Group Theory with
Applications in Chemical
Physics

PATRICK JACOBS

maore information - www.cambridge.org/9780521642507




This page intentionally left blank



Group Theory With Applications in Chemical Physics

Group theory is widely used in many branches of physics and chemistry, and today it may
be considered as an essential component in the training of both chemists and physicists.
This book provides a thorough, self-contained introduction to the fundamentals of group
theory and its applications in chemistry and molecular and solid state physics. The first half
of the book, with the exception of a few marked sections, focuses on elementary topics. The
second half (Chapters 11-18) deals with more advanced topics which often do not receive
much attention in introductory texts. These include the rotation group, projective repre-
sentations, space groups, and magnetic crystals. The book includes numerous examples,
exercises, and problems, and it will appeal to advanced undergraduates and graduate
students in the physical sciences. It is well suited to form the basis of a two-semester
course in group theory or for private study.

ProreEssor P. W.M. Jacoss is Emeritus Professor of Physical Chemistry at the
University of Western Ontario, where he taught widely in the area of physical chemistry,
particularly group theory. He has lectured extensively on his research in North America,
Europe, and the former USSR. He has authored more than 315 publications, mainly in solid
state chemistry and physics, and he was awarded the Solid State Medal of the Royal Society
of Chemistry.






Group Theory With Applications
in Chemical Physics

P.W.M.JACOBS

The University of Western Ontario

27 CAMBRIDGE
%), UNIVERSITY PRESS




CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cB2 2ru, UK
Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521642507

© P. W. M. Jacobs 2005

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

First published in print format 2005
ISBN-13  978-0-511-12913-1  eBook (EBL)
ISBN-I0  0-§II-12913-0  eBook (EBL)

ISBN-13  978-0-521-64250-7 hardback
ISBN-IO  0-521-64250-7 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.



To MFM
and to all those who love group theory






vii

Contents

Preface
Notation and conventions

1

The elementary properties of groups
1.1 Definitions

1.2 Conjugate elements and classes
1.3 Subgroups and cosets

1.4 The factor group

1.5 Minimal content of Sections 1.6, 1.7, and 1.8

1.6 Product groups

1.7 Mappings, homomorphisms, and extensions

1.8 More about subgroups and classes
Problems

Symmetry operators and point groups

2.1 Definitions

2.2 The multiplication table — an example

2.3 The symmetry point groups

2.4 Identification of molecular point groups
Problems

Matrix representatives

3.1 Linear vector spaces

3.2 Matrix representatives of operators

3.3 Mappings

3.4 Group representations

3.5 Transformation of functions

3.6 Some quantum mechanical considerations
Problems

Group representations

4.1 Matrix representations

4.2 Irreducible representations

4.3 The orthogonality theorem

4.4 The characters of a representation
4.5 Character tables

4.6 Axial vectors

X1

xiii



Viii Contents

10

11

4.7 Cyclic groups
4.8 Induced representations
Problems

Bases of representations
5.1 Basis functions
5.2 Construction of basis functions
5.3 Direct product representations
5.4 Matrix elements

Problems

Molecular orbitals

6.1 Hybridization

6.2 7 Electron systems

6.3 Equivalent bond orbitals

6.4 Transition metal complexes
Problems

Crystal-field theory

7.1 Electron spin

7.2 Spherical symmetry

7.3 Intermediate crystal field

7.4 Strong crystal fields
Problems

Double groups
8.1 Spin—orbit coupling and double groups
8.2 Weak crystal fields

Problems

Molecular vibrations

9.1 Classification of normal modes

9.2 Allowed transitions

9.3 Inelastic Raman scattering

9.4 Determination of the normal modes
Problems

Transitions between electronic states
10.1 Selection rules
10.2 Vibronic coupling
10.3 Charge transfer
Problems

Continuous groups

11.1 Rotations in R*

11.2 The infinitesimal generator for SO(2)
11.3 Rotations in K>

11.4 The commutation relations

11.5 The irreducible representations of SO(3)

86
88
95

96
96
97
99
101
105

106
106
109
114
117
129

131
131
132
134
139
146

148
148
152
154

156
156
158
161
162
168

171
171
173
178
181

182
182
183
184
187
192



Contents

12

13

14

15

16

11.6 The special unitary group SU(2)

11.7 Euler parameterization of a rotation

11.8 The homomorphism of SU(2) and SO(3)
Problems

Projective representations

12.1 Complex numbers

12.2 Quaternions

12.3 Geometry of rotations

12.4 The theory of turns

12.5 The algebra of turns

12.6 Projective representations

12.7 Improper groups

12.8 The irreducible representations
Problems

Time-reversal symmetry
13.1 Time evolution
13.2 Time reversal with neglect of electron spin
13.3 Time reversal with spin—orbit coupling
13.4 Co-representations

Problems

Magnetic point groups

14.1 Crystallographic magnetic point groups

14.2 Co-representations of magnetic point groups

14.3 Clebsch—Gordan coefficients

14.4 Crystal-field theory for magnetic crystals
Problems

Physical properties of crystals

15.1 Tensors

15.2 Crystal symmetry: the direct method

15.3 Group theory and physical properties of crystals

15.4 Applications

15.5 Properties of crystals with magnetic point groups
Problems

Space groups
16.1 Translational symmetry
16.2 The space group of a crystal
16.3 Reciprocal lattice and Brillouin zones
16.4 Space-group representations
16.5 The covering group
16.6 The irreducible representations of G
16.7 Herring method for non-symmorphic space groups
16.8 Spinor representations of space groups
Problems

200
205
208
216

218
218
220
222
225
228
232
240
243
250

252
252
253
254
257
264

265
265
267
277
280
281

282
282
286
288
293
303
305

307
307
314
324
331
336
337
344
351
355



Contents

17 Electronic energy states in crystals 357
17.1 Translational symmetry 357
17.2 Time-reversal symmetry 357
17.3 Translational symmetry in the reciprocal lattice representation 358
17.4 Point group symmetry 359
17.5 Energy bands in the free-electron approximation: symmorphic
space groups 365
17.6 Free-electron states for crystals with non-symmorphic
space groups 378
17.7 Spinor representations 383
17.8 Transitions between electronic states 384
Problems 390
18 Vibration of atoms in crystals 391
18.1 Equations of motion 391
18.2 Space-group symmetry 394
18.3 Symmetry of the dynamical matrix 398
18.4 Symmetry coordinates 401
18.5 Time-reversal symmetry 404
18.6 An example: silicon 406
Problems 412
Appendices
Al Determinants and matrices 413
A2 Class algebra 434
A3 Character tables for point groups 447
A4 Correlation tables 467
References 476

Index 481



Preface

Symmetry pervades many forms of art and science, and group theory provides a systematic
way of thinking about symmetry. The mathematical concept of a group was invented in
1823 by Evariste Galois. Its applications in physical science developed rapidly during the
twentieth century, and today it is considered as an indispensable aid in many branches of
physics and chemistry. This book provides a thorough introduction to the subject and could
form the basis of two successive one-semester courses at the advanced undergraduate and
graduate levels. Some features not usually found in an introductory text are detailed
discussions of induced representations, the Dirac characters, the rotation group, projective
representations, space groups, magnetic crystals, and spinor bases. New concepts or
applications are illustrated by worked examples and there are a number of exercises.
Answers to exercises are given at the end of each section. Problems appear at the end of
each chapter, but solutions to problems are not included, as that would preclude their use as
problem assignments. No previous knowledge of group theory is necessary, but it is
assumed that readers will have an elementary knowledge of calculus and linear algebra
and will have had a first course in quantum mechanics. An advanced knowledge of
chemistry is not assumed; diagrams are given of all molecules that might be unfamiliar
to a physicist.

The book falls naturally into two parts. Chapters 1-10 (with the exception of a few
marked sections) are elementary and could form the basis of a one-semester advanced
undergraduate course. This material has been used as the basis of such a course at the
University of Western Ontario for many years and, though offered as a chemistry course, it
was taken also by some physicists and applied mathematicians. Chapters 11-18 are at a
necessarily higher level; this material is suited to a one-semester graduate course.

Throughout, explanations of new concepts and developments are detailed and, for the
most part, complete. In a few instances complete proofs have been omitted and detailed
references to other sources substituted. It has not been my intention to give a complete
bibliography, but essential references to core work in group theory have been given. Other
references supply the sources of experimental data and references where further develop-
ment of a particular topic may be followed up.

I am considerably indebted to Professor Boris Zapol who not only drew all the diagrams
but also read the entire manuscript and made many useful comments. I thank him also for
his translation of the line from Alexander Pushkin quoted below. I am also indebted to my
colleague Professor Alan Allnatt for his comments on Chapters 15 and 16 and for several
fruitful discussions. I am indebted to Dr. Peter Neumann and Dr. Gabrielle Stoy of Oxford

Xi



Xii

Preface

University for their comments on the proof (in Chapter 12) that multiplication of quater-
nions is associative. I also thank Richard Jacobs and Professor Amy Mullin for advice on
computing.

Grateful acknowledgement is made to the following for permission to make use of
previously published material:

The Chemical Society of Japan, for Figure 10.3;

Taylor and Francis Ltd (http://www.tandf.co.uk/journals) for Table 10.2;
Cambridge University Press for Figure 12.5;

The American Physical Society and Dr. C.J. Bradley for Table 14.6.

“CryKenbe My3 He TEPIUT CYeTDl ... A.C. Tlymikun
“19 okTs0ps”

which might be translated as:
“Who serves the muses should keep away from fuss,” or, more prosaically,
“Life interferes with Art.”

I am greatly indebted to my wife Mary Mullin for shielding me effectively from
the daily intrusions of “Life” and thus enabling me to concentrate on this particular
work of “Art.”



Notation and conventions

General mathematical notation

W << M

C}’l

c, s
C2, 82

cXx
m

q1 92 93
§Rn
§R3

SX
T(n)

identically equal to

leads logically to; thus p = ¢ means if p is true, then ¢ follows

sum of (no special notation is used when Y _ is applied to sets, since it will
always be clear from the context when »  means a sum of sets)

all

if and only if

there exists

the negative of a (but note 1) = ©1) in Chapter 13 and R = ER, an operator in the
double group G, in Chapter 8)

n-dimensional space in which the components of vectors are complex
numbers

cos ¢, sin ¢

cos2¢, sin2¢

XCoS @

cos(mm/n)

imaginary unit, defined by i = v/—1

quaternion units

n-dimensional space, in which the components of vectors are real numbers
configuration space, that is the three-dimensional space of real vectors in which
symmetry operations are represented

xsin ¢

tensor of rank # in Section 15.1

Sets and groups

1gi}
€

¢
A— B

a—b

the set of objects g;,i =1, ... , g, which are generally referred to as ‘elements’
belongs to, as in g; € G

does not belong to

map of set A onto set B

map of element a (the pre-image of b) onto element b (the image of a)

Xiii
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Notation and conventions

ANB

AUB

E org

H A, B
HcG

k
Cij

g%
G

[¢]

for

3

Z2Z2ZZ2zZ~~ R

N(H|G)

Z(hjG)
Z;
O, UE)

A®B
AKB

AAB
ATB
A®B

intersection of A and B, that is the set of all the elements that belong to both A
and B

the union of A and B, that is the set of all the elements that belong to A, or to B,
or to both A and B

a group G = {g;}, the elements g; of which have specific properties

(Section 1.1)

the identity element in G

the order of G, that is the number of elements in G

groups of order 4, a, and b, respectively, often subgroups of G

H is a subset of G; if {/,} have the group properties, H is a subgroup of G
of order &

the groups A and B are isomorphous

a cyclic group of order ¢

the class of g; in G (Section 1.2) of order ¢,

Ne
class constants in the expansion €,€; = > Cj (Section A2.2)
k=1

ith element of the kth class

a group consisting of a unitary subgroup H and the coset AH, where 4 is an
antiunitary operator (Section 13.2), such that G={H} & A{H}
the kernel of G, of order k& (Section 1.6)

dimension of ith irreducible representation

dimension of an irreducible spinor representation

dimension of an irreducible vector representation

number of classes in G

number of regular classes

number of irreducible representations

number of irreducible spinor representations

number of irreducible vector representations

the normalizer of H in G, of order » (Sectiontl 7

index of a coset expansion of G on H, G = > g,H, with g, ¢ H except for
g1=_F; {g,} is the set of coset representativers:i}l the coset expansion of G, and
{g,} 1s not used for G itself.
the centralizer of /; in G, of order z (Section 1.7)
an abbreviation for Z(g;|G)
Dirac character of %, equal to j: 2i(%r)

=1

1

(outer) direct product of A and B, often abbreviated to DP
inner direct product of A and B

semidirect product of A and B

symmetric direct product of A and B (Section 5.3)
antisymmetric direct product of A and B (Section 5.3)
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Vectors and matrices

Xyz

Xyz
€ € €3

{e;}
i}

AVS) ars

E,

det A or |a,.|
A®B

Brackets

<|">

a polar vector (often just a vector) which changes sign under inversion; r
may be represented by the directed line segment OP, where O is the origin
of the coordinate system

coordinates of the point P and therefore the components of a vector r = OP;
independent variables in the function f(x, y, z).

space-fixed right-handed orthonormal axes, collinear with OX, OY, OZ
unit vectors, initially coincident with x y z, but firmly embedded in
configuration space (see R(¢ n) below). Note that {e; e, e5} behave like
polar vectors under rotation but are invariant under inversion and
therefore they are pseudovectors. Since, in configuration space the vector
r=e;x+ e,y+ e3z changes sign on inversion, the components of r, {x y z},
must change sign on inversion and are therefore pseudoscalars

unit vectors in a space of n dimensions, i=1, ... ,n

components of the vector v =>"¢; v;
i

the matrix A = [a,,], with m rows and n columns so that r=1, ..., m
ands=1, ..., n. See Table Al.1 for definitions of some special matrices
element of matrix A common to the rth row and sth column

unit matrix of dimensions n x n, in which all the elements are zero except
those on the principal diagonal, which are all unity; often abbreviated to E
when the dimensions of E may be understood from the context
determinant of the square matrix A

direct product of the matrices A and B

element a,,b,, in C = A®B

ijth element (which is itself a matrix) of the supermatrix A

a matrix of one row containing the set of elements {a;}

an abbreviation for (a; a5 . ..a,|. The set of elements {a;} may be basis
vectors, for example (e, e, es|, or basis functions (¢; ¢5 ... ¢,

a matrix of one column containing the set of elements {b;}, often
abbreviated to |b); (b| is the transpose of |b)

the transform of (a| under some stated operation

an abbreviation for the matrix representative of a vector r; often given fully
as (e ey e3|xyz)

Dirac bra and ket, respectively; no special notation is used to distinguish the

bra and ket from row and column matrices, since which objects are intended
will always be clear from the context
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Notation and conventions

[4, B]
la, 4]
[a ; A]
lgi; gl

[1n1 12 n3]

commutator of 4 and B equal to AB — BA

complex number a + i4

quaternion (Chapter 11)

projective factor, or multiplier (Chapter 12); often abbreviated to

[i; /]

components of the unit vector n, usually given without the normalization
factor; for example, [1 1 1] are the components of the unit vector that makes
equal angles with OX, OY, OZ, the normalization factor 3~ being
understood. Normalization factors will, however, be given explicitly when
they enter into a calculation, as, for example, in calculations using
quaternions

Angular momenta

orbital, spin, and total angular momenta
quantum mechanical operators corresponding to L, S, and J

quantum numbers that quantize L%, 8%, and J?

operator that obeys the angular momentum commutation relations

total (j) and individual (jy, jo, . . . ) angular momenta, when angular momenta
are coupled

Symmetry operators and their matrix representatives

A

E
E

LLIL

Lk

antiunitary operator (Section 13.1); A, B may also denote linear,
Hermitian operators according to context

identity operator

operator R(2n n) introduced in the formation of the double group

G = {R R} from G = {R}, where R =ER (Section 8.1)

inversion operator

operators that generate infinitesimal rotations about x y z, respectively
(Chapter 11)

function operators that correspond to I; I, L5

matrix representative of /3, and similarly (note that the usual symbol
I'(R) for the matrix representative of symmetry operator R is not used in
this context, for brevity)

generator of infinitesimal rotations about n, with components /7, I, I3
matrix representative of 7, =n- I

matrix representatives of the angular momentum operators JAx, jy, J;
for the basis (m| = (/,, -V,|. Without the numerical factors of Y5, these
are the Pauli matrices 0 05 03



Notation and conventions

R(¢ m)

RS, T

oIy
F,-:Zc,”j Fj
J

Ty =2 cix T
k
Tn

010303

(C)

XVii

rotation through an angle ¢ about an axis which is the unit vector n;
here ¢ n is not a product but a single symbol ¢n that fixes the three
independent parameters necessary to describe a rotation (the three
components of n, [n; n, n3], being connected by the normalization
condition); however, a space is inserted between ¢ and n in rotation
operators for greater clarity, as in R(2/3 n). The range of ¢

is —m < ¢ < 7. R acts on configuration space and on all vectors therein
(including {e, e, e3}) (but not on {x y z}, which define the space-fixed
axes in the active representation)

function operator that corresponds to the symmetry operator R(¢ n),
defined so that Rf (r) = f(R~'r) (Section 3.5)

general symbols for point symmetry operators (point symmetry
operators leave at least one point invariant)

spin operators whose matrix representatives are the Pauli matrices
and therefore equal to Je, jy, J. without the common factor

of 1/2

translation operator (the distinction between 7 a translation operator
and 7 when used as a point symmetry operator will always be clear from
the context)

a unitary operator

time-evolution operator (Section 13.1)

matrix representative of the symmetry operator R; sometimes just R,
for brevity

pqth element of the matrix representative of the symmetry operator R
matrix representation

the matrix representations I'; and I'; are equivalent, that is related by a
similarity transformation (Section 4.2)

the representation I' is a direct sum of irreducible representations I';,
and each I'; occurs ¢ times in the direct sum I'; when specific
representations (for example T}, are involved, this would be written
e(T1w)

the reducible representation I' includes I';

the representation I'; is a direct sum of irreducible representations

I'; and each I'; occurs c; ; times in the direct sum I';

Clebsch—Gordan decomposition of the direct product

I'; = I';XIY; ¢y, « are the Clebsch-Gordan coefficients

reflection in the plane normal to n

the Pauli matrices (Section 11.6)

time-reversal operator
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Notation and conventions

Bases

<91 e e

basis consisting of the three unit vectors {e; e, e3} initially coincident with
{x y z} but embedded in a unit sphere in configuration space so that
R<e1 [ E3| = <61/ e) e3’| = <e1 e e3| F(R) The 3 x 3 matrix I'(R) is the
matrix representative of the symmetry operator R. Note that (e; e, €| is
often abbreviated to (e|. If r € R°,R r = R(e|r) = (¢/|r) = (e|['(R)|r) =
(e|r’), which shows that (e| and |r) are dual bases, that is they are
transformed by the same matrix I'(R)

basis comprising the three infinitesimal rotations Ry, R, R, about OX, OY,
OZ respectively (Section 4.6)

basis consisting of the 2j + 1 functions, u/, — < m < j, which are
eigenfunctions of the z component of the angular momentum operator ..,
and of J2, with the Condon and Shortley choice of phase. The angular
momentum quantum numbers j and m may be either an integer or a half-
integer. For integral j the u/, are the spherical harmonics

Y0 @); ¥7'(6 ) are the spherical harmonics written without
normalization factors, for brevity

an abbreviation for (uj,j e uj|, also abbreviated to (m|

spinor basis, an abbreviation for @] = (|2 %) |2 —%)|, or (¥4 —%|in
the (m]| notation

transform of (u v/| in C%, equal to (u v|A

dual of (u v|, such that [/ /) =A| u v)

matrix representation of the spherical vector U € C* which is the dual of
the basis (y7! 19 1|

normalization factor

lattice translation vector; a, = (a; a, as| n; ny n3) (Section 16.1) (n is often
used as an abbreviation for the a,,)

reciprocal lattice vector; b, = (b; by bs| m my m3) = (e, e, es| m, m,, m.)
(Section 16.3); m is often used as an abbreviation for the components of b,,

Abbreviations

1-D one-dimensional (etc.)
AO atomic orbital

BB bilateral binary

bce body-centered cubic
CcC complex conjugate

CF crystal field
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CG Clebsch—Gordan

CR commutation relation

CS Condon and Shortley

CT charge transfer

DP direct product

fec face-centered cubic

FE free electron

FT fundamental theorem
hep hexagonal close-packed
HSP Hermitian scalar product
IR irreducible representation

ITC International Tables for Crystallography (Hahn (1983))
L,R left and right, respectively, as in L and R cosets

LA longitudinal acoustic

LCAO linear combination of atomic orbitals
LI linearly independent

LO longitudinal optic

LS left- side (of an equation)

LVS linear vector space

MO molecular orbital

MR matrix representative

N north, as in N pole

ORR Onsager reciprocal relation

oT orthogonality theorem

PBC periodic boundary conditions

PF projective factor

PR projective representation

RS right side (of an equation)

RS Russell-Saunders, as in RS coupling or RS states
sc simple cubic

SP scalar product

TA transverse acoustic

TO transverse optic

ZOA zero overlap approximation

Cross-references

The author (date) system is used to identify a book or article in the list of references, which
precedes the index.

Equations in a different section to that in which they appear are referred to by
eq. (ny-ny-n3), where n; is the chapter number, n, is the section number, and n3 is the
equation number within that section. Equations occurring within the same section are referred
to simply by (n3). Equations are numbered on the right, as usual, and, when appropriate,
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Notation and conventions

anumber (or numbers) on the left, in parentheses, indicates that these equations are used in the
derivation of that equation so numbered. This convention means that such phrases as “it
follows from” or “substituting eq. (n4) in eq. (n5)” can largely be dispensed with.

Examples and Exercises are referenced, for example, as Exercise n; - n,-n3, even within
the same section. Figures and Tables are numbered 7, - n3 throughout each chapter. When a
Table or Figure is referenced on the left side of an equation, their titles are abbreviated to T
or F respectively, as in F16.1, for example.

Problems appear at the end of each chapter, and a particular problem may be referred to
as Problem n, - n3, where n, is the number of the chapter in which Problem 75 is to be found.



1.1

The elementary properties
of groups

Definitions

All crystals and most molecules possess symmetry, which can be exploited to simplify the
discussion of their physical properties. Changes from one configuration to an indistinguish-
able configuration are brought about by sets of symmetry operators, which form particular
mathematical structures called groups. We thus commence our study of group theory with
some definitions and properties of groups of abstract elements. All such definitions and
properties then automatically apply to all sets that possess the properties of a group,
including symmetry groups.

Binary composition in a set of abstract elements {g;}, whatever its nature, is always
written as a multiplication and is usually referred to as “multiplication” whatever it
actually may be. For example, if g; and g; are operators then the product g; g; means
“carry out the operation implied by g; and then that implied by g;.” If g; and g; are both
n-dimensional square matrices then g; g;is the matrix product of the two matrices g; and g;
evaluated using the usual row x column law of matrix multiplication. (The properties of
matrices that are made use of in this book are reviewed in Appendix Al.) Binary
composition is unique but is not necessarily commutative: g; g; may or may not be equal
tog; g;. Inorder for a set of abstract elements {g;} to be a G, the law of binary composition
must be defined and the set must possess the following four properties.

(i) Closure. For all g;, with g; € {g;},

g & =g €1{g:}, g aunique element of {g;}. (1)

Because g; is a unique element of {g;}, if each element of {g;} is multiplied from the left,
or from the right, by a particular element g; of {g,} then the set {g;} is regenerated with the
elements (in general) re-ordered. This result is called the rearrangement theorem

8j {g:} ={a} ={g} 8- (2)

Note that {g;} means a set of elements of which g; is a typical member, but in no
particular order. The easiest way of keeping a record of the binary products of the
elements of a group is to set up a multiplication table in which the entry at the
intersection of the g;th row and gith column is the binary product g; g;= g, as in
Table 1.1. It follows from the rearrangement theorem that each row and each column of
the multiplication table contains each element of G once and once only.
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Table 1.1. Multiplication table for the group G = {g;} in which the product
gi g happens to be gj.

G &i g 8k

2
8i 8i 8k 8i 8k
8 g & g g 8

8k 8k 8i 8k & 8

(ii) Multiplication is associative. For all g;, g;, g € {gi},
(g &) = (& g)gx- ©)
(iii) The set {g;} contains the identity element E, with the property
E g =g E=g, Vg €{g} “4)

(iv) Each element g, of {g;} has an inverse g; ! € {g}, such that

&' g=g g =E g' €{g} Ve ela}) (%)
The number of elements g in G is called the order of the group. Thus

G:{gt}n 121,2,,g (6)

When this is necessary, the order of G will be displayed in parentheses G(g), as in G(4) to
indicate a group of order 4.

Exercise 1.1-1 With binary composition defined to be addition: (a) Does the set of
positive integers {p} form a group? (b) Do the positive integers p, including zero (0)
form a group? (c) Do the positive (p) and negative (—p) integers, including zero, form a
group? [Hint: Consider the properties (i)—(iv) above that must be satisfied for {g;} to form
a group.]

The multiplication of group elements is not necessarily commutative, but if

8 8 =8 8 V&8 &€EG (7

then the group G is said to be Abelian. Two groups that have the same multiplication table
are said to be isomorphous. As we shall see, a number of other important properties of a
group follow from its multiplication table. Consequently these properties are the same for
isomorphous groups; generally it will be necessary to identify corresponding elements in
the two groups that are isomorphous, in order to make use of the isomorphous property. A
group G is finite if the number g of its elements is a finite number. Otherwise the group G is
infinite, if the number of elements is denumerable, or it is continuous. The group of
Exercise 1.1-1(c) is infinite. For finite groups, property (iv) is automatically fulfilled as
a consequence of the other three.
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If the sequence g;, g2, g3, ... starts to repeat itself at g¢*!

¢ = g;, because gf = E, then
theset {g; g% g’ ... g = E}, which is the period of g;, is a group called a cyclic group,

C. The order of the cyclic group C is c.

Exercise 1.1-2 (a) Show that cyclic groups are Abelian. (b) Show that for a finite
cyclic group the existence of the inverse of each element is guaranteed. (c) Show that
w=exp(—2ni/n) generates a cyclic group of order n, when binary composition is
defined to be the multiplication of complex numbers.

If every element of G can be expressed as a finite product of powers of the elements in a
particular subset of G, then the elements of this subset are called the group generators. The
choice of generators is not unique: generally, a minimal set is employed and the defining
relations like g;=(g;)” (gx)?, etc., where {g; g} are group generators, are stated. For
example, cyclic groups are generated from just one element g;.

Example 1.1-1 A permutation group is a group in which the elements are permutation
operators. A permutation operator P rearranges a set of indistinguishable objects. For example, if

Plabce ..} ={bac ..} 8)

then P is a particular permutation operator which interchanges the objects a and b. Since
{a b ...} is a set of indistinguishable objects (for example, electrons), the final configura-
tion {b a c ...} is indistinguishable from the initial configuration {a bc ...} and Pis a
particular kind of symmetry operator. The best way to evaluate products of permutation
operators is to write down the original configuration, thinking of the » indistinguishable
objects as allocated to n boxes, each of which contains a single object only. Then write
down in successive rows the results of the successive permutations, bearing in mind that a
permutation other than the identity involves the replacement of the contents of two or more
boxes. Thus, if P applied to the initial configuration means “interchange the contents of
boxes i and j” (which initially contain the objects i and j, respectively) then P applied to
some subsequent configuration means “interchange the contents of boxes i and j, whatever
they currently happen to be.” A number of examples are given in Table 1.2, and these
should suffice to show how the multiplication table in Table 1.3 is derived. The reader
should check some of the entries in the multiplication table (see Exercise 1.1-3).

The elements of the set {Py Py ...Ps} are the permutation operators, and binary
composition of two members of the set, say P; Ps, means “carry out the permutation
specified by Ps and then that specified by P;.” For example, P, states “replace the contents
of box 1 by that of box 3, the contents of box 2 by that of box 1, and the contents of box 3 by
that of box 2.” So when applying P, to the configuration {3 1 2}, which resulted from P, (in
order to find the result of applying P} = P; P; to the initial configuration) the contents of
box 1 (currently 3) are replaced by those of box 3 (which happens currently to be 2 — see the
line labeled P,); the contents of box 2 are replaced by those of box 1 (that is, 3); and finally
the contents of box 3 (currently 2) are replaced by those of box 2 (that is, 1). The resulting
configuration {2 3 1} is the same as that derived from the original configuration {1 2 3} by
P, and so
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Table 1.2. Definition of the six permutation operators of the permutation group S(3) and
some examples of the evaluation of products of permutation operators.

In each example, the initial configuration appears on the first line and the permutation
operator and the result of the operation are on successive lines. In the last example, the
equivalent single operator is given on the right.

The identity Po=FE

1 2 3 original configuration (which therefore labels the “boxes™)
Py 1 2 3 final configuration (in this case identical with the initial configuration)
The two cyclic permutations
1 2 3 1 2
P, 3 12 P, 3 1
The three binary interchanges
1 2 3 1 2 1 3
Py, 1 3 2 Py, 3 2 1 Ps 1 3
Binary products with P,
1 2 3
P, 3 1 2 P,
P, Py 2 3 1 P,
P, P, 1 2 3 Py
P5 P, 3 2 1 Py
Py P 2 1 3 Ps
Ps Py 1 3 2 P;

Table 1.3. Multiplication table for the permutation group S(3).
The box indicates the subgroup C(3).

S(3) Py P, P, P P, Ps
PO P() P] P2 P3 P4 P5
P, P, P, Py Ps P Py
P, P, Py P, P, Ps P
Ps P3 Py Ps Py Py Py
Py Py Ps P3 P Py Py
Ps Ps P Py P, P, Py
P P{123)={231}=P,{123} )

so that P; P;=P,. Similarly, P, P;=P,, P3 Py =P,, and so on. The equivalent single
operators (products) are shown in the right-hand column in the example in the last part of
Table 1.2. In this way, we build up the multiplication table of the group S(3), which is
shown in Table 1.3. Notice that the rearrangement theorem (closure) is satisfied and that
each element has an inverse. The set contains the identity P, and examples to demonstrate
associativity are readily constructed (e.g. Exercise 1.1-4). Therefore this set of permu-
tations is a group. The group of all permutations of N objects is called the symmetric group
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S(N). Since the number of permutations of N objects is V!, the order of the symmetric group
is V!, and so that of S(3) is 3! = 6.

Exercise 1.1-3 Evaluate the products in the column headed P5 in Table 1.3.

