = γ22, γ33
g = e3:

Gk = γk3g3
G1 = G2 = 0, G3 = γ33 G1 = G2 = 0, G3 = γ33
g ·G = γ33; g ×G = 0 g ·G = γ33; g ×G = 0

Index equation (for both groups):
n4 − 2n2

1n2 + n4
1 − γ2

33 = 0,
n′2 = n2

1 + γ33, n′′2 = n2
1 − γ33

Basic equations:
D1 = ε11E1 + iγ33E2
D2 = ε11E2 − iγ33E1
D3 = ε33E3

g = e1:
G1 = γ11, G2 = γ21, G3 = 0 G1 = γ11, G2 = G3 = 0
g ×G = γ21e3 g ×G = 0
g ·G = γ11 g ·G = γ11

Index equation:
n4 − n2

{
n2

1 + n2
3 −

1
n2

1
γ2

12

}
n4 − n2(n2

1 + n2
3) + n2

1n2
3 − γ2

11 = 0

+n2
1n2

3 − (γ2
11 + γ2

12) = 0
With n = n1 we have in both cases

n′2 resp. n′′2 = (n2
1 + n2

3)/2+ resp. − 1
2

√
(n2

1 − n2
3)

2 + 4γ2
11

Basic equations:
D1 = ε11E1 − iγ21E3
D2 = ε11E2 + iγ11E3
D3 = ε33E3 − iγ11E2 + iγ21E1

The D-vectors of these waves combine according to D = D′ + iuD′′ for n′

and D = D′′ + iuD′ for n′′, whereby D′ and D′′, respectively, run parallel to
the semiaxes of the sectional ellipse for missing optical activity and |D′| =
|D′′|. The ellipticity u is dependent on the optic constants. In very rare cases
of extremely large double refraction, one of course expects a certain deviation
from this situation.

As an example, we now discuss the propagation of light parallel and per-
pendicular to the optic axis in crystals of the PSG 3, 4, 6, 32, 42, and 62. Accord-
ing to Table 4.4, the components γ11 = γ22 and γ33 as well as γ12 = −γ21 exist
for the case of pure rotation axes. In the PSG 32, 42, and 62, γ12 = γ21 = 0.
Table 4.4 lists the relationships for both groups.

Besides the three material equations, we have available the following rela-
tionships Dj = n2Ej − n2(g · E)gj from the Maxwell equations to determine
the components of the D-vectors. For the case g = e3 we have D3 = 0 because
div D = k · D = 0. If we introduce for D1 and D2 the values of the material
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equations, we get

D1 = ε11E1 + iγ33E2 = n2E1

D2 = ε11E2 − iγ33E1 = n2E2.

Hence, with ε11 = n2
1 and the relationship n2 − n2

1 = ±γ33 we have: E1 = iE2
and D1 = iD2 for n′ as well as E2 = iE1 and D1 = −iD2 for n′′.

The resulting waves D′ = D1e1 − iD1e2 and D′′ = D1e1 + iD1e2 represent
two circular polarized waves, of which the first is left rotating and the second
right rotating, when g points in the positive e3-direction.

If linear polarized light enters a plate cut perpendicular to the optic axis in
perpendicular incidence, two circular polarized waves of opposite sense of ro-
tation originate in the crystal and propagate with a velocity corresponding to
the refractive indices n′ and n′′. After traversing the thickness L they immerse
in the vacuum and interfere to a linear polarized wave, whose direction of
vibration with respect to the primary wave is rotated by an angle ϕ.

The explanation is as follows: Let the primary wave be given by

D = D0e2πi(k3x3−νt)e1.

When entering the plate (x3 = 0), it splits up into two circular polarized
waves

D+ = (D0/2)e2πi(k′3x3−νt)e1 − (iD0/2)e2πi(k′3x3−νt)e2

and

D− = (iD0/2)e2πi(k′′3 x3−νt)e2 + (D0/2)e2πi(k′′3 x3−νt)e1.

For x3 = 0, the necessary condition D = D+ + D− is fulfilled.
After traversing the thickness L, both circular polarized waves propagate

with the same velocity.
The components vibrating in e1 and e2, respectively, are combined to give

D1 = (D0/2)e2πiA + (D0/2)e2πi(A+d)

D2 = (iD0/2)e2πi(A+d) − (iD0/2)e2πiA,

where

A = k′3L + k3(x3 − L)− νt for x3 > L and

d = (k′′3 − k′3)L.

The physically effective contents of D1 and D2 are the real parts

Re(D1) = D0/2
(
cos 2πA + cos 2π(A + d)

)
,

Re(D2) = D0/2
(
sin 2πA− sin 2π(A + d)

)
.
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With the help of the relations

cos u + cos v = 2 cos
u + v

2
· cos

u− v
2

and

sin u− sin v = 2 sin
u− v

2
· cos

u + v
2

one gets

Re(D1) = D0 cos πd · cos 2π

(
A +

d
2

)
and

Re(D2) = D0 sin πd · cos 2π

(
A +

d
2

)
.

Both components together form a linear polarized wave with the direction of
vibration

e = cos ϕ e1 + sin ϕ e2.

We have

ϕ = π(k′′3 − k′3)L =
π(n′′ − n′)L

λ0
.

ϕ can be easily measured from the extinction position of a rotatable polarizer
placed behind the crystal plate. With ϕ one also has γ33 because n′2 − n′′2 =
2γ33, hence

γ33 = (n′′ − n′)(n′′ + n′)/2 = ϕλ0(n′ + n′′)/2πL.

For (n′ + n′′) we can write 2n1 as an approximation. The negative angle of
rotation per mm thickness is termed the specific rotation: α = −180◦|n′ −
n′′|/λ0 (unit, degree per mm).

The derived relations are also valid for cubic crystals of the PSG 23 and 43
as well as for optically active isotropic substances.

For the case g = e1 we assume that γ12 vanishes. Since k · D = 0, D1 = 0,
and because D1 = ε11E1, E1 = 0 and g · E = 0. If one introduces in the dy-
namic basic equations Dj = n2Ej − n2(g · E)gj for Dj the values of the material
equations, one gets

D2 = ε11E2 + iγ11E3 = n2E2

D3 = ε33E3 − iγ11E2 = n2E3.

From these one also finds here a fixed ratio of E3/E2, namely

E3/E2 = (n2 − n2
1)/iγ11 = −iγ11/(n2 − n2

3),
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where ε11 = n2
1 and ε33 = n2

3. The first expression follows from the first
equation, and the second from the second. Hence,

D2/D3 = i(n2 − n2
3)/γ11 = iu.

With the known values for n′ or n′′ (see Table 4.4) we obtain the following
results for both amplitude ratios

(D2/D3)′ or (D2/D3)′′ = i{(n2
1 − n2

3)±
√

(n2
1 − n2

3)2 + 4γ2
11}/2γ11

= iu′ or iu′′,

respectively. One recognizes immediately that u′ = −1/u′′, i.e., there exists
two elliptically polarized waves with the same ellipticity, but opposite sense
of rotation. We mention at this point that the general proof for an arbitrary
direction of propagation and arbitrary symmetry proceeds in an entirely anal-
ogous manner. From div D = 0 it always follows that g · D = 0, i.e., D has
no components along the direction of propagation. The material equations are
then to be considered only for both components in the plane perpendicular to
g with corresponding results as above.

The determination of γ11 is possible by analysing the elliptically polarized
light emerging from a plane-parallel plate when a linear polarized wave enters
the plate in perpendicular incidence. The plate normal runs parallel to e1.

Let the primary wave be represented by

D = D0e2πi(k1x1−νt)e2.

Thus the two waves

D′ =
D0

1 + u′′2
e2πi(k′1x1−νt)e2 +

iu′′D0

1 + u′′2
e2πi(k′1x1−νt)e3,

D′′ = − iu′′D0

1 + u′′2
e2πi(k′′1 x1−νt)e3 +

u′′2D0

1 + u′′2
e2πi(k′′1 x1−νt)e2

propagate within the crystal (x1 ≥ 0).
After traversing the thickness L, the two elliptically polarized waves su-

perimpose to a wave whose ellipticity and position of the major semiaxis is
to be measured according to the methods discussed in Section 4.3.6.5. These
quantities contain the value γ11 as well as the refractive indices n′ and n′′.

The resulting elliptically polarized wave is composed of the real parts of the
vibrating components in e2 and e3:

Re(D2) =
D0

1 + u′′2
(cos 2πA + u′′2 cos 2π(A + d))

Re(D3) =
u′′D0

1 + u′′2
(sin 2π(A + d)− sin 2πA) with

A = k1(x1 − L) + k′1L− νt for x1 > L and

d = (k′′1 − k′1)L = (n′′ − n′)L/λ0.
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With the relation

cos u + B cos(u + v) =
√

1 + B2 + 2B cos v cos(u + δ),

where

tan δ =
B sin v

1 + B cos v
and the relation used above for (sin u− sin v) one finds

Re(D2) =
D0

1 + u′′2
√

1 + u′′4 + 2u′′2 cos 2πd cos 2π(A + δ)

Re(D3) =
2u′′D0

1 + u′′2
sin πd · cos 2π(A + d/2) with

tan 2πδ =
u′′2 sin 2πd

1 + u′′2 cos 2πd
.

With u′′ = 1 these values change into the formula derived previously for the
superposition of two circular polarized waves.

Finally we note that one can also have formally effects of second-order optical
activity in all centrosymmetric PSG except 4/m3, which are to be described by
a fourth rank tensor {gijkl} given by

Di = εijEj + gijk
∂Ej

∂xk
+ gijkl

∂2Ej

∂xk∂xl

with gijkl = −gjikl (Haussühl, 1990).

4.3.6.8 Double refracting, optically active, and absorbing crystals

Interference phenomena occurring, in general, in a plane-parallel plate can be
calculated approximately with the aid of a model constructed of thin, only
double refracting, only optically active, and only absorbing layers stacked al-
ternately. When entering the next respective layer, both linearly polarized or
both elliptically polarized waves must then be split according to the new di-
rections of vibration. Using a computer, this process can be repeated in quasi-
infinitesimal steps. In practice, it has been shown that in crystals with weak
double refraction (e.g., |n′ − n′′| < 0.05) a few triple layers per mm of tra-
versed thickness give sufficient agreement with experimental findings.

Other methods, as, e.g., the visually clear Poincaré representation or an el-
egant matrix method suggested by Jones (1948) are described in detail in an
overview article by Ramachandran and Ramaseshan (1967).

4.3.6.9 Dispersion

The dependence of the refractive indices, the absorption coefficients and the
components of the gyration tensor on the frequency of the wave is called dis-
persion. In an extended sense, the dependence of inducing quantities, such as
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temperature, mechanical stress, electric and magnetic fields, also fall in the do-
main of dispersion. We shall discuss these effects (electro-optics, piezo-optics,
magneto-optics) partly in more detail in later sections. The phenomena of dis-
persion can only be described in a satisfactory manner using atomistic models
of matter. In the classical picture, optical phenomena are attributed to the
interaction of the electric field with the oscillators present in the matter. On
the one hand, this concerns the states of the electrons responsible for the opti-
cal behavior close to the appropriate eigenfrequencies and on the other hand,
the mutual oscillations of the lattice particles. The latter determine in many
substances the optical properties in the infrared spectral region. As with all in-
teractions in oscillating systems, the difference between the frequency ν of the
exciting wave and the eigenfrequencies νk play a decisive role. From simple
model calculations one can show that the interaction of the individual oscil-
lators can be described to a good approximation by the following relation for
the principal refractive indices:

nj(ν)2 = 1 + ∑
k

(e2/m)Ajk

ν2 − ν2
k

,

where the coefficients Ajk are proportional to the number of the kth oscilla-
tors with eigenfrequency νk. e is the electron charge, and m the mass of the
electron. In crystals with a simple structure, dispersion, in a not too broad
spectral range, can often be well described by two dispersion oscillators. In
many applications, dispersion formulae, as e.g., the Sellmeier equation

n2 = B1 + B2/(λ2
0 − B3)− B4λ2

0

have proven useful. Their approximate validity confirms the relation men-
tioned above. λ0 = c/ν is the vacuum wavelength. The functions nj(ν) are
obtained by a computer fit of the coefficients Bi to the measured values.

The Lorentz–Lorenz formula gives excellent results for the estimation of a
mean refractive index, especially in ionic crystals. The formula is obtained
from the Clausius–Mosotti relation (see Section 4.3.3), when one replaces εrel
by n2:

n2 − 1
n2 + 2

=
ρ

M
R.

R is proportional to the mean effective polarizability for the respective fre-
quency and is called molar refraction. Experimentally one finds that R is
composed of quasi-additive and quasi-invariant contributions of the lattice
particles, the so-called ionic refractions.
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4.3.7
Electrical Conductivity

The well-known statement of Ohm’s law U = IR, where U represents the
electric voltage in a piece of conducting wire, R the electric resistance and I
the current density, must be written in a generalized form when we want to
apply it to crystals. We imagine a linear relationship between the vector of the
electric current density I and the vector of the electric field strength given by

Ii = sijEj.

The components sij are material constants independent of the form of the crys-
tal. They specify the electrical conductivity tensor, and are to be considered as re-
ciprocal resistances. In experiments we measure the current density in units of
charge per mm2 cross-section persecond. The Coulomb (Symbol C) is mainly
used as the unit of charge. Thus the unit of current density is Ampére mm−2.
The electric field strength is given in Volt mm−1. The components sij then
have the dimension Ampére Volt−1 mm−1 = Ohm−1 mm−1. The scarce ex-
perimental findings so far on conducting crystals of low symmetry indicate
that the electrical conductivity tensor is symmetric, hence sij = sji. This con-
dition is also required by the Onsager principle that is based on the reversibility
of processes at atomic scale. A short and secure explanation cannot be given
here, so that in the following we will assume the correctness of Onsager’s prin-
ciple (see e.g., Landau-Lifschitz, 1968, p. 374). In crystals, normally no charge
creation takes place so that div I = 0. The electric field strength is connected
to the electrostatic potential by Ej = −(grad U)j.

Thus the general potential equation for conducting crystals is

sij
∂2U

∂xi∂xj
= 0 (summed over i, j = 1, 2, 3).

The measurement of electrical conductivity is naturally best achieved with
the aid of longitudinal effects on thin crystal plates. One measures the elec-
tric voltage U applied on the metallized surfaces of the plate and the current
density I. The electric field is perpendicular to the surface of the plate. In
the case of very low conductivity it is important to take care that the currents
over the edges of the plates are kept small or do not enter into the results
of the measurement. In order to prevent the interfering effects of heating up
the probe during the measurement, it is recommended to work only with ex-
tremely small electric power. Since highly accurate commercial current- and
voltage-measuring instruments are available also for extremely small currents
up to an order of magnitude of 10−14 Ampére, such measurements do not
cause any principal difficulties. It has been shown, however, that the values of
conductivity exhibit strong scattering, even in crystals of very high purity and
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good quality (low density of lattice defects). The reason is the special role of
lattice imperfections for the conduction mechanisms. In metallic conducting
crystals lattice imperfections lead to a scattering of the moving charge carriers
and thus to a reduction in conductivity, while impurities and lattice imper-
fections in distinctly weak conductors as, e.g., in most ionic crystals usually
result in a strong increase in conductivity. Insights on the type of lattice im-
perfections can be gained from measurements of the temperature dependence
of electric conductivity. Such investigations are thus suitable, within a certain
scope, for the characterization of lattice defects.

The anisotropy effects of electrical conductivity are usually extremely small.
One observes, for example, in the trigonal crystals of bismuth a ratio s11/s33 of
about 1.29 at 273 K. In the layer structure of graphite one finds a far better con-
ductivity in the planes perpendicular to the sixfold axis than in those parallel
to the sixfold axis. Aside from these layer structures, a distinct anisotropy also
exists in structures with conductivity along certain lattice directions similar to
a bundle of mutually isolated metal threads. Such a cable-type and uniaxial
conductivity, as observed, for example, in certain platinum compounds such
as K2Pt(CN)4Br0.3 · 3.2H2O or in LiIO3, where a s33/s11 of about 1000 appears,
cannot always be adequately described with our picture of a second-rank ten-
sor because practically only current threads exist parallel to the unique cable
direction. This is represented for a probe of hexagonal LiIO3 cut at 45◦ to the
sixfold axis (Fig. 4.20). If the probe is long enough, the conductivity along the
sixfold axis is no longer effective, because the current threads can no longer
connect both electrodes. A further important phenomenon is the formation
of layers of extremely reduced conductivity at the boundary of two different
types of media. These so-called depletion layers play an important role in

Figure 4.20 Cable-conductivity in uniaxial conductors (example
LiIO3). The current threads cannot connect the electrodes in the
case of a specimen cut sufficiently inclined toward the cable axis
(in LiIO3 the sixfold axis).
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electronic devices, where they are created in a great variety of forms for spe-
cific functions (transistor properties). In crystals with polar symmetry, the for-
mation of depletion layers in a unique preferential direction, as for example,
in hexagonal LiIO3, can generate highly differing values of the direct current
conductivity along the unique direction and its counterdirection. Such effects
can be explained by a change of the medium close to the electrodes during
current passage. In ionic crystals such effects result often by the depletion
of an ion type, for example, lithium ions in the region of the cathode. These
phenomena of conductivity cannot be explained by our tensorial approach.

Further effects in connection with electrical conductivity, such as the devia-
tion from Ohm’s law, the influence of a magnetic field, or external mechanical
strain will be discussed in later sections.

4.3.8
Thermal Conductivity

The transport of thermal energy obeys laws analogous to the transport of elec-
tric charge. The thermal current density appears instead of the electric current
density and the electric field E = − grad U is replaced by the temperature gra-
dient grad T = (∂T/∂xi)ei, where we consider the temperature T as a function
of position.

The thermal conductivity is then represented by

Qi = −λij(grad T)j.

The vector Q specifies the flow of heat per second through a cross-section of
1 mm2 (units Joule mm−2 s−1). Here we also assume the validity of Onsager’s
principle, which requires that the tensor {λij} is symmetric, hence λij = λji.
The measurement should be carried out preferably on a heat plate conduc-
tometer, if high accuracy is required and moreover when strong anisotropy
effects are expected. This equipment is constructed analogously to the case
of electrical conductivity (Fig. 4.21). Again only longitudinal effects are mea-
sured. The probe, in the form of a plate, is placed between two metal plates of
high thermal conductivity (e.g., copper), which because of their good conduct-
ing properties maintain an almost equal temperature over their complete vol-
ume. A small heater is mounted on one of the plates. The heat flows through
the probe into the second metal plate, that is cooled either by the uniform flow
of a coolant or by a Peltier element. If one succeeds in directing the heat loss in
the heated plate almost exclusively over the probe, then the applied electrical
energy is equal to the total amount of heat transported. After equilibrium, the
temperatures T1 and T2 produce a temperature gradient (T1 − T2)/D in the
probe of thickness D. Hence the longitudinal effect along the plate normals is
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Figure 4.21 Thermal conductometer. H heating plate, K crystal.
The plates I(T1) and I I(T2) are contacted by a thin film of a liquid
with high thermal conductivity.

given by

Q′
1 = −λ′11(T1 − T2)/D = Wel/F,

where Wep is the applied electrical power and F is the cross-section of the
probe.

Suitable measures must be taken to suppress heat losses. Furthermore, just
as in the case of electrical conductivity one must ensure a quasi-loss-free trans-
fer of heat from the plates to the probe and out of the probe. Thin films of oil as
a contact material have proven suitable in this respect. If one performs mea-
surements on plates of the same orientation but with different thicknesses and
plots Q′

1/(T1 − T2) as a function of 1/D, the slope of the curve gives a reliable
value for the longitudinal effect λ′11.

Another method is based on the measurement of the propagation velocity
of heat pulses along a cylindrical rod. For crystals this method is only useful
in special cases due to the large lengths required.

The interpretation of thermal conductivity proceeds from the scattering of
acoustic waves while propagating through a crystal. The heat content deter-
mines the number of thermally generated phonons. According to a simple
theory of Debye, which should be familiar to the reader from basic courses
in physics, the dependence of heat conductivity on the mean free wavelength
Λ of the phonons, the specific heat Cp, and the mean sound velocity v̄ of the
phonons in a given direction is described by the relationship:

λ′ = 1
3 CpΛv̄.

Here we recognize the important relation between thermal conductivity and
acoustic properties. The latter will be discussed in Section 4.5.1.

4.3.9
Mass Conductivity

The phenomenon of mass conductivity, which appears for example, during fil-
tration through a porous layer, the migration of oil through porous rocks, or
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the passage of gas through a thin membrane is completely analogous to elec-
trical and thermal conductivity. The driving force is the gradient of the hydro-
static pressure, in other words, the pressure difference (p1 − p2)/D per unit
length. The mass current density vector S, which describes the transported
mass in units of time and surface area is connected to the pressure gradient
through

Si = −qij(grad p)j.

The mass permeability tensor {qij} depends not only on the material but also
on the liquid or gas to be transported.

Mass conductivity measurements are made, in principle, under the same
aspects discussed for the measurement of thermal conductivity, i.e., it is ap-
propriate to measure the longitudinal effect of a flow running perpendicu-
larly through a plane-parallel plate. In single crystals this property has not
yet been quantitatively investigated so far. Crystals with very large lattice
particles or with certain vacancies or channel structures, as for example, the
zeolites or chelates, which are sometimes used as “molecular sieves,” possess
an anisotropic permeability. The diffusion of liquids or gases in crystals under
the influence of a pressure gradient also belongs to the field of mass conduc-
tivity.

4.3.10
Deformation Tensor

The mechanical change of shape of a medium is called deformation. This is
described by the deformation tensor, also called strain tensor, whereby the
rigid displacements and rotations accompanying the deformation shall be left
out of consideration. We measure the deformation through the displacement
experienced by two neighboring points P1 and P2. Let both points have the co-
ordinates (x1, x2, x3) and (x1 + ∆x1, x2 + ∆x2, x3 + ∆x3) in a fixed undeformed
coordinate system. Deformation carries over both points to the points P′1 and
P′2 with the coordinates

(x1 + ξ1, x2 + ξ2, x3 + ξ3) and

(x1 + ∆x1 + ξ1 + ∆ξ1, x2 + ∆x2 + ξ2 + ∆ξ2, x3 + ∆x3 + ξ3 + ∆ξ3).

. Before deformation, the mutual position of both points is described by the
vector ∆x and after deformation by the vector ∆x + ∆ξ (Fig. 4.22). The vector

∆ξ = (∆ξ1, ∆ξ2, ∆ξ3)

is called the displacement vector.
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Figure 4.22 Positions of points P1 and P2 before and after deforma-
tion (P′1 and P′2).

We now consider the components of the vector ∆ξ expanded in a Taylor
series in components of ∆x, thus

ξi(∆x)− ξi(0) = ∆ξi =
∂ξi
∂xj

∆xj +
1
2

∂2ξi
∂xj∂xk

∆xj∆xk + · · ·

The first term of the expansion is sufficient for many purposes:

∆ξi =
∂ξi
∂xj

∆xj.

The quantities ∂ξi
∂xj

are the components of the displacement tensor—a second
rank tensor. The tensor property is recognized from the interconnection of
the vectors ∆ξ and ∆x.

We now resolve the displacement tensor

∂ξi
∂xj

= εij + rij with εij =
1
2

(
∂ξi
∂xj

+
∂ξ j

∂xi

)
and rij =

1
2

(
∂ξi
∂xj

−
∂ξ j

∂xi

)
.

The symmetric part {εij} is called the deformation tensor, and the antisymmetric
part {rij} the rotation tensor. The tensor {rij} gives rise to a rigid rotation. If u
is a rotation vector whose length is proportional to the angle of rotation and
whose axis runs parallel to the rotation axis, whereby the rotation appears
clockwise along the direction of u, we have for sufficiently small angles to a
reasonable approximation
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Figure 4.23 Rotary part ∆r of the displacement vector.

u× ∆x =

∣∣∣∣∣∣
e1 e2 e3
u1 u2 u3

∆x1 ∆x2 ∆x3

∣∣∣∣∣∣ = ∆r.

Hence ∆r is perpendicular to the axis of rotation and its length is proportional
to the angle of rotation and to the distance of the end point of ∆x from the
axis of rotation (Fig. 4.23). This corresponds to a rigid rotation about the axis
u, where u is an axial vector (pseudo vector), because the vector product of u
with a polar vector ∆x generates a polar vector ∆r. Setting u = −(r23, r31, r12)
gives (u× ∆x)i = rij∆xj = ∆ri, thus the asserted property of {rij} is proven.
In the following, we will mainly be concerned with the deformation tensor
{εij}. For some applications it is useful to introduce the so-called Lagrangian
deformation tensor instead of {εij}. This is obtained when we consider the
difference of the squares of the distance of P1 and P2 after and before the de-
formation.

We have

(∆x + ∆ξ)2 − (∆x)2 = 2∆x · ∆ξ + (∆ξ)2

= 2∆xi
∂ξi
∂xj

∆xj +
∂ξk
∂xi

∂ξk
∂xj

∆xi∆xj,

when we again content ourselves with the first approximation. Thus

1
2
((∆x + ∆ξ)2 − (∆x)2) =

1
2

{(
∂ξi
∂xj

+
∂ξ j

∂xi

)
+

∂ξk
∂xi

∂ξk
∂xj

}
∆xi∆xj

= ηij∆xi∆xj.

{ηij} is the Lagrangian deformation tensor, which according to ηij = εij + ζij
contains, apart from the usual deformation tensor, the tensor formed from
the product ∂ξk

∂xi

∂ξk
∂xj

and hence provides a next step in the approximation of
finite deformations. We will return to this point in particular when discussing
nonlinear elastic phenomena.
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Figure 4.24 Longitudinal effect of the strain tensor along ei:
∆li/li = εii.

The components of the deformation tensor are easily accessible to a physical
interpretation. The longitudinal components εii describe the relative change
in length in the direction ei occurring during the deformation. Since

∆ξi = εii∆xi +
∂ξi
∂xj

∆xj,

where j 6= i. The longitudinal effect is

∂ξi
∂xi

=
∆li
li

= εii,

when we specify the difference of the coordinates in direction ei by li and their
change by ∆li (Fig. 4.24).

The components εij (i 6= j) are called shear components because they di-
rectly indicate the shear of a volume element. Consider two points P1 and
P2 lying on the coordinate axes belonging to e1 or e2, hence possessing the
coordinates (∆x1, 0, 0) and (0, ∆x2, 0) (Fig. 4.25). The deformation carries the

Figure 4.25 Interpretation of the component εij (i 6= j) as shear
component.
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points over into

P′1 :
{(

1 +
∂ξ1

∂x1

)
∆x1,

∂ξ2

∂x1
∆x1,

∂ξ3

∂x1
∆x1

}
and

P′2 :
{

∂ξ1

∂x2
∆x2,

(
1 +

∂ξ2

∂x2

)
∆x2,

∂ξ3

∂x2
∆x2

}
.

The angles γ1 and γ2 which are enclosed by the sections 0P′1 and 0P′2 and the

coordinate axes e1 or e2 are approximately given by
(

∂ξi
∂xj

� 1
)

:

tan γ1 =
∂ξ2

∂x1
∆x1

/(
1 +

∂ξ1

∂x1

)
∆x1 ≈

∂ξ2

∂x1

tan γ2 =
∂ξ1

∂x2
∆x2

/(
1 +

∂ξ2

∂x2

)
∆x2≈

∂ξ1

∂x2
.

The difference γ12 of the angles ^(P1 0 P2) and ^(P′1 0 P′2) is called the shear in
the x1, x2 plane. If the angles are sufficiently small we can replace the tangent
by the argument and obtain as an approximation

γ12 = γ1 + γ2 ≈ tan γ1 + tan γ2 ≈
∂ξ2

∂x1
+

∂ξ1

∂x2
= 2ε12.

The same is true in all other coordinate planes. In general γij ≈ 2εij. Hence
γij describes, to a first approximation, the change in the angle of a right angle
formed by the sides parallel ei and ej.

In total we have six independent tensor components, three longitudinal and
three transversal ones. However, in the principal axes’ representation only
three longitudinal components appear, i.e., the general deformation can be de-
scribed, in the framework of the approximation discussed, by three mutually
perpendicular longitudinal deformations. In the directions of the principal
axes li + ∆li = ∆x′i = ∆xi + εii∆xi = (1 + εii)∆xi. A sphere ∑i(∆xi)2 = 1 thus
becomes the deformation ellipsoid

∑
i

(∆x′i)
2

(1 + εii)2 = 1.

The relative change in volume associated with the deformation, to a first
approximation, is given by

V′ −V
V

=
∆V
V

≈ ε11 + ε22 + ε33 with

V = ∆x1∆x2∆x3 and V′ = ∆x′1∆x′2∆x′3.

Since the sum of the principal components is an invariant, this relationship is
valid in any arbitrary reference system.
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We will become more familiar with deformations induced by thermal, me-
chanical, electrical, or magnetic processes in the chapters to come.

4.3.11
Thermal Expansion

Thermal expansion belongs to the anharmonic effects. It is caused by the change
of the mean center-of-mass position of the lattice particles resulting from an
increase in the amplitude of thermal vibrations with increasing temperature.
The phenomenological description is given by

εij = αij∆T + βij(∆T)2 + γij(∆T)3 + · · ·

In a small temperature range of a few K the first term normally suffices when
the deformation is to be represented with an accuracy of around 1%. Other-
wise higher terms must be added.

The tensors of thermal expansion {αij}, {βij}, {γij}, and so on are all of sec-
ond rank. With the aid of longitudinal effects they can be measured directly
from the change of the linear dimensions within a small temperature inter-
val. The following methods have proven suited for precision measurements
of small changes in length:

(a) Inductive dilatometer(Fig. 4.26). The probe in the form of a parallelepiped
or cylinder carries a rod of extremely low thermal expansion (quartz glass;
invar), on the top of which a cylindrical permanent magnet (ferrite rod) is
attached. The magnet immerses in a coil. The inductivity of the coil depends
on the depth of immersion. Hence a change in length results in a change
of inductance and thus a change in the resonant frequency of the oscillating

Figure 4.26 Inductive dilatometer. G ground plate, K crystal, R dis-
tance holder ring, F ferrite rod, S HF coil.
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Figure 4.27 Capacitive dilatometer. G ground plate, K crystal with
electrode, R distance ring made from invar or quartz glass, O up-
per copper electrode.

circuit coupled to the coil. The unit is calibrated by measuring the change
in frequency as a function of immersion depth. In commercial devices the
change in frequency, over a wide range, is proportional to immersion depth.
These dilatometers possess the advantage that the requirements in respect to
quality and plane-parallelism of the probe are low.

(b) Capacitive dilatometer (Fig. 4.27). One side of the probe, machined plane-
parallel, carries one plate of a plate capacitor. The other plate of the capacitor
is mounted at a fixed distance from the probe plate by the aid of a quartz glass
ring. A change in probe thickness leads to a change in capacitance, which
is measured to high accuracy by the change in the resonant frequency of an
oscillating circuit in a similar manner as with the inductive dilatometer.

(c) Optical interference dilatometer(Fizeau interferometer; Fig. 4.28). In this
method, the change in length is measured directly from the change of the op-
tical path between the surface of the probe and a reference plate.

Figure 4.28 Optical interference dilatometer
(Fizeau interferometer). G ground plate,
K crystal with one-sided polished auxiliary
plate H, distance ring R, slightly wedge-
shaped reference plate P, semipermeable
mirror HS, metallic mirror M, light source L,

telescope or photo-detector F. The waves
reflected at the bottom-side of P and the
top-side of H generate the interference
pattern, which can be directly observed
above P. The parts H, R and P are made of
quartz glass.
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The crystal K and the support for the reference plate are mounted on a flat
metal plate. Polishing the probe, which must have plane-parallel faces per-
pendicular to the direction of measurement, is not required when one places a
thin plate of quartz glass, plane-polished on one side, on the probe. The ring
carrying the reference plate should preferably be made of quartz glass, too.
The optical assembly is mounted in a temperature controlled cell.

The beam of light reflected on the top surface of the auxiliary plate and
on the lower surface of the reference plate generates an interference pattern
which can be observed with a telescope (adjusted approximately to the lower
surface of the reference plate). The number N of interference fringes passing
an engraved mark on the reference plate within a small temperature range ∆T
provides a direct measure of the change in length. A correction must be made
for the change in the optical path resulting from the quartz support and from
the change of refractive power in air in the small gap between both plates.

We then have

α′11 =
ε′11
∆T

=
∆D

D∆T
=

N′λ0

2D∆T
,

where λ0 is the wavelength of light, D is the thickness of the probe along e′1
and N′ is the corrected number of fringes. The correction is calculated with
the help of the known expansion coefficients of air and quartz glass (see annex
Table 12.10).

Visual observation with the simple interferometer enables a reading accu-
racy of about 1/20 of a fringe. Photometric methods enable a substantially in-
creased accuracy. The reproducibility of such measurements is often affected
by the plastic deformation of the probe due to the unavoidable inhomogenous
temperature distribution in the probe during heating and cooling.

(d) Strain gauge. This method uses the change in electrical resistance of a
wire as a function of mechanical strain to measure the deformation of rigid
bodies. The strain gauge is cemented on a side face of the probe in the pre-
scribed measurement direction. Normally strain gauges cannot be used for
further measurements on other probes, because when removed from a probe,
the resulting mechanical strain leads to a change in the specific resistance per
unit strain as given by the manufacturer. Since this information only repre-
sents mean values of a production series, one can only have limited confidence
in the measured values.

(e) X-ray precision measurements of the temperature dependence of the lattice con-
stants. The methods of the precise determination of lattice constants are de-
scribed in detail in the literature. For large crystals the Bragg method or the
method of Bond (simple goniometer) is especially suitable. For small crystals,
the multicircle diffractometer and for powder specimens, the Guinier method
are suitable. One must pay particular attention to the exact temperature set-
ting of the crystal. As an example for the evaluation, let us consider the gen-
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eral case of a triclinic crystal, where the temperature dependence ∂θ/∂T of
the diffraction angle θ was measured for the following reflections: (100), (010),
(001), (110), (101) and (011). Of course any reflections can be used addition-
ally. From Bragg’s condition 2d sin θ = λ (λ is the wavelength of the x-rays)
we obtain for the temperature dependence of the lattice constant d

1
d

∂d
∂T

= − cot θ
∂θ

∂T
.

The d-value of a reflection h = hia∗i = (h1h2h3) is given by d = 1/|h|. hi are
the Miller indices and a∗i the vectors of the reciprocal system (Section 1.5.3).
Hence with the temperature dependence of a d-value we also know the lon-
gitudinal deformation (longitudinal effect) along h. To determine the tensors
of thermal expansion in the crystal-physical system we only need to calculate
the unit vectors in the direction of the h vectors in the crystal-physical system.
For this purpose we use the formulae derived in Section 2.2.

For example

h100

|h100|
=

a3

a∗1 a∗2V
e1 + cos α∗3e2.

The measurement perpendicular to (010) gives us directly α22 = ∂d/d∂T. For
the longitudinal effect in all other directions e′1 = u1jej we have

∂d
d∂T

= α′11 = u1iu1jαij.

With our six selected reflections we still have available five further linear
equations for the determination of the remaining αij. It is appropriate to in-
clude additional measurements of the temperature dependence of other d-
values and to apply a least-squares procedure to the overdetermined system.

As an example we consider triclinic lithium hydrogen oxalate hydrate. Ta-
ble 4.5 presents the values measured with an optical interference dilatometer.
The measurements were performed in the temperature interval from 20 to
−20◦C.

Using the formula for the longitudinal effect one gets α11, α22 and α33 di-
rectly from measurement nos. 1, 2, and 3. With these and from no. 4 we get
α12 and from no. 6 α13. From no. 8 one calculates finally α23. The nos. 5 and
7 are used for control purposes. The tensor of thermal expansion is then, in
units of 10−6/K

α11 = 23.7; α22 = 19.2; α33 = 60.9;

α12 = −6.0; α13 = −40.5; α23 = 18.5.

The principal axes’ transformation yields the principal values

λ1 = 91.76, λ2 = 15.60, λ3 = −3.56
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Table 4.5 Measurement of the thermal expansion of triclinic LiHC2O4 ·H2O at 273 K.

Nr. u11 u12 u13 Direction of Longitudinal effect
measurement α′11 [10−6K−1]

1 1 0 0 [100]′ 23.7
2 0 1 0 [010]′ 19.2
3 0 0 1 [001]′ 60.9
4 0.714 0.700 0 ≈ [110]′ 15.6
5 −0.700 0.714 0 ≈ [1̄10]′ 27.5
6 −0.465 0 0.885 85.6
7 0.885 0 0.465 [101] −2.1
8 −0.329

√
2/2 0.626 73.2

with the associated principal axes’ directions (eigenvectors) (see Section 4.3.2)

e′1 = 0.5112e1 − 0.2518e2 − 0.8218e3,

e′2 = −0.3505e1 − 0.9341e2 + 0.0681e3,

e′3 = 0.7849e1 − 0.2529e2 + 0.5657e3.

Accordingly, the crystal possesses an unusually strong anisotropy. With in-
creasing temperature the crystal contracts most strongly in a direction approx-
imately parallel to [101], hence it lies almost in the cleavage plane (1̄01). One
observes the maximum thermal expansion nearly perpendicular to the cleav-
age plane. This property is essentially responsible for the unusually strong
tendency for crack formation parallel to the cleavage plane. Consequently,
when working with the crystal (grinding and polishing) one must pay spe-
cial attention to ensure that no large temperature gradients are created in the
probe.

In particular, it should be mentioned that the principal axes of the quadries
of the dielectric constants and the thermal expansion almost coincide. The
dielectric maximum or minimum corresponds to a minimum or maximum,
respectively, of the thermal expansion. Here we observe a close correlation of
two physical properties which otherwise do not exhibit a direct relationship.

The case of negative expansion is rather rarely observed. As examples for
negative expansion we mention the orthorhombic crystal species calcium for-
mate and ammonium hydrogen phthalate. In these crystals, the quadric has
the form of a hyperboloid. These crystals can be used to prepare samples
which show practically no thermal expansion in one direction within a certain
temperature interval (see Exercise 15).

The tensors {βij}, {γij}, and so on, introduced above, can be derived from
the temperature dependence of the tensor components

αij(∆T) = αij(0) +
∂αij

∂T
∆T +

1
2

∂2αij

∂T2 (∆T)2 + · · ·

(e.g., βij = ∂αij/∂T).
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We will take up the relation between thermal expansion and elastic proper-
ties when discussing the Grüneisen tensor (see Exercise 29).

4.3.12
Linear Compressibility at Hydrostatic Pressure

By analogy to thermal expansion, one can describe a deformation produced
by a change in the hydrostatic pressure ∆p, by a second-rank tensor:

εij = lij∆p,

where {lij} is the tensor of linear compressibility. This tensor represents a
second-rank tensor invariant of the elasticity tensor. We will return to this
relationship later (see Section 4.5.3).

In principle, linear compressibility can be measured with methods similar to
those employed for thermal expansion, where instead of a thermal measure-
ment cell a pressure cell is used. If one works, for example, with an optical
interferometer, then the change in the optical path resulting from a change
in pressure in the empty cell must be carefully taken into account. If the re-
quired accuracy is not too high, the use of a strain gauge is recommended.
A far more convenient and accurate method is the determination of the lin-
ear compressibility with the help of the measurement of sound velocities (see
Section 4.5.6). X-ray methods for the determination of lattice constants have
proven successful for the investigation of linear compressibility subjected to
extreme pressures and temperatures.

4.3.13
Mechanical Stress Tensor

We consider the entirety of the external forces acting on a volume element of a
body. Imagine the volume element to have the form of a parallelepiped with
edges parallel to the basic vectors of a Cartesian reference system (Fig. 4.29).
The external forces then act on the boundary faces of this parallelepiped. We
resolve the forces in components acting perpendicular and tangential to the
faces. If the forces are distributed homogenously over the faces, it is use-
ful to introduce the so-called stresses, i.e., the forces per unit area. Hence
stress = force/area. Positive stress means tensile force. The following nine mu-
tually independent stresses can appear: three normal stresses σii and six shear
stresses σij (i 6= j), (i, j = 1, 2, 3).

The first index gives the direction of the force (stress), the second the direc-
tion of the normal on the face on which the stress acts. For example σ22 means
the stress acting in the direction of the basic vector e2 and exerted across the
face perpendicular to e2. The stress σ32 points in the direction e3 and acts
across the face perpendicular to e2. If one goes on to infinitesimal dimensions
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Figure 4.29 Definition of the stress tensor.

of the volume element, one can describe the state of stress at each point of a
body by specifying these nine stresses. The quantities σij are components of a
second-rank tensor, which we will prove as follows:

Let the force acting on an arbitrary test triangle A1 A2 A3 with the normals
f = fiei and given state of stress be P = Piei (Fig. 4.30). We then have Pi =
σijqj, where qj is the area of the triangle 0Ai Ak ( = projection of the triangle
A1 A2 A3 on the plane perpendicular to ej). Let the length of f be equal to the

Figure 4.30 The triangle A1 A2 A3 for the proof of the tensor char-
acter of the stress tensor.
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area of the triangle A1 A2 A3. Then fi = qi. This results from

f = (d2e2 − d1e1)× (d3e3 − d2e2)/2

= (d2d3e1 + d3d1e2 + d1d2e3)/2 = qiei,

where we set 0Ai = di for the intercepts. The same result is obtained in a more
elegant way with the help of Gauss’s theorem∫

V
div udV =

∫
surface

u · d f .

If u is a constant vector, the left side vanishes, and hence∫
surface

u · d f = 0.

Applying this to the tetrahedron 0A1 A2 A3 gives fi = qi, when all face normals
point outward of the tetrahedron. Hence we have

Pi = σij f j.

Since Pi and also f j are components of a vector, the quantities σij, according to
the theorem on tensor operations, form a second-rank tensor, the stress tensor.

We now examine the symmetry of the stress tensor. Consider the torque
M exerted on the test parallelepiped of Fig. 4.29. A force K acting on a lever
arm, represented by the vector x, gives rise to the torque M = x × K. M is
an axial vector, which as we have seen in Section 4.3.10, can be represented by
an antisymmetric second-rank tensor analogous to the rotation vector. Let the
parallelepiped have edge lengths xi along the basic vectors ei. We then get, for
example,

M1e1 = x2e2 × K3 + x3e3 × K2,

where K2 or K3 are the tangential forces acting along e2 or e3, respectively,

K3 = σ32x1x3e3, K2 = σ23x1x2e2.

Hence

M1 = V(σ32 − σ23).

V = x1x2x3 is the volume of the parallelepiped. In general

Mi = −V(σjk − σkj), i, j, k cyclic in 1, 2, 3.

If the torque is represented as an antisymmetric tensor {M∗
ij}, then Mi =

M∗
jk = −M∗

kj.
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All torques must vanish, if the volume element is in equilibrium, i.e., σij =
σji; the stress tensor is symmetric in this case. The antisymmetric part of the
stress tensor establishes the torque. The question of whether, in a static exper-
iment, a torque appears or not can be clearly decided. In dynamic processes,
for example, the propagation of elastic waves, the existence of torques and
corresponding rotational motions must be carefully checked. If nothing is ex-
plicitly said, we assume in the following that the stress tensor is always sym-
metric. Hence it normally possesses six independent components. In the prin-
cipal axes’ representation only the three principal stresses σ′ii appear. These
are the longitudinal components in the directions of the principal axes (nor-
mal stresses). This means that each state of stress, that does not generate a
torque, is to be represented by three mutually perpendicular normal stresses.
Shear stresses do not appear in a parallelepiped cut parallel to the principal
axes’ directions of the stress tensor!

The most important examples of stress tensors in the principal axes’ repre-
sentation are:

a) Uniaxial tension parallel to e1. The stress tensor only contains the com-
ponents σii. We have σii = Ki/qi, where Ki acts in the direction ei on the
face perpendicular to ei with cross-section qi.

b) Biaxial tension parallel to ei and ej. Here we only have the two prin-
cipal stresses σii and σjj. This state of stress appears when we apply a
tension on two faces of a rectangular parallelepiped or put it in a biaxial
clamping device.

c) Triaxial tension in three mutually perpendicular directions. This is re-
alizable by clamping a rectangular parallelepiped in an assembly with
three independent uniaxial pressure generators arranged perpendicu-
lar to one another, where only the components σ11, σ22, and σ33 appear.
An important special case is hydrostatic pressure p, where σ11 = σ22 =
σ33 = −p.

d) Pure shear stress. We assume σ12 = σ21 6= 0, all other σij = 0. The associ-
ated principal axes’ representation is obtained through a plane principal
axes’ transformation by rotating about e3. According to Section 4.3.2 we
have for the angle ϕ of rotation

tan 2ϕ =
2σ12

σ11 − σ22
, hence 2ϕ = 90◦, ϕ = 45◦.

Thus σ′11 = σ12 and σ′22 = −σ12, all remaining σ′ij vanish. That is, the
state of a pure shear stress σ12 is equivalent to a longitudinal stress (ten-
sion) of magnitude σ′11 = σ12 along (e1 + e2) and perpendicular to this
a longitudinal stress of opposite sign (compressive stress) σ′22 = −σ12



168 4 Special Tensors

along (e1 − e2). These directions run parallel to the diagonals of the face
of the cube perpendicular to e3 (Fig. 4.29).

The stress tensor, as an inducing quantity, is easy to realize in static experi-
ments.

4.4
Third-Rank Tensors

First of all we try to gain an overview of the form of the tensors in the 32 PSG.
As already discussed in the general introduction, all polar tensors of uneven
rank vanish with the existence of an inversion center. Hence we only need to
consider the following PSG (non-Laue groups): 1, 2, m, 22, mm, 3, 32, 3m, 4,
42, 4m, 4̄, 4̄2, 6, 62, 6m, 6̄, 6̄2, 23, 43, and 4̄3. In the case of pseudo tensors, the
Laue groups require a more detailed inspection.

At first we consider a two-fold symmetry axis parallel to ei or a symmetry
plane perpendicular to ei. These are represented by the following transforma-
tion matrices (see also Section 3.8.2):

2 ‖ ei : uii = 1, ujj = ukk = −1, uij = 0 for i 6= j,

2̄ ‖ ei : uii = −1, ujj = ukk = 1, uij = 0 for i 6= j.

In both cases t′ijk = (−1)qtijk. In the first case, q is equal to the number of in-
dices j and k together and in the second, equal to the number of index i. With
uneven q, the respective tensor component vanishes. Therefore, in the case of
a two-fold axis parallel ei, only those components exist, in which the indices j
and k together occur an even number of times, i.e., the index i occurs an odd
number of times. In the case of a symmetry plane perpendicular to ei the com-
plementary existence condition is valid: the index i occurs an even number of
times. Similar as with second-rank tensors, it is useful for an overview to write
the components in the form of a matrix. This matrix looks like

(tijk) =

 t111 t112 t113 t121 t122 t123 t131 t132 t133
t211 t212 t213 t221 t222 t223 t231 t232 t233
t311 t312 t313 t321 t322 t323 t331 t332 t333

 .

Even with tensors of higher rank, the overview is made easier, when the com-
ponents are arranged in three rows, where the first index in the first row is 1,
in the second row 2 and in the third row 3. The further indices in each row
are to be selected in the sequence of the scheme for a tensor of the next lowest
rank.

The 13 components existing in the case of a two-fold axis parallel to e2 are
underlined; the remaining 14 components exist in the case of 2̄≡m parallel
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to e2 (symmetry plane perpendicular to e2!). A third-rank pseudo tensor with
m ‖ e2 is of the same type as a polar tensor with 2 ‖ e2!

For all PSG with the subgroup 22 it is immediately recognizable that only
those components exist in which each index occurs an odd number of times,
hence t123, t132, t231, t213, t312, and t321. In the PSG mm in the standard setting
(e3 parallel to the intersection edge of the symmetry planes) only such compo-
nents can appear, in which the indices 1 or 2 occur an even number of times,
hence t113, t131, t223, t232, t311, t322, and t333.

The effect of a three-fold axis parallel e3 requires a more detailed inspection
of the transformation behavior. At this point we present a complete deriva-
tion of the conditions in order to show how, in analogous cases of higher rank
tensors, one proceeds in practice. The rotation about a three-fold axis is repre-
sented by

R±3‖e3
=

 −1/2 ±
√

3/2 0
∓
√

3/2 −1/2 0
0 0 1


+ means clockwise rotation, − anticlockwise rotation, when one looks in
the direction e3. The simultaneous calculation for both directions of rotation
yields two conditions for each operation, because the sign-dependent parts
must be considered separately.

We obtain

t′111 = t111 = −1
8

t111 ±
√

3
8

(t112 + t121)−
3
8

t122

±
√

3
8

t211 −
3
8
(t212 + t221)±

3
√

3
8

t222.

The parts coupled with the change of sign must vanish, hence

t112 + t121 + t211 + 3t222 = 0. (4.1)

The remainder gives

3t111 + t122 + t212 + t221 = 0. (4.2)

Further conditions result from

t′122 = t122 = −3
8

t111 ∓
√

3
8

(t112 + t121)−
1
8

t122

± 3
√

3
8

t211 +
3
8
(t212 + t221)±

√
3

8
t222.

From which we obtain

−t112 − t121 + 3t211 + t222 = 0 (4.3)
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and

t111 + 3t122 − t212 − t221 = 0. (4.4)

From (4.1) and (4.3) one finds

t211 = −t222 = 1
2 (t112 + t121),

and from (4.2) and (4.4)

t122 = −t111 = 1
2 (t212 + t221).

From

t′112 = t112 = ∓
√

3
8

t111 −
1
8

t112 +
3
8

t121 ±
√

3
8

t122

+
3
8

t211 ±
√

3
8

t212 ∓
3
√

3
8

t221 −
3
8

t222

we get the conditions

−t111 + t122 + t212 − 3t221 = 0 (4.5)

and

−3t112 + t121 + t211 − t222 = 0. (4.6)

Similarly from

t′212 = t212 = −3
8

t111 ∓
√

3
8

t112 ±
3
√

3
8

t121 +
3
8

t122

∓
√

3
8

t211 −
1
8

t212 +
3
8

t221 ±
√

3
8

t222

we get the conditions

−t112 + 3t121 − t211 + t222 = 0 (4.7)

and

t111 − t122 + 3t212 − t221 = 0. (4.8)

With (4.5) and (4.8) as well as (4.6) and (4.7) one finally finds

t212 = t221 = t122 = −t111

and

t112 = t121 = t211 = −t222.
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We see that these relations are permutable in the indices 1 and 2, as we ex-
pect on the basis of the equivalence of e1 and e2 with respect to the three-fold
axis. This relationship is also of great value for similar questions. Thus the
transformation of t121, t211, t221, and t222 does not lead to new conditions.

We now turn our attention to those components carrying the index 3 once
or twice.

t′113 = t113 =
1
4

t113 ∓
√

3
4

t123 ∓
√

3
4

t213 +
3
4

t223.

Consequently t113 = t223 and t123 = −t213. The analogous transformation for
t131 and t311 leads to t131 = t232, t132 = −t231, t311 = t322, and t312 = −t321.

t′133 = t133 = −1
2

t333 ±
√

3
2

t233 gives t133 = t233 = 0;

likewise one finds t313 = t323 = t331 = t322 = 0.
Finally we have t′333 = t333 (no condition!).
Therefore, in the PSG 3 there exist the following nine independent compo-

nents of a third-rank polar tensor:

t111 = −t122 = −t212 = −t221

t222 = −t211 = −t121 = −t112

t113 = t223, t123 = −t213, t131 = t232,

t132 = −t231, t311 = t322, t312 = −t321, t333.

With these we can now immediately determine the form of the third-rank ten-
sors in the remaining trigonal and hexagonal PSG by taking into account the
additional symmetry elements (see Table 4.6).

Finally the effect of 4 and 4̄ has to be checked. Since 4 as well as 4̄ contain a
two-fold axis, it suffices to consider only such tensor components containing
the index 3 an odd number of times (4 or 4̄ ‖ e3!).

With

R±4‖e3
=

 0 ±1 0
∓1 0 0
0 0 1

 and R±4̄‖e3
=

 0 ∓1 0
±1 0 0
0 0 −1


one obtains for PSG 4 the seven independent components t113 = t223, t131 =
t232, t311 = t322, t123 = −t213, t132 = −t231, t312 = −t321, t333 and for PSG
4̄ the six independent components t113 = −t223, t131 = −t232, t311 = −t322,
t123 = t213, t132 = t231, t312 = t321.

Table 4.6 gives the form of the third-rank tensors in the remaining tetragonal
and cubic PSG. The effect of the other symmetry elements results from the
rules previously discussed. With the cubic PSG, the three-fold axis demands
t123 = t231 = t312 etc. (cyclic permutation!).



172 4 Special Tensors

Ta
bl

e
4.

6
In

de
pe

nd
en

tc
om

po
ne

nt
s

of
po

la
rt

en
so

rs
in

ac
en

tr
ic

P
S

G
of

th
e

tr
ig

on
al

,t
et

ra
go

na
l,

he
xa

go
na

l,
an

d
cu

bi
c

sy
st

em
s.

A
ll

ot
he

rw
is

e
ex

is
tin

g
co

m
po

ne
nt

s
re

su
lt

fro
m

th
e

re
la

tio
ns

va
lid

in
P

S
G

3
an

d
4,

re
sp

ec
tiv

el
y

(s
ee

te
xt

).
Th

e
P

S
G

of
lo

w
er

sy
m

m
et

ry
ar

e
di

sc
us

se
d

in
th

e
te

xt
.

PS
G

Po
si

ti
on

s
of

th
e

C
on

di
ti

on
s

fo
r

In
de

pe
nd

en
tt

ij
k

sy
m

m
et

ry
el

em
en

ts
ex

is
te

nc
e

3
3
‖

e 3
–

t 1
11

,t
22

2,
t 1

13
,t

12
3,

t 1
31

,t
13

2,
t 3

11
,t

31
2,

t 3
33

32
2
‖

e 1
In

de
x

1
od

d-
nu

m
be

re
d

t 1
11

,t
12

3,
t 1

32
,t

31
2

3m
m

=
2̄
‖

e 1
In

de
x

1
ev

en
-n

um
be

re
d

t 2
22

,t
11

3,
t 1

31
,t

31
1,

t 3
33

4
4
‖

e 3
,2
‖

e 3
In

de
x

3
od

d-
nu

m
be

re
d

t 1
13

,t
13

1,
t 3

11
,t

12
3,

t 1
32

,t
31

2,
t 3

33
4̄

4̄
‖

e 3
,2
‖

e 3
In

de
x

3
on

ce
t 1

13
,t

13
1,

t 3
11

,t
12

3,
t 1

32
,t

31
2

6
6
‖

e 3
,2
‖

e 3
In

de
x

3
od

d-
nu

m
be

re
d

t 1
13

,t
12

3,
t 1

31
,t

13
2,

t 3
11

,t
31

2,
t 3

33
62

2
‖

e 1
In

di
ce

s
3

an
d

1
od

d-
nu

m
be

re
d

t 1
23

,t
13

2,
t 3

12
6m

m
=

2̄
‖

e 1
In

de
x

3
od

d-
nu

m
be

re
d,

t 1
13

,t
13

1,
t 3

11
,t

33
3

In
de

x
1

ev
en

-n
um

be
re

d
6̄
≡

3/
m

m
=

2̄
‖

e 3
In

de
x

3
ev

en
-n

um
be

re
d

t 1
11

,t
22

2
6̄2
≡

3/
m

2
m

=
2̄
‖

e 3
,2
‖

e 1
In

de
x

3
ev

en
-n

um
be

re
d,

t 1
11

In
de

x
1

od
d-

nu
m

be
re

d
42

2
‖

e 1
In

de
x

1
od

d-
nu

m
be

re
d

t 1
23

,t
23

1,
t 3

12
4m

m
=

2̄
‖

e 1
In

de
x

1
ev

en
-n

um
be

re
d

t 1
13

,t
13

1,
t 3

11
,t

33
3

4̄2
2
‖

e 1
In

de
x

1
od

d-
nu

m
be

re
d

t 1
23

,t
23

1,
t 3

12
23

2
‖

e i
A

ll
in

di
ce

s
od

d-
nu

m
be

re
d

t 1
23

,t
13

2
an

d
cy

cl
ic

4̄3
4̄
‖

e i
A

ll
in

di
ce

s
od

d-
nu

m
be

re
d

t 1
23

=
t 2

13
an

d
cy

cl
ic

43
4
‖

e i
A

ll
in

di
ce

s
od

d-
nu

m
be

re
d

t 1
23

=
−

t 2
13

an
d

cy
cl

ic



4.4 Third-Rank Tensors 173

Furthermore, symmetry reduction leads to the result that third-rank pseudo
tensors can exist in all PSG.

The quadric F = tijkxixjxk contains ten coefficients that can be conveniently
determined with the help of longitudinal effects. Measurements in the direc-
tions ei directly give the components t111, t222 and t333. The longitudinal effect
in the bisectors of the Cartesian basic vectors e′1 =

√
2/2(ei ± ej) is

t′111± =
√

2
4

tiii ±
√

2
4

tjjj ±
√

2
4

(tiij + tiji + tjii) +
√

2
4

(tjji + tjij + tijj).

From (t′111+ + t′111−) and (t′111+ − t′111−) one gets the six coefficients (tiij +
tiji + tjii) with i, j = 1, 2, 3. From a further measurement, e.g., in the direction

of one of the space diagonals e′1 =
√

3
3 (e1 ± e2 ± e3), one can also determine

the tenth coefficient (t123 + t132 + t231 + t213 + t312 + t321) taking into account
the already known coefficients. To improve accuracy, it is often advisable to
perform measurements in other directions, too.

In any case, we can acquire only a part of the tensor components with the
help of longitudinal effects. We need the measurement of transversal effects
to completely determine the tensor.

We will address the problem of extreme values when discussing concrete
examples of these tensors. A principal axes’ transformation, whereby all com-
ponents with mixed indices vanish, as is the case with second-rank tensors,
does not exist here.

4.4.1
Piezoelectric Tensor

In the pyroelectric effect we observe an electric polarization P, proportional to
the temperature difference within a small temperature range. The application
of mechanical stress, expressed by the stress tensor {σij}, can also give rise to
an electric polarization. This phenomenon is known as the piezoelectric effect.
For a sufficiently small, homogenous test volume, one has

∆Pi = dijkσjk + dijklmσjkσlm + · · ·

The tensor {dijk} represents the linear piezoelectric effect and {dijklm} the
quadratic piezoelectric effect and so on. Normally the linear effect is sufficient
for the description of an experiment. Because the stress tensor is symmetric,
there is no possibility to distinguish between the components dijk and dikj.
Therefore, we must assume that the tensor {dijk} is symmetric in the second
and third index positions, hence dijk = dikj. This condition reduces the num-
ber of independent components of the third-rank tensor from 27 to 18. In the
light of the overview gained in the previous section, the form of the piezo-
electric tensor can be immediately read. Table 4.7 presents the results for all
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Table 4.7 Independent components of third-rank tensors in the acentric PSG under inter-
changeability of the second and third order index position (example piezoelectric tensor). Z
is the number of independent components.

PSG Z Independent components
1 18 dijk = dikj (i, j, k = 1, 2, 3)
2 ‖ e2 8 d112, d123, d211, d213, d222, d233, d312, d323
2̄ ‖ e2 10 d111, d113, d122, d133, d212, d223, d311, d313, d322, d333
22 3 d123, d231, d312
mm2, 2 ‖ e3 5 d113, d223, d311, d322, d333
3 ‖ e3 6 d111 = −d122 = −d212, d222 = −d211 = −d121, d113 = d223,

d123 = −d213, d311 = d322, d333
32, 2 ‖ e1 2 d111 = −d122 = −d212, d123 = −d213
3m, 2̄ ‖ e1 4 d113 = d223, d222 = −d211 = −d121, d311 = d322, d333
4 ‖ e3 4 d113 = d223, d123 = −d213, d311 = d322, d333
42, 2 ‖ e1 1 d123 = −d213
4m, 2̄ ‖ e1 3 d113 = d223, d311 = d322, d333
4̄ 4 d113 = −d223, d123 = d213, d311 = −d322, d312
4̄2, 2 ‖ e1 2 d123 = d213, d312
6 ‖ e3 4 d113 = d223, d123 = −d213, d311 = d322, d333
62, 2 ‖ e1 1 d123 = −d213
6m, 2̄ ‖ e1 3 d113 = d223, d311 = d322, d333
6̄ 2 d111 = −d122 = −d212, d222 = −d211 = −d121
6̄2, 2 ‖ e1 1 d111 = −d122 = −d212
23 1 d123 = d231 = d312 = d213 = d132 = d321
43 0 −
4̄3 1 d123 = d231 = d312 = d213 = d132 = d321
∞ ‖ e3 4 d113 = d223, d123 = −d213, d311 = d322, d333
∞2 1 d123 = −d213
∞m 3 d113 = d223, d311 = d322, d333
∞, ∞2 0 −

piezoelectric PSG. Of special interest is the fact that PSG 43 shows no piezo-
electric effect, because the conditions d123 = −d213 and d123 = d231 = d213
can only be fulfilled with dijk = 0. The two other cubic piezoelectric PSG to
be considered, namely 23 and 4̄3, possess only one independent component
d123 = d231 = d312 = d132 = d213 = d321.

4.4.1.1 Static and Quasistatic Methods of Measurement

Piezoelectric effects can best be observed and measured as longitudinal and
transversal effects under the application of uniaxial pressure. In the quanti-
tative determination of the piezoelectric tensor one must pay attention that
mechanical stresses are homogenously transferred over the test object so that
the influence of boundary effects can be neglected and also that a simple rela-
tionship can be assumed between inducing stress and charge generation. The
easiest accessible method is the longitudinal effect (Fig. 4.31). At first we will
study a probe in the form of a rectangular parallelepiped. If we apply a uniax-
ial pressure σ′11 in the direction e′1, one observes a change in charge ∆Q on the
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Figure 4.31 Measurement of the longitudinal piezoelectric effect. G
ground plate, K crystal, S pressure bar, and LV charge amplifier.

faces cut perpendicular to e′1. The latter must be made electrically conducting
by vapor deposition of a metal or with conducting paste. We then have

∆P′1 = K
∆Q
x′2x′3

= d′111
KK′1
x′2x′3

, hence ∆Q = d′111K′1,

where ∆Q means the charge difference appearing on the face in question,
which can be measured with a commercial charge amplifier, and K′1 is the
uniaxial acting force. K is the constant of the system of measurement used.
Most important is that the dimensions of the probe do not come into play. As
long as the state of stress distributes itself to a certain extent homogenously
over the cross-section, one observes only minor deviations from the theoreti-
cal value, even when the cross-section of the probe along the direction of pres-
sure varies considerably. The measurement of the longitudinal effect can be
miniaturized, without special precautions, down to probe dimensions 0.1 mm
thick (plates) and 0.5 mm long (thin needle), where one can still obtain reliable
values for the constant d′111. Thus according to the evaluation of longitudinal
effects described in the previous section, the quadric F = tijkxixjxk with its ten
coefficients can be completely determined.

Including transversal effects it is now possible to completely determine the
piezoelectric tensor also in the case of triclinic crystals. We use the same pres-
sure cell as with the longitudinal effect and also apply a uniaxial stress σ′11
parallel e′1. The metallized pair of faces, however, are now arranged parallel
to the direction of pressure, that is, perpendicular to e′2 or e′3 (Fig. 4.32). Thus
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Figure 4.32 Parallelepipedic specimen for the measurement of the
piezoelectric transversal effect d′211 (uniaxial stress parallel e′1,
surfaces of the electrodes perpendicular to e′2).

for the generation of charge on the face perpendicular to e′2 we have

∆P′2 = K
∆Q
x′1x′3

= d′211
KK′1
x′2x′3

, hence ∆Q = d′211K′1
x′1
x′2

.

Accordingly, with constant force K′1, the observed change in charge depends
on the ratio of the length x′1 of the specimen to the separation of the electrodes
x′2. The dimension x′3 does not matter. For a high accuracy of the measure-
ment as well as for the practical generation of electric charges with the help
of the transversal effect the specimen should be prepared as long as possi-
ble in the direction of pressure and as thin as possible in the direction of the
normals on the surface of the electrodes. The measurements require that the
specimens possess nearly the form of a rectangular parallelepiped. Moreover,
geometrically similar specimens produce the same change in charge ∆Q under
identical load conditions.

If we conduct such measurements with uniaxial stress direction parallel to ei
and electrode normals parallel to ej, we directly obtain the six components djii
(i, j = 1, 2, 3). Thus we can now determine the components diij using the coef-
ficients (djii + diij + diji) = (djii + 2diij) available from the quadric. The three
missing components d123, d231, and d312 are obtained from measurements of
transversal effects on 45◦ cuts, in other words, parallelepipeds bounded by a
pair of faces perpendicular to e′1 = ei and two pair of faces with the normals
e′2 =

√
2/2(ej + ek) and e′3 =

√
2/2(−ej + ek), (i, j, k cyclic in 1, 2, 3). For this

orientation and with uniaxial stress parallel to e′2 or e′3 we have

d′122 = 1
2 dijj + 1

2 dikk + dijk or d′133 = 1
2 dijj + 1

2 dikk − dijk.
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Thus

dijk = (d′122 − d′133)/2.

The procedure outlined above now provides a measurement scheme for the
complete determination of the piezoelectric tensor.

To check the measurements and to increase accuracy, it is also useful to de-
termine the transversal effects d′311, d′322, d′233, and d′211 on the 45◦ cuts for
which the following relations, to be proved by transformation, are valid:

d′211 =
√

2
2

djii +
√

2
2

dkii,

d′311 = −
√

2
2

djii +
√

2
2

dkii,

d′233 =
√

2
4

(djjj + dkkk − 2djkj + djkk − 2dkjk + dkjj), and

d′322 =
√

2
4

(−djjj + dkkk − 2djkj − djkk + 2dkjk + dkjj).

Of interest are the relations

d′211 + d′311 =
√

2dkii,

d′211 − d′311 =
√

2djii,

d′233 + d′322 =
√

2
2

(dkkk + dkjj − 2djkj), and

d′233 − d′322 =
√

2
2

(djjj + djkk − 2dkjk).

From the principal cut (edges parallel to ei) and the three 45◦ cuts we obtain
36 (=4×9) measurement results, which allow a reliable determination of the
piezoelectric tensor.

One can achieve a higher measurement accuracy by employing a dynamic
pressure generator, as for example, a spring connected to a harmonically vi-
brating loud speaker membrane or connected to a motor-driven eccentric.
With the help of a phase-sensitive amplification of the piezoelectric signal it
is possible to attain a hundred-fold increase in the sensitivity of the method.
In any case, one must pay particular attention to the fact that just as with the
pyroelectric effect, the surface conductivity remains small or does not cause
a reduction in the true piezoelectric signal. For the measurement of electri-
cal charges, compensation methods have proven to be of great advantage. In
these methods, the charge appearing is immediately compensated by an op-
posing charge generated by the compensator so that only very small charge
differences and hence small electric voltages are present at the crystal. The
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complete compensation charge is then measured. Also in the case of a certain
volume conductivity of the specimen it is important to eliminate and measure
the charge as promptly as possible.

In crystals of higher symmetry, such as α-quartz, lithium niobate, potassium
bromate, lithium iodate, KH2PO4 or in cubic crystals like the isotype group of
zinc blende-type, just to mention a few examples, the determination of the
tensor is comparably unproblematic. These examples are briefly explained
below. The experimental values are presented in Table 12.14 (annex).