Exercise 1.1-4 (a) Using the multiplication table for S(3) in Table 1.3 show that
(P3 Py)P,=P5(P; P,). This is an example of the group property of associativity.
(b) Find the inverse of P, and also the inverse of Ps.

Answers to Exercises 1.1

Exercise 1.1-1 (a) The set {p} does not form a group because it does not contain the
identity £. (b) The set {p 0} contains the identity 0, p + 0 = p, but the inverses {—p} of
the elements {p}, p + (—p) =0, are not members of the set {p 0}. (c) The set of positive
and negative integers, including zero, {p p 0}, does form a group since it has the four
group properties: it satisfies closure, and associativity, it contains the identity (0), and each
element p has an inverse p or —p.

Exercise 1.1-2 (a) g/ g/ =g/ " =g?"" =glg" (b) Ifp<c, gl gl =g¢=E. Therefore,

the inverse of g” is gi 7. (c) w"=exp(—27i) =1 =E; therefore {w w’... W"=E} is a
cyclic group of order n.

Exercise 1.1-3

Py 1 2 3
P; 1 3 2 P
PPy 2 1 3 Ps
PPy 32 1 Py
PsP; 1 2 3 P
PiP; 2 3 1 P,
PsP; 3 1 2 P

Exercise 1.1-4 (a) From the multiplication table, (P; P,) P,=P4, P,=P; and
P; (P, P;)=P; Py=P;. (b) Again from the multiplication table, P, Py =Py=E and
SOI:)E1 = Py; Ps Ps = Py, P;l = Ps.

Conjugate elements and classes

If g, gj, g € G and
g 88 =g (1)

then gy is the transform of g;, and g; and g are conjugate elements. A complete set of the
elements conjugate to g; form a class, ;. The number of elements in a class is called the
order of the class; the order of ; will be denoted by c;.
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Exercise 1.2-1 Show that E is always in a class by itself.

Example 1.2-1 Determine the classes of S(3). Note that Py = E is in a class by itself; the
class of E is always named %). Using the multiplication table for S(3), we find

PyPy Py =P Py =P,
PP\ P/ =P,P, =P,
PP P! =PyP =Py,
P3Py Py = PyPs = P,
PyP P! =PsPy =Py,
Ps P P;' = P3Ps = P;.

Hence {P; P,} form a class €,. The determination of %3 is left as an exercise.

Exercise 1.2-2 Show that there is a third class of S(3), ¥3={P3 P4 Ps}.

Answers to Exercises 1.2
Exercise 1.2-1 For any group G with g; € G,
gEg'=gg =E

Since E is transformed into itself by every element of G, £ is in a class by itself.

Exercise 1.2-2 The transforms of P; are

PyP3P,' = P3Py = Ps,
P\P3P;' = PsP) = Py,
PyP3P;' = P4,P| = Ps,
P3PsPy! = PyP3 = P3,
P4P3P,' = PPy = Ps,
PsP3P;' = P\Ps = Py.

Therefore {P3 P, Ps} form a class, 3, of S(3).

Subgroups and cosets

A subset H of G, H C G, that is itself a group with the same law of binary composition, is a
subgroup of G. Any subset of G that satisfies closure will be a subgroup of G, since the other
group properties are then automatically fulfilled. The region of the multiplication table of
S(3) in Table 1.3 in a box shows that the subset {P, P P,} is closed, so that this set is a
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subgroup of S(3). Moreover, since P2 = P, P} = P; P, = Py = E, it is a cyclic subgroup
of order 3, C(3).

Given a group G with subgroup H C G, then g, H, where g, € G but g, ¢ H unless g,
is gy =E, is called a left coset of H. Similarly, H g, is a right coset of H. The {g,}, g, € G
but g. ¢ H, except for gy =E, are called coset representatives. It follows from the
uniqueness of the product of two group elements (eq. (1.1.2)) that the elements of
g, H are distinct from those of g; H when s#r, and therefore that

t
G=>g H g €G, g ¢H (except forg, =E), t =g/h, (1)
r=1
where ¢ is the index of H in G. Similarly, G may be written as the sum of # distinct right cosets,
!
G=YHg,. g €G, g &H (except for g, = E), 1 =g/h. 2
r=1
IfH g,=g, H, so that right and left cosets are equal for all , then
g Hg '=Hg g'=H 3)
and H is transformed into itself by any element g, € G that is not in H. But for any ;€ H
hiHh ' =h H=H  (closure). 4)
Therefore, H is transformed into itself by all the elements of G; H is then said to be an
invariant (or normal) subgroup of G.

Exercise 1.3-1 Prove that any subgroup of index 2 is an invariant subgroup.

Example 1.3-1 Find all the subgroups of S(3); what are their indices? Show explicitly
which, if any, of the subgroups of S(3) are invariant.
The subgroups of S(3) are

{Po Py Po} =C(3), {Py P3} =Hy, {Py P4} =Hy, {Py Ps} =Hs.

Inspection of the multiplication table (Table 1.3) shows that all these subsets of S(3) are
closed. Since g = 6, their indices ¢ are 2, 3, 3, and 3, respectively. C(3) is a subgroup of S(3)
of index 2, and so we know it to be invariant. Explicitly, a right coset expansion for S(3) is

{Po P1 P2} + {Py Py P2}Py = {Py P\ P, Py P4 Ps} = S(3). (%)
The corresponding left coset expansion with the same coset representative is
{Py Py Py} + P4{Py Py P,} ={Py P, P, P4 Ps P3} = S(3). (6)

Note that the elements of G do not have to appear in exactly the same order in the left and
right coset expansions. This will only be so if the coset representatives commute with every
element of H. All that is necessary is that the two lists of elements evaluated from the coset
expansions both contain each element of G once only. It should be clear from egs. (5) and
(6) that H g.=g, H, where H={P, P, P,} and g, is P,. An alternative way of testing
for invariance is to evaluate the transforms of H. For example,



1.4

The elementary properties of groups

Pi{C(3)}P;" = P4{Py P; P,}P,' = {P4 Ps P3}Py={Py P, P\} =C(3). (7)
Similarly for P5 and Ps, showing therefore that C(3) is an invariant subgroup of S(3).
Exercise 1.3-2 Show that C(3) is transformed into itself by P; and by Ps.

H; = {Py P5} is not an invariant subgroup of S(3). Although
{Po P3} +{Po P3} Py + {Po P3}Py = {Py P3 P P4 Py Ps} = S(3), (®)
showing that H; is a subgroup of S(3) of index 3,
{Py P3}Py = {P; P4}, but Pi{Py P53} = {P; Ps}, 9
so that right and left cosets of the representative P are not equal. Similarly,
{Py P3}P, = {P; Ps}, but P,{Py P3} = {P; P4}. (10)

Consequently, H; is not an invariant subgroup. For H to be an invariant subgroup of G,
right and left cosets must be equal for each coset representative in the expansion of G.

Exercise 1.3-3 Show that H, is not an invariant subgroup of S(3).

Answers to Exercises 1.3

Exercise 1.3-1 Ifr=2,G=H+ g, H=H + H g,. Therefore, H g, = g, H and the right and
left cosets are equal. Consequently, H is an invariant subgroup.

Exercise 1.3-2 P3{P()P1 Pz}P;l = {P3 P4P5}P3 = {P()Pz Pl} and P5{P()P1 Pz}P;l =
{Ps P3 P4} Ps = {Py P, P1}, confirming that C(3) is an invariant subgroup of S(3).

Exercise 1.3-3 A coset expansion for H, is
{Po P4} + {Po Ps}P1 + {Py P4}P> = {Py P4 P; Ps P, P3} = S(3).
The right coset for Py is {Py P4}P) = {P, Ps}, while the left coset for P is Py {Py P4} =

{Py P53}, which is not equal to the right coset for the same coset representative, P. So H, is
not an invariant subgroup of S(3).

The factor group

Suppose that H is an invariant subgroup of G of index ¢. Then the ¢ cosets g, H of H
(including g; H=H) each considered as one element, form a group of order ¢ called the
factor group,
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t
F=G/H=> (g H), g €G, g ¢H (except for gy = E), t = g/h. (1)
r=1

Each term in parentheses, g, H, is one element of F. Because each element of F is a set of
elements of G, binary composition of these sets needs to be defined. Binary composition of
the elements of F is defined by

(g, H)(g, H) = (g, g,) H, g,.g, €1g} ()

where the complete set {g,} contains g; = E as well as the  —1 coset representatives that
¢ H. It follows from closure in G that g, g, € G. Because H is an invariant subgroup

g H=Hg,. 3)
(2),(3) g,Hg,H=g,¢g, HH=g, g, H. 4)
This means that in F
“) HH=H, )

which is the necessary and sufficient condition for H to be the identity in F.

Exercise 1.4-1 Show that g; g; = g; is both a necessary and sufficient condition for g; to
be E, the identity element in G. [Hint: Recall that the identity element £ is defined by

Egi=g E=g, Vg €G] (1.1.5)

Thus, F contains the identity: that {F} is indeed a group requires the demon-stration of
the validity of the other group properties. These follow from the definition of binary
composition in F, eq. (2), and the invariance of H in G.

Closure: To demonstrate closure we need to show that g, g, H € F for g,,, g,, g, € {g,}.
Now g, g, € G and so

(1) g g €{g HYL r=12,...,1, (6)

(6) gp gq =g hl, hl S H, (7)

(2)7(7) ngqu:gpqu:grth:ngEF (8)
Associativity:

2),3),® (g, Hg,Hg. H=g,¢,Hg, H=g,¢g,2 H, )

(2),(3),(4) g, H(g,Hg, H) =g, Hg, g, H=¢g,g,8 H, (10)

9), (10) (g, Hg, H)g, H=g, H(g, Hg, H), (1

and so multiplication of the elements of {F} is associative.
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Table 1.4. Multiplication table of the factor group

F={F P}
E P
E E P
P P E
Inverse:
®) (g 'H)(g, H) =g ' g H=H, (12)

so that the inverse of g, Hin Fis g~ ! H.

Example 1.4-1 The permutation group S(3) has the invariant subgroup H= {P, P, P,}.
Here g=6,h=3,¢t=2,and

G=H+P;H, F={HP;H} ={E P}, (13)
where the elements of F have primes to distinguish E'=H € F from E € G.
(13),(2) PP =(P;H)(P3sH)=P; PsH=PyH=H. (14)

E' is the identity element in F, and so the multiplication table for the factor group of S(3),
F={E P}, is as given in Table 1.4.

Exercise 1.4-2 Using the definitions of E' and P’ in eq. (13), verify explicitly that
E P =P, P E =P, [Hint: Useeq. (2).]

Exercise 1.4-3 Show that, with binary composition as multiplication, the set {1 —1 i —i},
where i* = —1, form a group G. Find the factor group F = G/H and write down its multi-
plication table. Is F isomorphous with a permutation group?

Answers to Exercises 1.4

Exercise 1.4-1
(1.1.5) EFEEg =Eg, E=Eg;, Vg ecQq, (15)

(15) EE=E, (16)

and so E E = E is a necessary consequence of the definition of E ineq. (1.1.5). If g; g1 = g1,
then multiplying each side from the left or from the right by g ! gives g, =E,
which demonstrates that g, g, =g is a sufficient condition for g, to be E, the identity
element in G.
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Table 1.5. Multiplication table of the group G of Exercise 1.4-3.

Exercise 1.4-2
(13),(2) E'P'=(H)(P; H) = (E H)(Ps H)=P; H="P/,
(13),(2) PE =(PsH)(H)= (P H)(EH)=P; H="P.

Exercise 1.4-3 With binary composition as multiplication the set {1 —1 i —i} isa group
G because of the following.

(a) It contains the identity E=1; 1 g;=g,1=g,V g, € G.

(b) The set is closed (see Table 1.5).

(c) Since each row and each column of the multiplication table contains E once only, each
g; € G has an inverse.

(d) Associativity holds; for example,

From the multiplication table, the set H={1 —1} is closed and therefore it is a
subgroup of G. The transforms of H for g; ¢ H are

i{1 —1}i'={i —i}(-i)={1 -1} =H;
(=){1 —1}(=i) ' ={-ii}i={1 -1} =H.
Therefore H is an invariant subgroup of G. A coset expansion of G on His G=H + iH, and
so F={H iH}. From binary composition in F (eq. (2)) (H) (iH)=1iH, (iH) (H)=iH,
(iH) ((H)=i i H=(-1) (H)={—1 1}=H. (Recall that H is the set of elements
{1 —1}, in no particular order.) The multiplication table of F is
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The permutation group S(2) has just two elements {£ P}

1 2
E 1 2

1 2
P 2 1
PP 1 2 E

The multiplication table of S(2)
S(2) E P
E E P
P P E
is the same as that of F, since both are of the form

G E fe)
E E &2
&2 & E

F is therefore isomorphous with the permutation group S(2).

Remark Sections 1.6—1.8 are necessarily at a slightly higher level than that of the first five
sections. They could be omitted at a first reading.

Minimal content of Sections 1.6, 1.7, and 1.8

The direct product

Suppose that A = {a,}, B= {b;} are two groups of order a and b, respectively, with the
same law of binary composition. fANB = {E£} and a; b; = b; a;,V a;, € A,V b; € B, then the
outer direct product of A and B is a group G of order g=a b, written

G=A®B, (1
with elements a;b;=ba;, i=1, ... ,a,j=1, ..., b. A and B are subgroups of G, and
therefore
b b
(13.1) G=>{A}b; =Y b {A}, b =E. )
j=1 j=1
Because a;, b; commute for all i=1, ..., a, j=1, ..., b, the right and left cosets are

equal, and therefore A is an invariant subgroup of G. Similarly, B is an invariant subgroup
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A ‘a1a2a3 |b1b2 ‘CICZ"' |

A a v d
Figure 1.1. Diagrammatic representation of the mapping f: A= A’. Vertical bars have no
significance other than to mark the fibers of ', &', ¢/, ... , in A.

of G. It is still possible to form a direct product of A, B even when A and B are not both
invariant subgroups of G.

(1) If A is an invariant subgroup of G but B is not an invariant subgroup of G, then the
direct product of A and B is called the semidirect product, written

G=AAB. 3)

Note that in semidirect products the invariant subgroup is always the first group in the
product. For example,

S(3) =C(3) AH; = {Py Py P,}{Py P3} = {Py Py P, P; P4 Ps}. 4

(i1) If neither A nor B are invariant subgroups of G, then the direct product of A with B is
called the weak direct product. However, the weak direct product is not used in this
book, and the term “direct product” without further qualification is taken to mean the
outer direct product. (The inner direct product is explained in Section 1.6.)

Mappings and homomorphisms
A mapping f of the set A to the set A’, that is
f:A— A (5)

involves the statement of a rule by which a; € a= {a; ay a5 ...} in A becomes &’ in A’; d’ is
the image of each a; € a= {a;} for the mapping f, and this is denoted by a’ =f(a,). An
example of the mapping f: A — A’ is shown in Figure 1.1. In a mapping f, every element
a; € A must have a unique image f(a;)=a € A’. The images of several different a; may
coincide (Figure 1.1). However, not every element in A’ is necessarily an image of some set of
elements in A, and in such cases A is said to be mapped into A’. The set of all the elements in
A’ that actually are images of some sets of elements in A is called the range of the mapping.
The set of elements {a'} = {f(a;)}, ¥ a; € A, is the image of the set A, and this is denoted by

f(A)CA,VaeA. (6)

Iff(A)= A, the set A is said to be mapped on to A’. The set a = {a;} may consist of a single
element, a one-to-one mapping, or {a;} may contain several elements, in which case the
relationship of A to A’ is many-to-one. The set of elements in A that are mapped to d’ is called
the fiber of d’, and the number of elements in a fiber is termed the order of the fiber. Thus in
the example of Figure 1.1 the order of the fiber {a, a, a3} of @’ is 3, while that of the fiber of
b'={b; by} is2.If A, A’ are groups G, G, and if a mapping fpreserves multiplication so that

flai bj) =d V' =fla) f(by), ¥ flai) =d, ¥ f(bj) =, ™)
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then G, G’ are homomorphous. For example, a group G and its factor group F are
homomorphous. In particular, if the fibers of @, &', ... each contain only one element,
then G, G’ are isomorphous. In this case G and G’ are two different realizations of the same
abstract group in which {g;} represents different objects, such as two different sets of
symmetry operators, for example

Corollary

If multiplication is preserved in the mapping of G on to G’, eq. (7), then any properties of
G, G that depend only on the multiplication of group elements will be the same in G, G'.
Thus isomorphous groups have the same multiplication table and class structure.

Exercise 1.5-1 Show that in a group homomorphism the image of gj_l is the inverse of the
image of g;..

More about subgroups and classes

The centralizer Z(gj|G) of an element g; € G is the subset {z;} of all the elements of G
that commute with a particular element g; of G, so that z; g;=g; z;, g; € G, V z; € Z(gj|G).
Now Z = Z(gj|G) is a subgroup of G (of order z), and so we may write a coset expansion of
GonZas

(1.4.1) G= Xt:gr Z, t=g/z, gt =E. (8)

r=1

It is proved in Section 1.8 that the sum of the elements g; (%) that form the class €; in G is
given by

Q) = e () = Xer & g ©)
where (2(%;) is called the Dirac character of the class %,. The distinct advantage of
determining the members of %, from eq. (9) instead of from the more usual procedure

€ =1{g g gp_l} (p=1, 2,..., g, repetitions deleted), (10)

is that the former method requires the evaluation of only ¢ instead of g transforms. An
example of the procedure is provided in Exercise 1.8-3.

Exercise 1.5-2 Prove that Z =Z(gjG) is a subgroup of G.

Answers to Exercises 1.5

Exercise 1.5-1 Since E g;/=g;, f(E) f(g)) =/(g)), and therefore f(E) = E' is the identity in G'.
Also, g;~'g; = E, the identity in G. Therefore, f(g;'g;) = f(g;~") f(g) =f(E) = E',and
so the inverse of f(g;), the image of g;, is f (g; ), the image of g;~'.
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Exercise 1.5-2 Since Z is the subset of the elements of G that commute with g;, Z contains
the identity E. if z;, z; € Z, then (z; zx)g;=g{(z; zx), and so {z;} is closed. Closure, together
with the inclusion of the identity, guarantee that each element of Z has an inverse which is
€ Z. Note that {z;} C G, and so the set of elements {z;} satisfy the associative property.
Therefore, Z is a subgroup of G.

Product groups

If A= {a;}, B={b;} are two groups of order a and b, respectively, then the outer direct
product of A and B, written A ® B, is a group G = {g;}, with elements

g = (@i, by). (1)
The product of two such elements of the new group is to be interpreted as
(ai, bj)(ai, by) = (a; a, b; by) = (ap, by) (closure in A and B). )

The set {(a;, b;)} therefore closes. The other necessary group properties are readily proved
and so G is a group. “Direct product” (DP) without further qualification implies the outer
direct product. Notice that binary composition is defined for each group (e.g. A and B)
individually, but that, in general, a multiplication rule between elements of different groups
does not necessarily exist unless it is specifically stated to do so. However, if the elements
of A and B obey the same multiplication rule (as would be true, for example, if they were
both groups of symmetry operators) then the product a; b; is defined. Suppose we try to
take (a;, b)) as a; b;. This imposes some additional restrictions on the DP, namely that

arbj="bja, Y1j 3)

and
ANB=E. 4)

For if

(@i, bj) = ai, b, Q)

then
(ar, b;) (ai, bw) = (ai a1, bj bw) = (ap, by) )

and
gk & =a;bjaby,=a;a by b, =a, b, =g, (6)

which shows that a; and b; commute. The second equality in eq. (6) follows from applying
eq. (5) to both sides of the first equality in eq. (2). Equation (6) demonstrates the closure of
{G}, provided the result a, b, is unique, which it must be because A and B are groups and
the products a; a; and b; b,, are therefore unique. But, suppose the intersection of A and B
contains a; (# E) which is therefore also € B. Then a, b; b,, € B, b,, say, and the product
a, b, would also be a; b,, which is impossible because for eq. (6) to be a valid multiplication
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rule, the result must be unique. Therefore ¢; ¢ B, V /=1, ..., a, except when a;=E.
Similarly, b; € A,V j=1,2, ..., b, except when b;=E. The intersection of A and B
therefore contains the identity £ only, which establishes eq. (4). So the multiplication rule
(a;, bj) = a; b; is only valid if the conditions in egs. (3) and (4) also hold.

A and B are subgroups of G, and from egs. (5) and (3) the right and left coset expansions
of G are

(1.3.1) (3:foﬂ%b1:E, )
Jj=1
b
G= ij{A}, by =E. (®)
=

When eq. (5) holds, a; b;j="b; a;,Vi=1,2, ... ,a,j=1,2, ..., b, theright and left cosets
are equal

{A} by =b; {A}, Vb €B, )

and therefore A is an invariant subgroup of G.

Exercise 1.6-1 Why may we not find the outer DP of the subgroups C(3) and H; of S(3)
using the interpretation (a;, b;) = a; b;?

Exercise 1.6-2 If A ® B =G and all binary products a; b, with a; € A, b; € B commute,
show that B is an invariant subgroup of G.

Exercise 1.6-3 Show that if the products (a;, a;) in the DP set A ® A are interpreted as
(a;, aj), asineq. (5), then A ® A=a{A}.

To avoid redundancies introduced by the outer DP A ® A of a group with itself
(Exercise 1.6-3), the inner direct product A X A is defined by

AXRA={(a, a)}, i=1,2,...,a (10)

The semidirect product and the weak direct product have been defined in Section 1.5.

Exercise 1.6-4 (a) Show that if we attempt to use the multiplication rule (a;, ;) = a; a;
then the inner DP set does not close. (b) Show that if the inner DP is defined under the
multiplication rule, eq. (2), then the inner DP set, eq. (10), is closed, and that the group
A XA C A ® A is isomorphous with A.

Answers to Exercises 1.6

Exercise 1.6-1 In the outer DP A ® B, the product (a;, b;) of elements a; and b; may be
equated to a; b; only if A N B is £ and the elements a;, b; commute. In C(3) ® H; = {Py P, P}
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{Py P3}, Py P3=P,,but P; P, = Ps; therefore not all pairs of elements a;, b; commute, and so

we may not form the outer DP of C(3) and H; using the interpretation in eq. (5).

Exercise 1.6-2 In G = A ® B, ifall binary products a; b; commute then left and right cosets
a;{B} and {B} q; are equal, for Vi=1,2, ..., a, and so B is an invariant subgroup of G.

Exercise 1.6-3 A ® A= {(a;, a;)};if {(a;, a;)} is equated to {(a;, a;)}, then since a; a; € A,
and i=1,2,...,a,j=1,2,...,a, A={a;} occurs a times in the outer DP, and so
A®A=a{A}.

Exercise 1.6-4 (a) The product of the ith and jth elements in the inner product A X A =
{(a,a)},i=1,2,...,a,is (a;, a;)a;, a)) = (a; a;, a; a;) = (ay, ax), and so the inner DP set
{(a;, a;))} 1is closed. But if we attempt to interpret (a;, a;) as a;a; then
(a;, a;)(aj, a;)) = a; a; a; a;, which is not equal to (a; a;, a; a;) = a; a; a; a;, unless A is Abelian.
(b) The inner DP A X A = {(a;, a;)} is closed and is C A ® A, for it is a subset of
{(a;, a;)}, which arises when i=. Since the product of the ith and jth elements of A is
a; a;= ay, while that of A X A is (a;, a;)(a;, a;) = (az, ar), A K A is isomorphous with A.

Mappings, homomorphisms, and extensions

Remark If you have not yet done so, read the first part of Section 1.5.2, including eqs.
(1.5.5)—(1.5.7), as this constitutes the first part of this section.

A subset K C G that is the fiber of E' in G’ is called the kernel of the homomorphism. If
there is a homomorphism of G on to G'( f(G) = G) of which K is the kernel, with g =k g/,
so that all fibers of the elements of G (images in the homomorphism) have the same
order, then G is called an extension of G’ by K. An example of an extension is illustrated in
Table 1.6 for the particular case of k= 3.

Exercise 1.7-1 (a) Show that K is an invariant subgroup of G. (b) What is the kernel of
the homomorphism £(S(3))=F =S(3)/C(3). (¢) If G — G’ is a homomorphism, prove
that g=k g'.

Table 1.6. Example of a homomorphism f(G) =G’

G is an extension of G" by K, the kernel of the homomorphism (so that £ in G’ is the image
of each element in K). Similarly, g5 is the image of each one of g1, €22, g23, and so on. In
this example k= 3.

K={gi1 212813}
G,: {glll glzg,w; $21 g/22 823; s &n1 &n2 &n3}
G :{gl :E7 g27 g37 "'7gn}
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Answer to Exercise 1.7-1

(a) Because K is the kernel of the homomorphism G — G, f((k; k) = f(k;)

f(k)=EE'=E'. Therefore, k; k; € K. The set K is therefore closed and so K is a subgroup

of G. Consider the mapping of g; &; gj’l, k€K, g e€gG,

flghg")=r(g) (k) f(g ") =1(@)ES(g ") =E, (1)
where we have used eq. (1.5.7) and Exercise 1.5-1. Therefore,
(1) g kg €K, @)

which shows K = {k;} to be an invariant subgroup of G.

(b) The subgroup C(3) is the kernel of S(3) for the homomorphism of S(3) on to its
factor group F because f(C(3)) =F.

(c) No two fibers in G can have a common element; otherwise this common element
would have two distinct images in G’, which is contrary to the requirements for a mapping.
Therefore, there are as many disjoint fibers in G as there are elements in G’, namely g’. It
remains to be shown that all fibers in G have the same order, which is equal to the order & of
the kernel K. Firstly, the necessary and sufficient condition for two elements g,, g5 that are
€ G to belong to the same fiber of G is that they be related by

& = &3 kl', kl' S K. (3)
Sufficiency:
f(g2) =f(gs ki) =1(g3) f(ki) = f(&3)E" =1 (g3)- 4)

Necessity: Suppose that g, = g3 g;; then f(g2) =f(g3), f(g)). But if g5, g5 belong to the
same fiber then f{g;) must be E' and so g;j can only be € K. Secondly, if g, is a particular
element of a fiber F,, then the other elements of F), can all be written in the form g, ;,
where k; € K,

Fn = {gn k,‘}, ki € K. (5)

All the distinct elements of F,, are enumerated by eq. (5) asi=1, 2, ..., k, the order of K.
Therefore, the number of elements in each one of the g’ fibers in G is k, whence the order of G is
g=kg, (6)

which establishes the required result.

More about subgroups and classes

If G and H are two groups for which a multiplication rule exists, that is to say the result g; 4,
is defined, then the conjugate of H by an element g; € G is

gHg ' =Yahg (D
J
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When the result is H itself, H is invariant under the element g;,

g Hg'=H 2)

(2) g H=Hg, (3

which is an equivalent condition for the invariance of H under g;. The set of elements {g;} € G
that leave H invariant form a subgroup of G called the normalizer of H in G, written
N(H|G). That N(H|G) does indeed form a subgroup of G follows from the fact that if
gi» & € N(H|G)

g Hg ' =H, (4)
2),(4) ggH(gg) '=gHg'=H (5)
(5) gi g € 1{gng, ---} = N(H|G), (6)

implying closure of {g;, g;, . .. }, a sufficient condition for {g;, g, ... } to be a subgroup of
G. If the normalizer N(H|G) is G itself, so that H is invariant under all g; € G, H is said to be
normal or invariant under G. If H is a subgroup of G (not so far assumed) then H is an
invariant subgroup of G if egs. (2) and (3) hold.

If G, H are two groups for which a multiplication rule exists then the set of all the
elements of G that commute with a particular element /; of H form a subgroup of G called
the centralizer of h; in G, denoted by

Z(hj|G) C G. 7)

H may be the same group as G, in which case 4; will be one element of G, say g; € G.
Similarly, the centralizer of H in G,

Z(H|G) C G, )

is the set of all the elements of G that each commute with each element of H; H in eq. (8)
may be a subgroup of G. If H is G itself then

Z(G|G) = Z(G) ©))

is the center of G, namely the set of all the elements of G that commute with every
element of G. In general, this set is a subgroup of G, but if Z(G)=G, then G is an
Abelian group.

Exercise 1.8-1 Prove that the centralizer Z(%;G) is a subgroup of G.

Exercise 1.8-2 (a) Find the center Z(C(3)) of C(3). (b) What is the centralizer
Z(C(3)|S(3)) of C(3) in S(3)? (c) What is the centralizer Z(P;|S(3)) of P, in S(3)?

A class was defined in Section 1.2 as a complete set of conjugate elements. The
sum of the members g(%;),j=1, 2, ..., c; of the class ¥, that contains the group element

&i iS
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Q%) = Xgi(%0), (10)
J

% ={ggig '}t Ve €G, (11)

with repetitions deleted. The sum of all the elements in a class, (%)), is the Dirac
character of the class ;, and

(10), (11) Q€)= Zk:gkgigk_l, 12)
with repetitions deleted. 1t is rather a waste of effort to evaluate the transforms on the
right side (RS) of eq. (12) for all g € G, since many redundancies will be found that will
have to be eliminated under the “no repetitions” rule. For instance, see Example 1.2-1,
where six transforms of P; yield a class that contains just two members, P and P, each of
which occurred three times. However, it is possible to generate the class %; that contains
g; without redundancies, from the coset expansion of G that uses the centralizer of g;
as the subgroup in the expansion. Abbreviating Z(g;|G) to Z;, the coset expansion of G
onZ;is

!
G=>g2Z,g =E t=g/z (13)
where z is the order of Z,. From the definition of the coset expansion in eq. (13), the
elements of {g,} withr=2, ... , ¢, and Z are disjoint. (£ is of course € Z;.) We shall now
prove that

%) =>g gg (14)
where {g,} is the set defined by eq. (13), namely the 7 coset representatives.

Proof The coset expansion eq. (13) shows that G = {g;} is the DP set of {z,} and {g,},
which means that G may be generated by multiplying each of the z members of {z,} in turn
by each of the  members of {g,}. Therefore, g, in eq. (12) may be written as

8k :Zpgra 8k S G) Zp S Zia (15)

with {g,} defined by eq. (13). In eq. (15), p, which enumerates the z elements of Z;, runs
from 1 to z; r, which enumerates the coset representatives (including g, = £), runs from 1 to z;
and k enumerates all the g elements of the group G as k runs from 1 to g.