(a) α-Quartz (32)
The following components are present: d111 = −d122 = −d212 = −d221 and
d123 = d132 = −d231 = −d213. Measuring the longitudinal effect along the
direction of the two-fold axis (e1) gives us immediately d111. As a control, a
transversal measurement with uniaxial stress in the direction e2 (perpendic-
ular to e1 and e3) and charge generation on the pair of faces perpendicular
to e1 is useful. In doing so, the constant to be measured d122 is identical to
−d111. For the determination of d123 we appropriately employ the transversal
effect on a 45◦ cut with the edges parallel to e′1 = e1, e′2 =

√
2

2 (e2 + e3) and

e′3 =
√

2
2 (−e2 + e3). With uniaxial stress along e′2 or e′3 we obtain

d′122 = 1
2 d122 + d123

or

d′133 = 1
2 d122 − d123

and hence two independent values for d123.
At present, α-quartz is used more than all other crystals together in the ap-

plication of the piezoelectric effect. We will discuss the construction of sound
generators, frequency stabilizers, frequency filters etc. later. Because of their
good mechanical stability, quartz crystals are also employed preferably in de-
vices for the measurement of mechanical stress and deformation as well as for
electrically controlled precision feeds.

b) Lithium niobate (LiNbO3) and KBrO3 (3m)
Here, the following components exist: d222 = −d112 = −d121 = −d211, d113 =
d223 = d131 = d232, d311 = d322, d333.

d222 and d333 are found directly from the longitudinal effects along e2 and
e3, respectively, whereby e1 runs perpendicular to the mirror plane. From the
transversal effect with uniaxial stress in the direction e1 and charge genera-
tion on the pair of faces perpendicular to the three-fold axis (e3) one obtains
d311. The still missing component d113 results from the longitudinal effect with
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uniaxial stress parallel to

e′1 =
√

2
2

(∓e1 + e3).

Owing to their relatively large coefficients d333, both crystals are especially
suitable for the production of piezoelectric stress sensors and sound genera-
tors. Why, in spite of their superiority with respect to piezoelectric effects, the
preferential application of α-quartz is not in danger will be discussed later.

c) Lithium iodate (6)
The following components exist: d113 = d223 = d131 = d232, d311 = d322,
d123 = d132 = −d213 = −d231, and d333. From the longitudinal effect along the
six-fold axis one directly obtains d333. The component d311 is directly measur-
able from the transversal effect with uniaxial stress along e1 (this direction can
be chosen arbitrarily perpendicular to the six-fold axis, since the piezoelectric
tensor possesses cylindrical symmetry in all hexagonal PSG!) and charge gen-
eration on a pair of faces perpendicular to the six-fold axis. d113 and d123, as
described under (a) or (b), are to be determined on 45◦ cuts.

Lithium iodate possesses unusually large longitudinal- and transversal ef-
fects, which can be used to generate sound waves. We will discuss the influ-
ence of the extreme anisotropic electric conductivity in Section 4.5.5.

d) Sphalerite type (4̄3)
Only one independent constant exists d123 = d231 = d312 = d132 = d213 = d321.
Its most reliable determination is via the longitudinal effect along the space
diagonals of the Cartesian reference system, hence along

e′1 =
√

3
3

(±e1 ± e2 ± e3).

Here we have

d′111 = ±
(√

3
3

)3

6d123 = ±2
3

√
3d123.

The sign is equal to the product of the signs of the components of e′1. In addi-
tion, one has the transversal effects d′122 and d′133 on a 45◦ cut with the edges

e′1 = e1, e′2 =
√

2
2 (e2 + e3), e′3 =

√
2

2 (−e2 + e3), which yields d′122 = d123 and
d′133 = −d123 directly, whereby e′2 or e′3 specify the direction of the uniaxial
stress and e1 denotes the normal on the charge generating pair of faces.

If these crystals form tetrahedra {111}, corresponding to the associated
point symmetry group, then one can measure the constant d123 without fur-
ther preparation.
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4.4.1.2 Extreme Values

For many applications it is important to know the directions of the maximum
or minimum effects. As an example, we consider the extreme values of the
longitudinal effect in the point symmetry groups containing the symmetry
group 22 as a subgroup (22, 42, 62, 4̄2, 23, 4̄3). The longitudinal effect along
the direction e′1 = u1iei is

d′111 = u1iu1ju1kdijk = u11u12u13 · 2(d123 + d231 + d312) = u11u12u13 · 2d.

In the PSG 42 and 62 d = 0 because d123 = −d231 and d312 = 0. We proceed
according to the well-known prescription and form the auxiliary function H =
d′111 − λ ∑i u2

1i, which under the constraint ∑i u2
1i = 1 allows the calculation of

the extreme value of d′111. λ is a factor still to be determined. An extreme value
of H and hence of d′111 is present, when

∂H
∂u1i

= 2u1ju1kd− 2λu1i = 0.

If we divide u1ju1kd = λu1i by the corresponding equation u1iu1kd = λu1j, we
obtain

u1j

u1i
=

u1i
u1j

or u2
1i = u2

1j = u2
1k =

1
3

because ∑
i

u2
1i = 1.

Hence extreme values appear in the directions of the space diagonals of the
Cartesian reference system

e′1 =
√

3
3

(±e1 ± e2 ± e3).

The extreme values are

±2
√

3
9

d.

In the cubic PSG d′111 = ± 2√
3

d123.
For certain applications of the piezoelectric effect it is desirable that pure

longitudinal effects appear, i.e., that the associated transversal effects com-
pletely vanish. We consider this question for crystals of the minimum sym-
metry 22. The conditions are

d′211 = d′311 = 0.

We have

d′k11 = 2uk1u12u13d123 + 2uk2u13u11d231 + 2uk3u11u12d312

= 2e′k · (u12u13d123e1 + u13u11d231e2 + u11u12d312e3) = 0
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for k = 2 or 3. Since e′k · e′1 = 0 we find from the above equation that the
components u1i of e′1 = u1iei have the following form:

u11 = qu12u13d123, u12 = qu13u11d231, and u13 = qu11u12d312

with an arbitrary factor q. If we multiply these expressions one after the other
with u11 or u12 and u13 we obtain

u2
11 = qu11u12u13d123,

u2
12 = qu11u12u13d231,

u2
13 = qu11u12u13d321.

Hence the ratio

u2
11 : u2

12 : u2
13 = d123 : d231 : d312 must be satisfied.

From this we see that all dijk must have the same sign. For cubic crystals, we
obtain the result that pure longitudinal effects appear in the directions of the
space diagonals of the Cartesian (and crystallographic) reference system.

Finally we take a look at the situation of the PSG 32, in which also α-quartz
crystallizes. For the longitudinal effect we obtain

d′111 = u3
11d111 + u11u2

12d122 + u11u2
12 · 2d212 + u11u12u13 · 2(d123 + d231).

The last term vanishes because d123 = −d231. With d122 = d212 = −d111 we
get d′111 = d111(u3

11 − 3u11u2
12). From

H = d′111 − λ ∑
i

u2
1i and

∂H
∂u1i

= 0

we find u13 = 0. Accordingly, the extreme values lie in the plane perpendicu-
lar to the three-fold axis. With u2

11 + u2
12 = 1 and u11 = cos ϕ we obtain

d′111 = d111(4u3
11 − 3u11) = d111(4 cos3 ϕ− 3 cos ϕ) = d111 cos 3ϕ.

It is now sufficient to study the behavior of

∂d′111
∂ϕ

= −3d111 sin 3ϕ = 0.

We obtain ϕ = mπ/3 with integer m. An extreme value appears in the di-
rection e1 (m = 0), which is repeated with alternating sign after each π/3
rotation. This rapid change of the extreme values is the reason why d111 in
crystals of the PSG 32 are relatively small. The variation of d′111 in the plane
perpendicular to the three-fold axis is shown in Fig. 4.33.
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Figure 4.33 Variation of the longitudinal effect d′111 in crystals be-
longing to PSG 32 along directions perpendicular to the threefold
axis (e.g., α-quartz).

4.4.1.3 Converse Piezoelectric Effect (First-Order Electrostriction)

A type of reversal of the usual piezoelectric effects appears when a crystal in
an external electric field experiences a deformation. For a small homogenous
volume element, the relation is written as

εij = d̂ijkEk.

{εij} is the deformation tensor and {d̂ijk} the first-order electrostriction tensor.
Because of the symmetry of the deformation tensor we must also assume the
interchangeability of the first two index positions, hence d̂ijk = d̂jik. Otherwise
all the aspects discussed for the piezoelectric tensor are valid when one takes
into consideration that the interchangeability of the indices is different. As
we shall see in Section 5, thermodynamical relations demand that the compo-
nents of the piezoelectric and electrostrictive tensors take on the same numeri-
cal value. That is, d̂ijk = dkij, where, however, certain boundary conditions are
to be observed. Thus one can measure the piezoelectric tensor also with the
help of electrostriction. In particular, the measurement of both effects on the
same specimen provides very good control potential. The measurement of the
deformations appearing in the converse piezoelectric effect is preferably per-
formed using optical interferometry methods of high resolution. Figure 4.34
shows the scheme of such an arrangement (Michelson interferometer). Again,
the specimen has preferably the form of a rectangular parallelepiped. It is
furnished on one side with an optical mirror. A laser beam strikes a semi-
transparent optical plate at 45◦ incidence so that the beam is split. Let one
beam, e.g., that passing straight through, strike the specimen in vertical inci-
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Figure 4.34 Scheme of a Michelson interferometer. G ground plate,
L light source, HS semitransparent mirror, K1 and K2 crystal and
auxiliary crystal, respectively, with electrodes (and polishing), D
detector. Maximum resolution is realized, if the detector slit SP
is placed at the position of the steepest intensity variation in the
interference pattern (between maximum and minimum of intensity).

dence. This beam is reflected and deflected by 90◦ at the beam splitter. The
second beam strikes the auxiliary crystal of the known piezoelectric effect,
also furnished with a mirror, where it is reflected. The beam passing straight
through the splitter interferes with the other beam to build a pattern of in-
terference fringes. By carefully adjusting one of the crystals one can set the
interfringe distance to the desired width. With the help of a narrow slit in
front of the detector (photomultiplier or photodiode) one can find a position
of the strongest increase in intensity. This is located between a maximum and
an adjacent minimum of the fringes. This is the setting of the highest sensitiv-
ity for the detection of fringe pattern displacement. If in one of the two crys-
tals a homogenous mechanical deformation is produced along the direction
of the wave normal of the beam, one observes a displacement of the fringes
corresponding to twice the deformation path. An especially high accuracy
is realizable, when the fringe displacement is compensated with the help of
the second crystal by producing an equally large deformation, for example
by means of the converse piezoelectric effect. If one works with an electric
alternating field, where the amplitude can be set independently at each crys-
tal, one can achieve, with the help of a lock-in amplifier, an accuracy an order
of magnitude higher than required for the measurement of the normal con-
verse first-order piezoelectric effect. The lock-in technique largely suppresses
a substantial part of disturbing phenomena (vibration, inhomogeneous heat-
ing, and detector intrinsic noise). For this reason such an arrangement is also
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suitable to measure second- and higher order effects. We will return to this in
Section 4.5.3.

Here we again measure longitudinal effects with the electric field in the di-
rection of the beam and transversal effects with the electric field perpendicu-
lar to the beam direction. The complete determination of the first-order elec-
trostriction tensor can be carried out using a strategy similar to that outlined
above.

Of course, other types of interferometers can be used for purposes of this
kind. Somewhat more versatile than the interferometer described here is a
device where the light beam is transmitted through the specimen. Changes
in the optical path are measured. These, however, contain a fraction arising
from a change in the refractive index under the influence of the electric field
(electrooptical effect, Section 4.4.2).

This method requires a substantially higher optical quality of the crystal and
also a rather perfect preparation (plane-parallelism of the surfaces through
which the light passes, surface finish).

The measurement of electrostriction with the help of strain gauges, com-
fortable as it is, hardly achieves the desired accuracy except in the case of very
large effects. In contrast, the highly precise determination of lattice constants
offers a competitive alternative to the optical interference methods (see Sec-
tion 4.3.11).

We will become acquainted with other methods to measure piezoelectric
effects in connection with the propagation of sound waves in piezoelectric
crystals, where a coupling appears between the elastic and piezoelectric con-
stants. This electromechanical coupling is the basis for the construction of
sound generators and resonators.

A method to qualitatively test whether a substance possesses piezoelectric
properties was reported by Giebe and Scheibe. The method works on powder
samples and allows certain conclusions concerning the order of magnitude of
the effects. The powder is immersed in a high-frequency electric field. Indi-
vidual grains, excited to acoustic resonances at a certain frequency depending
on their dimensions, give weak interfering signals which are amplified and
detected.

4.4.2
First-Order Electro-Optical Tensor

In Section 4.3.6 we became familiar with the indicatrix aijxixj = 1 which
we employed to describe the propagation of electromagnetic waves in non-
absorbing and optically non-active crystals. The refractive indices nij are re-
lated to the “polarization constants” aij according to aij = n−2

ij (see Section
4.3.6). An external electric field E can give rise to a change in the polarisation
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constants

aij − a0
ij = ∆aij = rijkEk + rijklEkEl + . . .

The tensor {rijk} is called the first-order electro-optical tensor. It is of the
same form as the converse piezoelectric tensor {d̂ijk} because of the inter-
changeability of the first two index positions. Hence, we can directly take
over the set of independent tensor components.

The concept of the measurement of longitudinal- and transversal effects
with respect to the optical properties of crystals cannot be directly realized, be-
cause the laws of light propagation do not allow arbitrary directions of vibra-
tion in the propagation directions. In a simple measurement arrangement let
us assume that a light wave strikes the surface of a rectangular parallelepiped
at vertical incidence. The possible directions of vibration in the crystal, with-
out external field, are deduced from the sectional ellipse of the original indi-
catrix. With the electric field applied either parallel or perpendicular to the
ray direction (Fig. 4.35), we expect a change in the indicatrix, which will be
expressed in two phenomena; firstly, a new sectional ellipse is created with al-
tered principal axes directions and secondly, the lengths of the principal axes
are altered, i.e., a change results in the refractive indices, hence in the velocity
of light. In the orthorhombic system, the directions of the principal axes re-
main unchanged, to a first approximation, due to symmetry. The same is valid
for the distinct principal axis parallel to the twofold axis or perpendicular to
the symmetry plane in monoclinic crystals and for the principal axis parallel

Figure 4.35 Arrangement for electrooptic measurements. Electric
field E perpendicular to the propagation direction g (transversal ar-
rangement). In the longitudinal arrangement E and g are parallel.
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to the principal symmetry axis in trigonal, tetragonal and hexagonal crystals.
In cubic and in optically uniaxial crystals—except in certain singular direc-
tions of the electric field—the degeneracy of the indicatrix is canceled, i.e.,
the indicatrix takes on the form of a triaxial ellipsoid. We will now examine
to what extent we can actually expect a measurable rotation of the indicatrix
compared with the initial situation.

In the following, we designate the transmission direction (vertical inci-
dence) with e′i and the two directions of vibration with e′j and e′k (directions
of the semiaxes of the sectional ellipse). The sectional ellipse in the plane per-
pendicular to e′i is

a′jjx
′2
j + a′kkx′2k = 1.

After the change {∆aij} (calculated in the dotted system!) we have

(a′jj + ∆a′jj)x′2j + (a′kk + ∆a′kk)x′2k + 2∆a′jkx′jx
′
k = 1

(no summation here).
We now perform a rotation in the new principal axes system of the sectional

ellipse and obtain for the angle of rotation (see Section 4.3.2)

tan 2ϕ =
2∆a′jk

a′jj + ∆a′jj − a′kk − ∆a′kk
.

By tensor transformation we can calculate the quantities ∆a′jk from the ten-
sor components in the crystal–physical reference system according to ∆a′jk =
r′jklE

′
l .

The quantities a′jj and a′kk are known (a′jj = n′−2
jj , a′kk = n′−2

kk ); furthermore,

∆a′jj = −2∆n′jj/n′3jj and ∆a′kk = −2∆n′kk/n′3kk (because aij = n−2
ij ).

Hence, the magnitude of the angle of rotation depends decisively on the dif-
ference of refractive indices and naturally, on the quantity ∆a′jk. Experience
shows that the angle of rotation remains virtually unobservable by a double
refraction (n′jj − n′kk) > 0.03, i.e., the position of the principal axes of the sec-
tional ellipse is virtually unchanged. If, however, the sectional ellipse has the
form of a quasicircle (n′jj ≈ n′kk) or a circle, then the rotation or the position of
the sectional ellipse due to the field must be taken into account.

In all other cases, the approximation of the vanishing angle of rotation leads
to a substantial simplification of the measurement procedure. Let the optical
path difference of the two light waves passing through a crystal of thickness
L and the refractive indices n′jj and n′kk in the direction e′i be given by G =
L(n′jj − n′kk). For a change, we have

∆G = L∆(n′jj − n′kk) + (n′jj − n′kk)∆L.
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If we write for ∆n′ the values−n′3∆a′/2 and for ∆L the induced quantity from
the converse piezoelectric effect

∆L = Lε′ii = Ld̂′iilE
′
l ,

we get

∆G = − L
2
(n′3jj r′jjlE

′
l − n′3kkr′kklE

′
l) + (n′jj − n′kk)Ld̂′iilE

′
l .

(with fixed j and k; summation over l). Accordingly, to determine the compo-
nents rijk the knowledge of the piezoelectric tensor is also required, because
the electric field causes a change of the geometric path length L. When the
effects are sufficiently large, the measurements can be made with the help of
a Sénarmont compensator (see Section 4.3.6.5). Higher accuracy is achieved
when one works with an alternating electric field that induces an oscillation
of the direction of vibration of the linear polarized light behind the Sénarmont
compensator. A Faraday cell placed in the ray path behind the Sénarmont
compensator can be used to compensate this oscillation by producing an op-
posing magnetooptical Faraday effect (see Section 4.4.5). The current in the
coil of the calibrated Faraday cell required for this purpose is a measure of the
rotation and thus for the path difference originating in the crystal.

With the aid of these so-called relative measurements, performed in dif-
ferent directions, the components rijk in many PSG, in particular in those of
higher symmetry, can be completely determined. In triclinic and monoclinic
crystals it is, however, also necessary to add so-called absolute measurements,
where only the change in the optical path of one of the waves propagating in
the direction e′i is measured separately. High measurement accuracy is not
only achieved with a Jamin interferometer (Fig. 4.36), where light is transmitted

Figure 4.36 Scheme of a Jamin interferometer. L light source, S1
and S2 are glass plates with metallized reverse side, K1 and K2 are
specimen and auxiliary crystal, respectively, D detector.
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through the crystal only once, but also with the previously described Michel-
son interferometer. One now places a crystal with known electrooptical effect
in the second beam to enable a compensation measurement. The above for-
mula for ∆G is also true for the absolute measurement when instead of n′kk or
n′jj for the refractive index of air (n ≈ 1) the value 0 is written for the second
beam and for r′kkl or r′jjl . The accuracy is increased by orders of magnitude,
when one works with an electric alternating field employing a lock-in ampli-
fier, whereby the detector, as described in Section 4.4.1.3, adjusted in a region
of largest changes in intensity (between a maximum and an adjacent mim-
imum of the interference pattern). The difference of the absolute measure-
ments for both directions of vibration e′j and e′k must naturally agree with rel-
ative measurement in the respective direction. Thus one also has a complete
control of the measurements. Except on lithium hydrogen oxalate-hydrate
(Ramadan, 1982) no measurements of the complete electrooptical tensor of a
triclinc crystal have been reported. The strategy for such a task is not essen-
tially more complicated as with the piezoelectric effect. For a better overview
it is appropriate to leave the crystal–physical reference system and select the
Cartesian reference system of the semi-axes of the indicatrix instead. In this
system, where we specify its basic vectors with e0

i , the above formula derived
for the path difference takes on an essentially simpler form, when we also note
the electrooptical tensor in the optical reference system. In particular, one can,
if the rotation of the indicatrix is negligible, directly determine longitudinal
effects and transversal effects with the help of absolute measurements, at least
for the optical principal directions. In this way, one can immediately acquire
the following nine components: r0

iii, r0
iij (i, j = 1, 2, 3). If, for example, we ap-

ply the electric field in the direction e0
2 and irradiate also in the direction e0

2,
we obtain the transversal effects r0

112 or r0
332 for the directions of vibration e0

1 or
e0

3. If we transmit in the direction e0
1, we obtain the longitudinal effect r0

222 and
again the transversal effect r0

332 for the directions of vibration e0
2 or e0

3. Trans-
mission in the direction e0

3 again yields r0
112 and r0

222. Further measurements
on 45◦-cuts give the possibility of measuring the remaining nine components.
With the help of the transformation ei = uije0

j , which presents the basic vec-
tors of the crystal–physical system in the crystal–optical system, we obtain the
components rijk from the components r0

ijk according to

rijk = uii∗ujj∗ukk∗r0
i∗ j∗k∗ .

In any case it is necessary to correct for the converse piezoelectrical effect be-
forehand.

If the sectional ellipse rotates when an electric field is applied, then the for-
mula for the path difference given above must be modified. The new position
of the semiaxes of the sectional ellipse, expressed through the angle of rotation
ϕ, results in an additional equation containing the components rijk. While the



4.4 Third-Rank Tensors 189

Figure 4.37 Compensation of the ray double refraction of plane-
parallel plates. K1 crystal (specimen), K2 auxiliary crystal with
known ray double refraction.

piezoelectric correction remains, one must enter into the first term the calcu-
lated change of the refractive indices for the new directions of vibration. We
will return to this type of special cases later.

At this point it is appropriate to make a few comments on the performance
of the measurements. Often the crystals possess such a strong double re-
fraction that when making relative measurements the waves are separated in
space and cannot interfere. In such a situation one places a second specimen
in the ray path to compensate for the double refraction. For the routine mea-
surements of such effects it is useful to prepare a set of plates of known double
refraction (ray separation at vertical incidence). For this purpose, it is best to
use crystals of high optical quality and good stability of the surface finish,
for example, orthorhombic calcium formate. A suitable compensation plate is
then selected for each measurement and placed with the correct orientation in
the ray path (Fig. 4.37).

A certain problem appears when measuring the effect, if ray direction and
electric field are parallel to each other. The specimen must then be equipped
with transparent electrodes. Here, optical glass plates with a thin conducting
film of SnO2 have proven good. The plates are prepared, for example, by
spraying them with a solution of SnCl4 in HCl and methanol. At about 450◦C
a conducting transparent film of SnO2 is formed by oxidation, which is also
mechanically very stable. The glass plates are attached with paraffin oil or
some other immersion liquid to the finely ground faces of the specimen. In
this manner one can almost always avoid polishing the specimen.

In most PSG the electrooptical effects are also superimposed by effects of
optical activity. This, however, is only noticeable when a sectional ellipse in
the form of a circle or quasi-circle is present, as for example, in cubic crystals
of the PSG 23.

We now discuss a few typical examples. First we consider crystals with the
subgroup 22 (PSG 22, 42, 4̄2, 62, 23 and 4̄3). No more than three independent
components exist r123, r231 and r312. We have ∆a12 = r123E3, ∆a23 = r231E1
and ∆a31 = r312E2 and ∆aii = 0. Hence, the sum of the principal refractive
indices remains constant because ∑i ∆aii = 0. Furthermore, no measurable ef-
fect occurs in the direction of the semiaxes of the indicatrix. We must therefore
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employ 45◦-cuts. We apply the electric field parallel to e′1 at the 45◦-cut with

the edges parallel e′1 = ei, e′2 =
√

2
2 (ej + ek), e′3 =

√
2

2 (−ej + ek). Using the
transformation matrix1 0 0

0
√

2
2

√
2

2

0 −
√

2
2

√
2

2


one finds for i = 1, with transmission along e′3, ∆a′11 = 0 and ∆a′22 = ∆a23 =
r231E1. Moreover, d̂′331 = −d̂231 and

n′222 =
2n2

22n2
33

n2
22 + n2

33
.

One obtains analogous values for i = 2 or 3. Hence, for arbitrary i, the change
in the path difference is given by

∆G =
L
2
(n′22)

3rjkiEi − (nii − n′22)Ld̂jkiEi

(do not sum over i!).
Thus we directly obtain the components rjki (i 6= j 6= k 6= i).
The peculiar situation of a circular sectional ellipse may be explained on

crystals of the PSG 4̄2 as an example. Let the electric field and the ray direction
be parallel to the fourfold axis, therefore parallel to e3. Then ∆a12 = ∆a21 =
r123E3. After the field is applied, the sectional ellipse takes the form

a11x2
1 + a11x2

2 + 2∆a12x1x2 = 1.

The principal axes transformation gives tan 2ϕ = ∞, hence ϕ = 45◦. The new
directions of vibration are

e′1 =
√

2
2

(e1 + e2) and e′2 =
√

2
2

(−e1 + e2).

Consequently a′11 = a11 + ∆a12 and a′22 = a11 − ∆a12. The path difference is
then

∆G = −Ln3
11r123E3 = n3

11r123U.

The electrostrictive part vanishes since d̂333 = 0. In this case, with fixed elec-
trical voltage U, ∆G does not depend on the length L of the transmission path
because E3 = −U/L. If the light passes through the same specimen in the
direction e′1 and the electric field persists parallel e3, a change

∆G = − L
2

n3
11r123E3 + (n11 − n33)Ld̂123E3
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in the path difference occurs, whereby the electrooptical part, at the same field
strength, is only half as large as in the case of transmission in the direction of
the electric field.

We now want to get an overview of the obtainable electrooptical effects in
different transmission and field directions in cubic crystals. We search for the
directions of extreme changes of refractive indices in a given field direction.
We proceed in the same manner as discussed in Section 4.3.2 (principal axes
transformation). The auxiliary function

H =(a11(x2
1+x2

2+x2
3)+2r123x1x2E3+2r231x2x3E1+2r312x3x1E2−1)−λ ∑

i
x2

i

also attains an extreme value, when the length of the radius vector of the indi-
catrix, which is equal to the associated refractive index, becomes extreme. For
∆aij we write the quantity rijkEk, respectively. Extreme values appear, when
∂H/∂xi = 0 for i = 1, 2, 3, thus, for example,

∂H
∂x1

= (a11 − λ)2x1 + 2rx2E3 + 2rx3E2 = 0

∂H
∂x2

= (a11 − λ)2x2 + 2rx1E3 + 2rx3E1 = 0

with r123 = r231 = r312 = r. Multiplying the first equation by x2, the second by
x1, and subtracting gives E3(x2

2 − x2
1) = x3(x1E1 − x2E2). The corresponding

expressions are obtained by forming the difference(
xi

∂H
∂xj

− xj
∂H
∂xi

)
= 0.

In general, it is true that Ek(x2
i − x2

j ) = −xk(xiEi − xjEj), where i, j, k are cyclic
in 1, 2, 3.

We now consider some concrete examples. First let E be parallel to [110],
thus

E =
√

2|E|
2

(e1 + e2).

This results from the above equation with E3 = 0: x3 = 0 or x1 = x2 (because
E1 = E2). With x3 = 0 one gets x2

1 = −x1x2 and x2
2 = −x1x2, hence x2 = −x1

and x1 = 0 or x2 = 0.
Therefore, we have found three extreme directions

e′1 =
√

2
2

(e1 − e2) ‖ [11̄0], e′′1 = e2 and e′′′1 = e1.

The refractive indices do not change in these directions (∆a11 = ∆a22 =
∆a12 = 0 for E1 = E2 and E3 = 0!).
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The other condition x1 = x2 gives E1(x2
1− x2

3) = −x2
1E1 with E1 = E2, hence

x3 = ±
√

2x1, and thus

e′2 =
1
2
(e1 + e2 −

√
2e3),

e′3 =
1
2
(e1 + e2 +

√
2e3).

Both these directions are perpendicular to e′1. The associated principal refrac-
tive indices are calculated from the corresponding eigenvalues λi. These re-
sults, for example, from ∂H/∂xi = 0

λ1 = a11 → ∆a′11 = 0;

λ2 = a11 − r123
√

2E1 → ∆a′22 = −r123
√

2E1;

λ3 = a11 + r123
√

2E1 → ∆a′33 = r123
√

2E1.

Transmitting light perpendicular to the electric field in the direction e′1 ‖ [11̄0]
produces a path difference ∆G = Ln3r123

√
2E1 = Ln3r123|E| sign E. The elec-

trostrictive part vanishes because n11 = n22 = n33.
In cubic crystals the direction of the maximal longitudinal effect coincides

with a principal axis direction of the indicatrix modified by the electric field.
By analogy with the method discussed pveviously for the piezoelectric effect
(see Section 4.4.1.2), we form the auxiliary function H = r′111 − λ ∑i x2

i for the
effect ∆a′11 = r′111E′1 and calculate its extreme values. As before, for e′1 = u1iei
we obtain the directions of the space diagonals of the cube, hence

u1i = ± 1√
3

.

With this we find

∆a′11 = r′111E′1 = 6r123

(
1√
3

)3
|E| sign E.

In the plane perpendicular to e′1, thus perpendicular to a threefold axis, the
indicatrix forms a circular section. We have ∆a′22 = ∆a′33 = −∆a′11/2 because
∑i ∆aii = 0. Hence, a transmission in all directions perpendicular to the elec-
tric field (E along the threefold axis) produces a path difference

∆G = −
√

3Ln3

2
r123|E| sign E with ∆a′11 − ∆a′22 =

3
2

∆a′11.

Table 4.8 presents the most important arrangements of field and transmission
directions for cubic crystals of the PSG 4̄3.

Crystals of the PSG 23 usually exhibit such a strong optical activity that
the formulae derived in Section 4.3.6.7 for the interplay of optical activity and
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Table 4.8 Electro-optical effect in distinct directions of cubic crystals; g propagation vector, e′2
and e′3 directions of vibration, L length of transmission.

E ‖ g ‖ e′1 ‖ e′2 ‖ e′3 ‖ ∆G
[001] [001] [110] [1̄10] −Ln3r123|E| sign E
[001] [1̄10] [001] [110] L

2 n3r123|E| sign E
[110] [11̄0] [11−

√
2] [11

√
2] Ln3r123|E| sign E

[111] [11̄0] [111] [112̄] −
√

3L
2 n3r123|E| sign E

double refraction (here induced double refraction) must be used. For a first
approximation one assumes that the dependence of the optical activity on the
electric field strength is negligible. Under this presupposition the tensor com-
ponents r123 of optically active crystals can be measured with methods similar
to those outlined above.

The practical application of the electrooptical effect is limited mainly to the
modulation of light. All other modulation methods cannot compete with the
almost inertia-less control of the electrooptical modulator. This is especially
true for cubic crystals because the electrostrictive part is missing. In this con-
text, it is very convenient that the modulation, to a sufficient approximation,
follows the frequency of the applied electric field. The specimen is located in
diagonal position between crossed polarizers (see Section 4.3.6.3; ϕ = 45◦).
If one neglects reflection and absorption losses, the transmitted intensity is
given by

I′ = I0 sin2 πd = I0(1− cos 2πd)/2,

where d = L(n′′ − n′)/λ0 = G/λ0 is the measured path difference in units of
the vacuum wavelength. Changing the path difference, for example, via the
electrooptical effect, gives

I′′ = I0 sin2{π(G + ∆G)/λ0} = I0(1− cos{2π(G + ∆G)/λ0})/2.

Thus we observe a modulated part

I′′ − I0

2
= ∆I =

1
2

I0

{
sin

2π

λ0
G sin

2π

λ0
∆G− cos

2π

λ0
G cos

2π

λ0
∆G
}

.

If L is adjusted so that L(n′′− n′) is an odd multiple of a quarter of the vacuum
wavelength, hence G = (2m + 1)λ0/4, for m integer, we obtain

∆I = ± I0

2
sin

2π

λ0
∆G.

For sufficiently small ∆G a quasi-sinusoidal modulation arises, when the elec-
tric field varies sinusoidally. This is approximately correct for very small ∆G
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even with an arbitrary primary path difference G. In cubic crystals, because
G = 0, the following is true:

∆I = − I0

2
cos 2π

∆G
λ0

.

A measure for the efficiency of the electrooptical effect is the half-wave voltage
U0 required to produce a path difference change of λ0/2 and thus a maximum
of the intensity I′′ for the case G = mλ0, m integer. The dimensions of the
specimen must be given, for example, transmission length and thickness in
the field direction both 10 mm. In the devices, half-wave voltages as small as
possible are preferred. At present, only a few crystals are known exhibiting a
half-wave voltage less than 100 V as, for example, K(Nb, Ta)O3.

4.4.3
First-Order Nonlinear Electrical Conductivity (Deviation from Ohm’s Law)

The dependence of current density on the electric field is for most substances
linear up to very high field strengths. The possible deviations are described
by a Taylor series of the type

Ii = sijEj + sijkEjEk + sijklEjEkEl + · · · .

The tensor {sijk} contains the first-order nonlinear conductivity. Its behavior
is completely analogous to the piezoelectric tensor {dijk}. The measurement is
performed with the help of the longitudinal effect as with the measurement of
Ohmic conductivity. If one applies an alternating electric field E′1 = E0 sin ωt
to a plane-parallel plate with the normal e′1, one observes a current density

I′1 = s′11E′1 + s′111E′21 = s′11E0 sin ωt + s′111E2
0(1− cos 2ωt)/2

(with sin2 ωt = (1− cos 2ωt)/2). Hence there appears a direct current com-
ponent s′111E2

0/2 and a frequency-doubled component s′111E2
0(cos 2ωt)/2, both

of which can be measured with sensitive instruments. The frequency-doubled
component can best be detected using a lock-in amplifier with compensation.
Consequently, the heat produced in the specimen by the high field and current
strengths and therefore the associated change in Ohmic conductivity have no
influence on the measurement. The quadratic dependence of the effect on the
field strength allows a reliable control of the measurement.

Centrosymmetrc crystals (almost all metals) and crystals of the PSG 43 do
not possess a first-order nonlinear effect. Therefore, one can test, with the
help of nonpiezoelectric cubic crystals, whether the primary voltage is free of
components of the first harmonic. Here, the deviation from Ohm’s law be-
gins with the second-order effect (third power of the field strength), whereby,
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in the case of an alternating field, components with the triple frequency ap-
pear in the current density. In semiconductors, conduction to a large extent
is mainly caused by defects. The symmetry properties of these defects do not
always coincide with the space group symmetry or the site symmetry in the
undisturbed lattice. In such cases, first-order effects can also be observed in
centrosymmetric crystals.

4.4.4
Nonlinear Dielectric Susceptibilty

The dielectrical and optical properties discussed in Sections 4.3.3 and 4.3.6 are
based on a linear relation between the electric displacement D and the electric
field strength E according to Di = εijEj. When discussing higher order effects,
this relationship must be supplemented by adding higher order terms, hence

Di = εijEj + εijkEjEk + εijklEjEkEl + · · ·

+ gijk
∂Ej

∂xk
+ gijkl

∂2Ej

∂xk∂xl
+ · · ·

+ fijklEj
∂Ek
∂xl

+ · · · .

The top row corresponds to the normal Taylor series. With the first term in the
second row we were able to describe in Section 4.3.6.7 the optical activity. Un-
til recently, the prevailing opinion was that higher order dielectric effects were
practically undetectable. In the meantime we know quite a number of higher
order phenomena which are simple to realize experimentally. With the devel-
opement of coherent light sources (laser) it became possible to produce effects
of frequency multiplication and frequency mixing in the field of optics. At
low frequencies, hence in the usual dielectric range, one still requires special
experimental techniques to detect higher order effects. In this section we will
address the optical effects. Instead of the hitherto employed material equa-
tion Di = εijEj we must use the equation above. Here we will consider only
one more step in the series expansion in each case, for example, εijkEjEk or
εijklEjEkEl . The simplest and for most problems adequate model for nonlinear
effects consists in allowing the existence of one or more plane waves propa-
gating in a crystal according to the usual laws of crystal optics, hence without
loss of energy. The directions of vibration of the D-vector associated with each
direction of propagation are fixed as well as the associated electric fields. If a
nonlinear interaction of the components of the electric fields produces addi-
tional electric displacements, i.e., polarizations, then these generate secondary
waves when migrating through the crystal, which differ in direction of vibra-
tion, direction of propagation, and frequency from the primary waves. If we
let a linear polarized wave strike a crystal plate, two linear polarized waves
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D′ and D′′ propagate in the crystal with their propagation vectors running
parallel only in the case of perpendicular incidence or optical isotropy. The
associated E-vectors E′ = E′0e2πi(k′ ·x−νt) and E′′ = E′′0 e2πi(k′′ ·x−νt), cause in the
volume elements, through which they pass, a nonlinear polarization DNL:

DNL
i = εijk(E′jE

′
k + E′jE

′′
k + E′′j E′k + E′′j E′′k )

+ εijkl(E′jE
′
kE′l + E′jE

′
kE′′l + · · · E′′j E′′k E′′l ).

The quadratic part of the first term consists of the partial waves

DNL
i (2ν) = εijkE′j0E′k0e2πi(2k′0·x−2νt)

+ εijk(E′j0E′′k0 + E′′j0E′k0)e2πi((k′0+k′′0 )·x−2νt)

+ εijkE′′j0E′′k0e2πi(2k′′0 ·x−2νt).

Here we assume that {εijk} is virtually independent of frequency.
These three waves are firmly coupled with the fundamental wave. We call

them bound waves. They possess twice the frequency of the fundamental
wave. We therefore speak of the frequency doubling effect (or SHG: second har-
monic generation). The generation of the first and third partial wave, each of
them emanating from only one fundamental wave, is refered to as a type-I-
process, the generation of the “mixed wave” as a type-II-process. Only those
components of DNL(2ν) compatible with the indicatrix for the double fre-
quency and compatible with the associated directions of vibration allow the
propagation of the so-called free waves. The intensity of these frequency-
doubled waves is calculated from the Maxwell equations taking into consid-
eration the previously discussed boundary conditions in Section 4.3.6.1. An
important situation for the frequency doubling of laser radiation is realized,
when the fundamental wave and the frequency-doubled free wave (harmonic)
possess the same propagation velocity with respect to direction and magni-
tude. In this case the fundamental waves, on passing through the crystal, feed
their frequency-doubled components in-phase to the harmonic. The intensity
of the harmonic, as opposed to an arbitrary situation, increases by many or-
ders of magnitude due to constructive interference and is thus made easily
accessible to visual observation. This special situation is called phase match-
ing. The conditions for type-I-processes are n′(ν) = n(2ν) or n′′(ν) = n(2ν)
and for type-II-processes n′(ν) + n′′(ν) = 2n(2ν). Possible directions of phase
matching are obtained from the intercept of the index surfaces for both fre-
quencies ν and 2ν. A vector leading from the center of the index surfaces to
an intercept point shows a possible phase matching direction. Under normal
dispersion (∂n/∂ν > 0), the associated directions of vibration are different.
Only a specific anisotropy of refractive indices allows an intercept of the in-
dex surfaces at all. In cubic crystals no normal phase matching occurs due to
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the missing anisotropy. Nevertheless, phase matching in a very restricted fre-
quency range is conceivable in the case of anomalous dispersion (∂n/∂ν < 0).
In optical uniaxial crystals, the directions of vibration of the fundamental and
of the free second harmonic waves are mutually perpendicular in the case of
phase matching. Biaxial crystals offer a higher probability for the existence of
phase matching directions due to the wider variation of anisotropy. Accord-
ing to Hobden (1967) one can distinguish between a total of 13 different types
of phase matching (Hobden classes).

Since the anisotropy as well as the dispersion of the refractive indices are
very small, a very good knowledge of the refractive indices or vacuum wave-
lengths is required to determine the directions of phase matching. We will
return to the calculation of phase matching directions at the end of this sec-
tion.

The effects of frequency doubling, as far as they are based on the existence
of the tensor {εijk}, only appear in piezoelectric crystals, because the tensors
{εijk} and {dijk} belong to the same symmetry type (see Table 4.7). Similarly
with the piezoelectric effect, there also exists a powder test, with which one
can determine to a high degree of probability, whether a crystal species pos-
sesses an inversion center or not (here an exception is also the PSG 43 with
vanishing third-rank tensors). This so-called SHG test is carried out as follows:
the specimen in the form of a powder is applied as a thin layer on a polished
glass plate. If the preparation is irradiated with a strong laser beam, one can
expect that several crystal grains always are oriented in a favorable position
for frequency doubling. The light emerging from the preparation, from which
the primary radiation was removed by suitable filters, is analyzed with the
help of photon counting techniques, if necessary, using energy-discrimination
methods. Decisive is, whether the number of measured photons with twice
the energy (frequency) surmounts the background value. On comparing with
specimens, which show no effect, for example corundum powder, this state-
ment is in almost all cases investigated so far unambiguously answered. The
method can be made substantially more sensitive than required for routine
investigations by employing pulse techniques coupled with a synchronously
running counter.

A number of methods are available to measure the tensor {εijk} of which in
particular the wedge method (Jerphagnon, 1968) and the method of Maker inter-
ferences deserve special attention (Maker et al., 1962). In the wedge method,
the intensity of the second harmonic wave at perpendicular incidence is mea-
sured on a slightly wedge-shaped crystal (Fig. 4.38). If one neglects the effect
of double refraction and absorption losses, one expects an intensity of the sec-
ond harmonic varying periodically with the transmission length through the
crystal. Up to the first maximum, only the constructive components add to
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Figure 4.38 Wedge method. K crystal (specimen), F filter for sup-
pressing the primary radiation, PZ photon counter. The intensity
of the frequency-doubled radiation (second harmonic) varies peri-
odically with the shift x of the wedge-shaped specimen along the
direction e.

the harmonic. The associated transmission thickness

Lc =
λ0

4(n(2ν)− n(ν))

is termed the coherence length for the given direction of propagation, whereby
λ0 refers to the vacuum wavelength of the fundamental wave. With increas-
ing thickness further contributions of the generating wave become more and
more out of phase with the harmonic and finally effect complete destruction
of the harmonic. After this minimum a maximum of the second harmonic
again builds up and so on. Thus if one shifts the specimen perpendicular to
the finely bundled fundamental wave, one observes a periodic change in the
intensity. The intensity of the maxima is proportional to the square of the
product of coherence length, effective nonlinear coefficient εeff and intensity
of the fundamental wave. εeff is calculated as a function of the components
εijk for the given direction of vibration of the fundamental wave by means of
tensor transformation. The calibration of the intensity of the harmonic can be
performed with the aid of a standard specimen, for example made of KH2PO4.
By varying the transmission direction and the direction of vibration of the fun-
damental wave, it is possible, in principle, to determine all tensor components.
The problem of the relative sign of tensor components is solvable by measur-
ing those effective nonlinear coefficients, which contain sums or differences of
the components εijk.

In the Maker interference method, the intensity of the harmonic is inves-
tigated on a thin plane-parallel plate as a function of the angle of incidence
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(a)

(b)

Figure 4.39 (a) Method of Maker interfer-
ences. K plane-parallel specimen, rotat-
able around the axis e′j, F filter for sup-
pressing the primary radiation, PZ photon
counter. (b) Maker interferences obtained
on a thin (010)-plate of LiHC2O4 ·H2O.

Axis of rotation and direction of vibration of
the fundamental wave parallel to the short-
est semi-axis of the indicatrix, direction of
vibration of the frequency-doubled wave
(second harmonic) perpendicular to the
axis of rotation.

and the direction of vibration of the fundamental wave (Fig. 4.39). Maxima
appear also here, when an odd multiple of the coherence length is realized in
the given direction. In contrast to the wedge method, the effective nonlinear
coefficient changes from maximum to maximum. Furthermore, differences in
reflection losses appear as a function of the angle of incidence, which must
be taken into consideration. As before, a standard specimen is used for the
calibration of the intensity. From the envelope of the maxima, which can even
be determined with good accuracy on specimens of moderate optical quality,
one can extract the effective nonlinear coefficient for the direction of perpen-
dicular incidence. Important is that in the case of negligible double refraction
the envelope is independent of the specimen thickness. An evaluation of the
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Table 4.9 Arrangement for the measurement of non-linear optical effects on thin plates.

No. Plate normal D(ν) (funda- D(2ν) (2nd Eff. coeff. for Type
and vector g mental wave) harmonic) perp. incidence

1 e0
i e0

j e0
j εjjj I

2 e0
i e0

j e0
k εkjj I

3 e0
i

√
2

2 (e0
j ± e0

k)
∗ e0

j εjjj, εjkk, εjjk II∗∗

4
√

2
2 (e0

i + e0
j )

√
2

2 (−e0
i + e0

j ) e0
k

1
2 (εkii − 2εkij + εkjj) I

∗ before entering the specimen
∗∗) the effective coefficient is a function of εjjj, εjkk, εjjk, njj and nkk.

complete range of the envelope curve and also of the whole interference curve
with the help of computer-supported matching of the intensity to the obser-
vations can lead to a substantial improvement in accuracy. The progression of
the intensity is calculated by variation of the components εijk.

A derivation of formulae for the evaluation of Maker interferences on op-
tically uniaxial crystals was given by Jerphagon & Kurtz (1970). The corre-
sponding formulae for biaxial crystals were derived by Bechthold (1977). In
the meantime, the latter have also been used for the determination of the com-
plete tensor {εijk} on triclinic lithium hydrogen oxalate-monohydrate.

A substantial simplification of the measurements results, when one assumes
the validity of the so-called Kleinman rule (1962). This rule states that nonab-
sorbing dispersion-free crystals possess a totally symmetric tensor {εijk}. Ex-
perimental observations confirm, in fact, that only small deviations from total
symmetry appear. For crystals of the PSG 42 and 62, the Kleinman rule would
have the consequence that absolutely no frequency doubling effect would be
observed. On the few examples of these PSG investigated so far, weak effects
of frequency doubling could be observed, so that one cannot assume a severe
validity of the Kleinman rule.

Measurements with the wedge method and with the method of Maker in-
terferences are preferentially carried out on plates cut parallel to the principal
planes of the indicatrix.

The following arrangements have proven useful and are also suitable for
the complete determination of the tensor of triclinic crystals (see Table 4.9).
Let the principal axes of the indicatrix be specified by e0

i . Except in triclinic
and monoclinic systems, the optical principal axes coincide anyway with the
basic vectors ei of the crystal–physical system. The indices i, j, k should be
different.

Variation of the indices results in a total of 21 different arrangements already
at perpendicular incidence. To record Maker interferences one turns the plate,
during transmision, about the direction of D(ν) or D(2ν) taken as the axis of
rotation. From the progression of the envelope of the Maker interferences one
can obtain information on the relative sign of the components εijk.



4.4 Third-Rank Tensors 201

In order not to jeopardize the validity of the simple model, the plate thick-
ness should not be too large so that a noticeable spacial separation of the vol-
ume, through which the fundamental and the harmonic pass, does not occur
as a consequence of ray double refraction.

From the above table we recognize immediately that all crystals with 22
as a subgroup, hence also those of PSG 4̄2 and the cubic crystals of PSG 23
and 4̄3, show no effect in the arrangements 1 to 3. In these cases we work with
arrangement 4, whereby the orientation of the 45◦-cuts, in the case of the cubic
crystals, is referred to the crystal–physical system.

There exists another way of determining the sign, which, however, yet has
not been used routinely. Namely, one obtains, apart from the frequency-
doubled radiation via nonlinear processes, also a contribution of constant po-
larization. Let us consider, for example, a type-I-process of the kind D1 =
ε12E2 + ε122E2

2 with E = E2e2 = E20 cos(2π(k · x − νt))e2. Because cos2 u =
(1 + cos 2u)/2 we obtain a constant contribution D10 = E2

20ε122/2, which
is measurable in the case of sufficiently high field strength. In the example
discussed the specimen has to be equipped with a conducting pair of faces
perpendicular to e1, on which one observes a charge density similar to that
detected in pyroelectric or piezoelectric effects. The sign of ε122 corresponds
directly to the sign of the measured polarization.

Apart from collinear processes discussed here, where the fundamental and
the harmonic show approximately the same propagation direction, the possi-
bility exists of generating a new radiation, when two laser beams meet at a
finite angle. In the volume covered by both waves, nonlinear frequency mix-
ing effects occur, where waves appear with sum and difference frequencies of
both fundamental waves. Even with collinear superposition of two parallel
laser beams of different frequencies, such sum and difference frequencies are
observable, as one can immediately derive the general relationship between
D and E.

Furthermore, under certain conditions, the so-called threshold processes
can produce rays with half frequencies and arbitrary frequencies within a cer-
tain frequency range. These first appear, just as with starting a laser, from
a definite energy density onwards. The frequency of the generated rays de-
pends on the direction of the fundamental in the crystal and can be varied,
to an extent, by rotating the crystal (parametric oscillator; see Bloembergen,
1965).

Finally, we discuss some questions concerning the practical application of
frequency doubling under phase matching conditions. In optical uniaxial
crystals the phase matching angle can be easily calculated from the index
surfaces, because they are rotationally symmetric for both frequencies. The
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Figure 4.40 Construction of the direction of
phase matching of fundamental wave with
frequency ν and second harmonic with
frequency 2ν for the case of an optically
positive uniaxial crystal (n1 = n2 < n3).
The ordinary wave of the doubled fre-

quency (harmonic), which is represented
in the index-surface by a sphere with ra-
dius n(2ν) takes on the same propagation
velocity as the extraordinary fundamen-
tal wave along all directions within a cone
around the optical axis parallel e3.

equation of the index surface is (see Section 4.3.6.1)

∑
i

x2
i = n2

1 and (x2
1 + x2

2)/n2
3 + x2

3/n2
1 = 1.

Due to rotational symmetry it suffices to consider a principal cut with x2 = 0.
In the case of normal dispersion (n(2ν) > n(ν)) in optical positive crystals
(n3 > n1), the refractive index of ordinary waves for the double frequency
(n1(2ν)) can coincide with the extraordinary wave of the fundamental fre-
quency ne(ν) (Section 4.40). For optically negative crystals (n3 < n1) the
reverse is true.

In the case of n3 > n1, x2
1 + x2

3 = n2
1(2ν) and x2

1/n2
3(ν) + x2

3/n2
1(ν) = 1

intersect. ϑ is the angle between the phase matching direction and the optic
axis. With x1 = n1(2ν) sin ϑ and x3 = n1(2ν) cos ϑ one finds

sin2 ϑ =
1/n2

1(ν)− 1/n2
1(2ν)

1/n2
1(ν)− 1/n2

3(ν)
.

Correspondingly, for n3 < n1 we get

sin2 ϑ =
1/n2

1(ν)− 1/n2
1(2ν)

1/n2
3(2ν)− 1/n2

1(2ν)
.

Normally, the range of the angle ∆ϑ of the cone about the optic axis, in which
phase matching is observable, is extremely small, namely of the order of a few
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arc minutes. In rare cases, the index surfaces intersect just about tangentially,
i.e., the refractive indices differ very little over a large angular range. Such a
situation is called noncritical phase matching, where ϑ ≈ 90◦. This means that
for all partial waves of a divergent laser beam, there exists large coherence
lengths and thus a high rate of conversion of the energy of the fundamental
into the frequency-doubled harmonic.

The phase matching directions for type-II-processes are calculated in an
analogous way.

To judge whether a crystal is suitable as a technical frequency doubler, the
following criteria should be considered:

1. good transparency in the frequency range between ν and 2ν,

2. existence of quasinoncritical phase matching directions,

3. large effective nonlinear coefficients,

4. high irradiation strength (since the efficiency of frequency conversion
grows in proportion to the square of the intensity of the fundamental
wave, it is advantageous to work with very high laser power!) and

5. capability to manufacture crystals of sufficient size and optical quality.

At present, irradiation strength and manufacturing capability can hardly be
predicted. Crystals with high mechanical strength as, for example, LiNbO3
tend to form optical defects under weak irradiation. Others, like lithium
formate-hydrate are mechanically weak in comparison, however, show a good
irradiation strength. A certain role is surely played by the regeneration capa-
bility of the crystal and the existence of certain primary defects, in particular
chemical impurities and micro-inclusions in the crystal.

Further effects of nonlinear optical properties as, for example, the effects of
frequency tripling and frequency quadrupling, brought about by the tensors
{εijkl} and {εijklm} will only be mentioned here. Since {εijkl} is a fourth-rank
tensor, it exists in all materials. Therefore, with sufficiently high intensity of
the coherent fundamental wave, one can observe in all materials a radiation of
triple frequency arising from the product EjEkEl . While frequency doubling
effects are observable in phase matching directions of crystals already at very
weak laser powers of the fundamental wave in an amount of a fraction of a
milliwatt, one requires for the generation of frequency tripling and higher ef-
fects far higher powers, even with phase matching. In other words, the search
for crystals with high irradiation strength as well as strong effects of this kind
is still in progress. Fields of application are, for example, laser systems based
on the generation of stimulated Raman scattering (see e.g., Kaminskii et al.,
2000).
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4.4.5
Faraday Effect

If a cubic crystal (electrically nonconducting) or some other optically isotropic
medium is placed in a magnetic field, one observes a rotation of the direction
of vibration of a linear polarized wave similar as in optical activity. How-
ever, while in optical activity the rotation per mm optical path is the same
in all directions, one finds here a change in the sense of rotation, when the
propagation direction is reversed. This magnetooptical effect, named after
its discoverer Faraday effect, is proportional to the magnetic field strength. It
emerges that the influence of the magnetic field on the propagation of light
also appears in anisotropic crystals. To describe the phenomena, we demand,
just as with optical activity, that no additional energy terms arise, i.e., we at-
tach an additional term to the electric displacement that is proportional to the
magnetic field H and satisfies the condition q′′ij = −q′′ji

Di = εijEj + zijkEjHk = (εij + zijk Hk)Ej.

The analogous relationship in optical activity is

Di = εijEj + gijk
∂Ej

∂xk
= εijEj + 2πigijkkkEj,

for the case that E represents a plane wave E = E0e2πi(k·x−νt (see Section
4.3.6.7).

Corresponding to the condition gijk = −gjik for optical activity, here we
must also demand that zijk are antisymmetric in the first two indices and fur-
thermore, are purely imaginary. If we substitute zijk by iζlk or −iζlk with
l 6= i, j and i, j, l cyclic or anticyclic in 1,2,3 and introduce the vector Z with
the components Zl = ζlk Hk, we obtain

Di = εijEj − i(Z× E)i.

This form corresponds to the description of optical activity. Now, with re-
spect to tensor properties, {zijk} behaves as a third-rank axial tensor in crys-
tals with rotation–inversion axes. This is different to the polar tensor {gijk}
which we used in the description of optical activity. The tensor {zijk} makes
no distinction between rotation axes and rotation–inversion axes. It exists in
all point symmetry groups. The experimentally found difference to optical
activity also comes to light. If we substitute k by −k, hence reverse the direc-
tion of propagation, the vector G changes its sign in optical activity, while the
vector Z remains unchanged. In optical activity, if we look in the propagation
direction, the direction of G reverses when the viewing direction is reversed,
so that the sense of rotation of the D-vector of an elliptically polarized wave
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is conserved, in contrast to the Faraday effect. We can describe the modifica-
tion of light propagation by the Faraday effect directly by adopting the corre-
sponding relationships for optical activity (see Section 4.3.6.7). In particular it
is true that linear polarized waves in a crystal without magnetic field become
elliptically polarized waves, as soon as a magnetic field acts. We expect pure
circular polarized waves, if the magnetic field lies in the direction of the optic
axis in optically uniaxial crystals.

An application of the Faraday effect is realized in the Faraday modulator,
a cylindrical specimen made from an isotropic material inserted in a current-
carrying cylindrical magnetic coil. If an alternating current flowing through
the coil generates a magnetic field of the same frequency, then the direction
of vibration of a linear polarized wave propagating along the coil axis in the
material oscillates at the same cycle about the position without magnetic field.
The Faraday cell is thus a useful aid in optical precision measurements with
modulation techniques (see Section 4.4.2).

In conducting materials the magnetic field gives rise to far higher additional
effects due to the direct interaction with the charge carriers, which we can only
refer to here (Voigt effect, magnetoband absorption).

In ferromagnetic and other magnetically ordered materials, the associated
magnetic point symmetry groups are to be applied to derive the independent
components of the tensor {zijk}.

Meanwhile the Faraday effect has been investigated on numerous crystals.
A measurement arrangement has proven successful, where the specimen (a
thin crystal plate) placed in a magnetic field, is continuously rotated about an
axis perpendicular to the magnetic field and the change in the light emerg-
ing from the plate is continuously analyzed (Kaminsky, Haussühl, 1993). An
important result of the investigations on ionic crystals is the quasiadditiv-
ity of the specific Faraday rotation (Verdet’s constant) of the lattice particles
(Haussühl, Effgen, 1988).

4.4.6
Hall Effect

As an example for a more complex relationship we discuss here one of the
many interesting magnetic effects. The Hall effect is observed in electric con-
ductors including semiconductors. Let a plate, through which an electric cur-
rent density I is flowing, be simultaneously immersed in a magnetic field H
with a component transverse to the current. The charge carriers experience a
force deflecting them perpendicular to I and H (Lorentz force). Thus in the
surface elements perpendicular to I and H an electric polarization develops
and builds up an electric field. Figure 4.41 shows a schematic arrangement for
the measurement of the effect. To a first approximation the field strength is
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Figure 4.41 Scheme for the measurement of the Hall effect on a
rectangular parallelepipedron. The surfaces perpendicular to the
current density vector I and the electric field E, respectively, are
metallized. Between these surfaces a sufficiently wide isolating
gap has to be installed.

proportional to current density and magnetic field strength

Ei = kijk Ij Hk.

Thus we are dealing with a third-rank axial tensor, which as we have seen,
can exist in all PSGs. Since I as well as H change their sign with time reversal,
the Hall tensor {kijk} just as E is not affected by time reversal. In crystals with
magnetic order the respective magnetic symmetry group must be considered
for symmetry reduction. Furthermore, it should be noted that the Onsager
relation for transport processes with time reversal is valid, which here takes
of the form kijk = −k jik. Hence, the transformation properties are completely
analogous to those of the Faraday effect {zijk} (see Section 4.4.5). For example,
cubic crystals possess only one component, namely k123

k123 = k231 = k312 = −k213 = −k321 = −k132.

In crystals with 22 as a subgroup only three independent components appear,
namely, k123, k231 and k312.

Introducing a vector R with the components Rl = rlk Hk and the condition
rlk = kijk (l 6= i, j and i, j, l cyclic in 1, 2, 3), the Hall effect can also be described
by a vector product Ei = (I × R)i, where R is an axial vector and {rlk} a polar
tensor.

The measurement of the Hall effect is most simple, even in the case of tri-
clinic crystals. Maximally nine independent components kijk exist. If we select
the principal axes system of the tensor of electrical conductivity as the refer-
ence system, we can preset the direction of the electric current vector I ‖ e′2
on a thin plate cut according to the Cartesian axes of this system. Similarly,
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we can set the external magnetic field parallel to the plate normal e′3. We then
directly measure the coefficients k′123 perpendicular to I and H according to

E′1 = k′123 I′2H′
3.

All coefficients can be determined by interchanging the directions of I, H, and
E. Hence, we require three such plates.

The Hall effect allows important statements concerning charge carriers in
conductors. From its sign one can directly deduce the sign of the charge (pos-
itive Hall coefficient means positive charge carriers). Moreover, the absolute
magnitude of the Hall coefficient provides a measure for the mobility of the
charge carriers.

We mention here a qualitative interpretation of the Hall effect for an
isotropic medium sufficient for many applications. The field strength E gener-
ated by the Hall effect perpendicular to I and H must compensate the Lorentz
force K acting on the charge carriers, which move with the mean velocity v in
the direction I. Hence, K = ev× H = eE and consequently E = v× H, where
e is the charge of a carrier. The total current is then Itot = Qenv. Q = db is
the cross-section, d is the thickness of the plate parallel to the field and b is
the width of the plate = separation of the electrodes, where the electric volt-
age U = b|E|signE is measured. n means the number of charge carriers per
volume element. Hence,

E =
Itot × H

Qen
or with I = Itot/Q

E =
I × H

en
.

Thus the Hall coefficient corresponds to the quantity 1/en.
A specimen exhibiting a large Hall effect, the so-called Hall generator (e.g.,

made from InAs or InSb) can be used to directly measure the magnetic field
strength.

4.5
Fourth-Rank Tensors

The symmetry reduction for the general fourth-rank tensor with its 34 = 81
components would take up too much space here. Thus we limit ourselves
to the two important types, namely those tensors with permutability of the
first and second as well as the third and fourth position (type A) and those
tensors with the additional permutability of both first positions with both last
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positions (type B). We are thus dealing with the conditions

Type A : tijkl = tjikl = tijlk = tjilk,

Type B : tijkl = tklij (in addition to the conditions of type A).

The most important representatives for type A are: the piezooptical tensor,
the second-order electrooptical effect (Kerr effect), electrostriction and second-
order magnetostriction. The following relationships are valid:

∆aij = qijklσkl , ∆aij = rijklEkEl ,
εij = d̂ijklEkEl , εij = fijkl Hk Hl .

The permutability is a consequence of the interconnection of two second-rank
symmetric tensors (∆aij, σij, EiEj, Hi Hj). The most significant representative
of type B is the elasticity tensor, which links the deformation tensor and the
mechanical stress tensor according to σij = cijklεkl or εij = sijklσkl . Here, the
pairwise permutability is based on the reversibility of mechanical deformation
work, which we will consider in detail.

In any case a careful check is required to determine the influence of sym-
metry and physical aspects. Since a symmetric second-rank tensor possesses
at most six independent components, the maximum number of independent
components in type A reduces to 6× 6 = 36 and in type B to (6 · 5)/2 + 6 = 21.
Because the intrinsic symmetry of all the even-rank tensors possesses an inver-
sion center, the number of distinguishable tensors based on crystallographic
symmetry are at most equal to the number of the Laue groups, hence 11 (1̄,
2/m, 2/mm, 3̄, 3̄2, 4/m, 4/mm, 6/m, 6/mm, m3, 4/m3). Only these 11 cases
are to be investigated for polar tensors.

If a twofold axis parallel to e2 exists, then

tijkl = (−1)qtijkl ,

where q is equal to the number of indices 2, i.e., the index 2 only is allowed
to occur an even number of times. It is appropriate to arrange the fourth-
rank tensors of type A and B in the form of 6× 6-matrices according to the
following scheme (for monoclinic crystals 2 ‖ e2):

11 22 33 23 31 12
11 1111 1122 1133 − 1131 −
22 2211 2222 2233 − 2231 −
33 3311 3322 3333 − 3331 −
23 − − − 2323 − 2312
31 3111 3122 3133 − 3131 −
12 − − − 1223 − 1212
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Hence, in type A there exists 20 independent components and 13 independent
components in type B.

In the PSG 22 each index is allowed to appear only an even number of times.
Thus for orthorhombic crystals only the following scheme persists with 12
independent components for type A and 9 for type B:



1111 1122 1133
2211 2222 2233 0
3311 3322 3333

2323
0 3131

1212


.

As with second- and third-rank tensors, the operation of the threefold axis
requires the most effort also here. Again we have

3 ‖ e3, hence R±3‖e3
=


− 1

2 ±
√

3
2 0

∓
√

3
2 − 1

2 0

0 0 1

 .

In order to arrange the symmetry reduction clearly one must proceed system-
atically. In a symmetry operation the respective tensor components transform
in certain subsets among themselves. We will again return to this aspect latter.
For the moment, let us consider the special case of index 3 which is directly as-
signed to the direction of the axis of rotation. There exist five subsets of tensor
components, arranged according to the number of index 3

• missing (9 components of type t1111, t1112, t1122 etc.),

• once (12 components of type t1113, t1123, t1223 etc.),

• twice (10 components of type t1133, t1313, t1323 etc.),

• three times (4 components t1333, t2333, t3313, t3323),

• four times (1 component t3333).
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We begin with the first subset and find for type A:

t′1111 = t1111 =
1

16
(t1111 + 9t2222 + 3t1122 + 3t2211 + 12t1212)

∓
√

3
8

(t1112 + t1211 + 3t2212 + 3t1222), (4.9)

t′2222 = t2222 =
1

16
(9t1111 + t2222 + 3t1122 + 3t2211 + 12t1212)

±
√

3
8

(3t1112 + 3t1211 + t2212 + t1222), (4.10)

t′1122 = t1122 =
1

16
(3t1111 + 3t2222 + t1122 + 9t2211 − 12t1212)

±
√

3
8

(t1112 − 3t1211 + 3t2212 − t1222), (4.11)

t′2211 = t2211 =
1

16
(3t1111 + 3t2222 + 9t1122 + t2211 − 12t1212)

±
√

3
8

(−3t1112 + t1211 − t2212 + 3t1222). (4.12)

Correspondingly, there exist further equations for t′1112, t′1211, t′2212, t′1222 and
t′1212, which, however, do not result in new conditions. From these four double
equations we obtain eight conditions. The terms with alternating signs must
vanish. Hence, from (4.9) or (4.10) we have

t1112 + t1211 + 3t2212 + 3t1222 = 0

and

3t1112 + 3t1211 + t2212 + t1222 = 0

and thus

t1211 = −t1112 and t2212 = −t1222.

Similarly (4.11) and (4.12) yield

t1112 − 3t1211 + 3t2212 − t1222 = 0 and

−3t1112 + t1211 − t2212 + 3t1222 = 0,

hence together with the above result

t1112 = −t2212 = −t1211 = t1222.

From (4.9) or (4.10) we find

5t1111 = 3t2222 + t1122 + t2211 + 4t1212 and

5t2222 = 3t1111 + t1122 − t2211 + 4t1212.
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From the difference and the sum of these conditions we get t1111 = t2222 or
t1212 = (t1111 − t1122/2− t2211/2)/2. From (4.11) and (4.9) we get t1122 = t2211
as well as the important relation t1212 = (t1111 − t1122)/2.

The remaining conditions give us nothing new. In total, the subset with
missing index 3 furnishes the following three independent components t1111,
t1122 and t1112.

In the subset with one index 3, symmetry transformation gives the follow-
ing result:

t′1113 = t1113 = −1
8
(t1113 + 6t1223 + 3t2213)

±
√

3
8

(3t2223 + 2t1213 + t1123), (4.13)

t′2223 = t2223 = −1
8
(t2223 + 6t1213 + 3t1123)

∓
√

3
8

(3t1113 + 2t1223 + t2213), (4.14)

t′1123 = t1123 =
1
8
(−3t2223 + 6t1213 − t1123)

±
√

3
8

(−t1113 + 2t1223 − t2213), (4.15)

t′1213 = t1213 =
1
8
(−3t2223 + 2t1213 + 3t1123)

±
√

3
8

(−t1113 − 2t1223 + t2213). (4.16)

The conditions for the components with interchanged first and second index
pairs have the same coefficients. Further conditions, for example, for t′2123
bring nothing new.

From (4.13) we have:

3t2223 + 2t1213 + t1123 = 0 and (4.17)

3t1113 + 2t1223 + t2213 = 0; (4.18)

from (4.15)

−3t2213 + 2t1223 − t1113 = 0 and (4.19)

3t1123 + t2223 − 2t1213 = 0; (4.20)

from (4.16)

−t1113 − 2t1223 + t2213 = 0 and (4.21)

2t1213 + t2223 − t1123 = 0. (4.22)
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From (4.17) and (4.20) respectively from (4.18) and (4.19) one obtains t2223 =
−t1123 and t1123 = t1213, respectively, t1113 = −t2213 and t1113 = −t1223.

The pairwise interchange of the indices (1. pair against 2. pair) yields anal-
ogous equations with the same coefficients. Hence, in this subset we have the
following four independent components with one index 3:

t1113 = −t2213 = −t1223, t2223 = −t1123 = −t1213,

t1311 = −t1322 = −t2312, t2322 = −t2311 = −t1312.

For the subset with twice index 3 we have

t′1133 = t1133 =
1
4
(t1133 + 3t2233 ±

√
32t1233),

t′1313 = t1313 =
1
4
(t1313 + 3t2323 ±

√
3t2313 ±

√
3t1323).

This gives

t1133 = t2233, t1313 = t2323, t1233 = 0 and t2313 = −t1323.

Furthermore, after interchanging the index pairs we get t3311 = t3322 and
t3312 = 0. In total there also exist four independent components.

The components with index 3 three times all vanish because t′1333 =
− 1

2 t1333 ±
√

3
2 t2333 and so on. Finally, only t′3333 = t3333 remains. Accord-

ingly, a PSG with threefold rotation axis or rotation–inversion axis (PSG 3
and 3̄) possesses the following type A tensor with a total of 12 independent
components:

11 22 33 23 31 12
11 1111 1122 1133 1123 1131 1112
22 1122 1111 1133 −1123 −1131 −1112
33 3311 3311 3333 − − −
23 2311 −2311 − 3131 2313 −1311
31 3111 −3111 − −2313 3131 2311
12 −1112 1112 − −1131 1123 1212∗)
∗) t1212 = 1

2 (t1111 − t1122)

In the Laue class 3̄m we place the twofold axis parallel e1 and note the condi-
tion “index 1 even number of times.” Starting from the above table, we obtain
in the PSG 32, 3m and 3̄m the following eight independent components for
type A: t1111, t1122, t1133, t1123, t3311, t3333, t2311 and t1313. Which components
appear at all is read directly from the above scheme.