(12,15 Y ez (ezn) =Y gz58z 8 =Y ggs =25gg8g ' (16)
r,p r,p r,p r

The second equality in eq. (16) follows because z, € Z;=Z(g;|G), which, from the

definition of the centralizer, all commute with g;. The third equality follows because the

double sum consists of the same ¢ terms repeated z times as p runs from 1 to z. It follows
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from the uniqueness of the binary composition of group elements that the sum over r in
eq. (16) contains no repetitions. Therefore the sum over r on the RS of (16) is {2(%;), which
establishes eq. (14). Since eq. (14) gives the elements of &; without repetitions, the order c;
of this class is

¢ =t=g/z. (17)

Equation (17) shows that the order of a class %; is a divisor of the order of the group
(Lagrange’s theorem). It also yields the value of ¢; once we determine z from Z; = Z(g;|G).
The ¢ elements g, needed to find the Dirac character €)(%;) of the class %;, and thus the
members of €, are the coset representatives of the centralizer Z; = Z(g/|G).

Exercise 1.8-3 Find the class of P, in S(3) by using the coset expansion for the centralizer
Z(P1|S(3)) and eq. (14).

Answers to Exercises 1.8

Exercise 1.8-1 The centralizer Z(/,|G) is the set {g;} of all the elements of G that commute
with h;. Let g; € {g;}; then g;, g, each commute with /; and

(gige)hj = gihjgr = hi(gigr) (18)

so that if g;, g, € {g;} that commutes with %,, then so also is g; g. Equation (18)
demonstrates that {g;} =Z(/,|G) is closed, and that therefore it is a subgroup of G. The
above argument holds for any /; € H, so that Z(H|G) is a subgroup of G. It also holds if 4; is
g; € G, and for any {g;} which is a subgroup of G, and for {g;} = G itself. Therefore Z(g;|G),
Z(H|G), where H C G, and Z(G|G) are all subgroups of G, g; being but a particular case of ;.

Exercise 1.8-2 (a) Z(C(3)) is the set of elements of C(3) that commute with every element
of C(3). From Table 1.3 we see that each element of C(3) commutes with every other
element (the mutiplication table of C(3) is symmetrical about its principal diagonal from
upper left to lower right) so that Z(C(3)) = C(3), and consequently C(3) is an Abelian
group.

(b) The centralizer of C(3) in S(3) is the set of elements of S(3) that commute with each
element of C(3). From Table 1.3 we see that none of P;, P4, Ps commute with all of P, Py,
P»; therefore Z(C(3)|S(3)) = C(3). Notice that here H happens to be a subgroup of G, but
this is not a necessary feature of the definition of the centralizer. H needs to be a group for
which binary composition with the elements of G is defined. In S(3), and therefore C(3), the
product P; P; means carrying out successively the permutations described by P; first, and
then P;. Thus, Z(C(3)|S(3)) is necessarily a subgroup of S(3), in this case C(3) again (see
Example 1.3-1).

(c) Again from Table 1.3, we see that only Py, P;, P, commute with P; so that
Z(P1IS(3)) = C(3).
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Exercise 1.8-3 Z(P4|S(3)) is the set of elements of S(3) which commute with P;. From
Table 1.3 or Exercise 1.8-2(c), Z(P1|S(3)) = C(3). The coset expansion of S(3) on C(3) is

S(3) = PyC(3) + PsC(3) = {Py Py P,} + {Ps Ps P4}

soz=2 and {g,} = {Py, P3}. The Dirac character of the class of P; is therefore

(14)

QE(P1)) =X_g P1g, ' =Py P P;' +P; P P!

=P, + P3; Py =P + P,.

Therefore, €(P,) = {P; P,}, and eq. (14) yields the class of P; without repetitions.

Problems

1.1
1.2

1.3
1.4
1.5
1.6

1.7
1.8

1.9
1.10
1.11
1.12
1.13

1.14

Show that the inverse of g; g is g; ' g

Prove that if each element of a group G commutes with every other element of G (so
that G is an Abelian group) then each element of G is in a class by itself.

Find a generator for the group of Exercise 1.4-3.

Show that {P, P} is a generator for S(3).

Show that conjugation is transitive, that is if g; is the transform of g; and g; is the
transform of g;, then gy is the transform of g;.

Show that conjugation is reciprocal, that is if g is the transform of g; then g; is the
transform of gj.

Prove that binary composition is conserved by conjugation.

There are only two groups of order 4 that are not isomorphous and so have different
multiplication tables. Derive the multiplication tables of these two groups, G}‘ and Gﬁ.
[Hints: First derive the multiplication table of the cyclic group of order 4. Call this
group Gi. How many elements of G}‘ are equal to their inverse? Now try to construct
further groups in which a different number of elements are equal to their own inverse.
Observe the rearrangement theorem. ]

Arrange the elements of the two groups of order 4 into classes.

Identify the subgroups of the two groups of order 4.

Write down a coset expansion of S(3) on its subgroup Hz = { Py P5}. Show that Hj is
not an invariant subgroup of S(3).

The inverse class of a class 4; = {g;} is 6; = {g; ' }. Find the inverse class of the class
{Py P,} in S(3).

The classes of S(3) are €, ={Py}, €»=1{P; P>}, €35=1{P3 P4 Ps}. Prove that
Q3 Q,=2Q5.

Prove that for S(3), c3g™! Y giP3g ! = Qs.
g,ES(3)
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Symmetry operators and point
groups

Definitions

Symmetry operations leave a set of objects in indistinguishable configurations which are
said to be equivalent. A set of symmetry operators always contains at least one element,
the identity operator E. When operating with £ the final configuration is not only indis-
tinguishable from the initial one, it is identical to it. A proper rotation, or simply rotation,
is effected by the operator R(¢ n), which means “carry out a rotation of configuration
space with respect to fixed axes through an angle ¢ about an axis along some unit vector
n.” The range of ¢ is —n < ¢ < n. Configuration space is the three-dimensional (3-D)
space Z° of real vectors in which physical objects such as atoms, molecules, and crystals
may be represented. Points in configuration space are described with respect to a system of
three space-fixed right-handed orthonormal axes X, y, z, which are collinear with OX, OY,
OZ (Figure 2.1(a)). (A right-handed system of axes means that a right-handed screw
advancing from the origin along OX would rotate OY into OZ, or advancing along OY
would rotate OZ into OX, or along OZ would rotate OX into OY.) The convention in which
the axes x, y, z remain fixed, while the whole of configuration space is rotated with respect
to fixed axes, is called the active representation. Thus, the rotation of configuration space
effected by R(¢ n) carries with it all vectors in configuration space, including a set of unit
vectors {e; e, e3} initially coincident with {x y z}. Figures 2.1(b) and (c) show the effect on
{e; e; e3} of R(1/3 Xx), expressed by

R(m/3 x){e; e; e3} = {e) & &'} (1)

In the passive representation, symmetry operators act on the axes, and so on {xy z}, but
leave configuration space fixed. Clearly, one should work entirely in one representation or
the other: here we shall work solely in the active representation, and we shall not use the
passive representation.

An alternative notation is to use the symbol Cnik for a rotation operator. Here n does not
mean |n|, which is 1, but is an integer that denotes the order of the axis, so that Cjck means
“carry out a rotation through an angle ¢ =+2nk/n.” Here n is an integer > 1, and
k=1,2,..., (n—1)/2 if n is an odd integer and, if n is even, k=1, 2, ..., n/2, with
C, "/2 excluded by the range of ¢; k=1 is implicit. In this notation the axis of rotation
has not been specified explicitly so that it must either be considered to be self-evident
(for example, to be understood from what has gone before) or to be stated separately, as in
“a C, rotation about the z axis,” or included as a second subscript, as in Cy,. (The

23
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z z
z e3 z
€
Y Y
(0] y € o y
X X
X X
(a) (b)
Z
z ¢
[
)
¢ Y
(6]
€ y
X
X

(©)

Figure 2.1. (a) Right-handed coordinate axes X, y, z in configuration space. A right-handed screw
advancing along OX from O would rotate OY into OZ, and similarly (preserving cyclic order).
(b) Initial configuration with {e; e, e3} coincident with {x y z}. (c) The result of a rotation of
configuration space by R(n/3 x), expressed by eq. (1).

superscript + is often also implicit.) Thus R(n/2 z) and C,, are equivalent notations, and
we shall use either one as convenient. When the axis of rotation is not along x or y or z, it
will be described by a unit vector a, b, ... , where a, for example, is defined as a unit vector
parallel to the vector with components [n; n, n3] along x, y, and z, or by a verbal
description, or by means of a diagram. Thus R(nw a) or C,, may be used as alternative
notations for the operator which specifies a rotation about a two-fold axis along the unit
vector a which bisects the angle between x and y, or which is along the vector with
components [1 1 0] (Figure 2.2(a)). A rotation is said to be positive (0 < ¢ <m) if, on
looking down the axis of rotation towards the origin, the rotation appears to be anti-
clockwise (Figure 2.2(b)). Equivalently, a positive rotation is the direction of rotation of
a right-handed screw as it advances along the axis of rotation away from the origin.
Similarly, a rotation that appears to be in a clockwise direction, on looking down the
axis of rotation towards O, is a negative rotation with —n < ¢ <O0.

Exercise 2.1-1 (a) Check the sign of the rotation shown in Figure 2.2(c) using both of the
criteria given above. (b) Show the effect of R(—n/2 z) on {e, e; e3}.
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Figure 2.2. (a) The unit vector a bisects the angle between x and y and thus has components 2" [1 1 0].
(b) The curved arrow shows the direction of a positive rotation about x. (¢) The curved arrow shows
the direction of a negative rotation about OZ (Exercise 2.1-1(a)). (d) The product of two symmetry
operators R, R; is equivalent to a single operator Rs3; e, ri, and r, are three indistinguishable
configurations of the system.

Products of symmetry operators mean “carry out the operations specified successively,
beginning with the one on the right.” Thus, R,R; means “apply the operator R, first, and
then R,.” Since the product of two symmetry operators applied to some initial configura-
tion e results in an indistinguishable configuration (r, in Figure 2.2(d)), it is equivalent to a
single symmetry operator R3; =R, R;. For example,

C4 C4 C = C2 ( ll); (2)

(C)* =CH* =R(4 m),

¢p==E2nkin (n>1L,k=1,2, ... <1, —n < $<m). @

A negative sign on £ in eq. (3) corresponds to a negative rotation with —n < ¢ < 0. Note
that k=1 is implicit, as in C;, = R(—2n/3 z), for example. A rotation C, or R(n n) is
called a binary rotation. Symmetry operators do not necessarily commute. Thus, R, R,
may, or may not, be equal to R R;.
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Figure 2.3. Effect of the inversion operator / on the polar vector r. The points Q, Q' lie in the XY
plane.

Exercise 2.1-2 (a) Do successive rotations about the same axis commute? (b) Show that
R(—¢ n) is the inverse of R(¢ n).

A polar vector r is the sum of its projections,
r =ex + ey + esz. 4)

Each projection on the RS of eq. (4) is the product of one of the set of basis vectors
{e; e, e3} and the corresponding component of r along that vector. The inversion operator
I changes the vector r into —r,

4 Ir=-r=—-ex—ey—es 5)

(see Figure 2.3). The basis vectors {e; e, e3} are pseudovectors, that is they behave like
ordinary polar vectors under rotation but are invariant under inversion. The components of
r, {x y z}, do change sign under inversion and are therefore pseudoscalars (invariant under
rotation but change sign on inversion). This is made plain in Figure 2.3, which shows that
under inversion x' = —x, )Y = —y, Z/ = —z. A proper rotation R(¢ n) followed by inversion
is called an improper rotation, IR(¢ m). Although R and IR are the only necessary
symmetry operators that leave at least one point invariant, it is often convenient to use
the reflection operator oy, as well, where o, means “carry out the operation of reflection in
aplane normal to m.” For example, the effect on r of reflection in the plane normal to x is to
change x into —x,

ox{elx + ey + e3z} = {ex + ey + e3z}. (6)

Sometimes, the plane itself rather than its normal m is specified. Thus oy, is equivalent to
ox and means “reflect in the plane containing y and z” (called the yz plane) which is normal
to the unit vector x. However, the notation o, will be seen to introduce simplifications in
later work involving the inversion operator and is to be preferred.
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) X

Figure 2.4. Example of a translation t in the active representation.

Another symmetry operator in common use is the rotoreflection operator

S,jfk =opR(Pm), 0 = X2nkin (n> 1, k=1,2, ..., <nh, —n<¢ <m), (7)

where oy, “means reflection in a plane normal to the axis of rotation.” All the symmetry
operators, E, R(¢ m)=C,, IR(¢ n), o, and S,,, leave at least one point invariant, and so
they are called point symmetry operators. Contrast this with translations, an example of
which is shown in Figure 2.4. Any point P in configuration space can be connected to the
origin O by a vector r. In Figure 2.4, P happens to lie in the xy plane. Then under t, any point
P is transformed into the point P, which is connected to the origin by the vector r/, such that

r=r+t (8)

In Figure 2.4, t happens to be parallel to x. Translations are not point symmetry operations
because every point in configuration space is translated with respect to the fixed axes OX,
oYy, OZ.

A symmetry element (which is not to be confused with a group element) is a point, line,
or plane with respect to which a point symmetry operation is carried out. The symmetry
elements, the notation used for them, the corresponding operation, and the notation used for
the symmetry operators are summarized in Table 2.1. It is not necessary to use both 7 and 7
since all configurations generated by 7 can be produced by 7'.

Symmetry operations are conveniently represented by means of projection diagrams. A
projection diagram is a circle which is the projection of a unit sphere in configuration
space, usually on the xy plane, which we shall take to be the case unless otherwise
stipulated. The x, y coordinates of a point on the sphere remain unchanged during the
projection. A point on the hemisphere above the plane of the paper (and therefore with a
positive z coordinate) will be represented in the projection by a small filled circle, and a
point on the hemisphere below the plane of the paper will be represented by a larger open
circle. A general point that will be transformed by point symmetry operators is marked by
E. This point thus represents the initial configuration. Other points are then marked by the
same symbol as the symmetry operator that produced that point from the initial one marked
E. Commonly z is taken as normal to the plane of the paper, with x parallel to the top of
the page, and when this is so it will not always be necessary to label the coordinate
axes explicitly. An n-fold proper axis is commonly shown by an #n-sided filled polygon
(Figure 2.5). Improper axes are labeled by open polygons. A digon (n =2) appears as
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Table 2.1. Symmetry elements and point symmetry operations.

¢=2mn/n, n>1; nis a unit vector along the axis of rotation.

Notation for symmetry

element

Symmetry
element Schonflies  International Symmetry operation Symmetry operator
None - - identity E=R(0)“
Center I 1 inversion Il
Proper axis C, n proper rotation R(¢p m)=C,or Cpp,
Improper axis IC, n rotation, then inversion IR(¢ n)=1C,,
Plane Om m reflection in a plane normal Om

to m
Rotoreflection S, i rotation through ¢ =27 /n, S(¢pm)=3S, or S;n

axis followed by reflection in
a plane normal to the axis
of rotation

“For the identity, the rotation parameter (¢ n) is zero, signifying no rotation.

n= 2 3 4 5 6 etc.
digon triangle square  pentagon hexagon
operator G, Cy C, Cs Ce
o=2nIn ™ 2n/3 /2 2n/5 /3

Figure 2.5. Symbols used to show an n-fold proper axis. For improper axes the same geometrical
symbols are used but they are not filled in. Also shown are the corresponding rotation operator and the
angle of rotation ¢.

though formed by two intersecting arcs. The point symmetry operations listed in Table 2.1
are illustrated in Figure 2.6.

Exercise 2.1-3 Using projection diagrams (a) prove that /C,, =0, and that /C,, = oy,;
(b) show that / commutes with an arbitrary rotation R(¢ n).

Example 2.1-1 Prove that a rotoreflection axis is an improper axis, though not necessarily
of the same order.

In Figure 2.7, n is normal to the plane of the paper and ¢ > 0. The open circle so marked
is generated from E by S(¢ n) =o,R(¢ n), while the second filled circle (again so marked)
is generated from E by R(¢—n m). The diagram thus illustrates the identity

S(£l¢| n) = IR((£]¢| F7) n),  0< || <. (C)

When ¢ > 0, R(¢—n n) means a negative (clockwise) rotation about n through an angle of
magnitude 7—¢. When ¢ < 0, R(¢+7n n) means a positive rotation through an angle 7w + ¢.
Usually 7 is used in crystallography and S, is used in molecular symmetry.
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Figure 2.6. Projection diagrams showing examples of the point symmetry operators listed in
Table 2.1. (a) I; (b) Cay; (¢) IC;,; (d) ay; (€) Si,.

It follows from Exercise 2.1-3(a) and Example 2.1-1 that the only necessary point
symmetry operations are proper and improper rotations. Nevertheless, it is usually con-
venient to make use of reflections as well. However, if one can prove some result for R and
IR, it will hold for all point symmetry operators.

As shown by Figure 2.8, S7 = C,. Consequently, the set of symmetry elements asso-
ciated with an S, axis is {S4 C,}, and the corresponding set of symmetry operators is
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S(¢ m)

[ ]
R(¢—m m)

Figure 2.7. Demonstration of the equivalence of S(¢ n) and /R(¢—n n) when ¢ > 0 (see Example 2.1-1).

® [ m

Stz
4z [ O <‘\ 5 .

4z

[
C2z

Figure 2.8. Projection diagram showing the operations connected with an S, axis.

{S§ C, S; E}. The identity operator E is always present (whether there is an axis of
symmetry or not) and it must always be included once in any list of symmetry operators.
The following convention is used in drawing up a list of symmetry operators: where the
same configuration may be generated by equivalent symmetry operators we list only the
“simplest form,” that is the one of lowest n, with —n < ¢ < 7, avoiding redundancies. Thus
C, and not 7, S; and not S3, E and not Sj. The first part of this convention implies that
whenever n/k in the operator C* (or SZ*) is an integer p, then there is a C, (or S,), axis
coincident with C, (or S,,), and this should be included in the list of symmetry elements.
Thus, for example, a C¢ axis implies coincident C; and C, axes, and the list of operators
associated with Cg is therefore {Cg C, Cf Cy G E}.

The complete set of point symmetry operators that is generated from the operators
{Ry R,...} that are associated with the symmetry elements (as shown, for example, in
Table 2.2) by forming all possible products like R, R;, and including E, satisfies the
necessary group properties: the set is complete (satisfies closure), it contains E, associa-
tivity is satisfied, and each element (symmetry operator) has an inverse. That this is so may
be verified in any particular case: we shall see an example presently. Such groups of point
symmetry operators are called point groups. For example, if a system has an S, axis and no
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Table 2.2. The multiplication
table for the point group S,.

S4 E S G S
E E sf G oSy
Sy sf G S E

C, G S E Sf
Sy S, E S G

other symmetry elements (except the coincident C, axis that is necessarily associated with
S4) then the set of symmetry operators {E S C, S; } satisfies all the necessary group
properties and is the cyclic point group S,.

Exercise 2.1-4 Construct the multiplication table for the set {E£ S, C, S, }. Demonstrate
by a sufficient number of examples that this set is a group. [Hint: Generally the use of
projection diagrams is an excellent method of generating products of operators and of
demonstrating closure.] In this instance, the projection diagram for S, has already been
developed (see Figure 2.8).

Answers to Exercises 2.1

Exercise 2.1-1 (a) Figure 2.2(c) shows that the arrow has the opposite direction to the
rotation of a right-handed screw as it moves along OZ from O. Also, on looking down the
OZ axis towards O, the rotation appears to be in a clockwise direction. It is therefore a
negative rotation with —n < ¢ <0.

(b) From Figure 2.9(a), R(—7n/2 z){e; e, e3} = {e] €} e}} = {€, | e3}.

Exercise 2.1-2 Both (a) and (b) are true from geometrical considerations. Formally, for
@) R (¢ m)R(¢p m)=R(¢'+¢ n)=R(¢p+¢' n)=R(¢ n)R(¢ n),and therefore rotations
about the same axis commute.

(b) Following R(¢ m) by R(—¢ n) returns the representative point to its original position, a
result which holds whether ¢ is positive or negative (see Figure 2.9(b)). Consequently,
R(—¢ n) R(¢ m)=E, so that R(—¢ m)=[R(¢ n)]".

Exercise 2.1-3 (a) Figure 2.9(c) shows that /C,, is equivalent to o,. Since the location of
the axes is arbitrary, we may choose n (instead of z) normal to the plane of the paper in
Figure 2.9(c). The small filled circle would then be labeled by C,, and the larger open
circle by 1C,, =0, =0y, (since o}, means reflection in a plane normal to the axis of
rotation). (b) Locate axes so that n is normal to the plane of the paper. Figure 2.9(d) then
shows that /R(¢ n) =R(¢ n)l, so that / commutes with an arbitrary rotation R(¢ n).

Exercise 2.1-4 The set contains the identity £. Each column and each row of the multi-
plication table in Table 2.2 contains each member of the set once and once only



32

2.2

Symmetry operators and point groups

© E
[ J
R(pm)/o
Py e =e
)

7
e =—e,

(a

]
N

(c) (@

(b)

1C,,

IR(¢n)=R(¢n) 1

Figure 2.9. (a) The effect of R(—n/2 z) on {e, e; e3}. (b) When ¢ > 0 the rotation R(—¢ n) means a
clockwise rotation through an angle of magnitude ¢ about n, as illustrated. If ¢ <0, then R(—¢ n) is
an anticlockwise rotation about n, and in either case the second rotation cancels the first. (c) This
figure shows that /C,, = o,. (d) The location of the coordinate axes is arbitrary; here the plane of the
projection diagram is normal to n.

(rearrangement theorem) so that the set is closed. Since £ appears in each row or column,
each element has an inverse. As a test of associativity, consider the following:

SHC S;) =8 Sf=Cy; (8§ C)S, =8, S, =0y,

which demonstrates that associativity is satisfied for this random choice of three elements
from the set. Any other three elements chosen at random would also be found to demon-
strate that binary combination is associative. Therefore, the group properties are satisfied.
This is the cyclic group S,.

The multiplication table — an example
Consider the set of point symmetry operators associated with a pyramid based on an

equilateral triangle. Choose z along the C; axis. The set of distinct (non-equivalent)
symmetry operators is G = {E C; Cj o4 0. of} (Figure 2.10). Symmetry elements
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f
04
(®)
Epy =1y ng/}l =1, Cyby = o1 =1y o = o)1=V
()

Figure 2.10. Effect of the set of symmetry operators G = {E C; Cj 04 0 ot} on the triangular-
based pyramid shown in (a). The Cs principal axis is along z. The symmetry planes og, 0., and oy
contain z and make angles of zero, —7/3, and +7/3, respectively, with the zx plane. The apices of
the triangle are marked a, b, and ¢ for identification purposes only. Curved arrows in (b) show the
direction of rotation under Cy and C; . Dashed lines show the reflecting planes.

(which here are {C; o4 o, oy} ) are defined with respect to the Cartesian axes OX, OY, OZ,
and remain fixed, while symmetry operators rotate or reflect the whole of configuration
space including any material system — the pyramid — that exists in this space. The apices of
the equilateral triangle are marked a, b, and ¢ merely for identification purposes to enable
us to keep track of the rotation or reflection of the pyramid in (otherwise) indistinguishable
configurations. The three symmetry planes are vertical planes (o) because they each
contain the principal axis which is along z. The reflecting plane in the operation with oq
contains the OX axis, while the reflecting planes in operations with o, and oy make angles
of —n/3 and + n/3, respectively, with the zx plane. To help follow the configurations
produced by these symmetry operators, we label the initial one ¢; and the other unique,
indistinguishable configurations by 15, ..., 1. Thus, ¥ represents the state in which the
apex marked a is adjacent to point A on the OX axis, and so on. The effect on v, of the
symmetry operators that are € G is also shown in Figure 2.10, using small labeled triangles
to show the configuration produced. Binary products are readily evaluated. For example,

C{ Cy 1y = Cpr = 3 = C4fy; therefore C CY = Cy; (1)
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Table 2.3. Multiplication table for the set
G={E C{ Cj 04 0c 0ot}

G E C;r C; 04 Oe Of

E E C_«:r C; 04 Oe ot

C; C; C:; E Of 0q Oe

Cy C; E S o of oq

o] o] Oe of E cF Gy

Oe Oe ¢ oq Cy E C;“

o o oq Oe ¢ Gy E
C;C;’(ﬂl = C;L’l/)j, = ¢ = Evy; therefore C;C; =F; )
C3+crd1/11 = C;r’(zu = 1;[}6 = O’fw]; therefore C;rO'd = Oft; (3)
0aCy b1 = aqipr = b5 = geidy; therefore 0qCy = 0. (4a)

Thus C5 and o4 do not commute. These operator equalities in egs. (1)—(4a) are true for any
initial configuration. For example,

UdC;_’lb4 = gq¥s = V3 = TeW4; therefore O'dC;— = Oe. (4b)

Exercise 2.2-1 Verify egs. (1)—(4), using labeled triangles as in Figure 2.10.

Exercise 2.2-2 Find the products C; o, and o.C5 . The multiplication table for this set of
operators G = {E Cy C5 o4 0¢ o1} is shown in Table 2.3. The complete multiplication
table has the following properties.

(a) Each column and each row contains each element of the set once and once only. This is
an example of the rearrangement theorem, itself a consequence of closure and the fact
that all products g; g; are unique.

(b) The set contains the identity £, which occurs once in each row or column.

(c) Each element g; € G has an inverse g; ' such that g; ' g;=E.

(d) Associativity holds: g(g; gx) =(g: &)gw V &> &» & € G.

Exercise 2.2-3 Use the multiplication Table 2.3 to verify that o4(Cy of) = (04 C3)oy.

Any set with the four properties (a)—(d) forms a group: therefore the set G is a group for
which the group elements are point symmetry operators. This point group is called Cj, or
3m, because the pyramid has these symmetry elements: a three-fold principal axis and a
vertical mirror plane. (If there is one vertical plane then there must be three, because of the
three-fold symmetry axis.)

Exercise 2.2-4 Are the groups Cs, and S(3) isomorphous? [Hint: Compare Table 2.3 with
Table 1.3.]
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Answers to Exercises 2.2

Exercise 2.2-1 The orientation of the triangular base of the pyramid is shown for each of
the indistinguishable configurations.

CYCy 1 = G ¢ = s = 5
b a C b
a c b a (19
c b a c
CiCy i = Cf 3 = = E
b c b b
a b a a 2)
c a c C
Cioa 1 = G 4 = 1 = or
b c a b
a a b a (39
c b c c
0aCy Y1 = o4 Y2 = s = 0c U
b a b b ,
a C c a (4a)
c b a c
04C3 Y4 = 0a Vs = Y3 = 0O Y4
c a c c ,
a b b a (4b)
b C a b
Exercise 2.2-2
Cioepr =  Ciys = = o
b b a b
a C b a
c a c c

Exercise 2.2-3 04(Cy of) = 040 = C and (04 Cf)ot = 0eor = C5.

Exercise 2.2-4 A comparison of the group multiplication tables in Table 2.3 and Table 1.3
shows that the point group Cs, (or 3m ) is isomorphous with the permutation group S(3).
Corresponding elements in the two groups are

S3) Py P, P, Py Py Ps
Cay E Cf Ci o4 o0e oy
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The symmetry point groups

We

first describe the proper point groups, P, that is the point groups that contain the

identity and proper rotations only.

(@)

(i)

Tab

min

In the cyclic groups, denoted by n or C,, with n> 1, there is only one axis of rotation
and the group elements (symmetry operators) are £ and Cffzk , or R(¢ m)with ¢ = +27k/n,
—n < ¢ <. Note that C,fzk, becomes C;—;, when 7/, is an integer p; k=1, 2, ...,
(n—1)/2, if n is an odd integer, and if n is even k=1, 2, ... , 7/, with C,;n/z, excluded
by the range of ¢. For example, if n=4, k=1, 2, and ¢ = +x/2, n. The symmetry
elements are the C4 axis, and a coincident C, axis, and the group elements (symmetry
operators) are {E C; C; C»}; k=11isimplicitin Cnik . The projection diagram for C4
is shown in Figure 2.11(a). C, is also a cyclic group (though not an axial group) with
period {g; =FE} and order ¢ =1. There are no symmetry elements and the group
consists solely of the identity £. The International notation used to describe the point
groups is given in Table 2.4. Some International symbols are unnecessarily cumber-
some, and these are abbreviated in Table 2.5.

The dihedral groups consist of the proper rotations that transform a regular n-sided
prism into itself. The symmetry elements are C, and n C5, where C), denotes a binary
axis normal to the n-fold principal axis. (The prime is not essential but is often used to

le 2.4. International notation used to name the point groups comprises a
imal set of symmetry elements.

n

n
nm
n/m

n2

n-fold proper axis (n = 1 means there is no axis of symmetry)
n-fold improper axis (7 = 1 means an inversion center)

n-fold proper axis with a vertical plane of symmetry that contains »
n-fold proper axis with a horizontal plane of symmetry normal to
n-fold proper axis with # binary axes normal to #

Ci, o ‘
[ ] _

[ ]
C2z

(a) (b)

Figure 2.11. Projection diagrams (a) for the proper point group 4, or Cy4, and (b) for the dihedral group

422,

or D,. The components of the unit vector a are 277 [1 1 0] and those of b are 27" [T 1 0].
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Table 2.5. Abbreviated International symbols and Schénflies notation.

Schonflies symbol Full International symbol Abbreviated symbol
Do 222 mmm
mmm
Day 422 4/mmm
mmm
Dgn 622 6/mmm
mmm
_2 3
D34 32 3m
m
Th z § m3
m
Oy, 4 3 2 m3m
m- m

stress that a binary axis is normal to the principal axis and hence lies in the xy plane.
In projective diagrams and descriptive text one refers to specific axes such as Cpy
when greater precision is required.) The symmetry operators are CZ* or R(¢ z), with
¢ and k as in (i), and R(7 n;), with n; normaltozand i =1, ... , n. In general, we shall
use particular symbols for the n;, such as x,y, a, b, ... ,witha, b, ... appropriately
defined (see, for example, Figure 2.11(b)). The group symbol is D, in Schonflies
notation and in International notation it is n2 if n is odd and »22 if » is even, because
there are then two sets of C), axes which are geometrically distinct. The projection
diagram for 422 or D, is shown in Figure 2.11(b). The four binary axes normal to z lie
along x, y, a, b, where a bisects the angle between x and y and b bisects that between X
and y. These axes can be readily identified in Figure 2.11(b) because each transformed
point is labeled by the same symbol as that used for the operator that effected that
particular transformation from the representative point E.

(iii) The tetrahedral point group, called 23 or T, consists of the proper rotations that
transform a tetrahedron into itself. The symmetry elements are 3C, and 4C5, and the
easiest way of visualizing these is to draw a cube (Figure 2.12) in which alternate
(second neighbor) points are the apices of the tetrahedron. These are marked 1, 2, 3,
and 4 in Figure 2.12. The symmetry operators are

T = {E R(m p) R(£2m/3 j)}, (1
with p=X, y, z, and j a unit vector along O1, 02, O3, O4.
(iv) The octahedral or cubic group, named 432 or O, consists of the proper rotations that

transform a cube or an octahedron into itself. The proper axes of the cube or
octahedron are {3C4 4C5 9C,} and the symmetry operators are

O ={T} +{R(%/2 p) R(w m)}, 2

where n is a unit vector along Oa, Ob, Oc, Od, Oe, Of in Figure 2.12 .
(v) The icosahedral group, named 532 or Y, consists of the proper rotations that transform
an icosahedron or pentagonal dodecahedron into itself (Figure 2.13). The pentagonal
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o
~<

S A N
N
X

Figure 2.12. Alternate vertices of the cube (marked 1, 2, 3, and 4) are the apices of a regular
tetrahedron. O1, 02, O3, and O4 are three-fold axes of symmetry. Small crosses show where the
C,4 axes, OX, OY, and OZ, intersect the cube faces. Oa, Ob, Oc, Od, Oe, and Of are six binary axes.

B3

(@ (b)

Figure 2.13. The dodecahedron and the icosahedron are two of the five Platonic solids (regular
polyhedra), the others being the tetrahedron, the cube, and the octahedron. (a) The dodecahedron has
twelve regular pentagonal faces with three pentagonal faces meeting at a point. (b) The icosahedron
has twenty equilateral triangular faces, with five of these meeting at a point.

dodecahedron has six Cs axes through opposite pairs of pentagonal faces, ten C; axes
through opposite pairs of vertices, and fifteen C, axes that bisect opposite edges.
The icosahedron has six Cs axes through opposite vertices, ten C; axes through
opposite pairs of faces, and fifteen C, axes that bisect opposite edges. For both these
polyhedra, the symmetry elements that are proper axes are {6Cs 10C; 15C,} and the
point group of symmetry operators is therefore

Y = {E 6C¥ 6C3* 10CF 15G,} 3)

for a total g(Y) of 60. It is isomorphous to the group of even permutations on five
objects, which number 5!/2.
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This completes the list of proper point groups, P. A summary is given in the first column
of Table 2.6. All the remaining axial point groups may be generated from the proper point
groups P by one or other of two methods.

First method

This consists of taking the direct product (DP) of P with 1 or C;={E I}.
(i) From C,, if n is odd,

C,®C=8S,, n®1=n 4)

But if n is even,
C,®Ci=Cp, n®1=n/m, 5
where h, or /m, denotes a mirror plane normal to the principal axis, which arises because

[CQZO'},.

Example 2.3-1 (a) C;@C={E Co,} ©{E I} ={E Cy, I 0,}=Cop. (b) C3®C, =
{ECY, CL,} @ {EI} ={E Ci, C5, 1S, S¢,} = Se. Projection diagrams are illustrated
in Figure 2.14.

(i) From D,,, if n is odd,
D, ®C; =D, n”2® 1 = nm. (6)

The subscript d denotes the presence of dihedral planes which bisect the angles between
C}, axes that are normal to the principal axis. If # is even,

D, ® C; = Dyp; n22 ® 1 = n/mmm. (7

If n is 2, the International symbol is abbreviated to mmm (Table 2.4).
Example 2.3-2

D3 ®C; ={E C3, C;, Coa Cop Coe} @ {E I}

~ ®)
= {Ds} +{I S, Sz a 0b 0c} = Dsg;

o, for example, denotes reflection in a dihedral plane zf that bisects the angle between a
and b, which are the binary axes normal to the C; axis (Figure 2.10). The notation in eq. (8)
is intentionally detailed, but may be compressed, as in

D; ®C; = {E 2C3 3C,} ® {E I} = {E 2C5 3C}, I 2S5 304} = Dsa. 9)

Exercise 2.3-1 Confirm the DP D3 ® C; in eq. (9) by constructing the (labeled) projection
diagram for Dsq4. Identify the dihedral planes.

(iii) TRC =Ty 2301 =m3. (10)



Table 2.6. Derivation of commonly used finite point groups from proper point groups.

If P has an invariant subgroup Q of index 2 so that P={Q} + R{Q}, R€P, RZ Q, then P’ = {Q} 4+ IR{Q} is a group isomorphous with P.

In each column, the symbol for the point group is given in International notation on the left and in Schonflies notation on the right. When n =2,
the International symbol for Doy, is mmm. When n is odd, the International symbol for C,,, is nm, and when n is even it is nmm. Note that '’ = n/2.

In addition to these groups, which are either a proper point group P, or formed from P, there are the three cyclic groups: 1 or C; = {E}, 1 or

C,={EI},and m or Cy={E o}.

P P®C; P=Q+IR{Q} Q
n (n=2,3,...,8) C, n (n=3,5) Son n (n=3,95) Cun n C,
nm (n=2,4,6) Cun n (=24 So

n2 (n=3,5) D, nm (n=3,5) D,.q nm, nmm (n=2,3,...,6) Cuv n C,

n22 (n=2,4,6) D, n/mmm (n=2,4,6,8) D,n n2m ' =3,5) Dyn n'?2 D,/
n'=2,4,6) Dyvq n'22 D,

23 T m3 T,

432 (0] m3m Oy 43m Tq 23 T

532 Y 53m Y,
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I CZz I

(@ (b)
Figure 2.14. Projection diagrams for the point groups (a) C,;, and (b) Se.

In abbreviated notation,

T®C; ={E 4C{ 4C; 3G} @ {E I}

= {T} + {I 4S; 4S} 304} = T (h

As shown in Figure 2.15(a), /C,y (for example) is oy. The plane normal to y, the zx plane,
contains Cy, and Csy, and so this is a horizontal plane (normal to C,y) and not a dihedral plane,
because it contains the other C, axes (C,, and C,y) and does not bisect the angle between them.
Note that T = C, A C; is 23 in International notation but that D; = C; A C, is 32.

(iv) ORC =0, 432®1=m3m. (12)
In abbreviated notation,

0®C; = {E 6C4 3C, 6C,' 8C3} @ {E I}

= {0} + {I 654 301, 604 8Ss}. (13)

The three S, axes are coincident with the three C, (and coincident C,) axes along X, y, z.
The three horizontal planes oy, oy, and o, and two of the six dihedral planes o,, o}, are
shown in Figures 2.15(b) and (c).

V) Y®RC =Yn 532®1=>53m; (14)

Y®C = {E 24Cs 200, 15C2} ® {E [}

15
= {Y} + {[ 24S10 2056 150h}. ( )

The six S;( axes are coincident with the six Cs axes of Y, and the ten S¢ axes are coincident
with the ten C;5 axes of Y. The fifteen mirror planes each contain two C, axes and two Cs

axes. All these DPs are given in the second column of Table 2.6.

Exercise 2.3-2 Draw a projection diagram showing that Cs ® C; = Sy,
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Figure 2.15. (a) In T ® C;, IC,y = 0y, and oy, contains the other two C, axes, C,, and C,. Since oy is
normal to the axis of rotation y, it is a horizontal plane, not a dihedral plane. (b) In O ® C;, IC; = oy,
as, for example, /C, = oy, which contains y and z. In (c), a is the unit vector along Oa in Figure 2.12,
and /C,, = 0,. This dihedral plane is also shown in (b).

2.3.2 Second method

The second method is applicable to proper point groups P that have an invariant subgroup
Q of index 2, so that

P={Q} +R{Q}, ReP, RZQ. (16)

Then {Q} + IR{Q} is a point group P’ which is isomorphous with P and therefore has
the same class structure as P. The isomorphism follows from the fact that / commutes
with any proper or improper rotation and therefore with any other symmetry operator.
Multiplication tables for P and P’ are shown in Table 2.7; we note that these have
the same structure and that the two groups have corresponding classes, the only differ-
ence being that some products X are replaced by X in P’. Examples are given below.
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Table 2.7. Multiplication tables for P and P', where P = {Q} + R{Q} and P’ = Q + IR{Q}.

A,BeQand C,De R Q. Use has been made of the commutation property of / with any
other symmetry operator.

P Q) R{Q P’ Q) IR{Q}
(Q} (4B} (4D} (Q} {(AB}  I{AD}
R{Q} (CB}  {CD} IR{Q} I{CB} {CD}

Exercise 2.3-3 If X € R{Q} and X, Y are conjugate elements in P, show that /X and /Y are
conjugate elements in P’.

(1) C,,, has the invariant subgroup C,, of index 2, because

C2n = {Cn} + CZn{Cn}~ (17)

Note that C, means the point group C,,, but {C,} means the set of operators forming the
point group C,.. Then

{Cu} + 1C2,{C,} = Sz, (n even), or = Cyp (n odd). (18)

In Table 2.6, n’ is defined as n/2 to avoid any possible confusion when using International
notation; S,/ is, of course, S,,.

Example 2.3-3
C, =E+ C{E} ={E C,}, (19)

E+IC{E} = {E 01} = Cs. (20)

The multiplication tables are

C, (@) s Oh
E E (& 2 E Oh
G G E Oh o E

This is a rather trivial example: the classes of C, are E, C, and those of Cg are E, oy,.
Elements X € P and IX € P’ are called corresponding elements, so here C, and IC, = oy,
are corresponding elements.

Exercise 2.3-4 Use the second method to derive the point group P’ corresponding to the proper
point group C,4. Show that C4 and P’ are isomorphous and find the classes of both groups.
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Czy E IC,y, E
Ol|e |0

O
N

O
CZz CZx sz

(a) (b)

ah
L

(©)

X

Figure 2.16. Projection diagrams (a) for D,; (b) showing that /C,, = o4; and (c) for Cy,,.

(ii) D,, has the invariant subgroup C,,. The coset expansion of D,, on C,, is

D, = {C,} + C/{C,}. @1)
2D {C,} +1G{C,} = {C,} + 6,{C,} = Cpy. (22)
For example, for n =2,
D; = {E Co} + Col{E Cp} = {E Cyy Cox Coy}, (23)
(23) {E sz} +IC2X{E sz} = {E sz} + O'X{E sz}
== {E sz Ox O'y} == sz. (24)

The projection diagrams illustrating D, and C,, are in Figure 2.16.
D,,, has the invariant subgroup D,, of index 2, with the coset expansion

D2n = {Dn} + CZn{Dn}; (25)
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Table 2.8. The relation of the point groups O and T4 to their invariant subgroup T.

C3, means a positive rotation through 27 /3 about the axis O1 and similarly (see Figure
2.12). C,, means a rotation through © about the unit vector a along [1 1 0], and o, means a
reflection in the mirror plane normal to a.

{T} ={E Co Cox Coy G5 G5y G5, G5y G55 G35 G5 Gy}
CA:;{T} = {CIZ C4_z Cra Cop Coe C4_y Cor Czrv CZ; Cra C4_x CZe}

IC;{T} = {84, S4, 0a 0b 0c Siy 01 Siy Siy 0a Sk 0}

(25) {D,} + IC3,{D,} = D,y (n even), or D, (n 0dd). (26)
For example, if n =2,
Dy = {Dy} + C;,{Dy} = {E Cy, Cxx Cay C, C;, Caa Cop}, (27)

where a is the unit vector bisecting the angle between x and y, and b is that bisecting the
angle between X and y. The projection diagram for D, is shown in Figure 2.11(b). Applying
the second method,

{Dz} —|—[CZLZ{D2} = {E Cy, Co Czy} +S4;{E Cy, Cox Czy}

_ (28)
= {E CZZ sz Czy S4z SZ—Z Oa O’b} = D2d-
(iv) O has the invariant subgroup T of index 2:
O ={T}+ C;{T} ={E 3G, 8C; 6C4 6C,'} 29)
{T} +1C4:;{T} = {E 3C2 8C3 6S4 60’d} = Td. (30)

The detailed verification of egs. (29) and (30) is quite lengthy, but is summarized in Table 2.8.

(iii), (v) The point groups T, Y have no invariant subgroups of index 2.

This completes the derivation of the point groups that are important in molecular
symmetry, with the exception of the two continuous rotation groups C.., and D,
which apply to linear molecules.

The rotation of a heteronuclear diatomic molecule like HCI through any angle ¢ about z
(which is always chosen to lie along the molecular axis) leaves the molecule in an
indistinguishable configuration. The point group therefore contains an infinite number of
rotation operators R(¢ z). Similarly, there are an infinite number of vertical planes of
symmetry in the set of symmetry elements and the point group contains cooy. The point
group is therefore called C.,. For homonuclear diatomic molecules like O,, or polyatomic
linear molecules with a horizontal plane of symmetry, the point group also contains oy, and
an infinite number of C, axes normal to the principal axis (which is along the molecular
axis). Such molecules belong to the point group D,.

For crystals, the point group must be compatible with translational symmetry, and this
requirement limits # to 2, 3, 4, or 6. (This restriction applies to both proper and improper axes.)
Thus the crystallographic point groups are restricted to ten proper point groups and a total of
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Table 2.9. The thirty-two crystallographic point groups in both International and Schonflies
notation.

In addition to the proper point groups P and the improper point groups that are either
isomorpous with P or equal to P ® C,, there is the non-axial group 1 or C; = {E}.

Improper group P’ Proper group isomorphous

Proper point group P isomorphous to P P®C; toP® C;
2 c, { mo G } 2/m Cy D,

1 C;
3 C; 3 Se Co
4 C4 Z S4 4/m C4h
6 C(, 6 C3h 6/m C6h
222 D, 2mm Cyy mmm Dy
32 D; 3m Csy 3m Diqs  Ds
422 D, { Amm - Cay } 4/mmm  Dan

42m D2d
622 Ds { bmm  Co } 6/mmm  Den

6m2 D3h
23 T m3 Ty
432 (0] 43m Tq4 m3m Oy

thirty-two point groups, thirteen of which are isomorphous with at least one other crystal-
lographic point group. The thirty-two crystallographic point groups are listed in Table 2.9.

Answers to Exercises 2.3

Exercise 2.3-1 The projection diagram is given in Figure 2.17. The dihedral planes are oy,
oy, and o, where oy bisects the angle between —b and ¢, oy, bisects the angle between x and
¢, and o, bisects the angle between x and b.

Exercise 2.3-2 See Figure 2.18.

Exercise 2.3-3 If X, Y€ P are conjugate, then for some p,€P, p; X pj’1 = Y. But if
XeR{Q} in P, then IX€R{Q} in P’ and p; IX p/?l = IY, so that IX and IY are
conjugate in P’.

Exercise 2.3-4 C,={C,} +C4{ {Co} ={E G} +C} {E C,}={E C, C} C;}. But
{CY+ICH {Cy={E C}+S; {E C,)={E C, S; S4}=S, Use projection
diagrams, if necessary, to verify the multiplication tables given in Tables 2.10 and 2.11.
Clearly, the two multiplication tables are the same, corresponding elements being C; and
IC] = S;; C; and IC; = S . Both groups are Abelian.
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Figure 2.17. Projection diagram for the point group D33 =D; ® C; (see eq. (2.3.9)). For example,
IC5y, = o, and this mirror plane normal to b bisects the angle between the C}, axes C,x and Cy, so that
it is a dihedral plane. Similarly, o and o are dihedral planes.

.
Sio

E

Cs
cs
3+
SIO
.
SIO
CS
I
Figure 2.18. Projection diagram for the point group Sio.
Table 2.10. Multiplication table for C,.
Cy E ch G, lon
E E ct Gy lon
cf Cr C, o E
Cz Cz CZ E CI
Cy Cy E Cf C,
Table 2.11. Multiplication table for S,.
S4 E Sy C, Sf
Sy Sy G S5 E
C, C, S E Sy
S; S E Sy C,
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Identification of molecular point groups

A systematic method for identifying the point group of any molecule is given in
Figure 2.19. Some practice in the recognition of symmetry elements and in the assignment
of point groups may be obtained through working through the following exercises and
problems.

Exercise 2.4-1 Identify the symmetry point groups to which the following molecules
belong. [Hint: For the two staggered configurations, imagine the view presented on looking
down the C—C molecular axis.]

(a) nitrosyl chloride NOCI (non-linear), (g) staggered H;C—CCls,

(b) carbon dioxide O=C=O0 (linear), (h) [PtCl,]~2 (planar),

(c) methane CH, (Figure 2.20), (1) staggered ethane H;C—CHj,
(d) formaldehyde H,C=O0, (j) B(OH); (planar, Figure 2.20),
(e) carbonate ion CO3* (planar), (k) IF; (pentagonal bipyramid),
(f) BrFs (pyramidal), (1) S4 (non-planar).

no horizontal plane of symmetry = Cey
Linear molecules 4‘7_ .
horizontal plane oy, D..,

Non-linear molecules

o C,
no proper axis of 1 C;
symmetry
neither o nor I C,
(%% Dnh
nCyL1C,— nog—— D,y
no o D,
—<1C; . C,,
n UV CnV
no C; L C,—
Sou Sy,
C,.,n>1 —
" L _noo,noS,,— C,
I Yy
10C;5, 6C5 —i
nol Y
—>1C; 38, Ty

I— O,
e, —se,
nol— O
I— T,
e
nol— T

Figure 2.19. Identification of molecular point groups.
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H Cl

g
E i U E i OH
E E || E i ® C
N
EQ--__CI),; (g) allene
Qa ew
(i) Pd,Clg
o
(o
@ Fe '

(k) ferrocene

Figure 2.20. Structure of several molecules referred to in Exercise 2.4-1 and in the problems to this
chapter. Lower case letters (c) and (g)—(k) refer to Problem 2.3.
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Answer to Exercise 2.4-1

Cs; Dochs Ta; Covs Dan; Cays Cay; Dap; D3g; Can; Dsys Ty

Problems

2.1

(a)
(b)

Prove the following results by using projection diagrams.
Show that R(r m) and R(n m) commute when m is normal to n.
Show that oyoy = Cs,.

(¢) Two planes oy, o, intersect along n and make an angle ¢/2 with one another. Show that

(d)
22

23

(a)
(b)
()
(d)
(e)
®
(8
(h)
2.4

2.5

()
(b)
(c)
(d)
(e)
(®
(2

0,01 =R(¢ mn). Do oy and o, commute?

Show that R(nw x) R(8 z)=R(—0 z) R(n x).

Identify the set of symmetry operators associated with the molecule frans-
dichloroethylene (Figure 2.20). Set up the multiplication table for these operators and
hence show that they form a group. Name this symmetry group. [Hint: Set up a right-
handed system of axes with y along the C=C bond and z normal to the plane of the
molecule.]

Determine the symmetry elements of the following molecules and hence identify the
point group to which each one belongs. [Hints: Adhere to the convention stated in
Section 2.1. Many of these structures are illustrated in Figure 2.20. Sketching the view
presented on looking down the molecular axis will be found helpful for (k) and (1).]

NH; (non-planar), (1) Pd,Clg,

H;C—CCl; (partly rotated), () hydrogen peroxide,

CHFCIBr, (k) bis(cyclopentadienyl)iron or ferrocene
CsHs (planar), (staggered configuration),

Cg¢Hg (planar), (1) dibenzenechromium (like ferrocene, a
[TiFs] * (octahedral), “sandwich compound,” but the two
allene, benzene rings are in the eclipsed con-
[NbE,] 2, figuration in the crystal).

List a sufficient number of symmetry elements in the molecules sketched in

Figure 2.21 to enable you to identify the point group to which each belongs. Give
the point group symbol in both Schonflies and International notation.

Show that each of the following sets of symmetry operators is a generator for a point
group. State the point group symbol in both Schonflies and International notation.
[Hints: The use of projection diagrams is generally an excellent method for calcul-
ating products of symmetry operators. See Figure 2.10(a) for the location of the
C,, axis.]

{Coy Co},s

1Caz 13,

184z Cox},

{C3z CZa ]}9

{_C4z Ox},

{6},

{S3z CZa}-
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L L
L L L L
RV avavi
L L L L
L L
(a) ()
L’ L’
L L L L’
/S LS
L L L L
L’ L
(©) (d)
L
L L
[/
L’ L’
L

Figure 2.21. Configurations of an ML4 complex ion and of some ML,L{_, complexes.

2.6

(a)
(b)
(©)
(d)
(e)
2.7

(a)
(b)
(©)
(d)
(e)

List a sufficient number of symmetry elements (and also significant absences) in the
following closo B, H ,?ions that will enable you to determine the point group to which
each belongs. The shapes of these molecules are shown in Figure 2.22.

BsH; 72,

BeH; 2,

BoH, 2,

BioHig,

B,H,

Evaluate the following DPs showing the symmetry operators in each group. [Hint: For
(a)—(e), evaluate products using projection diagrams. This technique is not useful for
products that involve operators associated with the C3 axes of a cube or tetrahedron, so
in these cases study the transformations induced in a cube.] Explain why the DPs in
(d)—(f) are semidirect products.

D, ®C,,

D; ®C,,

D; ® C,,

Sa NGy (Co = {E Cx)),

Do NG (Co = {E Caa}),

() D ANC3(Cs={E C§t1})~
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1
1
4‘\ § 72 4@2
5 6

4 4 |
8 2 8 A 6
6 \
© BQHQ5 / 1 :d) ByHo
KK
9 7

Figure 2.22. Some closo B, H; 2 anions. The numbering scheme shown is conventional and will be an
aid in identifying and describing the symmetry elements.
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Linear vector spaces

In three-dimensional (3-D) configuration space (Figure 3.1) a position vector r is the sum
of its projections,

r=ex+e)y+ e;z. (1)

The set of three orthonormal basis vectors {e; e, €5} in eq. (1) is the basis of a linear vector
space (LVS), and the coordinates of the point P(x y z) are the components of the vector r.
The matrix representation of r is

r= (e e eslxyz). ()

(e; e, e3|is a matrix of one row that contains the elements of the basis set, and | x y z) is a
matrix of a single column containing the components of r. The row x column law of matrix
multiplication applied to the RS of eq. (2) yields eq. (1). The choice of basis vectors is
arbitrary: they do not have to be mutually orthogonal but they must be linearly independent
(LI) and three in number in 3-D space. Thus, {e; e, e;} form a basis in 3-D space if it is
impossible to find a set of numbers {v; v, v3} such that e;v; + e,v, +e3v3; =0, except
v;=0,j=1, 2, 3. But any set of four or more vectors is linearly dependent in 3-D space.
That is, the dimensionality of a vector space is the maximum number of LI vectors in that
space. This is illustrated in Figure 3.2 for the example of two-dimensional (2-D) space,
which is a subspace of 3-D space.
For a vector v in an LVS of n dimensions, eq. (1) is generalized to

V=) €Vvi=e€vit+ev+ - +e W,
i=1
#0, unless v; =0,Vi=1,...,n 3)
In eq. (3), the vector v is the sum of its projections. The matrix representation of eq. (3) is

V= (el € ... en|v1v2 Vn> (4)

= (e[v), )

where, in eq. (5), the row matrix (e| implies the whole basis set, as given explicitly in
eq. (4), and similarly v in the column matrix |v) implies the whole set of n components

53
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Figure 3.1. Projection of a vector OP along three orthogonal axes OX, OY, OZ.

(a) (b) ©

Figure 3.2. Examples, in 2-D space, of (a) an LI set of orthogonal basis vectors {e; e,}, (b) an LI non-
orthogonal basis, and (c) a set of three basis vectors in 2-D space that are not LI because
e +et+e= 0.

{viva ... v,}. If the basis {e;} and/or the components {v;} are complex, the definition of
the scalar product has to be generalized. The Hermitian scalar product of two vectors u and
v is defined by

u'v = (efu)’ - (elv), (6)

the superscript | denoting the adjoint or transposed complex conjugate:

(5),(6) w'ev = (u'le’) - (ely) (7a)
= (u"|M|v) (7b)
ij

The square matrix

M = le”) - {e] ®)
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is called the metric of the LVS:

M=le;"e" ... e )(eje ... e,
e *-e ef-e
— |ee e*e ©)
Note that (i)
Mj=¢"¢=¢-€ = (e"¢e) =M" (10)
so that M is a Hermitian matrix (M = M"). (ii) If the basis is orthonormal (or unitary)
M;=e"¢ =0 (11)
and M is just the unit matrix with n rows and columns,
M=E,. (12)
In this case,
uv= W) = uv (13)
i

In egs. (7a) and (7b) |v) is a matrix of one column containing the components of v, and (u*\
is a matrix of one row, which is the transpose of [u"), the matrix of one column containing
the components of u, complex conjugated. In eq. (6), transposition is necessary to conform
with the matrix representation of the scalar product so that the row x column law of matrix
multiplication may be applied. Complex conjugation is necessary to ensure that the length
of a vector v

v=1|v| = (v-v)'"? (14)

isreal. A vector of unit length is said to be normalized, and any vector v can be normalized
by dividing v by its length v.

Matrix representatives of operators

Suppose a basis (e| is transformed into a new basis (¢’| under the proper rotation R, so that
Rle| = €|, (1)

or, in more detail,
R(el € 63‘ = (el’ ezl e3'|. (2)

Then the new basis vectors {e; } can be expressed in terms of the old set by writing e/ as the
sum of its projections (cf. eq. (3.1.3)):
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3
ej, - X:lei ri/': ] = 17273; (3)

r; is the component of e/ along e;. In matrix form,
(3) <e1/ ezl e3'| = <e1 € C3|F(R), (4)
where the square matrix

rir riz ri3
LR)=T[ryl=|ra rn 13 (5)
r31 r3 133

and the 1;; in eq. (3) are seen to be the elements of the jth column of I'(R). In shorter
notation,

“4) (' = (e|C(R). (6)

Equation (6), or eq. (4), is the matrix representation of the operation of deriving the new basis
{e/} from the original basis {e;}, and when we carry out the matrix multiplication on the RS
of eq. (6) or eq. (4) we are using eq. (3) successively for each e/ in turnasj=1, 2, 3.

(1),(6) Rie| = (¢'| = (e [T'(R), @)
which shows that I'(R) is the matrix representative (MR) of the operator R.

Example 3.2-1 When R is the identity E, (€| is just (e| and so T'(E) is the 3 x 3 unit matrix, E 5.
Example 3.2-2 Consider a basis of three orthogonal unit vectors with e; (along OZ)
normal to the plane of the paper, and consider the proper rotation of this basis about OZ

through an angle ¢ by the operator R (¢ z) (see Figure 3.3). Any vector v may be expressed
as the sum of its projections along the basis vectors:

<

(0] e
Figure 3.3. Rotation of configuration space, and therefore of all vectors in configuration space
including {e, e, e3}, through an angle ¢ about OZ (active representation).
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V= Z € V. (313)

To find the ith component v;, take the scalar product of e; with v. Here the basis is real and
orthonormal, so

(313) € -v=¢;- Ze, Vj = 26,_-/ Vj =V;. (8)
J J

We now represent the transformed basis vectors {e/} in terms of the original set {e;} by
expressing each as the sum of its projections, according to eq. (3). Writing each
e/ (j=1, 2, 3) as the sum of their projections along {e;} yields

e/’ = ey (cos @) + ex(sin @) + e3(0)
&' = ey(—sing) + ex(c0s ) + €3(0) ©)
63/ = 61(0) + 62(0) + 63(1)

where we have used the fact that the scalar product of two unit vectors at an angle 6 is cos 6,
and that cos(37 — ¢) = sin ¢, cos(3m + ¢) = — sin{¢}, and cos 0 = 1. Because of the row x
column law of matrix multiplication, egs. (9) may be written as

cos¢p —sing 0
(e)" &' e3' | = (e] e, e3]| sing cosgp 0. (10)

0 0 1

On using eq. (7), the MR of R(¢ z) is seen to be

cos¢ —sing 0 c —s 0
(10) T(R(¢p z)) = | sing cosp 0| =1|s ¢ O], (11)
0 0 1 0o 0 1

where ¢ =cos ¢, s =sin ¢. The proper rotation R(¢ z) rotates a vector r in configuration
space into the vector r’ given by

1) Y= Rr = Rlelr) = (¢r) = (ETR)[r) = (elr"). (12)

For R =R (¢ z), the components of v’ (which are the coordinates of the transformed point
P’) are in

(12) ) = T(R)lr), (13)

which provides a means of calculating the components of |r’) from

x —s 0] [x
(13),(11) V]=1|s ¢ 0 y|. (14)
4 0 0 1 z
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Example 3.2-3 Find the t ransformed components of a vector r when acted on by the
operator C;. = R(n/2 z).

x c —s 0] [x 01 of[x ¥
(14) V| = c y{=1]100f|y|=|x (15)
z 0 z 0 0 1]|z z

The set of components of the vector r’ in eq. (13) is the Jones symbol or Jones faithful
representation of the symmetry operator R, and is usually written as (x" )’ /) or x’ )/ Z'. For
example, from eq. (15) the Jones symbol of the operator R (n/2 z) is (¥xz) or yxz. In
order to save space, particularly in tables, we will usually present Jones symbols without
parentheses. A “faithful representation” is one which obeys the same multiplication table
as the group elements (symmetry operators).

The inversion operator / leaves (e| invariant but changes the sign of the components of r
(see eq. (2.1.5) and Figure 2.3):

Ielr) = (ell|r) = (e|l'()|r); (16)
(16) Iixyz) =T()lxyz) = [-x =y —2). (17)
Therefore the MR of / is
100
(17) =10 1 0 (18)
001

It follows that if R is a proper rotation and R|x y z) =[x’ y/ /), then
17) IRxyz) =IX y 2y = | =X =) -Z). (19)

The improper rotation S(¢n) = IR(¢ F 7 n), for $>0 or <0 (see eq. (2.1.9)), so that it is
sometimes convenient to have the MR of S(¢ n) as well. In the improper rotation
S(pz)=0,R(p2), 0,xyz)=|xyZ), and so the MR of S(¢ z) is

c —s 0
(11) L(S(pz)=1s ¢ 0 (20)
0 0 1

Exercise 3.2-1 Write down the Jones symbol for the improper rotation S,.

Exercise 3.2-2 Show that Snik :ICF("/ 2>. Find operators of the form IC,’j that are
equivalent to Si, and Sg.

It is demonstrated in Problem 3.1 that I'(R) and I'(S) are real orthogonal matrices. An
orthogonal matrix A has the property ATA=E, where E is the unit matrix, so that
A~ '=A" which makes the calculation of T'(R)™' and I'(S)"' very straightforward or
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simple (to use space). Equations (13), (17), and (19) are of considerable importance since every
point symmetry operation, apart from £ and /, is equivalent to a proper or improper rotation.