For the symmetry reduction resulting from a fourfold axis parallel e3 we
only need to consider those components where the index 3 appears an even
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number of times because a fourfold axis simultaneously represents a twofold
axis (2 is a subgroup of 4!). With

R±4‖e3
=

 0 ±1 0
∓1 0 0
0 0 1


we obtain the following conditions:

t1111 = t2222, t1122 = t2211, t1212 = t2121, t1121 =−t2212, t1211 =−t2122,
t1133 = t2233, t3311 = t3322, t1313 = t2323, t1323 =−t2313, t1233 =−t2133 =0,
t3312 =−t3321 =0, t3333 = t3333.

Hence a type A tensor has the following form (10 independent components)
for the Laue class 4/m (PSG 4, 4̄ and 4/m):

11 22 33 23 31 12
11 1111 1122 1133 − − 1112
22 1122 1111 1133 − − −1112
33 3311 3311 3333 − − −
23 − − − 3131 2331 −
31 − − − −2331 3131 −
12 1211 −1211 − − − 1212

In the Laue class 4/mm the twofold axis parallel ei (i = 1, 2, 3) requires that
all indices are present an even number of times. Thus from the above scheme
t1112, t1211 and t2331 vanish, so that only seven independent components re-
main.

We calculate the effect of a sixfold rotation axis or rotation–inversion axis by
adding to the result of the threefold axis the condition of a twofold axis paral-
lel e3 (index 3 only an even number of times). For the Laue class 6/m (PSG 6,
6̄ and 6/m) this leads to the following eight independent tensor components:
t1111, t1122, t1133, t1112, t3311, t3333, t3131, t2313. Otherwise, the scheme for the
threefold axis is valid. The Laue class 6/mm (PSG 62, 6m, 6̄m and 6/mm) in-
cludes the condition “index 1 an even number of times” because of the twofold
axis parallel e1, so that only the following six independent components exist:

t1111, t1122, t1133, t3311, t3333, t3131.

We achieve the symmetry reduction in both cubic Laue classes in the shortest
way by applying the operation of the threefold axis in the direction of the
space diagonals of the Cartesian reference system to the result of orthorhombic
or tetragonal crystals. We have

R3‖e1+e2+e3
=

0 1 0
0 0 1
1 0 0,


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i.e. the transformation interchanges the indices cyclically. Hence, in the Laue
class m3 (PSG 23 and m3) there exists the following four independent compo-
nents:

t1111 = t2222 = t3333, t1122 = t2233 = t3311,

t2211 = t3322 = t1133, and t1212 = t2323 = t3131.

In the Laue class 4/m3 (PSG 43, 4̄3 and 4/m3) t1122 equals t2211, so that only
three independent components exist.

In the case of the cylindrical symmetries ∞/m and ∞/mm we have the
situation of the Laue class 6/m and 6/mm, respectively. The isotropy, derived
from the conditions of the Laue class 4/m3 under the inclusion of cylindrical
symmetry, demands that

t1212 = (t1111 − t1122)/2,

so that only two independent components exist.
The corresponding type B tensors can be immediately derived from the

complete formulae for type A tensors given above by allowing the permu-
tation of the index pairs (see Table 4.10).

Tensors with other intrinsic symmetries, for example, the permutability of
three index positions, as in the case of nonlinear dielectric susceptibility or
the permutability of indices of only one pair, as with the electrically induced
piezoelectric effect, can be easily reduced by employing an analogous method
as above.

4.5.1
Elasticity Tensor

Mechanical stresses and deformations are, within the limits of Hooke’s law, pro-
portional to one another. For sufficiently small stresses and deformations we
can describe the relationship of these quantities, when we neglect infinitesimal
torques or rotations, by:

εij = sijklσkl or σij = cijklεkl .

In the first case we assume that the mechanical stresses are inducing quanti-
ties, which represent the normal situation in elastostatics. We will see later that
the reverse is an even more favorable representation in dynamic processes.
Furthermore, we assume that the stresses and deformations are of such a na-
ture that no plastic, i.e., permanent deformations appear. We call this limit
for the deformations or stresses the critical limit with the corresponding criti-
cal deformation or critical stress. We will return to this point in Section 6.1.1.
Moreover, we assume that the deformations are small enough to guarantee
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Table 4.10 Fourth-rank tensors of type B (permutability of indices within the first and second
pair and pairwise; example elasticity tensor).

1̄ (Z = 21): 2/m (Z = 13):
1111 1122 1133 1123 1131 1112
1122 2222 2233 2223 2231 2212
1133 2233 3333 3323 3331 3312
1123 2223 3323 2323 2331 1223
1131 2231 3331 2331 3131 1231
1112 2212 3312 1223 1231 1212

1111 1122 1133 0 1131 0
1122 2222 2233 0 2231 0
1133 2233 3333 0 3331 0

0 0 0 2323 0 1223
1131 2231 3331 0 3131 0

0 0 0 1223 0 1212

2/mm (Z = 9): 3̄ (Z = 7)
1111 1122 1133 0 0 0
1122 2222 2233 0 0 0
1133 2233 3333 0 0 0

0 0 0 2323 0 0
0 0 0 0 3131 0
0 0 0 0 0 1212

1111 1122 1133 1123 1131 0
1122 1111 1133 −1123 −1131 0
1133 1133 3333 0 0 0
1123 −1123 0 3131 0 −1131
1131 −1131 0 0 3131 1123

0 0 0 −1131 1123 1212∗

3̄m (Z = 6): 4/m (Z = 7):
1111 1122 1133 1123 0 0
1122 1111 1133 −1123 0 0
1133 1133 3333 0 0 0
1123 −1123 0 3131 0 0

0 0 0 0 3131 1123
0 0 0 0 1123 1212∗

1111 1122 1133 0 0 1112
1122 1111 1133 0 0 −1112
1133 1133 3333 0 0 0

0 0 0 3131 0 0
0 0 0 0 3131 0

1112 −1112 0 0 0 1212

4/mm (Z = 6): 6/m, 6/mm, ∞/m, ∞/mm (Z = 5):
1111 1122 1133 0 0 0
1122 1111 1133 0 0 0
1133 1133 3333 0 0 0

0 0 0 3131 0 0
0 0 0 0 3131 0
0 0 0 0 0 1212

1111 1122 1133 0 0 0
1122 1111 1133 0 0 0
1133 1133 3333 0 0 0

0 0 0 3131 0 0
0 0 0 0 3131 0
0 0 0 0 0 1212∗

m3, 4/m3 (Z = 3): ∞/m∞ (Isotropy, Z = 2):
1111 1122 1122 0 0 0
1122 1111 1122 0 0 0
1122 1122 1111 0 0 0

0 0 0 1212 0 0
0 0 0 0 1212 0
0 0 0 0 0 1212

1111 1122 1122 0 0 0
1122 1111 1122 0 0 0
1122 1122 1111 0 0 0

0 0 0 1212∗ 0 0
0 0 0 0 1212∗ 0
0 0 0 0 0 1212∗

∗ t1212 = 1
2 (t1111 − t1122)

the validity of Hooke’s law. We will discuss the nonlinear elastic properties
observed far before the limit to plastic deformation is reached in Section 4.6.3.
While we can still work, in this section, with the ordinary deformation tensor,
we will employ the Lagrangian deformation tensor {ηij} for the relationship
between stress and deformation in the case of nonlinear elastic properties.

An important simplification arises from the permutability of the first with
the second index pair. The proof is analogous to that of the symmetry of the
dielectric tensor, namely from the reversibility of the deformation work. This
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is per unit volume

∆W = σij∆εij,
∂W
∂εij

= σijcijklεkl .

Reversibility demands that ∆W forms a complete differential, hence

∂2W
∂εij∂εkl

=
∂2W

∂εkl∂εij

and thus cijkl = cklij is true.
The permutability of the indices within the first and second pair is a conse-

quence of the symmetry of the stress tensor and the deformation tensor. The
same is true for the s-tensor sijkl = sklij and so on, as one recognizes from the
calculation of εij = sijklσkl from σij = cijklεkl .

Voigt already introduced an abbreviation, which we also use here, with two
indices instead of the four, according to the following scheme: ii → i, ij →
9− i − j for i 6= j (thus, for example, c1122 → c12 or c1232 → c64). One must
never forget that this abbreviation does not lead to a second-rank tensor. In all
operations involving tensor transformations, one must, in any case, return to
the four indices representation. We call the quantities cij, following common
usage, the elastic constants and sij the elastic coefficients. Many authors prefer
the terms stiffnesses for cij and compliances for sij.

If the s-tensor or the c-tensor is known, then one can be calculated from the
other by matix inversion. Because

εij = sijklσkl = sijklcklmnεmn, i.e., sijklcklmn = δimδjn.

In Voigt notation, one has

sqp =
(−1)p+q Apq

D
,

where Apq is the subdeterminant of the matrix (cpq) after eliminating the pth
row and the qth column and D is the determinant of (cpq). When converting
from spq to sijkl it is absolutely essential to note the following multiplicity rule
resulting from the permutability of the indices:

sij → siijj, si,9−k−l → 2siikl , s9−i−j,9−k−l → 4sijkl .

As an example, we consider the relations for cubic crystals. We have:

s1111 = s11 =
c11 + c12

(c11 − c12)(c11 + 2c12)
,

s1122 = s12 =
−c12

(c11 − c12)(c11 + 2c12)
, 4s1212 = s66 = 1/c66.
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With the first attempts to describe anisotropic elasticity in the eighteenth
century a discussion began concerning the question, whether the elasticity
tensor is totally symmetric or not (rari-constant or multiconstant theory).
We can express the deviation from total symmetry by the six relationships
ciijk − cijik = gmn(−1)mn(m−n)/2, where m 6= i, j and n 6= i, k. We are dealing
with a second-rank tensor invariant with the components gmn, as one can im-
mediately recognize from the representation gmn = 1

2 emikenjlcijkl , where {emik}
is the Levi-Civitá tensor (see Section 3.7).

The relations ciijk − cijik = 0 are called Cauchy relations. The tensor {gmn} is a
second-rank tensor invariant of the elasticity tensor. It describes the deviations
from the Cauchy relations. The prerequisites for the validity of the Cauchy
relations are given as (see Leibfried, 1955):

1. pure central forces exist between the lattice particles,

2. each particle possesses a central symmetry and thus is located in a sym-
metry center of the lattice,

3. no anharmonicity (pure Hooke’s law),

4. no thermal energy content,

5. no initial stress.

There does not exist one single substance for which the Cauchy relations are
fulfilled, although some crystals, as for example, NaCl, exhibit only a small
deviation. From the experimental data one can recognize that the deviations
from the Cauchy relations allow statements concerning bonding properties
of the particles. Crystals with predominantly ionic bonds show, to a large
extent, positive components gmn, those with directional bonding, in particular,
with strongly covalent bonds, negative gmn (Haussühl, 1967). Interestingly, an
asphericity of the electron distribution of the ions gives rise to positive gmn.
That is, the deviation from the Cauchy relations may give hints on atomistic
bonding details. We will become acquainted with other physically interesting
invariants of the elasticity tensor in the following.

The tensor {gmn} represents the deviation of the elasticity tensor from its
totally symmetric part. Accordingly, Hehl and Itin (2002) were able to show
rather elegantly that{gmn} constitutes, in a group-theoretical sense, an irre-
ducible piece of the elasticity tensor.

4.5.2
Elastostatics

Here we consider the deformations appearing in equilibrium with external
forces or the required mechanical stresses in equilibrium with a given defor-
mation. The time-dependent processes until equilibrium is achieved will be
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Figure 4.42 Measurement of Young’s modulus on a thin bar by
application of uniaxial stress σ′11.

neglected. We then have

∂σij

∂t
= 0 and

∂εij

∂t
= 0 (t time).

All quantities before and after the deformation are described in the same fixed
reference system. Furthermore, we assume the validity of Hooke’s law.

Whereas the solution of general problems of elastostatics often requires con-
siderable mathematical efforts, as, for example, the problem of the bending of
a curved bar with variable cross-section or the torsion of a thin rod of nonuni-
form cross-section, we will treat here only problems that are relevant for prac-
tical measurments in crystals. A decisive role is played by the boundary con-
ditions to which the specimen is exposed. These must be formulated as sim-
ply as possible in order to directly apply the fundamental elastostatic equation
εij = sijklσkl . In particular, arrangements are preferred that lead to a homogo-
neous deformation of the complete crystal, that is, where

∂εij

∂xk
= 0.

As a very important and experimentally easily accessibile example we first
investigate the longitudinal deformation of a bar with fixed cross-section (ac-
cording to form and size) under uniaxial stress along the bar axis e′1 (Fig. 4.42).
We have

ε′11 =
(

∆l1
l1

)′
= s′1111σ′11.

(∆l1/l1)′ is the relative change in length along e′1. The boundary conditions
are σ′11 6= 0, otherwise σ′ij = 0. The material property 1/s′1111 is called Young’s
modulus. For an arbitrary direction e′1 = u1iei one has

s′1111 = u1iu1ju1ku1lsijkl .
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The right-hand side contains the following 15 coefficients:

siiii (3), 4siiij (6), 2(siijj + 2sijij) (3) and 4(siijk + 2sijik) (3)

with i = 1, 2, 3.

Accordingly, from such longitudinal measurements, even when we select
many different directions e′1, we obtain only the coefficients of the quadric
F = sijkl xixjxkxl .

If we also include measurements of the longitudinal deformation occurring
perpendicular to the bar axis, the so-called lateral contraction

ε′22 =
(

∆l2
l2

)′
= s′2211σ′11 and ε′33 =

(
∆l3
l3

)′
= s′3311σ′11

we can, in principle, determine all 21 independent tensor component sijkl of a
triclinic crystal.

The measurements are performed as in the case of thermal expansion with
optical methods employing inductive or capacitive path sensors as well as
with the help of strain gauges. The uniaxial stress is transferred to the crystal,
for example, by applying weights, or by springs tightened by a motor-driven
feed. An increase in measurement accuracy of the signal is achieved using a
lock-in amplifier, when one works with a periodic load. One can also employ
X-ray methods to determine the change in the lattice constants under uniaxial
stress resulting from the deformation as with measurements of thermal expan-
sion (see Section 4.3.11). The complete determination of the elasticity tensor,
using these methods, has only been successful for a few highly symmetric
crystals. For isotropic substances (building materials, ceramics, glasses, plas-
tics), where sufficiently large specimens can be prepared, the static method is
of major importance, in particular in understanding the elastic behavior be-
yond Hooke’s law up to plastic deformation and fracture.

Since the qualitative measurement, even on small crystals with dimensions
of a few mm, delivers at least the order of magnitude of the deformation and
in particular its sign, such tests, for example, with the help of strain gauges,
can serve to supplement and check other methods.

A variant of the measurement of Young’s modulus is the bending test of thin
rods with homogeneous cross-section (beam bending), where Young’s modu-
lus is the effective material constant for the beam axis (longitudinal dilata-
tion or compression with bending on the convex or concave side of the rod,
respectively). For practical measurements, this method, used by Voigt and
coworkers (1884) in thousands of measurements to determine the elasiticity
tensor of NaCl and KCl, is today rarely taken into consideration because of
the low accuracy. This also applies to variants such as bending of thin plates,
as employed, for example, by Coromilas for the measurement of some elastic
coefficients of gypsum and mica (1877).
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The ratio of longitudinal transverse contraction and dilatation, in our exam-
ple ε′22/ε′11, for arbitrary beam directions e′1 and directions e′2 perpendicular to
these, is called Poisson’s ratio. It plays, among other things, an important role
in the evaluation of the stiffness of composite materials.

4.5.3
Linear Compressibility Under Hydrostatic Pressure

If we expose an arbitrarily shaped specimen to a hydrostatic pressure p (σij =
−pδij), we observe a change in the dimensions, described by the longitudinal
effect

ε′11 = ∑
k

s′11kkσkk

(σ′kk = σkk). With e′1 = u1iei we have

ε′11 = ∑
k

u1iu1jsijkk(−p) = −pu1iu1jSij.

The quantities Sij = sijklδkl form a second-rank tensor invariant (contraction of
the s-tensor). This experimentally easily accessible tensor property, provides,
for many applications, sufficient information concerning the elastic behavior
of materials. The measurement is performed conveniently by attaching strain
gauges to the side faces of a parallelepipedic specimen. However, one must
make a correction for the pressure dependence of the electrical resistance of
the strain gauges.

From the sum ∑ ε′ii of the principal deformations we obtain the volume com-
pressibility

K = −d log V
dp

≈ ∑
i

ε′ii/p = −∆V
Vp

,

where p is sufficiently small and V is an arbitrary volume of the specimen.
A precise measurement of the volume compressibility is even possible with
small crystal grains suspended in a nonsolving liquid in a pressure cell to
measure the change in volume ∆V after pressure loading. The measured total
compressibility of the suspension arises from the fractional volumina Vi/V
and the compressibilities Ki of the ith components of the suspension

K = ∑
i

KiVi/V,

as one can easily verify. In the case of two components, when the compress-
ibility of one of them is known as well as the fractional volumina, one can
determine the compressibility of the other component. At higher hydrostatic
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pressures the X-ray determination of the lattice constants has been proven to
be very successful for the determination of the compressibility. (see Section
4.3.11).

For K we obtain from above

K = ∑
i,k

siikk.

For cubic crystals one has

K = 3(s11 + 2s12) =
3

c11 + 2c12
;

and for trigonal, tetragonal, and hexagonal crystals

K = (s11 + s22 + s33 + 2s12 + 2s23 + 2s31) =
c11 + c12 + 2c33 − 4c31

c33(c11 + c12)− 2c2
31

(matrix inversion of the c-tensor, see above).
K is a scalar invariant of the elasticity tensor, thus independent of the ref-

erence system. For crude considerations concerning stiffness behavior, the
reciprocal compressibility is often a very useful measure. Moreover, just this
elastic quantity is easily accessible to calculation from simple lattice models.

The tensor of the linear compressibility {Sij} is also involved in experi-
ments, where crystals are exposed to a general stress described by the stress
tensor {σij}. According to Hooke’s law we expect deformations εkl = sklijσij,
which lead to a variation of the metric of the crystal (Lattice constants ai and
angles αi). From these variations, which are accessible by high-resolution X-
ray or neutron diffraction techniques, the resulting relative change of the unit
cell volume ε = ∆V/V = ε11 + ε22 + ε33 can be derived. From Hooke’s law we
obtain ε = ε11 + ε22 + ε33 = ∑ skkijσij = Sijσij (summation over k, i, j = 1, 2, 3).
We recognize that the tensor connecting the components εij of the deformation
tensor with the hydrostatic pressure p (σij = −p for i = j and 0 otherwise) and
the tensor connecting the relative variation of the volume ε = ∆V/V with the
components σij of the stress tensor are identical. This is due to the interchange-
ability of the first and second pair of indices (sijkl = sklij). In the field of X-ray
studies Sij are called X-ray elasticity factors and bear the symbol Fij.

4.5.4
Torsion Modulus

If one succeeds in producing thin crystal rods, fibers or films, then one can ap-
ply the known methods to measure the torsion modulus of metal fibers also to
crystals. The requirement is a constant cross-section of the fiber or rod and a
certain minimum length of a few mm. The specimen can be statically twisted
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and the restoring force measured with a torsion balance. Low-frequency dy-
namic measurements, where the specimen is furnished with a large external
mass to reduce the frequency of oscillation, can enable a substantial increase in
measuring accuracy. Since in the meantime one can manufacture thin hairlike
crystals (so-called “whiskers”) from many materials, this method is of certain
significance, when larger crystals are not available. The same applies to the
torsion of strips or thin plates.

Concerning the mathematical treatment of problems with complex bound-
ary conditions, we refer to numerous literature on this subject (for example,
Love, 1926, 1944; Voigt, 1928).

4.5.5
Elastodynamic

With the development of ultrasound techniques the dynamic methods, in par-
ticular, for precision measurements on crystals, have largely superseded the
static methods. The dynamic processes are characterized by the fact that at
least for one component σij the following is true:

∂σij

∂xk
6= 0 and

∂σij

∂t
6= 0;

hence for at least one εij

∂εij

∂xk
6= 0 and

∂εij

∂t
6= 0

is fulfilled.
To begin with, let us study the forces acting on a volume of a parallelepi-

pedic specimen of dimensions ∆xi in the directions ei (i = 1, 2, 3) (Fig. 4.43).

{σii(x)− σii(x0)}∆xj∆xk + {σij(x)− σij(x0)}∆xi∆xk

+ {σik(x)− σik(x0)}∆xi∆xj with i 6= j 6= k 6= i.

Here x− x0 = ∆xiei. These forces are equal to the product of the mass of the
specimen volume

∆m = ρ∆x1∆x2∆x3

and the ith component of the acceleration ∂2ξi/∂t2, where ξ is the displace-
ment vector and ρ is the density. If one expands

σij(x) = σij(x0) +
∂σij

∂xq
∆xq + · · · (here one must sum over q)
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Figure 4.43 Parallelepipedic specimen.

and contends oneself with the first differential quotient, one gets

∂σii
∂xq

∆xj∆xk∆xq +
∂σij

∂xq
∆xi∆xk∆xq +

∂σik
∂xq

∆xi∆xj∆xq = ρ∆x1∆x2∆x3
∂2ξi
∂t2 .

After dividing by ∆x1∆x2∆x3, one has for i = 1, 2, 3

∂σii
∂xq

∆xq

∆xi
+

∂σij

∂xq

∆xq

∆xj
+

∂σik
∂xq

∆xq

∆xk
= ρ

∂2ξi
∂t2 .

Since ∆xi shall be freely selectable, independent of one another, we must de-
mand that ∂σij/∂xq = 0 for q 6= j.

This results in the elastodynamic basic equations

∂σij

∂xj
= ρ

∂2ξi
∂t2 (summing over j = 1, 2, 3 at fixed i, respectively),

which we can also write as Div σij = ρ∂2ξi/∂t2ei. The operation Div is the so-
called vector divergence which, by differentiation and summation, generates

the vector
∂σij
∂xj

ei from the tensor {σij}.
If we now introduce the linear relationship of Hooke’s law σij = cijklεkl with

εkl =
1
2

(
∂ξk
∂xl

+
∂ξl
∂xk

)
, we obtain

∂σij

∂xj
=

1
2

cijkl

(
∂2ξk

∂xl∂xj
+

∂2ξl
∂xk∂xj

)
.

Because cijkl = cijlk, the following elastodynamic basic equations result for
deformations within the limits of Hooke’s law:

∂σij

∂xj
= cijkl

∂2ξk
∂xj∂xl

= ρ
∂2ξi
∂t2 .
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Now we will consider the propagation of plane waves, where especially sim-
ple laws exist just as in optics. Hence we write ξ = ξ0e2πi(k·x−νt). k is the
propagation vector with magnitude |k| = 1/λ as before; λ is the wavelength
of the plane wave and ν the frequency. With k · x = kixi and

∂2ξi
∂t2 = −4π2ν2ξi and

∂2ξk
∂xj∂xl

= −4π2k jklξk

we obtain ρν2ξi − cijklk jklξk = 0.
Setting k = |k|g with g = giei and noting that ν/|k| = νλ = v signifies

the propagation velocity, the elastodynamic basic equations for plane waves,
assuming the validity of Hooke’s law, take the form

(−ρv2δik + cijkl gjgl)ξk = Aikξk = 0

for i = 1, 2, 3 (δik = 1 for i = k, otherwise 0). Here ξk denote the components
of the displacement vector, whose position with respect to the propagation
vector is to be calculated from the system of equations, when the components
cijkl are known and the propagation direction g is given. The system only
yields a solutions for ξ 6= 0 when its determinant vanishes, hence

|Aik| = | − ρv2δik + cijkl gjgl | = 0.

Since we will use these determinants, the so-called Christoffel determinants, re-
peatedly, let us write them out∣∣∣∣∣∣

−ρv2 + c1j1l gjgl c1j2l gjgl c1j3l gjgl
c2j1l gjgl −ρv2 + c2j2l gjgl c2j3l gjgl
c3j1l gjgl c3j2l gjgl −ρv2 + c3j3l gjgl

∣∣∣∣∣∣ = 0.

Thus we obtain a third-order equation in v2 for each given propagation direc-
tion g, i.e., in general, three different values for v2. The propagation velocity
of the associated wave is the same in a direction and in its opposite direction.
We now show that the velocities v′, v′′, and v′′′ belonging to the displacement
vectors ξ′, ξ′′, and ξ′′′ are mutually perpendicular, i.e., ξ′ · ξ′′ = 0, where ξ′

and ξ′′ are two of the three displacement vectors.
The following basic equations are valid for both velocities v′ and v′′,

−ρv′2ξ ′i + cijkl gjglξ
′
k = 0

−ρv′′2ξ ′′i + cijkl gjglξ
′′
k = 0.

Multiplying the first equation by ξ ′′i , the second by ξ ′i , forming the difference
and summing over i gives us

−ρ(v′2 − v′′2)ξ ′iξ
′′
i + cijkl gjgl(ξ ′kξ ′′i − ξ ′iξ

′′
k ) = 0.
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The second term vanishes because cijkl = cklij. Therefore,

(v′2 − v′′2)ξ ′iξ
′′
i = 0, hence ξ′ · ξ′′ = 0, in the case v′ 6= v′′.

Accordingly, the three displacement vectors are mutually perpendicular, as
stated, and form a Cartesian reference system, which also in the case of tri-
clinic crystals is produced by nature for each arbitrary propagation direction.
The special case v′ = v′′ (degeneracy) appears in crystals only in distinct sin-
gular directions. Here, we can only ascertain that the displacement vectors for
v′ and v′′ are perpendicular to the displacement vector ξ′′′ belonging to v′′′.
The case v′ = v′′ = v′′′ does not exist. We can easily calculate the position
of the displacement vectors, when we write the basic equations in the form
Aikξk = 0 with

Aik = −ρv2δik + cijkl gjgl ,

where Aik, for fixed i = 1, 2, 3, form the components of a vector perpendicular
to the associated ξ (for each fixed v, which first must be calculated from the
determinant). Thus, ξ runs parallel to the vector product of any two arbitrary
vectors of the three vectors Ai = Aikek, hence ξ = qAi × Aj, where q is an
arbitrary constant.

In general, the propagation direction g and the displacement vector ξ, ac-
cording to the above, form an angle ζ given by

cos ζ =
[g, Ai, Aj]
|Ai × Aj|

.

If ζ = 0, we speak of a pure longitudinal wave, as also appearing, for example,
in liquids and gases; for the case ζ = 90◦ we have a pure transverse wave
analogous to the D-wave in optics. Here, we are also dealing with singular
cases. In an arbitrary direction, we expect a combination wave composed of a
longitudinal and a transversal component. Both propagate simultaneously in
the same direction with the same velocity.

An interesting relationship exists between the extreme values of the longi-
tudinal effect c′1111 in a direction e′1 = u1jej and the character of the wave.
We consider the auxiliary function H = c′1111 + λ ∑i u2

1i, where ∑i u2
1i = 1.

Extreme values of H appear, when ∂H/∂u1i = 0, hence,

4cijklu1ju1ku1l + 2λu1i = 0 with c′1111 = u1iu1ju1ku1lcijkl .

The factor 4 in the first term stems from the permutability of the indices. If we
multiply this equation with u1i and sum over i, we find λ = −2c′1111. Thus

−c′1111u1i + cijklu1ju1ku1l = 0.
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The elastodynamic basic equation is completely analogous to

−ρv2ξi + cijkl gjglξk = 0.

Multiplying the first equation by ξi, the second by u1i, summing over i and
forming the difference gives

(−c′1111 + ρv2)u1iξi + cijkl(u1ju1ku1lξi − gjglu1iξk) = 0.

The second term vanishes, when we make e′1 = g, i.e., the propagation di-
rection lies in the direction of an extreme value of the longitudinal effect. If
e′1 · ξ 6= 0, we have ρv2 = c′1111. If we now compare the initial equations
and note that gi = u1i, we recognize immediately that ξi must equal qgi; q is
again an arbitrary constant. This means that a pure longitudinal wave runs
in the direction of an extreme value of the longitudinal effect. Because of the
orthogonality of the three displacement vectors, both waves perpendicular to
the propagation direction are polarized and thus represent pure transverse
waves. As a supplementary comment, let us note that according to Neu-
mann’s principle, an extreme value for c′1111 must be present along rotation
axes or rotation–inversion axes with n ≥ 2. Accordingly, pure longitudinal
waves exist in these directions. Even in triclinic crystals there exists at least
three different directions with pure longitudinal waves.

As just discussed, the condition of the solvability of the elastodynamic basic
equations leads to a third-order equation in ρv2. The coefficients of the powers
of ρv2 depend on cijkl as well as on the propagation direction g. The coefficient
for the term (ρv2)2 possesses a special significance in so far as, according to
the fundamental theorem of algebra, it is equal to the sum of the roots, hence,
equal to

ρ(v′2 + v′′2 + v′′′2).

From the determinant |Aik|, one obtains, for these coefficients, the value
cijkl gjglδik = ∑i=1,2,3 cijil gjgl . The quantities Ejl = cijklδik represent the com-
ponents of a second-rank tensor (contraction of the tensor {cijkl}). The sum
of the squares of the propagation velocities, multiplied by the density, is ac-
cordingly, for each arbitrary direction e′1 = g1iei (with g1i = gi) equal to the
longitudinal effect of the tensor {Ejl}. We call the tensor {Ejl} the dynamic
elasticity. It represents the directional dependence of the averaged squares of
the sound velocity and is thus a useful measure for the elastic anisotropy. This
relation plays a helpful role as a control in the practical determination of the
elastic constants.

At a first glance, the impression exists that the basic equations derived here
adequately describe the elastic behavior for all materials. This is, however,
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incorrect. Of great practical importance are the additional interactions occur-
ring in piezoelectric and piezomagnetic crystals (crystals with ordered mag-
netic structure). The piezoelectric effect causes, via the stress components σij,
an electric displacement. The elastic waves are thus accompanied by electric
waves. The simultaneous elastic, piezoelectric, and dielectric interactions are
described to a first approximation, under negligibly small pyroelectric effect,
by the following equations:

εij = sE
ijklσkl + d̂ijmEm = sE

ijklσkl + dmijEm,

Di = diklσkl + εσ
imEm (d̂ijm = dmij, see Section 4.4.1.3).

In the case of a elastomagnetic interaction, a corresponding term of the magne-
tostriction and the associated relation for the magnetization would be added.
As we have seen in the derivation of the elastodynamic basic equations, it may
be easy to use the deformation as an inducing quantity. Instead of the above
equations we then have with êijm = −emij = cijkl d̂klm

σij = cE
ijklεkl + êijmEm = cE

ijklεkl − emijEm

Di = eiklεkl + εε
imEm.

The upper indices E and ε mean: at constant electric field and constant defor-
mation state, respectively. The reason for replacing the quantities −emij by the
coefficients êijm in the same manner as d̂ijm = dmij (apart from the sign), will
be explained in Section 5. Moreover, the Maxwell equations must be fulfilled.

As before Div σij = ρ∂2ξi/∂t2ei. Further, in nonconducting crystals we have
div D = 0. We can describe the electric field coupled to the elastic wave, to
sufficient approximation, by E = − grad φ, where the potential φ possesses
the form φ = φ0e2πi(k·x−νt) analogous to the elastic wave ξ = ξ0e2πi(k·x−νt).

This means E ‖ g and rot E = 0 and hence B = const. and D = const. The
justification for this statement was given by Hutson & White (1962) on the ba-
sis of the exact relationship derived by Kyame (1949). These authors showed
that the relative deviations from the exact solutions for v2 are proportional to
the square of the ratio of sound- to light velocity in the crystal, hence in the
order of magnitude of at most 10−8.

Thus,

Div σij = {cE
ijkl gjglξk + emijgmgjφ}(−4π2k2)ei.

div D = 0 gives g ·D = 0, if D = D0e2πi(k·x−νt), hence enkl gnglξk − εε
rsgrgsφ =

0 or

φ =
enkl gnglξk

εε
rsgrgs

.
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The denominator εε
rsgrgs represents the longitudinal effect of the dielectric ten-

sor in the propagation direction g. Thus, for piezoelectric crystals, we obtain
the following basic equations (i = 1, 2, 3){

−ρv2δik +
(

cE
ijkl +

emijenkl gmgn

εε
rsgrgs

)
gjgl

}
ξk = 0.

New indices were used in some positions, when this was required for the
independence of the summation.

The difference compared to the basic equations for nonpiezoelectric materi-
als is that instead of cE

ijkl the quantities

cD
ijkl(g) = cE

ijkl +
emijenkl

εε
rsgrgs

gmgn

appear. That cD
ijkl actually takes this form in the case D = 0, results from the

relation Di = eiklεkl + εε
imEm = 0, after multiplying the ith equation by gi,

summing over i and introducing the resulting expression for φ in the equation
for σij.

This is consistent with the condition D = const., which follows from the
Maxwell equations owing to rot H = 0. Hence, for piezoelectric and non-
piezoelectric crystals we can write the basic equation in the general form
(−ρv2δik + cD

ijkl gjgl)ξk = 0. Since cD
ijkl = cD

klij, all relations derived from the
ordinary elastodynamic basic equations are equally valid. In particular, even
in piezoelectric crystals, the displacement vectors ξ′, ξ′′ and ξ′′′ associated
with a propagation direction g are mutually orthogonal. If one succeeds to
measure the components cD

ijkl and cE
ijkl or their difference, one obtains state-

ments on piezoelectric quantities important not only for the determination of
the piezoelectric tensor but also for the technical application of such crystals.
The quantity (cD

ijkl − cE
ijkl)/cD

ijkl is a measure of the fraction of electrical energy
to the total energy of the elastic wave. This and similarly defined quantities
are called coupling factors. We will return to these later.

In piezoelectric crystals possessing a certain electrical conductivity, as for
example, LiO3 or semiconductors of the GaAs-type or CdS-type, an attenu-
ation of elastic waves occurs because the accompanying electric field breaks
down due to the conductivity (Hutson & White, 1962). The elastic wave expe-
riences thereby continuously a loss of energy. In the relationships just derived,
this phenomenon can be taken into account by introducing complex dielectric
constants. In pyroelectric crystals, the relationships derived above must be
modified by adding pyroelectric terms (see Section 5).

Before we turn to the procedures for the measurement of propagation ve-
locities of elastic waves, a few remarks are necessary on the validity of the
derived relationships. From our approach it is clear that only small deforma-
tions are allowed in order to remain within the limits of Hooke’s law (linear
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elasticity). We will discuss higher order effects in Section 4.6.3. Moreover,
we have neglected all types of mechanical damping (scattering and excitation
processes) by assuming real components cijkl , without, however, giving ex-
tra emphasis to this aspect. We have also not considered that similar effects
as found in optical activity, may exist between the components of the stress
and the deformation tensor. Such effects have actually been observed in cer-
tain crystals (acoustic activity). We will also return to this point. The greatest
problem in all these measurements is, however, the approach of plane waves,
in which we have assumed that they propagate completely independently in
all directions. This strictly applies only to infinitely extended bodies. One
must therefore carefully consider under which circumstances the relationships
gained above may be taken as a sufficient approximation.

To what extent one can regard a crystal as approximately infinite depends
on the ratio B of the specimen dimensions perpendicular to the wave normals
and the wavelength λ. Experimentally it has been found that from B/λ > 20
on, the specimen dimensions have no influence on the observed propagation
velocities exceeding 0.5% of the value for an infinite crystal. This is also con-
firmed by simple model calculations. For the practical measurements of prop-
agation velocities it is therefore appropriate to adjust the wavelength by se-
lecting the frequency to fulfil the above condition. In contrast to crystal optics
in the visible spectrum, one observes over a wide frequency range, no sub-
stantial dependence of the propagation velocity of elastic waves on frequency.
In most materials a weak dispersion begins first above 1000 MHz. The energy
of quanta with a frequency of 1000 MHz is usually by far too small to excite
states of elastic oscillations in lattice particles.

In some measurement methods the specimen is externally irradiated with
sound waves (for example, pulse-echo; forced oscillations). It should then be
noted that just as in optics, the sound wave and the associated elastic energy
flux density, represented by the ray vector s, can encompass a finite angle,
leading to a sideways drift of the sound ray. We obtain the energy flux density
vector from the total elastic energy W per unit volume as follows: We have

W =
1
2

∫
V

(
ρ

∂ξi
∂t

∂ξi
∂t

+ σijεij

)
dV;

the first terms correspond to the kinetic energy constant and the second to the
familiar elastic deformation work. The time change of this total energy is

∂W
∂t

=
∫

V

(
ρ

∂ξi
∂t

∂2ξi
∂t2 +

∂

2∂t
(σijεij)

)
dV.

With σij = cijklεkl we get

∂

∂t
(σijεij) = 2σij

∂εij

∂t
.
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Inserting the dynamic basic equation

∂σij

∂xj
= ρ

∂2ξi
∂t2

in the first term results in

∂W
∂t

=
∫

V

(
∂ξi
∂t

∂σij

∂xj
+ σij

∂εij

∂t

)
dV =

∫
V

∂

∂xj

(
σij

∂ξi
∂t

)
dV.

From Gauss’s theorem, the volume integral is equal to a surface integral given
by
∫

V div QdV =
∫

O Q · do =
∫

O Qjnjd f , where do specifies a surface element
of size d f with the surface normal (unit vector) n = njej. Thus

∂W
∂t

=
∫

O
σij

∂ξi
∂t

njd f .

If we now imagine the specimen volume as a rectangular parallelepiped with
edges parallel to the Cartesian basic vectors, we recognize that σij∂ξi/∂t rep-
resents the jth component of the energy flux density vector. Hence, we have
sj = σij∂ξi/∂t, whereby the sign is selected such that the components parallel
to the propagation direction become positive. In the case of an elastic wave
ξ = ξ0e2πi(k·x−νt), sj = ω2

v cijklξiξkgl , as one can easily confirm (ω = 2πν).
For the time average we obtain

s̄j =
ω2

2v
cijklξ0iξ0kgl .

We can now calculate the angle between the ray vector s and propagation
direction g with the help of s · g. The important cases are those in which both
vectors lie parallel to each other. This always applies to pure longitudinal
waves. As proof let e′1 be parallel to the propagation direction. Then g′1 = 1,
g′2 = g′3 = ξ ′2 = ξ ′3 = 0 and ξ = ξ ′1e′1 parallel to the propagation direction.
Thus s̄′1 = ω2

2v ξ2
0c′1111 and s̄′j = ω2

2v ξ2
0c′1j11 for j = 2 and 3. From the basic

equation (−ρv2δik + cijkl gjgl)ξk = 0 one obtaines in the primed system for
pure longitudinal waves

−ρv2g′i + c′ijkl g
′
jg
′
kg′l = 0

and especially for g′1 = 1, g′2 = g′3 = 0

g′1 =
c′1111
ρv2 = 1, g′2 =

c′2111
ρv2 = 0 and g′3 =

c′3111
ρv2 = 0.

Therefore, c′2111 = c′3111 = 0 and hence s̄′2 = s̄′3 = 0.
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If transverse waves with ξ ‖ e1 run along an n-fold rotation- or rotation-
inversion axis parallel to e3, hence g3 = 1, g1 = g2 = ξ2 = ξ3 = 0, one finds
s̄j = c1j13ξ2

0
ω2

2v . If n or n̄ is even, the index 3 may only occur an even number
of times (2 or 2̄ is contained in n or n̄, respectively!). This means s̄1 = s̄2 = 0
and s̄3 = c1313ξ2

0
ω2

2v .
In general, with a threefold axis, the energy flow runs askew to the propaga-

tion direction. This causes the so-called internal conic refraction, an analogous
phenomenon known in optics, which here, however, can also appear in cubic
crystals (see Exercise 28).

4.5.6
Dynamic Measurement Methods

Dynamic methods to measure elastic properties have achieved a special signif-
icance in solid-state research with the development of ultrasound technology
and precision frequency measurements. In the following, we discuss the most
important methods.

These are

1. Pulse-echo methods,

2. Schaefer–Bergmann method,

3. Resonances of plates and rods,

4. Brillouin scattering,

5. Neutron scattering,

6. X-ray scattering (thermal scattering).

1. Pulse-Echo Methods and Related Methods
The specimen in the form of a plane-parallel plate of thickness L in the di-
rection of the face normals is irradiated with short ultrasonic pulses of a few
microseconds duration (about 20 wave trains at 10 MHz). The ultrasonic gen-
erator, usually a thin quartz plate excited to mechanical oscillations by a high-
frequency electric field, is fixed to one side of the specimen by a thin film of an
appropriate resin, for example (Fig. 4.44). The ultrasonic pulse is reflected at
the boundary and returns to the generator, which in the meantime is electron-
ically switched to act as a receiver. It transforms, via the piezoelectric effect, a
part of the elastic energy of the incoming echo into a voltage pulse, which can
be observed on an oscilloscope with time-proportional x-deflection. Repeated
reflections of the same pulse generate a sequence of quasiequidistant echos
in time, when the propagation direction remains unchanged. The time differ-
ence of m consecutive echos corresponds to the delay time of the sound wave
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Figure 4.44 Pulse-echo method. The crystal K (a plane-parallel
plate) is pasted on the ultrasonic generator G by an oil film F or
a highly viscous material (necessary in the case of transverse
waves). In the intervals between the pulses the generator works
as a piezoelectric ultrasound probe.

through the 2m-fold specimen length and a certain path length covered by the
sound wave in the generator or receiver until reaching the maximum of the
electric pulse. The required correction can be experimentally determined, for
example, by measurements on specimens of the same orientation but differ-
ent thicknesses. Let ∆t be the corrected delay time. The velocity of the elastic
wave is then v = 2mL/∆t. The delay time ∆t can be directly read from the
scale of the oscilloscope after calibration using standards with known sound
velocity or determined by the aid of electronic measuring equipment. One
repeats the pulses after a few milliseconds to hold the oscillogram still.

To generate longitudinal waves or waves with large longitudinal compo-
nents we work with a so-called thickness resonator, for example, a quartz
plate cut perpendicular to the direction e1 of the longitudinal piezoelectric
effect (perpendicular to a twofold axis; X-cut). Paraffin oil and at lower tem-
peratures, a mixture of low boiling hydrocarbons have proven suitable as a ce-
menting liquid. Transverse waves, for example, can be generated with quartz
plates, whose normals are perpendicular to e1 (general Y-cut). The displace-
ment vector of these waves then lies parallel to e1 (in the face of the plate)
when an electric field with a component E2 is applied. The transfer of the
transverse waves to the specimen can only be achieved, with good efficiency,
with the help of high-strength adhesives or cementing with a highly viscous
liquid. Standard cementing materials are beeswax with paraffin oil additive
for lower temperatures, benzophenone for temperatures around 20◦ and high-
strength dental cement for higher temperatures. We will discuss below, in
more detail, the quantitative treatment of the oscillating piezoelectric plate.

With commercial equipment, primarily conceived to test materials for
cracks and other inhomogeneities, sound velocities can be measured to an
accuracy of about 0.5%, when the dimensions of the specimens are at least
ten times the wavelength and the propagation direction remains sufficiently
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sharp for all echos. In this regard, it is essential that the surface of the genera-
tor emitting the ultrasonic pulse is sufficiently large.

For precision measurements, the simple pulse-echo method is less suitable,
in particular with crystals of low symmetry, because pure wave types are only
possible in a few distinct directions. Hence two or all three combination waves
are simultaneously excited. The selection of echos is easy in principle, but
inaccuracies creep in when trying to determine the position of the maxima of
the voltage pulses triggered by the echos.

We illustrate a special advantage, in comparison to most other methods, in
more detail. This is the measurement of the attenuation of the sound waves
which one can read directly from the decay of the maxima of the voltage
pulses of consecutive echos. To describe the attenuation it is convenient to
introduce an individual attenuation coefficient α for each wave.

Then

ξ = ξ0e2πi(k·x−νt)e−α(g·x).

This behavior can also be formally described with a complex propagation vec-
tor k = k′ + ik′′, where k′′ ‖ k and v = ν/|k′|.

Hence

α = 2π|k′′| (because αg = 2πk′′).

The attenuation coefficients with respect to elastic constants are by no means
to be represented as components of a tensor. Similar to optics, there also exists
a formal description for elastic absorption with the aid of complex compo-
nents of the elasticity tensor. Since, however, the major part of the attenuation
is usually generated by inhomogeneities, such an approach is of limited use.
One can gain certain insights concerning the perfection of crystals from atten-
uation phenomena.

The value α results from the amplitude ratio of two consecutive echos ac-
cording to

|ξ0,n+1|
|ξ0,n|

= e−Qe−α2L.

The factor e−Q takes into account the losses due to reflection at the generator
and on the other side of the specimen. e−Q can be eliminated by measure-
ments on two specimens of different lengths L and L′.

The exponential decay of the amplitudes of the echos is directly read from
the envelope of the voltage maxima on the screen of the oscilloscope (Fig.
4.45). Deviations from plane-parallelism as well as a divergence of the sound
beam lead to oscillations of the envelope, which can impair the accuracy of
the measurement.
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Figure 4.45 A sequence of pulse-echos of longitudinal waves in
NaF. Propagation direction [100], frequency 5 MHz, length of speci-
men about 30 mm.

One can also directly record the sound pulse on the surface opposite to the
generator-side with the help of a piezoelectric receiver (transmission).

Electronic processing of the time displacement of primary pulse and echo or
transmission pulse enables a substantial improvement in the accuracy of mea-
surement of small relative changes in sound velocity. Forgacs (1960) achieved
an improvement using the time difference between start and arrival of the
signal as a frequency-determining element for the repetition of the start pulse
(sing-around-method). A second interesting method is the superposition of
the echo or the transmission signal with the primary pulse. In this method one
obtains, dependent on the frequency of the carrier wave of the pulse, sharply
adjustable superposition profiles, which respond sensitively to small changes
in the sound velocity (McSkimin, 1961). With these and related methods, one
can, under suitable conditions, measure changes in sound velocity of the or-
der of 10−8. These methods are particularly suited for the measurement of
changes in elastic properties under the influence of external parameters, as
for example, hydrostatic or unidirectional pressure, temperature, electric and
magnetic fields. The accuracy of the measurement of the absolute sound ve-
locity cannot, however, be substantially increased by these methods, because
the influence of the adhesive film and the generator or receiver cannot be di-
rectly eliminated.
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Figure 4.46 Schaefer–Bergmann method (diffraction of light by
ultrasonic waves; S light beam, K crystal with ultrasound generator
G, P photoplate or ground glass screen, PS primary beam, BS
diffracted rays).

2. Schaefer–Bergmann Method
The periodic distortions accompanying a sound wave can cause a change in
refractive indices due to the elastooptical effect ∆aij = pijklεkl . This results in
the creation of a sine-shaped variation of the refractive index, that is, an opti-
cal grating, on which light can be diffracted. Now, if one irradiates a crystal,
of no particular shape, with a sound wave of fixed frequency, a broad spec-
trum of sound waves of different propagation directions and displacement
vectors are generated due to multiple reflections at the boundaries. A detailed
analysis shows that in the case of small diffraction angles, only those sound
waves can contribute to a noticeable diffraction of light, whose propagation
vector is oriented approximately perpendicular to the propagation vector of
the monochromatic light beam (Fig. 4.46). Hence, one furnishes the specimen
with an optically transparent pair of faces approximately perpendicular to the
face of the sound generator.

A monochromatic light beam entering the crystal approximately perpen-
dicular to the pair of transparent faces, finds sound wave fields in nearly all
propagation directions within these faces and is thus diffracted just about uni-
formly in all directions. The diffraction angle is taken from the formula for the
optical ruled grating, as long as the diffraction angles are small enough and
the optical path through the crystal is so short that the depth of the sound
grating can be neglected. For optically quasiisotropic materials, a sufficient
approximation is 2d sin ϑ = mλ analogous to the Bragg condition. 2ϑ is the
diffraction angle, i.e., the angle of deflection of the diffracted wave from the
direction of incidence, d is the acoustic wave length, λ the optical wavelength
and m the order of the diffraction. Since, to a first approximation, only pure
sinusoidal displacements occur, the higher orders cannot be interpreted by
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corresponding Fourier coefficients, as for example, in the case of X-ray diffrac-
tion. Rather, effects of multiple diffraction are present, that is, each strongly
diffracted wave acts as a new primary wave. Since, in general, for each prop-
agation direction, three different wave types exist with different propagation
velocities, one obtains, outgoing from the crystal, three cones of diffracted
rays which generate three curves on a photographic plate or screen behind
the crystal. From these, the diffraction angles for the propagation directions
perpendicular to the light beam and hence the propagation velocity of the
ultrasonic waves can be determined. In the case of strong anisotropy, one
obtains separate diffraction patterns for both directions of vibration of the in-
cident light wave. These patterns show nearly the same diffraction angle in
the case of weak ray double refraction. However, easily measurable devia-
tions of around one percent occur in cases of strong double refraction, even
if the diffraction angles are small (Küppers, 1971). The cause for the split-
ting is different refraction when the light wave enters and emerges as well
as momentum conservation in the scattering process. Corresponding correc-
tions are necessary, if a higher measurement accuracy is required. If R is the
effective distance between the crystal and the photographic plate and 2r is the
distance between the diffraction spots on the photographic plate belonging to
the propagation vectors g and−g, one obtains the angle of diffraction 2ϑ from

tan 2ϑ = r/R.

Assuming that the source of the diffracted ray lies in the geometrical center
of the crystal, which is the case, when the specimen is uniformly irradiated
by the primary ultrasonic wave. This takes into account the refraction of the
diffracted ray at the rear of the crystal, one obtains for the effective distance
R = R0 − L(1 − 1/n)/2, where R0 is the geometric distance crystal center-
photographic plate, L the length of the crystal in the direction of the light
wave and n the refractive index. Hence, one obtains for the velocity of the
ultrasonic wave deflecting the light ray by the diffraction angle 2ϑ

v = νd = ν
λ

2 sin ϑ
(m = 1),

where ν denotes the frequency of the ultrasonic wave. To achieve higher accu-
racy, it is recommended to make R0, as well as the frequency ν of the ultrasonic
wave as large as possible, for example, R0 = 5 m, ν around 20 MHz. Good
sharpness of the diffraction spots is obtained, when the intense primary light
beam travels through a pinhole (opening about 30 µm) and with the help of a
field lens, through the vibrating crystal to the photographic plate to form there
an image of the pinhole, enlarged by a factor of about five (Fig. 4.47). The third
Laue condition is effective in long specimens and with large diffraction angles.
That is, the intensity of the diffracted wave takes on its maximum under the
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Figure 4.47 Arrangement of the Schaefer–Bergmann method. Q
light source, Ko condenser, B fine pinhole, F field lens for imaging
the pinhole through the crystal K on the photo plate or screen,
respectively, G ultrasound generator, L length of the crystal, R0
distance crystal—photo plate, r distance of the diffraction spots of
first and minus first order from the primary spots 0.

Bragg condition (angle of incidence = angle of emergence, measured against
the normals of the elastic wavefront). This means that one can only observe
reflections with large diffraction angles (above about 30◦) the Bragg condition
is realized. Accordingly, with light waves of arbitrary incidence, one obtains,
in such cases, only very few and weak reflections, if any at all. In order to
obtain a diffraction spectrum of all propagation vectors perpendicular to the
light ray it is thus necessary to keep the diffraction angles sufficiently small
(ϑ < 3◦), i.e., the frequency of the ultrasound waves must be correspondingly
low, in contrast to the above requirement for large diffraction angles in favor
of higher accuracy. In specimens with arbitrary boundaries, a high proportion
of reflected waves is created from the primary ultrasound wave, whose wave
normals run outside the plane perpendicular to the light ray, and hence, do
not contribute to diffraction. If one furnishes the crystal with a “gothic arch”
type boundary as in Fig. 4.48, a major portion of the acoustic primary wave
is transferred, via reflection, into partial waves with propagation directions
within the plane. This results, in particular, in a more uniform distribution of
the excited waves and to a substantial increase in the intensity of the diffracted
light waves. The exposure times for making a diffraction photograph can thus
be reduced to a fraction of a second. Furthermore, the intensity of the primary
ultrasound wave can be minimized to largely avoid the interfering effects of
crystal heating.

For the evaluation of Schaefer–Bergmann elastograms it is advantageous,
when the plane of each effective propagation vector is chosen by taking into
consideration the symmetry properties of the crystal, for example, in or-
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(a) (b)

(c) (d)

Figure 4.48 (a) “Gothic arch” type shape of
the specimen for the generation of a wide
spectrum of propagation vectors within the
plane perpendicular to the light beam by
reflection of the primary ultrasound wave
(for symbols see Fig. 4.44). (b) Elastogram
of KCl (PSG 4/m3), light beam along [100],
primary ultrasound wave along [001]. (c)

Elastogram of KH2PO4 (PSG 4̄m), light
beam along [001], primary ultrasound wave
along [100]. (d) Elastogram of calcium for-
mate (PSG mmm), light beam along [001],
primary ultrasound wave along [010]. The
anisotropy of the diffraction angles allows
to recognize the Laue symmetry in the di-
rection of the optical transmission.

thorhombic crystals the planes (100), (010), and (001). In triclinic crystals the
evaluation is simplified, when the light wave is incident in the direction of
the Cartesian basic vectors ei. Then namely, one gi vanishes in each of the
elastodynamic basic equations, so that only a fraction of the components cijkl
is involved. From only three Schaefer–Bergmann elastograms of specimens
with a ’gothic arch’ shape one obtains the sound velocities for hundreds of
independent directions, from which the complete elasticity tensor can be de-
termined with the help of a suitable computer program.
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This advantage is in confrontation with the disadvantage of low measure-
ment accuracy. In the case of first-order diffraction, one normally achieves an
accuracy of around 0.2% in determining the velocity of sound. The reason lies
in a mutual coupling of the elastic waves, which, similar to coupled pendula,
can influence the effective restoring forces (these correspond to the elastic con-
stants). If one works with plane-parallel plates instead of the “gothic arch”
shape, standing waves form between these plates at certain frequencies (res-
onances), generating a strongly pronounced optical grating in a single prop-
agation direction. This produces multiple reflections of very high order, so
that the diffraction angle can be measured to a relative accuracy of up to 10−5

thanks to the larger values for 2mr. Moreover, by specifying the direction
of vibration of the generator, one can excite quite definite wave types. Fur-
thermore, with this boundary, an elastic primary wave of substantially lower
power will suffice. By adding such precision measurements for some distinct
directions, one can determine the elasticity tensor, even of triclinic crystals,
to good accuracy. Indeed, the elasticity tensor of a triclinic crystal, namely
CuSO4 · 5H2O, was completely determined by this procedure (Haussühl &
Siegert, 1969).

The Schaefer–Bergmann method is of course not suited for strongly absorb-
ing crystals. Since the intensity of the diffracted rays depends on the elastoop-
tical constants, the method of light diffraction on ultrasound waves can also
be used to measure elastooptical properties (see Section 4.5.9.2).

3a. Resonances of Plates and Rods
We observe the simplest vibrating forms on plane-parallel plates and paral-
lelepipedic rods thanks to the clear boundary conditions. Firstly, we consider
a plane-parallel plate of thickness L with unlimited sides, suspended free of
external stress. The possible forms of vibration must satisfy the differential
equation

∂σij

∂xj
=

1
2

cijkl

(
∂2ξk

∂xj∂xl
+

∂2ξl
∂xj∂xk

)
= ρ

∂2ξi
∂t2

as well as the boundary conditions ”no external stresses.” We select e3 par-
allel to the plate normal, and the origin in the center of the plate. Thus
σ3i(L/2) = σ3i(−L/2) = 0 for i = 1, 2, 3. We need not consider the other
boundary conditions, because we are only searching for solutions indepen-
dent of the position coordinates x1 and x2, i.e., those that are homogeneous
within each cross-section perpendicular to e3.

Assuming an antisymmetric solution for a standing wave

ξ = ξ0 sin(2πk · x) cos ωt

= ξ0 sin(2πk3x3) cos ωt
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in the above equation, gives

(−ρv2δik + ci3k3)ξk = 0,

where ω/2πk3 = v is the vave velocity.
From the condition for the solution (Det. = 0), we obtain the three veloci-

ties v′, v′′ and v′′′, as for an infinite crystal where the wave propagates in the
direction e3. The associated displacement vectors are calculated according to
the rules discussed in Section 4.5.12. A general solution for the freely vibrat-
ing plate can be obtained by a linear combination of the three special solutions
according to

ξ = (ξ′0 sin(2πk′3x3) + ξ′′0 sin(2πk′′3 x3) + ξ′′′0 · · · ) cos ωt.

The boundary conditions σ3i(±L/2) = 0 lead to

ci3k3ξ ′0k2πk′3 cos(2πk′3L/2) + ci3k3ξ ′′0k2πk′′3 cos(2πk′′3 L/2) + ξ ′′′0k . . .) = 0

with i = 1, 2, 3. This system of equations has only solutions with ξ 6= 0, when
its determinant vanishes. We must have cos(πk3L) = 0 for one of the three
values k3 = k′3, k′′3 or k′′′3 . This means k3L = (2n − 1)/2, where n is integer.
If, for example, the solution with v′′ is excited, we must have k′′3 = 1/λ′′ =
(2n− 1)/2L, i.e., an odd multiple of half the wavelength must equal the plate
thickness.

We obtain a similar result for a symmetric solution of a standing wave
ξ = ξ0 cos(2πk3x3) cos ωt, however, with the condition, that now an integer
multiple of the wavelength is equal to the plate thickness. Both results, the
antisymmetric and the symmetric, together lead to the result that the charac-
teristic vibrations of the infinite plane plate always appear, when an integer
multiple of half the wavelength of the associated wave of the infinite crystal
is equal to the plate thickness. The associated resonance frequencies are inte-
ger multiples of the fundamental frequency ν1 = v/2L, when no dispersion
is present, which, as previously discussed, virtually always applies approxi-
mately below 1000 MHz. If one succeeds to excite the plate to its character-
istic vibrations and measures the associated resonance frequencies, one has
the possibility to determine the wave velocity v from the difference of these
frequencies and the plate thickness according to v = 2L(νn − νm)/(n−m), as
one can directly read from the resonance condition (v = νλ). νn or νm specify
the nth or mth resonance frequency.

An advantageous property of the resonances of thick plates consists in the
fact, that the three states of vibration can be measured independent of one
another, in other words, without coupling. For freely vibrating plane-parallel
plates of piezoelectric crystals, the resonance condition L = mλ/2 (m integer)
is also valid. Instead of cijkl , however, the components cD

ijkl derived above
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must employed. The proof is carried out analogously, whereby

σij = cE
ijklεkl − emijEm, Di = eiklεkl + εε

imEm

with Em = −(grad φ)m and D · g = 0. Corresponding conditions apply to
magnetostrictive crystals.

A change in the boundary conditions, as for example, in the case of forced
vibrations, leads to a modified resonance condition, to which we will come
later. The simplest way to excite resonances is by using a sound generator,
which in order to transfer the vibrations must be brought in contact with one
of the faces of the crystal. The vibrations can be transferred via an air gap,
a thin wire, a rigid connection between generator and crystal, or directly by
cementing the generator on the specimen. In particular, the latter is necessary,
when exciting sound waves with strong transverse components. In excitation
via air or wire contact, one observes hardly any interfering coupling between
generator and specimen, i.e., the resonance frequencies of the crystal plate are
nearly not influenced by the generator. This does not apply when the gener-
ator is firmly attached to the crystal. Rather, one observes resonances of the
combined system. The resonance condition can be easily calculated, when
the generator possesses also the form of a plane-parallel plate and generator
and specimen posses a similar sound wave resistance ρv, i.e., when the sound
wave can travel through the boundary surface between generator and speci-
men without strong reflection losses.2 If, on the other hand, the sound wave
resistance of both media is considerably different, one observes a strong cou-
pling only close to the resonances of the generator. This arrangement has es-
pecially proven advantageous for the practical routine measurement of elastic
properties. In a preferred version for investigations at very high frequencies
(over 100 MHz) a thin piezoelectric generator, for example, made of hexagonal
CdS is vapor-deposited on the crystal.

Electrostrictive crystals can be directly excited to vibrate by applying a high-
frequency electric field to the metallized faces of the plate. Analogously mag-
netostrictive crystals can be excited by external magnetic fields. We will return
to this in more detail in the next section. The resonances can also be excited
in a wide frequency range with the help of the quadratic electrostrictive effect
(see Section 4.5.10) or by the forces emanating from a high-frequency elec-
tric field of a plate capacitor, one plate of which is the metallized face of the

2) The intensity of the sound wave reflected at the boundary surface
of two isotropic media I and I I is given by (see, for example, Lord
Raleigh, 1945)

Ire

I0
=

(
1− ρIvI cos αII

ρIIvII cos αI

)2

(
1 + ρIvI cos αII

ρIIvII cos αI

)2 .



242 4 Special Tensors

specimen. Here, however, one only achieves small sound amplitudes, so that
special measures are needed to detect the resonances.

In the state of resonance, the free faces of the plate vibrate with maximum
amplitude, when the amplitude of the exciting wave remains quasiconstant
over a broad frequency range. The most important resonance-detection meth-
ods are based on this property. In order not to affect the character of the free
vibration, only a small part of the vibrational energy may be tapped for the
detection. This, for example, can be accomplished with capacitive or piezo-
electric transfer. We then talk of a capacitive or piezoelectric sensor. Another
possibility consists in measuring the electric power of the generator as a func-
tion of the frequency of the field. In this case, one observes a weak feedback of
the vibration state on the generator. Hence, one can determine the resonance
frequencies very accurately with simple electronic measures.

A further possibility, which has proven preeminently useful in practice, is
based on the diffraction of monochromatic light by standing acoustic waves in
the resonance state, as with the Schaefer–Bergmann method. In the resonance
state, only one strong wave exists, which is easy to observe via the diffraction
effect, even when the acoustic power of the generator is weak. This simple
method offers the special advantage, that from the angle of diffraction one ob-
tains an independent statement on the velocity of sound and on the directly
excited wave type. If one works with polarized light, whose direction of vi-
bration is adjustable, one can observe the resonances at substantially lower
acoustic powers. For this purpose, one places a second polarizer in the ray
path, which eliminates a large part of the disturbing background radiation
on the screen. Crystals with weak elasto-optical effects or insufficient optical
transparency can also be investigated with this method. In this case one ce-
ments an auxiliary crystal, made of a material with an extremely large elasto-
optical effect, as for example, RbI, on the face of the specimen plate opposite
the generator. The auxiliary crystal is furnished with a plane parallel pair of
faces for the transmission of the light beam. Furthermore, the auxiliary crys-
tal should possess optical quality in order to produce sharp diffraction spots.
Finally, one must ensure that the auxiliary crystal does not have a disturb-
ing influence on the resonances of the crystal plate. This occurs through two
measures: firstly, the auxiliary crystal is furnished with an irregular bound-
ary on the face opposite to that where the sound enters (for example, “gothic
arch” form as in the normal Schaefer–Bergmann method), and secondly, one
selects an auxiliary crystal with a sound wave resistance ρv, sufficiently differ-
ent from that of the specimen. The resonances are somewhat attenuated by the
auxiliary crystal. The crucial thing, however, is that the resonance frequencies
are not substantially influenced by the generator nor by the auxiliary crystal,
when one remains outside the resonance area of the generators. One works
with a set of generators covering a large frequency range from, for example,
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Table 4.11 Resonance frequencies f in MHz of a plane-parallel plate of LiHSeO3. Plate
normal and propagation direction [001], thickness 7.353 mm, temperature 292 K. Only reso-
nances of the order (2m + 1) were recorded. The measurement between the orders (80+1)
and (104+1) are omitted.

m f m f m f m f m f m f
1 10.534 19 15.140 37 19.760 55 24.381 73 28.990 115 39.767
3 11.047 21 15.665 39 20.272 57 24.888 75 29.500 117 40.282
5 11.560 23 16.180 41 20.786 59 25.400 77 30.013 119 40.790
7 12.070 25 16.693 43 21.300 61 25.915 79 30.525 121 41.305
9 12.582 27 17.209 45 21.810 63 26.430 (80–106) 123 41.815
11 13.095 29 17.720 47 22.320 65 26.942 107 37.713 125 42.331
13 13.607 31 18.223 49 22.830 67 27.452 109 38.226 127 42.841
15 14.120 33 18.735 51 23.344 69 27.962 111 38.735 129 43.358
17 14.630 35 19.248 53 23.870 71 28.475 113 39.250 131 43.872

10 to 30 MHz. One observes a strong coupling only close to the fundamental
frequency of a generator, i.e., a frequency shift of the resonance compared to
the free vibration. One recognizes this by comparison with the frequency of
the resonances, recorded by another generator with another fundamental fre-
quency. Investigations using piezoelectric crystals, whose resonances can be
directly excited, confirm this important finding. One observes very weak cou-
pling with transverse waves. If one utilizes only resonances lying outside the
frequency range of the coupling with the generator, one obtains, with great
accuracy, an equidistant frequency spectrum of the unbounded plan-parallel
plate. As an example, we present the measurements on a crystal of LiHSeO3
(PSG 222). Table 4.11 lists the measured fundamental frequencies (genera-
tor fundamental frequencies 8.24 and 40 MHz). The plate had a thichness of
L = 7.353 mm. Hence, for the velocity of sound of the longitudinal wave
along [001] we get the value

v = 2L
νn − νm

m− n
= 3.7713 kms−1

with m = 1 and n = 131.
This value is in excellent agreement with the values obtained using the

pulse-echo method or with the Schaefer–Bergmann method. Since both fre-
quencies νm and νn were measured with an absolute error below 2 kHz, the
value determined for v is at most subjected to an error of 0.05%, whereby
|∆L/L| < 0.03% was assumed. This accuracy is sufficient for all normal
requirements. The accuracy of the absolute determination of the velocity of
sound is limited by the measurement of the thickness L. Only with special ef-
fort it is possible to determine the thickness with an error substantially below
0.01%. This also presupposes that the specimens are prepared plane-parallel
with the corresponding accuracy. In the acquisition of relative changes of
sound velocities, as, for example, occurring under the influence of temper-
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ature, hydrostatic or uniaxial pressure and electric or magnetic fields, one
also achieves a substantially higher accuracy with this method, when one
records the diffraction signals with a photomultiplier and employs the pos-
sibilities made available by electronic signal processing based on pulse con-
trolled sound excitation and detection. A substantial improvement is also
achieved using phase-sensitive lock-in techniques to amplify the signal dur-
ing frequency-modulated sound excitation. Thus the accuracy of frequency
measurements of resonances using well-prepared plates can be increased to
give relative errors below 10−7 to 10−8 with comparatively little effort. This
procedure requires, by far the least effort, and hence, must be given preference
over other methods.

Finally, precision measurements of frequencies of fundamentals and low-
order harmonics on rods, cylinders and plates must be mentioned, which sim-
ilar to a tuning fork are mechanically excited. The specimens have to be ar-
ranged and excited in the way that those vibrational states occur, which are
favored mainly by the respective boundary condition, and that damping by
the arrangement is largely suppressed. This means that the specimen shall
only lie with the nodes of vibration on the support and excitation shall occur
on the expected antinodes. With the help of sensitive piezoelectric sensors, the
vibrations of the specimen can be recorded by sound emission in air and the
associated resonance frequencies determined with high accuracy. Naturally,
optical interferometric methods can also be used to detect the vibrations. From
longitudinal and flexural vibrations of rods one can very accurately determine
dynamic Young’s moduli and from transverse and torsional vibrations certain
shear moduli, even on specimens with dimensions of a few mm.

3b. Forced Vibrations of Piezoelectric Crystals
We now consider two important examples of special specimen shapes, namely,
the plane-parallel unbounded plate and the thin rod. Both can be experimen-
tally realized to a good approximation. The thin plate plays an important role
in the application of piezoelectric crystals for acoustic generators and detec-
tors as well as in the manufacture of high-frequency generators and related
devices such as frequency stabilizers and frequency selectors in communica-
tion technology. In both cases, a comparatively simple relation exists between
the observed resonance frequencies and the material constants.

We first consider the plane-parallel plate. The basic equations are (see Sec-
tion 4.5.12):

σij = cE
ijklεkl − emijEm, Di = eiklεkl + εε

imEm.