Example 3.2-4 Nevertheless it is convenient to have the MR of (6 y), the operator that
produces reflection in a plane whose normal m makes an angle 0 with y (Figure 3.4) so that
the reflecting plane makes an angle 0 with the zx plane.

From Figure 3.4,

X =cosq, y =sinaq, (21)

X' = cos(20 — «) = x cos(20) + y sin(26), (22)

¥ = sin(20 — ) = xsin(26) — y cos(26). (23)
X cos26  sin20 O] [x

Q21)—(23) v | = |sin20 —cos20 0|y (24)
4 0 0 1 z

so that the MR of o(fy) is

cos20  sin20 0
(24) I(o(0y))=|sin20 —cos20 O0]. (25)
0 0 1

Example 3.2-5 The MR of o(7/3 y) is

(22) Plo(x/3 y)=|L 1 o (26)
0o 0 1
Y
m Pr
.o
0 P

Figure 3.4. Reflection of a point P(x y) in a mirror plane o whose normal m makes an angle § with y,
so that the angle between o and the zx plane is 6. OP makes an angle « with x. P'(x’ )/) is the
reflection of P in o, and OP’ makes an angle 26 — « with x.
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Answers to Exercises 3.2

Exercise 3.2-1 From eqs. (15) and (19), the Jones symbol for Sy, isy X Z.

Exercise 3.2-2 Let S(¢ n) =IC (¢' n). Then ¢ =2nk/n and ¢' = 2n[k F (n/2)]/n so that
Sk = 1) Therefore, Sf = IC], and S = IC},

Mappings

When the symmetry operator R € G acts on configuration space, a vector r is transformed
into r' = Rr; r’ is the image of r, and the process whereby R{r}—{r'} is called a mapping.
The components of ' are given by

(3.2.13),(3.2.19) ¥y ) =TR)xyz), (1)

where I'(R) is the MR of the operator R. Equation (1) will be found to be extremely useful,
for it enables us to find the effect of a symmetry operator R on the coordinates of P(x y z).
(In eq. (1) R may be the identity, the inversion operator, or a proper or improper rotation.)
The lengths of all vectors and the angles between them are invariant under symmetry
operations and so, therefore, are scalar products. Consider the transformation of two
vectors u, v into w’, v/ under the symmetry operator R:

(3.2.12) w =R u=R{elu) = (e|T(R)|u), 2)

(3.2.12) vV =R v=R(elv) = (e|]['(R)|v). 3)
The Hermitian scalar product of u and v is

(3.1.6) utv = (elu)’ - (e

(3.1.7a) = (u"|Mv). 4
Similarly, that of w’ and v’ is

2).3) uv = (e|(R)w)’ - (e[L(R)]Y). )
The adjoint of a product of matrices is the product of the adjoints in reverse order, so

4 uv = (W T(R)']e") - (eIT(R)|v)

(3.1.8) = (W[T(R)'MI'(R)|v). (6)
Because the scalar product is invariant under R, - v =u"- v, and
(6).(4) T'(R)"MT(R) = M. (7)

In group theory the most important cases are those of an orthogonal or unitary basis when
M is the 3 x 3 unit matrix, and consequently
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(7) T'(R)'T(R) =E. ®)
Equation (8) shows that I'(R) is a unitary matrix and that

TR =T® = T®)]", ©)
where the superscript T denotes the transposed matrix. When the MR T'(R) is real,
©) @R =@ (10)

This is a most useful result since we often need to calculate the inverse of a 3x3 MR of a
symmetry operator R. Equation (10) shows that when I'(R) is real, I'(R) ' is just the
transpose of I'(R). A matrix with this property is an orthogonal matrix. In configuration
space the basis and the components of vectors are real, so that proper and improper
rotations which leave all lengths and angles invariant are therefore represented by 3x3
real orthogonal matrices. Proper and improper rotations in configuration space may be
distinguished by det I'(R),

(10) P(RC(R)" =T'(R)'T(R) =E. (11)
Since

detAB = det Adet B,
(11) det I'(R)'T(R) = det T(R)" det T'(R) = [det D(R))* = 1, (12)

(12) det T(R) = £1 (T'(R) real). (13)

Real 3x3 orthogonal matrices with determinant +1 are called special orthogonal (SO)
matrices and they represent proper rotations, while those with determinant —1 represent
improper rotations. The set of all 3x3 real orthogonal matrices form a group called the
orthogonal group O(3); the set of all SO matrices form a subgroup of O(3) called the
special orthogonal group SO(3).

Exercise 3.3-1 Evaluate the matrix representative of R(n/2 z) by considering the
rotation of the basis vectors {e; e, e;} into {e,’ e;’ e;'}.

Exercise 3.3-2 The set of real 3x3 orthogonal matrices with determinant —1 does not

form a group. Why?

Answers to Exercises 3.3

Exercise 3.3-1 As shown in Figure 3.5,

010
R(n/2 z){e; ey es| = (e; —e; e3] =(e; ey e5/[1 0 0
0 0 1
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eé A e

,
€

€

€
X

Figure 3.5. Effect of R(n/2 z) on {e; e, e3}.

Exercise 3.3-2 The identity in O(3) is ['(E) = E;, the 3 X3 unit matrix with determinant
+1. The set of all 33 real orthogonal matrices with determinant —1 does not contain the
identity and therefore cannot form a group.

Group representations

If{R, S, T, ...} form a group G, then the set of MRs {I'(R), I'(S), I'(7), ...} forms a group
that is isomorphous with G called a group representation. Suppose that RS = T; then

(3.2.12) Tv = (e[T(T)|v), (1)
Tv = RSv = RV (given), )
v = Sv (definition of v'). 3)
(3),(3.2.13) V) = T(S)v). “)
4),(3.2.12) RV = (e[L(R)V') = (e[[(R) T(S)]v), (5)
(1),(2),(5) L(R) I'(S) =TI(T). (6)

Equation (6) shows that the MRs obey the same multiplication table as the operators, and so
{T'(R), I'(S), I'(T), ...} forms a group that is isomorphous with G={R, S, T, ... }. Such a
matrix group is an example of a group representation.

Transformation of functions

We have studied the transformation of vectors induced by symmetry operators, and this led
us to the concept of the MR of a symmetry operator. In order to understand how atomic
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orbitals transform in symmetry operations, we must now study the transformation of
functions. To say that f(x, y, z) is a function of the set of variables {x} = {x y z} means
that f({x}) has a definite value at each point P(x, y, z) with coordinates {x, y, z}. Note that
we will be using {x} as an abbreviation for {x y z} and similarly {x'} for {x' )’ Z/}. Now
suppose that a symmetry operator R transforms P(x y z) into P'(x’ )/ Z/}so that

R{x} = {x'}; (1
(3.3.3) ) = D(R) ). 2)

|x) is a matrix of one column containing the coordinates {x' )/ Z'} of the transformed
point P’. (Recall the correspondence between the coordinates of the point P and the
components of the vector r that joins P to the origin O of the coordinate system, Figure
3.1.) But since a symmetry operator leaves a system in an indistinguishable configuration
(for example, interchanges indistinguishable particles), the properties of the system are
unaffected by R. Therefore R must also transform f into some new function Rf in such a
way that

RF({x'}) =f({x}). 3)

R, which transforms finto a new function /' = Iéf , is called a function operator. Equation
(3) states that “the value of the new function Rf, evaluated at the transformed point {x'}, is
the same as the value of the original function f evaluated at the original point {x}.”
Equation (3) is of great importance in applications of group theory. It is based (i) on
what we understand by a function and (ii) on the invariance of physical properties under
symmetry operations. The consequence of (i) and (ii) is that when a symmetry operator acts
on configuration space, any function f'is simultaneously transformed into a new function
Rf. We now require a prescription for calculating Rf. Under the symmetry operator R, each
point P is transformed into P’:

RP(xyz) =P 7). 4)
@) RiIP'(x' VZ)y=Pkxyz); (5)
(3).(5) RF({X'}Y) =f({x}) =f(RH{X}). (6)

The primes in eq. (6) can be dispensed with since it is applicable at any point P’ (x' y/ Z/):
(6) RF({x}) = f(R"'{x}). (7)
Example 3.5-1 Consider the effect of R(n/2 z) on the d orbital d,,,=x y g(r), where g(r) is

a function of » only and the angular dependence is contained in the factor x y, which is
therefore used as an identifying subscript on d.
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010
(3.2.15) F'R)=|1 0 0}; (®)
0 0 1
_9 1 0
(3.3.10) TR '=CR]"=|T 0 0|; )
10 0 1
01 0 (x [y
Q) 1 0 0f|y|=|x|; (10)
0 0 1|z |z
(10) R Yxyz}={yxz} (11)
In other words, the Jones symbol for the operator R™" is y X z. Therefore Rf ({x}) is
R dyy = dyy(R™{x})
= dy ({3 ) -
=yx g(r), or —xy g(r),
= —dy .

The second equality states that f({x y z}) is to become f({y X z}) so that x is to be replaced
by y, and y by —x (and z by z ); this is done on the third line, which shows that the function 4,,,
is transformed into the function —d,,, under the symmetry operator R(n/2 z). Figure 3.6
shows that the value of Rd,, = d,, = —d, evaluated at the transformed point P’ has the
same numerical value as d,, evaluated at P. Figure 3.6 demonstrates an important result: the
effect of the function operator R on dy, is just as if the contours of the function had been
rotated by R(n/2 z). However, eq. (7) will always supply the correct result for the
transformed function, and is especially useful when it is difficult to visualize the rotation
of the contours of the function.

Figure 3.6. This figure shows that the effect on d,, of the function operator R, which corresponds to
the symmetry operator R=R(n/2 z), is just as if the contours of the function had been rotated by R.
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Exercise 3.5-1 Using R(e|= (¢/| = (¢|['(R), determine the MR T'(R) of the symmetry
operator R(m/2 x). Hence find R~ '{x y z} and then find how the three p orbitals transform
under the symmetry operator R(n/2 x).

The complete set of function operators {Ié ST.. .} forms a group isomorphous with the
group of symmetry operators {R S T ...} which transforms configuration space (and all
points and vectors therein). The proof of this statement requires the inverse of the product
RS. By definition, (RS) ™" is the operator which, on multiplying RS, gives the identity E:

(RS)'RS = E; (13)
ST'RT'IRS=E (R'R=E,VYR,S...); (14)
(13), (14) (RS)™' =S8R, (15)

This is the anticipated result since the MRs of symmetry operators obey the same multi-
plication table as the operators themselves, and it is known from the properties of matrices
that

CRT(S)] ™ =T(S) "' TR)™" (16)
Suppose that RS = T. Then,

SF({xh) =£(SHx}) =f'({x}). (17
where /7 denotes the transformed function Sf.
(17).(7) RSf({x}) = Rf'({x}) = /" (R"{x}). (18)
(17),(18) RS({x}) =/ (ST'R"{x})
(15) = f((RS)™{x})
(17) =f(T"{x})
@) = Tr({x}); (19)
(18),(19) RS =T. (20)

Equation (20) verifies that the set of function operators {R S 7'...} obeys the same
multiplication table as the set of symmetry operators G={R S T ...} and therefore
forms a group isomorphous with G.

Answer to Exercise 3.5-1

From Figure 3.7(a),
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Figure 3.7. (a) Transformation of the basis set {e; e, e;} under R(n/2 x). (b) Illustration of
Rp, = p; = p.. The value of the original function p, at P(0 a 0) is the same as that of the
transformed function p. at P’(0 0 a).

Rlejeye3] = (e ey 3’| = (e e3e
1 0
= (e; e, e3[['(R) = (e; e, e3] | 0 11(;
0 0
X 1 0 0] |x X
R'xyz}=TR ) |y| =0 0 1||y| =]z 1)
z 01 0]z ¥y
R{p« py p:} = R{x g(r) y g(r) z g(r)}
= {p(R"'{x}) py(R7'{x}) po(R™'{x})}
1) ={pp: =1} 22)

on replacing {x y z} by {xyZ} in {p, p, p-}. Equation (22) states that p. is the function
which, when evaluated at the transformed point {x y z}, has the same value as the
original function p, evaluated at the original point R~'{xyz} = {xzy}. For example,
p-({0 0 a}) =p,({0 a 0}). Note from Figure 3.7(b) that the effect of R on p, is simply to
rotate the contour of the function p), into that of p..
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Some quantum mechanical considerations

For a quantum mechanical state function ¢({x}), the RS of eq. (3.5.7) requires multi-
plication by w, a phase factor or complex number of modulus unity. Since the choice of
phase is arbitrary and has no effect on physical properties, we generally make the most
convenient choice of phase, which here is w= 1. So, for the matrix representations used in
Chapters 1-11, we may use eq. (3.5.7) without modification for function operators R
operating on quantum mechanical state functions, as indeed we have already done in
Example 3.5-1. However, there are certain kinds of representations called projective or
multiplier representations for which the conventions used result in phase factors that are not
always +1. These representations are discussed in Chapter 12.

We already know from the invariance of the scalar product under symmetry operations
that spatial symmetry operators are unitary operators, that is they obey the relation
R'R=R R'=E, where E is the identity operator. It follows from eq. (3.5.7) that the set
of function operators {R} are also unitary operators.

Exercise 3.6-1 Prove that the function operators {R} are unitary.

In quantum mechanics the stationary states of a system are described by the state function
(or wave function) 1)({x}), which satisfies the time-independent Schrédinger equation

Hy({x}) = Ey({x}). ()

Here {x} stands for the positional coordinates of all the particles in the system, E is the
energy of the system, and A is the Hamiltonian operator. Since a symmetry operator merely
rearranges indistinguishable particles so as to leave the system in an indistinguishable
configuration, the Hamiltonian is invariant under any spatial symmetry operator R. Let
{1);} denote a set of eigenfunctions of H so that

Hi; = Ey. 2

Suppose that a symmetry operator R acts on the physical system (atom, molecule, crystal,
etc.). Then ¢; is transformed into the function 1@1@-, where R is a function operator
corresponding to the symmetry operator R. Physical properties, and specifically here the
energy eigenvalues {E;}, are invariant under symmetry operators that leave the system in
indistinguishable configurations. Consequently, Ri) is also an eigenfunction of A with the
same eigenvalue E;, which therefore is degenerate:

2 H Ry; = E; RYy; = R Enhy = R H;. 3)

Because the eigenfunctions of any linear Hermitian operator form a complete set, in the
sense that any arbitrary function that satisfies appropriate boundary conditions can be
expressed as a linear superposition of this set, eq. (3) holds also for such arbitrary functions.
Therefore,

3) (R, H] =0, 4)
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and any function operator R that corresponds to a symmetry operator R therefore com-
mutes with the Hamiltonian. The set of all function operators {R} which commute with
the Hamiltonian, and which form a group isomorphous with the set of symmetry
operators {R}, is known as the group of the Hamiltonian or the group of the
Schrodinger equation.

Answer to Exercise 3.6-1

R 9 ({x}) = /(R {x}) = RT(R™{x})
Y((R)T'R™H{x}) = $((RR)) ™ {x})
Y(E{x}) = Ev({x}),

R Ry({x}) =

where E is the identity operator, whence it follows that the function operators {R} also are
unitary.

Problems

3.1 Show by evaluating [['(R)]" I'(R), where R is the proper rotation R(¢ z), that T'(R) is an
orthogonal matrix, and hence write down [['(R)]'. Also write down T'(R(—¢ z)).
Is this the same matrix as T'(R(¢ z)) "' and, if so, is this the result you would expect?
Evaluate det I'(R(¢ z)) and det I'(S(¢ z)).

3.2 Find the MR I'(R) for R=R(2%/3 mn) with n a unit vector from O along an axis
that makes equal angles with OX, OY, and OZ. What is the trace of I'(R)? Find
|x'y 2y =T(R)|x y z) and write down the Jones symbol for this operation. [Hints:
Consider the effect of R(27/3 n) by noting the action of R on (e, e; e;| as you imagine
yourself looking down n towards the origin. The trace of a matrix is the sum of its
diagonal elements.]

3.3 (a) Find the MR T'(R) of R for R(—n/2 z) and hence find the matrix I'(7) ['(R).

(b) Using projection diagrams, find the single operator Q that is equivalent to /R; show
also that 7 and R commute. Give the Schonflies symbol for Q.

(c) Find the MR T'(Q) from QO(e; e; e3| = (e/’ €’ e5'| = (e; e, e3]T'(Q).

(d) What can you deduce from comparing I'(Q) from part (c) with I'(/)I'(R) from
part (a)?

3.4 Find the MRs of the operators o, o}, for the basis (e; e, es], where
a=2""[110],b=2"[T10]. Evaluate I'(c,)['(0,). Using a projection diagram
find Q = o, oy, Find the MR of Q and compare this with I'(c,) I'(oy,). What can you
conclude from this comparison?

3.5 Find the MRs of the operators E, C4., C., oy, oy for the basis (e, e; e;].

3.6 Write down the Jones symbols for R € Cy, and then the Jones symbols for {R ~'}.
[Hints: You have enough information from Problems 3.4 and 3.5 to do this very easily.
Remember that the MRs of {R} are orthogonal matrices.] Write down the angular factor
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3.7

3.8

3.9

in the transforms of the five d orbitals under the operations of the point group Cy,. [Hint:

This may be done immediately by using the substitutions provided by the Jones symbols

for R7'.]

Find the MR of R(—2n/3 [1 1 1]) for the basis (e, e, 3. Hence write down the Jones

representations of R and of R'. Find the transformed d orbitals Rd, when d is dyy, d,.., or

d,.. [Hint: Remember that the unit vectors {e; e, e;} are oriented initially along OX,

0Y, OZ, but are transformed under symmetry operations. Observe the comparative

simplicity with which the transformed functions are obtained from the Jones symbol
for R~ instead of trying to visualize the transformation of the contours of these

functions under the configuration space operator R.]

(a) List the symmetry operators of the point group D,. Show in a projection diagram
their action on a representative point E. Complete the multiplication table of D,
and find the classes of D,. [Hint: This can be done without evaluating transforms
QRQ719 Q € DZ-]

(b) Evaluate the direct product D, ® C; = G and name the point group G. Study the
transformation of the basis (e; e, e;| under the symmetry operators R € G = {R}.
Use the MRs of R! to find the Jones symbols for {R '}, and hence write down the
transformed d orbitals when the symmetry operators of G act on configuration
space.

Find the MRs of R(« x) and R(3y).
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Matrix representations

If {4 B C ...} form a group G then any set of square matrices that obey the same
multiplication table as that of the group elements is a matrix representation I of G. For
example, we have already seen that the matrix representatives (MRs) I'(R) defined by

Rie| = (€| = (e['(R), R€G, (D

form a representation of the group of symmetry operators. The dimension I of a representa-
tion is the number of rows and columns in the square matrices making up the matrix
representation. In general, a matrix representation I' is homomorphous with G, with matrix
multiplication as the law of binary composition. For example, every group has a one-
dimensional (1-D) representation called the identity representation or the totally symmetric
representation I'; for which

T'\(4) =1, VA €G. @)

If all the matrices I'(4) are different, however, then I is isomorphous with G and it is called
a true or faithful representation.

Exercise 4.1-1 Show that the MR of the inverse of 4, T(4™"), is [T'(4)] .

Example 4.1-1 Find a matrix representation of the symmetry group Cs, which consists of the
symmetry operators associated with a regular triangular-based pyramid (see Section 2.2).

Csy = {E Cf C; 04 0c o1}. The MR for the two rotations, evaluated from eq. (1), is

c —s O
I'(R(pz) =|s ¢ 0], (3.2.11)
0 0 1

where ¢ = cos ¢, s =sin ¢. For the three reflections,

(&) S2 0
L(o(@y) = |52 —c2 0], (3.2.15)
0 0 1

with ¢, = cos 20, s, =sin 26. From Figure 2.10, the values of ¢ and 6 are
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Ccy Cy od Oe ot
¢o=2n/3 ¢=-2n/3 6=0 6=-n/3 6=n/3
Since cos(2n/3) = —cos(n/3) = V5, sin(2n/3) = sin(n/3) = V/3/2, cos(—2n/3) =
cos(2n/3) = —V,, andsin(—2n/3) = —sin(2n/3) = —/3/2, the MRs of the elements
of the symmetry group Cs, are as follows:

E Ccy Cy
10 07 Yy =3/, 0 [ =y, V3,0
01 0 V3/, —V1/, 0 —V3/, =1/, 0
L0 0 1] 0 0 1 i 0 0 1
0d Oe of
(10 07 Yy =3/, 0 [~y 3/, 0
010 —V3f, Vi 0 Vi, Vi, 0. 3)
L0 0 1] 0 0 1 i 0 0 1

Example 4.1-2 Evaluate I'(c.)['(0f) and show that the result agrees with that expected
from the multiplication table for the operators, Table 2.3.

r(o:) I(or) r(cy)

—y =3/, 0 —ly 3/, 0 —ly =3/, 0

=3 Y0 Vil Yy 0= |3, = 0
0 0 1 0 0 1 0 0 1

From Table 2.3, we see that oeor = C;’ , so that multiplication of the matrix representations
does indeed give the same result as binary combination of the group elements (symmetry
operators) in this example.

Exercise 4.1-2 Evaluate I'(C; )I'(o.) and show that your result agrees with that expected
from the multiplication table.

Answers to Exercises 4.1

Exercise 4.1-1 Since 4 'A=E, and since the matrix representations obey the same
multiplication table as the group elements, I'(4~")['(4) =I'(E)=E, the unit matrix.
Therefore, from the definition of the inverse matrix, [['(4)]” ' =T(4~"). For example,
C; Cf = E, and from eq. 3) T'(C5) = [0(CH]" = [0(CH] "

Exercise 4.1-2  From eq. (3),

[ =y, V3, 0 Yy =3/, 0
D(C)(oe) = | =3/, =V, 0] |—=V3/, V2 0
Lo 0 1]| o 0 1
(=1, V3/, 0
=1|v3/, Y, 0|=T(ox)
. 0 0 1
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Group representations

From Table 2.3, C5 0. = o¢, so for this random test the multiplication of two matrix
representations again gives the same result as the group multiplication table.

Irreducible representations

Suppose that {I'(4) I'(B) ...} forms an /-dimensional matrix representation of G and define
I'(4) by the similarity transformation

I'(4) =S T(4) S, (1)

where S is any non-singular / x / matrix. Then the set {I‘/(A) F/(B) ...} also forms an
I-dimensional representation of G. (Note that notation varies here, S™' often being
substituted for S in eq. (1).)

Proof Let AB denote the product of 4 and B; then

I'(A)T'(B) = ST(4)S™'SI'(B)S™! = SI(4)I'(B)S™! ,
= ST(4B)S™' =T"(4B), @

so that {I‘/(A) F/(B) ... } is also a representation of G. Two representations that are related
by a similarity transformation are said to be equivalent. We have seen that for an
orthonormal or unitary basis, the matrix representations of point symmetry operators are
unitary matrices. In fact, any representation of a finite group is equivalent to a unitary
representation (Appendix A1.5). Hence we may consider only unitary representations.
Suppose that I'', ' are matrix representations of G of dimensions /; and /, and that for
every A €G an (/] + l,)-dimensional matrix is defined by

e = "5 | @)
Then
T'(4) 0 1[r'B) 0
I'(4) T(B) = ] ]

Lo 2wyl oo )
"7 AT (B) 0

1o F2(A)F2(B)]
[T!(4B) 0

_ — T(4B). ()
L 0 I'?(4B)

Therefore, {I'(4) ['(B) ...} also forms a representation of G. This matrix representation I"
of G is called the direct sum of T'!, T2 and is written as
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Table 4.1.

E cy Cy
[1 0 0] Y, =3/, 0 =l V3, 0
0 10 V3, = 0 -3/, =1, 0
L0 0 1] 0 0 1 0 0 1

o4 Oe of
(10 0] ~y =3/, 0 =y V3, 0
0 10 V3, %0 3y Va0
0 0 1] 0 0 1 0o 0 1

r=rlor. (5)

Alternatively, we can regard T as reduced into I'' and T'?. A representation of G is reducible
if it can be transformed by a similarity transformation into an equivalent representation,
each matrix of which has the same block-diagonal form. Then, each of the smaller
representations I'', I'? is also a representation of G. A representation that cannot be reduced
any further is called an irreducible representation (IR).

Example 4.2-1 Show that the matrix representation found for Cs, consists of the totally
symmetric representation and a 2-D representation (I'3).

Table 4.1 shows that the MRs I'(T) of the symmetry operators T € C;, for the basis
(e e, es] all have the same block-diagonal structure so that I'=T"; & I';. We shall soon
deduce a simple rule for deciding whether or not a given representation is reducible, and we
shall see then that I'; is in fact irreducible.

The orthogonality theorem

Many of the properties of IRs that are used in applications of group theory in chemistry and
physics follow from one fundamental theorem called the orthogonality theorem (OT). If
I, TV are two irreducible unitary representations of G which are inequivalent if i #;
and identical if i =/, then

Zw/ D7) /1] DUT) g = 65 bpr 8ys. (1)

Note that T(T );q means the element common to the pth row and gth column of the
MR for the group element T in the ith IR, complex conjugated. The sum is over all
the elements of the group. If the matrix elements I'(T )pa> I(T),, are corresponding
elements, that is from the same row p=r and the same column ¢ =s, and from the
same IR, i=j, then the sum is unity, but otherwise it is zero. The proof of the OT is
quite lengthy, and it is therefore given in Appendix A1.5. Here we verify eq. (1) for some
particular cases.
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4.4.1

Group representations

Example 4.3-1 (a) Evaluate the LS of eq. (1) for the 2-D IR I'; of Cs, (i =j=3) with
p=r=1,qg=s=1. (b) Repeat the procedure fori =1, j =3.

For (a), the LS = (2/6) x [1 + Ya+ Ya+ 14 Ya+ Y4] = 1; for (b),the LS = /1/4\/2/6 x
[l =% — Y%+ 1— Y% — %] = 0. Notice that we are multiplying together pairs of numbers as
in the evaluation of the scalar product of two vectors. The Hermitian scalar product of two
normalized vectors u and v in an n-dimensional linear vector space (LVS) with unitary
(orthonormal) basis is

u-v=">uv;=1 (u, v parallel),
i=1

=0 (u, v orthogonal). 2)

So we may interpret eq. (1) as a statement about the orthogonality of vectors in a
g-dimensional vector space, where the components of the vectors are chosen from the
elements of the /;, [-dimensional matrix representations I'(T), TY(T), i.e. from the pth row
and gth column of the ith IR, and from the 7th row and sth column of the jth IR. If these are
corresponding elements (p=r, g=s) from the same representation (i =j), then the
theorem states that a vector whose components are I'(T),,, T € G, is of length \/g/I;.
But if the components are not corresponding elements of matrices from the same represen-
tation, then these vectors are orthogonal. The maximum number of mutually orthogonal

vectors in a g-dimensional space is g. Now p may be chosen in /; ways (p=1, ..., /) and
similarly ¢ may be chosen in /; ways (=1, ..., ;) so that I'(T )pg may be chosen in I
from the ith IR and in > /? from all IRs. Therefore,

Y <g 3)

In fact, we show later that the equality holds in eq. (3) so that

Yii=g 4)

The characters of a representation

The character ' of the MR I"(4) is the trace of the matrix I'(4), i.e. the sum of its diagonal
elements I'(4),,,,

X'(4) =3 T'(A),, = Tr T'(4). (D

The set of characters {x'(4) X'(B) ...} is called the character system of the ith representa-
tion T,

Properties of the characters

(1) The character system is the same for all equivalent representations. To prove this, we
need to show that Tr M’ =Tr S M S~' = Tr M, and to prove this result we need to show first
that Tr AB =Tr BA:
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Tr AB =) ) apg byp = > byp apy = Tr BA; )
Py q p

2) TTM=Tr(SMS'=TrS'SM=TrM. 3)

Equation (3) shows that the character system is invariant under a similarity transformation and
therefore is the same for all equivalent representations. If for some S € G, SR st=r R
then R and T are in the same class in G. And since the MRs obey the same multiplication
table as the group elements, it follows that all members of the same class have the same
character. This holds too for a direct sum of IRs.

Example 4.4-1 From Table 4.1 the characters of two representations of Cs, are
Ciyy E Cf C; o4 0e oy
1 1 1 1 1 1
s 2 -1 -1 0 0 O

(i) The sum of the squares of the characters is equal to the order of the group. In eq.
(4.3.1), set g =p, s=r, and sum over p, r, to yield

(43.1) Zvﬁ_x )" \/I/g x/(T)

= i Z/: N Oijli;
220 =02 1
XT:Xi(T)*Xj(T) =g\/li/l; 65 = g by. 4)
(4) SN =g (=) (5)
) SX(T)X(T) =0 (i #)). (6)

T
Equation (5) provides a simple test as to whether or not a representation is reducible.
Example 4.4-2 Is the 2-D representation I'; of Cs, reducible?

X(T3)={2 ~1 ~1 000},

Sha(T))P=4+1414+0+0+0=6=g,
T

so it is irreducible. The 3 x 3 representation in Table 4.1 is clearly reducible because of its
block-diagonal structure, and, as expected,
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Table 4.2. General form of the character table for a group G.

g, 1s a symbol for the type of element in the class 4, (e.g. Cs,
0y); ¢ 1s the number of elements in the kth class; g, is E, ¢y is 1,
and "' is the totally symmetric representation.

G c1 81 28 . Ci8k

r! K@y @) o
r @) %) %)
I X@) K@) X%
I XY@) Y% NG

SI(TP =3 +200 +3(17 =12 .

Generally, we would take advantage of the fact that all members of the same class have the
same character and so perform the sums in eqgs. (4), (5), and (6) over classes rather than over
group elements.

(iii) First orthogonality theorem for the characters. Performing the sum over classes

Ne . .
@) X Vals X6 Verlz X (60 = (7)

where N, is the number of classes and ¢, is the number of elements in the kth class, €
Equation (7) states that the vectors with components \/ci/g X (6x), /ck/g X (6)) are
orthonormal. If we set up a table of characters in which the columns are labeled by the
elements in that class and the rows by the representations — the so-called character table of
the group (see Table 4.2) — then we see that eq. (7) states that the rows of the character table
are orthonormal. The normalization factors \/c;/g are omitted from the character table
(see Table 4.2) so that when checking for orthogonality or normalization we use eq. (7) in
the form

NC . % .

g Y X(B)X (%x) = 6y ®)
k=1

It is customary to include ¢ in the column headings along with the symbol for the elements

in 6 (e.g. 30, in Table 4.3). Since E is always in a class by itself, £ =% is placed first in

the list of classes and ¢; =1 is omitted. The first representation is always the totally

symmetric representation I';.