Moreover, we set Em = −(grad φ)m and only allow plane waves

ξ = ξ0e2πi(k·x−νt) and φ = φ0e2πi(k·x−νt).
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As previously, for dynamic processes we have

∂σij

∂xj
= ρ

∂2ξi
∂t2 .

Hence, the general basic equation for the propagation of plane waves in the
form derived above is valid

(−ρv2δik + cD
ijkl gjgl)ξk = 0

with

cD
ijkl = cE

ijkl +
emijenkl

εrsgrgs
gmgn,

where g is the unit vector in the direction of the wave normals. We only
consider vibrational states, which are homogeneous over the complete cross-
section parallel to the faces of the plate; i.e., all derivatives ∂/∂x1 and ∂/∂x2
vanish, when g = e3 is perpendicular to the faces of the plate. Let the plate be
suspended force free, i.e., we have σ3i(x3) = 0 for x3 = ±L/2, hence,

σ31(±L/2) = cE
31k3

∂ξk
∂x3

− e331E3 = 0

σ32(±L/2) = cE
32k3

∂ξk
∂x3

− e332E3 = 0

σ33(±L/2) = cE
33k3

∂ξk
∂x3

− e333E3 = 0.

Because E = − grad φ we have E ‖ g. These conditions fully correspond to
the situation discussed above for free vibrations. Now, as a further decisive
parameter we add the electric boundary condition. We imagine electrodes
attached to the faces of the plate (for example, by deposition of a thin metal-
lized film), to which we apply a voltage φ = φ0 cos ωt, so that on both faces
the boundary conditions

φ(±L/2) = ±φ0 cos ωt

are to be fulfilled.
To solve the problem, we must determine the three, in the direction g = e3,

possible sound velocities and the associated displacement vectors ξ(1), ξ(2)

and ξ(3) (previously specified by ξ′, ξ′′, ξ′′′) from the dynamic basic equations.
Each solution is coupled to an electric potential φ, obtained from the relation

D3 = e3k3
∂ξk
∂x3

+ εε
33E3 = const.
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by integrating with respect to x3 (D = const. was already derived as a sec-
ondary condition in Section 4.5.12). From E3 = −∂φ/∂x3, one obtains by
integration

e3k3ξk − εε
33φ = qx3 + q0,

hence,

φ =
e3k3
εε

33
ξk − q′x3 − q′0,

where q, q0, q′ and q′0 are constants of integration possessing the same time
dependence as ξk.

The electric boundary conditions then take on the form

φ(±L/2) =
e3k3
εε

33
ξk(±L/2)∓ q′L/2− q′0 = ±φ0 cos ωt.

The general solution consists of a superposition of the three waves in the form
ξ = ∑µ C(µ)ξ(µ), whereby the complex coefficients C(µ) are so adjusted, that
the boundary conditions are fulfilled. We now imagine ξ to be resolved in a
symmetric and an antisymmetric part according to ξ = ξs + ξa with ξs(x3) =
ξs(−x3) and ξa(x3) = −ξa(−x3). In the general approach for a plane wave,
this means that ξs only contains terms of the form cos(2πk3x3) and ξa only
terms of the form sin(2πk3x3).

Hence, by subtraction or addition of both boundary conditions, we obtain

q′ = −2φ0

L
cos ωt +

2e3k3
Lεε

33
ξa,k(L/2)

and

q′0 = 0.

This means, the electric boundary conditions are only fulfilled by the antisym-
metric part of the solution. Conversely, the applied voltage can only excite an-
tisymmetric forms of vibration. Symmetric vibrations can be excited through
the quadratic electrostrictive effect (see Section 4.5.10), however, with by far
lower amplitudes.

If we now eliminate E3 in the mechanical boundary conditions σ3i(±L/2) =
0 with the help of the above result for q′ and consider only the antisymmetric
solution

ξa = ∑
µ

ξ
(µ)
0 sin(2πk(µ)

3 x3) cos ωt,
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we obtain

∑
µ

(
cE

3ik3 +
e33ie3k3

εε
33

)
2πk(µ)

3 ξ
(µ)
0k cos(πk(µ)

3 L) cos ωt +
2e33i

L
φ0 cos ωt

−∑
µ

2e33ie3k3
Lεε

33
ξ
(µ)
0k sin(πk(µ)

3 L) cos ωt = 0,

hence,

∑
µ

(
cD

3ik3 · πk(µ)
3 cos(πk(µ)

3 L)− e33ie3k3
Lεε

33
sin(πk(µ)

3 L)
)

ξ
(µ)
0k = − e33i

L
φ0

for i = 1, 2, 3.

This system of equations yields the contributions of the wave type ξ(µ) to the
solution ξa. The ratio ξ

(µ)
01 : ξ

(µ)
02 : ξ

(µ)
03 is assumed to be known from the

solution of the basic equations. Plate resonances appear, when at least one of
the amplitudes ξ(µ) becomes unlimited, i.e., when the determinant∣∣∣∣cD

3ik3πk(µ)
3 cos(πk(µ)

3 L)− e33ie3k3
Lεε

33
sin(πk(µ)

3 L)
∣∣∣∣

vanishes.
The practical utilization of this condition for the determination of material

constants is only worthwhile in the case of pure longitudinal- or transverse
waves.

For a pure longitudinal wave along e3 (ξ1 = ξ2 = 0, ξ3 6= 0), the boundary
condition for i = 3 is(

cD
3333 · πk3 cos(πk3L)−

e2
333

Lεε
33

sin(πk3L)

)
ξ03 = − e333

L
φ0.

Hence, a resonance occurs when

tan(πk3L) = (πk3L)
εε

33cD
3333

e2
333

= (πk3L)/k2
t ,

where k2
t is the coupling factor (cD

3333 − cE
3333)/cD

3333 = e2
333/εε

33cD
3333, which

we were previously already acquainted with. A pure transverse wave with
displacement vector parallel e1 (ξ1 6= 0, ξ2 = ξ3 = 0) gives, for i = 1, the
boundary condition(

cD
3113 · πk3 cos(πk3L)−

e2
331

Lεε
33

sin(πk3L)

)
ξ01 = − e331

L
φ.
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The analogous condition

tan(πk3L) = (πk3L)/k2
35

with the coupling factor k2
35 = e2

331/εε
33cD

3131 applies for diverging of ξ01.
We obtain similar conditions for the case of other propagation and displace-

ment directions of pure wave types.
The equation tan X = X/k2 with X = πk3L represents a frequency con-

dition. We can use the approximate condition tan X → ∞ for solutions with
very high values of X/k2. Here, X = (2m− 1)π/2, hence, L = (2m− 1)λ/2
or

ν =
(2m− 1)

2
v
L

with k3 = 1/λ

and m integer. This condition is identical with the resonance condition for
the freely vibrating plate, where, however, only the odd multiples of half the
wavelength (antisymmetric states of vibration) are allowed. Thus, from the
higher order resonance frequencies we can determine, with sufficient accu-
racy, the propagation velocity of the associated wave. In the region of small
and medium values of X/k2 characteristic deviations of free resonances ap-
pear: The resonance frequencies are not multiples of the fundamental fre-
quency. The situation is best seen by means of a graphical representation (Fig.
4.49). The line Y = X/k2 intersects the tangent curves Y = tan X once in
each interval between (m − 1)π < X ≤ mπ. Since k2 is smaller than one in
each case, there exists for m = 1 also one solution. For practical utilization,
the method proposed by Onoe, Thiersten & Meitzler (1963) has proven to be
optimal. The solutions Xm of the equation tan Xm = Xm/k2 are calculated as a
function of k2 in the range 0 ≤ k2 < 1, which can be carried out with a simple
iteration method of the type

X(s+1)
m = mπ + arctan(X(s)

m /k2).

The resulting ratios

Xn

Xm
=

πL/λn

πL/λm
=

νn

νm

are directly accessible to experiment. They depend monotonically on k2, not,
however, on the plate thickness L and the velocity of sound v. Therefore, from
the measured ratios of resonance frequencies, one can determine the associ-
ated coupling factors by a comparison with the tabled values. A sufficiently
large deviation from the ratio (2n− 1)/(2m− 1) is only obtained with k-values
above approximately 0.1 as well as for m and n = 1, 2 and 3. An extract of val-
ues sufficient for practical applications is presented in Table 4.12. With the
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Figure 4.49 Intersection of Y = tan X with Y = X/k2 (k2 < 1). In
each interval (m− 1)π < X ≤ mπ the line Y = X/k2 intersects
the curves Y = tan X just once.

help of these k2-values and the sound velocities obtained from higher order
resonance frequencies, one can determine the square of the piezoelectric coef-
ficients e33i according to

e2
33i = k2

3jε
ε
33cD

3i3i

(j = 6− i), when the associated dielectric constant εε
33 is known, too. We can,

to a sufficient approximation, insert a value for εε
33 measured in the range of

higher frequencies, for example around 10 MHz. Of course, the relationships
discussed here also apply approximately to the case of combination waves
with strong longitudinal- or transverse components. The method of piezoelec-
tric resonances of plane-parallel plates fails in the case of very small coupling
coefficients, which, for the application, are usually of little interest. The reso-
nance frequencies can be simply and very accurately identified by the minima
of the ac resistance of the plate connected in series with an auxiliary resistor,
when sweeping through a broad frequency range during electrical excitation.
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Table 4.12 Ratio of resonance frequencies of quasi-unlimited plane plates as a function of the
coupling coefficient k. Excitation of vibrations in an ac electric field parallel to the normals of
the plate.

k ν2/ν1 ν3/ν1 k ν2/ν1 ν3/ν1 k ν2/ν1 ν3/ν1
0 3 5 0.35 3.148 5.265 0.70 3.917 6.625
0.05 3.003 5.005 0.40 3.201 5.359 0.75 4.185 7.094
0.10 3.011 5.020 0.45 3.265 5.474 0.80 4.561 7.751
0.15 3.025 5.045 0.50 3.344 5.614 0.85 5.132 8.744
0.20 3.045 5.080 0.55 3.441 5.787 0.90 6.123 10.461
0.25 3.071 5.128 0.60 3.563 6.002 0.95 8.430 14.447
0.30 3.105 5.189 0.65 3.717 6.274

If one is able to transmit light through the plate parallel to the plate surfaces,
resonance frequencies can be observed by the diffraction of light as discussed
above. With this method, resonances have been detected up to very high or-
ders, in individual cases exceeding 1000.

The thin plane-parallel rod, which we now consider, is treated similarly to
the plane-parallel plate. Let the length, width, and thickness extend in the
directions e1, e2 and e3. Let L1 � L2 > L3 specify the respective dimensions.
If one applies an electric alternating field to the plane faces perpendicular to
e3, one can excite vibrations in the rod, whose frequencies are fixed by the
length L1. Since the crystal is not exposed to any external forces

σij = 0 (i, j = 1, 2, 3)

is true for all points on the surface. Inside the crystal, all σ2i and σ3i vanish to
a good approximation, because the dimensions L2 and L3 are so small that no
significant mechanical stresses can form between the side faces. This means,
however, that only the stress component σ11 exists. It depends solely on x1
because

∂σ11

∂x2
and

∂σ11

∂x3

are also approximately zero as a consequence of the small dimensions. The
equation of motion for the rod is then

∂σ11

∂x1
= ρ

∂2ξ1

∂t2 .

The mechanical deformation ε11 connected with σ11 is expressed by ε11 =
sE

1111σ11 + d311E3 hence,

σ11 =
ε11

sE
1111

− d311

sE
1111

E3.
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We have, as a further material equation, to take notice of the relationship D3 =
εσ

33E3 + d311σ11, when ensuring that E1 = E2 = 0. The equation of motion then
takes the form

1
sE

1111

∂2ξ1

∂x2
1

= ρ
∂2ξ1

∂t2

because

∂E3

∂x1
= 0

(the broadsides perpendicular to e3 are completely metallized!). Using the
plane-wave approach ξ1 = ξ01e2πi(k1x1−νt) we get(

ρω2 −
4π2k2

1
sE

1111

)
ξ1 = 0, thus ρv2 =

1
sE

1111
.

In contrast to the unlimited plate, the longitudinal component cD
1111 is not ef-

fective in the rod but rather Young’s modulus (1/sE
1111). This result also ap-

plies to nonpiezoelectric crystals. We obtain the resonance condition, as be-
fore, from the boundary conditions. Again, we imagine the general solution
as composed of a symmetric and an antisymmetric part given by

ξ1 = ξs cos(2πk1x1) cos ωt + ξa sin(2πk1x1) cos ωt.

Inserting the boundary conditions σ11(±L/2) = 0 in the relation

ε11 = sE
1111σ11 + d311E3

gives

−ξ0s sin(±πk1L1) + ξ0a cos(±πk1L1) = d311E03/2πk1,

hence,

ξ0s = 0 and ξ0a = d311E03/(2πk1 cos(πk1L1)).

Accordingly, only the antisymmetric states of vibration are excited. Our solu-
tion is then

ξ1 =
d311E03

2πk1 cos(πk1L1)
sin(2πk1x1) cos ωt.

Resonances appear, when cos(πk1L1) = 0, hence when πk1L1 = (2m− 1)π/2
or

νm =
(2m− 1)v

2L1

just as with the unlimited plate.
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The portion of alternating current flowing over the metallized surfaces is

I3 =
∫ dD3

dt
dF,

where integration is carried out over the surface perpendicular to e3. With
D3 = D03 cos ωt one obtains

dD3

dt
= −ωD03 sin ωt

and hence,

I3 = −ωL2

∫ +L1/2

−L1/2
D03 sin ωtdx1

= −ωL2

∫ +L1/2

−L1/2

(
εε

33E03 +
d311

sE
1111

∂ξ01

∂x1

)
sin ωtdx1

using εσ
33 = εε

33 + d2
311/sE

1111. This relation is obtained by inserting the expres-
sion derived above for σ11 in D3 = εσ

33E3 + d311σ11. The result is with ξ1 as
given above

I3 = −ωL1L2

(
εε

33 +
d2

311

sE
1111

tan(πk1L1)
πk1L1

)
E03 sin ωt.

In the resonance state, the resistance is minimal because tan(πk1L1) → ∞.
However, there exists the possibility of an unlimited resistance when, namely,
the expression in the brackets vanishes. For the respective frequency, the term
“antiresonance frequency” has come into common usage. It must be

tan X = −
εε

33sE
1111

d2
311

X with X = πk1L1.

This relation, apart from the sign, is analogous to the resonance condition of
the unlimited plate. If one now introduces the effective coupling coefficient

εσ
33sE

1111
d2

311
= 1/k2

one obtains, with

εε
33 = εσ

33 −
d2

311

sE
1111

the antiresonance condition in the form

tan X = X(k2 − 1)/k2 = −X/k′2.
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Table 4.13 Ratio of the first antiresonance frequency and the first resonance frequency of thin
and slender rods as function of the coefficient k′2 = k2/(1 − k2) at an excitation in an ac
electric field along the rod axis.

k′2 νA1/ν1 k′2 νA1/ν1 k′2 νA1/ν1 k′2 νA1/ν1
0 1 0.50 1.0921 1.00 1.2916 1.50 1.4879
0.05 1.0010 0.55 1.1094 1.05 1.3126 1.55 1.5051
0.10 1.0040 0.60 1.1276 1.10 1.3335 1.60 1.5218
0.15 1.0094 0.65 1.1467 1.15 1.3541 1.70 1.5535
0.20 1.0160 0.70 1.1664 1.20 1.3745 1.80 1.5832
0.25 1.0247 0.75 1.1866 1.25 1.3945 1.90 1.6108
0.30 1.0352 0.80 1.2072 1.30 1.4141 2.00 1.6364
0.35 1.0473 0.85 1.2281 1.35 1.4332
0.40 1.0609 0.90 1.2492 1.40 1.4520
0.45 1.0760 0.95 1.2704 1.45 1.4702

From a graphical representation, one sees that the antiresonance frequency
νAm of mth order always lies higher than the resonance frequency νm. The
impedance behavior as a function of the frequency of the electric field en-
ables two sets of data to be gained, namely, the resonance frequencies ν1, ob-
tained with high accuracy from a higher resonance frequency according to
ν1 = νm/(2m − 1), and the associated antiresonance frequency, leading to a
value for k′2 or k2. The ratio νAm/νm is largest for m = 1. Therefore, one con-
fines oneself to the measurement of the first antiresonance frequency. Then,
νA1/ν1 = XA1/X1 = XA1/(π/2) because X1 = π/2. This ratio only de-
pends on k2 and not on v and L1. From a table of values XA1(k′2)/X1, easily
calculated by an iteration method of the type X(s+1) = arctan(−X(s)/k′2),
one can then extract k′2 or k2 and hence the piezoelectric coefficient d2

311,
when the dielectric constant εε

33 is known. Table 4.13 presents the values
XA1/X1 = νA1/ν1 as a function of k′2, which suffice for practical use. By
conducting measurements on rods of different orientations, one can thus de-
termine certain components of the piezoelectric and elastic tensors. In any
case, for the complete measurement of the elasticity tensor other measure-
ments must be included, because the vibrations discussed here are only cou-
pled with the longitudinal effects sE

1111
′.

Other wave types can also be excited in the thin rod under discussion.
Again let L1 � L2 > L3. Whilst previously the length L1 was the frequency
determining factor, let it now be the width L2.

It is convenient to intentionally arrange the dimension along e1 irregularly
in order to prevent the formation of the resonances discussed above. The elec-
tric field is again applied in the direction e3. The boundary conditions are
now: ∂σij/∂x1 = 0, because the crystal is quasiunlimited in the direction e1,
σ3i = 0 and ∂σij/∂x3 = 0 in the whole crystal, because L3 is very small, and
σ2i(±L2/2) = 0.
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We only consider states of vibration with propagation vector parallel e2.
Employing ξi = ξ0ie2πi(k2x2−νt), we obtain from the elastodynamic basic equa-
tions, taking into consideration the above conditions

ρ
∂2ξ1

∂t2 =
∂σ12

∂x2
= cE

1212
∂2ξ1

∂x2
2

+ cE
1222

∂2ξ2

∂x2
2

and

ρ
∂2ξ2

∂t2 =
∂σ22

∂x2
= cE

2222
∂2ξ2

∂x2
2

+ cE
2212

∂2ξ1

∂x2
2

,

and hence,

(−ρv2 + cE
1212)ξ1 + cE

1222ξ2 = 0,

cE
2212ξ1 + (−ρv2 + cE

2222)ξ2 = 0.

This system has only solutions, when its determinant vanishes. We get the
two solutions

ρv2 =
cE

22 + cE
66

2
± 1

2

√
(cE

22 − cE
66)2 + 4cE2

26

with

c2222 = c22, c1212 = c66, c2212 = c26.

The boundary conditions

σ12(±L2/2) = cE
26

∂ξ2

∂x2
+ cE

66
∂ξ1

∂x2
− e312E3 = 0,

σ22(±L2/2) = cE
22

∂ξ2

∂x2
+ cE

26
∂ξ1

∂x2
− e322E3 = 0,

D3 = εσ
33E3 + 2d312σ12 + d322σ22

(all variables at the positions + or −L2/2) demonstrate that the electric field
must, in general, simultaneously excite both solutions, because for each solu-
tion the amplitude ratio ξ01/ξ02 is fixed by the dynamic equations. Considera-
tions similar to the previous situation lead to the conclusion that the resonance
condition tan X = 0 with X = πνL2/v also applies, hence

νm =
(2m− 1)

2L2
v

=
(2m− 1)

2L2

√
1

2ρ

(
(cE

22 + cE
66)±

√
(cE

22 − cE
66)2 + 4cE2

26

)
.
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Thus, further elastic data can be extracted, which together with the other re-
sults allow a complete determination of the elasticity tensor. Antiresonance
frequencies appear, too, from which one can derive additional data for the de-
termination of piezoelectric coefficients. Since the boundary conditions can-
not be exactly realized, one must expect certain deviations of the thus obtained
values from cE

ij of the unlimited crystal.
Examples for the application of this method for the determination of elastic,

dielectric and piezoelectric properties of the technologically important crys-
tals are α-quartz, KH2PO4 and Rochelle salt, which were described in detail
by Mason (1954). The special advantages of the investigation of quadratic
plates were explained by Bechmann (1951).

3c. Resonant Ultrasound Spectroscopy (RUS)
We now come to a particularly effective method for the future experimental
investigation of elastic properties, developed in the last decades. It presents
the generalization of the determination of elastic properties from acoustic res-
onance frequencies of geometrically clearly defined test specimens, as dis-
cussed above for plane-parallel plates or rods. The problem of the calculation
of acoustic resonances of homogeneous bodies, even in the case of anisotropic
media, was solved by Demarest in 1969 for spheres and rectangular paral-
lelepipeds. It turned out that the resonance frequencies of rectangular par-
allelepipeds, the so-called RPR spectrum (“rectangular parallelepiped reso-
nances”), could be calculated with high accuracy from the density, orientation
and dimensions of the parallelepiped and its elasticity tensor, however, with
the aid of a powerful computer. The converse, namely the determination of
the elasticity tensor from a sufficiently large region of the resonance spectrum
of a rectangular parallelepipedic specimen with known density, orientation
and dimensions could only be solved up to now with a least-squares-method.
With this method one attempts to arrive at a data set of the elasticity tensor
in iterative steps, whose calculated resonance spectrum agrees with the ex-
perimental data set. Before the calculations initial values for the components
of the elasticity tensor must be selected most carefully. The first successful
experiments were reported by Ohno (1976).

Rectangular parallelepipeds, whose edges run parallel to the basic vectors
of a Cartesian reference system, in particular, that of the crystal-physical basic
system, have proven best suited for the practical application of the method.
In favorable cases, the dimensions of the specimens can be relatively small
(under 1 mm). One must ensure that only minimal deviations from plane-
parallelism (in the range of less than 0.5 per mille in the dimensions) and from
orientation with respect to the Cartesian system (angular deviation less than
0.3◦) occur. The larger the elastic anisotropy the more exact the orientation
must be realized.
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Commercial network analyzers are suitable for the measurement of the res-
onance frequencies. The specimens are fixed along a space diagonal, between
a sound generator and a detector, such that one corner of the specimen lies on
the generator and the opposite corner contacts the detector. The mechanical
force on the specimen must be kept as low as possible to approximate the con-
dition of a freely vibrating body. If one sweeps through a frequency interval
with the generator, one expects in the case of a resonance deformation, which
are communicated to the detector on the opposite corner (Fig. 4.50a). The in-
verse piezoelectric effect produces an electric signal at the detector, which can
be recorded by a lock-in amplifier. Normally, i.e., at low acoustic damping,
one obtains exceptionally sharp signals. For a comparatively unproblematic
evaluation, it is advantageous, when the spectrum is recorded beginning with
the lowest resonance frequency up to a specified maximum frequency with-
out any gap. The number of the required resonances depends on the point
symmetry group of the specimen and the desired accuracy. For example,
with cubic crystals, about 30 resonances are sufficient, with triclinic crystals
about six times more are needed to obtain confident results. If the experimen-
tal spectrum is incomplete, an evaluation with simple programs fails, since
the computer-calculated resonance frequencies, continuously ordered accord-
ing to rising frequency, do not agree with the sequence of the corresponding
experimental frequencies. If, in the experimental sequence, one or the other
resonance is missing, because, for example, the associated deformation only
exhibited a small effective component at the detector, special computer pro-
grams must be employed to process the gaps in the spectrum. Such programs
have been developed in the meanwhile. Anyway, additional efforts should be
made to extract, by repeated measurements on the specimen in different set-
tings, a complete spectrum within the specified frequency range. An example
of such as spectrum is presented in Fig. 4.50b.

A short discussion of the fundamental principles of the method is appropri-
ate. Naturally, the familiar basic equations previously discussed for the other
methods apply. These we note here, however, for the case of piezoelectric
crystals

σij = cE
ijklεkl − eijkEk and Di = εε

ijEj + eijkεkl .

As previously, {σij} designates the stress tensor, {εkl} the deformation tensor,
{eijk} the piezoelectric e-tensor, {εε

ij} the dielectric tensor at constant mechan-
ical deformation, {Di} and {Ei} the vectors of the electric displacement and
the electric field strength (see Section 4.5.5). For each small specimen volume
(Newton’s axiom) we have

∂σij

∂xj
= ρ

∂2ξi
∂t2 ,
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network

analyzer

(a) (b)
Figure 4.50 (a) Scheme of the RUS method. (b) Part of the RUS
spectrum of a rectangular parallelepipedron of La3Ga5SiO14 hav-
ing edge lengths of about 6 mm.

where ξ = ξiei is the displacement vector, ρ the density and t the time. For
the freely vibrating parallelepiped, the mechanical stress at the edges must
vanish. The calculation of the possible characteristic vibrations of the probe
under these boundary conditions is performed with the Lagrange formalism

L =
∫

(kinetic energy density – potential energy density)dV.

Integration is extended over the volume of the specimen. The first term fol-
lows from the product of the square of the sound velocity components with
the density (∑i ρv2

i /2), the second, from the product of the components of
the stress tensor with the components of the deformation tensor (σijεij/2 =
cE

ijklεijεkl/2 for nonpiezoelectric crystals). A harmonic time-dependence is as-
sumed for the displacement vector, hence, ξ = ξ0 cos(2πνt). According to the
rules of variational calculus, the Lagrange function takes on extreme values in
the case of stationary solutions, i.e., in the states of resonance. The method of
Ritz, in which the components of the displacement vector and of the electric
field strength are expanded with respect to suitable basic functions Φ(x)s or
Ψ(x)s in the configuration space (x1, x2, x3), has proven a practical procedure.
The expansion has the form

ξi(x) = aisΦs(x) as well as Ei = −bs(grad Ψs)i.

In particular, such functions are preferably selected in the RPR-method, with
which the boundary conditions can be adhered to without difficulty, for exam-
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ple, with Legendre polynomials. In the last years, however, it turned out that
power functions of the type Φ(x)s = xλ

1 xµ
2 xν

3 , after suitable normalization, are
also capable to realize the boundary conditions in a straightforward way. The
advantage of these power functions lies in the fact that they can be employed,
in contrast to Legendre polynomials, with a multitude of simple specimen
forms (spheres, ellipsoids, cylinders, cones etc.). If one selects certain limits
for the positive exponents λ, µ, ν in the form λ + µ + ν ≤ Q with Q ≈ 14, one
obtains a correspondingly large number of coefficients ais and bs. For L to take
on an extreme value, all derivatives of L with respect to these coefficients must
vanish. This condition is equivalent to an eigenvalue problem, in which the
eigenvalues correspond to the squares of resonance frequencies. Ultimately,
we are dealing with the solution of an eigenvalue problem for which standard
programs are available (for example, in the freely available LAPACK program
library). If resonance frequencies are known, one can then determine the asso-
ciated resonance states. Detailed presentations of these interrelationships are
found in, for example, Leisure & Willis (1997) and Migliori & Sarrao (1997).

Fortunately, in the meantime, extended programs have been developed,
which are also applicable to piezoelectric crystals. However, various sup-
plements and improvements are still required, which we will, in part, com-
ment more precisely below. Recently, Schreuer could show that the general
approach, introduced above for the basic equations of piezoelectric crystals,
is suitable for the quantitative description of the RUS spectrum. Conversely,
from the resonance spectrum of a piezoelectric crystal, the components of its
elasticity tensor as well as those of its piezoelectric tensor can be determined
with high internal consistency (Schreuer, 2002). Only the dielectric constants
are required as additional input. Thus a further important field of application
arises from this new method.

Finally, let us point out certain advantages and disadvantages of the RUS
method.
Advantages:

• Even in the case of triclinic crystals, one only needs a single specimen to
completely determine the elasticity tensor. Its dimensions can be smaller
than 1 mm provided that the required plane-parallelism is achieved, the
dimensions are determined to sufficient accuracy and errors in orien-
tation are minimized. This opens the possibility to investigate elastic
properties of materials in abundance, which for lack of adequate crystal
size could not be treated up till now with conventional methods.

• The influence of external conditions, for example, electric field, mag-
netic field, mechanical stress (including hydrostatic pressure) and tem-
perature, can be directly investigated on such specimens. The associated
effects arise from the shift of the resonance frequencies.
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• Finally, phase transitions can be detected, especially second-order ones,
from anomalies of the shift of resonance frequencies accompanied by
a change in external parameters, above all, the temperature. Acoustic
attenuation phenomena connected with these phase transitions can also
be identified.

• Apart from the elasticity tensor, the piezoelectric tensor can be simulta-
neously determined without much additional effort, when the dielectric
tensor is known.

• Already in the current state of development, data acquisition in the
RUS method is largely automated, likewise the evaluation in the case
of highly symmetric crystals and the selection of appropriate starting
values for a least-squares method.

Disadvantages:

• The specimen must possess a very high quality, since even small inho-
mogeneities, especially surface defects, can sensitively interfere with the
spectrum. Conversely, this circumstance can be used to investigate de-
fects and their effects on elastic or piezoelectric quantities.

• With a parallelepiped, the high requirements with respect to plane-
parallelism and the accuracy of orientation is only achieved with con-
siderable effort in contrast, for example, with a plane-parallel plate with
arbitrary side boundaries.

• With specimens of small dimensions, the danger exists that the bound-
ary areas affected by the preparation falsify the spectrum as a conse-
quence of mechanically induced inhomogeneities. Thus, especially with
relatively soft crystals, the RUS method on very small specimens can be
problematic.

• Experience in the evaluation of spectra of crystals of low symmetry has
taught us that the starting data set for a least-squares method may only
deviate a little from the true elasticity tensor (less than about 10%), in
order to achieve convergence of the iteration. Hence, computing cy-
cles with a wide variation of initial values are required to obtain a re-
liable solution. One must endeavor to make use of restrictions based on
crystal-chemical, physical and mathematical reasoning to reduce com-
puting time to an acceptable level.

• A barrier also arises from the necessity of a gap-free data set in the hith-
erto used programs. This problem is easily solved by modifying the
programs used currently, however, at the cost of considerably higher
computing time.
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• Since the acoustic resonances extend over a large frequency interval, one
must be prepared for certain dispersion effects leading to a limitation in
the attainable accuracy. However, it is known that the maximum dis-
persion in the crystals investigated so far in the range between 0.1 and
2 MHz amounts to not much more than two percent.

• The individual components of the elasticity tensor cannot be directly
determined. Rather, they appear first after the complete determination
of the elasticity tensor. The same applies to the dependence of individual
components on external parameters.

From these remarks it follows that after elimination of the mentioned difficul-
ties, the RUS method will, in many areas, be superior to the other established
methods for the investigation of elastic properties. Certain problems, for ex-
ample, the change of elastic properties under uniaxial pressure, from which
one can derive nonlinear elastic effects, presumably remain not suited for the
RUS method.

4. Brillouin Scattering
In the Schaefer–Bergmann method, the diffraction of light on elastic waves
entering the crystal is observed. In contrast, Brillouin scattering is caused by
the thermally excited elastic waves of the lattice. These waves (phonons) rep-
resent a substantial part of the thermal energy of a crystal lattice. They prop-
agate in all directions. Their frequency spectrum depends on the temperature
and the bonding properties of the lattice. The highest frequencies, or the short-
est wavelengths of these waves are bounded by two factors. Each photon pos-
sesses an energy quantum with the energy content E = hν, where h is Planck’s
constant and ν is the frequency of the photon. According to the equipartition
theorem, each degree of freedom of the vibrating system will contribute, on
average, the energy kT/2, where k is Boltzmann’s constant and T tempera-
ture. This means that waves with frequencies higher than kT/2h are compar-
atively weakly excited according to the requirements of a Boltzmann distribu-
tion e−hν/kT . Furthermore, wavelengths of the thermally excited elastic waves
are limited. They cannot be smaller than twice the interplanar spacing d of the
lattice in the respective propagation direction (λ ≥ 2d or 1/λ = |k| ≤ |h|/2
with |h| = 1/d, where h is the normal of the lattice plane concerned).

This condition corresponds to the highest resonance frequency of a thin
plate bounded by parallel lattice planes. The k-vectors originating from the
origin of the reference system are accordingly bounded by a surface derived
from the metric of the associated elementary cell (first Brillouin zone).

Naturally, light quanta can be diffracted by the thermally excited waves
just as on artificially generated sound waves as in the case of the Schaefer–
Bergmann method. However, the thermally excited waves are by no means
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monochromatic, so that only a few photons are found in a small frequency
interval ∆ν. From the conservation of energy and momentum in an interac-
tion between a phonon and a photon of the light wave, the possibility arises
of measuring the frequency and wavelength of the phonon and thus the ve-
locity of the elastic wave. The momentum of the incoming photons hk0 and
the quasimomentum of the phonons hkp sum to give the momentum of the
scattered photon hke: k0 ± kp = ke (momentum conservation). The energy
is given by E0 ± Ep = Ee, hence, ν0 ± νp = νe and because ν0λ0 = c/n0 (n
refractive index, c light velocity in vacuum) and νpλp = v∣∣∣∣νe − ν0

ν0

∣∣∣∣ =
vn0λ0

cλp
(energy conservation).

If one selects a suitable experimental arrangement so that λ0 ≈ λp, a crude
estimation shows that∣∣∣∣νe − ν0

ν0

∣∣∣∣ ≈ 106 · 1.5
3 · 1010 = 10−4/2,

i.e., the energy and hence, the magnitude of the momentum of incoming and
scattered photons hardly differ. When n0 = ne, we can set |k0| = |ke|, thus
giving Bragg’s condition 2d sin ϑ = λ0 with d = λp. In the case of optical
anisotropy, the following condition applies:

1
λ2

0
+

1
λ2

e
− 2

λ′0λe
cos 2ϑ =

1
λ2

p
,

obtained by taking the square of k0 − ke = kp. n0 and ne are the refractive
indices belonging to k0 and ke, respectively, and not the refractive indices of
the ordinary or extraordinary wave!

The experimental determination of the propagation velocity of elastic waves
is best done, in particular, by selecting a fixed angle between the primary di-
rection of photons of an intensive laser beam and the direction of observation
of the scattered photons, preferably 2ϑ = 90◦ (so called 90◦-geometry, to sup-
press effects of refraction, Fig. 4.51). Then λp = λ0/

√
2, in case λ0 = λe. The

associated frequencies are obtained from high-resolution spectroscopic mea-
surements of the scattered light. Aside from photons of frequency ν0 (Rayleigh
scattering), one finds two lines with frequency ν0 ± νp, which can be mea-
sured, with not too much effort, to an accuracy of around 0.1%. Hence, one
has v = νpλp, the propagation velocity of the elastic wave in the given direc-
tion. According to past experimental findings, a noticeable dispersion of the
propagation velocity of elastic waves first sets in at a wavelength smaller than
about twenty times the lattice spacings, hence, roughly below about 50 nm.
Since the wavelength of visible light, for example, in the green spectral region
is about 500 nm one can assume that the measured v-values hardly deviate
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Figure 4.51 Brillouin scattering under 90◦-geometry. The photons
incoming along k0 appear to be reflected into the photons ke by
the phonons propagating along kp (conservation of momentum
and energy).

from the velocities observed with ultrasound methods at substantially lower
frequencies. If one works with polarized laser light and takes into consid-
eration the elastooptical effects of the elastic waves involved, one can, in fa-
vorable cases of higher symmetry, separately record the three possible wave
types in each direction. Up to now, this method has been mainly applied to
cubic crystals, in isolated cases also to orthorhombic and even to monoclinic
crystals. Although the method does not achieve the precision of ultrasound
measurements, it has gained particular importance because of the possibility
of investigating relatively small crystals, most notably for the investigation of
elastic properties under extreme pressure.

Related to the Brillouin scattering experiment just sketched are the so-called
stimulated Brillouin scattering and its variants. If one fires an intensive laser
beam (pulsed and focused) at a crystal that can withstand such a strong radi-
ation exposure, the quadratic electrostrictive effect according to εij = dijklEkEl
produces a deformation, repeating itself periodically at a spacing of half the
wavelength of the light wave, where E is the electric field of the light wave.
Hence, the light wave generates phonons. These phonons can diffract the
primary laser beam or even another laser beam entering at the correct scat-
tering angle. We talk of stimulated Brillouin scattering in the case of back
scattering of the primary laser light wave by these phonons. We then have
2ϑ = 180◦, hence, 2λp = λ0. The difference in frequency of the scattered pho-
tons gives νp and thus the propagation velocity of the elastic waves. Whereas
only a small fraction of the crystals tested so far could withstand the required
high radiation exposure, more favorable conditions exist for the observation
of diffraction, under oblique incidence, of a second laser beam on the phonons
generated by the primary laser beam. In particular, this is also true when both
pulsed light waves, time delayed, enter the crystal. In this way it is possible
to derive the lifetime of the phonons concerned from the decay time of the
scattered radiation (Eichler, 1977).
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5. Neutron Scattering
With the development of intensive neutron sources, the scattering of neutrons
has become one of the most attractive tools for the investigation of lattice dy-
namics. The scattering of neutrons on phonons also takes place under the
conditions of momentum- or quasimomentum conservation and energy con-
servation. Consequently, the formal relationships are completely analogous
to the Brillouin scattering just discussed. The experimental arrangement for
the observation of neutron scattering is basically the same, albeit different in
detail.

The first important problem is the generation of monochromatic neutrons.
This occurs, for example, with the aid of time-of-flight spectrometers in the
range of very slow neutrons or crystal monochromators, which reflect neu-
trons of discrete wavelengths through a fixed diffraction angle, similar to X-
ray diffraction by constructive interference. Both methods are capable of con-
tinuously tuning the wavelength of the neutron wave over a wide range. The
detection and frequency determination of the neutrons scattered by the crystal
specimen is performed with time-of-flight spectrometers, crystal monochro-
mators or scintillation detectors and related instruments. The effective k-
vectors of the phonons causing the scattering are fixed by adherence to a
certain geometry for the primary and scattered neutron waves. The exper-
imental evaluation, however, requires special efforts, since the wavelengths
of the neutrons can change considerably in the scattering process. From the
knowledge of λ0, λe and from the angle 2ϑ, one obtains the wavelength λp
of the phonons and from the change in energy of the neutrons, the frequency
νp of the phonons and hence, the propagation velocity. Therefore, it is possi-
ble to measure the wave velocity and thus the dispersion of the phonons in
a broad frequency- or wavelength range by rotating the crystal, varying the
diffraction angle and the wavelength of the primary neutron wave. If one
selects sufficiently short neutron wavelengths, then after a regular Bragg re-
flection at the lattice plane h, a scattering by a phonon can follow. Then we
have ke = k0 + h + kp. The propagation vector ke deviates from the Bragg
direction. In this connection, one must not overlook the fact that multiple
scattering processes can be superimposed on the neutron scattering discussed
here, because each scattered neutron wave can act as a new primary wave.
The low-frequency values obtained from the dispersion curves νp(kp) accord-
ing to v = ∂νp/∂|kp| at |kp| = 0 correspond to the acoustic sound velocities.

Figure 4.52 shows a phonon dispersion curve νp(kp). Since the length of
the possible k-vectors are limited by the lattice interplanar spacing (λ/2 ≥ d),
it is convenient to represent kp-vectors in the reciprocal lattice. The afore-
mentioned first Brillouin zone mirrors this limitation of the k-vectors. Specific
symbols have been introduced for the notation of phonons of different prop-
agation directions and lengths. An example is given in Fig. 4.53 for the cubic
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Figure 4.52 Phonon dispersion curves
of cubic RbCN at 300 K (Ehrhardt et al.,
1980). The frequency (∼ energy) of the
phonons is recorded as a function of the
length of the propagation vector k. The
curves starting from the Γ point repre-

sent the so-called acoustic branches. The
linear region near Γ corresponds to the
quasidispersion-free sound velocity. The
other curves are called optical branches
(see Fig. 4.53).

Figure 4.53 Notation of phonons of a cubic face-centered lattice
(first Brillouin zone). The inside points are designated by an empty
circle, those at the border of the zone by a full circle.

face-centered lattice. Accordingly, a phonon at the Γ-point is equivalent to an
infinite wavelength, i.e., it has the propagation velocity for the frequency 0
(acoustic part). The points at the boundary of the first Brillouin zone belong
to the highest resonance frequencies of the lattice in the propagation direc-
tion leading from the Γ-point to the boundary point. The behavior of these
characteristic vibrations of the lattice, subject to external parameters such as,
pressure, temperature, electric and magnetic fields, plays an important role
in the interpretation of the stability of the crystal lattice with respect to phase
transitions.
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6. X-ray Scattering
X-ray photons can, just like light photons in Brillouin scattering, interact with
the thermally excited phonons of the crystal lattice. Since, in the case of X-rays,
the relative change in frequency between the primary and scattered photons
is even smaller than in Brillouin scattering and thus hardly measurable, and
furthermore, the anisotropy of the refractive indices for X-rays can be fully
ignored, k0 and ke have, to a sufficient approximation, the same magnitude.
Hence, the possibility of directly determining the frequency of the phonons
involved in the scattering does not exist. One can gain information on the
number of thermally excited phonons in certain frequency ranges from the
intensity of the diffracted X-rays close to the Bragg reflections (thermally dif-
fuse scattering). These phonons propagate approximately perpendicular to
the Bragg direction. Hence, in the case of simply structured crystals, the ap-
plication of a model for the frequency spectrum Zi(g, ν) of the phonons can
help to obtain useful estimations of the propagation velocities dependent on
the propagation direction g and the frequency. Zi(g, ν)dν is the number of
phonons of the ith vibrational type (i = 1, 2, 3) in a frequency interval dν. The
high expectations to receive precise data on elastic properties by such investi-
gations (Wooster, 1962), even on very small crystals, were largely abandoned,
because it turned out, that multiple processes make a reliable analysis nearly
impossible. This became clear after a comparison of certain elastic constants
of two orthorhombic crystals, namely, benzalazine and 1,3,5-triphenyl ben-
zol, determined from thermal diffusion scattering and using ultrasound tech-
niques (Joshi & Kashyap, 1964; Haussühl, 1965; Suresh Chandra & Hemkar,
1973; Haussühl, 1974). Conversely, one can calculate the intensity of thermal
diffusion scattering from known elastic constants, neglecting multiple scatter-
ing processes. By comparing with experiment one can often draw interesting
conclusions concerning anomalies of the phonon spectrum as well as on the
existence of certain lattice defects.

The thermal motion of the lattice particles also has a strong influence on
the effective scattering power of the atoms, described approximately with the
help of the individual temperature factors (Debye–Waller factors). This ther-
mal motion must be taken into account to obtain a firm determination of crys-
tal structure. The evaluation of a large number of measured intensities I(h) of
reflections h allows, in many cases, statements on temperature factors. These
data can contribute to the estimation of elastic properties and to the identifica-
tion of anomalous dynamic processes, as, for example, observed in connection
with phase transitions.
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4.5.7
Strategy for the Measurement of Elastic Constants

To complete this section some advices are given for the strategy of determin-
ing elastic constants. Whereas simple measurement prescriptions can be pro-
vided for an efficient precise determination for crystals with high symmetry,
hence, for example, for all crystals containing the PSG 2 or 22 as a subgroup,
more extensive measurements are required for triclinic crystals. In any case, it
is recommended to firstly concentrate the investigation of elastic waves prop-
agating along the principal directions of the Cartesian reference system and
their bisectors. If one succeeds in measuring all three wave types in each of
these directions, that is, in a total of nine directions, one obtains for triclinic
crystals 27 independent measurements, which should be sufficient for the de-
termination of the 21 components of the elasticity tensor in centrosymmetric
crystals. Further measurements in the direction of the four space diagonals
of the Cartesian reference system contribute additional 12 independent data.
With triclinic crystals, evaluation is conveniently performed using a computer
program based on the least-squares method, which calculates a set of elastic
constants from the elastodynamic basic equations giving the best agreement
with the measured sound velocities.

The dynamic elasticity {Eij}, a second-rank tensor invariant of the elasticity
tensor discussed in Section 4.5 has proven useful for a control of the exper-
imental values. The longitudinal effect E′11 represents the sum of squares of
the three wave velocities along e′1 = u1iei, multiplied by the density, hence,
E′11 = u1iu1jEij = ρ ∑3

s=1 v2
s (e′1). Pairs of mutually perpendicular propagation

directions e′1 and e′2 then obey

3

∑
s=1

v2
s (e′1) +

3

∑
s=1

v2
s (e′2) =

3

∑
s=1

v2
s (αe′1 + βe′2) +

3

∑
s=1

v2
s (βe′1 − αe′2).

This relationship is taken directly from the plane principal axes transforma-
tion (see Section 4.3.2; tii + tij = t′ii + t′jj!). Thus, the sum of squares of all such
pairs is constant as long as the associated propagation vectors lie in the plane
spanned by e′1 and e′2. Accordingly, each of these equations enables a sensitive
control for all such wave velocities.

With noncentric crystals, instead of cE
ijkl , one must use the quantities cD

ijkl ,
which, as we saw in Section 4.5.5, depend on the propagation direction. Here
it is appropriate to separately measure the piezoelectric and dielectric tensors,
and then with the help of approximate values for the components cE

ijkl arrive

at an estimation of the differences cD
ijkl − cE

ijkl = emijenkl gmgn/εε
rsgrgs, where

emij = cE
ijstdmst. dmst are the components of the piezoelectric tensor. Measure-

ments of the coupling coefficients may also be useful. Approximate values
for cE

ijkl are obtained from a first evaluation of the measurements of the prop-
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agation velocities as in the case of centrosymmetric crystals, i.e., neglecting
piezoelectric interactions. Even with large coupling coefficients of about 0.5
one achieves, after taking into account the piezoelectric correction, values of
sufficient accuracy after only a few iteration steps (relative error for the prin-
cipal constants ciiii, ciijj and cijij below 1%). As an example, we again cite
the triclinic crystal lithium hydrogen oxalate-monohydrate. With the aid of
the dielectric constants given in Section 4.3.3 and the piezoelectric constants
determined by the methods discussed in Section 4.4.1, as well as the data of
the measurements of a total of 34 propagation velocities in different directions
and with different displacement vectors, the elasticity tensor could be com-
pletely determined (Haussühl, 1983). In doing so, however, measurements in
other directions were included, which differed from those proposed, because
the separate observation of the three possible wave types in each direction did
not always succeed due to the strong coupling of the waves.

At this juncture, the necessity of an additional correction in crystals with
strong pyroelectric effects must be pointed out (see Section 5).

Table 4.14 presents favorable measurement arrangements for an efficient de-
termination of the components of the elasticity tensor and the associated solu-
tions of the elastodynamic basic equations for nonpiezoelectric crystals. With
the exception of triclinic crystals, the respective strategy allows an effortless
determination of cijkl without employing a computer. Of course, other data in
nondistinct directions can be used. It is especially important to take care, that
the position of the reference system in the crystal is unequivocally fixed. In
many cases, as, for example, in the PSG 4/m or 3̄m it is not sufficient to alone
obey the rule, introduced in Section 2.2 for the position of ei with respect to
the crystallographic basic vectors ai; rather an indication is required for which
of the possible alternatives one has decided selecting a right-handed system
(see exercise 8).

4.5.7.1 General Elastic Properties; Stability

From the knowledge of the complete elasticity tensor one can derive all elastic
material properties for arbitrary-shaped samples under any boundary condi-
tions. This includes, for example, the propagation of surface waves or the
calculation of elastic properties of pressed powders (see exercise 25) as well as
the phenomena of refraction and reflection of sound waves. As mentioned in
the introduction to this section, certain invariants, which are more easily acces-
sible to discussion, as, for example, dynamic elasticity, linear compressibility
under hydrostatic pressure, volume compressibility or the Debye tempera-
ture, deserve special interest. Even more complex properties, as, for exam-
ple, the transversal contraction coefficient under uniaxial pressure or tension
(Poisson’s ratio), can be derived from these invariants with an accuracy hardly
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Table 4.14 Propagation directions g, displacement vectors ξ and ρv2-values of distinct wave
types in the Laue classes. l pure longitudinal, t pure transvere wave, lt combination wave. For
most other propagation directions the possible ρv2-values and ξ-vectors can only be calcu-
lated from the elastodynamic basic equations (−ρv2δik + cijkl gjgl)ξk = 0 after part of the
elastic constants are known.

g ‖ ξ ‖ type ρv2

monoclinic (2/m; e2 ‖2)
e1 e2 t c66

e1 ξ · e2 = 0 lt 1
2 (c11 + c55)± 1

2

√
(c11 − c55)2 + 4c2

15
e2 e2 l c22

e2 ξ · e2 = 0 t 1
2 (c44 + c66)± 1

2

√
(c44 − c66)2 + 4c2

46
e3 e2 t c44

e3 ξ · e2 = 0 lt 1
2 (c33 + c55)± 1

2

√
(c33 − c55)2 + 4c2

35
e1 ± e3 e2 t 1

2 (c44 + c66 ± 2c46)
e1 ± e3 ξ · e2 = 0 lt 1

4 (c11 + c33 + 2c55 ± 2c15 ± 2c35)

±1
2

√
1
4 (c11−c33±2c15∓2c35)2+(c13+c55±c15±c35)2

orthorhombic (2/mm)
ei ei l cii
ei ej (i 6= j) t c9−i−j,9−i−j
ei ± ej ek (k 6= i, j) t 1

2 (c9−i−k,9−i−k + c9−j−k,9−j−k)
ei ± ej ξ · ek = 0 lt 1

4 (cii + cjj + 2c9−i−j,9−i−j)

(k 6= i, j) ± 1
2

√
1
4 (cii − cjj)2 + (cij + c9−i−j,9−i−j)2

trigonal (3̄)
e3 e3 l c33
e3 ξ · e3 = 0 t c44 = c55

trigonal (3̄2/m; e1 ‖2)
e1 e1 l c11

e1 ξ · e1 = 0 t 1
2 (c44 + c66)± 1

2

√
(c44 − c66)2 + 4c2

14
e2 e1 t c66 = 1

2 (c11 − c12)

e2 ξ · e1 = 0 lt 1
2 (c11 + c44)± 1

2

√
(c11 − c44)2 + 4c2

14
e3 e3 l c33
e3 ξ · e3 = 0 t c44 = c55
e2 ± e3 e1 t 1

2 (c44 + c66 ± 2c14)
e2 ± e3 ξ · e1 = 0 lt 1

4 (c11 + c33 + 2c44 ∓ 2c14)

± 1
2

√
1
4 (c11 − c33 ∓ 2c14)2 + (c13 + c44 ∓ c14)2

tetragonal (4/m)
e1 e3 t c44 = c55

e1 ξ · e3 = 0 lt 1
2 (c11 + c66)± 1

2

√
(c11 − c66)2 + 4c2

16
e3 e3 l c33
e3 ξ · e3 = 0 t c44
e1 ± e2 e3 t c44

e1 ± e2 ξ · e3 = 0 lt 1
2 (c11 + c66)± 1

2

√
(c12 + c66)2 + 4c2

16
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g ‖ ξ ‖ type ρv2

tetragonal (4/mm), like 4/m with c16 = 0

e1 ± e3 e2 t 1
2 (c44 + c66)

e1 ± e3 ξ · e2 = 0 lt 1
4 (c11 + c33 + 2c44)

± 1
2

√
1
4 (c11 − c33)2 + (c13 + c44)2

hexagonal (6/m und 6/mm) further ∞/m and ∞/mm
e1 e1 l c11
e1 e2 t c66 = 1

2 (c11 − c12)
e1 e3 t c44 = c55
e3 e3 l c33
e3 ξ · e3 = 0 t c44 = c55
e1 ± e3 e2 t 1

2 (c44 + c66)
e1 ± e3 ξ · e2 = 0 lt 1

4 (c11 + c33 + 2c44)

± 1
2

√
1
4 (c11 − c33)2 + (c13 + c44)2

cubic (m3, 4/m3
e1 e1 l c11 = c22 = c33
e1 ξ · e1 = 0 t c44 = c55 = c66
e1 ± e2 e3 t c44
e1 ± e2 e1 ∓ e2 t 1

2 (c11 − c12)
e1 ± e2 e1 ± e2 l 1

2 (c11 + c12 + 2c44)
e1 ± e2 ± e3 e1 ± e2 ± e3 l 1

3 (c11 + 2c12 + 4c44)
e1 ± e2 ± e3 ξ · (e1 ± e2 ± e3) = 0 t 1

3 (c11 − c12 + c44)

achievable using straightforward static methods. Here, we shall merely dis-
cuss the mechanical stability criteria, giving a definite answer to the question,
which ratios, at all, can the elastic constants take on in a stable crystal lat-
tice. Firstly, we must demand that all quantities, which can be considered
as elastic resistances, take on positive values, while otherwise, for example,
even the smallest stress (tension) would suffice to contract or, under pres-
sure, expand the crystal and thus violate the second law of thermodynamics.
This means, for example, that the volume compressibility must always take
on positive values, thus, for example, with cubic crystals, it must always be
true K = 3/(c11 + 2c12) > 0, i.e., c11 > −2c12. Furthermore, all longitudi-
nal effects must be positive, i.e., c′11 > 0 for arbitrary directions e′1 = u1iei.
The same is true for Young’s modulus in each direction 1/s′11. Moreover, all
expressions derived for ρv2 from the elastodynamic basic equations must be
positive. A number of these conditions for distinct directions is found in Table
4.14. For cubic crystals, we have, for example, c11, c44, c11 − c12 > 0, and hence
c11 > c12. Further, the determinant of 6× 6 matrix of the elastic constants as
well as their main adjuncts must take on positive values. This follows from the
requirement that each change of a deformation component must be followed
by a change of the corresponding stress component with the same sign. From
the trend of the elastic constants as a function of temperature and uniaxial or
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hydrostatic pressure, one can, with certain phase transition, in particular those
of strongly second-order character, often observe a tendency to instability long
before the transition is reached.

For example, certain wave velocities, on approaching a phase boundary,
can continually decrease, causing the associated elastic resistances to become
smaller, and in some cases nearly approach zero (elastic “soft modes”). Hence,
to judge the stability, a knowledge of the temperature and pressure behavior
of the elastic properties is of major importance. By virtue of the known rules
concerning the T and P dependence of elastic constants in stable crystals, one
can, in individual cases, recognize hints at possible phase transitions and char-
acteristic changes in bonding coupled to elastic anomalies.

4.5.8
The Dependence of Elastic Properties on Scalar Parameters (Temperature,
Pressure)

The quantities dcijkl/dX can be determined from the measurement of the shift
of resonance frequencies under the influence of an external parameter X (tem-
perature T or pressure P) or by employing one of the other highly sensitive
methods previously discussed.

If the relationship ρv2 = f (cijkl) is valid, the measured frequency shift, on
account of v = 2Lνm/m, yields the following relation:

1
f (cijkl)

d f (cijkl)
dX

=
dρ

ρdX
+

2dνm

νmdX
+

2dL
LdX

.

Instead of the differential quotients, one can also write the difference quo-
tients, as occurring in the measurement. If X is the temperature T, the first
term represents the negative thermal volume expansion, and the last, the
twofold linear thermal expansion. Similarly, in the case of pressure depen-
dence, the first term represents the negative volume compressibility, and the
last, the twofold linear compressibility. If one now carries out the measure-
ments in the arrangements proposed in Table 4.14, one can determine the
complete tensors dcijkl/dX. For the interpretation of these quantities it was
found convenient to describe the temperature dependence by the thermoelastic
constants

Tij =
dcij

cijdT
=

d log cij

dT

and the pressure dependence by the piezoelastic constants

Pij =
dcij

dp
.
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Tij have the dimension (Grad Kelvin−1), Pij are dimensionless. One observes
only small variations of these quantities in groups of isotypic crystals with
the same particle charge. The coefficients take on characteristic values for
different structural types. If one considers other derivatives, this important
fact for the crystal-chemical interpretation would not appear. As an example
let us mention the temperature dependence of the reciprocal compressibility
dK−1/dp, a dimensionless quantity which takes on the value of around 5 in all
stable crystals. This universal property deserves a more detailed discussion.

The temperature dependence of the given resonance frequency often plays
a decisive role in the application of piezoelectric crystals for frequency genera-
tors and stabilizers in electrical engineering and electronics. From the relation
given above we obtain the following conditions for a so-called zero-cut of the
temperature T:

dν

νdT
=

d f (cijkl)
2 f (cijkl)dT

− dρ

2ρdT
− dL

LdT
= 0.

This means, the temperature dependence of the given effective elastic con-
stants f (cijkl) must be compensated for by the effects of thermal expansion
contained in the second and third terms. This is satisfied by very few of the
presently known crystal types, and only in certain distinct directions. For ex-
ample, in α-quartz perpendicular to the twofold axis, there exists a direction
of a zero-cut of a transverse wave. By combining plates with opposite temper-
ature behavior, it is possible to construct piezoelectric oscillators of α-quartz
possessing a frequency stability of dν/νdT < 10−8/K over a wide tempera-
ture range. This property together with the excellent mechanical properties
is the reason for the undisputed unique position of quartz for use in such de-
vices.

In other applications, the temperature dependence of the resonance fre-
quency of an oscillator is used to measure temperature. These devices (e.g.,
quartz thermometers) are not only highly sensitive, but also exhibit excellent
stability in calibration. If the heat capacity of the oscillator is kept sufficiently
small by miniaturization of the construction, one can employ these devices as
radiation detectors and radiation measuring instruments.

4.5.9
Piezooptical and Elastooptical Tensors

The change in refractive indices, i.e., the velocity of light, under the influence
of an external mechanical stress or a deformation is described by piezooptical or
elastooptical tensors. For the tensor representation of the optical properties, one
selects, as with the electrooptical effect, the polarization tensor (see Section
4.4.2), whose components are interlinked with the refractive indices according
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to aij = (nij)−2. To a first and mostly sufficient approximation, both effects are
represented by

∆aij = qijklσkl ({qijkl} piezooptical tensor)

∆aij = pijklεkl ({pijkl} elastooptical tensor)

σkl and εkl are the components of the stress- and deformation tensor, respec-
tively. From the symmetry of the stress- and deformation tensor it is found
that qijkl = qjikl = qijlk = qjilk and correspondingly pijkl = pjikl = pijlk = pjilk.
At the end of this section we will return to a deviation from this symmetry. The
number and type of independent components in the individual Laue classes
was discussed in Section 4.5. The pair-wise permutation of the index posi-
tions is now not allowed. Thus the number of independent components com-
pared to the elastic constants is substantially increased, for example, to 36 in
triclinic crystals as against 21 in the elasticity tensor. Both tensors are not in-
dependent of one another, rather they carry over into each other according to
pijkl = qijmncmnkl , as is easily seen by setting σmn = cmnklεkl .

4.5.9.1 Piezooptical Measurements

The measurement of piezooptical effects can be performed according to the
methods discussed in Section 4.4.2 (Electrooptics). The electrical field is now
replaced by uniaxial or hydrostatic pressure. With perpendicular incidence,
one obtains for the change in path difference of a plane parallel plate of thick-
ness L

∆G = − L
2
(n′3jj q′jjlmσ′lm − n′3kkq′kklmσ′lm) + (n′jj − n′kk)Ls′iilmσ′lm

(summation is only over l and m!).
The direction of radiation runs parallel e′i, and the direction of vibration of

both waves parallel e′j and e′k. To specify this relationship, we proceed in the
same manner as with the electrooptical effect, i.e., under conditions of strong
double refraction (n′jj − n′kk) we can neglect the rotation of the sectional ellipse
by the piezooptical effect. We then describe the piezooptical effect in the Carte-
sian coordinate system {e′i, e′j, e′k}. In the case of degeneracy n′jj = n′kk, as, for
example, in cubic crystals, the position of the sectional ellipse must be calcu-
lated taking into consideration the piezooptical effect. In the case of so called
absolute measurements, the value for air (for example, n′kk ≈ 1, q′kklm = 0)
must be written for one of both waves. Knowledge of the elasticity coefficients
s′ijkl is necessary for the evaluation of the measurements. These are calculated
from the elastic constants by matrix inversion of the system σ′ij = c′ijklε

′
kl . Fur-

thermore, the aspects set forth in Section 4.4.2 (Electrooptics) are to be noted.
As with all optical measurements, one must set high demands on the op-

tical quality of the specimens. Whereas with hydrostatic loads one can go to
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very high pressure values, in the case of uniaxial stress one is usually limited
to small loads of a few kp/cm2 to prevent damaging the crystal due to in-
homogeneous stress and plastic deformation. Reliable measurements of the
change in the path difference can usually be achieved under these conditions,
however, absolute measurements, made with the help of interferometers often
cause quite a few problems because of the small effects involved. The sensi-
tivity can be substantially improved by employing phase-lock techniques to-
gether with dynamic methods in which laud speaker membranes or a motor
driven eccenter are used to transfer alternating pressure to the crystal. If one
works with purely static or quasistatic methods, then the complete determina-
tion of the piezooptical tensor requires a certain number of absolute measure-
ments. However, if elastooptical measurements are included then under fa-
vorable circumstances one can forgo absolute measurements and still achieve
high accuracy. Because pijmn = qijklcklmn one can feed the measured elastoop-
tical values into the system of equations of qijkl in order to obtain sufficient
overdetermination for the solution. It is advantageous to use those elastoop-
tical measurements combining minimal effort with high accuracy. We will
return to this shortly.

For example, with the help of purely static methods employing uniax-
ial stress, the complete piezooptical tensor of monoclinic aminoethanesul-
fonic acid (Taurine) with its 20 independent components was determined
(Haussühl & Uhl, 1969). Such measurements are more easily performed on
optically inactive cubic crystals because of the low number of independent
components (4 in PSG m3, 3 in PSG 4/m3) and because n′jj = n′kk = n. Ta-
ble 4.15 presents the relationships for some important arrangements of cubic
crystals.

If an optically active crystal type is present, then the interplay of induced
double refraction and natural optical activity must be analyzed according to
the aspects discussed in Section 4.3.6.8, whereby, to a first approximation it
is assumed that the optical activity remains unchanged under the influence
of mechanical stress. To what extent this assumption is correct is as yet not
clearly resolved. No reliable measurements concerning the tensor ∆gijk =
qijklmσlm are available which describe the change of optical activity under the
influence of mechanical stress.

4.5.9.2 Elastooptical Measurements

The elastooptical tensor is amenable to measurements via diffraction experi-
ments as we have come to know from the Schaefer–Bergmann method or from
Brillouin scattering. The elastic waves generate a periodic distortion in the
crystal. The relation aij = n−2

ij leads to a measurable change in the refractive
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Table 4.15 Piezooptical and second-order electrooptical effects for some special directions
in cubic crystals upon uniaxial stress along e′1(σ′11) or under the influence of an electric field
along e′1(E′1). The light wave impinges perpendicularly onto the crystal surface, sample thick-
ness in the direction g ‖ e′i of the incident light wave is L. g, D′(‖ e′j) and D′′(‖ e′k) form
a right coordinate system. In the case of the electrooptical effect, the coefficients rij are as-
sumed inplace of constants qij (in Voigt notation).

σ′11 resp.
E′ ‖ e′1

g ‖ e′i D′ ‖ e′j D′′ ‖ e′k


∆a′jj/σ′11 resp. ∆a′jj/E′1
∆a′kk/σ′11 resp. ∆a′kk/E′1
∆G/σ′11 resp. ∆G/E′1

[100] [010] [001] [100]

 q31 = q12
q11
−Ln3(q31 − q11)/2

[100] [001] [100] [010]

 q11
q21
−Ln3(q11 − q21)/2

[100] [100] [010] [001]

 q21
q31 = q12
−Ln3(q21 − q12)/2

[110] [110] [001] [11̄0]

 (q12 + q21)/2
(2q11 + q12 + q21 − 4q66)/4
−Ln3(−2q11 + q12 + q21 + 4q66)/8

[110] [001] [11̄0] [110]

 (2q11 + q12 + q21 − 4q66)/4
(2q11 + q12 + q21 + 4q66)/4
Ln3q66

[110] [11̄0] [110] [001]

 (2q11 + q12 + q21 + 4q66)/4
(q12 + q21)/2
−Ln3(2q11 − q12 − q21 + 4q66)/8

[111] [111] [11̄0] [112̄]

 (q11 + q12 + q21 − 2q66)/3
(q11 + q12 + q21 − 2q66)/3
0

[111] [110]∗) [112]∗) [111]

 (q11 + q12 + q21 − 2q66)/3
(q11 + q12 + q21 + 4q66)/3
Ln3q66

∗) The same result is obtained for arbitrary directions perpendicular to [111].

indices according to

∆nij = −(nij)3∆aij/2.

The diffraction geometry is determined by the conservation of the quasimo-
mentum (see Section 4.5.6). Energy conservation induces a change in the fre-
quency of the diffracted photons. The intensity of the diffracted light wave
can be calculated in a similar manner as the diffraction of X-rays on a grating.
It is

I = I0L2(∆nij)2
effK,
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Figure 4.54 Geometrical construction of the
diffraction of a light wave with propagation
vector k0 using phonons with a propaga-
tion vector kp analogosly to the Ewald con-
struction. Here, the propagation sphere is
replaced by an index surface scaled by a
factor of 1/λ0 (where λ0 denotes the vac-
uum wavelength) which indicates the allowed
propagation vectors for each direction. For
quasi-infinite crystals, no diffraction is possi-
ble unless the propagation vector kp, starting

at the tip of the vector k0, ends on this sur-
face. The interference and dynamical effects
observed for crystals with a sufficiently small
ratio of transmission path length to acousti-
cal wavelength are completely analogous to
those in electron diffraction in thin crystals
(see, e.g., Kristallstrukturbestimmung). The
illustration shows an optically uniaxial crys-
tal with an optical axis ‖ e3, k0 and kp in the
drawing plane.

where (∆nij)eff is the effective Fourier coefficient of the optical phase grating
and L is the length of the optical path. K is a constant taking into account the
respective unique experimental arrangement.

In the concrete case of an arbitrary plane elastic wave strict conditions must
be adhered to for the direction of the primary wave to even make diffraction
possible. The propagation vectors k0 of the optic wave and kp of the acustic
wave define the diffraction plane. The intercept of this plane with the indi-
catrix shows whether a propagation direction exists at all which guarantees
momentum conservation. The permissible vectors ke of the diffracted wave
must lie on the given sectional ellipse (Fig. 4.54). This corresponds to the
Ewald construction. The calculation of the effective Fourier coefficients is only
readily feasible in a few distinct cases. We will return to this experimentally
important arrangement later.

First we have to clarify another aspect regarding the true symmetry of the
elastooptical tensors. Nelson & Lax (1970) have pointed out that the gener-
ally accepted valid relationship ∆aij = pijklεkl must be amended. Namely, in
certain cases, the general relation

∆aij = pijkl
∂ξk
∂xl
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is written, i.e., the rotational part

rij =
1
2

(
∂ξi
∂xj

−
∂ξ j

∂xi

)

of the distortion vector

∂ξi
∂xj

= εij + rij

may not be neglected. In pure longitudinal waves rij = 0. In contrast, elastic
waves with strong transverse components cause a periodic rotational motion
of the volume element, which can lead to a periodic change of the effective
refractive indices for certain propagation directions. This contribution to the
elastooptical effect can be calculated directly from the refractive indices as fol-
lows. A rigid rotation of the indicatrix is linked to the rotation of the volume
element. The rotation of a vector x is described by x′i = xi + rikxk = uikxk with
uik = δik + rik (δik is the Kronecker symbol). The rotation of the polarization
tensor {aij}, noted in the crystal-physical coordinate system, is obtained by
tensor transformation with the transformation matrix (uik) : a′jj = uikujlakl .
The contribution to the elastooptical effect is then

∆raij = a′ij − aij = uikujlakl − aij.

With uik = δik + rik we get

∆raij = (δik + rik)(δjl + rjl)akl − aij = rikakj + rjlail ,

whereby the quadratic term with the factor rikrjl was neglected. Due to the fact
that rik = −rki and with the help of the index commutation relation rki = δilrkl ,
we come to the following representation:

∆raij = (ailδjk − akjδil)rkl .

In order to estimate the consequence of this change, we go into the optical
principal axis system where aij = 0 for i 6= j. This gives ∆raii = 0 and for
i 6= j:

∆raij = (ajj − aii)rij =

(
1

n2
jj
− 1

n2
ii

)
rij,

where njj and nii are the principal refractive indices. We then obtain for the
general elastooptical effect in this coordinate system

∆aij = pijklεkl + (ajj − aii)rij.



4.5 Fourth-Rank Tensors 277

The second term, in the meantime designated as optorotation, delivers only
in certain cases a measurable contribution. In cubic crystals and in crystals
with small double refraction, optorotation is not or hardly measurable. Pure
longitudinal waves do not generate optorotation.

Accordingly, optorotational effects are only expected with waves possessing
strong transverse components in crystals with large double refraction. In such
crystals, as seen in the examples of rutile and calcite, they can exceed the usual
elastooptical effects a multiple of times. In any case the allowance of optorota-
tion with knowledge of the distortion vector is unproblematic. Optorotation
then plays a subordinate role for the measurement of elastooptical constants
when the light wave is transmitted within a principal plane of the indicatrix
and one stays in the range of small diffraction angles of maximum one de-
gree. The orientation of the sectional ellipses for the primary and diffracted
light waves then remain unaltered. Because ∆raii = 0 the respective refractive
indices do not experience any measurable change due to optorotation.

Another complication appears in piezoelectric crystals when elastic waves
are accompanied by an electric field producing an electrooptical effect. As we
have seen in Section 4.5.5, the electric field of an elastic wave can be described
to sufficient approximation by

Em = −(grad φ)m = −2πikmφ mit φ = φ0e2πi(k·x−νt).

E then runs parallel to the propagation direction g = k/|k|. From the condi-
tions

Dl = elmnεmn + εε
lmEm and D · k = 0

we obtain

Dl gl = elmnεmngl − εε
lm2πikmglφ = 0

and hence, an expression for f φ and

Ek = −2πi(gk/λ)φ = −elmnεmngl gk/εε
rsgrgs.

The expression εε
rsgrgs represents the effective dielectric constant in the prop-

agation direction g. With this electric field we expect an electrooptical effect
superimposed on the normal elastooptical effect:

∆a′′ij = rijkEk = −rijkelmnεmngl gk/εε
rsgrgs.

This contribution can be calculated from the dielectric, piezoelectric and elec-
trooptical tensors when the propagation direction is given and the distortion
vector is known. It is proportional to the amplitude of the elastic wave and
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Figure 4.55 Derivation of the change of the indicatrix of cubic crystals
under the influence of sound waves. g is the direction of propagation
of the sound wave, and ξ′ and ξ′′ are the corresponding distortion
vectors in the plane perpendicular to e3.

thus superimposes itself with the respective fixed part of the normal elastoop-
tical effect. An estimation for α-quartz with its small piezoelectric and elec-
trooptical constants shows that the contribution in this case remains far under
1% of the normal elastooptical effect for each propagation direction. In crys-
tals with high piezoelectric and electrooptical effects, as, for example, α-iodic
acid or α-LiIO3, one can count on substantial contributions of the elastooptical
effect. This can be of advantage in practice (see below).

We now want to discuss some proven methods. Mueller (1938) showed
that one can derive statements on the elastooptical constants from the state of
polarization of the diffracted light. These methods are mainly suited for cubic
crystals and for directions of optical axes of anisotropic crystals.

Let us consider the concrete case of an optical inactive cubic crystal cut in the
form of a rectangular parallelepiped with light transmitted in approximately
perpendicular incidence parallel [001]. The elastic waves generated by the
elastooptical effect shall propagate in the plane (001), hence perpendicular to
the light ray. The normalized propagation vector of the elastic wave is g =
giei = cos ϕe1 + sin ϕe2 (Fig. 4.55). The direction of the distortion vectors
of the elastic waves is gained, as discussed, from the electrodynamic basic
equations when we insert the associated propagation velocities. From

(−ρv2δik + cijkl gjgl)ξk = 0

we obtain for cubic crystals∣∣∣∣∣∣
−ρv2 + c11g2

1 + c44g2
2 (c12 + c44)g1g2 0

(c12 + c44)g1g2 −ρv2 + c11g2
2 + c44g2

1 0
0 0 −ρv2 + c44

∣∣∣∣∣∣ = 0.
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As a result we get

ρv′2 or ρv′′2 =
c11 + c44

2
± 1

2

√
(c11 − c44)2(g2

1 − g2
2)2 + 4(c12 + c44)2g2

1g2
2

and ρv′′′2 = c44.
For the associated distortion vectors, one finds(

ξ1

ξ2

)′
resp.

(
ξ1

ξ2

)′′
=

ρv′2 (or ρv′′2) − c11g2
2 − c44g2

1
(c12 + c44)g1g2

= cot ψ′ resp. cot ψ′′, with ψ = ∠(ξ, e1),

furthermore,

ξ ′3 = ξ ′′3 = 0 as well as ξ ′′′1 = ξ ′′′2 = 0,

Since ξ′ and ξ′′ are mutually perpendicular, tan ψ′′ = − cot ψ′. The notation ′

or ′′ specifies the faster or slower of both waves, respectively. We require the
associated components of the deformation tensor to calculate the elastooptical
effect. Let

ξ′ = ξ′0e2πi(k·x−νt) = C′ cos ψ′e1 + C′ sin ψ′e2

the same applies with ξ′′.
With

k1 =
1
λ

cos ϕ and k2 =
1
λ

sin ϕ

we have

ε′11 =
∂ξ1

∂x1
= 2πik′1ξ ′1 = A′ cos ϕ cos ψ′,

ε′22 = A′ sin ϕ sin ψ′,

ε′12 =
1
2

(
∂ξ ′1
∂x2

+
∂ξ ′2
∂x1

)
=

A′

2
(cos ψ′ sin ϕ + sin ψ′ cos ϕ)=

A′

2
sin(ϕ + ψ′),

ε′′11 = −A′′ cos ϕ sin ψ′,

ε′′22 = A′′ sin ϕ cos ψ′,

ε′′12 =
A′′

2
cos(ϕ + ψ′),

ε′23 = ε′13 = ε′′23 = ε′′13 = 0,

ε′′′22 = ε′′′12 = 0.
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The sectional ellipse perpendicular [001] experiences the following change:

∆a′11 = p1111 A′ cos ϕ cos ψ′ + p1122 A′ sin ϕ sin ψ′,

∆a′22 = p2211 A′ cos ϕ cos ψ′ + p1111 A′ sin ϕ sin ψ′,

∆a′12 = p1212 A′ sin(ϕ + ψ′),

∆a′′11 = −p1111 A′′ cos ϕ sin ψ′ + p1122 A′′ sin ϕ cos ψ′

∆a′′22 = −p2211 A′′ cos ϕ sin ψ′ + p1111 A′′ sin ϕ cos ψ′

∆a′′12 = p1212 A′′ cos(ϕ + ψ′).

The wave ρv2 = c44, distortion vector parallel [001], does not contribute to the
elastooptical effect for this sectional ellipse. We now inquire as to the posi-
tion of the principal axes of this sectional ellipse noted in our crystal–physical
coordinate system. The plane principal axis transformation (see Section 4.3.2)
delivers

tan 2ϑ′ =
2∆a′12

a′11 − a′22
= 2p1212 sin(ϕ + ψ′)/(p1111 cos(ϕ + ψ′)

+ p1122 sin ϕ sin ψ′ − p2211 cos ϕ cos ψ′)

and

tan 2ϑ′′ = −2p1212 cos(ϕ + ψ′)/(p1111 sin(ϕ + ψ′)

− p1122 sin ϕ cos ψ′ − p2211 cos ϕ sin ψ′).

In crystals of PSG 43, 4̄3 and 4/m3 we have p1122 = p2211, so that

tan 2ϑ′ = 2p1212 tan(ϕ + ψ′)/(p1111 − p1122)

and

tan 2ϑ′′ = −2p1212 cot(ϕ + ψ′)/(p1111 − p1122).

If one knows the angles ϑ′ and ϑ′′ for both elastic waves belonging to an arbi-
trary angle ϕ, then the product of both equations delivers

tan 2ϑ′ tan 2ϑ′′ = −4p2
1212(p1111 − p1122)−2,

an expression independent of the angles ϕ nd ψ′, and hence, amenable to ob-
servation without their knowledge.

The position of the sectional ellipse does not depend on the amplitude of
the elastic waves. The diffracted light waves possess directions of vibration
parallel to the principal axes of the respective sectional ellipse. If one selects
the direction of vibration of the incoming light wave parallel to one of the
principal axes, then the diffracted light wave also has the same direction of
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vibration. This allows the measurement of the direction of vibration. If the
crystal is placed between a pair of rotatable crossed polarizers the extinction
position directly yields the angles ϑ′ and ϑ′′. If one works with the Schaefer–
Bergmann method, then all elastic waves with arbitrary propagation direc-
tions perpendicular to the direction of transmission are virtually continuously
excited at the same time. It is especially advantageous to furnish the probe
with a “gothic arch” grind as mentioned in Section 4.5.6, so as to generate
a sufficiently intensive sound field with a minimum of sound power. For
each angle ϕ one then has the two diffraction spots with the angles of the
semiaxes ϑ′ and ϑ′′. The associated angles ψ′ and ψ′′ of the distortion vectors
are found from the angle ϕ and the elastic constants taken from the formula
above. Hence, all the coefficients of the above-mentioned homogeneous linear
equations for p1212, p1111, p1122 and p2211 may be determined.

A second assertion on elastooptical coefficients is easily accessible with the
observation of pure longitudinal waves propagating in the directions [100] or
[110]. These longitudinal waves generate, as seen in the derivation above, a
sectional ellipse whose principal axes run parallel and perpendicular to the
propagation directions g of the longitudinal wave. Consequently, we obtain
two components of the diffracted light, one parallel to the propagation di-
rection and one vibrating perpendicular to this. Both components combine
to form a linear polarized wave, whose direction of vibration arises from the
amplitudes of the components. It is

cot ζ = AI/AII,

whereby both directions of vibration are specified by eI and eII. If the light
wave is incident, as before, perpendicular to the propagation direction of the
longitudinal wave and a polarizer is placed in front of the crystal in a position
diagonal to eI and eII so that the components of the primary wave vibrating in
eI and eII have the same amplitude, one obtains the following AI/AII-values
for the diffracted waves:
eI ‖ eII ‖ g ‖ AI/AII = cot ζ

[100] [010] [100] p1111/p2211
[100] [001] [100] p1111/p1122

[110] [1̄10] [110]
(2p1111 + p1122 + p2211 + 4p1212)
(2p1111 + p1122 + p2211 − 4p1212)

The extinction position of the light diffracted due to the pure longitudinal
wave is measured with the help of a rotatable analyzer. Thus one has ζ and
the associated AI/AII-values when the polarizer is in the diagonal position.
Again, one must ensure that no higher order diffraction effects come into play
which superimpose on the first order diffraction. The method can also be
applied along the directions of optical isotropy in noncubic crystals, whereby
the valid electrooptical relationships are to be employed.
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A useful method based on the measurement of the intensity of the diffracted
light wave was first presented by Bergmann and Fues (1936). The incident
light wave, before entering the probe, is decomposed into two mutually per-
pendicular vibrating components of equal intensity with the aid of a Wollaston
prism, whereby both partial waves experience a spatial separation. The direc-
tions of vibration are adjusted parallel to the semiaxes of the sectional ellipse.
Simultaneous measurements of the intensity of both diffracted waves—using
a photographic plate or photo detector—ensure that during the measurement
the same sound amplitude is effective in both directions of vibration. Hence,
II/III = (AI/AII)2. For cubic crystals, the values AI/AII given above apply.
The method can also be employed for noncubic crystals when the position of
the semiaxes of the sectional ellipse is independent of the amplitude of the
elastic wave. In this case the intensity ratio is

II

III
=
(

∆nI

∆nII

)2
=

n6
I

n6
II

p2
I

p2
II

,

where nI, nII and pI, pII are the effective refractive indices and effective elas-
tooptical constants respectively, which for the given elastic wave and the ef-
fective sectional ellipse are calculated by tensor transformation.

The measurement accuracy can be decisively increased by employing lock-
in amplifiers. Instead of the Wollaston prism it is convenient to use a switch-
able mechanical or electrooptical polarizer, to alternately drive the polariza-
tion of the primary light wave with a fixed frequency in both directions of
vibration. in this manner, it is possible to measure the intensity ratio of both
diffracted light waves to an accuracy of around 1 per mill without further
measures. A related method, which even enables the direct determination of
individual elastooptical coefficients referred to a standard crystal, was devel-
oped by Dixon & Cohen (1966). A standard crystal, for example, a plane par-
allel rectangular plate of quartz glass is attached to the test object by means
of a suitable liquid. Short sound pulses with a fixed repetition rate are first
transmitted through the test object then through the standard crystal and af-
ter reflection on the free face again back into the test object (Fig. 4.56). Now, if
a light wave is sent into the test object and simultaneously another light wave
into the standard crystal one obtains, per transit path of the elastic wave train
4 diffracted light flashes: 1. from the test object, 2. from the standard crystal,
3. again from the standard crystal after the reflection and 4. from the test ob-
ject after the wave train re-enters. The length of the elastic wave train is so
adjusted that the incoming wave and the reflected wave do not superimpose.
From the ratio of the intensities of the 1. and 4. flashes of light one can deter-
mine the attenuation coefficient Z of the amplitude of the wave train passing
through the boundary faces test object-standard crystal using I4/I1 = Z4. This
assumes that I2 = I3, that is, no reflection losses appear at the free faces of the
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Figure 4.56 Illustration of the Dixon & Cohen method for approxi-
mately perpendicular incidence (low acoustic frequency). G Sound
generator, I crystal, II standard crystal (e.g., quartz), S beam splitter,
B aperture to eliminate primary light rays, PM photomultiplier. 1, 2, 3,
and 4 denote the paths of the acoustic pulse through the arrangement
of test object and standard crystal.

standard crystal. For test object (I) and standard crystal (II) we then have

II = KII0n6
I p2

I ξ2
I0/ρIv3

I

and

III = KIII0n6
II p2

IIξ
2
II0/ρIIv3

II,

where II0 and III0 are the intensities of the primary light waves in test object (I)
and in standard crystal (II). |ξII0| = Z|ξI0| is true for amplitudes of the elastic
waves in I and II. Hence, one obtains for the effective elastooptical coefficients

p2
I

p2
II

=
II(I1/I4)1/2 III0ρIv3

I n6
II

III II0ρIIv3
IIn

6
I

.

The assumption is made here that the transmission lengths in I and II are the
same and that the wave type does not change during its travel through I and
II. This only applies to pure longitudinal- and transverse waves, whose wave
normal is perpendicular on the boundary face. At higher diffraction angles,
the dependence of the transmission length on the angle of diffraction must be
taken into account (Dixon, 1967).

As indicated above, the combination of static piezooptical and dynamic
elastooptical methods opens the possibility for the complete determination
of tensors, with high accuracy, even in crystals of low symmetry. Thus one
can forgo measurements difficult to access or afflicted with large errors, as, for
example, ”absolute measurements.”
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To estimate elastooptical and piezooptical constants of cubic crystals, and
to a certain extent crystals of low symmetry, we can draw upon the Lorentz–
Lorenz relationship

(n2 − 1)
(n2 + 2)

=
ρ

M
R,

where R designates the specific refraction (mole refraction) of the substances
(see Section 4.3.6.9).

From experiments it is found that the specific refraction is a combination of
the quasiadditive contributions of the ions or atoms, which are only weakly
dependent on the structural surroundings. Since ρ = mole weight/mole vol-
ume, one can crudely estimate the change in the refractive index due to a
change of the mole volume brought about by hydrostatic pressure. We will
return to this question in Exercise 13.

Finally, we wish to point out the technological importance gained by elas-
tooptical devices as deflectors or modulators of light. The deflection of light
can be controlled by diffraction on elastic waves with variable frequency be-
cause the diffraction angle is a function of the wavelength and hence the fre-
quency of the elastic wave. One can control a light beam in any arbitrary
angle within a certain angular range with an arrangement of two deflectors
connected one after another. The areas of application are mainly material pro-
cessing with laser light, fast light pens and in combination with several colors,
the reproduction of large-area color pictures in video technology. A measure
of the efficiency of such devices is the elastooptical scattering factor n6 p2/ρv3

containing the material properties contributing to the elastooptical effect. Es-
pecially important is the strong dependence on the refractive index. The re-
sponse time of elastooptical devices is about a factor 105 longer than with the
electrooptical effect (ratio of the velocity of light to the velocity of sound).

Closely related to the piezooptical tensor is the piezodielectric tensor, which
reproduces the change of the components of the dielectric tensor due to exter-
nal mechanical stress

∆εij = Qijklσkl .

The symmetry properties fully correspond to those of the piezooptical tensor.
For the measurements, which so far have only been successful in a few cubic
crystals, one uses the method discussed in Section 4.3.3 where the change in
the capacity of a crystal plate is measure under the influence of mechanical
stress. As we shall see in Section 5, there exists a close relationship between
the piezodielectric and the quadratic electrostrictive tensor as well as the de-
pendence of the elastic constants on the electric field.
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4.5.10
Second-Order Electrostrictive and Electrooptical Effects

The relationships

εij = dijklEkEl and ∆aij = rijklEkEl

describe, to a first approximation, the electrostrictive and the electrooptical ef-
fects respectively, not covered by the linear effects previously discussed. Both
second-order effects appear in all substances since in contrast to the linear
effects, there is no total existence constraint. The number and type of inde-
pendent components of the tensors {dijkl} and {rijkl} was already discussed
in Section 4.5.

Up until lately the opinion was that second-order electrostrictive effects
were too small to be measured. Such effects were known only in the case of
ferroelectric crystals or close to a phase transition. By using dynamic measure-
ment techniques, employing lock-in amplification, the complete second-order
electrostrictive tensors of numerous cubic crystals as well as that of rhombic
calcium formate were recently determined (Bohatý & Haussühl, 1977). In do-
ing so, the change in the length of the crystal in the longitudinal as well in
the transverse arrangement, induced by double the frequency of the electric
field was converted into a change in capacitance of a capacitor working as the
frequency determining element in a high frequency oscillating circuit. Using
an auxiliary crystal exhibiting a linear electrostrictive effect to which a voltage
of double the frequency was applied in phase to the voltage at the test object,
detuning of the capacitor could be compensated for by the quadratic effect. In
this manner it was possible to detect changes in length of around 10−13m on
probes with lengths of approximately 1 cm. All independent tensor compo-
nents can be determined from longitudinal and transverse measurements in
different orientations similar to first-order effects. The observed effects on a
large collective of crystals were, in fact, found to be extremely small. Never-
theless, some interesting regularities could be uncovered, as, for example, the
general phenomena of longitudinal dilatation and also volume expansion in
an electric field. We will talk about the connection between second-order elec-
trostriction and the pressure dependence of the dielectric tensor in due course.
Second-order electrostriction also plays a decisive role in stimulated Brillouin
scattering and in electrooptical effects.

The second-order electrooptical effect, also called the electrooptical Kerr ef-
fect, is in all details closely related to the piezooptical effect. The tensors of
both effects have the same symmetry properties and the measurement ar-
rangements are similar. In the absence of a linear effect, the change in the
optical path difference of a plane parallel plate of thickness L, irradiated in
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perpendicular incidence obeys

∆G = − L
2
(n′3jj r′jjlm − n′3kkr′kklm)E′l E

′
m + (n′jj − n′kk)d′iilmE′l E

′
m.

Propagation direction e′i and the directions of vibration e′j and e′k are selected
as in the corresponding relations of the piezooptical effect. An evaluation of
the measurements of the change of the optical path under the action of an
electric field, which are carried out in a manner completely analogous to the
methods discussed for piezooptical measurements in Section 4.5.9.1, demand
a knowledge of the second-order electrostrictive effect. The belief that this cor-
rection may be neglected was refuted by the investigations mentioned above.
Rather, one observes that the electrostrictive contribution is of the same order
of magnitude as the actual second-order electrooptical effect.

Simple measurement arrangements can be specified for crystals of the sub-
group 22 which allow a reliable determination of the complete tensors with a
minimum of effort. Table 4.15 presents the corresponding relations for cubic
crystals.

Crystals with large coefficients of the second-order electrooptical effect can
also be employed for the linear modulation of light. In this regard, one applies
a high electrical dc voltage to the given crystal and superimposes this on the
control voltage of the modulation. A ∆G then appears corresponding to the
linear electrooptical effect, as is directly seen on the basis of the relationship
given above for the optical path difference. This means that the second-order
electrooptical effect may also be interpreted as a neutralization of the inversion
center by the electric field.

4.5.11
Electrogyration

Optical activity can be induced or changed by external fields. In particular,
certain crystals can first be optically active under the influence of an external
field. We start from the relationship

Di = εijEj + gijk
∂Ej

∂xk

for optical activity (see Section 4.3.6.7) and assume a dependence of the com-
ponents gijk on the electric field strength given by ∆gijk = gijklEl .

The electrogyration tensor {gijkl} is, just as {gijk}, antisymmetric in both first
index positions. Thus, it can be carried over to a third-order axial tensor as
in gijkl → γmkl or −γmkl with m 6= i, j and i, j, m cyclic or anticyclic in 1, 2,
3. Hence, the formulae derived in Section 4.3.6.7 can be used here when one
writes the quantity γij + γijkEk instead of γij.
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The effects of electrogyration are most easily accessible in the propagation
direction of optical isotropy. The situation is especially simple in crystals
not possessing natural optical activity. The only cubic PSG in which a pure
electrogyration effect appears is m3. In the cubic PSGs with fourfold axes,
all components gijkl vanish as one can directly establish by symmetry reduc-
tion. Both independent components g1212 and g2121 can exist in m3. Since,
however, only the scalar product G · g = γijgigj or γijkgigjEk (see Section
4.3.6.7) enters into the equation for the refractive indices of optically active
crystals in quasi-isotropy, both components cannot be separately determined
by experiments measuring the refractive indices or related phenomena. This
means only one independent component is effective. It is convenient to set
g1212 = γ312 = −g2121 = +γ321. The electrogyration effects a rotation of the
plane of polarization of polarized light. The angle of rotation is given by the
relation ρ = π(n′ − n′′)/λn, discussed in Section 4.3.6.7, where n′ = n + g ·G
and n′′ = n − g · G. The gyration vector is given by Gi = γijkgjEk when, as
here, natural optical activity is missing. The following table presents some
arrangements to be discussed for the measurement of electrogyration in PSG
m3 (q = E · a):

g ‖ E ‖ a G g ·G

[110] [001]
√

2
2 E3γ123(e1 + e2) γ123E3

[001] [ab0] 1√
a2+b2 γ123|E| sign q(be1 + ae2) 0

[11̄0] [111]
√

2
2 E3γ123(−e1 + e2) −

√
3

3 γ123|E| sign q
[111] [111] 2√

3
γ123E3(e1 + e2 + e3) 2√

3
γ123|E| sign q

[111] [ab.ā + b] see Exercise 33 0
If the propagation vector and the electric field lie parallel (g = E/|E|), one

obtains g · G = 6γ123g1g2g3|E|. This means electrogyration vanishes in crys-
tals of PSG m3 under longitudinal observation when g is normal to a twofold
axis.

The measurement is best performed using a dynamic method in which an
electric alternating field is applied to the crystal. The vibration of the plane
of polarization oscillating with the same frequency as the field is measured
with a lock-in amplifier (Weber & Haussühl, 1974). The effects observed on
alums lie in the order of magnitude of 10−6 degree rotation of the plane of
polarization per cm of irradiated length at a field strength of 1 V/cm. In iso-
typic crystals one observes marked changes of the coefficients γ123 when one
replaces symmetrical particles with antisymmetrical one, as, for example, in
the β-alums of caesium and methyl ammonium (Weber & Haussühl, 1976).
Little is known as yet concerning the electrogyration of other crystals.
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4.5.12
Piezoconductivity

The electric conductivity changes under the influence of an external mechani-
cal stress. the relation is specified by

∆sij = wijklσkl .

If one writes

σmn = cmnklεkl

for the stress tensor then

∆sij = wijmncmnklεkl = yijklεkl .

The tensors {wijkl} and {yijkl} are of type A and exist in all PSGs.
The corresponding effects also occur in thermal conductivity and in bulk

conductivity.
The measurement of piezoconductivity is best performed with the help of

longitudinal and transverse effects, whereby the change in the current density
is observed as a function of hydrostatic or uniaxial pressure. The measure-
ment scheme, even with triclinic crystals, is so simple that it can be effort-
lessly educed by the reader. If periodic changes in pressure are employed,
one achieves, through lock-in amplification of the resulting change in current
density, a high sensitivity.

Up to now, complete tensors have only been found for a few materials.
The effect also appears naturally in polycrystalline materials. The change in

resistance of metal wires, as used in strain gauges, is based on piezoconductiv-
ity. High pressure sensors, where a change in the electrical resistance provides
information on the prevalent pressure are also examples of the application of
piezoconductivity.

4.6
Higher Rank Tensors

4.6.1
Electroacoustical Effects

Analogous to the electrooptical effect, an electrically induced change in the
propagation direction of elastic waves may appear: electroacoustical effect. The
tensorial description is

∆cijkl = zijklmEm + zijklmnEmEn + · · ·
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The polar tensor {zijklm} only exists in acentric crystals except in PSG 43,
whereas the tensor {zijklmn} appears in all PSGs. The change of the elastic
constants ∆cijkl leads, via the elastodynamic basic equations, to a change in
the propagation velocities of the elastic waves. The measurement of this very
small effect is exacerbated by the fact that first- or second-order electrostriction
becomes effective, which may cause a change in the dimensions and density
of the crystal. These contributions can be calculated with knowledge of the
elastic, piezoelectric or electrostrictive coefficients and used for correction of
the measured change of the propagation velocities according to the method
discussed in Section 4.5.6. So far only isolated measurements of this type have
been successful. The connection between the coefficients of the electroacous-
tical effect and the second-order piezoelectric effect, represented by

Di = dijklmσjkσlm

is referred to in Section 5. σij are the components of the mechanical stress
tensor.

4.6.2
Acoustical Activity

Analogous to optical activity, there also exists the phenomenon of acoustical
activity, specified by the fifth-rank tensor {cijklm}, the gyration tensor, which
can be represented by the following relationship:

σij = cijklεkl + cijklm
∂εkl
∂xm

.

Just as with optical activity, we also set the condition that wave propagation
progresses without additional energy terms. The elastic energy content is then

∆W = ∑
i,j

∫
σijdεkl = ∑

i,j

∫
cijklεkldεij + ∑

i,j

∫
cijklm

∂εkl
∂xm

dεij.

The second term, in the case of plane waves

ξ = ξ0e2πi(k·x−νt) with εij =
1
2

(
∂ξi
∂xj

+
∂ξ j

∂xi

)
takes the form

∑
i,j

∫
2πikmcijklmεkldεij.

This expression vanishes when cijklm = −cijlkm, i.e., when the gyration ten-
sor is antisymmetric with respect to the 3. and 4. index position. Since the gy-
ration tensor is an odd-rank polarer tensor, there exists no acoustical activity in
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centrosymmetric crystals. With pure transverse waves, in certain preferential
directions, a rotation of the plane of vibration is observed, namely along the
so-called acoustic axes in which two transverse waves of equal velocity can
propagate, similar to optical activity. From this rotation one can determine
individual components of the gyration tensor. The measurement of rotation
is possible with the help of pulsed ultrasound methods, whereby the pulses
are recorded with a piezoelectric transverse oscillator, connected as a detec-
tor, after traveling through the crystal. The rotation can be determined, after
making corrections for reflection and damping losses, from the amplitude of
the signals generated by the pulses. The amplitudes are functions of the set-
ting of the direction of vibration of the decor to the direction of vibration of
the primary transverse sound generator. In arbitrary directions, the effects of
acoustical activity are largely masked by anisotropy and optical activity. In
this case the elastic waves take on a rather complicated form so that an analy-
sis of this effect is experimentally laborious.

4.6.3
Nonlinear Elasticity: Piezoacoustical Effects

Hooke’s law, i.e., the linear relationship between stress and deformation is
a sufficient approximation for most elastic interactions as long as the stress
is kept adequately small. Contrary to the long held opinion that deviations
from Hooke’s law are difficult to measure, the situation in the meantime has
completely changed. The methods described in Section 4.5.6 allow observa-
tions of deviations from Hooke’s law already with mechanical stresses of a
few Newton/cm2. We use the Lagrangian deformation tensor as an induc-
ing quantity to describe these elastic nonlinearities and specify the following
relationship:

σij = cijklηkl + cijklmnηklηmn + cijklmnopηklηmnηop + · · ·

For small deformation, cijkl are identical with the components of the elasticity
tensor defined in Section 4.5.1.

The components of the sixth-rank tensor are designated as third-order elastic
constants and those of the eighth-rank tensor as fourth-order elastic constants.
We recall that

ηkl =
1
2

(
∂ξk
∂xl

+
∂ξl
∂xk

)
+

1
2

∂ξm

∂xk

∂ξm

∂xl
.

The first term corresponds to the components of the ordinary deformation
tensor. Here, the pair-wise permutability of the indices follows from the re-
versibility of the deformation work, just as with the elasticity tensor, hence,
for example,

cijklmn = cklmnij = cmnklij = · · ·
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Table 4.16 Number of independent components of the elasticity tensors of fourth, sixth, and
eighth rank.

Laue group 1̄ 2/m 2/mm 3̄ 3̄m 4/m 4/mm
Z(cijkl) 21 13 9 7 6 7 6
Z(cijklmn) 56 32 20 20 14 16 12
Z(cijklmnop) 126 70 42 42 28 36 25

Laue group 6/m, 6/mm, m3 4/m3 ∞/m∞
∞/m ∞/mm

Z(cijkl) 5 5 3 3 2
Z(cijklmn) 12 10 8 6 3
Z(cijklmnop) 24 19 14 11 4

The indices within the pairs are naturally permutable due the the symmetry
of the stress- and deformation tensor. Symmetry reduction in the individual
PSGs is performed in a manner similar to the procedures discussed earlier.
Table 4.16 presents the number Z of independent components of the tensor
{cijklmn} for the eleven Laue groups.

Cubic crystals with fourfold axes are distinguished from those with twofold
axes. In abbreviated notation, the independent components are

• m3, 23 (Laue group m3): c111, c112, c113, c123, c144, c155, c166, c456

• 4/m3, 43, 4̄3 (Laue group 4/m3): c111, c112 c123, c144, c166, c456.

Only three independent components exist in isotropic substances c111, c112,
c123. Furthermore, c144 = (c111 − c123)/2, c166 = (c111 − c112)/4 and c456 =
(c111 − 3c112 + 2c123)/8, as is established from the condition of invariance of
an arbitrary rotation about an arbitrary axis, for example, e3 (see Exercise 35).

One important aspect of nonlinear elastic behavior is exhibited by the de-
pendence of the elastic constants on hydrostatic pressure, described by the
coefficients dcij/dp (see Section 4.5.8). The connection of these coefficients
with the third-order elastic constants is found from the relationships to be dis-
cussed below.

The complete determination of third-order elasticity tensors requires a care-
fully prepared strategy. A method, since found to be successful, was proposed
by Thurston & Brugger (1964). An exposition of this method is found in an
overview article by Wallace (1970). One measures changes in delay times or
shifts in the resonance frequencies of plane parallel plates under the influence
of external hydrostatic and uniaxial stress. These effects correspond to those
of piezooptics, whereby here, however, only “absolute measurements,” i.e.,
measurements of the absolute changes in velocity are taken into considera-
tion, because a quantitative analysis of the interference of elastic waves would
require a much too higher effort.



292 4 Special Tensors

We now want to outline the considerations establishing a connection be-
tween piezoacoustical effects and nonlinear elastic properties. In an experi-
ment we compare the delay time of a sound pulse or the resonance frequen-
cies of plane parallel plates with and without a state of external stress charac-
terized by {σ0

ij}. In both situations, the elastodynamic basic equations in the
form

∂σij

∂xj
= ρ

∂2ξi
∂t2

are valid. The familiar equations (−ρ0v02δik + c0
ijkl gjgl)ξk = 0 (i = 1, 2, 3) re-

sult from the prestress-free state. Furthermore, the coordinates of a mass point
in the stress-free state are specified by x0

i and in the prestressed crystal by xi.
The same applies to all other quantities. The prestresses σ0

ij induce the defor-

mations ηij = s0
ijklσ

0
kl . The deformations carry over the fixed material position

vector x0 into a position vector x, referred to the same Cartesian coordinate
system, according to

xi = x0
i +

∂xi

∂x0
j

x0
j = (δij + ηij)x0

j = uijx0
j .

We assume that no rotational components appear. Formally, we can inter-
pret this relationship as a coordinate transformation from a Cartesian base
system to a nonlinear coordinate system among others. The components of
the elasticity tensor are now to be transformed in accordance with this trans-
formation. However, when we wish to keep the original Cartesian system as
the coordinate system, we must guarantee the invariance of the density of the
elastic deformation work. This is accomplished by furnishing all transformed
quantities with the factor V0/V = |uij|−1. |uij| are also called the Jacobian
determinants. Accordingly, the components of the elasticity tensor are then

c′ijkl = |uij|−1uirujsuktulvc0
rstv.

Writing uij = (δij + ηij) and expanding the deformation tensor ηij to first order,
taking into account |uij|−1 = (1 + η11 + η22 + η33 + · · · )−1 = (1− η11 − η22 −
η33 · · · ), gives

c′ijkl = (1− δrsηrs)c0
ijkl + c0

ijkrηlr + c0
ijrlηkr + c0

irklηjr + c0
rjklηir.

The corresponding transformation of the components cijklmn delivers, for the
effective components cijkl , the contribution cijklmnηmn as the lowest order term
in ηij. Hence, we have

cijkl = c′ijkl + cijklmnηmn.
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Thus the deformations generated by an elastic wave ξ = ξ0e2πi(k·x−νt) su-
perimpose on the deformations generated by the prestresses. We require the
resulting total stress σij. This is calculated in an analogous fashion to cijkl ,
employing, however, that transformation describing the change of the coor-
dinates of the position vector of the prestressed state to the effective state de-
scribed by the deformation resulting from the elastic waves. It is

x′i = xi + ∆ξi = xi +
∂ξi
∂xj

xj =

(
δij +

∂ξi
∂xj

)
xj = u′ijxj.

Hence, σ′ij = |u′ij|−1u′iru′jsσ0
rs, where σ0

ij is the prestress. Expanding again, to
a first approximation with respect to the deformation quantities ∂ξi/∂xj, one
finds

σ′ij =
(

1− ∂ξk
∂xk

)
σ0

ij +
∂ξ j

∂xk
σ0

ik +
∂ξi
∂xk

σ0
kj.

Together with the deformation of the elastic waves gives

σij = σ′ij + cijklεkl .

The elastodynamic basic equations then take on the following form:

∂σij

∂xj
= (σ0

l jδik + cijkl)
∂2ξk

∂xj∂xl
= ρ

∂2ξi
∂t2 .

Using the plane wave approach results in

−ρv2ξi + (σ0
l jδik + cijkl)gjglξk = 0.

To an approximation, one may assume that the position of the propagation
vector and the deformation vector depend on the prestress σ0

ij. Multiplying
the above equation with ξi and summing over i gives

ρv2 = (σ0
l jδik + cijkl)gjglξiξk/ξ2.

The values derived above are inserted for cijkl . Substituting the deformation
ηij by s0

ijklσ
0
kl , which is approximately correct, explicitly gives ρv2 as a function

of the prestress σ0
ij and hence

∂ρv2

∂σ0
pq

= gpgq +
∂cijkl

∂σ0
pq

gjglξiξk/ξ2

= gpgq + (−c0
ijkls

0
rspqδrs + c0

ijkrs0
lrpq + c0

ijrls
0
krpq + cirkls0

jrpq

+ c0
rjkls

0
irpq + cijklmnsmnpq)gjglξiξk/ξ2.
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With the help of these relationships, the components of the third-order elastic-
ity tensor can be determined in a given propagation direction and position of
the deformation tensor and with known elastic constants. If one works with
static prestresses, which can be of hydrostatic or uniaxial nature, the isother-
mal constants must be inserted for s0

ijkl . For sound propagation, one employs

the adiabatic constants c0
ijkl . The connection between isothermal and adiabatic

quantities is discussed in Section 5.2. The third-order constants are a mixture
of isothermal–adiabatic types. However, a closer inspection has shown that
the difference between isothermal and adiabatic or third-order mixed con-
stants is so small that they are hardly measurable (Guinan & Ritchie, 1970).
Conveniently one employs computer programs to evaluate measurements
performed under hydrostatic pressure and uniaxial stress. A direct evalua-
tion is possible with cubic crystals. From the equation above, one obtains
the following relationship for the pressure dependence of the elastic constants
(−p = σ0

11 = σ0
22 = σ0

33) of cubic crystals

dc11

dp
= −1− (K0/3)(c0

11 + c111 + c112 + c113) with g1 = ξ1/|ξ| = 1,

dc44

dp
= −1− (K0/3)(c0

44 + c144 + c155 + c166) with g1 = ξ2/|ξ| = 1,

d(c11 − c12)/2
dp

= −1− (K0/3)(c0
11 − c0

12 + c111 − c123)/2 with

g1 = g2 = ξ1/|ξ| = −ξ2/|ξ| =
√

2/2,

and hence,

dc12

dp
= 1− (K0/3)(c0

12 + c112 + c113 + c123),

where K0 is the volume compressibility

K0 = 3(s0
11 + 2s0

12) = 3(c0
11 + 2c0

12)
−1.

Similar relationships result for the dependence of the constants c11 and c44
on uniaxial pressure parallel or normal to the propagation direction [100] (see
Exercise 36). It follows that the pressure dependence of the reciprocal volume
compressibility, an important scalar invariant, is given by

dK−1

dp
=

d(c11 + 2c12)
3dp

= −(K0/9)(c111 + 3c112 + 3c113 + 2c123)

whereby the difference between isothermal and adiabatic compressibility was
neglected. The above expression is identical, except for the factor −K0/27, to
the invariants cijklmnδijδklδmn.
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Elastic nonlinearity, analogous to dielectric nonlinearity, generates, from an
incident wave a frequency doubled secondary wave which can be used to a
certain extent to measure nonlinear elastic properties. However, acoustic fre-
quency doubling does not come into consideration as a precise measurement
of routine nonlinear elastic properties.

If one takes into account higher order deformations in the relationships de-
rived above, then fourth and higher order elasticity tensors come into play
which are only partially and with low accuracy accessible to measurement.
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5
Thermodynamic Relationships

5.1
Equations of State

The behavior of a crystal under the influence of different external (inducing)
quantities can be calculated with knowledge of the given property. We call
the existing relationships equations of state. If, for example, the mechanical
stress in the form of the stress tensor {σij}, an electric field E, a magnetic field
H, and the temperature difference ∆T are accepted as independent (inducing
) variables, then for the corresponding (dependent) induced quantities such
as mechanical deformation {εij}, electric displacement D, magnetic induction
B and entropy difference ∆S per unit volume, one must specify, to a first ap-
proximation, the following linear equations:

εij = sE,H,T
ijkl σkl + cH,T

ijk Ek + mE,T
ijk Hk + αE,H

ij ∆T

∆Di = dH,T
ijk σjk + εσ,H,T

ij Ej + qσ,T
ij Hj + pσ,H

i ∆T

∆Bi = nE,T
ijk σjk + bσ,T

ij Ej + µσ,E,T
ij Hj + mσ,E

i ∆T

∆S = βE,H
ij σij + qσ,H

i Ei + nσ,E
i Hi +

Cσ,E,H

T
∆T

The attached symbols σ, E, H, and T mean that each respective quantity is
fixed. The relationships are mostly familiar and otherwise easy to interpret.
Cσ,E,H is the specific heat per unit volume. In a following second approxima-
tion one has to include the tensor relationships describing the quadratic de-
pendence of the quantities εij, Di, Bi and ∆S on the inducing quantities, hence
on the pure quadratic and mixed products, as, for example, σijEk, Ei∆T and so
on. The same applies to higher order approximations. Accordingly, the first,
second and higher approximation represent nothing else as a Taylor expan-
sion of the dependent quantities with respect to the independent quantities in
first, second, and higher orders.

Under suitable experimental arrangements we can also introduce, as inde-
pendent variables, other combinations, as, for example, mechanical deforma-
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tion, the electric and magnetic field and temperature. One then obtains analo-
gous equations of state:

σij = cE,H,T
ijkl εkl + f H,T

ijk Ek + pE,T
ijk Hk + γE,H

ij ∆T

∆Di = eH,T
ijk ε jk + εε,H,T

ij Ej + qε,T
ij Hj + pε,H

i ∆T

∆Bi = qE,T
ijk ε jk + bε,T

ij Ej + µε,E,T
ij Hj + mε,E

i ∆T

∆S = δE,H
ij εij + qε,H

i Ei + nε,E
i Hi +

Cε,E,H

T
∆T

We inquire as to the relationships existing under the different coefficients. In
this case it is convenient to draw upon the so called thermodynamic potential.
The density of the internal energy U of a body, measured, for example, in
Jm−3, represents the sum of the total energy content. Accordingly, the change
∆U is given by the following expression:

∆U = ∆Q + σij∆εij + Ei∆Di + Hi∆Bi = ∆Q + ∆W,

where ∆Q signifies the change of the caloric energy content. In the case of
reversible processes ∆Q = T∆S. ∆W specifies all noncaloric energy content.
A second important function of state is the free enthalpy G, also called the
Gibbs potential arising from U through the following Legendre transformation:

G = U − σijεij − EiDi − HiBi − TS.

Its differential change is given by

∆G = ∆U − σij∆εij − εij∆σij − Ei∆Di − Di∆Ei

− Hi∆Bi − Bi∆Hi − T∆S− S∆T

= −εij∆σij − Di∆Ei − Bi∆Hi − S∆T.

In thermodynamic equilibrium, i.e., here, in a state of constant mechanical
stress, constant electric and magnetic field as well as constant temperature,
∆G = 0. This statement plays a fundamental role in the stability of a crystal
type under isobaric (∆σij = 0), isagrischen (∆Ei = ∆Hi = 0) and isothermal
(∆T = 0) conditions. From several arrangements (modifications) of the same
chemical constituents existing under the same conditions, the most stable is
the one possessing the smallest Gibbs free energy.
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We now assume that G is an arbitrarily differentiable function of the vari-
ables (σij, Ei, Hi, T). We can then expand G as a Taylor series:

∆G =

(
∂G
∂σij

)
E,H,T

∆σij +
(

∂G
∂Ei

)
σ,H,T

∆Ei +
(

∂G
∂Hi

)
σ,E,T

∆Hi

+
(

∂G
∂T

)
σ,E,H

∆T +
1
2

(
∂2G

∂σij∂σkl

)
E,H,T

∆σij∆σkl

+
1
2

(
∂2G

∂Ei∂Ej

)
σ,H,T

∆Ei∆Ej + . . .

Comparison with the expression derived from the definition of G gives the
following relations:(

∂G
∂σij

)
E,H,T

= −εij,
(

∂G
∂Ei

)
σ,H,T

= −Di,(
∂G
∂Hi

)
σ,E,T

= −Bi,
(

∂G
∂T

)
σ,E,H

= −S.

Differentiating these expressions again and making use of the permutability
of the sequence of differentiation, gives, for example,(

∂2G
∂σij∂Ek

)
H,T

= −
(

∂εij

∂Ek

)
H,T

= −
(

∂Dk
∂σij

)
H,T

,

hence,

cH,T
ijk = dH,T

kij .

In a similar manner we obtain

mE,T
ijk = nE,T

kij , αE,H
ij = βE,H

ij , qσ,T
ij = bσ,T

ij , pσ,H
i = qσ,H

i , mσ,E
i = nσ,E

i .

If one takes into consideration isochore (∆εij = 0), isagric and isothermal con-
ditions, then analogous relationships can be derived from the electric–magnetic
Gibbs potential F = U − EiDi − HiBi − TS.

In the corresponding equilibrium state ∆F = 0 because

∆F = σij∆εij − Di∆Ei − Bi∆Hi − S∆T.

To begin with(
∂F
∂εij

)
E,H,T

= σij,
(

∂F
∂Ei

)
ε,H,T

= −Di,(
∂F
∂Hi

)
ε,E,T

= −Bi,
(

∂F
∂T

)
ε,E,H

= −S.
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From this, we obtain by differentiation, taking into account the permutability
of the sequence of differentiation

eH,T
ijk = − f H,T

kij , pE,T
ijk = −qE,T

kij , γE,H
ij = −δE,H

ij ,

qε,T
ij = bε,T

ij , pε,H
i = qε,H

i , mε,H
i = nε,H

i .

We have used some of these relationships, for example, cH,T
ijk = dH,T

kij and

eH,T
ijk = − f H,T

kij , in preceding sections.
Further such relations (first-order Maxwell relations) can be calculated in an

analogous fashion for all other arbitrary combinations of auxiliary conditions
from the associated functions of state FX , derived from the internal energy U
with the help of a Legendre transformation according to FX = U − X. X can
be one or even several of the energy terms of type σijεij, EiDi, HiBi or TS.
These terms represent products of two conjugate quantities Ak and Ãk, also
designated as intensive and extensive quantities, respectively (Ak: σij, Ei, Hi,
∆T; Ãk: εij, Di, Bi, ∆S).

It is then true that ∂FX/∂Ak = −Ãk or ∂FX/∂Ãk = Ak, when X contains the
product Ak Ãk or not respectively. The first-order Maxwell relations then take
the form

∂2FX
∂Ak∂Al

= −∂Ãk
∂Al

= − ∂Ãl
∂Ak

.

Similar results are obtained for ∂2FX
∂Ãk∂Ãl

.
If one again differentiates these relations with respect to the variables Ai

and Ãi noting the permutability of the sequence of differentiation, we get the
second-order Maxwell relations

∂3FX
∂Ai∂Aj∂Ak

= − ∂2 Ãk
∂Ai∂Aj

= −
∂2 Ãj

∂Ai∂Ak
= − ∂2 Ãi

∂Aj∂Ak

and correspondingly

∂3FX

∂Ãi∂Ãj∂Ãk
=

∂2 Ak

∂Ãi∂Ãj
= · · · ,

whereby certain auxiliary conditions must be kept to with respect to the other
variables.

From the many relations, we point out here some examples of importance:
Third-rank elasticity tensor σij = cijklηkl + cijklmnηklηmn:

∂2σij

∂ηkl∂mn
=

∂2σkl
∂ηij∂ηmn

=
∂2σmn

ηijηkl
→ cijklmn = cklijmn = cmnijkl = . . .
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Second-order dielectric tensor Di = εijEj + εijkEjEk:

∂2Di
∂Ej∂Ek

=
∂2Dj

∂Ei∂Ek
=

∂2Dk
∂Ei∂Ej

→ εijk = εjik = εkij = . . . (totally symmetric).

This corresponds to “Kleinmans rule” for nonlinear dielectric susceptibility
(see Section 4.4.4).

Second-order piezoelectric effect Di = dijkσjk + dijklmσjkσlm and the mecha-
noelectric deformation tensor ε jk = sjklmσlm + qjklmiσlmEi:

∂2Di
∂σjk∂σlm

=
∂2ε jk

∂σlm∂Ei
→ dijklm = qjklmi.

Second-order electrostriction εij = dijkEk + dijklEkEl and pressure dependence
of the dielectric tensor Dk = εklEl + eklijσijEl :

∂2εij

∂Ek∂El
=

∂2Dk
∂σij∂El

=
∂2Dl

∂σij∂Ek
→ dijkl = eklij.

Accordingly, the components of the tensor of quadratic electrostriction are nu-
merically equal to the corresponding components of the tensor describing the
dependence of the dielectric constants on external mechanical stress. Hence,
we have a simple independent check of these tensors (Preu u. Haussühl, 1983).
Substituting the electric quantities by the corresponding magnetic ones results
in completely analogous relations.

5.2
Tensor Components Under Different Auxiliary Conditions

The question often arises, whether tensor components differ when measured
under different auxiliary conditions, as, for example, at constant electric field
and constant electric displacement or at constant temperature (isothermal)
and constant entropy (adiabatic). The expected differences are usually very
small, often of the order of the measurement accuracy. However, cases exist
where substantial differences appear, as we shall now see.

Firstly, we again start from a system of equations of state, for example, from
the system of variables σij, Ei, Hi and T. Then, for example, S = const. means
that

∆S = αE,H
ij σij + qσ,H

i Ei + mσ,E
i Hi +

Cσ,E,H

T
∆T = 0.

Hence, with the absence, for example, of an electric and a magnetic field (Ei =

Hi = 0) ∆T = −
αE,H

ij σij

Cσ,E,H T. This is the so-called adiabatic temperature increase,
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appearing as an effect of an external mechanical stress. We want to calculate
the order of magnitude of this effect on a simple example. In a pressure cell,
we apply a pressure of 1000 bar (108 Pa) on a NaCl crystal, when, for example,
investigating some property as a function of pressure. With σii = −p = 108 Pa,
we expect, with a linear thermal expansion αE,H

11 = αE,H
ii = 40 · 10−6 K−1 and

specific heat Cσ,E,H = 1, 6 · 106 Jm−3K−1, a temperature increase of

∆T = (αE,H
11 + αE,H

22 + αE,H
33 )pT/Cσ,E,H ≈ 2, 5 K

at around 300 K.
From the equation of state εij = sE,H,T

ijkl σkl + αE,H
ij ∆T and with the above

expression for ∆T by Ei = Hi = 0, we obtain

εij = sE,H,T
ijkl σkl − αE,H

ij αE,H
kl σklT/Cσ,E,H ,

= (sE,H,T
ijkl − αE,H

ij αE,T
kl T/Cσ,E,H)σkl ;

hence,

sE,H,S
ijkl = sE,H,T

ijkl − αE,H
ij αE,H

kl T/Cσ,E,H .

We obtain a generally valid expression for such differences as follows. Let Y
be a function dependent on the variables X1 and X2 where X1 is a function of
X2 and X3. Then

∆Y =
(

∂Y
∂X1

)
X2

∆X1 +
(

∂Y
∂X2

)
X1

∆X2

and

∆X1 =
(

∂X1

∂X2

)
X3

∆X2 +
(

∂X1

∂X3

)
X2

∆X3.

Writing the second condition in the first gives

∆Y =
(

∂Y
∂X1

)
X2

(
∂X1

∂X2

)
X3

∆X2 +
(

∂Y
∂X1

)
X2

(
∂X1

∂X3

)
X2

∆X3 +
(

∂Y
∂X2

)
X1

∆X2.

It follows that(
∂Y
∂X2

)
X3

−
(

∂Y
∂X2

)
X1

=
(

∂Y
∂X1

)
X2

(
∂X1

∂X2

)
X3

with ∆X3 = 0.

This formula is valid for arbitrary conditions in all the other variable. These
we will only specify below in case of ambiguity.
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For example, let Y = εij, X2 = σkl , X1 = T and X3 = S. Then(
∂εij

∂σkl

)
S
−
(

∂εij

∂σkl

)
T

=
(

∂εij

∂T

)
σkl

(
∂T

∂σkl

)
S

= −αijαklT/Cσ

in agreement with the above result for (sS
ijkl − sT

ijkl).
If Y is dependent on several variables Xi (i = 1, . . . n) and if the quantities

X may depend on one another as well as on other variables X′
j (j = 1, . . . , n′),

we have

∆Y =
n−1

∑
i=1

(
∂Y
∂Xi

)
X 6=Xi

∆Xi +
(

∂Y
∂Xn

)
X 6=Xn

∆Xn

and

∆Xi =
n

∑
j=1

(j 6=i)

(
∂Xi
∂Xj

)
X 6=Xi

∆Xj +
n′

∑
j=1

(
∂Xi
∂X′

j

)
X 6=X′

j

∆X′
j.

We now inquire as to the partial differentiation of Y with respect to the vari-
ables Xn under the auxiliary condition that all variables X′ are kept constant.
It is

∆Y =
n−1

∑
i=1

(
∂Y
∂Xi

)
X 6=Xi

n

∑
j=1

(j 6=i)

(
∂Xi
∂Xj

)
X 6=Xj

∆Xj +
(

∂Y
∂Xn

)
X 6=Xn

∆Xn

and hence,(
∂Y

∂Xn

)
X′= const.

−
(

∂Y
∂Xn

)
X= const.

(except Xn)

=
n−1

∑
i=1

(
∂Y
∂Xi

)
X 6=Xi

(
∂Xi
∂Xn

)
X 6=Xn

.

Contrary to the notation for tensor components, here we have set the indices,
characterizing the auxiliary conditions, as subscripts corresponding to the us-
age in differential calculus. Finally, it should be pointed out that with a first
selection of the independent variables already all material constants of the
equation of state are fixed. This means that the material constants appearing
with another arbitrary selection of independent variables can be calculated
from the constants of the first selection of variables. Already familiar exam-
ples are the elastic c and s tensors or the dielectric ε and a tensors. As a further
example let us look at the tensor γij appearing in both equations of state

σij = cT
ijklεkl + · · ·+ γij∆T

∆S = −γijεij + · · ·+ Cε

T
∆T.

Under adiabatic conditions we obtain ∆T = γijεijT/Cε, whereby E and H are
constant.
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Table 5.1 Relations between material constants under various conditions.

Y Xi Xn X′
j

Specific heat
Cσ − Cε = −αijγijT S εij T σij

with γij = −αklcklij
Cε

Cσ

Pyroelectric effect
pσ

i − pε
i = eT

ijkασ
jk Di ε jk T σjk

Thermal expansion

αD
ij − αE

ij = dT
kij

(
∂Ek
∂T

)
D

εij Ek T Dk

Dielectricity tensor
εS

ij − εT
ij = −pi pjT/Cσ Di T Ej S

εσ
ij − εε

ij = eikldjkl Di εkl Ej σkl

Piezoelectricity tensor
dS

ijk − dT
ijk = −αjk pσ

i T/Cσ Di T σjk S

Elasticity tensor
sS

ijkl − sT
ijkl = −αijαkl T/Cσ εij T σkl S

cS
ijkl − cT

ijkl = αmnαpqcijmncklpqT
Cε

Cσ2 σij T εkl S

With the value for the adiabatic increase in temperature discussed previ-
ously

∆T = −αklσkl
T

Cσ

one finds, using σkl = cklijεij, the following relation:

γij = −αklcklij
Cε

Cσ
.

Further relations are derived in a similar manner.
Table 5.1 presents some important differences which can be derived from

the differentiation relation just discussed.
Similar expressions are found for the corresponding case of magnetic aux-

iliary conditions. Especially large differences, sometimes even a change of
sign, can be expected in the case of strong pyroelectric and piezoelectric ef-
fects, as, for example, in ferroelectric crystals, when thermal expansion is also
large. An influence of mechanical boundary conditions on dielectric constants
is only present in piezoelectric crystals.

Phase transitions are often accompanied by a substantial change in certain
properties, for example, thermal expansion and pyroelectric effect, which may
result in unusually large differences of other coefficients under different aux-
iliary conditions.
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5.3
Time Reversal

Time reversal, that is, a change in the sense of direction of time, acts to change
the sense of direction of all quantities possessing a linear time dependence,
in particular, velocities, current densities and certain quantities derived from
these. The most important types of quantities are the electric current den-
sity vector, the magnetic field strength, the magnetization and the magnetic
moment which are all coupled to the motion charges. The same applies to
all mass current densities. The operation of time reversal, designated by T,
effects here a change in sign. Other quantities, conserved in the static case
under time reversal are, for example the electric field, the electric moment, the
mechanical state of stress, the mechanical deformation and the temperature.
We now want to take a closer look at the effects of time reversal for magnetic
interactions.

In the linear equations of state with the magnetic field strength H as the
independent variable, we have the following magnetic terms:

εij = . . . mijk Hk . . .

∆Di = . . . qijHj . . .

∆Bi = . . . µijHj . . .

∆S = . . . mi Hi . . .

Under time reversal, the induced quantities on the left-hand side do not
change except Bi. On the right-hand side H changes its sign. The question
arises whether the quantities mijk, qij, µij and mi are invariant or not under
time reversal. In crystals, where the magnetic moments of the lattice particles
are statistically distributed, thus producing no total moment, as in diamag-
netic and paramagnetic materials, time reversal cannot effect a change in the
properties. This means that the tensors {mijk}, {qij} and {mi} must vanish. If
higher powers of Hi are included in the equations of state, then the following
is true: The magnetomechanical, magnetoelectrical, and magnetothermal ten-
sors vanish for all odd powers or products of the components of the magnetic
field strength, respectively. On the other hand, terms with even powers are
not forbidden.

Other relationships prevail in crystals in which the magnetic moments are
aligned (ferromagnetic: all magnetic moments are aligned; ferrimagnetic: dif-
ferent types of magnetic moments exist which can assume various ordered ori-
entations, however, one nonvanishing total moment remains; antiferromag-
netic: ordered magnetic moments compensate to zero). In these, time reversal
effects a change in sign of the magnetic moment and hence in the material
properties. The combination of spacial symmetry and time reversal leads to
a classification of the “magnetic” crystals in the form of so-called point sym-
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metry groups, magnetic, identical to the black–white point symmetry groups
(see, for example, Taschentext Kristallgeometrie). There exists a total of 58 real
black–white groups aside from the familiar 32 crystallographic point symme-
try groups. An analysis of the tensor properties of the “magnetic” crystals
requires a consideration of the combined space-time symmetry.

As an example, we consider the magnetoelectrical effect in a rhombic crystal
of the magnetic point symmetry group m’m’2. The symbol m’ or n’ specifies
a mirror plane or n-fold rotation axis respectively, combined with a change
in sign under time reversal. Hence, we examine the effect described by
Di = qijHj. {qij} is an axial tensor, because H is axial and D not. The neg-
ative sign of time reversal then compensates the negative sign factor when
the axial tensor is transformed by a rotation-inversion. Symmetry reduc-
tion thus leads to the same result as with a second-rank polar tensor. It is
q12 = q13 = q21 = q31 = q23 = q32 = 0. In contrast, q11, q22 and q33 re-
main without restrictions. Consequently, the magnetoelectrical tensor here
possesses the three components q11, q22 and q33.

As a further example for the effect of time reversal we consider the mag-
netostriction εij = mijk Hk in cubic crystals of the magnetic point symmetry
group m3m’ (complete 4’/m3̄2’/m’). It is enough to draw on the generating
symmetry operations. Since 23 is a subgroup of the PSG at hand, it is first of
all true, as with all third-rank polar tensors that

m123 = m231 = m312,

and furthermore, due to the symmetry of the deformation tensor mijk = mjik.
With

R2̄‖(e1+e2) =

0 1̄ 0
1̄ 0 0
0 0 1


we obtain, taking into account time reversal and axiality m′

123 = m123. The
same results from the symmetry plane

R2̄‖e1
=

1̄ 0 0
0 1 0
0 0 1

 .

An inspection of the symmetry elements 4’, 3̄ and 2’ leads to no further con-
dition. This means, the first-order magnetostriction tensor exists in the PSG
m3m’. The only independent component is m123. One can see straight away
(subgroup relationships to m3m’!), that the following PSGs 23, m3, 4̄’3m and
4’32’can also exhibit such an effect. All other cubic PSGs exhibit no first-order
magnetostriction.
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The effect of time reversal in transport processes requires special consider-
ation. In the case of magnetic interactions we must again distinguish between
“nonmagnetic” crystals (diamagnetic and paramagnetic) and “magnetic” crys-
tals (ferromagnetic and so on). For example, let a second-rank tensor, the tensor
of electric or thermal conductivity, be dependent on the magnetic field, thus
sij(H). A time reversal effects a reversal of the direction of H. This also means
that an interaction, initially described in a right-handed system, given, for ex-
ample, by ei, ej and H, is to be represented, after time reversal, in a left-handed
system ei, ej, H ′ (= −H) with the same tensor. The Onsager relation sij = sji
valid for transport processes considered in the magnetic interaction above for
“nonmagnetic” crystals takes on the form sij(H) = sji(−H).

A dependence of the magnetic field, expanded according to powers of the
components of the magnetic field strength, then demands the following:

sij(H) = s0
ij + sijk Hk + sijkl Hk Hl + · · ·

sji(−H) = s0
ji − sjik Hk + sjikl Hk Hl + · · · .

This means that sijk... = −sjik... is true for the odd-rank s-tensors and sijk... =
sjik... is true for those of even rank. We encounter such conditions with the
Hall effect, with the magnetic resistance tensor, with the Righi–Leduc effect as
well as with the thermomagnetic resistance tensor.

In “magnetic” crystals one must also take into consideration the change in
direction of ordered magnetic moments under time reversal. Hence, if a trans-
port property is also dependent on the position of the magnetic moment then
the general Onsager relation takes the form sij(M, H) = sji(−M,−H), where
M designates the magnetic moment. This can lead to a modification of mag-
netic interactions in transport processes. For example, a quasi Hall effect, i.e.,
the build-up of an electric field perpendicular to the current, is conceivable in
“magnetic” crystals, even without an external magnetic field, when the corre-
sponding symmetry properties are present.

5.4
Thermoelectrical Effect

The driving force for electrical charge transport or caloric energy transport
are the corresponding gradients of the electric potential and temperature re-
spectively. The Joule heat generated in each volume element traversed by
an electric current influences the temperature distribution and hence the heat
current. This suggests the use of a general approach of the type

Ii = −sij(grad ϕ)j − kij(grad T)j

Qi = −tij(grad ϕ)j − lij(grad T)j
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for the description of the simultaneous existence of transport processes of elec-
tric charge and caloric energy.

Consequently, the tensors {sij}, {kij}, {tij} and {lij} represent generalized
conductivities. If one interchanges the inducing quantities with the currents,
which, at least is formally conceivable, then the corresponding basic equations
are

−(grad φ)i = σij Ij + κijQj

−(grad T)i = τij Ij + λijQj.

The tensors emerging here have the property of general resistors. In all these
processes we must note that φ, T, I and Q are functions of position. This
means, the basic equations are only valid for correspondingly small volume el-
ements. Thus, the equations here have the character of differential equations.
Moreover, one must keep in mind that the material constants must be specified
as functions dependent on position. This is especially true for the temperature
dependence of the electrical conductivity. In this sense, the above equations
can be drawn upon as basic equations for transport processes under inhomo-
geneous conditions. The tensors {σij}, {κij}, {τij}, and {λij} appearing in the
first-order approximation of the interaction are not only linked to electrical
and thermal conductivity discussed in Sections 4.3.7 and 4.3.8 but, moreover,
describe the appearance of certain additional phenomena. For example, they
describe the onset of an electric field in a heat current or a temperature gra-
dient with the passage of an electric current even in directions normal to the
current vector. Such phenomena are designated as thermoelectrical effects.

If one introduces an additional magnetic field, whereby the material tensors
are to be represented as a Taylor series of the components of the magnetic field,
in a manner similar to that discussed in the preceding section, one expects
further interesting effects. At present, however, little is known concerning the
experimental clarification of these effects.



Physical Properties of Crystals. Siegfried Haussühl.
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6
Non-Tensorial Properties

6.1
Strength Properties

If solid bodies are exposed to ever increasing mechanical stress, one normally
observes, after a range of stress proportional deformation, an increase in de-
viations from Hooke’s Law, whereby, all processes remain reversible. After
further deformation one finds an increasing resistance (strain hardening) as-
sociated with irreversible deformation (plastic deformation) and finally break-
ing processes. Figure 6.1 presents such a behavior in tensile testing.

Figure 6.1 Typical stress–strain curve of a
cylinder during uniaxial tensile testing along
ei. I: Region of proportionality between stress
and strain (Hooke’s law), II: Deviation from
Hooke’s law (quasi-reversible deformation),
III: Plastic flow, IV: Strain hardening due to

plastic deformation, V: Yield. σp denotes the
region of quasi-proportionality, σE the region
of reversible elasticity, σSo the upper elastic
bound, at which flow processes start to occur,
and σM the yield strength. σii relates to the
cross-section of the cylinder without strain.
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We want to discuss the application of some important strength properties
in more detail. We divide the strength properties roughly in the following
domains:

1. Resistance against elastic deformation (elastic strength),

2. Resistance against plastic deformation (hardness),

3. Breaking strength.

The definition of elastic properties and their measurements was discussed
in detail in Section 4.5.2. The question, to what extent elastic properties co-
determine other strength properties, effective under totally different auxiliary
conditions, will be answered in the following.

6.1.1
Hardness (Resistance Against Plastic Deformation)

Eminent technological importance is attached to plastic deformation processes
not only in the processes of forming of workpieces, but also in those processes
resulting, for the most part, in undesired changes of form during loading. It
is therefore understandable that for a long time a focal point of research ac-
tivities in industrial laboratories was dedicated to the clarification of these
properties, resulting in the meantime, in the extensive literature on the sub-
ject. Here, we can only discuss some fundamental aspects which should make
it easier to understand the phenomena. A first access to plastic deformation
is provided by experience with highly viscous fluids, which can take on given
forms under the influence of external mechanical forces. Here, the important
thing is the time progression of the deformation and expenditure of deforma-
tion work. The latter can be assumed unmeasurably small in ideal fluids. As
a measure of the deformation resistance of the viscous fluid, however, not the
only reasonable one, one can use the dynamic shear resistance which must
vanish in ideal fluids. The measurement of the propagation velocity vT of
a transverse wave of sufficiently high frequency (for example, higher than
10 KHz) yields the frequency dependent shear resistance of the viscous fluid
c44 = ρv2

T . where ρ is the density. In any case, with fast loading, we expect a
certain correlation between c44 and the viscosity and with resistance to plas-
tic deformation. With quasistatic, that is, very slow loading we observe, even
in highly viscous fluids, a vanishing c44. These properties are impressively
demonstrated by elastomeric materials, which behave like rubber under fast
loading and like plastic clay under slow loading.

When we now carry over these ideas formed from practical experience to
crystals, we expect that under low loading conditions plastic deformations
only then appear on an easily measurable scale, when loading occurs slowly
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and the crystal in question, possesses a very small shear resistance. This is
at least qualitatively observed. However, if one compares different materials
with approximately the same shear resistance, as, for example, silver chlo-
ride (AgCl) and potassium alum (KAl(SO4)2 · 12H2O), just to mention two
familiar types of crystal, one finds extreme differences in resistance to plastic
deformation. Crystals of silver chloride are almost “soft as butter.” They can
be easily deformed and bent. In contrast, an alum crystal offers a power of ten
higher resistance to plastic deformation. It breaks like glass before appreciable
deformation sets in. The reasons are of a structural nature.

It has been long known that morphological changes on the surface of crys-
tals accompany deformation. This involves parallel grooves- or step-like re-
cesses given the name glide lines. It was found that these lines could be un-
derstood as intersections of certain preferred lattice planes with the crystal
surface. In such instances plastic deformation progresses via a parallel dis-
placement of complete crystal layers parallel to the given planes as with the
deformation of a stack of paper sheets or a book parallel to the pages. Fur-
thermore, it was found that the deformation within these planes takes place
in distinct directions, the so-called glide directions. Hence, such processes were
characterized by two crystal-geometric quantities: glide planes and glide direc-
tions, together referred to as a glide system. If external mechanical stress is so
applied that strong shear components appear in a glide direction, then plastic
shear is easily effected. If several glide systems exist, as, for example, in cubic
crystals, then several glide processes can simultaneously lead to a complicated
deformation. Table 6.1 presents the glide systems for a few structural types.

Twin formation can also participate in an essential way in the deformation
process. This involves the twinning of individual domains of a single crystal,
which sometimes can take on macroscopic proportions under the influence of
external stress. A long known example is twinning in calcite by uniaxial pres-
sure approximately along one of the three long space diagonals of the rhombo-
hedral elementary cell (Fig. 6.2). The achievable deformation is considerable.
It results from the angle the individual twins seem tilted compared to the ini-
tial position. These kinds of twin formation can be produced in many crystals
under appropriate stress conditions. The geometric details of twin formation
are best investigated using X-ray methods (for example, the Laue method).

There exists a range of crystals which form twins even under extremely
small mechanical stresses. Belonging to this class are, in particular, the fer-
roelastic crystals, which in a certain temperature range below the ferroelastic
phase transformation often assume different twinning orientations even un-
der weak finger pressure. This phenomenon does not appear in the temper-
ature range above the transformation (prototype). Especially well suited for
demonstration purposes are Sb5O7I (Nitsche et al., 1977) and Rb2Hg(CN)4
(Haussühl, 1978). A classification of the ferroelastics on the basis of the possi-
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Table 6.1 Glide systems in some selected crystal types. The structure types are denoted ac-
cording to the structure report (Ewald & Hermann, 1930). Glide planes are usually densely-
packed lattice planes which appear morphologically as major growth planes. The glide direc-
tions are almost always along densely-packed lattice directions.