Example 4.4-3 Using the partial character table for C3, in Table 4.3, show that the
character systems {1} and {x3} satisfy the orthonormality condition for the rows.

g Zk:cvc P (@l = (1/6)[1(1)* +2(1)* +3(1)"] = 1;
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Table 4.3. Partial character table for Cs, obtained
from the matrices of the IRs Iy and 15 in Table 4.1.

€ = {E},(gz = {C; C;}, and €5 = {O'd Oe O’f},
and soin Cs,, c1 =1, c, =2, and ¢35 =3.

E 2C3 3O'V
T, 1 1 1
I's 2 -1

g’IXkZCk PG (@0l = (1/6)[12)" +2(=1)* +3(0)°] = 1

g”XkICk X1(€x)" x3(€x) = (1/6)[1(1)(2) + 2(1)(=1) + 3(1)(0)] = 0.

In how many ways can these vectors be chosen? We may choose the character x'(%) from
any of the N, IRs. Therefore the number of mutually orthogonal vectors is the number of
IRs, N, and this must be < N, the dimension of the space. In fact, we shall see shortly that
the number of IRs is equal to the number of classes.

(iv) Second orthogonality theorem for the characters. Set up a matrix Q) and its adjoint
Q' in which the elements of Q are the characters as in Table 4.2 but now including
normalization factors, so that typical elements are

Qu = Ver/g X' (6), (Q)y = Qi = Ver/g X/ (%) )

©  (QQh,= %:Qik(QT)kj = Zkf cr/g X' (€x) Ver/g X' (€)= 8. (10)

1

(10) Q QT =E (Q a unitary matrix); (11
(11) o' Q=E; (12)
(12) (Q'Q)y = 2(QNWQu = 29 Qu

N, _ _ (13)
= ; cr/g X' (€r)"\e/g X (1) = bu.

Equation (13) describes the orthogonality of the columns of the character table. It states
that vectors with components \/c;/g x'(%}) in an N,-dimensional space are orthonormal.
Since these vectors may be chosen in N, ways (one from each of the N, classes),

(13) Ne <N, (14)
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But in eq. (7) the vectors with components \/c; /g X' (%) may be chosen in N, ways (one
from each of N, representations), and so

(7) N; < Ne. (15)

(14),(15) N; = N.. (16)

The number of representations V; is equal to V., the number of classes. In a more practical
form for testing orthogonality

N .
(13) ;X’(%)*X'(%) = (g/cx)ou- (17)

These orthogonality relations in eqgs.(8) and (17), and also eq.(16), are very useful in setting
up character tables.

Example 4.4-4 In Cs, there are three classes and therefore three IRs. We have established
thatI'; and I's are both IRs, and, using > /# = g, we find | + /5 + 4 = 6, sothat/,=1. The

character table for Cs, is therefore as given in Table 4.4(a).
From the orthogonality of the rows,

L()(1) +2(1)x2(C5) +3(1)x2(0) =
12)(1) +2(=1)x2(C3) +3(0)x2(0)

0,
0,
so that x2(C5) =1, x2(c) = —1. We check for normalization of the character system of I',:
Sarlx (@) = 1(1)° +2(1)° +3(-1)’ = 6 = g.
k

Exercise 4.4-1 Check the orthogonality of the columns in the character table for Cs, which
was completed in Example 4.4-4.

(v) Reduction of a representation. For I" to be a reducible representation, it must be
equivalent to a representation in which each matrix I'(7") of T has the same block-diagonal
structure. Suppose that the jth IR occurs ¢’ times in I'; then

x(T) = chjxj(T). (18)

Multiplying by x(7)" and summing over T yields

(18),(4) 2 (T X(T) = Zc’ZTin(T)*xj(T) =Yl gb=gc); (19)
J J
. Ne
(19) = g’lZT)xi(T)*x(T) =2 Xi(G) X (%) (20)
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Table 4.4(a) Character table for Cs,.

Csy E 2C; 30
T, 1 1 1

I 1 X2(C3) X2(0)
I 2 -1 0
Table 4.4(b).

C3 E C;r C;
E E cf (&
Y cy Cy E
Cy Cy E cy
Table 4.4(c).

C3 E C;r C;
E E Cy cy
Cy cy E cy
Cy Cy s E

Normally we would choose to do the sum over classes rather than over group elements.
Equation (20) is an extremely useful relation, and is used frequently in many practical
applications of group theory.

(vi) The celebrated theorem. The number of times the ith IR occurs in a certain reducible
representation called the regular representation T" is equal to the dimension of the
representation, /;. To set up the matrices of I'" arrange the columns of the multiplication
table so that only E appears on the diagonal. Then I'"(T') is obtained by replacing 7 by 1 and
every other element by zero (Jansen and Boon (1967)).

Example 4.4-5 Find the regular representation for the group C;. C; = {E Cy C5}.
Interchanging the second and third columns of Table 4.4(b) gives Table 4.4(c).
Therefore, the matrices of the regular representation are

The group Cs is Abelian and has three classes; there are therefore three IRs and each IR
occurs once in I'". (But note that the matrices of I'" are not block-diagonal.)
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Proof of the celebrated theorem

(20) = g’IXTIXi(T)* xe(T)
= ¢ '\(E) x:(E), (x:(T) = 0,V T # E)
=g ' lig=1. Q1)
The dimension of I'" is g; it is also Z I2. Therefore
| YE =g 22)

as promised earlier.

Answer to Exercise 4.4-1

Normalization of the class 2C;: 12+1°4(—1)>=3=6/2, and of the class
30: 124+ (=1)*+(0)> =2 =6/3. Orthogonality of E and 2C;: 1(1)+ 1(1)+2(—1)=0;
orthogonality of E and 3o: 1(1)41(—1)+2(0)=0; orthogonality of 2C; and
30:1(1)+ 1(=1)+ 1(—1)(0)=0.

Character tables

Character tables are tabulations by classes of the characters of the IRs of the point groups.
They are used constantly in practical applications of group theory. As an example, the
character table for the point group Cs,, (or 3m) is given in Table 4.5. The name of the point
group in either Schonflies or International notation (or both) is in the top left-hand corner.
The headings to the columns are the number of elements ¢, in each class % and a symbol
describing the type of elements in that class. For example, the heading for the column of
characters for the class {Cy C; } in Cs, is 2C;5. Usually Schonflies symbols are used, but
some authors use other notation. Each row is labeled by the symbol for an IR; usually either
Bethe or Mulliken notation is used, but sometimes one encounters other notations and
examples of these will be introduced later. In Bethe’s notation, the IRs are labeled

Table 4.5. Character table for the point group Cs,.

The IRs are labeled using both Bethe and Mulliken notation.

C3V E 2C3 3O'V

—_

'y, Ay 1 1 z x2+y2, 2
Iy, A, 1 -1 R,
I E 2 -1 0 (x»),(RR), @) x), (2 zx)

—_
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Table 4.6. Mulliken notation for the IRs of the point groups.

The entry + or — signifies a positive or negative integer, respectively.

i Notation used for IR x(C)" x(Cy') or x(0y)” x(ow) ()

1 A +1
B -1
subscript 1 +1
subscript 2 -1
2 E°
3 T
1,2,0r3 superscript ’ +
superscript "/ —
subscript g +
subscript u —

“Or x(S,) if the principal axis is an S,, axis. In D, the four 1-D IRs are usually designated A, By, B,,
B3, because there are three equivalent C, axes.

®If no C,’ is present then subscripts 1 or 2 are used according to whether x(c) is +1 or —1.

“The symbol E for a 2-D IR is not to be confused with that used for the identity operator, E.

'y, T, T, . .. successively; I} is always the totally symmetric representation. The remain-
ing representations are listed in order of increasing /. Mulliken notation, which is generally
used in molecular symmetry, is explained in Table 4.6. Thus, the totally symmetric
representation is A; in Cs,. The second IR is labeled A, since x(o,) = —1, there being
no C, axes in this group. The third IR is labeled E because /= 2. The dimension of any
representation is given by x(E ) since the identity operator E is always represented by the
unit matrix. In addition to the characters, the table includes information about how the
components of a vector r = ex + e,) + e5z transform (or how linear functions of x, y, or z,
transform) and how quadratic functions of x, y, and z transform. This information tells us to
which representations p and d orbitals belong. For example, the three p orbitals and the five
d orbitals are both degenerate in spherical symmetry (atoms), but in C;, symmetry the
maximum degeneracy is two and

FPZPI@P3 =A; DE,
I'y=T1¢2I5=A,92E.

We say that “z forms a basis for A;,” or that “z belongs to A;,” or that “z transforms
according to the totally symmetric representation A;.” The s orbitals have spherical
symmetry and so always belong to I';. This is taken to be understood and is not stated
explicitly in character tables. R,, R, R. tell us how rotations about x, y, and z transform
(see Section 4.6). Table 4.5 is in fact only a partial character table, which includes only the
vector representations. When we allow for the existence of electron spin, the state function
P(x y z) is replaced by ¥(x y z)x(ms), where x(ms) describes the electron spin. There are
two ways of dealing with this complication. In the first one, the introduction of a new
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operator E = R(2n n) # E results in additional classes and representations, and the point
groups are then called double groups. The symbols for these new representations include
information about the total angular momentum quantum number J. Double groups will be
introduced in Chapter 8, and until then we shall use simplified point group character tables,
like that for C;, in Table 4.5, which are appropriate for discussions of the symmetry of
functions of position, f(x y z). The second way of arriving at the additional representations,
which are called spinor representations (because their bases correspond to half-integral J),
will be introduced in Chapter 12. This method has the advantages that the size of G is
unchanged and no new classes are introduced.

Special notation is required for the complex representations of cyclic groups, and this
will be explained in Section 4.7. The notation used for the IRs of the axial groups C,., and
Do is different and requires some comment. The states of diatomic molecules are
classified according to the magnitude of the z component of angular momentum, L.,
using the symbols

> 1T A @
according to
A=]L|=0 1 2 3

All representations except ¥ are two-dimensional. Subscripts g and u have the usual
meaning, but a superscript + or — is used on X representations according to whether
x(oy)==+1. For L, > 0, x(C,), and x(o,) are zero. In double groups the spinor rep-
resentations depend on the total angular momentum quantum number and are labeled
accordingly.

Axial vectors

Polar vectors such as r =e;x + e,y + e3z change sign on inversion and on reflection in a
plane normal to the vector, but do not change sign on reflection in a plane that contains the
vector. Axial vectors or pseudovectors do not change sign under inversion. They occur as
vector products, and in symmetry operations they transform like rofations (hence the name
axial vectors). The vector product of two polar vectors

l'1><l'2:R (1)

is a pseudovector, or axial vector, of magnitude 7 r, sin 6, where 6 is the included angle,
0 <6< (see Figure 4.1(a)). The orientation of the axis of rotation is that it coincides with
that of a unit vector n in a direction such that ry, r,, and n form a right-handed system.
However, R is not a polar vector because its transformation properties under inversion and
reflection are quite different to those of the polar vector r. In Figure 4.1 the directed line
segment symbols used for ry, r, are the conventional ones for polar vectors, but the curved
arrow symbol used for R indicates a rotation about the axis n. The direction of rotation is
that of the first-named vector r; into r», and the sign of R is positive because the direction
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n n
-R
R r,
r
4 0
r
r -R !
(a) n’ (b)
o
R
r
0
r
R 1

(© (@

Figure 4.1. (a) The axial vector, or pseudovector, r; X r, = R. The curved arrow symbol used for R
expresses the idea that the sense of rotation (which is that of a right-handed screw advancing along n,
where n, r;, and r, form a right-handed system) is from r;into r,, i.e. from the first vector into the
second one. (b) Reversing the order of the vectors in a vector product reverses the direction of rotation
and so reverses its sign. (¢) Invariance of the pseudovector r; x r, = R under reflection in a plane
normal to the axis of rotation. This figure shows why R must not be represented by a directed line
segment normal to the plane of r;, r, because such an object would change sign on reflection in the
plane of ry,r;, whereas the sense of rotation of r; into r, as expressed by the curved arrow, is
unchanged under this symmetry operation. (d) Reversal of the direction of rotation occurs on
reflection in a plane that contains the axis of rotation.

of rotation appears anticlockwise on looking down the axis towards the origin. Reversing
the order of the vectors in a vector product reverses its sign:

r) Xry = —(I‘l X l’z) (2)

(Figure 4.1(b)). One can see in Figure 4.1(c) that reflection in a plane normal to the axis of
rotation does not change the direction of rotation, but that it is reversed (Figure 4.1(d)) on
reflection in a plane that contains the axis of rotation. Specification of a rotation requires a
statement about both the axis of rotation and the amount of rotation. We define infini-
tesimal rotations about the axes OX, OY, and OZ by (note the cyclic order)

R, = p(ey x e3), 3)
R, = p(e; x e1), “4)
R. = p(er x e3). (%)

Under a symmetry operator 7, R, transforms into R/ = ¢(e, x e;) and similarly, so that
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Table 4.7. Transformation of the basis {R. R, R.} under the operators in the first column.

T ell e2/ e3/ Rx/ Ry/ Rz’
E €] € €3 R, R, R.
R(n/2 z) e, —e e R, —R, R,
R(m z) —e —e) e; —R, -R, R,
R(TC X) € — €3 — €3 Rx — Ry — Rz
Rx 110) —e —e —e;  —R, ~R, ~R.
1 € € €3 RX Ry Rz
R(¢p z) ce+se, —se tce, e cR.+sR, —sR.+cR, R,
T(R. R, R.|= (R/R/R| = (R, R, R, | T®(T), (6)

where
R =¢d(e)' x e3), R/ =¢(es' xe)), R’ = p(e) x &). (7

T ®(T) is not usually the same as the MR T'™)(T) for the basis ( e, e, es| (previously called just
I'(7), since there was no need then to specify the basis). With this refinement in the notation,

Tle, e; e5] = (e & es'| = (e; ey e3T(T). (8)

The transformation properties of {R, R, R.} are then readily worked out from eq. (6) using
the primed equations (7) with {e,’ e;’ e;'} obtained from eq. (8) with the use, when
necessary, of eq. (2), which simply states that reversing the order of the terms in a vector
product reverses its sign.

Example 4.6-1 Find how the rotations {R, R, R.} transform under the symmetry operators:

E,R(n/2 z), R(n z), R(n x), R(n [110]), I, R(¢ z). The solution is summarized in
Table 4.7. Figure 4.2 will be found helpful in arriving at the entries in columns 2, 3, and 4.

Exercise 4.6-1 Verify in detail (from eq. (7)) the entries in columns 5, 6, and 7 of Table 4.7
for R(¢ z).

The MRs of the operators in the rows 2 to 6 for the basis (R, R, R.| are

E R(n/2 z) R(n z R(m x) R(m [110])
1 0 0 01 0 100 1 00 010
010 1 00 010 0 1 0 100
0 0 1 0 0 1 0 0 1 0 01 0 0 1

This is a matrix representation of the group Dy = {E 2Cy C; 2Cy’ 2C,"} and it is clearly
reducible. The character systems of the two representations in the direct sum
I'®—=1,®Tsare
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CZh
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Figure 4.2. Projection in the xy plane of the unit sphere in configuration space, showing the initial
orientation of the unit vectors e, e, before applying the symmetry operator 7. Note that e3 is normal
to the plane of the paper and points upwards towards the reader. Also shown are the positions of the
representative point E after applying to configuration space the symmetry operators in rows 2 to 6 of

Table 4.6. The unit vector b lies along the direction [1 1 0].

E 2C, G 2C/ 26
r, = {1 1 1 -1 -1}
r's = {2 0 -2 0 0}

Exercise 4.6-2 Show that I'5 is an IR of D4. How many IRs are there in the character table
of D4? Give the names of I'; and I'5 in Mulliken notation.

Answers to Exercises 4.6
Exercise 4.6-1 From eq. (7) and columns 2—4 of Table 4.7,
e xey =(—se +ce) xe3=—s(e] xe;)+ce xe3)
=s(e; x e;) +c(e; X e3).

Therefore, R, = ¢ Ry + s R,.

e;' xe' =e3x(ce +se)=cle; xe)+s(es xe)

=c(e; x e1) —s(ez x e3).
Therefore, R, = —s R, + ¢ R,.
e’ xe) =(ce +ser)x(—se xcey)=c(e] xe)+ (—s°)(ex x e)

= (e; x €2).
Therefore R, = R..
Exercise 4.6-2 If I'is an IR, the sum of the squares of the characters is equal to the order of

the group. For I's, 1(2)* 4 1(—2)* 4+ 2(0)> = 8 =g, so I's is an IR. There are five classes and
therefore five IRs. From Y /2 = 8 four are 1-D and one is 2-D. Since I's is the only IR with
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[=2, it is named E; I', is a 1-D IR, and in Mulliken notation it is called A, because
X(Cq) = +1 and x(C)) = —1.

Cyclic groups

If A" = E, then the sequence {Ak}, withk=1,2,...,n,
{4443 ... 4" =E}, (1)

is a cyclic group of order n. All pairs of elements A”, A¥ commute and so {4*} is an Abelian
group with n classes and therefore n 1-D IRs. If 4 is a symmetry operator then, in order to
satisfy A" = E, A must be either E (n = 1), I (n = 2), or a proper or an improper rotation, and
if it is an improper rotation then » must be even. Writing the » classes in their proper order
with E = A" first, a representation of

{A"=E 4 4* ... 4"} 1"
is given by
{e"=1 ¢ & ... &}, )
where the MRs
e = exp(—2mik/n), k=1, ...,n 3)

are the n complex roots of unity. Note that
" * = exp(—2mi(n — k)/n) = exp(2nik/n) = (*)*. 4)

A second representation is

{€)=1 & (&) ... ()"}, (5)
so that the IRs occur in complex conjugate pairs generated from
x(4) = exp(—2mip/n), p = £1, £2, ... (6)

p =0 gives the totally symmetric representation

TiorA={111...1} (7
Ifnisodd,p=0,+1,+£2, ..., 4 (n— 1)/2 generates all the representations which consist
of I'y and (n — 1)/2 conjugate pairs. If n is even, p=0, +1, 2, ..., +(n—2)/2, n/2.

When p =n/2, x(4%) = (") = [exp(—im)]F = (—1)*, which is a representation
horB={l -1 1 -1 ... -1} ®)

fromk=n123 ... n— 1. The character table of C; is given in Table 4.8.
To study the transformation of functions of {x y z} under R (¢ z) we make use of

Rf({xyz}) =f(R {xyz}):
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Table 4.8. Character table for Cs.

The form of this table with real basis functions (E = 'E @ *E) given below the dashed line is
seen in many compilations of character tables, but in practical applications the form with
1-D representations and complex basis functions should be used. If making comparisons

with other compilations, note that we use the Condon and Shortley (1967) phase conven-
tions, whereas Lax (1974) uses the Fano and Racah (1959) choice of phase (which forj =1
would introduce an additional factor of i in the complex bases).

C, E cy Cy e =exp(—i2n/3)

A 1 1 1 2R, () —iv), 2

'E 1 € € —(x+1iy), R, +iR,, z (x +1y), (x — iy)°

’E 1 e € X —1iy, Ry — iR, z (x — iy), (x +iy)

A 1 1 1 Z R, x° —l—y2, 2

E 2 -1 -1 *), R R,), (7 2x), (xy x* = »7)
x c s O0f(«x cx+sy

TRY=|y|l=|-s ¢ O||y|=|-sx+cy]|. 9

z 0 0 1 z z

Thus a proper (or improper) general rotation about z mixes the functions x and y. This is
why (x y) forms a basis for the 2-D representation E in Cj, while z, which transforms by
itself under both 2C5 and 30, forms a basis for the 1-D representation A ;. In C; there are, in
addition to A, two more 1-D IRs. Since

R'(x+iy) = (cx+sy)£i(—sx+cy) = (cFis)(x+ip), (10)

— (x+1y) and (x —iy) form 1-D bases, that is transform into themselves under R(¢ z)
rather than into a linear combination of functions. (The negative sign in —(x + iy) comes
from the Condon and Shortley phase conventions (see Chapter 11).) From eq. (10), the
character for —(x 4 iy) is e =exp (—i¢) for a general rotation through an angle ¢, which
becomes exp(—2mi/3) for a C7 rotation, in agreement with eq. (6) for p = 1. For the basis
(x — ip) the character is exp(i¢) = ¢, or exp(27i/3) when n =3, corresponding to p = —1 in
eq. (6). In character tables of cyclic groups the complex conjugate (CC) representations are
paired and each member of the pair is labeled by 'E, 2E (with the addition of primes or
subscripts g or u when appropriate). Because the states p and —p are degenerate under time-
reversal symmetry (Chapter 13), the pairs lE,, and 2Ep are often bracketed together, each
pair being labeled by the Mulliken symbol E, with superscripts and subscripts added when
necessary. The character table for C; is given in Table 4.8 in both forms with complex and
real representations. Complex characters should be used when reducing representations or
when using projection operators (Chapter 5). However, in character tables real bases are
usually given, and this practice is followed in Appendix A3.
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Remark The material in this section is not made use of in this book until Section 16.5, in
the chapter on space groups. Consequently, readers may choose to postpone their study of
Section 4.8 until they reach Section 16.5.

Let G= {g;} be a group of order g with a subgroup H= {/;} of order 4. The left coset
expansion of G on H is

t
G:Zng,t:g/h, gl:Er (1)
r=1

where the coset representatives g, for r=2, ..., ¢, are € G but ¢ H. By closure in G,
g7 85 (gs € {g/}) 1s € G (g, say) and thus a member of one of the cosets, say g, H. Therefore,
for some h; € H,

g & =8 =g . 2
) ggH=g hH=g H; 3)
3) g (gs H| = (g- H| = (g H| I'*(g;). “4)

In eq. (4) the cosets themselves are used as a basis for G, and from eq. (3) g H is
transformed into g, H by g;. Since the operator g; simply re-orders the basis, each matrix
representation in the ground representation T'® is a permutation matrix (Appendix A1.2).
Thus the sth column of T'® has only one non-zero element,

(4)7 (2’) [Fg(g])]us = 1’ When u= I’, gj gS = gr hl
=0, when u #r. (5)

Because binary composition is unique (rearrangement theorem) the same restriction of
only one non-zero element applies to the rows of I'2.

Exercise 4.8-1 What is the dimension of the ground representation?

Example 4.8-1 The multiplication table of the permutation group S(3), which has the
cyclic subgroup H = C(3), is given in Table 1.3. Using the coset representatives
{g,} = {Po P53}, write the left coset expansion of S(3) on C(3). Using eq. (2) find g, #; for
V g; € G. [Hint: g, € {g,} and h; are determined uniquely by g;, g;.] Hence write down the
matrices of the ground representation.

The left coset expansion of S(3) on C(3) is

t
G:EgvH:PQH@Pg,H:{P()P] Pz}@{P3P4P5}, (6)
s=1

with g, and 4, determined from g; g, =g =g, A, given in Table 4.9. With the cosets as a
basis,

gj<P0 H,P3 H| = <P0/ H,P3/ H| = <P() H,P3 H‘ Fg(gj) (7)
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Table 4.9. The values of g, and h; determined from
eq. (4.8.2) for G=S(3) and H=C(3).

gS:PO gs:PS
g/ 8s 8k 8r hl g/ &s 8k 8r hl
Py Py Py Py Po Py Py P3 Pz Py
Py Py P Py Py Py Py Ps P3; P
P, Py P, Py P P, Py P, Py P
Py Py P3; P3Py Py Py Py Py Py
P, Py P, P3 P P, P3s P, Py P,
Ps Py Ps Py P Ps Py P Py P

Table 4.10. The ground representation I'® determined from
the cosets PyH, P3 H by using the cosets as a basis,
eq. (4.8.4).

& Py Py P, Py Py Ps
Py Py’ Po,Ps  Py,Ps Py, Py P3Py P3Py P3P

S [ [ [

The matrices of the ground representation are in Table 4.10. Each choice of g; and g, in
eq. (2) leads to a particular 4, so that eq. (2) describes a mapping of G on to its subgroup H
in which #; is the image of g;.

Example 4.8-2 Write a left coset expansion of S(3) on H = {P, P5}. Show that for g, = P,
g- € {g,} and h; € H are determined uniquely for each choice of g; € G.
Using Table 1.3,

S(3) = Po{Py P3} ® P{Py P3} ® P2{Py P3}. (8)

The g, and /4, that satisfy eq. (2) are given in Table 4.11, where {g,} = {Py P; P>} and
h; € {Py P3}. Table 4.11 verifies the homomorphous mapping of G — H by {P, P, P,} —
Py and {P3 P4 Ps} — P5. When necessary for greater clarity, the subelement h; can be
denoted by A, or by A,(g)), as in

g & = & ha(g)- ©)
), (5) ha(g) =g, 'g g =>.8,'g g [L%(g)]- (10)

The purpose of this section is to show how the representations of G may be constructed
from those of its subgroup H. Let {e,},g=1, ..., [, beasubsetof {e,},g=1, ..., A, that
is an irreducible basis for H. Then
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Table 4.11. This table confirms that for g;= P, g, and h;
are determined by the choice of g, where g; g,= gr= g, h;.

g &s 8k & hy
Py P, P P Py
Py Py Py P Py
P2 Pl P() P() PO
P, P, Ps Py Py
Ps P P Py P
l; -
hieg =3 e Li(hi),,, (11)
p=1

where T; is the ith IR of the subgroup H. Define the set of vectors {e,,} by
ey=g €, r=1,...tq9g=1,...1. (12)
Then (e,,| is a basis for a representation of G:

2).(5) g ey =8 & e =& hieg =23 g [T5(g))]s 1 &g (13)

In eq. (13) g, has been replaced by

since the sth column of I'® consists of zeros except u =r.

(13),(11) g ey =2 & T8(g)]us2ep Lilha),, (15)
u P

= ZZ euP (F(g])[u s])pq' (16)
u p

In the supermatrix I' in eq. (16) each element [u s] is itself a matrix, in this case f,«(hsl)
multiplied by T'%(g)),s.

(16),(15) T(g)up. sg = TE(&)us Lilhat) o (17)

in which u, p label the rows and s, ¢ label the columns; I'(g;) is the matrix representation of
g in the induced representation I' = T'; T G. Because I'® is a permutation matrix, with
I'*(gj)us = 0 unless u = r, an alternative way of describing the structure of I is as follows:

(15),(16),(5), (10) L)y, s = Lil80'8) &) pg Our (18)

Ti(g;'g; g) is the matrix that lies at the junction of the uth row and the sth column of T, g,
and the Kronecker 6 in eq. (18) ensures that I'; is replaced by the null matrix except for I}, 4.
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Table 4.12. Character table of the cyclic group C(3) and of the
permutation group S(3).

€ =exp(—2in/3).

C(3) Py Py P, S(3) Py Py, P, P3, Py, Ps
r, A L1 LA 1 1

I, 'E 1 e ¢ Ty, A, 1 1 -1

I, %E 1 & ¢ I, E 2 -1 0

Table 4.13. Subelements hy(g;) and MRs 1'(g;) of two representations of S(3), I'1G,
obtained by the method of induced representations.

The third and fourth rows contain the subelements £,(g;) as determined by the values of g,
(in row 2), g;, and g, (in the first column). The I'*(g;) matrices were taken from Table 4.9.
€ =exp(—i2n/3). Using Table 4.11, we see that the two representations of S(3) are
[1G=A ®AyandT,1G =E.

gj PO Pl P2 P3 P4 P5
& 8s Py, P3 Py, P3 Py, P3 Py, P3 Py, P3 Py, P3
P, P, P, P, Py P, P,
Ps P P, P, Py P, P,
I'1G 1 0 1 0 1 0 0 1 0 1 0 1
0 1 0 1 0 1 1 0 1 0 1 0
I,1G 10 e 0 et 0 0 1 0 & 0 ¢
0 1 0 ¢ 0 ¢ 1 0 e 0 e 0
xTi1G6) 2 2 2 0 0 0
x(T2 1 G) 2 -1 -1 0 0 0

Example 4.8-3 Construct the induced representations of S(3) from those of its subgroup C(3).

The cyclic subgroup C(3) has three 1-D IRs so that fj(hsl) has just one element (p =1,
g = 1). The character table of C(3) is given in Table 4.13, along with that of S(3), which will
be needed to check our results. The subelements 4, and coset representatives g, depend on
gjand g, and our first task is to extract them from Table 4.8. They are listed in Table 4.13.
Multiplying the [f‘,»(hsl)]” = Xi(hg) by the elements of I'*(g;) in Table 4.12 gives the
representations of S(3). An example should help clarify the procedure. In Table 4.13, when
gi= P4, g,= P3,and g, = P, the subelement /,(g;) = P>. (Inrows 3 and 4 of Table 4.13 the
subelements are located in positions that correspond to the non-zero elements of I'%(g;).)
From Table 4.10, [T (P4)];2 =1, and in Table 4.12 x,(P,) = €%, so that [f‘z 1Gly, = €%,
as entered in the sixth row of Table 4.13.

From the character systems in Table 4.13 we see that for the IRs of S(3),
[f‘l 1G] =A; ®A; and [fz 1 G] = E. We could continue the table by finding I's 1 G, but
since we already have all the representations of S(3), this could only yield an equivalent
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representation. Note that while this procedure I’ 1 G does not necessarily yield IRs, it does give
all the IRs of G, after reduction. A proof of this statement may be found in Altmann (1977).

Character system of an induced representation
We begin with
g =g hg . (19)
When s = r,
(19) g=ghg " (20)
Define
{grhg '} =W,V heH, @1

where H” is the subgroup conjugate to H by g,.
Exercise 4.8-2 Verify closure in H'". Is this sufficient reason to say that H" is a group?

The character of the matrix representation of g; in the representation I" induced from I is

(20) x(g) = 2x-(g)), (22)
where the trace of the rth diagonal block (s =7r) of I is
(%), (17) x-(g) = xi (hi), g € H
0, g ¢ H. (23)
A representation I' of G = {g;} is irreducible if
(4.4.5) >x(g)x(g) =g (24)
j

(24),(22) sz®W+zgzmgﬁm®ﬁx. (25)

roj S r#s j
The first term in eq. (25) is

t

(25),(23) CX o)l = h=th=g, (26)

and so the second term in eq. (25) must be zero if I" is irreducible. The irreducibility
criterion eq. (25) thus becomes

(25),(23) {Z} xr(gk)" xs(gx) =0, Vr#s, {g} =H NH. (27)
8k

Equation (27) is known as Johnston'’s irreducibility criterion (Johnston (1960)).
The number of times ¢’ that the IR T; occurs in the reducible representation I' = > ¢/ T;
of a group G = {g;}, or frequency of T';in T, is g
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(4.4.20) ¢ =g™"> xilen)" x(gw, (28)
k

where x(gy) is the character of the matrix representation of g, in the reducible represen-

tation I'. If I'; is a reducible representation, we may still calculate the RS of eq. (28), in

which case it is called the intertwining number 1 of T'; and T,

I(T;,T) =g "> xi(ge)” x(gk), T T not IRs. (29)
k
Since I (T';, ') is real, eq. (29) is often used in the equivalent form
I(T:,T) =g "> xilge) x(gx)*, T, T not IRs. (30)
k

IfI';, T have no IRs in common, it follows from the OT for the characters that I (I';, T") = 0.