Structure Examples Glide Glide
plane direction

Face-centered cubic (A1) Cu, Ag, Au, Pb {111} 〈11̄0〉
Face-centered cubic (A1) Al, Pt {001} 〈110〉
Body-centered cubic (A2) α-Fe, Mo, Nb, W {011} 〈11̄1〉
Diamond (A4) C, Si, Ge {111} 〈11̄0〉
Zinc blende (B3) ZnS, GaAs, InSb {111} 〈11̄0〉
NaCl (B1) Alkali halides of NaCl type; {110}, 〈11̄0〉

MgO, PbS {001}
CsCl (B2) Alkali halides of CsCl type {110} 〈001〉

(CsCl, CsBr, CsI); TlCl, TlBr,
NH4Cl, NH4Br

Fluorite (C1) CaF2, BaF2 {001} 〈110〉
Calcite CaCO3, NaNO3 {11̄1}∗ 〈110〉
α-Quartz (C8) SiO2 (001)∗ 〈110〉

{100} [001]
Baryte BaSO4, KClO4 (001) [100]
Gypsum CaSO4 ·H2O (010) [001]
∗ Trigonal-hexagonal arrangement.

Figure 6.2 Example of twin formation in a cal-
cite rhombohedron induced by uniaxial pres-
sure perpendicularly to [121̄]. All indices refer
to a trigonal-hexagonal setting. [121̄] is the

glide direction, (012) the glide plane which
becomes also the twin plane. Therefore, only
a discrete amount of gliding ist possible.

ble combinations of point symmetry of prototype and ferroelastics was given
by Aizu (1969). Similar to the usual twin formation caused by pressure, a
further deformation after twinning requires overcoming a new much higher
resistance threshold.
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Figure 6.3 Position of the martensitic ele-
mentary cell in the austenitic lattice. The
transition ist accompanied by the follow-
ing changes in the interatomic distances:
a1,M = 1.12aA

√
2/2, a3,M = 0.80aA. This

results in an increase in volume of about 4%.

In the [111]M directions, the interatomic dis-
tances remain virtually unchanged as com-
pared to austenite, and [111]M is approxi-
mately parallel to [101]A. (M and A denote
martensite and austenite, respectively).

In some crystals, one observes plastic deformation coupled with a phase
transformation. Such processes are favored when the transformation tempera-
ture is strongly dependent on the external mechanical stress; especially uniax-
ial pressure. At the working temperature of the deformation the crystals are
then already in the region of instability or, the mechanical stress facilitates the
start of the transition kinetics or even initiates them. Many ferroelastic crystals
in the nonferroelastic high temperature phase belong to this category. Another
long known and technologically very important type in this category is repre-
sented by the martensite transformation in the cooling of austenite (iron with
a carbon content of over 0.1 % by weight; the iron atoms form a face-centered
Bravais lattice) in martensite (the iron atoms form a tetragonal body-centered
Bravais lattice). The transformation occurs only under a slight displacement
of the lattice particles (Fig. 6.3). The phase transformations NaCl type → CsCl
type or monoclinic ZrO2 → tetragonal ZrO2 (rutile type) and numerous trans-
formations of alloys also belong to this category. Such a deformation leaves
strong mechanical stress inhomongeneities in the deformed region which are
coupled to an increase in mechanical strength. In many cases, the deformed
regions spring back to the initial phase after a temperature increase, whereby
the original shape of the crystal is restored (shape memory). The required
threshold values for mechanical stresses and temperatures can, in most cases,
be varied within a wide range by the addition of slight amounts of impurities.
Hence, one can, for example, adapt the strength properties of steel to specific
requirements.

We now want to dwell briefly on the mechanism of plastic deformation in
the micro-range. The process of plastic shear along a glide plane demands
a roll-off of atoms of neighboring lattice planes on top of one another. The
critical resistance is found to be about a third of the corresponding shear re-
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sistance from simple model calculations using spherical particles. The actual
observed critical values for the onset of plastic deformation, the so-called criti-
cal flow stress, lies, however, several orders of magnitude lower. A qualitative
understanding for this enormous discrepancy is found first in the close study
of lattice defects, in particular, dislocations. These defects mostly originate in
crystal growth as a consequence of unavoidable inhomogeneities (chemical
composition, temperature).

Dislocations play a decisive role in plastic deformation. As shown by sim-
ple model calculations, dislocations can be made to move with far smaller
mechanical shear stresses than the critical shear stress of the defect-free crys-
tal, hence enabling a glide process. The resistance (Peierls potential) inhibiting
the movement of the dislocations is overcome because only small pieces of the
respective dislocation line stay in the domain of higher potential (kink forma-
tion), while the remaining dislocation line ends in potential wells (Peierls val-
ley). Thus, the required threshold stress for plastic deformation is extremely
reduced. A further condition is natural that a sufficient number of disloca-
tions are available which do not interfere with one another in their ability to
move. In the meantime one knows several mechanisms to generate disloca-
tions with low energy expenditure as, for example, the Frank–Read source.
The required activation energy depends essentially on the binding properties
of the lattice particles. This explains the large variation of plastic properties
in crystals with similar elastic properties. If, in the course of the formation
of new dislocations under strong plastic deformation, a build-up of disloca-
tions of various orientations takes place, then this can lead to an increase in
resistance against further deformation due to the mutual interference of move-
ment (hardening). These fundamental results were backed up by observations
of dislocation structures before and after deformation with the aid of optical
etching experiments, electron microscopy and X-ray topography. In few cases
one could even make visible the movement of dislocations directly in the elec-
tron microscope.

The time progression of plastic deformation can be described to a first ap-
proximation by the change in the components of the deformation tensor with
respect to time:

dεij

dt
.

If one assumes an approximately linear relationship between the components
of the stress tensor and this deformation velocity, one would expect the fol-
lowing:

dεij

dt
= Hijklσkl(t).
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Because of the complicated directional dependence of the plastic deformation
process, which is not coupled in a simple way to the elastic anisotropy, Hijkl
cannot be freely interpreted as tensor components. Since plastic deformation
of a probe in the ideal case (ideal plastic deformation), evolves under constant
volume, we then have ∑i εii = 0 and hence, ∑i dεii/dt = 0.

However, due to the experimental difficulties involved to even measure
good reproducible values with respect to this mathematical statement, it was
only possible so far to collect data on cubic crystals, in particular, metals and
alloys. According to practical experience, one expects, for the initial process
of small plastic deformations, at most a certain possibility of a meaningful
application of these formal tensor relations.

6.1.2
Indentation Hardness

The measurement of plastic properties on large single crystals in a macro-
scopic deformation experiment, for example, a tensile test, is comparatively
expensive. Hence, for such a test it is advisable to employ a microscopic
method which has been developed for perfection over a long time. It concerns
the measurement of the so-called impression hardness. This involves press-
ing a diamond pyramid into the surface of the object. The resulting impression
(so-called indentation), due to irreversible deformation, normally corresponds
to a negative form of the diamond pyramid. From the dimensions, in partic-
ular, from the diameter of the impression, one can derive a quantity which,
over a wide scale, turns out to be independent of the load of the diamond.
The quantitative connection is as follows: In equilibrium, after the action of
the diamond for a specific time, the resistance of the crystal against deforma-
tion absorbs just that force K loading the diamond. The resistance produced
per unit area σ0 is equivalent to the yield point. This means that the deforma-
tion would first advance after a further increase in load. The total resistance
is equal to the area of the impression multiplied by σ0; hence, K = Fσ0 with
F = Qd2

eff, where Q is the form factor of the pyramid and deff is a specific
diameter. From this one obtains a measure for σ0, the indentation hardness H,

H =
K

Q(d + d0)2 ,

where d0 takes into account the elastic part of the deformation in equilibrium.
Hence, d = deff − d0 is the diameter of the impression after releasing the dia-
mond. H as well as d0 can be determined to amazingly good reproducibility
after graphical evaluation of the measured values for different loads K and the
associated diameters d. This involves plotting d as abscissa against

√
K. The

gradient of the line of best fit yields
√

HQ and hence H. The intersection of
the line with the

√
K-axis (d = 0!) gives d0 (Fig. 6.4).



316 6 Non-Tensorial Properties

Figure 6.4 Graphical analysis of Vickers impression measurements.

In practice, the standard form of the diamond as a tetragonal pyramid with
a height to base diagonal ratio of 1/7 (Vickers pyramid) has become widely
accepted. If one measures the diagonal in micrometers, the applied force in
Pond (1 kp = 9.807 N) and specifies H, the Vickers hardness, in kp/mm2, the
constant Q acquires the value 0.5392·10−3. The Vickers hardness is then

H = 1854.4 K/(d + d0)2 (kp/mm2).

If the mechanical stress comes close to the flow stress as in the measurement of
Vickers hardness, the plastic deformation does not come to a standstill, even
after long observation times, due to continuous thermal activation. For this
reason the loading time in these types of measurements must be limited, for
example, to 20 s when measuring Vickers hardness. The method also allows
hardness measurements on very small crystals with little time expenditure.
Thus the method has proven itself as an analytical aid in qualitative phase
analysis of coarse crystalline rocks, in particular, ores. A great advantage of
the method is that only small areas on the surface of the crystals are damaged.
The anisotropy of Vickers hardness in crystals is usually not very pronounced.
In low-symmetry crystals, for example, gypsum or rhombic potassium nitrate,
one observes not only different hardness values on different surfaces, but also
surprisingly large deviations from the quadratic ideal form of the impression.
Often, the size of the impression is dependent on the orientation of the diago-
nals within the surface of the test specimen. For example, most alkali halides
display a smaller impression on (100) when the diagonal runs parallel to [011],
and a larger one when it runs parallel to [001] (Fig. 6.5). From this, one can con-
clude that the glide system (110)/[001] in these crystals has a larger share in
the plastic deformation processes than the glide system (100)/[011]. In many
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Figure 6.5 (a) Glide directions in a melt-
grown Zn crystal (Bridgman–Stockbarger
method). (b) Vickers impressions on a (100)
surface in KCl. The minimum impression
hardness is observed if the base edge of the

pyramid is parallel [011]. (c) Anisotropic im-
pressions on an (100) surface of KNO3. The
cross-sections of the impressions deviate
markedly from a square.

cases a careful analysis of such details permits an insight into the kinetics of
the deformation, which otherwise can only be obtained by rather tedious ex-
periments. The use of diamonds with pyramid rhombic cross-section (Knoop
pyramid) or other special forms can lead to further predictive statements in
this field.

The investigation of Vickers hardness is especially easy to conduct with the
well and comfortably equipped commercial units available today (micro hard-
ness tester).

6.1.3
Strength

In contrast to plastic deformations, a breaking process is coupled with a sub-
stantial increase in the boundary surface. If one neglects the plastic defor-
mation preceding the breakage, one expects that the energy expanded in the
breaking process corresponds approximately to the energy required to create
a new boundary surface. This also applies to a certain extent to glass fibres
and to whisker-like crystals. Breaking processes can be initiated in macro-
scopic crystals with far lower energy. The reason is the existence of cracks and
other inhomogeneities, which, in particular, considerably facilitate the initial
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process of breakage, namely first crack formation. However, even under con-
ditions of existing micro-cracks, the creation of the new boundary surface is
the dominant principle. Consequently, a decrease in fracture work is expected
when the boundary surface energy can be reduced, for example, by the ab-
sorption of surface-active molecules on the surface. Here we come across
the phenomena, empirically investigated for hundreds of years, of the im-
provement of the effectiveness of tools by employing suitable liquids or sprays
when drilling, milling, cutting, and grinding materials.

The experimental investigation of breaking properties in large single crys-
tals is, just like the investigation of plastic deformation, an expensive exercise,
which moreover, in single tests yields rather unreliable values. This is because
normally the distribution of primary cracks and other so-called “notches” is
not sufficiently known, except in those cases, where artificial crack systems
are introduced. Fortunately, there exists a material property linked to break-
ing properties, namely abrasive strength, which is easily accessible to experi-
ments and yields excellent, reproducible data. We will take a closer look at the
two most important methods, which can also be used for the investigations on
crystals provided they are of adequate size.

6.1.4
Abrasive Hardness

In the grinding process, the simultaneous action of sharp edges and corners of
a great number of abrasive grains initiate numerous breaking processes on the
surface. As a result, the surface is furrowed under a sometimes considerable
fraction of plastic deformation, which can lead to hardening phenomena and
finally to cracks and breaks with the formation of small particles. Their form
and size depends on the grain size distribution of the abrasive as well as on the
grinding liquid and of course decisively on the object itself. If one measures
the loss in weight or volume of the object after a grinding process conducted
under defined conditions, one finds a surprisingly good reproducibility of the
abrasion. This mirrors the statistic character of abrasive hardness. Further-
more, it emerges that under otherwise similar conditions, the abrasion test
over a wide range, independent of cross-section, is directly proportional to
the force, with which the grinding tool presses against the specimen, as long
as the abrasive does not possess too fine or a too coarse grains. An interpre-
tation of this behavior turned out to be not quite simple. However, it is the
prerequisite for the two most important methods to measure abrasive hard-
ness . Kusnezow (1961) described in detail a method in which two crystals A
and B are ground against each other and the ratio of the volume loss V(A, B)
is considered as a quantitative measure for the ratio of the abrasive hardnesses
F(A)/F(B). A closer study on calcium formate (Haussühl, 1963) showed,
however, that the relation necessary to measure relative abrasive strengths
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Figure 6.6 Illustration of the grinding apparatus according to v. Engel-
hardt und Haussühl. S Brass grinding plate with frame R, V abrasive
distributor, K crystal with holder H, F bearing of crystal holder axis, G
load.

using the Kusnezow method, V(A, B)/V(A, C) = V(C, B), where A, B, C are
three arbitrary crystal faces, is only approximately fulfilled (deviation under
1%), when the abrasive used possesses coarse granulation (about 100 µ grain
diameter) or surface-active substances are added to the grinding liquid. The
special advantage of this method consists of the low experimental expenditure
and the fact that it is largely independent on secondary condition. The crystals
are weighed before and after the grinding process; grinding pressure, grind-
ing time and grinding motion have practically no influence on the measured
result V(A, B). NaCl (cubic faces) has proven quite useful as a reference crys-
tal for soft crystals, while quartz (prism faces (100)) has proven as a reference
for hard materials.

Another method used by Engelhardt and Haussühl (1960, 1965) to deter-
mine the abrasive hardness of many crystals allows the absolute measurement
of the abrasive hardness under standardized conditions. Figure 6.6 shows
a scheme of the equipment. The crystal, roughly machined to a cylindrical
shape, is cemented in a holder to move freely in the vertical direction and
pressed with a distinct weight G against the circular grinding plate. The dis-
tance of the axis of the crystal holder to the center of the grinding plate is
4 cm, so that the grinding path per revolution amounts to about 25 cm. The
recommended standard conditions enabling a good reproducibility and com-
parability of the measured values are: rotational speed of the grinding plate:
24 revolutions/min; abrasive: high-grade corundum with a mean grain diam-
eter of 140 µ (“Bikorit 100”); per test 10 g abrasive and 15 cm3 grinding liquid;
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100 revolutions at 100 g load on the crystal. More details are given in the
cited work. A measure for the abrasive strength F is then the reciprocal of the
abraded volume, hence, F = V−1, where V is determined by the weight loss
of the crystal after the grinding process.

By means of the considerations given below, we recognize a connection be-
tween the measured abrasive hardness F and the specific free boundary sur-
face energy γi. This is the energy required to generate a boundary surface
of the size of a unit area in the orientation denoted by the index i. The to-
tal mechanical energy E expended in the test is distributed over three parts:
boundary surface work Eg, plastic deformation work Ep and frictional heat
Ew. Hence, E = Eg + Ep + Ew.

We can formally specify the boundary surface work Eg as the product of
a mean boundary surface energy γ with the total surface generated O: Eg =
γO. Using the simplification that the abraded particles possess the same form,
we obtain O = αN1/3V2/3, where α is a form factor and N is the number of
abraded particles. Hence,

F−1 = V = (E− Ep − Ew)3/2α−3/2γ−3/2N−1/2.

As an approximation, we further assume that the total applied energy E is
constant in the standard grinding process. Furthermore, we expect that struc-
turally related crystals do not exhibit too large difference with respect to Ep,
Ew, α, and N. Thus, for such crystals, it is at least possible to make a qualitative
estimation of the specific free boundary surface energy from the measurement
of the abrasive strength. For two crystal types A and B it should be approxi-
mately FA/FB = (γA/γB)3/2.

In particular, this allows an interpretation of the influence of boundary sur-
face active liquids. For example, with alkali halides of the NaCl-type, one ob-
serves in pure xylol in a dry nitrogen atmosphere, an abrasive strength almost
double as high as in a solution of 0.1 M stearic acid per liter xylol. Stearic acid
turns out to be especially effective in reducing boundary surface energy just
like, for example, certain amines as dodecylamine or other polar molecules. In
order to obtain good reproducible values for abrasive strength it is advisable
to use a sufficiently concentrated solution of polar molecules instead of a pure
nonpolar liquid as a grinding liquid. Even the daily fluctuating values of air
humidity can lead to changes in the measured values of up to several percent.
These effects, however, can also be drawn to determine the relative bound-
ary surface energy γ′c = γc/γ0. γ0 and γc are the boundary surface energies
opposing the pure liquid and opposing a solution of the polar molecules of
concentration c (in M/l), respectively. With the aid of Gibbs adsorption equa-
tion

cg = − c
RT

dγ

dc
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and the Langmuir adsorption isotherm

cg =
c∞c

1/b + c

one obtains the Szyskowski relation

γ0 − γc = c∞RT log(1 + cb).

where R is the universal gas constant, T is the absolute temperature, cg and
c∞ are the concentrations and saturation concentration, respectively, of the
molecules in the boundary surface and b = veL/RT , where v is the mole vol-
ume of adsorbed molecules and L is the adsorption energy of the molecules
(per mole). If now one plots, instead of γc/γ0, the ratio (Fc/Fo)2/3 against
the concentration c, the quantities c∞/γ0 and L by a best fit procedure and
hence, gain information concerning γ0 as well as the adsorption energy of the
molecules on the given crystal. Full particulars are found in the work cited
above (Engelhardt & Haussühl, 1960, 1965).

An overview of the general strength behavior of crystals is found in the di-
agram presented by Engelhardt and Haussühl (1965) in which the values for
indentation hardness H (Vickers hardness) are plotted against the values of
abrasive strength F, measured under comparable conditions (Fig. 6.7). This
shows the expected relationship between the mechanical strength properties.
The values of crystals of the respective isotypic series with fixed cation lie ap-
proximately on straight lines. The arrangement on these lines corresponds
almost throughout to the sequence of the mean elastic resistance, expressed
by the reciprocal volume compressibility K−1. Crystals with very small shear
resistances, for example, AgCl or KCN possess especially small hardness val-
ues in agreement with the models for plastic deformation discussed above.
In contrast, crystals with low abrasive strength exhibit relatively large shear
resistances. Interestingly, crystals of very low hardness, as AgCl or KCN ex-
hibit comparatively high values of abrasive strength. This distinctive feature,
also observed in the alkali halides, is certainly not solely due to the delayed
effect of the plasticity on the breakage, but also due to the ability of such sub-
stances to adsorb grains on the surface during abrasion and hold these for
a while, whereby, naturally an apparent increase in strength occurs. This is
especially noticeable when using abrasives with fine granulation. Moreover,
one finds that in the collective of crystals of approximately the same hardness,
those with pronounced cleavage, i.e., with a distinct direction of especially
low boundary surface energy, exhibit the smallest abrasive strength. In Fig.
6.7, the lines of approximately the same reciprocal compressibility run per-
pendicular to the main diagonals of the field. The distance of these lines from
the zero point increases with increasing elastic resistance. The crystals located
in the left and right outer regions of these lines are plastic or highly brittle
substances, respectively.
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Figure 6.7 Abrasive strength vs. hardness diagram for different types
of crystals in xylene after v. Engelhardt and Haussühl. Crystals with
particularly low shear resistivity are denoted by ⊕. Abbreviations:
HyCl2 = hydrazinium dichloride, Gu.Al.Sulf. = guanidine aluminium
sulfate hexahydrate, Ca-F., Sr-F., Cd.-F. = Ca, Sr, Cd formiate, M.A.-
alum = methylammonium alum, Gl = triglycinium sulfate.
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The numerous further strength properties, which play a role in materials
science are naturally closely correlated with both the properties H and F dis-
cussed in this section. This also applies to the scratch hardness, used in quali-
tative mineral diagnosis. The Mohs Hardness Scale (actually scratch hardness
scale) is a sequence of 10 minerals, whereby the one able to scratch the other is
the harder of the minerals. There is no special order in which the scratch test
is conducted. The hardness is measured on a scale from 1 to 10.

Talc 1 Apatite 5 Topaz 8
Gypsum 2 Orthoclase feldspar 6 Corundum 9
Calcite 3 Quartz 7 Diamond 10
Fluorite 4

If, for example, a crystal scratched by apatite can scratch fluorite, it is given a
Mohs hardness of 4.5. In practice, assigning such a number often causes dif-
ficulties because the scratch hardness on different faces also depends on the
direction of the scratch in the face. Even scratching in one end in the opposite
direction of a certain face can give widely different values, as, for example,
with the mineral Disthen (Al2SiO5). A careful discussion of these properties
is found in Tertsch (1949).

6.2
Dissolution Speed

The dissolution speed characterizes the ablation or etching behavior in a cer-
tain solvent. Whether the respective process is described by a physical solu-
bility or a chemical dissolution is not important. The practical measurement
is carried out as follows: A sufficiently large plane area of a crystal face is pol-
ished perpendicular to the direction e. For all measurements, the diameter of
the area should not be below a minimum value, for example 10 mm. A cer-
tain amount of solvent, say 100 g, is sprayed on the face of the crystal under
fixed conditions, i.e., at a definite rate, fixed nozzle and equivalent flow con-
ditions, fixed temperature and so on. An arrangement shown in Fig. 6.8 with
the nozzle positioned close to the crystal face has been found to be satisfac-
tory. Directly after the dissolution process the crystal is dried and the loss in
weight is measured. This is a direct measure of the dissolution speed. The
amount of solvent is so determined that not all-too deep dissolution furrows
develop on the surface of the crystal. A proven method of evaluation is to
plot the weight loss as a function of the amount of solvent in order to elimi-
nate the expected influences due to the character of the surface as well as the
wipe effect occurring independently of the amount of solvent used. The face
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Figure 6.8 Arrangement for measuring of the dissolution speeds of
crystals. K crystal plate facing the stream of solvent from the nozzle D
with a circular area (diameter 14 mm). A drainage, L solvent, G rubber
fitting, P pressurized air, V valves, distance between nozzle and crystal
4 mm, stream velocity 0.7 m s−1.

is to be polished anew for each individual measurement so that the same ini-
tial state is present. The gradient of the resulting straight line is a measure of
the dissolution speed. A more detailed description of the measurement pro-
cedure and results is found in an investigation by Haussühl & Müller (1972).
It is worth mentioning that the dissolution speed in directions e and −e can
strongly differ when these directions, as in polar crystals, are not symmetry
equivalent. Furthermore, one observes that already small additives in the sol-
vent, of the order of a millionth, can effect extreme changes in the dissolution
speed. These are often the same substances which in the growth of crystals
influence crystal habit and produce a change in growth rate. In this respect,
dissolution studies, which are simple and quick to carry out, can impart useful
information on growth properties.

6.3
Sawing Velocity

Crystal sawing velocity has as yet received little attention and has hardly been
investigated. Its measurement, as with dissolution speed, requires clear agree-
ment as to the conditions to be kept. The respective object is in the form of a
cylinder with the cylinder axis e. It is advisable, however, not essential, to
select a fixed diameter, for example, 10 mm for all measurements. The saw
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Figure 6.9 Measurement of sawing speed using a thread saw. The
thread, uniformly wetted with a suitable liquid, runs with constant
speed over the two wheels R. The cylindrical crystal K is pressed
against the thread with a constant force. e is the normal to the cutting
surface, e0 a reference direction within the cutting surface.

thread, usually a nylon thread or a wolfram wire with a diameter of about
0.2 mm is guided with a constant velocity perpendicular to the cylinder axis,
whereby the crystal is pressed against the thread with a given force. During
the slicing process, the thread is evenly tensioned and wetted with a suitable
liquid. The thread in advance of the crystal should be freed of excessive liquid
with the help of a sponge. One measures the time required to cut through the
cylinder at a fixed angle ϕ between the cutting direction and a reference di-
rection e0 (Fig. 6.9). The reciprocal value of the time multiplied by the surface
correction factor πR2 (R is the radius of the cylinder) gives the sawing velocity
in mm2/s. With soluble crystals one preferably uses suitable solvents as the
lubricant and with metals, hardly soluble carbonates and silicates, one uses
diluted acids or a suspension of abrasives in a viscous oil. For each cylinder
orientation e one determines the dependence of the sawing velocity on the an-
gle ϕ. The values for each e are plotted in the form of an even curve, whereby
the position of e0 is marked. A large number of such reference curves is re-
quired for the complete representation of the directional dependence. Here, it
is also interesting that by reversing the sawing direction in certain low sym-
metry crystals, a change in the sawing velocity is observed.
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6.4
Spectroscopic Properties

Most of the macroscopic properties discussed so far describe the behavior of
homogeneous regions of a volume under the action of inducing quantities. A
further group of properties, which are not directly representable by tensors,
can be collected under the term spectroscopic properties. These are based on
the interaction of photons or other particles or quasiparticles with the parti-
cles of the crystal lattice and the possible excitations resulting from these. We
speak of spectroscopic properties in the narrow sense when the interaction is
strongly dependent on the frequency or energy of the given radiation. For ex-
ample, the propagation velocity of electromagnetic waves in crystals is weakly
frequency dependent, the absorption in certain frequency ranges, however, is
strongly frequency dependent. For a rough overview we distinguish between

(a) localized interactions or excitations of individual particles (electron
states, nuclear states, vibrational, and rotational states)

(b) collective interactions tied to large undisturbed regions of the crystal
(phonons, magnons, etc.).

In case (a) there appears characteristic differences to the interactions observed
in free atoms or molecules. These are influenced by the binding of individual
particles to neighboring particles and hence reflect the nature of the crystal
field in the vicinity of the particles. Depending on the type of interaction, we
understand under the notion “crystal field” the electric or magnetic field or
the force field in the neighborhood of the given particle. The symmetry of the
local crystal field, the so-called site symmetry, referred to the center of mass of
the particle, is determined by a point symmetry group derived from the geo-
metric space group symmetry at the given site. This shapes the finer details of
the spectroscopic phenomena. Conversely, from such spectroscopic observa-
tions, one can make inferences on the crystal field and the interactions of the
individual particles with their neighbors and hence on the binding resulting
from such interactions.

As examples, we mention electron and nuclear spin resonance, nuclear reso-
nance fluorescence (Mößbauer effect), high resolution X-ray fluorescence spec-
troscopy and optical spectroscopy, in particular infrared spectroscopy for the
analysis of intramolecular vibrational states as well as Raman spectroscopy.

The effective crystal field is represented with the help of symmetry matched
spacial functions. For example, the spacial change of the electric field is de-
scribed to a first approximation by the tensor of the electric field gradient

Qij =
∂Ei
∂xj

= − ∂2U
∂xi∂xj

,
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where U is the electrostatic potential. More precise information on the ten-
sor of the electric field gradient can be gained with the help of the Mößbauer
effect when investigating certain types of atoms in crystals whose resonance
absorption exhibits a particularly high sensitivity with respect to the action
of the crystal field, as for example, 57Fe. An analogous situation applies for
electron and nuclear spin resonances and for the fine structure of the X-ray
fluorescence radiation.

The collective vibrational states mentioned in case (b), that is phonons,
magnons, and so on and their frequency distribution, i.e., energy distribu-
tion, are principally acquired through scattering and diffraction experiments
using X-ray and neutron beams. An important aim in these investigations is
the complete determination of the dispersion curves, i.e., the relationship λ(ν)
between wavelength and frequency for different propagation directions and
vibrational forms (modes) in the crystal. Complete knowledge concerning
these properties has as yet only been achieved in crystals of high symmetry.

The interpretation of the spectroscopic observations mentioned in this sec-
tion is based on a very essential manner on the symmetry properties of the
crystal under investigation. Group theoretical methods have proven them-
selves especially for the classification and allocation of the states.

We refer the interested reader to the rich literature available not only on
experimental spectroscopic methods, but also on crystal–chemical discussions
of the spectra.
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7
Structure and Properties

7.1
The Interpretation of Properties from Model Calculations, Correlations Between
Properties

Among the most important tasks of material sciences today, aside from the
experimental characterization via structural determination and the measure-
ment of physical properties is, in particular, the interpretation and prediction
of crystal properties from the chemical constituents, a field residing in the do-
main of crystal chemistry. In this section we present a brief overview on the
current situation.

The first step is the determination of the structure, i.e., the atomic arrange-
ment of the lattice particles which we denote by the motif and metric of the
lattice. The furthermost goal, namely, with the help of ab-initio calculations
based on quantum theoretical and thermodynamic considerations to make as-
sured statements on possible stable crystal structures was successfully real-
ized for a few simple chemical constituents only in the last years. This was
due not only to the immense increase in computational power of the com-
puter systems but also to the further development of mathematical tools such
as the Hartree–Fock theory or density functional methods (see, for example,
Winkler, 1999). Although, in principle there seems to be no insurmountable
barriers in the prediction of structures of complex substances, one may not
anticipate that all problems of structure formation will be satisfactorily solved
in the near future. This applies, in particular, to substances containing large
structural units of low inherent stability, for example, large organic molecules
or complex adducts of inorganic and organic groups of substances.

The same applies to the second step of the prediction, namely the de-
termination of chemical and physical properties of arbitrary substances of
known crystal structure (including chemical constituents). This has only been
achieved to a satisfactory degree for a fraction far under one per mill of the
approximately 0.5 million structurally known substances to date (listed in the
crystal structure data bank ICSD and CSD). Since the experimental evaluation
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of most of the crystal-physical properties discussed in this book are still con-
siderably time consuming, in particular, even the manufacture of sufficiently
large single crystals of high quality (low density of imperfections), the auto-
matic determination of the properties remains an urgent goal should a rich
collection of data be made available not only for a broad crystal-chemical in-
terpretation but also for the selection of application specific materials. And,
because the precision of the experimental data is often far higher than that
achieved through calculation, one will not be able to abandon the experimen-
tal method at the present stage, i.e., for the time being, one cannot do away
with single crystal growth and practical crystal physics in many areas of work.
This is especially true, for example, for the determination of the temperature
dependence of the properties.

If one is content with a few quantitative or only qualitative predictions,
then one can fall back on the models already developed at the beginning of
the last century. The largest advance at that time was provided by the Born
lattice theory (see, for example Geiger–Scheel: Handbuch der Physik XXIV,
1933, and Born & Huang 1954). This theory allowed the approximate calcu-
lation of a series of properties from simple models of the interaction between
lattice particles. The attractive forces, in particular, the Coulomb interaction
in ionic crystals and the dipole–dipole or multipole–multipole interactions in
the so-called molecular crystals are in equilibrium with the repulsive forces
of the negatively charged electron shells. The latter also result from Coulomb
interactions as well as from Pauli’s exclusion principle. One of the simplest
statements for the interaction potential of two ions is represented by the sum
Φij = Kqiqj/rij + b/rn

ij − c/r6
ij. The first term is the Coulomb potential. K is

the constant of the given system of measurement, qi and qj are the charges
of the ith and jth point-shaped ions and rij is the distance between the ions.
The second term takes into account the repulsion, whereby the exponent n,
for example, in alkali halides takes on a value between 10 and 12. Finally, the
multipole–multipole interactions are approximated by the third term, the van
der Waals term. These quantities fix the given interaction. The summation
over all ion pairs ij of the crystal then yields the lattice energy. This is equiv-
alent to the energy released when the ionized, however, not isolated particles
come together to form the lattice from a virtual infinite distance. This proce-
dure is also suitable for the calculation of simple properties in types of cubic
crystals such as the alkali halides.

In even simpler models one assigns point masses to the particles coupled
via springs (spring model, harmonic approximation). The unique advantage
of these models lies in their direct visual quality in contrast to the complex
operations of ab-initio calculations. That is, correlations are more likely to be
recognized and qualitatively understood.
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The effects of particle thermal motion are first considered in a second step
by allocating the spring constants a certain dependence on the amplitude of
the vibrations. In this manner the so-called anharmonic effects, for example,
thermal expansion and the temperature and pressure dependence of many
properties can be calculated. Since, except for symmetry properties, the de-
scription of the interaction, at least in simple crystals, requires very little data,
namely only atomic distance and the spring constant associated with the re-
spective binding, the different types of properties calculated with this method
must exhibit close correlation to these parameters and among themselves. In
particular, a strong correlation is expected to the elastic properties because of
their direct coupling to the spring constants thus playing a key role in these
types of considerations. In Table 7.1 we present an overview of some impor-
tant relationships, which we, however, are unable to discuss here in any detail.
Corresponding correlations must also exist with respect to the anisotropy of
the properties. Table 7.2 lists some interesting examples.

Deviations from such correlations always provide an indication of special
structural details and binding properties not taken into consideration in sim-
ple models. But just because of this, the models can be improved by the addi-
tion of further criteria.

For a crude review of the relationship between structure and properties we
make a broad division of the properties into two groups which, however, is
not always unequivocal:

1. Additive or quasiadditive properties,

2. Nonadditive properties.

7.1.1
Quasiadditive Properties

Additivity refers to the corresponding properties of the particles (constituents:
atoms, ions, molecules or particle complexes such as chains, bands, layers,
polyhedric structures). That is, an additive property of the given substance
should be able to be calculated from the sum of the parts of the constituent
properties. Here we are mainly dealing with scalar properties, hence inde-
pendent of direction and thus independent of a property of a reference system
such as spacial mean values. Scalar invariants come into consideration with
tensor properties as they are easy to calculate from the complete tensor. This
applies especially to cubic crystals.

For our purposes we describe the chemical constituents of a substance A
by the sum formula A = (A1)n1(A2)n2 . . . (Aq)nq, where each Aj stands for
a certain element. Unfortunately, the sequence is not fixed in general except
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for organic substances. In another representation the constituents are decom-
posed in thermodynamically stable components Bj according to A = (m1B1) ·
(m2B2) · . . . · (mqBq). Finally, it is common to designate chemical constituents
according to cations and anions as well as molecular components as with
the hydrated salts for instance. As an example we mention potassium alum
A =H24O12AlS2K= 1

2 K2O · 1
2 Al2O3 · 2SO3 · 12H2O=KAl(SO4)2 · 12H2O.

To calculate the mole weight M per formula unit of substance A we set
M = ∑ nj Aj, where for Aj we write the average atomic weight of the given
element. For a direct comparison of a substance A with its constituents it is
often convenient to express nj, the relative fraction of the jth type of atom of
the mole weight by the mole fraction n′j = nj/ ∑ nj. The modified sum for-

mula (A1)n′1(A2)n′2 . . . (Aq)n′q then contains L atoms (L = 6, 022 · 1023mol−1

Avogadro’s number).
Examples of the 1. group are:

(a) The average magnetic susceptibility κ of nonferromagnetic ionic crystals
is κ(A) ≈ ∑ njκj with κj = κ(Aj) per mole.

(b) Faraday effect, expressed by the Verdet constant Ver. Ver(A) ≈ ∑ njVerj
with Verj = Ver(Aj) for cubic crystals and is valid approximately for
noncubic ionic crystals (Haussühl, Effgen 1988; Kaminsky, Haussühl,
1993).

(c) Mole polarization of ionic crystals. The Clausius–Mossotti formula links
the average polarizability α per unit volume in the low frequency range
with the average relative dielectric constant εrel according to (εrel −
1)(εrel + 2) = Lρα/3ε0M ≈ ∑ Njαj/3ε0 (see Section 4.3.3). ρ is the
density, M is the mole weight, Nj is the number of jth types of ions
per unit volume and αj is their polarizability. Then α ≈ ∑ njαj with
nj = Nj M/Lρ. α and αj are then functions of pressure, temperature, fre-
quency and so on.
In the range of optical frequencies εrel is replaced by the average refrac-
tive index n = (n1 + n2 + n3)/3 (ni principal refractive index). One then
obtains the Lorenz–Lorenz formula (n2 − 1)(n2 + 2) = LρR/3ε0M ≈
∑ NjRj/3ε0. R is the mole refraction and Rj is the refraction of the jth
type of atom. Hence R ≈ ∑ njRj. The quasiadditivity allows the summa-
tion over the R-values of the stable components of the given substance.
For example, R(Mg2SiO4) ≈ 2R(MgO) + R(SiO2).
Also, the average optical activity αoptact can be estimated according to
αoptact ≈ ∑ njαoptact(Aj) (per mole) provided it is generated by primar-
ily chiral particles possessing an average chirality of αoptact(Aj).
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(d) Constituents with similar types of binding possess a mole volume Vmol
that according to Vmol ≈ ∑ mjVj with Vj = Vmol(Aj) can be estimated
from the mole volumina of the components.

(e) The lattice energy Φ in ionic crystals (per formula unit) can, accord-
ing to Fersman and Kapustinsky, be estimated quasiadditive with sur-
prising accuracy from the ”energy coefficient” Φj of the given sub-
stance according to Φ ≈ ∑ mjΦj (see for example Saukow 1953). The
quasiadditivity is also valid for components. For example, one obtains
for the spinel MgAl2O4 = MgO ·Al2O3 the value Φ(MgO ·Al2O3) ≈
Φ(MgO) + Φ(Al2O3).

(f) The X-ray mass attenuation coefficient µ∗ which exhibits a hardly mea-
surable anisotropy in the wavelength range 0.03 nm < λ < 0.3 nm and is
thus quasiisotropic, can be calculated from the mass attenuation coeffi-
cients µ∗j of the atomic constituents (µ∗ = µ/ρ; µ is the linear absorption
coefficient defined by I = I0e−µx, where I0 is the primary intensity and
I is the observed intensity after passing through a plane parallel plate of
thickness x): µ∗(A) = ∑ nj Ajµ

∗
j / ∑ nj Aj. The substance A is noted in

the form of the sum formula. The associated atomic weights are writ-
ten for Aj. The wavelength dependence of µ∗j varies considerably under
the elements. Hence, from the measurement of µ∗(A) at different wave-
lengths one obtains a statement on the chemical constituents of A, in
particular with very small and thin probes (X-ray absorption analysis;
see for example Taschentext Kristallstrukturbestimmung). Incidentally,
this relationship is also quite well fulfilled for nonionic bound crystals.

(g) The volume compressibility K = −d log V/dp is expressed by K ≈
∑ mj(Vj/V)Kj, where Vj/V is the estimated fractional volume of the jth
component of a substance and Kj is its volume compressibility. The pre-
requisite is that the components only show a small mutual interaction
and that V ≈ ∑ Vj.

(h) The product S of the average elastic strength C and molecular vol-
ume MV, S = C · MV, where C = (c11 + c22 + c33 + c44 + c55 + c66 +
c12 + c13 + c23)/9 represents a scalar invariant of the elasticity tensor
also shows a quasiadditive behavior. In ionic crystals with similar
types of binding we have S(A) ≈ ∑ mjS(Bj), i.e., the S-values of the
compound A can be calculated from the S-values of the components
(Haussühl 1993). Thus one can approximately determine the average
elastic strength C of a crystal type from the elastic properties of its com-
ponents at known molecular volume. As an example let us consider gar-
net A =Y3Al5O12. We expect S(A) ≈ 1, 5S(Y2O3) + 2, 5S(Al2O3). Ex-
perimentally one finds S(A) = 4031, S(Y2O3) = 1077 and S(Al2O3) =
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1107 (S in [10−20Nm]). The estimated value of 4383 · 10−20Nm exceeds
the expected value by about 8%. The deviations in many substances
of similar types of binding lie in this order of magnitude. However, it
turns out that the deviations, in part, result from a different coordina-
tion of ions. A higher coordination in the substance A compared to the
average coordination of the components effects an increase of S(A) com-
pared to the average S-value of the components and vice versa. This is
seen, for example, with the halides of lithium, sodium, potassium and
rubidium with a NaCl type of structure (6-coordination) possessing S-
values of on average about 110 · 10−20Nm and the corresponding value
of 123 · 10−20Nm with the halides of cesium with a CsCl type of struc-
ture (8-coordination). If large deviations appear, as for example, in the
high pressure modification of SiO2 (coesite: 400; stichovite: 801) com-
pared to α-quartz (195), then this is an indicator for a changed binding
state which can also be tied to a considerable change of coordination.
Hence, deviations of the additivity of the S-values can provide concrete
pointers concerning structural details (Haussühl 1993).

Finally, it should be mentioned that the product of reciprocal volume com-
pressibility and molecular volume tend to possess similar properties as the
S-values.

We should not forget that persistent properties also appear in certain spec-
troscopic experiments. Among these are, for example, the emission and ab-
sorption lines of transitions in the deeper lying electronic shells that are little
or hardly influenced in a measurable way by the binding states of the valency
shells. This also applies to intramolecular excitation in the optical and infrared
spectral region and can be called upon for qualitative and, in part, quantitative
chemical analysis.

A special case of quasiadditivity is presented by mixed crystals with iso-
type components. We consider the simple case of a substance consisting of
two components according to A = (1 − x)B1 · xB2. To a first approxima-
tion, most properties E can be expressed by the linear relationship E(A) =
(1− x)E(B1) + xE(B2) if x is sufficiently small (for example x < 0.1) and all
particles of component B2 assume the position of the corresponding particle
B1 in the crystal lattice (diadoch substitution): Vegard’s rule. Naturally, this
rule can be extended to mixed crystals with several isotype components. With
the arbitrary substitution of particles in nondiadoch positions, which often
occurs in the doping of electrically conducting substances, one observes, as
expected, considerable deviations from Vegard’s rule. Such properties were
discussed by Smekal (1933) and designated as ”structure sensitive”. How-
ever, this nomenclature is no longer compatible with the concept of structure
we know today.
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7.1.2
Nonadditive Properties

The examples listed in Tables 7.1 and 7.2 as well as the constraints mentioned
in the previous section indicate that there exists many properties closely corre-
lated with the properties of the given component, however, not quasiadditive.
We cannot discuss these individually in this book. Rather we will address
those examples which on the one hand show structural features responsible
for the appearance of certain properties and on the other demonstrate the ex-
istence of complicated interactions of the particles.

In the first case we think of crystals with noncentric structures. If we are
dealing with tensor properties as, for example, pyroelectric, piezoelectric or
nonlinear electrical and optical effects, then the associated odd-rank polar ten-
sors must exist as argued in the respective sections. The given structures may
not possess inversion centers, i.e. noncentric units of particle with preferred
orientations must exist so that, in total, a structural polarity results. This can
happen through stable, primary noncentric particles as, for example, the ions
of CN, NO2, BO3, CO3, NO3, SO3, ClO3, BrO3, IO3, BO4, NH4, SiO4,PO4, SO4,
ClO4, AsO4, many amines and carbonic acids or the molecules NH3, H2O and
alcohol. The prerequisite for the appearance of polar properties is that the po-
larity of the particles is not neutralized by the symmetric arrangement. The
chiral stable particles make an exception. These include many amines and
most amino acids whose intrinsic screw always prevents the occurrence of
an inversion center unless the structure contains exactly the same number of
enantiomeric particles of the same type (100% racemic mixture). This means
that the chiral organic particles represent an almost inexhaustible arsenal for
the directed synthesis of new crystals with polar effects.

Some crystals build a polar structure from primarily centrosymmetric atoms
and ions, as, for example, low quartz α-SiO2, silicon carbide SiC or zinc blende
ZnS and their polytypes, in which the tetrahedric polarity first develops dur-
ing the growth phase. There also exist numerous examples of structural chi-
rality, resulting from the chiral arrangement of nonchiral particles (α-quartz,
NaClO3, NaBrO3, Na3SbS4 · 9H2O).

For over twenty years many laboratories have been searching for new ma-
terials for optical data storage and data processing. This involves the applica-
tion of electric or magnetic fields which result in changes to the optical prop-
erties of crystals i.e., refractive indices or absorption, which remain fixed in a
metastable state for a definite time. Among these are photochromatic or holo-
graphic effects. In crystals such as lithium niobate LiNbO3 or barium titanate
BaTiO3, doped with impurities such as iron or hydrogen, charge displace-
ments by the electric field can generate an intense coherent light wave (laser
radiation) which first vanishes after the application of heat (photo-galvanic
effect). Information superimposed on the light wave in the form of ampli-
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tude modulation is then stored in the crystal as a holographic lattice. The
information can be retrieved and processed by suitable means so enabling the
development of new and highly efficient devices for information technology.
The same applies, however, with less favorable prospects, to magneto-optical
storage where the light wave modulates the magnetization of thin layers of,
for example, Y3Fe5O12 (yttrium iron garnet) grown epitaxially on Y3Ga5O12.

Many groups of substances exist in which a light wave can induce electronic
transitions in the lattice particles which cause large metastable changes in op-
tical absorption in certain temperature ranges. These changes can also be used
to store the information content of the light wave. Special mention should be
given to Na2[Fe(CN)5NO] · 2H2O and related substances, which when irradi-
ated with blue light below 200 K trigger strong photochromatic effects coupled
to a change in the electronic state of the NO group. These excited states can be
quenched by increasing the temperature or also by irradiating with red light
(Hauser et al. 1977,1978; Woike et al. 1993). Furthermore, it could be shown
that the photochromatic properties of these groups of substances are also suit-
able for the generation of holographic effects thereby exhibiting the largest as
yet known efficiencies (Haussühl et al. 1994; Imlau et al. 1999). The reason
is that in these substances doping is not necessary, because all NO groups of
the crystal are available for excitation. Apparently, these effects are not linked
to a symmetry condition of the given crystal. Especially favorable is the fact
that the holograms can be quickly quenched using red light just as with pho-
tochromatic effects. One disadvantage which must be still overcome is the low
working temperature which, however, could be brought in the range of 300 K
by varying the chemical constituents (see, for example, Schaniel et al. 2004).

A further property that can only be realized by a very special combination
of the chemical composition, is superconductivity. This has been known for a
long time. However, the discovery of the unexpected electrical conductivity of
complicated mixed oxides with copper content by Bednorz and Müller (1986)
ignited a lively and in the meantime successful search for substances with still
higher transition temperatures. These efforts resulted in the achievement of a
transition temperature of 125 K in Tl2Ba2Ca2Cu3O10 a benchmark apparently
not to be surpassed (Sheng, Hermann 1988). Their technological application in
the generation of high magnetic fields is well under way. Apparently, not only
is the participation of a certain component, namely CuO necessary, but also
an unusual cooperation of several other oxides whose special participation is,
however, difficult to recognize.

7.1.2.1 Thermal Expansion

We now come to discuss the the temperature and pressure dependence of the
physical properties. In the concrete case we consider thermal expansion as
well as elastic properties. For simply built molecular crystals as for example,
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naphthalene, Kitaigorodskii (1973) was able to calculate, with the help of a po-
tential approach that assigned characteristic parameters to the attractive and
repulsive forces between two respective atoms of neighboring molecules and
simultaneously took into consideration the thermal energy of the molecules,
a series of properties such as lattice constants, thermal expansion, elastic con-
stants and also thermoelastic constants in good agreement with experimental
values. Other attempts, also with the alkali halides and other simply built
types of crystals, to predict the more complicated properties such as thermoe-
lastic constants have been less satisfactory.

The thermally activated motions of lattice particles of a crystal can be stud-
ied by optical methods such as Brillouin scattering (see Section 4.5.6) or in
the course of crystal structure analysis. The effects of a large change in tem-
perature influencing the lattice vibrations and excitation of certain atomic
and molecular states is often made noticeable through phase transformations,
changes in optical absorption (thermochromatic effects) and a few especially
easily accessible macroscopic effects. Among these are thermal expansion and
the temperature dependence of elastic properties. The relation derived by
Grüneisen for cubic crystals α = γKCV/3V, where α is the linear thermal ex-
pansion coefficient, γ = −d log Θ/d log V is the Grüneisen constant with a
value between 1.5 and 3, K is the volume compressibility, CV is the specific
heat per mole volume, V is the mole volume and Θ is the Debye temperature,
couples at least qualitatively the thermal expansion with the specific heat and
a measure for the elastic strength K−1. Hence, large thermal expansions are
correlated with large specific heats and small elastic strengths. For example,
diamond at 300K possesses with its large elastic strength one of the smallest
thermal expansion coefficients of about 0.87 · 10−6K−1. In contrast, very soft
organic crystals posses α values of over 100-fold higher. The temperature de-
pendence α(T) close to absolute zero is determined by the T3 law of specific
heat and at very high temperatures by the quasilinear rise in compressibility
with increasing temperature. Changes in the mean amplitudes of the thermal
vibrations of atoms and ions as a function of temperature, determined from
crystal structure analysis often agree quite well with the experimental values.
In a first approximation the center of mass motion of each atomic particle is
assigned a vibration ellipsoid whose semi-axis is set proportional to the am-
plitude of the thermal displacement vector in the respective directions of the
principal axes (Debye–Waller factors; see, for example, Taschentext Kristall-
strukturbestimmung). Simple isotype series such as the alkali halides or the
oxides of bivalent cations of NaCl-type possess almost the same α-values. In
the course of phase transformations, even second-order ones, drastic changes
in thermal expansion often appear. Furthermore, it has been found that many
noncubic crystals exhibit thermal expansion accompanied with considerable
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anisotropic effects. From this we can infer that in general thermal expansion
is hardly amenable to a quantitative structural interpretation.

7.1.2.2 Elastic Properties, Empirical Rules

From the beginnings of the lattice theory of ionic crystals, based on a Coulomb
term and a term for the repulsive potential with the exponent n, hence, with-
out the van der Waals term, one obtained the relationship cij = Fijr4

ij =
Qij·mole lattice energy/mole volume. In isotype series the Fij-values increase
weakly with increasing mole weight due to a rise in the van der Waals poten-
tial and the exponent n of the repulsive term in heavy ions. For example, in
the alkali halides of NaCl-type one observes approximately a doubling of F11
in passing from LiF to RbI. Also, the factors Qij do not depend on separation
of the ions but are proportional to n. A similar formula exists for molecular
crystals with predominantly van der Waals binding. That is, the repulsive
potential determines in a very decisive way the elastic behavior. To a certain
extent this statement applies qualitatively to each crystal.

A simple path for the interpretation and prediction of elastic properties is
presented by the quasiadditivity of S-values already mentioned above. These
allow a rough estimate of the average elastic strength from the properties of
the components. A further fundamental property of the S-values consists in
the fact that in isotypes and structurally or chemically closely related crystals
the S-values fluctuate very little (Haussühl 1993). However, the deformation
work and the stability of the electronic shells of the particles is seen to in-
fluence the S-values to a certain extent. This can be taken into account by a
correction when one assigns a qualitative ”hardness” to the particles which
is correlated to the exponent of the repulsive term and, for example, in ions
such as H−, the electron e− or CN− turns out to be especially low. The experi-
mental data compiled so far allows the formulation of a few simple insightful
rules which otherwise would not be directly discernable from the complicated
processes of ab-initio calculations.

In a next step, one can try to interpret the elastic anisotropy and the rela-
tionship to elastic shear resistances and longitudinal resistances. This must
take into consideration density, strength and direction of the principal bind-
ing chains in the given structures. Directions in which many strong principal
binding chains run exhibit strong elastic longitudinal effects. As examples, we
mention graphite and β-succinic acid (CH2)2(COOH)2. In graphite, strong
sp2 −C−C binding chains, comparable to the sp3-hybride bindings in dia-
mond, lie in the plane perpendicular to the hexagonal axis, whereas along this
axis far weaker interactions appear. This results in a ratio c11/c33 of about 29,
the largest known longitudinal-elastic anisotropy effect. In β-succinic acid, a
monoclinic crystal of the point symmetry group 2/m, one finds the molecules
along a3 due to the H-bridges connecting the chains while in all other direc-
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tions only weak van der Waals bonding occur. This results in a ratio of maxi-
mum to minimum longitudinal resistance of 12.7—the longest observed value
in ionic- or molecular crystals to date.

Information concerning the ratio ckj/cii of certain elastic constants can be
gained from the association of the elementary cell to the Bravais lattices in
which the interaction of nearest neighbors is best approximated. For exam-
ple, for the cubic Bravais lattice one finds the following relationships which
are easy to calculate using spring models: P-lattice: c44/c11 = 0, F-lattice:
c44/c11 = 0.5 and I-lattice: c12/c11 = 1. An instructive example is presented
by the alkali halides of NaCl-type. If one goes over from LiBr or LiI with
the weakest overlap of electronic shells of cations and anions to rubidium io-
dide with the largest corresponding overlap, then the face centered lattice of
the Br− or I−-ions must be the physically effective form of both lithium com-
pounds, while for RbI it must be the primitive lattice formed commonly by the
center of mass of the Rb and I ions. As a matter of fact one finds for c44/c11
the values 0.49 for LiBr and 0.11 for LiI and RbI, respectively.

A further aspect is offered by the deviations from the Cauchy relations
which we described by the tensor invariants {gmn} = { 1

2 emikenjlcijkl}. {emik}
is the Levi-Civitá tensor (see Section 4.5.1). These deviations show a macro-
scopic observable effect of the atomic properties of the particles with respect
to elastic behavior. Among these are asphericity, that is the deviation of the
electronic shells from the spherical form, polarizability, covalence of the bind-
ing and a liquid-type interaction of the particles (Haussühl 1967). As is well
known liquids possess nonmeasurable, small shear resistances in the low fre-
quency region. Since isotropic bodies such as liquids and glasses exhibit
at least the symmetry of cubic crystals, the pure shear resistances c66 and
(c11 − c12)/2 corresponding to those of the cubic crystals must vanish. This
means c66 = 0 and c12 = c11. This gives the largest allowed deviations from
the Cauchy relations, namely g33 = c1122 − c1212 = c12 − c66 = c11. Particles,
which because of their deformability (polarizability) contribute to conserving
the volume, similar to the particles of a liquid, can be expected to show an
increase in the deviations from the Cauchy relations. The same applies to
strongly aspherical particles which act to magnify the transverse contraction
effect, i.e., the constants cij(i 6= j). In contrast, directed covalent bonding tends
to increase the shear resistance, i.e., lessens the deviations from the Cauchy re-
lations.

For practical comparison it is meaningful to refer the gmn to the invari-
ant C. The so defined quantities ∆mn = gmn/C are then dimensionless.
As examples we consider the alkali halides, alkali cyanides, AgCl, and sev-
eral oxides with cubic symmetry and the following values for the invariants
∆11 = 3(c12 − c66)/(c12 + 2c12):
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NaCl KCl NaCN KCN LiH Li2O LiF
∆11 0.010 0.031 0.78 0.72 −0.95 −0.45 −0.26

BeO MgO BaO AgCl
∆11 −0.24 −0.39 0.l14 0.81

The largest effects appear in the cyanides and in AgCl, in which the strongly
aspheric cyanide ions and the highly polarizable silver ion respectively, bring
∆11 close to the liquid value ∆11 = 1. This is also directly seen in the highly
plastic behavior of these crystals. In contrast, one finds negative ∆11 in crys-
tals with cations and anions of low atomic number. These are to be interpreted
as the effects of a strong covalent bonding content. The smallest value is ob-
served in LiH.

As an example of the just discussed application of empirical rules, we will
attempt to estimate the elastic constants of Na2O, a substance crystallizing in
a flourspar lattice and not easily produced in the form of a large single crystal.
The necessary data come from the Landolt–Börnstein compilation and from
the data banks of the lattice constants.

At first we assume that Na2O possesses a similar S-value as Li2O, namely
233.1 · 10−20Nm. The molecular volume of Na2O is 42.97 · 10−30m3. Hence,
C(Na2O) ≈ 5, 43 · 1010Nm−2 = (c11 + c12 + c66)/3. The deviation from the
Cauchy relations ∆11 is taken from the relationship ∆11(Na2O)/∆11(NaF) ≈
∆11(Li2O)/∆11(LiF). The experimental values are ∆11(NaF) = −0.08,
∆11(Li2O) = −0.45 and ∆11(LiF) = −0.26, furthermore, ∆11(Na2O) ≈ −0.14.
For c66/c11 we assume the value 0.29 measured in Li2O as well as in NaF.
From the three values for C, ∆11 and c66/c11 we then obtain c11(Na2O) ≈
10.80, c12 ≈ 2.33 and c66 = c44 ≈ 3.13 · 1010Nm−2. From experiences gathered
so far, the actual values can deviate by about 10% from these estimates.

Another path uses the rule that the S-values of chemically similar con-
stituents differ only by a small amount. We consider, for example, a hypo-
thetical substance A =Na2CaF2O and expect S(A) ≈ 2S(NaF) + S(CaO) ≈
S(CaF2) + S(Na2O). With S(NaF) = 123, S(CaO) = 339 and S(CaF2) = 328
one finds S(Na2O) ≈ 257 · 10−20Nm, a value exceeding the one assumed
above by about 10%.

More exact predictions are achieved with little effort when one investigates
specimens of pressed fine grained powder rather than single crystals. For
example, one can easily determine the two possible sound velocities of such
isotropic substances, namely the pure longitudinal wave and the pure trans-
verse wave which are coupled to the constants c11 and c44 = c66 respectively,
from the resonance frequencies of plane parallel plates or even measure the
volume compressibility in a simple arrangement. With the aid of such exper-
imental average values in combination with the estimates discussed above,
one can, at least with cubic crystals, almost always come to rather useful pre-
dictions (see also Section 11, Exercise 25).
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We now want to briefly address the testing of bonding properties with the
help of the S-values (units: [10−20Nm]). Let us again inspect the S-values of
Na2O. Since the properties of Na2GeO3 and GeO2 are known, one can check
the relation S(Na2GeO3) ≈ S(GeO2) + S(Na2O). Inserting the experimental
values gives 466 ≈ 739 (for GeO2 in the high pressure modification of the
rutile-type) or about 200 (for GeO2 in the α-quartz-type)+S(Na2O). It is ob-
vious that the Ge-O bond in Na2GeO3 is in no way equivalent to the bond in
the high pressure modification of GeO2.

7.1.2.3 Thermoelastic and Piezoelastic Properties

The thermal energy content of a solid expresses itself mainly in the spectrum
of the lattice vibrations and in the excitations of atomic and molecular states.
The rise in amplitude of the lattice vibrations with increasing temperature not
only causes a change in the mean separation between particles and hence the
thermal expansion, but also a change in the interaction potential. This means,
that apart from the consequences of excitation, it may be expected that the
elastic properties are affected by the temperature dependence of the separa-
tion rij of the particles and also by the effective coefficients of the potential
terms, in particular the repulsive potential and the van der Waals potential.
The change of the elasticity tensor with temperature is described, at least in a
limited temperature interval, by the tensor {T∗ijkl} = {dcijkl/dT} which pos-
sesses the symmetry properties of the elasticity tensor. However, for the dis-
cussion of thermoelastic properties, the logarithmic derivatives of the elastic
constants Tij = d log cij/dT have gained acceptance, which just like the elastic
constants cij do not represent tensor components. We will use these quanti-
ties, which designate the relative change of the elastic constants per Kelvin
in what is to follow. With a suitable temperature factor as, for example, the
Debye temperature they become dimensionless and hence assume the tensor
character. We will return to this point latter.

From the relationship cij = Fij · r4
ij given above, one obtains for ionic crystals

Tij = d log Fij/dT − 4d log rij/dT. In cubic crystals such as the alkali halides,
the second term corresponds to the negative four-fold linear thermal expan-
sion α11, for which experimental values of around 40 · 10−6K−1 exist. The
constant T11 is about −0.80 · 10−3 K−1. This means that the change of the lon-
gitudinal resistance c11 with temperature is here more strongly determined
by the influence of the temperature on F11, hence, in particular on the effec-
tive exponent of repulsion and on the fraction of van der Waals bonds than
on the separation of the ions. The change of F44 is made far less noticeable
by the constants T44 describing the influence of the temperature on the shear
resistance c44. Thus the alkali halides demonstrate that thermoelastic proper-
ties are closely correlated with thermal expansion, but by no means can they
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alone be attributed to this. Further details are described in the literature (for
example, Haussühl 1960).

In the following we present the more important empirically found rules for
thermoelastic behavior.

1. The Tij are, with a few exceptions, always negative, except close to a
higher order phase transformation. Its order of magnitude in stable crys-
tals ranges from −0.01 · 10−3K−1 (diamond) to about −5 · 10−3K−1 (or-
ganic molecular crystals as, for example, benzene). The anisotropy of Tij
can be considerable.

2. The Tij begin at absolute zero with vanishingly small values and with
rising temperature take on increasingly negative values (dTij/dT < 0).

3. When approaching a strong 1. order phase transformation as, for exam-
ple, the melting point, no particularly noticeable anomalies are observed
until shortly before the transformation.

4. In isotype crystal series Tij take on characteristic values. For example,
crystals of NaCl-type and of CsCl-type possess strongly different Tij.
If symmetric ions are substituted by less symmetric ones, then signifi-
cant deviations appear (for example, the substitution of K or Rb by NH4
or CH3NH3; substitution of A subgroup elements by B subgroup ele-
ments).

5. The value of Tij in isotype ionic crystals decreases with increasing charge
(for example, |Tij(MgO)| < |Tij(LiF)|).

6. In isotypes or structurally and chemically related ionic crystals, those
species with heavy particles exhibit normally a larger value of Tij (for
example, alkali halides, alums, sulfates, nitrates, phthalates, among oth-
ers). Exceptions: with increasing solidification, for example, in organic
crystals or in the sequence chlorate-bromate-iodate.

7. A general elastic isotropization or a reduction in the deviations from the
Cauchy relations with increasing temperature is not observed.

8. The type of bonding is mirrored in the thermoelastic behavior:
|Tij(covalent)| < |Tij(ionic)| < |Tij(van der Waals)| at comparable av-
erage elastic resistance (C-value).

9. Characteristic thermoelastic anomalies appear close to second and
higher order phase transformations, which can be attributed to cer-
tain transformation mechanisms (for example, rotative-librative; order-
disorder; ferroelastic, ferroelectric and ferromagnetic phenomena).

10. In a large collective of crystals one finds a distinct correlation between
thermoelastic properties and thermal expansion as, for example, be-
tween Tij and αij (Tij ∼ −αij) in rhombic crystals. The same sign for



346 7 Structure and Properties

Tij and αij appears seldom which points to partly different causes of the
anharmonicity.

11. The anisotropy of Tij in cubic crystals, expressed by the ratio of longi-
tudinal effects along [011] and [100], thus T′/T11 with c′ = (c11 + c12 +
2c44)/2, takes on structure typical values. For example, NaCl-type in-
cluding oxides: T′/T11 ≈ 0.60± 0.05; CsCl-type: T′/T11 ≈ 1.70± 0.05.

12. The invariants T∗ = log C/dT with C = (c11 + c22 + c33 + c44 + c55 +
c66 + c12 + c13 + c23)/9 and z = d(∆/C)/dT with ∆ = (c12 + c13 + c23 −
c44 − c55 − c66)/3 = average deviation from the Cauchy relations, take
on similar values in different isotype series with equivalent ions. T∗

drops to about one quarter when the ionic change is doubled. z also
exhibits lower values.

As hinted above, when one now multiplies Tij with the Debye temperature,
which can be estimated from the elastic data, the range of variability of Tij is
reduced considerably, because elastically harder substances exhibit lower Tij-
values and larger C-values than softer substances. To what extent the general
discussion can thereby be simplified is not yet decided, because the Debye
temperatures must be calculated from the elastic data in the low temperature
range and often these cannot be extrapolated with sufficient accuracy from the
values measured at substantially higher temperatures. Whether one succeeds,
with these dimensionless data, in setting up rules for thermoelastic properties
similar to those for the S-values requires more detailed inspection.

Furthermore, we note that the mentioned rules also apply qualitatively in
collectives of chemically related crystal types. Groups of substances with H-
bridge bonding, however, often show a strong scattering in their thermoelas-
tic constants due to the large variability of the binding strength (examples:
carbonic acids and their salts; α and β alums). Tables 12.17 to 12.19 present
experimental values of elastic properties of some of the substances discussed
here.

Similar rules also exist for the piezoelastic constants Pij = dcij/dp, where p
is the hydrostatic pressure. These quantities are dimensionless. They exhibit
similar regular traits as the thermoelastic constants, however, with opposite
sign. In general, one can say that an increase of hydrostatic pressure is equiv-
alent to a decrease in temperature. For example, often a phase transforma-
tion initiated at normal pressure by dropping the temperature can also be set
into motion by increasing the pressure at normal temperature. An especially
impressive property is shown by the pressure dependence of the reciprocal
volume compressibility dK−1/dp, which in almost all substances, virtually in-
dependent of structure and chemical constituents, assumes a value between
approximately 4 and 6. Large deviations appear only in the region of phase
transformations. This comparatively easy to measure quantity is thus suited
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to the detection of a phase transformation, all the more, because a deviation
from normal behavior is recognizably far removed from the transition tem-
perature and from the transition pressure, and finally the measurements can
also be carried out on very small probes.

With continuing advances in automation and miniaturization of measure-
ment methods one can anticipate that in the near future the pool of data on
physical properties will grow substantially so that the rules already formu-
lated will become firmly cemented and new relationships in compliance with
the laws will be found.

7.2
Phase Transformations

All crystal types investigated so far exhibit the phenomena of phase transfor-
mation during a transition through a certain temperature- or pressure range.
If during this process a homogeneous crystal transforms into another homoge-
neous substance in the physical-chemical sense, as for example, in congruent
melting or in the transformation of metallic tin in grey tin, then we talk of a ho-
mogeneous phase transformation. If, on the other hand a crystal breaks down,
for example, during heating, into different components associated with many
homogeneous substances, as, for example, in the dehydration of gypsum, then
we are dealing with a heterogeneous phase transformation. At this point we
will only concern ourselves with homogeneous phase transformations of the
type solid–solid.

The phase transformations (PT) that interest us are firstly specified by the
structure of the initial phase (mother phase) and the resulting phase (daughter
phase). The processes involved in the rearrangement of the particles to form
the daughter phase (transformation kinetics) can be of a diverse nature. It will
be the aim of further research to elucidate just these processes occurring in the
atomic range to gain a deeper understanding of the phenomena.

At first we recognize the phase transformation by certain erratic changes
in macroscopic properties. In many cases a PT is observed visually or mi-
croscopically as a result of changes in the index and the formation of cracks
which cloud the appearance of the crystal. In other cases, gross changes in
the thermal, electrical and elastic properties can occur. On the other hand, a
number of PTs can only be detected with sensitive measurement techniques.
This applies, for example to most ferromagnetic, ferroelectric and the so-called
order–disorder transformations as well as the just recently discovered incom-
mensurable phases. In the latter, the periodic lattice structure motif is super-
imposed with a variation of periodic structure not compatible with the lattice
periodicity in distinct directions. Table 7.3 presents some typical examples of
phase transformations. The PTs can be classified according to various aspects.
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Thermodynamic considerations stood in the forefront for a long time. If two
phases are in thermodynamic equilibrium then they must possess the same
values for the free enthalpy (pro mole) under the given auxiliary conditions.
As an example, we consider the case of constant mechanical stresses, hence,
also constant hydrostatic pressure, constant electric and magnetic fields and
constant temperature. As we saw in Section 5, the Gibbs free enthalpy G as-
sumes a minimum under isobaric, isagric, and isothermal conditions (∆G = 0;
minimum from the point of view of stability). If both phases I and II are in
equilibrium, then GI = GII. From this condition one obtains, for example, for
the simple special case of hydrostatic pressure and no electric and magnetic
field strengths, the Clausius–Clapeyron relation

dp
dT

=
∆S
∆V

=
∆Q

T∆V
,

where ∆Q is the transformation enthalpy, T is the equilibrium- or transforma-
tion temperature and ∆V is the change of volume in the transition from I to II.
As proof one makes use of the expansion

G = G0 +
∂G
∂p

∆p +
∂G
∂T

∆T

and the relations

∂G
∂p

= V and
∂G
∂T

= −S.

The curve dp/dT describes the progress of the transformation pressure as a
function of temperature and vice versa (vapor–pressure curve). If we cross
from phase I to phase II by increasing the temperature, for example, then this
is only possible by supplying energy. In equilibrium, ∆Q is the amount of en-
ergy required for the transformation. It is always positive, i.e., energy must
always be supplied in a transition from a low temperature- to a high temper-
ature phase, provided one stays close to equilibrium. The deeper background
for this is the second law of thermodynamics, which in this case demands an
increase in entropy (SII > SI). This means that the internal energy of the high
temperature phase is higher than that of the low temperature phase.