Frobenius reciprocity theorem

The frequency ¢” of an IR T',, of G in the induced representation I'; T G with characters
Xm(g) is equal to the frequency & of I; in the subduced T',, | H. The tilde is used to
emphasize that the T; are representations of H. It will not generally be necessary in
practical applications when the Mulliken symbols are usually sufficient identification.
For example the IRs of S(3) are A, A,, and E, but those of its subgroup C(3) are A, 'E, and
%E. Subduction means the restriction of the elements of G to those of H (as occurs, for
example, in a lowering of symmetry). Normally this will mean that an IR I, of G becomes
a direct sum of IRs in H,

L, =3¢"Ty Xm=30 X, 31
4 P

although if this sum contains a single term, only re-labeling to the IR of the subgroup
is necessary. For example, in the subduction of the IRs of the point group T to D,, the
IR T becomes the direct sum of three 1-D IRs B; & B, @ B; in D,, while A; is re-labeled
as A.

Proof
"= g“Eki Xm(g) X (&) (28")
(22) =g 'XY xmlg)" x(g)
rJ

(20),23) =g '3 Xl b g;) alh) (32)
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(31 = h*l%:zi"’j)%p(hz)* Xi(hu) (33)
P

=c. (34)
The tildes are not standard notation and are not generally needed in applications, but are
used in this proof to identify IRs of the subgroup. In writing eq. (32), the sum over j is
restricted to a sum over / (subduction) because the elements g, 4; g,~' belong to the class of
h;. In substituting eq. (31) in eq. (32) we use the fact that {c”} is a set of real numbers.
Equation (34) follows from eq. (33) because of the OT for the characters. When H is an
invariant subgroup of G, H'=H*=H, V r, s. Then

(27),(22) Sxe()" xs(h) =0, Y r, 5,7 #s, (35)
]
where I', T are representations of H but are not necessarily IRs.

(29) 2[: Xr(hl)* Xs(hl) =h I(FV’FS)' (36)

Therefore, when H is an invariant subgroup of G,
(35),(36) (I, Ty) = 0; (37

that is, the representations I',, I'; of H have, when reduced, no IRs in common.

Exercise 4.8-3 Test eq. (27) using the representations I'; 1 G and T, T G of S(3), induced
from C(3).

Answers to Exercises 4.8

Exercise 4.8-1 The dimension of the ground representation is equal to the number of
cosets, t =g/h.

Exercise 4.8-2 Since {/,} =H is closed, #; h,, € H, say h,. Then

grhlg;lgrhmg;l:grhlhmg;lzgrhng;leHra

verifying that H" is closed; h;, h,,, h,, are € G, and therefore {g, ; g'} satisfies the group
properties of associativity and each element having an inverse. Moreover, g, E g~ ! = E,
so that H" does have all the necessary group properties.

Exercise 4.8-3 H =g, Hg ' = Po{Py P| P,}P;' ={Py P\ P,} = H.

H' = Py{Py P, P,}P;"' = {Py P, P} = H. Therefore H is invariant and {g;} =H" N
H'= H={P, P, P,}. Remember that r, s refer to different diagonal blocks. For
I 1G, S xr(gk)" xs(gx) =1+14+1=3+#0, and therefore it is reducible. For

- {ex}

T 1G> xr (&) xslge) =1+ (5*)2 + €% = 0, and therefore it is irreducible. This con-
{ex}

firms the character test made in Table 4.12.
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Problems

4.1

(a)

(b)

(©)

(d)

4.2

43
4.4

4.5

4.6

The point group of allene is Dyg = {E 284 C, 2C,’ 204} (see Problem 2.3). Choose a
right-handed system of axes so that the vertical OZ axis points along the principal axis
of symmetry.

With the basis (e, e, e3 |, determine MRs of all eight symmetry operators of this group.
Write down the character system of this matrix representation. This representation is
reducible and is the direct sum of two IRs. Write down the character systems of these
two IRs and check for normalization of the characters. Name these IRs using Mulliken
notation.

Determine how R, transforms under the group operations. You now have sufficient
information to arrange the elements of D,4 into classes.

How many IRs are there? What are the dimensions of the IRs not yet found? From
orthogonality relations find the character systems of these IRs and name them accord-
ing to the Mulliken conventions. Summarize your results in a character table for Dyq.
Find the character system of the DP representation I's ® I's, where I's is the 2-D
representation found in (a). Decompose this DP representation into a direct sum of
IRs. [Hint: The characters of the DP representation are the products of the characters of
the representations in the DP. Here, then, the character system for the DP representa-
tion is {xs(7) xs(7)}.]

Show that (a) (x — iy)?, (b) R+ iR,, and (c) R, — iR, form bases for the IRs of C;, as
stated in Table 4.7.

Find the character table of the improper cyclic group S.

Explain why the point group D, = {£ C,, C5x Cyy} is an Abelian group. How many IRs
are there in D,? Find the matrix representation based on (e, e, e; | for each of the four
symmetry operators R € D». The Jones symbols for R~ were determined in Problem 3.8.
Use this information to write down the characters of the IRs and their bases from the set of
functions {z x y}. Because there are three equivalent C, axes, the IRs are designated A, By,
B,, Bs. Assign the bases Ry, R, R. to these IRs. Using the result given in Problem 4.1 for
the characters of a DP representation, find the IRs based on the quadratic functions x?, y?,
Zz, Xy, ¥z, ZX.

Show that

Zk:Ck x¢ =g 61, (1

where j labels the IRs of G. (Since eq. (1) is based on the orthogonality of the rows, it is
not an independent relation.) Verify eq. (1) for the group Cs,. (b) Use eq. (1) to deduce
the character table of C,,. [Hint: Is C,, an Abelian group?]

(a) Show that the induction of I'; G, where H is C(3) and G is S(3), yields a
representation equivalent to I'; 1 G in Table 4.12. (b) Show that the reducible repre-
sentation ['; 1 G in Table 4.12 can be reduced into a direct sum I'y & T, by a similarity
transformation using the matrix

_ |l
el ]
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Basis functions

The group of the Hamiltonian, or the group of the Schrédinger equation, is the set of
function operators {4 B ... T ...} isomorphous with the symmetry group
(AB ... T ...} (Section 3.5). The function operators commute with the Hamiltonian
operator H (Section 3.6). We will now show that the eigenfunctions of A form a basis for
the group of the Hamiltonian. We make use of the fact that if {¢,} is a set of degenerate
eigenfunctions then a linear combination of these eigenfunctions is also an eigenfunction
with the same eigenvalue. (A familiar example is the construction of the real eigenfunc-
tions of H for the one-electron atom with / = 1, p,, and Dy, from the complex eigenfunctions
P 1, P —1; Po, Which corresponds to m =0, is the real eigenfunction p..) The property of a
basis that we wish to exploit is this. If we have a set of operators that form a group, then a
basis is a set of objects, each one of which, when operated on by one of the operators, is
converted into a linear combination of the same set of objects. In our work, these objects are
usually a set of vectors, or a set of functions, or a set of quantum mechanical operators. For
example, for the basis vectors of an n-dimensional linear vector space (LVS)

T(e| = (€| = (e[I'(T), (1
or, in greater detail,
Tler...ei...|=(€)...e;...[=(er...e...[[(T), 2)
where
!
¢:§:gru%, j=1,..., 1 (3)
i=1

The I'(7);; in eq. (3) are the elements of the jth column of the matrix representative I'(T) of
the symmetry operator 7. A realization of eq. (3) in 3-D space was achieved when the
matrix representative (MR) of R(¢ z) was calculated in Section 3.2. The MRs form a group
representation, which is either an irreducible representation (IR) or a direct sum of IRs. Let
{¢5) be a set of degenerate eigenfunctions of H that corresponds to a particular eigenvalue
E, so that

Hé,=E¢, s=1,..., 1 @)
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Because A and its eigenvalues are invariant when a symmetry operator T acts on the
physical system, 7 ¢, is also an eigenfunction of H with the same eigenvalue E, and
therefore it is a linear combination of the {¢;},

To, = lel@l"(T)m, s=1,...,1L (5)
In matrix form,
T{py...g...|=(d ... b= (p).. 0 ... |T(T). (6)
Equation (6) can be written more compactly as
(g = (¢'| = (o|T(T), (7)

where (¢| implies the whole set (¢; ... ¢ ... |. Equations (7) and (1) show that the {¢,}
are a set of basis functions in an /-dimensional LVS, called a function space, which justifies
the use of the alternative, equivalent, terms “eigenfunction” and “eigenvector.” Because
of egs. (5)—(7), every set of eigenfunctions {¢,} that corresponds to the eigenvalue E forms
a basis for one of the IRs of the symmetry group G = {T’}. Consequently, every energy level
and its associated eigenfunctions may be labeled according to one of the IRs of {T7}. The
notation {¢¥}, EX means that the eigenfunctions {¢*} that correspond to the eigenvalue E*
form a basis for the kth IR. Although the converse is not true — a set of basis functions is not
necessarily a set of energy eigenfunctions — there are still advantages in working with sets
of basis functions. Therefore we shall now learn how to construct sets of basis functions
which form bases for particular IRs.

Construction of basis functions

Just as any arbitrary vector is the sum of its projections,

v=>_¢V, (D
where e; v; is the projection of v along e;, so any arbitrary function
LN
¢ = Z Z ¢s bs’ (2)
k s=1

I
where ) is over the IRs, and ) is a sum of projections within the subspace of the kth IR.

k s=1 .
The problem is this: how can we generate {gb;}, p=1, ..., I, the set of /; orthonormal
functions which form a basis for the jth IR of the group of the Schrédinger equation? We
start with any arbitrary function ¢ defined in the space in which the set of function

operators {7} operate. Then

I
) ¢:22¢¥=§&, 3)

k s=1
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where gbf bf is the projection of ¢ along gb’s‘ . Because gbf is a basis function,

3) Tot = Z¢k (T),,. @)

(3), @) (4/g) ST, T(9)
= (4/8) ST, X S ok THT),, b

= (/e X% ;F"(T),’ip YT, | ¢ bE. (5)

By the orthogonality theorem, the sum in brackets in eq. (5) is (g//,)046,/6,s and conse-
quently the triple sum yields unity if k=, r =p, and s = p; otherwise it is zero. Therefore,

®) (l/g)ZF’( )y T(0) =), b (6)

and so we have qb;{ apart from a constant which can always be fixed by normalization. The
operator

(Li/g) ; o(r),, T =PI, (7)

is a projection operator because it projects out of ¢ that part which transforms as the pth
column of the jth IR,

(7). (6) Pl ¢=g¢] bl (8)

By using all the 131,’1,, p=1,...,1;,inturn, that is all the diagonal elements of I" (T), we can

find all the /; functions {gb}{ } that form a basis for I

(8).(2) P g= ZP ¢ = Z¢’ bi, = ¢/. )

The RS side of eq. (9) is a linear combination of the /; functions that forms a basis for I
The operator in eq. (9) is

9, (7) P/ =3 (l/g) by o(r),, T=(l/g) b X/ (1)" T. (10)

It projects out from ¢ in one operation the sum of all the parts of ¢ that transform according
to I'/. Being a linear combination of the [; linearly independent (LI) basis functions {d)/ }s

¢’ is itself a basis function for IV. Equation (9) is preferable to eq. (8), that is P/ is preferred
to P/ because it requires only the characters of IY(7) and not all its diagonal elements

Z FJ( )pp- I I is 1-D, then ¢’ is the basis function for I. But if IV is not 1-D (i.e. /; is not

equal to unity) the procedure is repeated with a new ¢ to obtain a second ¢, and so on, until
I; LI functions have been obtained.
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Direct product representations

The direct product (DP) of two matrices A ® B is defined in Section A1.7. If " is the DP of
two representations I'", I”, then

[(T)=T(T)®@T/(T), VTeG. (1)
But is I'(7) also a representation?

(T(Ty) @ (1)) (T'(T) @ T(T2))

(I'(1) T'(T2)) @ (F(Th) T(T»))
') @ V(N T)

=T(T\T»), or T(T\T>), 2)

(1), (A1.7.7) (1) I(T») =

which shows that the DP of the two representations I'" and I” is also a representation. The
second notation in eq. (2) stresses that the representation I'? is derived from the DP of T’
and TV. So we conclude that the direct product of two representations is itself a
representation.

If{(bf]},q =1, ..., m,isasetof functions that form a basis for I, and {¢/},s=1, ...,n,
is a set of functions that form a basis for I, then the dirgct product set {¢, ¢}, which contains
mn functions, forms a basis for the DP representation I'?.

P ¢ ol = ¢ (T (x})dd (T~ {x})

= (T ¢,)(T ¢))
- m r"(T)pé o) TI(T),,
— ¢ ¢f TI(T),, TI(T),

=229, ¢/ TUT),, 4 3)

P r
since the product of the pgth element from the MR I'*(7), and the sth element of the MR
IV(7), is the pr,gsth element of the DP matrix I'/(T). Therefore, the direct product set

{qﬁé gbsj } is a basis for the direct product representation T @ I”. The characters of the MRs
in the DP representation

XII(T) = Z Z:Fij(T)pr,pr
= %: Zr:ri(T)pp (T),,
= xi(T) x;(T). 4)

Therefore, the character of an MR in the DP representation is the product of the characters
of the MRs that make up the DP. Direct product representations may be reducible or
irreducible.
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Table 5.1. Some direct product representations
in the point group Cs,.

Csy E 2C; 30,
A, 1 1 1
A, 1 1 -1
E 2 -1 0
E®A, 2 -1 0
E® A, 2 -1 0
E®E 4 1 0

Example 5.3-1 Find the DPs of E with all three IRs of the point group Cs,. The characters
of the IRs of Cs, and their DPs with E are given in Table 5.1.
By inspection, or by using

/=g > xi(T)" x(T),

wefindEQA,=E,EQA,=E,andEQE=A, A, BE.

Symmetric and antisymmetric direct products

With j =i, we introduce the symbols qﬁfl, wi, (g,s =1, ..., m)to designate basis functions
from two bases ~, v’ of the ith IR. (The possibility that v and 7' might be the same basis is
not excluded.) Since there is only one representation under consideration, the superscript
may be suppressed. The DP of the two bases is

(Dg] ® (U] = (Dgtsl = YVal@gths + 510y | & Va(dyths — D5ty |- ©)

The first term on the RS of eq. (5) is symmetric and the second term is anti-symmetric, with
respect to the exchange of subscripts ¢ and s. These two terms are called the symmetrical
(®) and antisymmetrical (®) DP, respectively, and eq. (5) shows that the DP of the two
bases is the direct sum of the symmetrical and antisymmetrical DPs,

(4] @ (4] = ({&4|®(5]) @ ((Dg©(Ws])- (6)

If the two bases are identical, then the antisymmetrical DP vanishes and the only DP is the
symmetrical one.

~»

(€) bg s =222 ¥ T(T),, T(T), )
V4 r

~»

(€) b Yy =220 U T(T), T(T),y; (®)
P r
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()N, ©8) T, =1h> 3¢, (T, [(T),, +T(T), T(T),]
p r

11526, GIT(T),, (D), ~T(1),, TD), ). (o
P r
Restoring the index i on I' for greater clarity,
© T ¢y =56 GlTT), 4 + TET),, ) (10)
4 r
(9).(10) LT, 40 = V(D) TUT), £ T(T),, T(T), ), (1n)

where i®i means either the symmetrical or antisymmetrical DP according to whether the
positive sign or the negative sign is taken on the RS of eq. (11). To find the characters, set
qg=p,s =r,and sum over p and r:

) XE(T) = 1 [zzrm,,p r'(7),, £ T(T),, r"(r»l,]

=1 [%Z;Fi(T)pp (T, + ZF"(TZ)[,,,]

= 1A[0¢(T))? £ X (T7)]. (12)

Example 5.3-2 Show that for the point group Cs,, ERE = A; @ E and EQE = A,.
Using the character table for C;, in Example 5.3-1, eq. (12) yields

Csy E 2C; 30
E

x (7 2 -1 0

XE(T) 2 -1 2

XEEE(T) 3 0 1

YECE(T) 1 1 -1

Therefore, EQRE = A; @ E, EQE = A, . The sum of the symmetrical and antisymmetrical
DPs is E®E, as expected from eq. (11). (See Example 5.3-1.)

Matrix elements

Dirac notation

In quantum mechanics, an integral of the form

/@Q%wzﬂﬁmf%m (1)
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5.4.3

Bases of representations

is called a matrix element. QAJ{ is the adjoint of the operator Q, and the definition of QT is
that it is the operator which satisfies eq. (1). In Dirac notation this matrix element is
written as

W |O,) = (¥,|0%,) = (0T, [¢,)- )

In matrix notation (u'|v) describes the matrix representation of the Hermitian scalar
product of the two vectors u, v, in an LVS with unitary basis (M = |e") (e| = E). The second
and third expressions in eq. (2) are scalar products in an LVS in which the basis vectors are
the functions {1),} and the scalar product is defined to be an integral over the full range of
the variables. Thus, the second equality in eq. (2) conveys precisely the same information
as eq. (1). The first part of the complete bracket in eq. (2), (1,], is the bra-vector or bra, and
the last part, |¢),), is the ket-vector or ket, and the complete matrix element is a bra(c)ket
expression. Notice that in Dirac notation, complex conjugation of the function within the
bra is part of the definition of the scalar product. The ket [+,) represents the function 1), in
the matrix element integral. When Q operates on the function 1y, it produces the new
function qu so that when Q operates to the right in eq. (2) it gives the new ket | qu>. But
because eqs. (2) and (1) state the same thing in different notation, when Q operates to the
left it becomes the adjoint operator, (1|0 = (O'¢,| . Some operators are self-adjoint,
notably the Hamiltonian A = A

Transformation of operators
Suppose that Q f=g and that when a symmetry operator 7 acts on the physical system
T f=/.T g=¢ Now,

g§=Tg=TQf=TQT ' Tf=TQ0T"f" (3)

Comparing this with g = O, we see that the effect of 7'has been to transform the operator
from Q into a new operator Q', where

3) 0'=T0T". (4)

Operators may also form bases for the IRs of the group of the Hamiltonian, for if 0 is one of
the set of operators {Q/}, and if

T T1'=Y
g

~ .

0(7),, (5)

then the {Q/} form a basis for the jth IR.

Invariance of matrix elements under symmetry operations

In quantum mechanics, matrix elements (or scalar products) represent physical quantities
and they are therefore invariant when a symmetry operator acts on the physical system. For



5.4 Matrix elements 103

example, the expectation value of the dynamical variable Q when the system is in the state
described by the state function f'is

(0) = (F10f) = (flg)- (6)

It follows that the function operators 7 are unitary operators. For

(6) (flg) = (T fIT g) = (T" T flg) (7
(7) T T =E, (8)
(8) r(1)' I(T) =E, )

so that the MRs of the function operators are unitary matrices. An important question which
can be answered using group theory is: “Under what conditions is a matrix element zero?”’
Provided we neglect spin—orbit coupling, a quantum, mechanical state function (spin
orbital) can be written as a product of a spatial part, called an orbital, and a spinor,
W(r, my) = (r)x(my). Since Q acts on space and not spin variables, the matrix element
(W5|0|¥!) factorizes as

(ALY = (W1 OL1WE) Ol xg)- (10)

It follows from the orthogonality of the spin functions that (x,|x,) = 0 unless x,, x, have
the same spin quantum number. Hence the matrix element in eq. (10) is zero unless
AS=0. When the matrix element describes a transition probability, this gives the spin
selection rule. Spin—orbit coupling, although often weak, is not zero, and so the spin
selection rule is not absolutely rigid. Nevertheless it is a good guide since transitions
between states with AS# 0 will be weaker than those for which the spin selection rule
is obeyed. Now consider what happens to a matrix element under symmetry operator 7.
Its value is unchanged, so

(WROIIW) = (T YA|T 0L T7YT o). (11)

The LS of eq. (11) is invariant under {7} and so it belongs to the totally symmetric
represeptation I'y. The function Q ¢; transforms according to the DP representation
I" ®IV. To see this, consider what happens when a symmetry operator T acts on config-
uration space: QIS|’(/J;> becomes

7O, T W) = ¥ S T(T),, T(T),, Oll)
T | o (12)
= LX) © D7), O}

Therefore under 7, Q]S|’(/J;> transforms according to the DP representation I (7) @ IV(T).
The integrand in eq. (11) is the product of two functions, (1/*)" and Q§|¢;>, and it therefore
transforms as the DP I'™ @I"®IV or I'™ @I What is the condition that
I'* @ I'” 5 T''? This DP contains I'" if
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= ZT: xi(T) x “*b(T)Zg’IXTDX“(T)* X"(T) #0, (13)
which will be so if and only if a =5 (from the orthogonality theorem for the characters).
Therefore the matrix element (¢¥|Q/ |w’ ) is zero unless the DP T" @ IV O T'*, But
I'* @ T* 5T, and so the matrix element is zero unless I @ IV @ T* S T'L. Therefore,
the matrix element is zero unless the DP of any two of the representations contains the
third one.

Transition probabilities

The probability of a transition being induced by interaction with electromagnetic radiation
is proportional to the square of the modulus of a matrix element of the form (wk\Qf ',
where the state function that describes the initial state transforms as I”, that describing the
final state transforms as I'¥, and the operator (which depends on the type of transition being
considered) transforms as I, The strongest transitions are the E1 transitions, which occur
when Q is the electric dipole moment operator, — er. These transitions are therefore often
called “electric dipole transitions.” The components of the electric dipole operator trans-
form like x, y, and z. Next in importance are the M1 transitions, for which Q is the magnetic
dipole operator, which transforms like R, R,, R.. The weakest transitions are the E2
transitions, which occur when Q is the electric quadrupole operator which, transforms
like binary products of x, y, and z.

Example 5.4-1 The absorption spectrum of benzene shows a strong band at 1800 A, two
weaker bands at 2000 A and 2600 A, and a very weak band at 3500 A. As we shall see in
Chapter 6, the ground state of benzene is lAlg, and there are singlet and triplet excited
states of By,, By,, and E, symmetry. Given that in Dy, (x, y) form a basis for E;, and z
transforms as A,,,, find which transitions are allowed.

To find which transitions are allowed, form the DPs between the ground state and the
three excited states and check whether these contain the representations for which the
dipole moment operator forms a basis:

Alg ® Biy = Biu,
A]g ® By, = Bay,
Alg ® E1y = Equ.

Only one of these (E;,) contains a representation to which the electric dipole moment
operator belongs. Therefore only one of the three possible transitions is symmetry allowed,
and for this one the radiation must be polarized in the (x, y) plane (see Table 5.2).

The strong band at 1800 A is due to the lAlg — 1E,, transition. The two weaker bands
at 2000 A and 2600 A are due to the lAlg — 1By, and lAlg IB,,, transitions becoming
allowed through vibronic couplmg (We shall analyze vibronic coupling later.) The
very weak transition at 3500 A is due to Alg — 3Ey, becoming partly allowed through
spin—orbit coupling.
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Table 5.2. Possible transitions from lAlg electronic
ground state in benzene.

Symmetry-allowed Symmetry-forbidden

Spin-allowed 'Ei 'Bius 'Bay
Spin-forbidden B *Bius *Bay
Problems

5.1

52

5.3

54

5.5

Find Jones symbols for {R™'}, R € Dy. Project the function
p=x+1V +22 +xy+yz+zx

into the I'y, I',, and I's subspaces and hence find bases for these IRs. [Hints: Do not
refer to published character tables. You will need character sets for the IRs I'; and I's
of Dy, which were found in Exercise 4.6-1.]

Find the IRs of the point group Dy, for which the following Cartesian tensors form
bases:

Loz, z(a = %), xp(x® = )?), 0z(? —)7).

[Hint: Use the character table for D4y, in Appendix A3, in which the principal axis has
been chosen to lie along z.]

Determine correlation relations between the IRs of (a) T4 and Cs,, and (b) Oy, and D34.
[Hints: Use character tables from Appendix A3. For (a), choose the C; axis along [1 1 1]
and select the three dihedral planes in T4 that are vertical planes in Cs,. For (b), choose
one of the C3 axes (for example, that along [1 1 1]) and identify the three C5 axes normal
to the C; axis.]

In the groups Cy4y, D3p, and D3g which E1, M1, and E2 transitions are allowed froma I';
ground state? In each of the three groups, identify the ground state in Mulliken
notation. For the E1 transitions, state any polarization restrictions on the radiation.
Evaluate for the representations i =E, T, and T, of the group O, the DP I'"®'| the
symmetric DP " " and the antisymmetric DP "2, Show that your results satisfy the
relation I = [ g [,
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Hybridization

In descriptions of chemical bonding, one distinguishes between bonds which do not have a
nodal plane in the charge density along the bond and those which do have such a nodal
plane. The former are called o bonds and they are formed from the overlap of s atomic
orbitals on each of the two atoms involved in the bond (ss o bonds) or they are sp or pp o
bonds, where here p implies a p, atomic orbital with its lobes directed along the axis of the
bond, which is conventionally chosen to be the z axis. The overlap of p, or p, atomic
orbitals on the two atoms gives rise to a = bond with zero charge density in a nodal plane
which contains the bond axis. Since it is accumulation of charge density between two atoms
that gives rise to the formation of a chemical bond, o or © molecular orbitals are referred to
as bonding orbitals if there is no nodal plane normal to the bond axis, but if there is such a
nodal plane they are antibonding orbitals. Carbon has the electron configuration 1s* 2s* 2p?,
and yet in methane the four CH bonds are equivalent. This tells us that the carbon 2s and 2p
orbitals are combined in a linear combination that yields four equivalent bonds. The physical
process involved in this “mixing” of s and p orbitals, which we represent as a linear combina-
tion, is described as hybridization. A useful application of group theory is that it enables us
to determine very easily which atomic orbitals are involved in hybridization. Sometimes
there is more than one possibility, but even a rough knowledge of the atomic energy levels
is usually all that is required to resolve the issue.

Example 6.1-1 This example describes o bonding in tetrahedral AB, molecules. The
numbering of the B atoms is shown in Figure 6.1. Denote by o, a unit vector oriented from
A along the bond between A and B,.. With ( 0 0, 03 04| as a basis, determine the characters
of the representation I',,. It is not necessary to determine the matrix representatives (MRs)
I(T) from T (o| = ( o|T(T) since we only need the character system x,, of the representa-
tion I',,. Every o, that transforms into itself under a symmetry operator 7 contributes +1 to
the character of that MR T'(T'), while every o, that transforms into o, with s # r, makes no
contribution to (7). Of course, we only need to determine x,(7') for one member of each
class in the point group. The values of x,(7") for the point group T4 are given in Table 6.1.
This is a reducible representation, and to reduce it we use the prescription

d :g71;Xj(T)* Xo(T) =g §ck Xi(6x)" Xo(Gr). (1)
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Table 6.1. The character system X, for the representation
T, in the point group T

Td E 3C2 8C3 6S4 60'd
Yo 4 0 1 0 2
z
B,
B2 ~ ///
~~. \// v
7
/// \\
\\
\
By \
X \
B3

Figure 6.1. Numbering of the B atoms in a tetrahedral AB4 molecule; o, is a unit vector pointing from
A to atom B,.

Using the character table of T4 in Appendix A3 we find for A that

c(Ar) =g ' [1(1)(4) +8(1)(1) +6(1)(2)] = 1.

We could proceed in a similar fashion for the remaining IRs, A,, E, Ty, and T, but instead
we attempt a short-cut by subtracting the character system for A; from that of ',

Xo—XM={3 -10 11} =T, ()

Note that in a character system it is implied that the characters of the classes are given in the
same order as in the character table. Also, when a character system is equated to the symbol
for a representation, as in eq. (2), it means that it is the character system of that representa-
tion. Here then

I'y=A&T,. 3)

We know that s forms a basis for A, and from the character table we see that (x, y, z) and
also (xy, yz, zx) form bases for T,. Therefore, o bonds in tetrahedral AB, molecules are
formed by sp® and/or sd* hybridization.

In general, an expression for a molecular orbital (MO) would involve linear combinations
of's, and p, p,, p- and d,,, d,.., d.. atomic orbitals (AOs), but some coefficients might be small
or even negligibly small. There are two principles that control the formation of a chemical
bond between two atoms: (i) the contributing AOs must be of comparable energy; and (ii) for
a bonding MO, the bond should provide maximum overlap of charge density in the region

between the atoms. In carbon the 3d orbitals lie about 10 eV above 2p and therefore
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Table 6.2. The character system x, for the ABs molecule
shown in Figure 6.2.

D3h E 2C3 3C2/ Onh 2S3 30’V
Xo 5 2 1 3 0 3
4
2
3 1
1
5

Figure 6.2. Numbering of the B atoms in the AB;5 trigonal bipyramid.

sp” hybridization predominates. But in manganese and chromium the 3d are much closer to
the 4s than are the 4p orbitals, and it is likely that sd> hybridization predominates.

Example 6.1-2 This example describes o bonding in the ABj5 trigonal bipyramid (e.g. PFs).
As is evident from Figure 6.2, the point group is D3;,. The character system for I',, is given in
Table 6.2. From eq. (1), with the help of the character table for D5, in Appendix A3,

I, =2A/®A,"®F. 4
Exercise 6.1-1 Verify the reduction of I',, into the direct sum given in eq. (4).