If we work with uniaxial mechanical stresses instead of hydrostatic pressure
and at the same time allow the action of electrical and magnetic fields then
instead of the Clausius–Clapeyron relation one obtains a more complicated
relationship, which we will not pursue any further at this point.

Crystals can be roughly divided into two groups on the basis of their dif-
ferent transformation enthalpies. The first group has easily measurable ∆Q-
values of the order of a few percent of the lattice energy and more (lattice
energy = formation enthalpy from the isolated lattice particles); in contrast,
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the ∆Q-values of the second group are hardly or virtually not measurable. In-
termediate substances are comparatively seldom. The transformations of the
first group are termed first-order transformations, and those of the second as
second-order transformations. A more exact definition states that in first-order
transformations the first derivatives of a thermodynamic potential with re-
spect to temperature or pressure (or another inducing quantity) exhibit a dis-
continuity. In second-order transformations the first derivatives show a con-
tinuous behavior, while the second and higher derivatives exhibit discontinu-
ities. This formal classification appears quite elegant although it only captures
a part on the transformations. In particular, the theory developed by Landau
(1937) allows a number of general formulations concerning certain types of
transformations, primarily those of second order. In this connection, an im-
portant role is played by the loss of symmetry elements of the mother phase
during the phase transition leading to a characteristic change of certain tensor
properties. The general discussion involves the variation ∆G of the Gibbs free
energy on approaching the transformation point as a function of the inducing
quantities. In the forefront is the behavior of so called order parameters, which
are coupled to the interactions driving the transformations.

A crystallographic classification of PTs on the basis of structural aspects was
proposed by Buerger (1948, 1951). Buerger distinguishes between four groups:

I. Transformations of the first coordination sphere,

II. Transformations of the second coordination sphere,

III. Order–disorder transformations,

IV. Transformations of the bonding type.

If the kinetics of transformation proceed hesitantly, as in all cases requiring an
activation energy, then we are mainly dealing with crude structural changes.
These phase transformations were called reconstructive by Buerger. Among
these, in particular, most first-order transformations. If the structural dif-
ference of phases I and II is caused by small displacements of the particles,
then the transformation is called displacive. In the case of homogeneous defor-
mations, as for example, in martensitic PT, one speaks of dilative transforma-
tions, in transformations coupled with the activation of the rotational motion
of groups of particles one speaks of rotative transformations. This classification
has the great advantage that structural occurrences stand in the forefront in
the treatment of transformations. From experience, one can set up common
rules for transformation properties of the individual groups such as speed of
the transformation process, reversibility and magnitude of the transformation
enthalpy, which, for example, in the case of displacive PTs of the second co-
ordination sphere, agree with some of the Landau rules for the second-order
PTs.
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The most important rules are cited as follows:
1. Reconstructive first-order PTs require a nucleation of the new phase. The

work of nucleation prevents the prompt occurrence of the PT when exceeding
the equilibrium conditions of temperature, pressure and electric or magnetic
field strengths. This is due to the phenomena of under-cooling or over-heating
of the mother phase in the region of the stable daughter phase. This delay of
transformation can often extend over a long time, as is seen from the exis-
tence of certain minerals, for example, calcite, which were formed millions of
years ago and in the mean time have not transformed into the more stable
phase (here aragonite). The possibility to synthesis a variety of crystals, that
cannot be produced under normal conditions is based on this behavior. The
crystals are synthesized under high temperature and pressure conditions and
then brought into a region outside their stability range by fast cooling or pres-
sure relief without them breaking up (quenching). This applies, for example,
to diamond synthesis.

In principle, some is true for first-order transformations induced by electric
or magnetic fields.

As already alluded above, the transformation enthalpies are very large. Due
to the often considerable change in volume, the homogeneity of single crys-
tals seldom remains conserved. The new phase is created mostly in the form
of small crystalline domains (crystallites) with irregular orientation. Quite of-
ten the crystals sustain many cracks and break into smaller pieces. One of the
causes for this phenomenon is also the inhomogeneous temperature distribu-
tion. Likewise, the reverse transformation proceeds almost always strongly
delayed (hysteresis).

2. Displacive, rotative, dilative (for example, also some martensitic) and
order–disorder transformations occur without substantial delay when exceed-
ing the equilibrium conditions. The reverse transformation commences very
quickly. The observed small delays (hysteresis) are partly due to the defect
structures of the crystal which can hinder transformation. The transformation
enthalpies are extremely small. Single crystals of the mother phase pass over
into single crystals of the daughter phase, whereby the formation of new de-
fects hardly occurs, because virtually no change in volume takes place. The
reverse transformation brings the crystal back to its initial situation, including
the original defects. Finally, there exists almost always a close structural re-
lationship between both phases. In particular, almost without exception, the
space group of the low temperature phase is a subgroup of the space group of
the high temperature phase. The classification of ferroelectric and ferroelastic
PTs is based on this property (Aizu, 1969; Shuvalov, 1970).

A detailed analysis of the phenomena has shown that first-order reconstruc-
tive PTs are unequivocally identified by the criteria given here. Numerous
phase transformations possess the characteristics mentioned under 2. with the



7.2 Phase Transformations 353

exception of the transformation enthalpy, which although small, is clearly ob-
served, as well as a certain weak hysteresis of a few degrees. Often these
transformations are also accompanied by a minute change in volume and an
optical clouding arising from microcracks. In these cases we conveniently
talk of a strong second-order or a weak first-order transformation, respec-
tively. The crucial difference as opposed to the first type of PTs consists of the
fact that these crystals possess an anomalous temperature- or pressure depen-
dence with respect to certain properties over a wide temperature- or pressure
range (or a corresponding range of the electric or magnetic field strength). Un-
der anomalous we understand a basically different behavior as we would ob-
serve in a collective of crystals which over a large range of the state variables
does not suffer such phase transformations. Especially strong are the anoma-
lies appearing in the temperature- and pressure coefficients of the elastic con-
stants (see, for example, Fig. 7.1). When approaching the phase boundary the
anomaly often amplifies itself to a singular behavior to then slowly normalize

Figure 7.1 Anomalous temperature dependence of the elastic behav-
ior of Li2Ge7O15 (c22 and c23 indicated) in a broad range of tempera-
tures around the transition temperature at 284 K (see also Fig. 4.5(a)
and (b)).
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Figure 7.2 Temperature dependence of the thermoelastic constant
T11 of thiourea. Three regions of rapid sign inversion can be observed,
corresponding to the transitions at T1 = 202 K, T3 = 176 K, and
T4 = 173 K. The phase transition (I I I ↔ IV) expected around 180 K
from other experiments is barely visible in the behavior of T11.

in the daughter phase farther removed from the phase boundary. The term
λ-transformation was derived from this behavior. As far as the correspond-
ing investigations on single crystals are concerned, there does not exist one
single PT of this type which is not distinguished by such anomalies in elastic
behavior already far from the transformation boundary. In contrast, in dis-
tinctive first-order PTs one does not observe such elastic anomalies even in
the immediate vicinity of the stability limit. First-order PTs occur, in a manner
of speaking, as a catastrophy without warning and lead to abrupt changes in
properties.

Finally, there exists a series of crystals in which both types of transformation
appear in certain ranges of the state variables. Within a specific temperature-
or pressure range such crystals strive to attain a second-order transformation,
however, before reaching the new phase may be destroyed by a first-order
transformation. Furthermore, there also exists examples of several strong
second-order PTs especially in organic crystals. Figure 7.2 presents the inter-
esting case of thiourea (CS(NH2)2) which shows five PTs in the range between
168 and 300 K.

Furthermore, there also exists the possibility of carrying crystals over into
another state by irradiation with light, whereby the external thermodynamic
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variables do not change. This observed change in the electronic states of the
atoms or molecules in crystals causes a change in the optical absorption be-
havior. In some cases these effects are directly seen as a change in color of
the crystal (photochromatic effects). An interesting case of this type is illus-
trated by Na2FeNO(CN)5 · 2H2O, a rhombic crystal, which when irradiated
with intense shortwave laser light at liquid nitrogen temperatures experi-
ences a drastic change in the Mößbauer spectrum of the iron atoms over a
period of many hours, and at the same time one observes a strong change
in the optical absorption properties (Hauser et al., 1977). All such excitation
states return to the initial state at higher temperatures due to thermal activa-
tion.

Related in a way to these phenomena is the desired effect of the formation
of color centers, i.e., of excited states and specific defects, which in part rely
on the existence of impurity atoms, (for example, color centers in the alkali
halides, fluorite (CaF2), smoky quartz, amethyst) by irradiation with high en-
ergy particles (γ-quantums, α-particles and so on). After intensive irradiation
it may come to a partial destruction of the regular lattice structure, as for ex-
ample, in the case of the isotropization of zircon (ZrSiO4) and related types
of crystals after radioactive irradiation. The energy stored in the damaged re-
gions can be released by thermal activation, whereby the crystal, to a large
part, again assumes its ordered structure.

A phase transition is interpreted by specifying a definite driving force re-
sulting from a special interaction of the particles with one another. One an-
ticipates that PTs based on analogous mechanisms and driving forces display
similar traits of macroscopic transformation behavior and the same or a re-
lated functional dependence of the kinetics of transformation on the corre-
sponding state variables (scaling).

As mentioned many times, the elastic properties play a fundamental role
in all considerations on the stability of crystal phases. Let explain this aspect
a little more. A crystal can only exist in a stable state at all, when its ther-
mal energy is insufficient to deform large volume elements simultaneously
into another, at least metastable arrangement, similar, for instance, to plastic
deformation, which requires overcoming a certain threshold resistance. The
elastic stability conditions are (see also Section 4.5.7.1):

All static and dynamic elastic resistances must exceed a certain minimum
value given by the structural details and the thermal energy content of the
crystal per unit volume. In particular, all the values of ρv2 (ρ density, v velocity
of sound) calculated from the elastic constants out of the elastodynamic basic
equations for any arbitrary direction of propagation must lie above a certain
limit. In the case of cubic crystals, these relations are:

c11, c44, c11 − c12, c11 + 2c12 > 0.
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For c12 this means

−c11/2 < c12 < c11.

In fact, one normally observes in crystals with very small shear resistances (for
example, in cubic crystals c44 or (c11 − c12)/2) a tendency to transformation,
especially then, when one approaches a temperature- or pressure range, in
which the given coefficients dcij/dT and dcij/dp, effect a further reduction in
the respective shear resistances (example, alkali cyanides). For similar reasons
one can make rather confident predictions and also obtain clear details on the
processes driving the transformation from a careful study of the temperature-
and pressure dependence of the elastic constants wholly within the field of
stability of strong second-order phase transitions.
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8
Group Theoretical Methods

The methods of group theory are of valuable service for the analysis of the
mathematical structure of tensors, in particular for the investigation and the
determination of the number and type of independent tensor components. We
mention especially the general importance of the application of group theoret-
ical methods for the description of electronic states and their transitions, for
the analysis of the vibrational states of molecular and crystalline systems as
well as for the classification of phase transitions based on symmetry proper-
ties. In this book, however, we shall only discuss a few basic aspects.

In the following we will recapitulate some important definitions and the-
orems to provide a helpful introduction for those unfamiliar with group the-
ory. In particular, this chapter should be read in conjunction with introductory
books on group theory and the rules practiced by working through concrete
examples.

8.1
Basics of Group Theory

A set of elements g1, g2, . . . , g3 forms a group G, when the following conditions
are fulfilled:

1. Between any two elements gi and gj of the group an operation is defined
which also leads to an element belonging to the group, hence gigj = gk.
The commutative law for “multiplication” need not be fulfilled.

2. The operation is associative, i.e., for arbitrary gi, gj, gk then it is always
true that gi(gjgk) = (gigj)gk.

3. There is an identity element e of the group, also called the neutral ele-
ment, such that egi = gie = gi for all elements gi of the group.

4. Each element gi possesses an inverse element g−1
i also belonging to the

group such that gig−1
i = e.

The number of elements of a group is called the order h of the group. We de-
note a subgroup as a subset of the group satisfying all the conditions of a group.
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Table 8.1 Some symmetry operations for transformations of cartesian frames in
matrix notation.

n-fold rotation (n) parallel to e3; angle ϕ = 2π/n:

An‖e3
=

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

;

n-fold rotation–inversion (n̄) parallel to e3:

An̄‖e3
=

− cos ϕ − sin ϕ 0
sin ϕ − cos ϕ 0

0 0 1̄

;

threefold rotation parallel to the space diagonal of the cartesian frame:

A3‖[111] =

0 1 0
0 0 1
1 0 0

;

twofold rotation parallel to the axis dissecting e1 and e2:

A2‖[110] =

0 1 0
1 0 0
0 0 1̄

;

reflection at a mirror plane perpendicular to the axis dissecting e1 and e2:

A2̄‖[110] =

0 1̄ 0
1̄ 0 0
0 0 1

;

All other symmetry operations with different orientations with respect to the
crystallographic reference frame can be deduced from those indicated by a
similarity transformation A = U−1 A′U. The transformation matrix U creates
from the crystallographic reference frame {ei} the new reference frame {e′}
according to e′ = Ue, in which the respective symmetry operator assumes the
form A′ of one of the matrices given above.

Those elements of a group, which through their operation build a complete
group are called generating elements. If the elements are concrete things such
as geometric figures, permutations of numbers or letters, functions of the po-
sition vector or matrices then we speak of concrete representations of the group.
In the broader sense, we will be mainly dealing with groups whose elements
consist of quadratic matrices (number of rows = number of columns). Among
these, in particular, are all transformation matrices describing symmetry op-
erations. Table 8.1 lists these matrices for distinct directions.

The properties of a group are taken from the associated group table. This
contains all products gigj. In the case of point symmetry groups the simplest
way to generate the table is by means of a stereographic projection in which
all the symmetry operations occurring are written. We select a point P inside
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the respective elementary triangle and first let the symmetry element gj act on
P to generate gjP = P′. Then we let gi act on P′ and obtain gigjP = giP′ =
P′′. From the stereographic projection we can see how P′′ is to be directly
generated with a single operation gk of the group according to P′′ = gkP.
Hence, we find the product gigj = gk, which we then write in the ith row and
jth column of the group table.

Two elements gi and gj are conjugated when there exists one element x in
G such that gi = x−1gjx. All elements conjugated to an element gi form a
class. If gi and gj as well as gj and gk are conjugated, then gi and gk are also
conjugated. Since two classes of a group do not possess a common element,
one can decompose each finite group in a finite number of classes K1, K2 . . ..
The number of elements ni of a class Ki is a divisor of the order of G, hence, h =
nih′, h′ whole. As an example we select PSG 3m. The generating symmetry
elements are the threefold axis and a symmetry plane containing the threefold
axis. The group consists of six elements g1 = e, g2 = R3, g3 = R2

3, g4 =
m1 = R2̄‖a1

, g5 = m2 = R2̄‖a2
and g6 = m3 = R2̄‖a′1

with a′1 = −a1 − a2. In
order to carry out the decomposition into classes, we multiply each element
gi with all elements x according to x−1gix. This procedure can be carried out
comfortably by means of the given group table. Groups with the same group
table are called isomorphic groups (example, m3 and 23).

Group table of PSG 3m
g1 = e g2 = R3 g3 = R2

3 g4 = m1 g5 = m2 g6 = m3

g2 g3 g1 g6 g4 g5
g3 g1 g2 g5 g6 g4
g4 g5 g6 g1 g2 g3
g5 g6 g4 g3 g1 g2
g6 g4 g5 g2 g3 g1

The following classes result K1: g1 = e, K2: g2, g3; K3: g4, g5, g6. The class
K1 with the identity element exists in each group. The three elements of class
K3 belong to the three symmetry equivalent symmetry planes of PSG 3m. In
case the group is represented by matrices gk = (aij)k then each class can be
characterized by an invariant quantity, namely the trace S = ∑i aii of one of
the matrices of the class since all elements of a class possess the same trace;
hence, S(gi) = S(gj) for the case gi = x−1gjx. The proof for

S(A−1BA) = S(B) = S(ABA−1)

results from the relation

S(ABC) = S(BCA) = S(CAB) = AijBjkCki

for the case C = A−1. The quadratic matrices A, B and C are of the same
order.
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The trace assigned to a class, which we will denote by χ in what is to follow,
is called the character of the class. The invariance of the character consists in
the fact that a transformation matrix retains its trace even after a change of the
reference system. From a reference system {e′i} let new basic vectors a′i arise
according to a′i = a′ije

′
j, or in the matrix notation a′ = A′e′. The basic vectors e′i

and a′i with the transformation matrix U shall result from the unprimed basic
vectors according to

e′i = uijej or a′i = uijaj (e′ = Ue, a′ = Ua).

Hence, a = U−1 A′Ue when we solve the relation a′ = Ua with the help of
the inverse matrix in a = U−1a′ and substitute a′ by A′e′ and e′ by Ue. We
denote the matrix A = U−1 A′U as a to A′ equivalent matrix or symmetry
operation. The same relation applies to the coordinates when U represents
a unitary matrix, i.e., when U = (ŪT)−1. T means transposed matrix and ¯
means conjugate complex for the case that the components of the matrix are
complex. Consequently, the elements of a class represent the set of symmetry
equivalent operations of a certain type within the group. The elements of
an arbitrary finite group can always be represented in the form of matrices.
This is seen from the regular representation, directly constructed from the group
table. This is done by rearranging the columns of the group table such that the
identity element is present in each principal diagonal. The matrix of the ith
element of the regular representation is obtained by writing the number 1 for
the element gi and 0 for all remaining positions in the rearranged group table.
The order of these matrices is equal to the order of the group.

The element gig−1
j is in the ith row and jth column of the rearranged group

table and the element gjg−1
i = (gig−1

j )−1 is in the jth row and ith column.
This means that the transposed matrices are equivalent to the inverse matrices,
hence, unitary. That the regular representation actually obeys the group table
is recognized as follows. To each three elements gi, gj, gk there always exists
two elements gm and gn with the property

gigk = gm, gjgn = gk, hence gi = gmg−1
k and gj = gkg−1

n .

The associated matrices of the regular representation have the components
(Ai)mk = 1 and (Aj)kn = 1. All the components with other values for mk or
nk than those resulting from the above conditions vanish.

We now inquire as to the elements gl = gigj with the matrix Al . Because
gl = gigj = gmg−1

k gkg−1
n , we have (Al)mn = 1. If the regular representation

were to obey the group table, then we would have Al = Ai Aj. In point of fact
the components

(Ai Aj)mn = ∑
k

(Ai)mk(Aj)kn = 1
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agree with (Al)mn for each pair mn with the above value of k. All other mn
yield the component 0 in both the cases. This proves our assertion.

The matrices gi can be simultaneously transformed into the so-called block
matrices with the aid of the unitary transformation U−1giU (by applying a
suitable unitary matrix). Representations whose matrices cannot be reduced
into still smaller block matrices are called irreducible representations. These are
of fundamental importance in group theory applications. In all further uni-
tary transformations, the individual blocks (see the irreducible representation
for the PSG 3m in Table 8.2 arising from the regular representation) are trans-
formed among one another without involving other block matrices and their
coefficients. This means that the corresponding block matrices among them-
selves are also irreducible representations of the given group fulfilling the con-
ditions of the group table. These irreducible representations in the form of
block matrices possess a number of important properties which we cite with-
out proof:

1. The number of different nonequivalent irreducible representations of a
finite group is equal to the number S of the class.

2. The number of equivalent matrices of an irreducible representation con-
tained in the regular representation is equal to the order of the given ma-
trices. If one divides the identity element of the regular representation,
i.e., the unit matric of order h, into unit matrices of the block matrices
of the irreducible representation, one sees that the sum of the squares of
the matrices of all nonequivalent irreducible representations is equal to
the order of the group; hence, ∑S

s=1 l2
s = h, where ls is the order of the

block matrix of the sth irreducible representation.

3. If χk(gi) is the trace of the matrix of the ith element in the kth irreducible
representation then the following orthogonality relations are valid:

S

∑
s=1

nsχirr
k (s)χ̄irr

k′ (s) =
h

∑
i=1

χirr
k (i)χ̄irr

k′ (i) = hδkk′ .

As an abbreviation, we write χ(i) instead of χ(gi). One sums over the
classes in the first summation and over all elements of the group in the
second summation. ns is the number of elements in the sth class. A
similar relation for the products of the characters of the different classes
is given by

S

∑
k=1

χirr
k (s)χ̄irr

k (s′) = δss′h/ns.
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The character of an element of an arbitrary representation Γ(gi) can be re-
solved according to

χ(gi) =
S

∑
k=1

mkχirr
k (i).

Hence, mk specifies how often the kth irreducible representation is contained
in the representation Γ(gi). From the orthogonality relation it follows that

mk =
1
h

S

∑
s=1

nsχ(s)χ̄irr
k (s) =

1
h

h

∑
i=1

χk(gi)χ̄irr
k (gi),

whereby in the first summation one again sums over the classes and in the
second over the elements of the group. For each arbitrary representation Γ it
is true that

Γ =
S

∑
k=1

mkΓirr
k ,

where Γirr
k is the kth irreducible representation.

For many problems it is sufficient to consider the character table of a group
instead of the group table. Each column contains the characters of a certain
class for the different irreducible representations and the rows contain the
characters of the elements of the different classes for a fixed irreducible repre-
sentation.

In point symmetry groups, the order h of the group, i.e., the number of
symmetry operations, is always equal to the number of surface elements of a
general form; hence, one can specify h from the known morphological rules.

8.2
Construction of Irreducible Representations

The irreducible representations of the crystallographic point symmetry groups
can always be derived without difficulty with the help of the above relations,
in particular, with the orthogonality relations. Thus we can forgo a descrip-
tion of a general procedure for the construction of irreducible representations
here.

In some cases it is useful to apply an additional rule concerning the direct
matrix product (inner Kronecker product), which also plays an important role in
other relationships. The direct matrix product of two matrices A = (aij) and
B = (bkl), denoted by A× B, is a matrix with the elements

(A× B)ij,kl = aikbjl .
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The direct product of two representations

Γa(g)× Γb(g) = Γc(g)

consists of matrices formed by the direct product of the matrices belonging
to each element g of both representations. The direct product is also a rep-
resentation of the group when the matrices Γa and Γb are permutable for all
elements g. This results because

(Γc( f )Γc(g))ij,kl = (Γa( f )× Γb( f ))ij,mn(Γa(g)× Γb(g))mn,kl

= (Γa( f )imΓb( f )jn)(Γa(g)mkΓb(g)nl)

= (Γa( f )Γa(g))ik(Γb( f )Γb(g))jl

= (Γa( f g)× Γb( f g))ij,kl

= (Γc( f g))ij,kl .

Since an arbitrary representation can be resolved according to Γs(g) =
∑S

k=1 mkΓirr
k , and for mk the relation

mk =
1
h

S

∑
s=1

nsχ(s)χ̄irr
k (s)

holds as well as the relation

χ(Γa(g)× Γb(g)) = χ(Γa(g))χ(Γb(g)),

proved directly from the Kronecker relation, one has

Γa(g)× Γb(g) =
1
h

S

∑
k=1

∑
g

χa(g)χb(g)χ̄irr
k (g)Γk.

If Γa(g) and Γb(g) are two irreducible representations, then one can obtain
other irreducible representations via the direct product as long as Γa(g) and
Γb(g) are different from the identity representation.

The construction of the irreducible representation is now made as follows:
1. The group is decomposed into classes by calculating the product x−1gx,

whereby with given g for x all elements of the group are written down. As
already mentioned, this operation can be comfortably carried out using the
group table.

2. From the relation ∑S
s=1 l2

s = h, one obtains in almost all important applica-
tions an unambiguous statement concerning the dimensions of the individual
representations. From 1. the number of irreducible representations is known
(S = number of classes!).

3. Γ1 = (1; 1; 1; . . . ; 1) is always an irreducible representation (total sym-
metrical representation, trivial representation). We use the following scheme
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for the construction of nontrivial representations for l = 1, 2 and 3 (angle of
rotation ϕ = 2π/n):

g = 1 1̄ m = 2̄ ‖e1 n ‖ e3 n̄ ‖ e3
l = 1 (1) (1̄) (1̄) (1) (1̄)

l = 2
(

1 0
0 1

) (
1̄ 0
0 1̄

) (
1̄ 0
0 1

) (
cos ϕ sin ϕ
− sin ϕ cos ϕ

) (
− cos ϕ − sin ϕ

sin ϕ − cos ϕ

)

l = 3

1 0 0
0 1 0
0 0 1

 1̄ 0 0
0 1̄ 0
0 0 1̄

 1̄ 0 0
0 1 0
0 0 1

  cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

 − cos ϕ − sin ϕ 0
sin ϕ − cos ϕ 0

0 0 1̄


From the similarity transformation U AU−1 one obtains the corresponding

matrices A′ for the different orientations of the symmetry operators. For ex-
ample, one has for g5 = R2̄‖a2

in the PSG 3m, in two-dimensional representa-
tion:

g5 = Ug4U−1 =
(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)(
1̄ 0
0 1

)(
cos ϕ − sin ϕ

sin ϕ cos ϕ

)
=
(

1/2 −
√

3/2
−
√

3/2 −1/2

)
with ϕ = 120◦ (rotation of the symmetry plane about the threefold axis).

In any case, one must check whether the orthogonality conditions are ad-
hered to. For cyclic groups, in which all group elements are powers of the
generating elements, hence, with all rotation axes and rotation–inversion axes,
each element forms a class on its own, i.e., only one-dimensional represen-
tations exist. In these cases we can immediately specify the complete irre-
ducible representations. For an n-fold rotation axis, one always has gn = 1,
hence, g = e2πik/n (unit roots of nth degree) for the one-dimensional represen-
tations. The irreducible representations are then the n powers Γk = (e2πikm/n)
with m = 0, 1, 2, . . . , n − 1. Thus, for example, for a sixfold rotation axis
Γ2 = (1; e2πi2/6; e2πi4/6; e2πi6/6; e2πi8/6; e2πi10/6). We recognize the validity of
the orthogonality relation when we form the “scalar product” of two such
representations

Γk · Γ̄k′ =
n−1

∑
m=0

e2πikm/ne−2πik′m/n =
n−1

∑
m=0

e2πi(k−k′)m/n

=
e2πi(k−k′) − 1

e2πi(k−k′)/n − 1
=
{

0 for k 6= k′

1 for k = k′

}
.

For rotation inversions with even orders of symmetry one obtains the same ir-
reducible representations (the PSGs n and n̄ are isomorphic). In the case of odd
orders of symmetry, one makes use of the fact that the group n̄ = n× 1̄. This
results in 2n irreducible representations when one writes the identity element
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(1) and the element (1̄) for the group 1̄. The irreducible representations then
follow directly from the product of the representations of n and 1̄, because the
one-dimensional representations are identical with the corresponding charac-
ter values.

We will illustrate the procedure using the PSGs 3m, 23, and m3 as examples.
As already shown, 3m has six elements divided into three classes1:

K1 : g1 = e;

K2 : g2 = 31, g3 = 32;

K3 : g4 = m1, g5 = m2, g6 = m3.

The dimensions of the irreducible representations result from ∑3
s=1 l2

s = 6 =
1 + 1 + 4; thus there exists two one-dimensional representations and one two-
dimensional irreducible representation. The table below gives the values
χ(Γ2) = (1, 1, 1̄) for the character values of Γ2 and χ(Γ3) = (2, 1̄, 0) for the
two-dimensional representation. Consequently, the complete character table
for the PSG 3m looks like

e (31, 32) (m1, m2, m3)
χ(Γ1) 1 1 1
χ(Γ2) 1 1 1̄
χ(Γ3) 2 1̄ 0

The associated irreducible representations can be calculated with the help of
the above table when one generates the elements g5 and g6 from g4, as demon-
strated above:

g1 = e g2 = 31 g3 = 32 g4 = m1 g5 = m2 g6 = m3
Γ1 1 1 1 1 1 1

Γ2 1 1 1 1̄ 1̄ 1̄

Γ3

(
1 0
0 1

)(
−1/2

√
3/2

−
√

3/2 −1/2

)(
−1/2 −

√
3/2√

3/2 −1/2

) (
1̄ 0
0 1

) (
1/2 −

√
3/2

−
√

3/2 −1/2

)(
1/2

√
3/2√

3/2 −1/2

)
At this point we note that all groups n2 or nm with arbitrary n-fold axis

possess easily manageable character tables and irreducible representations. If
n is even we have the classes K1: e; K2: n1, nn−1; K3: n2, nn−2; . . . Kn/2+1:
nn/2; Kn/2+2: 2′ (n/2 times) or m′ (n/2 times); Kn/2+3: 2′′ (n/2 times) or m′′

(n/2 times). 2′ and m′ are the generating elements of the group n2 and nm,
respectively; 2′′ and m′′ are further symmetry elements bisecting the angles
between the axes 2′ and the symmetry planes m′, respectively. Thus a total of
n/2 + 3 classes exist. From ∑S

s=1 l2
s = h = 2n follows the unique decompo-

sition 2n = 4 + 4(n− 2)/2, i.e., there exists four one-dimensional irreducible
representations and (n− 2)/2 two-dimensional representations.

1) In the following we use the symbol nq as an abbreviation for Rq
n.
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If n is odd, then the groups n2 and nm, respectively, possess the follow-
ing classes: K1: e, K2: n1, nn−1; K3: n2, nn−2; . . .; K(n+1)/2: n(n−1)/2, n(n+1)/2;
K(n+1)/2+1: 2 (n-times) and m (n-times) respectively. Thus there exists (n +
1)/2 + 1 = (n + 3)/2 classes. With ∑S

s=1 l2
s = h = 2n, one obtains uniquely

2n = 2 + 4(n − 1)/2 and hence, two one-dimensional irreducible represen-
tations and (n− 1)/2 two-dimensional irreducible representations. The con-
struction of the character table for these groups and the complete determina-
tion of the associated irreducible representations for arbitrary n is unproblem-
atic.

We now come to the PSG 23, possessing two threefold axes running in the
direction of the space diagonals of a cube, as the generating symmetry opera-
tions. The elements of the group, aside from the identity element, are the three
twofold axes along the edges of the cube, the four threefold axes 31 along the
space diagonals and the four threefold axes with an angle of rotation of 240◦,
which we denote as 32. The group contains a total of 12 elements. From the
relation ∑S

s=1 l2
s = 12, we recognize the following:

If a three-dimensional representation exists, then there must also exist three
one-dimensional representations. In the case of a two-dimensional repre-
sentation we would have eight additional one-dimensional representations
and in the case of two two-dimensional representations, a further four one-
dimensional representations. From the equivalent symmetry operations men-
tioned above it clearly emerges that only four classes exist. Thus only the first
alternative comes into question: three one-dimensional representations and
one three-dimensional representation.

The characters of the nontrivial one-dimensional representations of the
classes K3 = 31 (4-times) and K4 = 32 (4-times) are found by setting the values
e2πim/3 = 1.

We then obtain

χ(Γ2) = (1, 1, e2πi/3, e2πi2/3)

and

χ(Γ3) = (1, 1, e2πi2/3, e2πi4/3).

The character values of the three-dimensional representation are obtained by
using the values from our table and we find

(Γ4) = (3,−1, 0, 0).

Checking the orthogonality relation confirms the correctness.
The associated irreducible representations are found directly from the ma-

trix representation of the symmetry elements of the group when one performs
the respective transformations. For Γ4 the result is
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e 2′ ‖ [100] 2′′ ‖ [010] 2′′′ ‖ [001]

Γ4

1 0 0
0 1 0
0 0 1

 1 0 0
0 1̄ 0
0 0 1̄

 1̄ 0 0
0 1 0
0 0 1̄

 1̄ 0 0
0 1̄ 0
0 0 1


31′ ‖ [111] 31′′ ‖ [1̄1̄1] 31′′′ ‖ [11̄1̄] 31′′′′ ‖ [1̄11̄]0 1 0
0 0 1
1 0 0

 0 1 0
0 0 1̄
1̄ 0 0

 0 1̄ 0
0 0 1
1̄ 0 0

 0 1̄ 0
0 0 1̄
1 0 0


32′ ‖ [111] 32′′ ‖ [1̄1̄1] 32′′′ ‖ [11̄1̄] 32′′′′ ‖ [1̄11̄]0 0 1
1 0 0
0 1 0

 0 0 1̄
1 0 0
0 1̄ 0

 0 0 1̄
1̄ 0 0
0 1 0

 0 0 1
1̄ 0 0
0 1̄ 0


The irreducible representations and the respective character vectors for the

PSG m3 are obtained from the Kronecker product according to m3 = 23× 1̄.
The 24 elements are distributed over eight classes, of which the first four are
identical with those of the PSG 23, and the second four result simply from the
first four by multiplication with the element g13 = 1̄. Formally, we can rep-
resent a group G, formed from a group G′ by a Kronecker product with the
group 1̄ = (g1 = 1, g2 = −1) as G = G′ × 1̄ = G′g1 + G′g2. The character
table then has the form

K(G′) K(G′g2)
χ(Γ(G′)) χ(G′) χ(G′)
χ(Γ(G′g2)) χ(G′) −χ(G′)

K(G′) means the classes of G′ and K(G′g2) means the classes of G′g2. Corre-
spondingly, Γ(G′) and Γ(G′g2) are the irreducible representations of G′ and
G′g2, respectively.

Exercises 37 to 40 provide further practice.
As we have seen from the concrete examples, each individual irreducible

representation includes certain partial aspects of the group law. The irre-
ducible representations are therefore associated with the concept of symmetry
types referred to the respective group. For example, the identity representa-
tion Γ1 contains absolutely no specific group properties. It is therefore called
as totally symmetric. The decomposition of an arbitrary representation into
irreducible representations sheds light on the analysis of different symmetry
types.
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8.3
Tensor Representations

If one carries out an arbitrary symmetry operation, one finds that certain ten-
sor components transform among themselves, independent of the position
and the order of symmetry of the rotation axis or the rotation–inversion axis.
This is illustrated by taking a general second-rank tensor as an example. We
already know the scalar invariant

I = tijδij = t11 + t22 + t33 = t′11 + t′22 + t′33.

A vector invariant is the vector

t = tijeijkek

= (t23 − t32)e1 + (t31 − t13)e2 + (t12 − t21)e3

= t′,

where eijk are the components of the Levi-Cività tensor. The components of t
transform like the coordinates, i.e., only the components of t appear in t′.

If we consider a general mth-rank tensor in three-dimensional space, not
subject to secondary conditions, we then have 3m independent components,
which we can conceive as the coordinates of a 3m-dimensional space. The
second-rank tensor is then represented as a vector of the form T = tiei, where,
for example t11 = t1, t22 = t2, t33 = t3, t23 = t4, t31 = t5, t12 = t6, t32 = t7,
t13 = t8 and t21 = t9. We now go over to a new reference system with the
basic vectors e0

i , which are orthogonal, hence, e0
i · e0

j = δij, and so selected that
the invariants I and t fix the first four of these basic vectors, namely

e0
1 = (e1 + e2 + e3)/

√
3

e0
2 = (e4 − e7)/

√
2

e0
3 = (e5 − e8)/

√
2

e0
4 = (e6 − e9)/

√
2.

For the remaining five new basic vectors e0
i = aijej, the orthogonality to the

first four demands e0
i · e0

k = 0 for i 6= k, hence, ai1 + ai2 + ai3 = 0 as well as

ai4 − ai7 = ai5 − ai8 = ai6 − ai9 = 0.
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These relationships are fulfilled, for example, by the following mutually or-
thogonal vectors:

e0
5 = (e1 + e2 − 2e3)/

√
6

e0
6 = (e1 − e2)/

√
2

e0
7 = (e4 + e7)/

√
2

e0
8 = (e5 + e8)/

√
2

e0
9 = (e6 + e9)/

√
2.

In the abbreviated notation we have e0
i = Dijej and correspondingly t0

i =
Dijtj. In this representation I, the vector t as well as each vector composed
of the basic vectors e0

5 to e0
9 remain within the space spanned by e0

1, e0
2, e0

3, e0
4

or e0
5, e0

6, e0
7, e0

8, e0
9 during the transformation (rotation or rotation inversion).

This means that the space spanned by the new basic vectors is resolved into
three subspaces of dimensions 1, 3, and 5. We call these subspaces the in-
variant linear subspaces of the corresponding 3m-dimensional space formed
by an mth-rank tensor of that three-dimensional space. The search for these
subspaces is carried out in a manner analogous to the above example, even
for tensors of higher rank, whereby a knowledge of the tensor invariants is
of valuable help. Conversely, resolving a tensor into its invariant linear sub-
spaces allows an overview of the tensor invariants, which in many cases are
amenable to a direct geometric interpretation.

A transformation of the basic system, which we introduced with the defini-
tion of the tensor concept, that is

t′ij = uii∗ujj∗ ti∗ j∗ ,

takes the form t′i = Rijtj or abbreviated t′ = Rt in the respective linear vector
space. The matrix R is derived from the three-dimensional transformation
matrix U, which carries over the Cartesian basic vectors ei to the new basic
vectors e′i according to e′i = uii∗ei∗ . From the definition given above for the
inner Kronecker product, we recognize straight away that the matrix R is to
be understood as the Kronecker product of U with itself. Accordingly, with a
mth-rank tensor, we have to use the m-fold Kronecker product of the matrix
U for the transformation R.

We now have the possibility of calculating the number of independent ten-
sor components for the case that the tensor belongs to a certain symmetry
group. The tensor, even in the linear vector space representation, is carried
over by the respective symmetry operations into itself. The number of in-
dependent components must be equal to the dimension of the linear vector
space which the tensor takes up because of symmetry operations or other
conditions. For example, the three-dimensional subspace spanned by e0

2, e0
3,
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e0
4 remains empty for the case of a symmetric second-rank tensor, i.e., a sym-

metric second-rank tensor only possesses the one-dimensional and the five-
dimensional invariant linear subspace.

The symmetry operations of the given symmetry group carry the tensor
over into itself, i.e., the individual tensor components experience an iden-
tical transformation, which in the representation of the matrices R must be
conserved as identity representations. Consequently, the number of indepen-
dent tensor components is equal to the number of identity representations
conserved in the representation by the matrices R. This number, according to
the rules discussed above, is

m1 =
1
h

S

∑
s=1

nsχ(s)χ1(s) and with χ1(s) = 1 :

m1 =
1
h

S

∑
s=1

nsχ(s) (ns number of elements in the s-th class).

As an example, consider the third-rank tensor tijk (without permutability of
the indices) in the PSG 3m. The character of the R-representation is obtained
as the third power of the character value of the three-dimensional representa-
tion Γ′3 of the PSG 3m. It is Γ′3 = Γ1 + Γ3 (Γ3 is two-dimensional!), hence,

χ(Γ′3) = χ(Γ1) + χ(Γ3) = (3, 0, 1).

Thus

χ(Γ′3 × Γ′3 × Γ′3) = (27, 0, 1) and m1 =
1
6
(27 + 3) = 5.

This result is obtained far more laboriously as with the method of symmetry
reduction discussed in Section 4.4. However, the other way of determining the
independent tensor components with the methods of the linear vector space
representation of the tensor in linear vector space and the explicit calculation
of the invariant subspaces is not essentially different from those discussed in
Section 3.8. Nevertheless, there does not exist a simpler method as that just
discussed to calculate the number of independent tensor components, partic-
ularly with tensors of higher rank. In this regard, let us consider a further ex-
ample of a ninth-rank tensor (without permutability of the indices) in the PSG
3m. The character values of the representation of the R-matrices are the ninth
powers of the character of the representation Γ′3. Hence, χ(R) = (39, 0, 19) and
thus

m1 =
1
6
(19683 + 3) = 3281.

We now have to investigate the effects of secondary conditions, such as the
permutability of indices, which can arise, for example, from physical reasons
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in almost all tensors describing physical properties (most second-rank tensors,
piezoelectric tensor, elasticity tensor etc.).

In many cases one can obtain the transformation matrix R of the tensors
through the Kronecker products R = A× B. The associated character values
can be calculated with the help of the product rule χ(A × B) = χ(A)χ(B),
where A and B may themselves be Kronecker products.

The situation in the case of the permutability of indices is less clear. A gen-
eral derivation of the valid relations is found, for example, in Ljubarski (1962).
For our purposes, it suffices to discuss practical applications for some impor-
tant cases. Firstly, we consider the permutability of indices of second-rank
tensors (tij = tji, second-rank symmetric tensors). To calculate the character
of R we need only sum the factors in the principal diagonal of the transforma-
tion table:

t11 = u11u11t11 + · · ·
t22 = · · ·+ u22u22t22 + · · ·
t33 = · · ·+ u33u33t33 + · · ·
t12 = t21 = · · ·+ (u11u22 + u12u21)t12 + · · ·
t23 = t32 = · · ·+ (u22u33 + u23u32)t23 + · · ·
t31 = t13 = · · ·+ (u33u11 + u31u13)t31 + · · ·

hence,

χ(R) = χ(3×3)s(R) = ∑
i=1

u2
ii +

1
2 ∑

i 6=j
(uiiujj + uijuji)

=
1
2 ∑

i,j
uijuji +

1
2

(
∑

i
uii

)2

.

As one can immediately verify with

U =

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

 ,

the first sum is just the half trace of U2. The second sum is half the square of
the trace of U. Hence,

χ(3×3)s(R) =
1
2

χ3(U2) +
1
2

χ2
3(U),

where the symbols (3× 3)s denote the symmetric second-rank tensor, 3× 3
denote the general second-rank tensor and corresponding higher tensors. For
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example, (3 × 3)s × (3 × 3) means a fourth rank tensor in which two index
positions are permutable.

Since in this connection we must always use the three-dimensional repre-
sentation for U, it is convenient to note the characters for the simple products:
χ(U) = ±(1 + 2 cos ϕ) with ϕ = 2π/n. + specifies rotation operations, −
specifies rotation-inversion. Furthermore, χ3(U2) = (1 + 2 cos 2ϕ) and thus

χ(3×3)s(R) = 2 cos ϕ + 4 cos2 ϕ for n and n̄.

Again, we take the PSG 3m as an example. In this PSG, a symmetric second-
rank tensor has

m1 =
1
6
(6 + 2 · 0 + 3 · (−2 + 4)) = 2 independent components.

For U we have written the three-dimension representation Γ′3 already given
above.

As the next example, we consider the piezoelectric tensor and other third-
rank tensors in which two index positions are permutable, hence, tijk = tikj.
We use the product formula to calculate the character values

χ3×(3×3)s = χ3(U)χ(3×3)s(U)

= ±(1 + 2 cos ϕ)(2 cos ϕ + 4 cos2 ϕ)

= ±2(cos ϕ + 4 cos2 ϕ + 4 cos3 ϕ),

where we write + for n and − for n̄.
In the PSG 3m, we then have χ(R) = (18, 0, 2) and thus

m1 =
1
6
(18 + 6) = 4 independent components

in agreement with the result in Section 4.4.1.
To calculate χ(R) in the case of three and more mutually permutable index

positions we proceed as in the case of second-rank tensors and construct the
respective transformation formulae. The result is then, for example,

χ(3×3×3)s = ±2 cos ϕ(−1 + 2 cos ϕ + 4 cos2 ϕ)

with + for n and − for n̄ as well as

χ(3×3×3×3)s = 1− 2 cos ϕ− 8 cos2 ϕ + 8 cos3 ϕ + 16 cos4 ϕ

for n and n̄.
Table 8.3 presents a compilation of the more important formulae for the

calculation of the characters of tensor representations (polar tensors).



8.3 Tensor Representations 375

Ta
bl

e
8.

3
C

ha
ra

ct
er

s
of

te
ns

or
re

pr
es

en
ta

tio
ns

.

Te
ns

or
C

ha
ra

ct
er

χ
(R

)
(+

fo
r

n,
−

fo
r

n̄)

t i
χ

3
=
±

(1
+

2
co

s
ϕ
)

t ij
χ

(3
×

3)
=

(1
+

2
co

s
ϕ
)2

t ij
...

s
(m

th
ra

nk
)

χ
(3
×

3×
...

3)
=

(±
1)

m
(1

+
2

co
s

ϕ
)m

t ij
=

t ji
(t

ot
al

ly
sy

m
m

et
ri

c)
χ

(3
×

3)
s
=

1 2
χ

3(
U

2 )
+

1 2
χ

2 3(
U

)
=

2
co

s
ϕ
(1

+
2

co
s

ϕ
)

t ij
k

=
t ik

j
(i

nt
er

ch
an

ge
ab

le
w

it
hi

n
on

e
pa

ir
)

χ
3×

(3
×

3)
s
=

χ
3χ

(3
×

3)
s
=
±

2
co

s
ϕ
(1

+
2

co
s

ϕ
)2

t ij
k

(t
ot

al
ly

sy
m

m
et

ri
c)

χ
(3
×

3×
3)

s
=

1 3
χ

3(
U

3 )
+

1 2
χ

3(
U

2 )
χ

3(
U

)+
1 6

χ
3 3(

U
)

=
±

2
co

s
ϕ
(−

1
+

2
co

s
ϕ

+
4

co
s2

ϕ
)

t ij
kl

=
t ij

lk
χ

(3
×

3)
×

(3
×

3)
s
=

χ
3×

3χ
(3
×

3)
s
=

2
co

s
ϕ
(1

+
2

co
s

ϕ
)3

t ij
kl

=
t k

li
j

(p
ai

rw
is

e
in

te
rc

ha
ng

ea
bl

e)
χ

((
3×

3)
×

(3
×

3)
) s

=
1 2

χ
(3
×

3)
(U

2 )
+

1 2
χ

2 (3
×

3)
(U

)=
1+

4
co

s
ϕ
(1

+
2

co
s

ϕ
+

4
co

s2
ϕ
+

4
co

s3
ϕ
)

t ij
kl

=
t ji

kl
=

t ij
lk

=
t ji

lk
χ

(3
×

3)
s×

(3
×

3)
s
=

χ
2 (3
×

3)
s
=

4
co

s2
ϕ
(1

+
2

co
s

ϕ
)2

(i
nt

er
ch

an
ge

ab
le

w
it

hi
n

pa
ir

s)

t ij
kl

=
t ik

lj
=

t il
kj

=
..

.
χ

(3
)×

(3
×

3×
3)

s
=

χ
3χ

(3
×

3×
3)

s
=

2
co

s
ϕ
(1

+
2

co
s

ϕ
)(
−

1
+

2
co

s
ϕ

+
4

co
s2

ϕ
)

(i
nt

er
ch

an
ge

ab
le

w
it

hi
n

a
tr

ip
le

)

t ij
kl

=
t ij

lk
=

t lk
ij

=
..

.
χ

((
3×

3)
s×

(3
×

3)
s)

s
=

1 2
χ

(3
×

3)
s
(U

2 )
+

1 2
χ

2 (3
×

3)
s
(U

)

(p
ai

rw
is

e
an

d
w

it
hi

n
pa

ir
s

in
te

rc
ha

ng
ea

bl
e)

=
1

+
4

co
s2

ϕ
(−

1
+

2
co

s
ϕ

+
4

co
s2

ϕ
)

t ij
kl

(t
ot

al
ly

sy
m

m
et

ri
c)

χ
(3
×

3×
3×

3)
s
=

1
+

2
co

s
ϕ
(−

1
−

4
co

s
ϕ

+
4

co
s2

ϕ
+

8
co

s3
ϕ
)

t ij
kl

m
(t

ot
al

ly
sy

m
m

et
ri

c)
χ

(3
×

3×
3×

3×
3)

s
=
±

1
±

4
co

s
ϕ
(1
−

2
co

s
ϕ
−

6
co

s2
ϕ

+
4

co
s3

ϕ
+

8
co

s4
ϕ
)

t ij
kl

m
n

=
t ij

kl
nm

=
t ij

lk
nm

=
..

.
χ

(3
×

3)
s×

(3
×

3)
s×

(3
×

3)
s
=

χ
3 (3
×

3)
s
(U

)
=

8
co

s3
ϕ
(1

+
2

co
s

ϕ
)3

(i
nt

er
ch

an
ge

ab
le

w
it

hi
n

pa
ir

s)

t ij
kl

m
n

=
t k

li
jm

n
=

t k
li

jn
m

=
..

.
χ

((
3×

3)
s×

(3
×

3)
s×

(3
×

3)
s)

s
=

1 3
χ

(3
×

3)
2
(U

3 )
+

1 2
χ

(3
×

3)
s
(U

2 )
χ

(3
×

3)
s
(U

)+
1 6

χ
3 (3
×

3)
s
(U

)

(p
ai

rw
is

e
an

d
w

it
hi

n
pa

ir
s

in
te

rc
ha

ng
ea

bl
e)

=
8

co
s2

ϕ
(2
−

co
s

ϕ
−

6
co

s2
ϕ

+
4

co
s3

ϕ
+

8
co

s4
ϕ



376 8 Group Theoretical Methods

With axial tensors (pseudo tensors), χ(R) must be furnished with an addi-
tional factor (−1) when applying a symmetry operation n̄.

All further cases are calculated in an analogous fashion. The formulae for
the totally symmetric sixth and higher rank tensors can be easily derived by
the reader by summing the coefficients in the principal diagonals of the system
of the transformation formulae (see also Exercise 7)

t′ij...s = tij...s = uiiujj . . . usstij...s,

where

U =

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1


as previously.

8.4
Decomposition of the Linear Vector Space into Invariant Subspaces

We now return to the decomposition of a tensor into invariant linear sub-
spaces. Since, in a unitary transformation, the components spanning a certain
invariant subspace again join to an invariant subspace of the same dimen-
sion, the transformation matrices can be split into irreducible blocks. In doing
so, the basic vectors are selected corresponding to the invariant subspaces, as
we explained on hand of the example of the second-rank tensor (see section
8.3). Accordingly, the characters (traces) of the transformation matrices are
equal to the sum of the characters of the transformations in the individual
subspaces. If one knows the character values for a tensor representation χ(R),
then one can extract the nature of the subspace formed by the given tensor. It
is χ(R) = ∑j mjχj(R). χj(R) is the character of the transformation matrix for
the j-dimensional subspace for a certain symmetry operation U. Accordingly,
the tensor representation is then Γ(R) = ∑j mjΓj(R).

The following matrices furnish a (2l + 1)-dimensional representation of the
group of n-fold rotation axis:

Γq;2l+1(R) =



eilqϕ 0
...

0 ei(l−1)qϕ · · · 0 · · ·
...

. . .
...

· · · 0 · · · e−i(l−1)qϕ 0
... 0 e−ilqϕ


,

where ϕ = 2π/n. Allowing q to run through the values 0, 1, . . . , n− 1, results
in n matrices, which fulfil the group properties of the existent rotation group.
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This representation has the character

χ2l+1(Rq) =
m=+l

∑
m=−l

eimqϕ = 1 + 2
m=+l

∑
m=+1

cos mqϕ =
sin(2l + 1)qϕ/2

sin qϕ/2
.

The simplest way of deriving this relation is with the help of a proof by induc-
tion or through the summation formula for a geometric series

m=+l

∑
m=−l

eimqϕ =
ei(l+1)qϕ − e−ilqϕ

eiqϕ − 1
=

(ei(l+1)qϕ − e−ilqϕ)(e−iqϕ + 1)
(eiqϕ − 1)(e−iqϕ + 1)

=
sin(l + 1)qϕ + sin lqϕ

sin qϕ
=

sin(2l + 1)qϕ/2
sin qϕ/2

(with sin α + sin β = 2 sin(α + β)/2 · cos(α− β)/2). In practice, it is convenient
to expand the cos terms in powers of cos ϕ. Then one obtains the following
values for q = 1:

χ1(R) = 1

χ3(R) = 1 + 2 cos ϕ

χ5(R) = −1 + 2 cos ϕ + 4 cos2 ϕ

χ7(R) = −1− 4 cos ϕ + 4 cos2 ϕ + 8 cos3 ϕ

χ9(R) = 1− 4 cos ϕ− 12 cos2 ϕ + 8 cos3 ϕ + 16 cos4 ϕ

χ11(R) = 1 + 6 cos ϕ− 12 cos2 ϕ− 32 cos3 ϕ + 16 cos4 ϕ + 32 cos5 ϕ

χ13(R) = −1 + 6 cos ϕ + 24 cos2 ϕ− 32 cos3 ϕ− 80 cos4 ϕ

+ 32 cos5 ϕ + 64 cos6 ϕ

χ15(R) = −1− 8 cos ϕ + 24 cos2 ϕ + 80 cos3 ϕ− 80 cos4 ϕ− 192 cos5 ϕ

+ 64 cos6 ϕ + 128 cos7 ϕ

and so on.
As an example, we consider the tensor tijk = tikj (for example, the piezoelec-

tric tensor) and the tensor tijkl = tklij = tjikl = . . . (for example, the elasticity
tensor). Because

χ3×(3×3)s = 2 cos ϕ + 8 cos2 ϕ + 8 cos3 ϕ

(see Table 8.3) one obtains the unique decomposition

χ3×(3×3)s(R) = 2χ3(R) + χ5(R) + χ7(R).

One begins by assigning the respective highest power to the correspond-
ing χ2l+1(R). The result is that there does not exist a scalar invariant (one-
dimensional subspace), rather, two three-dimensional and a five- and seven-
dimensional invariant subspace. In the other example we have

χ((3×3)s×(3×3)s)s(R) = 2χ1(R) + 2χ5(R) + χ9(R).
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Here we have two scalar (one-dimensional) invariants as well as two five-
dimensional subspaces and one nine-dimensional subspace. For the elas-
ticity tensor this means, for example, that except for the dynamic elasticity
Ē = ∑i,j cijij = cijklδikδjl and the trace ∑3

m=1 gmm of the second-rank tensor de-
scribing the deviation from the Cauchy relations, where gmm = 1/2emikenjlcijkl ,
that no further scalar invariants exist that cannot be formed from these two.
The same applies accordingly to both second-rank tensor invariants, the dy-
namic elasticity, and the deviations from the Cauchy relations (see Sections
4.5.1 and 4.5.5).

8.5
Symmetry Matched Functions

For the description of the directional dependence of properties and even of
functions of the position coordinates or a wave function of a quantum me-
chanical system, one can employ upon a system of functions which in them-
selves obey a certain point symmetry. Of particular interest are homogeneous
polynomials in the coordinates x1, x2, x3 of the Cartesian reference system.
These polynomials can also be represented as functions of the angles ξ and
η with the aid of polar coordinates. ξ is the angle between the position vector
x = xiei and the vector e3 and η is the angle between the projection of the
position vector on the plane spanned by e1 and e2 and the vector e1. Accord-
ingly,

x1 = |x| cos η sin ξ, x2 = |x| sin η sin ξ

and

x3 = |x| cos ξ with |x| =
√

x2
1 + x2

2 + x2
3.

If a symmetry operation n or n̄ exists, then each polynomial of the lth de-
gree Θ = Aijk...sxixj . . . xs is carried over in an identical form by the respective
transformation, i.e., one has A′

ijk...s = Aijk...s. Hence, these polynomials trans-
form as the quadric of degree l.

The scheme of independent coefficients for each polynomial of the lth de-
gree and the relationships of the coefficients among one another corresponds
to the conditions for the components of a totally symmetric lth-rank tensor in
the respective PSG. For example, a third-degree polynomial has the following
form in the PSG 3m

Θ3 = A113x2
1x3 − 3A222x2

1x2 + A222x3
2 + A113x2

2x3 + A333x3
3

in accordance with the result of symmetry reduction in the PSG 3m under the
condition of total symmetry (see Section 4.4).
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We now consider functions dependent only on the direction of the position
vector and not on its magnitude and those containing the radial dependence
in a separate factor respectively. We then have

Θ = Θ(r)Θ(ξ, η) with r = |x|.

Analogous to the expansion of a periodic function in a Fourier series, the an-
gular dependent function Θ(ξ, η) can be expanded in a series with respect to
the terms of a suitable system of functions {Fl} according to

Θ(ξ, η) =
q

∑
l=0

Al Fl .

If we demand that Fl is a polynomial of the lth degree in xi/r and further,
that the function Θ(ξ, η) is optimally approximated by the functions Sq =
∑

q
l=0 Al Fl in each stage q according to the least squares method, i.e., that

∆q =
∫

sphere
[Θ(ξ, η)− Sq(ξ, η)]2dΩ

becomes a minimum for each q, then we come to the system of spherical har-
monic functions, well known from potential theory. These functions are solu-
tions of the Laplace differential equation

∂2Y
∂x2

1
+

∂2Y
∂x2

2
+

∂2Y
x2

3
= 0.

Since this quantity is a scalar invariant of the differential operator {∂2/∂xi∂xj},
the solutions always have the same form independent of the respective refer-
ence system. The spherical harmonic functions are expressed as follows:

Ym
l = Nm

l Pm
l (ζ)eimη .

The index m is an integer number and can only take on the values |m| ≤ l.
They obey the orthogonality- and normalization condition∫

sphere
Ym

l
¯Ym′
l′ dΩ =

∫ 2π

η=0

∫ π

ξ=0
Ym

l
¯Ym′
l′ sin ξdξdη = δll′δmm′

with

dΩ = sin ξdξdη.

For Pm
l there exist a simple recursion formula

Pm
l =

(1− ζ2)m/2dl+m(ζ2 − 1)l

2l l!dζ l+m ,
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with

ζ = cos ξ and (1− ζ2) = sin2 ξ.

The normalization factor Nm
l has the form

Nm
l =

(
(2l + 1)(l −m)!

4π(l + m)!

)1/2

.

Hence, we can expand any arbitrary function Θ(ξ, η), which is numerically or
analytically known, in a series with respect to the functions Ym

l , according to

Θ(ξ, η) =
∞

∑
l=0

m=+l

∑
m=−l

AlmYm
l .

We obtain the coefficients Alm directly from the orthogonality relation by in-
serting the series

Alm =
∫

sphere
Θ(ξ, η)Ȳm

l dΩ.

Some low indexed Ym
l are presented in Table 8.4.

We now come to discuss two further important properties of the functions
Ym

l . Let us carry out a transformation of the Cartesian reference system ac-
cording to e′i = uijej, we then have Ym′

l = RmnYn
l . This means that Ym′

l , a
polynomial of the lth degree, can be constructed from a linear combination
of Yn

l . This results from the fact that Ym′
l must also be a polynomial of the

lth degree, as well as from the expansion formula. A rotation about e3 with
the angle 2π/n (n-fold rotation axis) carries Ym

l over in Ym
l e2πim/n, as is di-

rectly seen from the definition of Ym
l . In a rotation-inversion n̄ ‖ e3, one must

distinguish between the cases “l even” and “l odd.” These are

Ym′
l = Ym

l e2πim/n for l even and

Ym′
l = Ym

l e2πim/n(−1) for l odd.

Thus the spherical harmonics are subject to the following conditions under
the existence of symmetry properties (aside from the condition |m| ≤ l):

n: e2πim/n = 1 hence, m = nq, q integer,
n̄: e2πim/n = −1 for l odd, hence, m = n(2q + 1)/2, q integer
n̄: e2πim/n = 1 for l even, hence, m = nq, q integer, as in the case of n.

From these we read the following rules, which we have come to know in part
already in Section 3 with regards to tensor transformations:

1. All homogeneous polynomials of odd order and thus all odd-rank polar
tensors vanish for the case that the respective symmetry groups contain
a rotation-inversion n̄ with odd n (1̄, 3̄, 5̄, and so on).
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Table 8.4 Spherical harmonics Ym
l for l = 0 to 3 (r =

√
x2

1 + x2
2 + x2

3; x1 = r sin ξ cos η;
x2 = r sin ξ sin η; x3 = r cos ξ).

Y0
0 =

1√
4π

Y−1
1 = −

√
3

8π

(x1 − ix2)
r

; Y0
1 =

√
3

4π

x3

r
; Y1

1 =
√

3
8π

(x1 + ix2)
r

Y−2
2 =

√
15

32π

(x1 − ix2)2

r2 ; Y−1
2 =

√
15
8π

x3(x1 − ix2)
r2 ; Y0

2 =
√

5
16π

(3x2
3 − r2)
r2 ;

Y1
2 =

√
15
8π

x3(x1 + ix2)
r2 ; Y2

2 =
√

15
32π

(x1 + ix2)2

r2

Y−3
3 = −

√
35

64π

(x1 − ix2)3

r3 ; Y−2
3 =

√
105
32π

x3(x1 − ix2)2

r3 ;

Y−1
3 = −

√
21

64π

(5x2
3 − r2)(x1 − ix2)

r3 ; Y0
3 =

√
7

16π

x3(5x2
3 − 3r2)
r3 ;

Y1
3 =

√
21

64π

(5x2
3 − r2)(x1 + ix2)

r3 ; Y2
3 =

√
105
32π

x3(x1 + ix2)2

r3 ; Y3
3 =

√
35

64π

(x1 + ix2)3

r3 .

Real functions can be constructed from simple linear combinations of the complex Ym
l , e.g.

Y2
2 + Y−2

2 =
√

15
8π

(x2
1 − x2

2)
r2 ; i(Y2

2 −Y−2
2 ) = −2

√
15
8π

x1x2

r2 ;

i(Y1
2 + Y−1

2 ) = −2

√
15
8π

x3x2

r2 ; (Y1
2 −Y−1

2 ) = 2

√
15
8π

x3x1

r2 .

In general, for each l a total of (2l + 1) real orthogonal and normalized functions can be con-
structed according to

1√
2
(Ym

l ±Y−m
l )i(m−1/2±1/2) mit 0 < m ≤ l und Y0

l .

This statement can easily be proven from the relation Y−m
l = (−1)mYm

l that derives directly from
the definition of the Ym

l .

2. All homogeneous polynomials of even order and thus all even-rank po-
lar tensors have the same form when a rotation axis n or a rotation-
inversion n̄ of the same order of symmetry exists. This means that poly-
nomials and tensors of even order and rank respectively are ”centrosym-
metric”!

Furthermore, due of the limitations of m, we can take in at a glance which
spherical harmonics, at all, can be found with the existence of an n-fold axis
or a rotation-inversion n̄. Thus, we can now derive all symmetry matched
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spherical harmonics for the PSG of type n, n̄ and n/m. For the PSG n2, nm
and the cubic PSG, the respective conditions for a second distinct direction
must also be fulfilled. In this manner, the homogeneous polynomials, allowed
for each l (degree of the polynomial), are now accessible for each arbitrary
point symmetry group.

From the transformation behavior of Ym
l we obtain a (2l + 1)-dimensional

representation, which in the case of a rotation axis n assumes the form of the
representation Γm;2l+1(R) discussed in the previous section. The individual
Ym

l for a respective fixed l represent, to a certain extent, the coordinates of a
(2l + 1)-dimensional vector. Thus, we also recognize the character of the given
transformation matrices and are then in the position to apply the known rules
of group theory to analyze symmetry matched functions.

As an example, consider the PSG 3m and m3, for which we want to cal-
culate the (2l + 1)-dimensional representation. We use the formula for the
number mj of the jth irreducible representation Γj of the group contained in
an arbitrary representation Γ

mj =
1
h

S

∑
s=1

nsχ(s)χ̄j(s)irr.

It is

χ(R) = ± sin(2l + 1)ϕ/2
sin ϕ/2

,

where ϕ = 2π/n; + for n and n̄ when l is even and − for n̄ when l is odd. The
procedure runs as follows:

1. Calculate the characters of the classes for each l with the help of the
above formula,

2. Calculate the values mj and hence, the decomposition

Γ(2l+1) =
S

∑
j=1

mjΓj.

The index “2l + 1” was placed in brackets to distinguish irreducible rep-
resentations.

Tables 8.5 and 8.6 present the results for the PSGs m3 and 3m.
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Table 8.5 Decomposition of the (2l + 1)-dimensional representations in irreducible represen-
tations of the PSG m3 = 23×1̄. Classes: K1 = e; K2 = 2 (3×); K3 = 31 (4×); K4 = 32 (4×);
K5 = K′1 = 1̄; K6 = K′2 = m (3×); K7 = K′3 : 3̄1 (4×); K8 = K′4 = 3̄2 (4×).

Characters of irreducible representations
e 2 31 32 1̄ m 31 32

(3×) (4×) (4×) (3×) (4×) (4×)
Γ1 1 1 1 1 1 1 1 1
Γ2 1 1 e2πi/3 e2πi2/3 1 1 e2πi/3 e2πi2/3

Γ3 1 1 e2πi2/3 e2πi4/3 1 1 e2πi2/3 e2πi4/3

Γ4 3 1̄ 0 0 3 1̄ 0 0
Γ5 = Γ′1 1 1 1 1 1̄ 1̄ 1̄ 1̄
Γ6 = Γ′2 1 1 e2πi/3 e2πi2/3 1̄ 1̄ −e2πi/3 −e2πi2/3

Γ7 = Γ′3 1 1 e2πi2/3 e2πi4/3 1̄ 1̄ −e2πi2/3 −e2πi4/3

Γ8 = Γ′4 3 1̄ 0 0 3̄ 1 0 0

Characters χ(2l+1) of the (2l + 1)-dimensional representations

e 2 31 32 1̄ m 31 32 Γ(2l+1)
(3×) (4×) (4×) (3×) (4×) (4×)

Γ(1) 1 1 1 1 1 1 1 1 Γ1
Γ(3) 3 1̄ 0 0 3̄ 1 0 0 Γ′4
Γ(5) 5 1 1̄ 1̄ 5̄ 1̄ 1 1 Γ′2 + Γ′3 + Γ′4
Γ(7) 7 1̄ 1 1 7̄ 1 1̄ 1̄ Γ′1 + 2Γ′4
Γ(9) 9 1 0 0 9̄ 1̄ 0 0 Γ′1 + Γ′2 + Γ′3 + 2Γ′4
Γ(11) 11 1̄ 1̄ 1̄ 11 1 1 1 Γ′2 + Γ′3 + 3Γ′4

Table 8.6 Decomposition of the (2l + 1)-dimensional representations in irreducible representa-
tions of the PSG 3m. Classes: K1 = e; K2 = 31, 32; K3 = m (3×).

Characters of irreducible representations
e 31, 32 m (3×)

Γ1 1 1 1
Γ2 1 1 1̄
Γ3 2 1̄ 0

Characters χ(2l+1) of the (2l + 1)-dimensional representations
e 31, 32 m (3×) Γ(2l+1)

Γ(1) 1 1 1 Γ1
Γ(3) 3 0 1 Γ1 + Γ3
Γ(5) 5 1̄ 1̄ Γ2 + 2Γ3
Γ(7) 7 1 1 2Γ1 + Γ2 + 2Γ3
Γ(9) 9 0 1̄ Γ1 + 2Γ2 + 3Γ3
Γ(11) 11 1̄ 1 2Γ1 + Γ2 + 4Γ3
Γ(13) 13 1 1̄ 2Γ1 + 3Γ2 + 4Γ3
Γ(15) 15 0 1 3Γ1 + 2Γ2 + 5Γ3
Γ(25) 25 1 1̄ 4Γ1 + 5Γ2 + 8Γ3
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9
Group Algebra; Projection Operators

In this section we will become familiar with a method allowing us to carry
out symmetry reduction of tensors, discussed in Section 3.8.2, by means of
group theory, whereby the existence of the individual tensor components can
be directly checked by a certain computational procedure. First, we introduce
the concept of the linear operator A, which generates from each vector x of
an n-dimensional linear vector space V exactly one vector y in V according to
Ax = y, whereby the following linearity relations hold:

A(u + v) = Au + Av and A(qu) = q(Au). q is an arbitrary number.

The symmetry operations are linear operators. In a system of n-multiple dif-
ferentiable functions fi(x), all differential operators ∂/∂xj and correspond-
ingly higher differential operators are linear operators.

For two linear operators A and B one can define a sum and a product,
namely (A + B)x = Ax + Bx and (AB)x = A(Bx). Similar to matrix multipli-
cation A(Bx) means that the operator B operates on x and then the operator
A operates on s(Bx). It is clear that the operators so combined are also linear
operators.

If one now constructs arbitrary linear combinations of the type

g = xigi,

with the elements gi of a group, taken as linear operators, then all such g
represent a linear vector space of dimension h of the group. In this vector
space, multiplication is defined in the way introduced above, namely

(xigi)(yjg j) = xiyj(gig j),

since (gig j) also represent group elements. A vector space in which multipli-
cation is defined is called an algebra. The vector space Ḡ constructed from the
elements G of a group is called group algebra.

We also require the notion of the center Z of a group G: All elements of
a group, which commute with all other elements with respect to operations,
form the center of the group. The center of a group possess the property of a
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subgroup, as is easily checked. Accordingly, we can introduce the center Z̄ of
the group algebra Ḡ, whose elements commute with all other elements of Ḡ.
Z̄ forms a subgroup of Ḡ, as one sees from the subgroup properties of Z. We
now come to the important theorem: The sum of the elements of each class
represent a complete basis of the center Z of the group algebra. Let the sum
of the classes be specified by iK, hence, iK = ig1 + ig2 + . . ., where igj is the
jth element of the ith class. The proof is as follows: if q is an arbitrary element
taken of G, then the element q−1igjq also belongs to the ith class. If one lets igj
run through all the elements of the class then this generates different elements
in each case. If q−1igjq = q−1igkq, then we would have igj = igk, contrary
to the assumption. This means, however, that the ith class sum can also be
written as

iK = q−1ig1q + q−1ig2q + · · · .

Therefore,

iK = q−1iKq, hence qiK = iKq,

thus iK lies in Z̄. Since the class sums are different, we obtain a basis for the
linear vector space of the center of the group algebra, whose dimension is
equal to the class number S. In particular, each arbitrary element taken from
the center can be represented as a linear combination of the class sums.

Among these linear combinations there exists several especially interesting
elements p given the name Idempotent, which have the property p2 = p. Fur-
thermore, if for two idempotents pi and pj one has pi pj = 0 for i 6= j, then
the idempotents are orthogonal. A system of orthogonal idempotents is al-
ways linearly independent, i.e., the equation ∑i ai pi = 0 exists only when all
ai = 0. In fact multiplying with pi gives for each i: ai p2

i = ai pi = 0, thus
ai = 0. Moreover, one finds that the sum of orthogonal idempotents is always
an indempotent:

p = ∑
i

pi, p2 = ∑
i,j

pi pj = ∑
i

p2
i = ∑

i
pi = p.

There always exists a maximal set of orthogonal idempotents pi from the cen-
ter of the group algebra possessing the following properties:

1. ∑s
i pi = e (identity element of the group)

2. Each pi is indivisible, i.e., no orthogonal idempotents exist in Z̄ with
pi = p′i + p′′i .

3. All other idempotents can be represented as the sum of a few idempo-
tents.
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4. The maximal set is uniquely determined.

To prove 1. we form (e− p′) with p′ = ∑s
i=1 pi. This quantity is a new idem-

potent if it is different from zero, as one can easily check. If p′ is complete,
however, then a further idempotent cannot exist, i.e., (e− p′) = 0.

Furthermore, from pi = p′i + p′′i we would get by multiplication p′i = p′i pi
and p′′i = p′′i pi, and consequently p′i pj = p′i pi pj = 0 and p′′i pj = p′′i pi pj = 0.
This means, p′i and p′′i would be two other orthogonal idempotents, which
could take the place of pi, contrary to the assumption that the system is max-
imal. The other two assertions can be easily proved by the reader. The or-
thogonal idempotents can now be constructed from the rules just discussed.
It is seen, however, that they can also be found directly with the help of the
character table, then

pi =
li
h

h

∑
j=1

χirr
i (g−1

j )gj,

where li is the dimension of the ith representation and h is the order of the
group. For unitary matrices χ(g−1) = χ(g)! The most important idempotent
for our purposes is p1 = 1

h ∑h
j=1 gj. The proof that we are dealing with an

idempotent results simply from p2
1 = 1

h2 ∑h
j,k gjgk.

The sum represents nothing else as the sum of all elements of the group
table, hence, ∑h

j,k gjgk = h ∑j gj, because each element is found once in each
row. Therefore, p2

1 = p1. According to the above formula p1 corresponds
to the totally symmetric representation Γ1. The general proof for the validity
of this relationship is found, for example, with the help of the orthogonality
relations of the characters.

As an example, let us again consider the PSG 3m. According to the character
table (see Table 8.3)

p1 =
1
6
(e + 31 + 32 + m1 + m2 + m3)

p2 =
1
6
(e + 31 + 32 −m1 −m2 −m3)

p3 =
2
6
(2e− 31 − 32).

The same result is obtained by using the relations

pi pj = δij pi with pi = kil gl and pj = k jl gl .

The operators pi decompose the linear vector space V in linear subspaces Vi,
which in turn carry over into themselves through the respective elements of
the group (G-invariant subspaces). The vectors ix are called of the ith sym-
metry type when pi

ix = ix. The set of all these ith symmetry type vectors
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from V span the subspace Vi. Consequently, Vi is assigned the ith irreducible
representation.

We now consider an important theorem: Each vector x of the vector space V
is uniquely decomposed in a sum of vectors ix from the subspaces Vi accord-
ing to

x = 1x + 2x + 3x + . . . sx.

This is recognized as follows: With ∑i pi = e one obtains

x = ex =

(
s

∑
i

pi

)
x = p1x + p2x + . . . psx.

Due to this property, these idempotents are also referred to as projection opera-
tors. According to Neumann’s principle, the following is true for the transfor-
mation in a symmetry equivalent system

t′ij...s = uii∗ujj∗ · · · uss∗ ti∗ j∗ ...s∗ = tij...s.

The transformation matrices in the respective linear vector space are therefore
equal to (1) and the associated irreducible representation is Γ1 = (1, 1, . . . , 1).
Thus, one obtains with the help of p1, operating on arbitrary vectors t of the
linear vector space spanned by the tensor components, those components ly-
ing in V1 which construct the tensor.

We can directly employ this property for the symmetry reduction of ten-
sors. For this purpose p1 is applied to the vectors t of the linear vector space
spanned by the tensor components. Thus

t′ = p1(t) =
1
h

h

∑
l=1

gl(t) = t.

This is explained using the first- to third-rank tensors of the PSG 3m as exam-
ples. For each gl we write the Kronecker product of the respective transforma-
tion matrices. In the case of the first-rank tensor we use the three-dimensional
vector representation Γ′3 = Γ3 + Γ1. Thus with Γ′3:

g1 = e =

1 0 0
0 1 0
0 0 1

 , g2 = 31 =

 −1/2
√

3/2 0
−
√

3/2 −1/2 0
0 0 1

 ,

g3 = 32 =

−1/2 −
√

3/2 0√
3/2 −1/2 0
0 0 1

 , g4 = m1 =

1̄ 0 0
0 1 0
0 0 1

 , (9.1)

g5 = m2 =

 1/2 −
√

3/2 0
−
√

3/2 −1/2 0
0 0 1

 , g6 = m3 =

 1/2
√

3/2 0√
3/2 −1/2 0
0 0 1


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(see 8.2)

p1(t) =
1
6

(
g1(t) + g2(t) + g3(t) + g4(t) + g5(t) + g6(t)

)
=

1
6

{
(t1, t2, t3) +

(
1
2

t1 +
√

3
2

t2,−
√

3
2

t1 −
1
2

t2, t3

)

+

(
−1

2
t1 −

√
3

2
t2,

√
3

2
t1 −

1
2

t2, t3

)

+ (−t1, t2, t3) +

(
1
2

t1 −
√

3
2

t2,−
√

3
2

t1 −
1
2

t2, 0

)

+

(
1
2

t1 +
√

3
2

t2,

√
3

2
t1 −

1
2

t2, t3

)}
= (0, 0, t3) = t.

This means that only the component t3 exists.
If the components tij...s are independent of one another, then p1 can be ap-

plied to vectors only exhibiting one component, respectively. However, if re-
lations exist among the components as in the case of degeneracy (in trigonal
crystals, for example, t11 = t22), then it is convenient to apply the projection
on the complete vector t of the given linear vector space. This situation is rec-
ognized by the fact that the projection p1, applied to certain vectors with only
one component leads to a vector with several components. This is illustrated
by the second-rank tensor of the PSG 3m. We have, for example,

p1(t11, 0, 0 . . . 0) =
(

1
2

t11,
1
2

t11, 0, 0, 0, 0, 0, 0, 0
)

,

when the vector t has the form

t = (t11, t22, t33, t23, t31, t12, t32, t13, t21).

From this, it would follow that t11 = t22 = 0, which would be correct in the
case of t22 = 0. If we now construct p1(t), we find

p1(t) =
(

1
2
(t11 + t22),

1
2
(t11 + t22), t33, 0, 0, 0, 0, 0, 0

)
.

The existence of the independent components t11 = t22 and t33 follows from
the fact that p1(t) = t. In practice, in has proved useful, as a first step, to
calculate projections with only one component, respectively. We can then de-
termine which tensor components vanish and which components are coupled
with others. The projections carried out in a second step with the complete
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vector t are then easier to calculate, because the vanished components need
no longer be taken into consideration.

This is again illustrated by the third-rank tensor of the PSG 3m.
1. Step: Calculating the projection of vectors t with only one component re-

spectively. For this one requires the factors uiiujjukk (for i = i∗, j = j∗, k = k∗)
appearing in the transformation t′ijk = uii∗ujj∗ukk∗ ti∗ j∗k∗ , in other words, the
products of the diagonal coefficients of gi in the three-dimensional represen-
tation Γ′3 (see above).

p1(t111, 0, 0 . . .) = 0;

p1(0, t222, 0, 0 . . .) = (0,
1
4

t222, . . .),

p1(. . . 0 . . . , t112, . . . 0 . . .) = (. . . ,
1
4

t112, . . .),

p1(. . . 0 . . . , t113, . . . 0 . . .) = (. . . ,
1
2

t113, . . .),

p1(. . . 0 . . . , t123, . . . 0 . . .) = 0,

p1(. . . 0 . . . , t223, . . . 0 . . .) = (. . . ,
1
2

t223, . . .),

p1(. . . 0 . . . , t133, . . . 0 . . .) = 0,

p1(. . . 0 . . . , t233, . . . 0 . . .) = 0,

p1(. . . 0 . . . , t333) = (. . . 0 . . . , t333).

Similar projections apply to t121, t211, t131, t311, t232, t322. Consequently, the
following tensor components vanish: t111, t123, t231, t312, t132, t321, t213, t133,
t313, t331, t233, t323, t332. Those remaining are: t222, t112, t121, t211, t113, t131, t311,
t223, t232, t322 and t333.

2. Step: One lets p1 act on a vector containing only the nonvanishing com-
ponents. Because p1(t) = t we obtain the following relations:

t112 = t121 = t211 = −t222 =
1
4
(t112 + t121 + t211 − t222),

t113 = t223 =
1
2
(t113 + t223),

t131 = t232 =
1
2
(t131 + t232),

t311 = t322 =
1
2
(t311 + t322),

t333 = t333.

Accordingly, the components of this tensor span a five-dimensional space.
This result is identical with that derived in Section 4.4.

The question now arises, when is the projection procedure, discussed here,
preferred to that discussed in Section 4.2.1. With respect to the projection
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method, the calculation procedure shows that the projection method deals
with a stringent prescription, which in the form presented can be easily trans-
ferred to a computer program. Thus, in many cases, in particular, with higher
rank tensors, one can attain complete symmetry reduction more quickly than
with the method of the transformation of the components in symmetry equiv-
alent reference systems. Special emphasis is placed on the possibility of check-
ing the existence of individual tensor components with the help of the projec-
tions. A substantial contraction of the calculation procedure is achieved when
one uses the following conditions taken from symmetry operations as, for ex-
ample, in the case of a two-fold axis parallel ei or a symmetry plane perpen-
dicular ei (index i an odd number of times or an even number of times with
odd-rank tensors and an even number of times or odd number of times with
even-rank tensors). In particular, the cyclic permutability of the indices in cu-
bic crystals should be noted. The projection method represents an extremely
useful instrument for many other applications including the analysis of the
vibrational states in molecules and crystals as well as in the classification of
phase transformations and the interactions resulting from these (normal coor-
dinate analysis, symmetry types of the interactions).
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10
Concluding Remarks

Building upon the main features of crystals physics presented in this book, the
interested reader should have little problem in analyzsing and handling most
of the other phenomena which were only touched upon or completely left out
in the text. In such cases one first has to clarify the question of inducing and
induced quantities as well as their mathematical relationship. One must check
whether a tensorial or non-tensorial property is present, and which character-
istic symmetry results from the relationship. The influence of the symmetry
properties of the crystal then follows from the rules of symmetry reduction
when working with tensors, or with the help of symmetry matched functions.
When looking for simple observation- and measurement arrangements, the
aspects of ””longitudinal effect” and ” ”transverse effect” should be in the
foreground. However, this only addresses one area of crystal physics today.
The fundamental question as to the structural interpretation of the properties,
especially the explanation of the observed anisotropy effects falls into the area
of crystal chemistry and could not be covered here in any detail. This also
includes the problem of which extreme values of the properties are attainable
at all. Here, for example, we ask for the largest attainable heat conductivity,
the lowest velocity of light, the largest pyroelectric or piezioelectric effect in
crystals. Such considerations come to the fore in ” ”chemical engineering”,”
i.e., the constructive search for crystals with novel or improved properties.
Therein exists one of the most important challenges of modern materials re-
search. The acquisition of crystal–physical data and often also the resulting
application depends decisively on the size and quality of the available crys-
tals. The collective of crystals available for measurements and applications
could be substantially increased, if it were possible to further miniaturize the
already existing methods, i.e., to achieve a reduction in the required dimen-
sions of the crystal specimens. This aspect plays, for example, an important
role in the construction of micro-miniaturized electronic and optical devices.
Furthermore, by no means have the possibilities been exhausted of investi-
gating novel material properties with the help of inhomogeneous crystalline
devices, as has been utilized for a long time in semiconductor technology (in-
homogeneous doped mixed crystals, heterogeneous mixed crystals, crystals
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with inhomogeneous defect distribution). The same applies to the configu-
ration of the geometric boundary of the devices and the application of inho-
mogeneous boundary conditions, as well as to the effects of inhomogeneous
inducing quantities, such as, for example, from torsional stresses, which lead
to finite gradients of the deformation tensor and thus to certain higher- order
effects.

Finally, more efficient data collection in the future requires a more vigorous
development of automatic measurement methods. There can be no doubt that
the prospective material scientist awaits diverse and highly interesting tasks
in all these fields.
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11
Exercises

1. Prepare a set of glass or brass grinding plates of good evenness accord-
ing to the following method: From a stack of 12 approximately quadratic
or circular disks with a thickness of ca. 8 mm and an edge length of
ca. 100 mm select pairs of plates with about the same camber using a
straightedge. One then grinds the plates pairwise against each other so
that the respective cambered or concave surfaces are abraded away. A
suitable abrasive is water with corundum powder of about 30 µm grain
size. Thereafter, the plates are again sorted with a straightedge accord-
ing to about the same deviation from flatness and repeat the pairwise
mutual abrasion of plates of the same curvature. After repeating the
procedure again one normally finds that over half the plates are suitable
as a grinding base for making plane grinds with a deviation of at most
1 µm per 10,000 µm. Use a finer grain size (for example, 15 µm) in the
last steps.

2. Practice grinding plane faces on crystals of various hardness using the
grinding plates prepared in Exercise 1. In doing so take special care that
grinding is performed under uniform motion in long strokes with little
rotation and not too much pressure on the specimen. Otherwise the dan-
ger exists that the edges are more strongly abraded. Sometimes it is con-
venient to use a weakly convex grinding plate to work against this effect.
The flatness can be checked with the help of optical interference methods
or with a precision straightedge. The next step is to prepare a plane par-
allel plate. Firstly, plane grind a face and then grind the opposite face un-
der continuous control using a micrometer screw or better using a thick-
ness gauge so that the distances between the faces is constant within
the given tolerances over the complete surface. In the last steps, one
should use a very fine corundum powder as an abrasive together with
a suitable liquid (water, propanol, ethylene glycol, ethylether), whereby
it is essential to ensure that no coarse grained abrasives from previous
grinding processes are introduced into the fine grinding step. In order
to prevent corners and edges from breaking out it is recommended to
level the edges by careful grinding.
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The preparation of plane parallel plates and other geometrically defined
specimens is made considerably easier by employing ring-shaped hold-
ers, for example, machined from brass. The raw specimens are cemented
in the holders such that the area to be abraded away protrudes over the
rim of the given holder thus allowing targeted removal during the grind-
ing process.

3. Prove by coordinate transformation applying Neumann’s principle that
the fundamental polynomials (in the coordinates xi, homogeneous poly-
nomials of the nth degree) have the following form in the PSG 22:

P0 = a0, P1 = 0, P2 = a1x2
1 + a2x2

2 + a3x2
3, P3 = a4x1x2x3,

P4 = a5x4
1 + a6x4

2 + a7x4
3 + a8x2

1x2
2 + a9x2

2x2
3 + a10x2

3x2
1.

Which form has P5 (polynomial of the 5. degree in x1, x2, x3)?

From these polynomials what can one infer concerning the existence of
the corresponding nth rank tensors?

4. In the cylinder groups ∞, ∞m, ∞2 and so on, the tensors up to the fourth
rank take on the same form as in the corresponding hexagonal groups
PSG 6, 6m, 62 and so on. Prove this by tensor transformation. The con-
dition is that a symmetry equivalent position results from a rotation of
an arbitrary angle about the cylinder axis.

5. What is the change in a third- and fourth-rank tensor after a small rota-
tion of the reference system described by the antisymmetric tensor {rij}?
Calculate

∆tijk = t′ijk − tijk and ∆tijkl = t′ijkl − tijkl respectively.

6. Prove that symmetric functions F(xi) under symmetric secondary con-
ditions G(x1, x2, x3) always take on an extreme value along the space
diagonals of the Cartesian reference system.

For this purpose, one constructs the auxiliary function

H = F(x1, x2, x3)− λG(x1, x2, x3)

and substitutes xi by rui, where ui are the directional cosines of the po-
sition vector. According to the method applied in Section 4.3.6, calculate
the condition for extreme values of H.

7. The number of independent components of a total symmetric mth-rank
tensor in n-dimensional space is

Z(m, n) =
(n + m− 1)!
(n− 1)!m!

.
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Confirm this formula by a proof of induction. In a triclinic crystal, how
large is the number of independent components of an eighth-rank tensor
in which the eight positions are divided in pairs of four that are mutually
permutable?

8. With the convention introduced in Section 2.2, the position of the basic
vectors of the crystal-physical reference system is not uniquely fixed in
each case when different equivalent crystallographic arrangements ex-
ist. For example, in the PSGs 4/m and 3 both crystallographic reference
systems {a1, a2, a3} and {a′1 = a1, a′2 = −a2, a′3 = −a3} are equiva-
lent (both are right-handed systems and possess the same metric). How
do the components c1112 and c1113, respectively, of the elasticity tensor
transform in a transition from ai to a′i? Accordingly, one is to check
how the components c1123 in the PSG 3̄m transform when an equivalent
crystallographic reference system is selected, which results from a 180◦

rotation about the three-fold axis based initially on the system {ai}. In
such cases it is necessary to specify the position of the selected reference
system via morphological information (indexing certain forms, gener-
ated, for example, by spherical growth- or etching methods) or X-ray
information (structure factors of certain reflexes) in order to uniquely
determine the tensor properties.

9. In which direction appears the largest deviation from a pure longitudi-
nal effect in second-rank tensors (maximum of the angle between induc-
ing and induced vector quantities, for example, in the case of electrical
conductivity, between field strength E and current density vector I)? The
simplest way to carry out the calculation is in the principal axis system.
The searched for direction lies in the plane of the smallest and largest
principal value.

10. Show that enantiomorphous individuals possess opposite polar effects
(polar tensors of odd rank) and that they do not differ in properties
described by even-rank tensors when based on the same reference sys-
tem, respectively. Note that the tensors for right and left individuals in
the corresponding right- and left-handed systems have the same tensor
components.

11. In double refracting crystals, the maximum ray double refraction ap-
pears, to a first approximation, in the direction of the bisector of the
largest and smallest semi-axis of the indicatrix when the double refrac-
tion is sufficiently small. Prove this assertion.

12. Minimal deflection: when a prism, formed by an optically isotropic
medium II or an optically uniaxial crystal, transmits light such that the
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deflection of the refracted ray is a minimum with respect to the primary
ray, then one has for the deflection angle α and prism angle ϕ (only for
ordinary rays in optically uniaxial crystals):

sin(α + ϕ)/2
sin ϕ/2

=
nII

nI
.

Prove this relationship by calculating dα/dαI = 0 using the law of re-
fraction. αI is the angle of incidence of the primary ray on the face of
a prism. The ray passes symmetrically through the prism in minimal
deflection.

13. Calculate from the Lorentz–Lorenz formula

n2 − 1
n2 + 2

· M
ρ

= R

the dependence of the refractive index on hydrostatic pressure under the
assumption that the mole refraction R is pressure independent.

14. A fine parallel beam striking a plane parallel plate at perpendicular in-
cidence with normals parallel to an optical axis, experiences a double
refraction. Show that the partial rays of all directions of vibration of
the incident beam emerge from the crystal on a cylinder with circu-
lar cross-section (inner conical refraction). The radius of the cylinder
is r = L tan µ. µ is given by

tan 2µ =

√
(n2

3 − n2
2)(n2

2 − n2
1)

n1n3
,

where L is the thickness of the crystal plate. Hint: place a Cartesian ref-
erence system in the crystal such that the direction of the center principal
axis of the indicatrix is parallel e′2 and the direction of the optical axis is
parallel e′1. The propagation vector then runs parallel e′1 and an arbitrary
D-vector of the incident wave has the form

D = D0(cos ϕe′2 + sin ϕe′3).

Now calculate the relation D′
i = ε′ijE

′
j by tensor transformation and from

this the reversal E′i = a′ijD
′
j. This gives the direction of the ray vector

s′ ‖ E′ × H ′ with H ′ ‖ D′ × e′1 as a function of the angle ϕ and thus a
way to calculate the geometrical details.

15. In which direction has a rhombic crystal (calcium formate) a vanish-
ing thermal expansion (α′11 = 0) when the components of the tensor
of thermal expansion have the values α11 = −16.6, α22 = 68.6 and
α33 = 29.8 · 10−6K−1?
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16. Derive the conditions existing between the components of the elasticity
tensor cijklmn in isotropic substances. One sets out from the independent
components of cubic crystals of the PSG 4/m3 and calculates the effect
of an arbitrary n-fold axis, for example, parallel e3, on these components.

17. In the cubic PSG there does not exist a pure converse piezoelectric longi-
tudinal effect (d̂′221, d̂′331 6= 0 for any arbitrary electric field E = Eiei ‖ e′1).
Why?

18. In all crystals possessing the subgroup 22, no change in volume is gen-
erated by the first-order electrostrictive effect. Why?

19. The converse piezoelectric effect can be used to construct an electronic
position transducer, which experiences a defined change in length pro-
portional to the applied electric voltage. Which voltage must be ap-
plied to a 5 mm thick quartz plate, cut perpendicular to a two-fold axis,
in order to achieve a change in length of 100 Å(=0.01 µm)? d111 =
2.31 · 10−12m/V.

20. Why is the deviation from Ohm’s law in bismuth (PSG 3̄m) first ob-
served in the third power of the electric field strength?

21. Under which angle to the six-fold axis in LiIO3 (PSG 6) does phase
matching of the fundamental wave and the frequency doubled harmonic
appear for the vacuum wavelength λ = 1.06µm? The refractive indices
are

nν
0 = 1.860, nν

e = 1.719, n2ν
0 = 1.901, n2ν

e = 1.750.

22. With uniaxial tension along ei one observes, aside from longitudinal di-
latation εii in the direction of tension, a lateral contraction ε jj perpendic-
ular to the direction of tension. The Poisson relation

νij =
ε jj

εii
=

siijj

siiii

specifies the magnitude of lateral contraction. Prove that this relation in
cubic crystals, for tension along a cube edge, is isotropic and assumes
the value −c12/(c11 + c12) for all directions perpendicular to the edge.
Furthermore, derive the lateral contraction relation in rhombic crystals
for tension parallel to a rhombic principal direction ai and for a lateral
contraction in the direction aj perpendicular to this principal direction.
It is

νij =
−cikcjk + cijckk

cjjckk − c2
jk

,

where i, j 6= k.
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23. Which form has the elasticity tensor of a cubic crystal when the Carte-
sian reference system is so selected that e3 is parallel to a three-fold axis,
hence

e3 = (a1 + a2 + a3)/a
√

3,

and e1 is parallel to a bisector of two cubic principal axes (e1 = (a1 −
a2)/a

√
2)?

24. For crystals with subgroup 22, prove, on the basis of the expressions
given in Table 4.14 for both ρv2-values c′ and c′′ of the waves vibrating in
the plane spanned by ei and ej, that the relationships, c′− c′′ = ciijj + cijij
are approximately true, under weak anisotropy conditions, when g =
(
√

2/2)(ei ± ej).

25. In many cases, the physical properties of polycrystalline aggregates can
be easily calculated from the properties of single crystals when simple
assumptions are made concerning the grain distribution of the aggre-
gate and reasonable boundary conditions are introduced for the trans-
fer of inducing quantities from grain to grain. As an example, we con-
sider the elastic constants of a polycrystalline aggregate. In a first model
case, we assume that the deformations are homogeneously distributed
over all grains, in a second, that the stress propagates homogeneously
through all grains. If the crystals possess anisotropic elastic properties,
then both assumptions are only approximately correct. In the first case
(Voigt case) we can directly use the relation σij = cijklεkl to obtain an
average value, in the second case (Reuss case) we must apply the rela-
tion εij = sijklσkl . We calculate the properties of an isotropic medium
conveniently by first assuming cubic crystal symmetry and then setting
the condition that the anisotropy of the cubic medium is canceled by, for
example, letting the material quantities along [100], [110] or [111] and in
other directions respectively, take on the same values. Also, the condi-
tion of simultaneously fulfilling hexagonal and cubic symmetry leads to
isotropy in crystals. The elasticity tensor in cubic crystals has only the
three constants c11 = c1111, c12 = c1122 and c66 = c44 = c1212.

The condition of isotropy is given when, for example, the longitudinal
resistances along [100] and [110] are equal, hence,

c1111 = (c1111 + c1122 + 2c1212)/2

and thus 2c44 = c11 − c12. We now demand that the single crystal and
the polycrystalline aggregate exhibit the same scalar invariants. In the
case of the c-tensor we are dealing with I1 = cijklδijδkl and I2 = cijklδikδjl .
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One finds for the single crystal

I1 = c1111 + c2222 + c3333 + 2(c1122 + c2233 + c3311),

I2 = c1111 + c2222 + c3333 + 2(c1212 + c2323 + c3131).

The polycrystalline aggregate gives: Ī1 = 3c̄1111 + 6c̄1122 and Ī2 =
3c̄1111 + 6c̄1212 = 6c̄1111 − 3c̄1122 (with 2c1212 = c1111 − c1122). This al-
lows the calculation of the elastic constants of the aggregate:

c̄1111 = c̄11 = (I1 + 2I2)/15 and c̄1122 = c̄12 = (2I1 − I2)/15.

Completely analogous expressions are valid for the coefficients s̄ijkl and
and the corresponding invariants. For cubic crystals, calculate the differ-
ence in the values c̄11 and c̄12 for both cases (homogeneous deformation
and homogeneous stress, respectively). The latter is obtained by matrix
inversion. In practice, it turns out that the arithmetic mean of both pairs
of values comes close to those observed experimentally (see also Kröner,
1958).

26. Show that the number of independent components of the elasticity ten-
sors, in the case of triclinic crystals, is reduced from 21 to 18 when one
selects Cartesian axes parallel to the deformation vectors of the three
elastic waves propagating in the direction of a dynamic longitudinal ef-
fect c′1111 (here, a pure longitudinal wave and two pure transverse waves
exist; c′1111 takes on an extreme value, as shown in Section 4.5.5).

Furthermore, prove that in monoclinic crystals the elastic constant c′15
(= c′1113) vanishes when one rotates the Cartesian reference system by an
angle ϕ about the axis e2 (‖2 and m, respectively) so that the longitudinal
effect c′1111 takes on an extreme value (dc′1111/dϕ = 0!).

27. Show that in all PSGs with the subgroup 22 no piezoelectric coupling
occurs with elastic waves in the propagation direction ei (cE = cD).

28. In cubic crystals the energy current in the propagation of elastic trans-
verse waves along the three-fold axis forms a finite angle ζ with the
wave normals (elastic internal refraction). Calculate this angle with the
help of the relationship discussed at the end of Section 4.5.5. For this
purpose, the components sj of the ray vector, which are proportional to
c′1j13, are to be calculated for j = 1, 2, 3 in a reference system {e′i}, whose
basic vector e′3 runs parallel to a three-fold axis. For example, let

e′1 =
1√
2
(e1− e2), e′2 =

1√
6
(e1 + e2− 2e3), e′3 =

1√
3
(e1 + e2 + e3).
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In the case of cubic crystals, transformation results in the following com-
ponents:

c′1113 = 0, c′1213 = (c11 − c12 − 2c44)/3

and

c′1313 = (c11 − c12 + c44)/3.

If the deformation vector runs parallel e′1, then one obtains

cos ζ =
c′1313√

c′21213 + c′21313

.

29. The Grüneisen tensor (after Kitaigorodskii)

γij =
V

CV
cT

ijklαkl

is a generalization of the ordinary Grüneisen relation

γ =
3V
CV

α

K
,

where αij are the components of the tensor of thermal expansion, V is
the mole volume, CV is the specific heat at constant volume (per mole
volume) and K is the volume compressibility. Prove the identity of both
relations for cubic crystals.

30. Which differences appear between adiabatic and isothermal piezoelec-
tric constants in the following PSGs: 23, 3, mm2?

31. Calculate the form of the magnetoelastic tensor

∆cijkl = cijklmnHm Hn

for the PSG m3. (There exists a total of 13 independent components, as
one can immediately calculate from the formula

n =
1
h

h

∑
j=1

χ(gj)!

32. Which form has the tensor of first-order magnetostriction in the mag-
netic PSGs m3m, m3 and mmm (εij = mijk Hk)?

33. Why does the important scalar product g · G for electrogyration vanish
in crystals of the PSG m3 when we have g ‖ [111] and E ‖ [a b. a + b]?
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34. In the cubic PSGs, which form has the fifth-rank tensor describing the
second-order piezoelectric effect according to Di = dijklmσjkσlm?

35. Calculate the conditions for the direction of the vanishing and maximal
longitudinal piezoelectric effect for crystals of the PSG m from the com-
ponents of the piezoelectric tensor.

36. From the general equation for ∂v2/∂σpq derived in Section 4.6.3, derive
∂c1111/∂σ11 and ∂c2323/∂σ11 for a longitudinal wave and a transverse
wave, respectively, which propagate in the direction [100] under uni-
axial pressure along [100].

37. The 60 elements of the icosaheder group 235 are distributed over the
following five classes: K1: e, K2: 2 (15×), K3: 31, 32 (each 10×), K4: 51,
54 (each 6×) and K5: 52, 53 (each 6×). Prove the correctness of the fol-
lowing character table of irreducible representations with the help of the
orthogonality relations.

K1 K2 K3 K4 K5

Γ1 1 1 1 1 1
Γ2 3 −1 0 1

2 (1 +
√

5) 1
2 (1−

√
5)

Γ3 3 −1 0 1
2 (1−

√
5) 1

2 (1 +
√

5)
Γ4 4 0 1 −1 −1
Γ5 5 1 −1 0 0

38. In the cylindrical symmetry, the number of independent tensor compo-
nents can be calculated from the formula valid for finite groups

n =
1
h

h

∑
j=1

χ(gj),

when one sets correspondingly high orders of symmetry of the axes of
rotation. Since, however, cylindrical symmetry allows all arbitrary an-
gles of rotation, one can, through a boundary transition, apply the inte-
gral

n =
1

2π

∫ 2π

0
χ(ϕ)dϕ

instead of the sum.

With the help of this formula calculate the number of independent com-
ponents for tensors of rank from 1 to 6 for the case of a cylindrical sym-
metry ∞.

39. As seen in Section 8.3, a second-rank tensor spans a nine-dimensional
linear vector space, which can be decomposed into a one-, three- and



404 11 Exercises

five-dimensional invariant subspace. In the case of second-rank sym-
metrical tensors the three-dimensional subspace is empty, and the basic
vectors of the remaining subspaces are:

V1 : e0
1 = (e1 + e2 + e3)/

√
3; V5 : e0

2 = (e1 + e2 − 2e3)/
√

6,

e0
3 = (e1 − e2)/

√
2, e0

4 = e4, e0
5 = e5, e0

6 = e6.

In highly symmetric crystals, it is often convenient to describe the re-
lationship between two second-rank tensors in the coordinates of these
subspaces, the so-called symmetry coordinates. For example, Hooke’s
law in cubic crystals has the following form:

σ0
1 = σ11 + σ22 + σ33 = (c1111 + 2c1122)(ε11 + ε22 + ε33

= (c11 + 2c12)ε0
1,

σ0
2 = σ11 + σ22 − 2σ33 = (c1111 − c1122)(ε11 + ε22 − 2ε33)

= (c11 − c12)ε0
2,

σ0
3 = σ11 − σ22 = (c1111 − c1122)(ε11 − ε22) = (c11 − c12)ε0

3,

σ0
4 = σ23 = 2c2323ε23 = c44ε0

4,

σ0
5 = σ13 = 2c3131ε31 = c44ε0

5,

σ0
6 = σ12 = 2c1212ε12 = c44ε0

6,

Verify these relationships and establish that the quantities ε0
i and σ0

i con-
nected with the elastic constants

c0
1 = c11 + 2c12, c0

2 = c0
3 = (c11 − c12)

and

c0
4 = c0

5 = c0
6 = c44

transform as the spherical harmonic functions

Y0, Y0
2 , Y2

2 + Y−2
2 , Y1

2 + Y−1
2 , Y1

2 −Y−1
2 , Y2

2 −Y−2
2(

Y0 ∼
x2

1 + x2
2 + x2

3
r2 = 1, Y0

2 ∼
1
r2 (x2

1 + x2
2 − 2x2

3),

Y2
2 + Y−2

2 ∼ 1
r2 (x2

1 − x2
2), Y1

2 + Y−1
2 ∼ 1

r2 x2x3,

Y1
2 −Y−1

2 ∼ 1
r2 x1x3, Y2

2 −Y−2
2 ∼ 1

r2 x1x2

)
.

That means, that all quantities of a relationship σ0
i = c0

i ε0
i transform to

the same type of symmetry.
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40. How many scalar invariants has a fifth-rank tensor of type t3×3×3×(3×3)S
,

a sixth-rank tensor of type t(3×3)S×(3×3)S×(3×3)S
and a third-rank pseu-

dotensor of type t3×(3×3)S
?
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12
Appendix

12.1
List of Common Symbols

(multiple meanings possible!)

αi Angle of the crystallographic metric
ai Length of crystallographic basis vectors
aij Components of the polarization tensor
αij Components of the tensor of thermal expansion
Bi Components of the magnetic induction vector
CV , Cp Specific heats at constant volume

and constant hydrostatic pressure
c Speed of light in vacuum
cijkl , cij Components of the elastic tensor or elastic constants
δij Kronecker symbol
dijk Components of the piezoelectric tensor
d̂ijk Components of the electrostrictive tensor
Di Components of the dielectric displacement vector
εij Components of the dielectricity tensor
ε0 Vacuum permittivity (8.8542 · 10−12 C V−1 m−1)
εij Components of the deformation tensor
Ei Components of the electric field vector
eijk Components of the piezoelectric e tensor

or the Levi-Civita tensor
F Abrasive strength or Helmholtz energy
γij Components of the Grüneisen tensor
G Gibbs energy
gi Components of the normalized propagation vector
gijk Components of the gyration tensor
gijkl Components of the electrogyration tensor
Hi Components of the magnetic field vector
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h Planck constant (6.6262 · 10−34 J s)
hi Miller indices
Ii Components of the electric current density vector
k Boltzmann constant (1.380662 · 10−23 J K−1)
K Volume compressibility
ki Components of the propagation vector
Ki Components of a force vector
κij Components of the magnetic susceptibility vector
kt electromecanical coupling constant for a longitudinal

thickness vibration
λ Wavelength
λij Components of the thermal conductivity tensor
L Transmission path length
µij Components of the magnetic permeability tensor
µ0 Vacuum permeability (4π · 10−7V s A−1m−1)
ν Frequency
ni Principal refractivities
πi Components of the pyroelectric tensor
p Hydrostatic pressure
Pij = dcij/dp Piezoelastic constants
pijkl Components of the elastooptic tensor
Qi Components of the heat flow density vector
qijkl Components of the piezooptic tensor
ρ Density
rijk, rijkl Components of the first-and second-order electrooptic tensor
σij Components of the mechanical strain tensor
S Entropy
sij Elastic coefficients or components of the electrical

conductivity tensor
sijkl Components of the elastic s tensor
t Time
T Temperature

Tij =
d log cij

dT thermoelastic constants
V Volume
U Internal Energy
v Velocity of light or sound
ω = 2πν Angular frequency
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12.2
Systems of Units, Units, Symbols and Conversion Factors

The continuing use of several systems of units has created substantial con-
fusion particularly among beginners and laymen. The introduction of the SI
sytem (Système International d’Unités) in 1960 has reduced this confusion to
some extent. Today, the use of SI-compliant units, of which some are collected
in Table 12.1, is strongly recommended. The definition of the base units is
assumed to be known and will not be repeated here. Prefixes that may be
used with a unit to indicate decimal multiples and submultiples are (symbol
in parantheses):

1012: tera (T) 10−1 :deci (d)
109 : giga (G) 10−2 :centi (c)
106 : mega (M) 10−3 :milli (m)
103 : kilo (k) 10−6 :micro (µ)
102 : hecto (h) 10−9 :nano (n)
101 : deka (d) 10−12:pico (p)

A number of outdated units are still encountered; their use is, however, not
recommended. Some examples are:

Force : 1 dyn = 10−5 N
Pressure: 1 bar = 105 Pa = 105 N m−2

Density : 1 g cm−3 = 103 kg m−3

Energy : 1 erg = 10−7 J,
: 1 cal = 4.187 J,
: 1 kW h = 3.6 · 106 J,
: 1 eV = 1.602 · 10−19 J

Charge : 1 esu = 1
3 · 10−9 C

In some disciplines, the cgs system of units is still in use. For mechanical
units, the conversion factors to SI units are always simple powers of ten. This
is different for electric and magnetic quantities, where more complex factors
arise because of the respective definitions of electrical charge in the different
measurement systems. The conversion into other units thus requires partic-
ular care. To avoid these difficulties, the exclusive use of SI units is strongly
recommended especially for electric and magnetic quantities. For theoreti-
cal derivations, however, the choice of a different measurement system may
be appropriate if this allows for a more concise mathematical description; we
have also taken this liberty in a few cases in this text.

The derived units for elastic, piezoelectric, electrooptical or magnetooptical
quantities can be determined without difficulty. Some interesting remarks re-
garding units are given in Pure and Applied Chemistry, Vol. 21, pp. 1–113 (1970).
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Table 12.1 SI units.

Quantity Unit Symbol
Length meter m
Area square meter m2

Volume cubic meter m3

Plane angle degree or radian ◦ or rad (360◦ = 2π rad)
Solid angle steradian sr
Mass kilogram kg
Density kilogram per cubic meter kg m−3

Time second s
Frequency hertz (one cycle per second) Hz
Speed, velocity meter per second m s−1

Acceleration meter per second squared m s−2

Force newton N
Pressure, mech. stress pascal Pa (1 Pa = 1 N m−2)
Energy joule J (1 J = 1 N m)
Power watt W (1 W=1 J s−1 =1 N m s−1)
Electric potential volt V
Resistance ohm Ω
Charge coulomb C
Electric displacement coulomb per square meter C m−2

Electric current ampére A
Capacitance farad F
Electric field strength volt per meter V m−1

Magnetic flux weber Wb
Magnetic induction tesla T
Magnetic field strength ampére per meter A m−1

Inductance henry H
Temperature kelvin (degree centigrade) K (◦C)

(T/K = 273.15 + T/◦C)

12.3
Determination of the Point Space Group of a Crystal From Its Physical Proper-
ties

Group A: acentric PSG (1, 2, m, 22, mm, 3, 32, 3m, 4, 42, 4m, 4̄, 4̄2, 6, 62, 6m, 6̄,
6̄2, 23, 43, 4̄3);

Group B: centrosymmetric PSG (1̄, 2/m, mmm, 3̄, 3̄m, 4/m, 4/mm, 6/m,
6/mm, m3, 4/m3).

A preliminary investigation of a crystalline powder using optical frequency
doubling (SHG test, see Section 4.4.4) and the piezoelectric effect (Giebe–
Scheibe method, see Section 4.4.1) or the longitudinal piezoelectric effect
(micro-miniaturized for small crystals) yields the classification of a crystal
structure into group A or B except for the PSG 42, 62, and 43, provided the
observed effects are large enough.
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Investigations using polarization microscopy enable the classification in-
tothe following groups:

A: B:
optically isotropic 23, 43, 4̄3 m3, 4/m3
optically uniaxial 3, 32, 3m, 4, 42, 4m 3̄, 3̄m, 4/m, 4/mm,

4̄, 4̄2, 6, 62, 6m, 6̄, 6̄2 6/m, 6/mm
optically biaxial 1, 2, m, 22, mm 1̄, 2/m, mmm

Crystals from group A can be further classified according to their optical ac-
tivity. Cubic crystals display optical activity only in PSG 23 and 43. In 1, 2, 22,
3, 32, 4, 42, 6, and 62, a rotation of the plane of polarization along the optical
axis is observed.

Other properties that can be described by polar tensors of rank two, such
as thermal expansion, thermal conductivity, dielectric peoperties, exhibit the
same symmetry as the optical properties.

A pyroelectric effect can occur in the following PSG of group A: 1, 2, m, mm,
3, 3m, 4, 4m, 6, 6m.

The form of the piezoelectric (or electrooptic) tensor allows a unique deter-
mination of the PSG of acentric crystals, except for PSG 43 (no effect) and the
pairs 42 and 62, 4m and 6m, 23 and 4̄3m, which cannot be distinguished. If
one analyzes, in addition, the elastic properties, the pairs 42 and 62 as well
as 4m and 6m can be distinguished, but not 23 and 4̄3. Crystals from group
B (Laue groups) can be distinguished from their elastic properties, with the
exception of 6/m and 6/mm, and m3 and 4/m3. The pairs 23 and 4̄3, m3 and
4/m3, 6/m and 6/mm can be distinguished macroscopically only with the
aid of certain 4th-rank tensors (such as the piezooptic effect, electrogyration,
or 2nd-order electrostriction). The PSG 43 and 4/m3 can best be distinguished
from an analysis of their optical activity. If this provides no clear distinction,
higher-order effects must be employed. Note, however, that all properties
that are described by tensors of even rank can at most indicate to which of the
eleven Laue groups the crystal belongs.

This procedure can in most cases be avoided, however, by analyzing the
morphological properties (particularly spherical growth and etching tests)
and diffractograms (particularly Laue diagrams). Also, a complete structure
determination provides almost always a clear indication of the space group
and the PSG of the investigated crystal.
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12.4
Electric and Magnetic Effects and Properties up to 4th-Rank Tensors

See Tables 12.2 and 12.3.

Table 12.2 Electric and magnetic effects. D electric displacement, E electric field strength, B
magnetic induction, H magnetic field strength, I electric current density, T temperature, {εij}
tensor of mechanical deformation, {σij} tensor of mechanical stress. In place of the relations
used here with independent quantities E, H, σ, and T, corresponding relations between D, B,
and ε as inducing quantities can also be used in many cases. p: polar tensor, a: axial tensor.

Quantity Electric phenomena Type
Pyroelectricity ∆Pi = πi∆T p
Dielectric susceptibility Di = εijEj = ε0(δij + κij)Ej p
Magnetoelectric susceptibility Di = αij Hj a
Electric conductivity Ii = sijEj p
Piezoelectricity Pi = dijkσjk p
1st-order electrostriction εij = d̂ijkEk p
1st-order nonlinear dielectric

susceptibility
Di = εijkEjEk p

1st-order electrooptic effect (Pockels) ∆aij = rijkEk p

Optical activity Di = εijEj + gijk
∂Ej

∂xk
p

(gijk = −gjik)
1st-order magnetoelectric effect Di = γijk HjEk a
1st-order electric resistance change ∆sij = sijkEk p
2nd-order magnetoelectric susceptibility Di = αijk Hj Hk p
Hall effect Ei = kijk Ij Hk a
2nd-order electrostriction εij = d̂ijkl EkEl p
2nd-order electric resistance change ∆sij = sijkl EkEl p
Magnetoelectrostriction εij = vijkl HkEl a
2nd-order nonlinear dielectric

susceptibility
Di = εijkl EjEkEl p

higher-order magnetoelectric effects Di = uijkl HjEkEl a
higher-order magnetoelectric effects Di = γijkl Hj HkEl p
higher-order magnetoelectric effects Di = αijkl Hj Hk Hl a
Electrically induced piezoelectricity Pi =e dijkl Ejσkl p

Electrically induced optical activity
(electrogyration)

Di = gijkl Ej
∂Ek
∂xl

p

Magnetically induced piezoelectricity Pi =m dijkl Hjσkl a
2nd-order electrooptic effect (Kerr effect) ∆aij = rijkl EkEl p
Magnetoelectrooptic effect ∆aij = nijkl HkEl a
2nd-order piezoelectricity Pi = . . . + dijklmσjkσlm p
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Table 12.3 Electric and magnetic effects (continued from Table 12.2).

Quantity Magnetic phenomena Type
Pyromagnetism ∆Bi = βi∆T a
Magnetic susceptibility Bi = µij Hj = µ0(δij + κij)Hj p
Electromagnetic susceptibility Bi = βijEj a
Piezomagnetism Bi = qijkσjk a
1st-order magnetostriction εij = fijk Hk a
Nonlinear magnetic susceptibility Bi = µijk Hj Hk a
1st-order magnetooptic effect ∆aij = mijk Hk a
Faraday effect Di = εijEj + zijkEj Hk a

(zijk = −zjik)
1st-order electromagnetic effect Bi = ηijkEj Hk p
1st-order magnetic resistance change Ii = sijEj + tijkEj Hk

∆sij = tijk Hk a
2nd-order electromagnetic susceptibility Bi = βijkEjEk a
2nd-order magnetostriction εij = fijkl Hk Hl p
Magnetoelectric resistance change ∆sij = wijkl HkEl a
2nd-order magnetic resistance change ∆Sij = uijkl Hk Hl p
2nd-order nonlinear magnetic susceptibility Bi = µijkl Hj Hk Hl a
higher-order electromagnetic effects Bi = ηijkl Ej Hk Hl a
higher-order electromagnetic effects Bi = ζijkl EjEk Hl p
higher-order electromagnetic effects Bi = βijkl EjEkEl a
Magnetically induced piezomagnetism Bi =m qijkl Hjσkl p
Magnetically induced optical activity Di =m gijkl Hj

∂Ek
∂xl

a
(electrogyration)

Electrically induced piezomagnetism Bi =e qijkl Ejσkl a
2nd-order magnetooptical effect ∆aij = mijkl Hk Hl p

(Cotton-Mouton-Effekt)
2nd-order piezomagnetism Bi = . . . + qijklmσjkσlm a
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12.5
Tables of Standard Values

Data for more crystals can be obtained from the tables in “Landolt–Börnstein”.
Digits in parentheses indicate error intervals for the last digit given. All values
are for approximately 293 K and standard pressure. Where the PSG is not
indicated, the crystal is cubic.

Table 12.4 Density and specific heat.

Density ρ Specific heat Cp
[g cm−3] [J g−1K−1]

Diamond 3.5150(3) 0.511
Si 2.3283(2) 0.712
LiF 2.6406(2) 1.616
NaCl 2.1644(2) 0.870
CaF2 3.1804(4) 0.912
KAl(SO4)2 · 12H2O 1.7530(3) 1.47
CsAl(SO4)2 · 12H2O 1.9995(3) 1.09
α-Quartz (32) 2.6481(3) 0.744
Calcite (CaCO3) (3̄m) 2.7102(3) 0.829
Quartz glass (Spectrosil) 2.200(1) 0.73(2)
Air (dry) 0.00121(1) 1.02(1)

Table 12.5 Pyroelectric effect.

πσ
i [µC m−2K−1]

Turmaline (3m) πσ
3 = 4.3

Li2GeO3 (mm2) πσ
3 = -21.4

(CH2NH2COOH)3 ·H2SO4, TGS (2) πσ
2 = 350

(CH2NH2COOH)3 ·H2SeO4 (2) πσ
2 = 4200

BaTiO3 (4m) πσ
3 = 280

Table 12.6 Relative permittivities of non-ferroelectric crystals at about 10 MHz at constant
mechanical stress.

εrel,11
LiF 9.036(4)
NaCl 5.895(2)
CaF2 6.799(2)
KAl(SO4)2 · 12H2O 6.55(5)
CsAl(SO4)2 · 12H2O 5.50(5)
α-Quartz (32) εrel,11 = 4.520(2), εrel,33 = 4.640(2)
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Table 12.7 Relative permittivities of ferroelectric crystals at about 1 kHz close to the Curie
temperature Tc. The asterisk ∗ denotes the direction of the ferroelectric polarization Ps.

Tc εrel,11 εrel,22 εrel,33 Ps
[K] [104µCm−2]

NaKC4H4O6 · 4H2O 297 ≈ 3 · 103∗ ≈ 8.8 ≈ 9.4 0.25
(Seignette salt, 22 → 2 and 2 → 22)1 255 ≈ 3 · 103∗ ≈ 8.8 ≈ 9.4
(CH2NH2COOH)3 ·H2SO4 322 ≈ 9.0 ≈ 5 · 105∗ ≈ 8 2.8
(TGS, 2/m → 2)
BaTiO3 (4/m3 → 4m) 408 ≈ 104 ≈ 104 ≈ 104∗ 26.0
KH2PO4 (KDP, 4̄2 → m2) 123 ≈ 50 ≈ 50 ≈ 105∗ 4.75
1 Seignette salt is ferroelectric in the interval between the Curie temperatures 297 K
and 255 K.

Table 12.8 Refractivities for λ0 ≈ 589 nm.

n1 = n2 n3
Diamond 2.4190(1)
Silicon 4.21(2)
LiF 1.3915(1)
NaCl 1.5443(1)
KAl(SO4)2 · 12H2O 1.4564(1)
CaF2 1.43385(5)
MgAl2O4 1.7274(1)
Y3Al5O12 (YAG) 1.823(1)
α-Quartz (32) 1.54426(3) 1.55337(3)
Calcite CaCO3 (3̄m) 1.65835(5) 1.48640(5)
NaNO3 (3̄m) 1.5848(2) 1.3360(2)
Air (dry) n = 1.000272(2); dn/dT = −0.93(2) · 10−6 K−1

Table 12.9 Specific optic rotation for λ0 = 589 nm.

α [grad mm−1]
NaBrO3 (23) 2.12
Na3SbS4 · 9H2O (23) 2.35
α-Quartz (32) 21.72
Benzil C6H5CO ·COC6H5 (32) 24.84
LiIO3 (6) 99.3
Al(IO3)3 · 2HIO3 · 6H2O (6) 34.9
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Table 12.10 Coefficients of thermal expansion.

α11 [10−6K−1]
Diamond 0.87
Si 3.08(5)
Cu 16.9(2)
LiF 32.0(3)
NaCl 39.1(3)
KAl(SO4)2 · 12H2O 13.6(2)
CsAl(SO4)2 · 12H2O 27.3(3)
CaF2 19(1)
α-Quartz (32) 13.3(3) α33 = 7.07(7)
Calcite (3̄m) −3.7(1) α33 = 24.7(3)
NaNO3 (3̄m) 8.8(3) α33 = 107(3)
Ca(HCOO)2 (mmm) −16.5(5) α22 = 68.6(5) α33 = 29.8(5)
Quartz glass (Spectrosil, ρ = 2.200) 0.5(1)

Table 12.11 Magnetic susceptibilities in SI units.

κ11 κ33
[10−6]

Diamond −21.6
Si −3.3
LiF −12.9
NaCl −14.0
CaF2 −14.3
KAl(SO4)2 · 12H2O −11.7
KCr(SO4)2 · 12H2O +280
NH4Al(SO4)2 · 12H2O −11.1
NH4Fe(SO4)2 · 12H2O +650
α-Quartz (32) −15.6 −15.3
Calcite (3̄m) −12.1 −13.5

Table 12.12 Coefficients of electric conductivities (a definitive indication of errors is not possi-
ble because of the large contributions from crystal defects).

s11 [Ω−1cm−1] s33

Al 4·105

Fe 1.16·105

Cu 6.45·105

Si (high-purity) 5·10−2

NaCl 2·10−8

Zn (6/mm) 1.72·105 1.62·105

LiIO3 (50 Hz) (6) 10−9 0.5·10−6

Bi (3̄m) 0.917·104 0.725·104
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Table 12.13 Coefficients of thermal conductivity.

λ11 [Jm−1s−1K−1]
Diamond (type I) 900(50)
NaCl 6.2(2)
KAl(SO4)2 · 12H2O 0.605(6)
CsAl(SO4)2 · 12H2O 0.677(6)
KH2PO4 (4̄2) λ11 = 1.78(5) λ33 = 1.36(4)
α-Quartz (32) λ11 = 6.2(3) λ33 = 10.4(5)
NaNO3 (3̄m) λ11 = 1.64(3) λ33 = 2.14(7)
Ca(HCOO)2 (mmm) λ11 = 1.35(2) λ22 = 0.561(5) λ33 = 0.99(1)

Table 12.14 Adiabatic piezoelectric constants for low frequencies (about 10 kHz).

dijk [pCN−1] (= [10−12mV−1])
NaBrO3 (23) d123 = 1.21(1)
KH2PO4 (4̄2) d123 = 0.65(2), d312 = −10.5(2)
α-Quartz (32) d111 = 2.31(1), d123 = − 0.37(1)
LiNbO3 (3m) d113 = 37.0(3), d222 = 20.8(1) d311 = −0.86(2)

d333 = 16.2(2)

Table 12.15 Adiabatic electrooptic constants for low frequencies (about 10 kHz) and λ =
633 nm (except for GaAs).

rijk [pm V−1]
NaBrO3 (23) r123 = 0.57(3)
NaClO3 (23) r123 = 0.40(2)
GaAs (4̄3) r123 = 1.43(7) (1150 nm)
Hexamethylenetetramine (4̄3) r123 = 0.80(5)
KH2PO4 (4̄2) r123 = 10.3(2) r231 = 8.6(2)
α-Quartz (32) r111 = 0.48(1) r231 = 0.23(1)
LiNbO3 (3m) r113 = 9.6 r222 = 6.8

r311 = 32.6 r333 = 30.9

Table 12.16 Nonlinear optical coefficients ε∗ijk = ε−1
0 εijk for the vacuum wavelength of the

primary wave λ = 1064 nm (Nd glass laser).

ε∗ijk [10−12V−1m]
GaAs (4̄3) ε∗123 = 134
LiIO3 (6) ε∗311 = −7.1; ε∗333 = −7.0; ε∗123 = 0.31
KH2PO4 (4̄2) ε∗312 = 0.63
NH4H2PO4 (4̄2) ε∗312 = 0.76
LiNbO3 (3m) ε∗311 = 5.9; ε∗333 = −34; ε∗222 = 4.0
α-Quartz (32) ε∗111 = 0.50; ε∗123 = −0.005
α-HIO3 (22) ε∗123 = 8.3
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Table 12.17 Elastic constants cij [1010N m−2].

c11 c12 c44 = c66
Diamond 104 17 55
Si 16.5(1) 6.4(1) 7.92(3)
LiF 11.37(2) 4.76(3) 6.35(3)
NaCl 4.944(8) 1.29(2) 1.266(5)
γ-NaCN 2.534(2) 1.444(6) 0.033(1)
CsCl 3.64(1) 0.92(2) 0.80(1)
CaF2 16.357(20) 4.401(16) 3.392(13)
Y3Ga5O12 28.70(1) 11.60(6) 9.04(4)
KAl(SO4)2 · 12H2O 2.465(3) 1.021(8) 0.867(5)
CsAl(SO4)2 · 12H2O 3.118(5) 1.541(9) 0.840(5)
NaBrO3 5.478(5) 1.628(6) 1.505(5)
KH2PO4 (4̄2) c11 = 7.165(5) c33 = 5.640(5) c12 = −0.627(6)

c13 = 1.494(8) c66 = 0.621(4) c44 = 1.248(6)
α-Quartz (32) cE

11 = 8.674 cE
33 = 10.72 cE

12 = 0.698
cE

13 = 1.19 cE
44 = 5.79 cE

14 = −1.79
Ga (mmm) c11 = 10.16(1) c22 = 9.156(10) c33 = 13.64(1)

c12 = 4.601(10) c13 = −3.057(10) c23 = 2.804(10)
c66 = 4.079(10) c55 = 4.155(10) c44 = 3.499(10)

Table 12.18 Thermoelastic constants Tij = d log cij/dT [10−3K−1].

T11 T12 T44 = T66
Diamond −0.0137 −0.057 −0.0125
Si −0.081 −0.11 −0.063
LiF −0.66 +0.01 −0.28
NaCl −0.80 +0.17 −0.266
γ-NaCN +0.47 −1.38 +27
CsCl −0.42 −0.93 −1.29
CaF2 −0.205 −0.291 −0.343
Y3Ga5O12 −0.113 −0.092 −0.092
KAl(SO4)2 · 12H2O +0.108 +1.91 −0.95
CsAl(SO4)2 · 12H2O −0.517 −0.69 −0.43
NaBrO3 −0.72 −0.45 −0.58
KH2PO4 (4̄2) T11 = −0.635 T33 = −0.49 T12 = −0.62

T13 = −0.185 T66 = −0.53 T44 = −0.57
α-Quartz (32) T11 = −0.0443 T33 = −0.160 T12 = −2.69

T13 = −0.55 T44 = −0.175 T14 = +0.11
Ga (mmm) T11 = −0.47 T22 = −0.42 T33 = −0.38

T12 = −0.029 T13 = +0.05 T23 = +0.115
T66 = −0.72 T55 = −0.43 T44 = −0.59
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Table 12.19 Piezoelastic constants Pij = dcij/dp (dimensionless).

P11 P12 P44
dK−1

dp
Diamond 5.72 4.18 3.19 4.69
Si 4.32 4.22 0.80 4.26
LiF 9.86 2.76 1.40 5.12
NaCl 11.85 2.06 0.37 5.32
γ-NaCN 5.55 5.98 −0.36 5.84
CsCl 6.77 5.13 3.52 5.68
CaF2 6.11 4.55 1.32 5.07
KAl(SO4)2 · 12H2O 6.73 7.15 2.77 7.01
CsAl(SO4)2 · 12H2O 5.83 6.05 1.17 5.98
MgAl2O4 5.08 4.93 0.86 4.98
K2Hg(CN)4 −6.51 −6.23 −1.22 −6.32
α-Quartz (32) P11 = 3.30 P33 = 10.93 P12 = 83.7 dK−1

dp = 19.8
P13 = 5.95 P44 = 2.66 P14 = 2

Table 12.20 Piezooptic constants qij [10−12m2N−1] and elastooptic constants qij (dimension-
less) for λ0 = 589 nm. Abbreviations: q11 = q1111; q12 = q1122; q44 = 2q2323 etc.; p11 = p1111;
p12 = p1122; p44 = p2323 etc.

q11 q12 q44 p11 p12 p44
LiF (4/m3) −0.40 1.12 −0.83 0.061 0.161 −0.053
NaCl (4/m3) 1.27 2.58 −0.84 0.129 0.177 −0.011
RbI (4/m3) 9.23 4.99 −7.92 0.275 0.181 −0.022
CaF2 (4/m3) −0.33 1.10 0.74 0.038 0.226 0.0254
Hexamethylenetetramine (4̄3) 11.95 8.42 7.56 0.259 0.227 0.039
KAl(SO4)2 · 12H2O (m3) 2.43 6.66 −0.55 0.199 0.260 −0.005

q13 = 6.99 p13 = 0.265
CsAl(SO4)2 · 12H2O (m3) −0.63 4.25 −1.82 0.124 0.201 −0.015

q13 = 5.05 p13 = 0.214
α-Quartz (32) q11 = 1.25 p11 = 0.15

q12 = 2.60 p12 = 0.26
q13 = 1.95 p13 = 0.265
q14 = −0.10 p14 = −0.029
q31 = 2.94 p31 = 0.27
q33 = 0.12 p33 = 0.10
q41 = −0.33 p41 = −0.045
q44 = −1.07 p44 = −0.074
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Table 12.21 Nonlinear elastic coefficients cijk [1010N m−2]; definition according to Brugger
(1964).

c111 c112 c113 c123 c144 c155 c166 c456
Si (4/m3) −81.5 −44.8 −44.8 −7.0 −31 −31 −31 −7.5
LiF (4/m3) −142 −26.4 −26.4 15.6 8.5 −27.3 −27.3 9.4
NaCl (4/m3) −84.3 −3.3 −3.3 −3.6 2.0 −6.0 −6.0 2.0
CaF2 (4/m3) −124.6 −40 −40 −25.4 −12.4 −21.4 −21.4 −7.5
KAl(SO4)2 · 12H2O (m3) −22.2 −7.1 −8.6 −13.4 −2.3 −8.0 −7.44 −2.0
CsAl(SO4)2 · 12H2O (m3) −21.2 −11.1 −12.6 −9.0 −2.7 −5.90 −5.36 −1.6
α-Quartz (32) c111 = −21.4; c112 = −34.1; c113 = +1.9; c114 = −15.5;

c123 = 28.2; c124 = −2.0; c133 = −31.8; c134 = +35;
c144 = −15.8; c155 = −17.9; c222 = −33.6; c333 = −82.6;
c344 = −12.9; c444 = −22.6;
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B. Lüthi Interaction of magnetic ions with phonons. In: Dynamical Properties
of Solids. Vol. 3, pp. 245–292 (G. K. Horton, A. A. Maradudin eds.).
North-Holland, Amsterdam 1980.
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enenergie der Alkalihalogenide vom NaCl-Typus. Kolloid Zeitschr. 173
(1960) 20–35.
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J. Gahm Ein neuer Mikrohärteprüfer. Zeiss Informationen 14. Jahrgang (1966)
120–127.

M. W. Guinan, A. D. Ritchie Evaluation of third-order elastic constants for cu-
bic crystals. J. Appl. Phys. 41 (1970) 2256–2258.

U. Hauser, V. Oestreich, M. D. Rohrweck On optical dispersion in transparent
molecular systems. Z. Physik A280 (1977) 17–25, 125–130 et ibid. A284
(1978) 9–19.
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R. Nitsche, V. Krämer, M. Schuhmacher, A. Bussmann Preparation and proper-
ties of ferroelastic/ferroelectric polytypes of antimony(III) oxide iodide
Sb5O7I. J. Cryst. Growth 42 (1977) 549–559.

I. Ohno Free vibration of a rectangular parallelepiped crystal and its appli-
cation to determination of elastic constants of orthorhombic crystals. J.
Phys. Earth 24 (1976) 355-379.

M. Onoe, H. F. Tiersten, A. H. Meitzler Shift in the location of resonant frequen-
cies caused by large electromechanical coupling in thickness-mode res-
onators. J. Acoust. Soc. Amer. 35 (1963) 36–42.
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P. Preu, S. Haussühl Quadratic electrostrictive effects in NaCl and KAl(SO4)2
·12H2O derived from stress dependence of dielectric constants. Solid
State Comm. 45 (1983) 619–623.

N. W. Schubring, J. P. Nolta, R. A. Dork Ferroelectric hysteresis tracer featuring
compensation and sample grounding. J. Sci. Instr. 35 (1964) 1517–1521.

A. Seeger, O. Buck Die experimentelle Ermittlung der elastischen Konstanten
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Vol. II/4 : Kalorische Zustandsgrößen (1961).
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Maker interferences, 197, 198
mass attenuation coefficient, 336
mass conductivity, 153
mass permeability tensor, 154
Maxwell relations, 115
– first-order, 300
– second–order, 300
Maxwell’s equations, 113
mechanical stress tensor, 164
meroedries, 34
metric, 2
Michelson interferometer, 182
micro hardness tester, 317
Miller indices, 10
Mohs hardness, 323
mole polarization, 335
mole volume, 336
morphological symmetry, 42

Neutron scattering, 231, 263
non-tensorial properties, 309
nonadditive properties, 338
nonlinear dielectric susceptibility,

195
nonlinear elasticity, 290
nonlinear electrical conductivity,

194

obtuse bisectrix, 134
Onsager principle, 150
Onsager’s principle, 152
optic axes, 118, 133
optic character, 134
optical absorption, 139
optical activity, 141



438 Index

optical interference dilatometer,
160

optically biaxial, 118
optically isotropic, 118
optically negative, 134
optically positive, 134
optically uniaxial, 118
optorotation, 277
order parameter, 351
order–disorder transformations,

352

paramagnetism, 110
parametric oscillator, 201
pedion, 36
phase matching, 196, 201
phase transformation, 313
phase transformations, 347, 348
phonon dispersion curve, 263
photochromatic effect, 355
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piezoconductivity, 288
piezodielectric tensor, 284
piezoelastic constants, 270
piezoelastic properties, 344
piezoelectric effect, 173
piezoelectric effect, extreme val-

ues, 180
piezoelectric effect, second-order,

301
piezooptical tensor, 271
pinacoid, 36
plane groups, 47
plane principal axis transforma-

tion, 98
Poinsot construction, 94
point symmetry group, 24, 29, 30,

408
– determination, 42
Poisson’s ratio, 220
polarization constants, 116

potassium bromate, 178
precision measurement of lattice

constants, 161
principal axes’ transformation, 95
principal refractive indices, 115
prism, 36
projection operators, 385, 388
pulse–echo methods, 231
pyramid, 36
pyroelectric effect, 86
pyroelectric groups, 86

quasiadditive properties, 331

real crystals, 1
reciprocal system, 15
refractive index, 115
regular representation, 360
resonances of plates and rods, 231,

239
resonant ultrasound spectroscopy

(RUS), 255
Reuss case, 400
rotation, 21
rotation tensor, 155
rotoinversion, 21

sawing velocity, 324
scalar product, 13
scalar triple product, 15
scalenohedron, 36
Schaefer–Bergmann method, 231,

234
scratch hardness, 323
screw axes, 45
second basic law of crystallogra-

phy, 9
second harmonic generation, 196
second-order electrostriction, 285,

301
second-order optical activity, 148
second-order transformations,

351, 354
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Sellmeier equation, 149
sing-around-method, 234
skalares Produkt, 13
Snellius’ law of refraction, 119
soft modes, 270
space groups, 42, 46
specific heat, 84
specific weight, 83
spectroscopic properties, 326
sphenoid, 36
spherical harmonics, 379
static and quasistatic methods of

measurement, 174
stereographic projection, 4–6
strain gauge, 161, 219
strength, 317
strength properties, 309
streptohedron, 36
structure and properties, 329
substitution method, 102
superconductivity, 339
symmetry reduction
– first-rank tensors, 85
– fourth-rank tensors, 207
– second-rank tensors, 89
– tensors of nonlinear elasticity,

291
– third-rank tensors, 168

tensor components under auxil-
liary conditions, 301

tensor representation, 370
theory of forms, 32
thermal conductivity, 152
thermal conductometer, 153
thermal expansion, 159, 339
thermal scattering, 231
thermoelastic constants, 270
thermoelastic properties, 344
thermoelectrical effect, 307
thickness resonator, 232
thiourea, 354

third basic law of crystallography,
25

time reversal, 305
torsion modulus, 221
total reflection, 124
trace, 359
tracht, 4
transformation, dilative, 351
transformation, displacive, 351
transformation, reconstructive,

351
transformation, rotative, 351
translation, 20
transverse elastic wave, 225
twin formation, 47, 311

unitary matrix, 360
units, 407

vector addition, 10
vector product, 14
vector transformations, 18
vector triple product, 17
vectors, 10
Vegard’s rule, 337
Verdet constant, 335
Vickers hardness, 316
Voigt case, 400
Voigt notation, 216
volume compressibility, 220, 336

wedge method, 197, 198
whiskers, 222, 317
Wulff’s theorem, 4

X-cut, 232
X-ray scattering, 231, 264

Y-cut, 232
Young’s modulus, 218

zero-cut, 271
zinc blende, 179