From the character table for D3}, we find that z forms a basis for A,” while (x, y) form a
basis for E’. Similarly, 3z° — 2, as well as s, form bases for A’ and (xy, x* — y*) form a basis
for E'. The large difference in energy between (n + 1)s and ns, or between (n+ 1)ds.2_,2
and nds,»_,2, atomic energy levels makes the contribution of two orbitals with different
principal quantum numbers to hybrid MOs in ABs very unlikely. We conclude that one s
and one ds>_,. are involved, together with p., and (p, p,), and/or (d,, d>_,2). In PFs, it is
likely that (p, p,) predominate, giving dsp® hybridization, while in molecules in which the
central atom has a high atomic number Z, the p and d orbitals will both contribute, giving a
mixture of dsp® and d>sp hybridization. For example, in the MoCls molecule, the molyb-
denum 4d AOs are of comparable energy to the 5p orbitals, so that a hybrid scheme
dsp® + d’sp can be expected. It should be remarked that in the abbreviations used for
hybridization schemes, specific d orbitals are implied; these may be found very easily by
determining the character system for I', and using the character table to determine the
IRs and their basis functions. The same method may be used to determine the AOs used in
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7 bonding, but we shall not give an example here since 7 bonding in the MLg octahedral
complex will be analyzed later (in Section 6.4).

Answer to Exercise 6.1-1

For the ABjs trigonal bipyramid, I', ={5 2 1 3 0 3}. Using the character table for Dy,

c(Ar) = (Yi2) [L(1)(5) +2(1)(2) + 3(1)(1) + 1(1)(3) + 2(1)(0) + 3(1)(3)]
= (1 )[5+4+3+3+0+9] 2,
= (i2)[1(1 (1D(2) +3(=D(1) + 1(1)(3) +2(1)(0) +3(=1)(3)]
('/12)[5+4—3+3+0 9] =0,
= (2)[1(2) —1)(2) +3(0)(1) + 1(2)(3) +2(=1)(0) 4 3(0)(3)]
= (1/12)[10 — 4+O+6+0+O]_1,

20/ +E ={412412}
T,— QA +E)={11 —1 —1 —1 1} =A,"

Therefore

I, =2A/®A, ®F.

©t Electron systems

The electronic charge density in an MO extends over the whole molecule, or at least over a
volume containing two or more atoms, and therefore the MOs must form bases for the
symmetry point group of the molecule. Useful deductions about bonding can often be made
without doing any quantum chemical calculations at all by finding these symmetry-adapted
MOs expressed as linear combinations of AOs (the LCAO approximation). So we seek the
LCAO MOs

W = Z ¢r Crj, OF |¢j> = Z |¢F>Clj (l)
where the AOs {¢,} form an orthonormal basis set. It is common practice in Dirac notation

to omit the symbol for the basis (e.g. ¢) when this is not in doubt. For example, normal-
ization of the ¢ basis may be expressed by

/ 4 did or (Bld) or () =1 @

Example 6.2-1 This example discusses the molecular orbitals of benzene. The numbering
system used for the atoms is shown in Figure 6.3. The point group of benzene is
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oy C )

(@ (b)

Figure 6.3. (a) Numbering scheme used for the six C atoms in the carbon skeleton of benzene. Also
shown are examples of the locations of the C,’ and C,"’ axes, and of the o4 and o, planes of symmetry.
The C,’ axes are given precedence in naming the planes. (b) Partial projection diagram for Dgj,
showing that IC,' = o4 and IC, =0,

D¢h = D6 ® C; = {Dg} @ I{Ds}, 3)
where
Dg = {E 2Cs 2C3 C, 3G/ 3G,"}. 4)

Refer to Appendix A3 for the character table of Dg,. Some conventions used for benzene
are illustrated in Figure 6.3. The C, axes normal to the principal axis fall into two
geometrically distinct sets. Those passing through pairs of opposite atoms are given
precedence and are called C,/, and those that bisect pairs of opposite bonds are named
C,". Consequently, the set of three vertical planes that bisect pairs of opposite bonds are
designated 304 (because they bisect the angles between the C,’ axes), while those that
contain the C,”" axes are called 30,. Note the sequence of classes in the character table: the
classes in the second half of the table are derived from /(%), where %/ is the corresponding
class in the first half. Thus 2S5 precedes 2S¢ because 1C6+ =85, and 304 precedes 3o,
because IC,' = o4 but IC,"" = 7. Notice that the characters of the u representations in the
first set of classes (those of Dg) repeat those of the g representations in the top left corner of
the table, but those of the u representations in the bottom right quarter have the same
magnitude as those for the corresponding g representations in the top right quarter, but have
the opposite sign. Some authors only give the character table for Dg, which is all that is
strictly necessary, since the characters for Dg;, can be deduced from those for D¢ using the
properties explained above. The systematic presentation of character tables of direct
product groups in this way can often be exploited to reduce the amount of arithmetic
involved, particularly in the reduction of representations.

To find the MOs for benzene, we choose a basis comprising a 2p, AO on each carbon
atom and determine the characters of I';, the reducible representation generated by
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T(g| = (¢/| = (3T, (5)

where T € Dgp, and ( ¢| stands for the basis set ( ¢1 ¢r @3 P4 @5 dl; ¢-1sa2p, AO on the
rth carbon atom. Although we could determine ( ¢'| from the effect of the function operator
T on each ¢, in turn, it is not necessary to do this. A much quicker method is to use the
rotation of the contour of the function ¢, = 2p, on atom » under the symmetry operator 7'to
determine ¢/, and then recognize that ¢, only contributes to the character of ' 4(7') when it
transforms into +¢,. A positive sign contributes +1 to the character of I',(7); a negative
sign contributes —1; the contribution is zero if ¢, = ¢, s # r. The character system of I';,
may thus be written down by inspection, without doing any calculations at all. In this way
we find that

X(Te)={6000-20000 —60 2}. (6)

In benzene, T € {C¢ C3 C> 1S5 S¢ C5 04} sends each ¢, into ¢, so that there are no non-
zero diagonal entries in I'¢ for these operators and consequently x(7)=0. For the C}
operators, the 2p. orbitals on one pair of carbon atoms transform into their negatives, so that
x(C3)=—2. For oy, each of the six atomic orbitals ¢, transforms into —¢,, so that
Xx(on) = —6. For the o, operators, the pair of 2p. orbitals in the symmetry plane are
unaffected, while the other four become 2p, orbitals on different atoms, so x(oy)=+2.
Finally, for the identity operator each ¢, remains unaffected, so I'4(£) is the 6 x 6 unit
matrix and x(E) = 6. Note that I, is a reducible representation,

[y = Zcf I, x=x({y) = ch Xj» 7
j j

where

d=g! Zk:Ck Xi(x)" x(%x), ®)

and x (%) is the character for the kth class in the reducible representation.
(6),(8) 'y = Ay, ® Bog ® Ei @ Eo,. ©
For example,

c(Ag) = (1/24)[1(1)(6) +3(=1)(=2) + 1(=1)(=6) + 3(1)(2)] = 1.

In x(I'y), the characters in the second half of the character system do not reproduce those in
the first half (or reproduce their magnitudes with a change in sign). If this had been so, Iy
would have been a direct sum of g IRs (or u IRs). Here we expect the direct sum to contain
both g and u representations, which turns out to be the case. The basis functions for these
IRs may now be obtained by using the projection operator 7/ (eq. (5.2.10)),

W:M;mwrw; (10)
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¢ can be any arbitrary function defined in the appropriate subspace, which here is a
subspace of functions for which the six AOs {¢,} form a basis. Chemical intuition tells
us that a sensible choice would be ¢ = ¢;.

(10) Y(A2) = N(Ag)[¢1 + (92 + ¢6) + (93 + ¢s5)
+ (¢4) = 1(=1 — ¢3 — b5) — 1(—¢2 — Pa — ¢5)
— 1(=¢4) = 1(=¢3 — ¢s5) — (=2 — ¢) — 1(—¢1)
+ (2 + ¢a + ¢6) + (¢1 + ¢35 + ¢5)]
= N(Az)[¢1 + ¢2 + ¢35 + ¢4 + d5 + @) (11)

Normalization

In general, for ¢/ = N; Y ¢, ¢y,
W17y = INP(Z 6, ey |2 65 cy)

) ) (12)
= INF[Slesl” + 2 Ee;; e ).

S, is called the overlap integral because the integrand is only significant in regions of
space where the charge distributions described by the AOs ¢, and ¢, overlap. When either
@, or ¢ is very small, the contribution to the integral from that volume element is small and
so there are only substantial contributions from those regions of space where ¢, and ¢;
overlap. A useful and speedy approximation is to invoke the zero overlap approximation
(ZOA) which sets

S =0, r#s. (13)

The ZOA is based more on expediency than on it being a good approximation; in fact, the
value of S, is about 0.2—0.3 (rather than zero) for carbon 2p, orbitals on adjacent atoms.
When s is not joined to 7, it is much more reasonable. Nevertheless, it is customary to use
the ZOA at this level of approximation since it yields normalization constants without
performing any calculations. One should remark that it affects only the N/, the ratio of the
coefficients being given by the group theoretical analysis. Using the ZOA,

az, =6 (01 + d2 + 3 + da + s + ). (14)

In eq. (14) we have followed the usual practice of labeling the MO by the IR (here A,,) for
which it forms a basis, but using the corresponding lower-case letter instead of the capital
letter used for the IR in Mulliken notation. It is left as a problem to find the MOs that form
bases for the other IRs in the direct sum, eq. (9). In the event of /;-fold degeneracy, there are
[; linearly independent (LI) basis functions, which we choose to make mutually orthogonal.
So for [; =2, we use the projection operator P/ again, but with a different function ¢ = ¢,.
For E,,, for example, ¢, and ¢, give 1;(E,) and 1,(Eg), which are LI but are not
orthogonal. Therefore we combine them in a linear combination to ensure orthogonality
while preserving normalization. Usually this can be done by inspection, although the
systematic method of Schmidt orthogonalization (see, for example, Margenau and Murphy
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(1943)) is available, if required. Remember that ¢ can always be multiplied by an arbitrary
phase factor without changing the charge density, or any other physical property, so that it is
common practice to multiply ¢ by —1 when this is necessary to ensure that the linear
combination of atomic orbitals (LCAO) does not start with a negative sign.

6.2.1 Energy of the MOs

B = (/H[Y) = NS ¢ ey [H] 3 docy)

2 2 . (15)
= W[ Slenf” Hot X T e Ha
where
H, = <¢V|H|¢S> = Hsr*, (16)

the second equality following from the fact that H is an Hermitian operator. For 7 electron
systems there are useful approximations due to Hiickel. If

s=r, H,=aq,
s« r, Hy=[ (anegative quantity), (17)
s (7L> r, Hy=0

(s < r means “s joined to r”"). The effective energy of a bound electron in a carbon 2p.
atomic orbital is given by «; the delocalization energy comes from (.

(17),(15) B/ = NP | Slegl a+ EX e e b (18)

Substituting for the coefficients (see eq. (14) and Problem 6.2) and evaluating E/ from

eq. (18) gives the energy-level diagram shown in Figure 6.4. Only the energies depend on

€y —/——— a-f antibonding

non-bonding

g :‘:?ﬁ a+f bonding
oy 4H7 a+2f

Figure 6.4. Energy-level diagram for the molecular orbitals of benzene evaluated in the Hiickel
approximation.
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the Hiickel approximations. The orbitals are correctly given within the ZOA, which only
affects V,, the ratios of the coefficients being completely determined by the symmetry of
the molecule.

Equivalent bond orbitals

Example 6.3-1 In this example, we find the MOs for the nitrate ion. The numbering
system employed to label the oxygen atoms is shown in Figure 6.5. Let {0y, 05, 03} denote
a set of oxygen 2p atomic orbitals each pointing towards the central nitrogen atom. The
point group of NO3 is D3, and the character system of the representation I',, is given in
Table 6.3. This is obtained in the now familiar way by studying the transformation of
the basis { oy 0, o3| under the symmetry operators T , where T € D3y, and determining
the characters from those orbitals o, which transform into = o,. The reduction of I, in the
usual way (eq. (6.1.1)) gives

I,=A/®F. ()

The character table for D3y, tells us that the nitrogen atom orbitals involved in bonding are s,
Dx» Py- We now use the projection operator technique to find the linear combinations of
oxygen ligand orbitals v/ that combine with s, p,, Dy

Table 6.3. Character system for I, for the NOj ion.

D3h E 2C3 3C2/ On 2S3 30’V
r, 3 0 1 3 0 1
Y
2
X
1
3

Figure 6.5. Numbering system used for the three oxygen atoms in the NO5 ion.
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(5.2.10) P/ :N_,;x,-(r)* Toy, 2)

©) P(A) =N(A)[(01) + (02 + 03) + (01 4+ 03 + 02)
+(01)+(02+0'3)+(0'1+O’3+0’2)}, €)]

(3) a' = 1)\j3lo1 + 0y + 03], 4)

on normalizing in the ZOA. An MO 1, for NOj3 is obtained by forming a linear combina-
tion of a,’ with a central-atom AO of the same symmetry, namely s:

Y1 =s+by al’; Q)

1, forms a basis for A,’. Group theory tells us which central-atom orbital (s) and which
linear combination of ligand orbitals (@,") are involved, but to determine the mixing
coefficient b, would require a quantum chemical calculation. Molecular orbitals like v,
occur in pairs, one of which is bonding and the other antibonding, according to the sign of
b1: positive for a bonding orbital and negative for an antibonding orbital.

(2) wl(E/) =N (E/)[Z(a'l) — 1(0’2 —|—O'3) + 2(0’1) — 1(0’2 =+ 0'3)] (6)
= 1/v8[201 — (02 + 03)]

on normalizing using the ZOA. Similarly, from eq. (2), but using o, and o5 in place of o,

V2 (E") = 1/6 202 — (03 + 01)], (7

U3(E") =14/ 203 — (01 + 02)]. 3

But how can we have generated three basis functions for a doubly degenerate representa-
tion? The answer is that eqs. (6), (7), and (8) are not LI. So we look for two linear
combinations that are LI and will overlap with the nitrogen atom orbitals p, and p,..

el =1/6[201 — (02 + 03)] ©)
has a concentration of charge along the OX axis and overlaps satisfactorily with p,, so
Yy =pe+byel. (10)

Eliminating o from egs. (7) and (8) gives

e =13 [(o2 — 03)], (1)

Y3 =py,+ b3 e (12)

Subscripts 1 and 2 in e/, e,’ denote the two partners that form a basis for the 2-D IR
E'. Also, 11, 1, and 15 are properly symmetrized MOs, but 3, in particular, does not
look much like a classical chemical bond (see Figure 6.6(a)). In order to achieve
maximum overlap with the three ligand p orbitals (and hence the most stable
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Y

Figure 6.6. (a) Molecular orbitals for the nitrate ion that form bases for the representation E’ of the D3y,
point group (see eqgs. (6.3.9) and (6.3.11)). (b) The sp2 hybrid orbitals in NO5 .

(@ (b)

molecule), the central-atom orbitals undergo hybridization. To find the three equivalent
MOs — which we call bond orbitals — we express the set of MOs given by eqs. (9),
(10), and (12) in matrix form:

(Y1 P2 P3| = (s px pyl + (a1 e &'|B, (13)

where B is the diagonal matrix

by 0 0
B=[0 b 0]. (14)
0 0 b
The ligand LCAOs are
(ai" e/ &f| = (o1 02 03|M; (15)
Wi v 0
(4),9),(11) M= |3 =6 /2| (16)
Wi = e
(13),(15) (1 Y2 s3] = (s px py| + (01 02 03|B N, (17)

where we take advantage of the fact that the diagonal matrix B commutes with M.

(17) (' o /| = (1 o3| M7 = (s pi py| M7 + (0102 03| B
= <h1 h2h3|+<0’1 O’20’3|B. (18)
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The sp” hybrid nitrogen AOs are

VWi Wi Y
(18) <hl h2 h3‘ = <pr py‘MT = <pr py| 2/\/5 _l/\/é _l/\/g . (19)
N )

Exercise 6.3-1 Write down, from egs. (18) and (19), three separate expressions for the
bond orbitals 1,’, 1,’, and 15'.

The equivalent molecular ““bond orbitals” are shown diagrammatically in Figure 6.6(b).
This method of finding the central-atom hybrid AOs that overlap with ligand AOs is quite
general and may be applied to other situations (for example, tetrahedral AB,) where the
ligand geometry does not correspond to that of the p and d orbitals on the central atom. For
square planar AB, and octahedral ABg, the linear transformation to equivalent orbitals is
not necessary since the disposition of the ligands corresponds to the orientation of the p and
d orbitals on the central atom.

Answer to Exercise 6.3-1

Y = hi + by o1 = (1/3)s + N6« + b1 015
V' = hy + by 03 = (1/v3)s — (B)px + (a)py + by 02
3" = h3 + b3 03 = (1/3)s — (6)p: — (1/V2)py + b3 03.

Transition metal complexes

Example 6.4-1 In this example we consider the MLg octahedral complex. Atomic orbitals
that could contribute to the MOs are the nine nd, (n+ 1)s, and (n+ 1)p on M, and the
eighteen p orbitals on the six ligands. The latter may be classified into six that point towards
the central atom M, which we call o, and twelve that are oriented at right angles to the o
p orbitals, which we call 7 and /. We set these up so that unit vectors along o, 7, and =’
(also called o, 7, and n') form a right-handed system. Figure 6.7 shows the numbering
system for the ligands and the orientation of the o, n, and 7’ vectors. Now M orbitals can
only transform into M orbitals and similarly, so that the (27 x 27)-dimensional AO
representation is reduced to a direct sum of representations of one, three, five, six, and
twelve dimensions. The character table of O, = O ® C; is given in Appendix A3. The first
five classes are those of O; the second set of five classes are those of /{O}. The characters
of the u representations are the same as those of the g representations for the classes of O,
and the same in magnitude but of opposite sign, for the classes of /{O}. Table 6.4 shows the
characters of the representations based on p and d orbitals on M. We know that an s orbital,
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Figure 6.7. The MLg octahedral complex. Unit vectors o, , n” are oriented parallel to the orthonormal
axes X, y, z, which have their origin at M and lie along OX, OY, OZ. The three C, axes that are collinear
with the C,4 axes are along X, y, z, and the second set of six C, axes that bisect the angles between x and
y,y and z, and z and x are designated C,’. The symmetry planes that contain these C,’ axes are o4 planes
because they bisect the angles between C, axes that are normal to one of the three C, principal axes.

being spherically symmetrical, forms a basis for the totally symmetric representation A .
The systematic way to find the characters for I, and I is as follows.

(i) First study the transformation of the basis ( e; e, e3| under one symmetry operator from
each of the five classes of O. (The one actually used in this step is shown in the first
row of Table 6.4.)

(il)) Write down the MRs of I'(T") for these symmetry operators. This is easily done by
inspection.

(iii) Write down the matrices I'(7) ", taking advantage of the fact that the MRs are
orthogonal matrices so that I'(T") " is just the transpose of T'(T').

(iv) Write down the Jones symbols for the operators 7', which again can be done by
inspection by just multiplying I'(7") " into the column matrix |xyz). So far, we have
neglected the other five classes of Oy, because the variables x, y, and z all change sign
under inversion so that the Jones symbols for the operators /(7)) may be obtained from
those of T simply by changing the sign of x, y, and z, as is done in Table 6.4.

(v) Since the three p functions are just x, or y, or z, multiplied by f{(r), the characters of I,
can be written down from the Jones symbols for 77"

(vi) The angle-dependent factors in the d orbitals can now be written down using the Jones
symbols for T ~1, which tell us how the variables x, y, and z transform and thus how
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Sfunctions of x, y and z transform under the symmetry operators of Oy,. Since the largest

degeneracy in Oy, is three, we expect the five-fold degeneracy of the d orbitals in
spherical symmetry to be split in a cubic field, but we have no knowledge a priori
whether the 5 x 5 MRs based on the five d functions will be block-diagonal. (All we
know in advance is that they will form a representation equivalent to a block-diagonal
representation.) In fact, as soon as we have written down the functions into which xy,
yz, and zx transform, we notice that these three d orbitals only transform between
themselves and never into the two remaining d orbitals. This means that the d orbital
MRs are block-diagonal and the five-fold degeneracy of the d orbitals is split into at
least three-fold and doubly degenerate subsets. Calling the first set de, we now write
down the characters of the MRs based on xy, yz, and zx. It should be emphasized that
the d orbitals transform in this way because of the cubic ( = octahedral) symmetry, and
that they will behave differently in different symmetries. In Dy, symmetry, for
example, the maximum degeneracy is two, so the five d orbitals will transform in a
different fashion. In general, one simply studies the transformation of the five d
orbitals, and, if subsets emerge, then one can take advantage of this to reduce the
arithmetic involved.

(vii) The effect of the function operators on the remaining two d orbitals is given in the
next two lines of Table 6.4. When a function is a member of a basis set, in general it
will transform into a linear combination of the set. In practice, this linear combination
often consists of only one term (and then the entries in the corresponding column of
the MR are all zero, with the exception of one that is unity). Under some operators, the
basis functions transform into linear combinations, and an example of this is the class
of 8C;, where, under the chosen operator R(27/3 [111]), x* —y* transforms into
y* — 2% and 3z* — /* transforms into 3x* — 2. These are not d orbitals but they are
linear combinations of d orbitals, for

V=2 = —h(P ) = 1h(32 — ), (1)
3x? — 7 =3h(x — ) — 1h(32 — ). 2)

When the function operator R(27/3 [111]) acts on the basis (x> —y*> 3z —r?|,

1), () R(2n/3 [111])(x* —y* 322 — |
S22 32 =L 3h } 3
=x" -y 3 r|{_1/2 1 .

The characters of the MRs for the basis dy can now be written down using the
transformation of the second subset of d orbitals given in Table 6.4 and eq. (3).
Note that the characters for I, simply change sign in the second half of the table (for
the classes I{T}); this tells us that it is either a u IR, or a direct sum of u IRs. The
characters for both de and dy simply repeat in the second half of the table, so they are
either g IRs, or direct sums of g IRs. This is because the p functions have odd parity
and the d functions have even parity.
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(viii) The last step in the construction of Table 6.4 is to write down the characters of the
representations based on the ligand p orbitals labeled o, which point towards M, and
the ligand p orbitals labeled 7 or 7/, which are normal to unit vectors along the lines
joining the ligands to M (Figure 6.7). This can be done by the “quick™ method of
noting how the contours of the basis functions transform under the symmetry
operators: those which are invariant, or simply change sign, contribute £1, respect-
ively, to the character, and the others contribute zero.

Reduction of the representations

From the characters in Table 6.4 we observe that

Fs :Alg; (4)
Fp =T Q)
Fg=T4 ®Ty, =Ty @ Eg. (6)

The classes for the non-zero characters of I',, its character system, and reduction, are

E 3C2 C4 30'h 6(Td
r,={6 2 2 4 2}

Now
Iy={6202004002}
and
Ag®E,={3301133011}
o —(Ag®Ey)={3 -1 01 -1 =310 -1 1}=Ty,.
Therefore

I :Alg@Eg@Tlu- (7)

The non-zero characters for I',, are

E 3C
- {12 4. ®
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The characters for £ and 3C, have opposite signs, and so to reach a sum of 48 in the
reduction test will be unlikely except for IRs with a negative character for the class of 3C5.
Therefore we try first those IRs for which x(3C) is negative. T1g, Tog, T1,, and T, all have
x(3C,)=—1, and

c(Tig) = as[1(3)(12) + 3(=1)(—4)] = L.

Since Ty, Ty, and Ty, have the same characters as T, for these classes, they must also
occur once in the direct sum, which therefore is

Tp=Tg® Ty & Tiu ® T ©)

o bonding
We need to find the linear combinations of ligand o orbitals of symmetry A g, E,, and T},

Omitting normalization factors, these are

01

7vZ’(Alg) =1

—~
~—

+ (o4 + 04 + 01)
(02 + 03 + 05+ 06 + 03 + 05 + 02 + 06)
(02 + 05+ 06+ 03+ 01 +0)

(02 4+ 05+ 04+ 04 + 03 + 0¢)
(04) + (o1 + 01 + 04)

(05 4+ 06+ 02+ 03+ 06+ 02 + 03 + 05)
(02 4+ 05+ 06 + 03 + 04 + 04)

(0s+ 02+ 01+ 01+ 06+ 03),

+ 4+ + + + ++

P(Aig) = 01 + 02 + 03 + 04 + 05 + 0¢; (10)

1/)1(Eg) = 20, +2(0’1 +204) — 2(0’2 +o03+ 05+ 06) + 204
+2(201 + 04)
— 2(0’2 + 03+ 05+ 0'6),

’(/)1(Eg):20'1—02—U3+204—O'5—06. (11)

Starting with o,, and then o3, as our arbitrary functions in the subspace with basis vectors
(functions) {0, 0, 03 04 05 0¢} and projecting as before will simply give the cyclic
permutations

’L/)z(Eg):ZO'z*O} 7(744*20’570’670'1 (12)
and

¢3(Eg):20'3—0'4—0'5 + 206 — 01 — 03 . (13)
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There cannot be three LI basis functions of E, symmetry, so we must choose, from
egs. (11), (12), and (13), two LI combinations that are orthogonal in the ZOA and which
will overlap satisfactorily with the M atom orbitals of E, symmetry. A suitable choice that
meets these three requirements is

1(Eg) — Yn(Ey) = 01 — 03 + 04 — 05, (14)
d)_v,(Eg) :20'3—0'4—0'5 +20’6—O'1 — 0. (15)

Exercise 6.4-1 Verify that eqs. (11), (12), and (13) are linearly dependent and that
eqs. (14) and (15) are orthogonal in the ZOA.

Continuing with the T, representation,

¥1(Ty,) = 301 — 1204 + 01) + 1(02 + 05 + 06 + 03 + 207)
— (o2 + 05 + 03 + 06 + 204)
— 304+ 1201 + 04) — 1(02 + 05 + 06 + 03 + 204)

+ (o5 + 02 + 201 + 06 + 03),
1(Ti) = 01 — 04. (16)

Since P(T )01 = 0 — 04, the other two LI linear combinations of ligand orbitals that form
bases for T, are, by cyclic permutation,

o (Ti) =02 —0s (17)
and

P3(T1) = 03 — 0s. (18)
We now have the o bonded MOs
(10) aig zal[(n+1)s]+b1[01 —|-0'2+0'3+0'4+U5+0'6], (19)
(14) eg =ay[nd2_p] + brloy — 03 + 04 — 03], (20)
(15) eg/:a3[nd3zz,,z] +b3[20’3+20’6—0'1 —02—0’4—05}, (21)
(16) t = as[(n + 1)ps] + bslor — 04), (22)

(17) h' = as|[(n+ 1)p,] + bs[os — 053], (23)
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‘.‘ ‘.V
PN
(a) (b)

Figure 6.8. Approximate charge density prior to bonding in overlapping atomic orbitals that form
o-type molecular orbitals in MLg: (a) f1,,; (b) eg; (¢) € 4. The actual charge density in the molecule
would require a quantum-chemical calculation. Only the relevant halves of the ligand p orbitals are
shown in some figures. Atom centers may be marked by small filled circles for greater clarity. As
usual, positive or negative signs show the sign of 1, like signs leading to an accumulation of charge
density and therefore chemical bonding. The ring depicting the region in which the d5.>_,» orbital has
a negative sign has been shaded for greater clarity, but this has no other chemical significance apart
from the sign.

(18) t = ag|(n + 1)p:] + bg[o3 — 5. 24

The orbitals occur in bonding and antibonding pairs, according to whether a;, b; have the
same sign or opposite sign. Rough sketches of contours of [t|* in the bonding AOs are
shown in Figure 6.8.
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Figure 6.9. Atomic orbitals that form the 7 molecular orbitals: () #1,.z; (b) tag zx-

7 bonding

We now seek linear combinations of ligand orbitals 7 and 7’ that form bases for the IRs T,
T, Tay, and Ty, (eq. (9)). The characters for T, inOare {3 —1 0 1 —1}, so with ; as
our arbitrary function in the 7, 7’ subspace,

wl(Tlu) :3(7'[1) — 1(7‘[4 — T — 7'[4) =+ 1(7‘52 + s + TCl/ — TCl/ + g — 7I3)

— 1(—7‘[2 — Ti5 +TC4/ —7[4/+7I3 —7'[6) — 3(—7’[4) + 1(—7’51 —|—7I4—|—7Z])
—1(—ns —my — 4’ + 14 — 13 + 76)
+ 1(7‘[5 + —7I1l+7T1/ — Tg —|—7'E3),

giving
V1(Ty) =1 + 7 + 14 + 715 = 7. (25)

These ligand p orbitals are symmetrically disposed to point along the OZ axis. Since the
OX and OY axes are equivalent to OZ in Oy, symmetry, we may write down by inspection

o (Ti) = -1 + 13 + 75’ + 16 = 7y (26)
and
P3(T) =1 + 716’ — g’ —m3’ =m,.. (27)

The MOs that form bases for T, are therefore

fux = az[(n + 1)ps] + by my, (28)
tu,y = as[(n + 1)py] + bs 7y, (29)
Hu,z = aol(n + 1)p:] + by .. (30)

As an example, the MO ¢,,,. is shown in Figure 6.9(a). The character system for x(T,,) is
{3 =10 —1 1},andso
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1/11(T2g) :3(711) — 1(—7‘C1) — 1(7‘[2 + 15 + 7 — ‘II3) + 1(—71?2 — 75 + 13 — 756)
+ 3(—7‘[4) — 1(7‘[4) — 1(—7‘[5 — Ty — T3 -I—TCG) =+ 1(7‘[5 + 1y — 76 +77.73),

giving
P1(Tag) = M — T4 + T3 — Mg = Ty (31
By inspection, the linear combinations of ligand AOs in the yz and xy planes are
Uo(Toe) =M — M3’ — s — 16’ = 7y (32)
and
P3(Toe) =)' — ' + 1y’ — 75" = myy,. (33)

The MOs of T,, symmetry are therefore

tZg,xy = alO[ndxy] + b]O Tlxy » (34)
t2g,yz =dap [ndyz] + bll Tz (35)
t2g,zx = alZ[ndzx] + b12 Tlzx - (36)

As an example, f, .. is shown in Figure 6.9(b). The character system x(Ti,) is
{3 —-10 1 —1}andso

P1(Tig) =3(m1) — 1(—m) + 1(72 + 715 + 16 — m3) — 1(—7m2 — 15 + 713 — 76)
+3(—my) — 1(mg) + 1(—75 — mp — 13 + 76) — 1(n5 + 72 — 76 + 73),

giving
1(Tig) = m — 713 — T4 + 7. (37)

There is no metal orbital of T, symmetry, so eq. (37) represents a non-bonding MO, t,,,.
The three degenerate MOs of T, symmetry are therefore

lg,x =b13[n2+n3/—n5+n6’], (38)
tg,y = bia[m — m3 — m4 + 7], (39)
ez =bis[m’ +m' + g + 7s']. (40)

Finally, the character system x(T,,) is {3 —1 0 —1 1} so that
V1(Toy) =3(m1) — 1(—m1) — U(mz + 75 + 76 — 7m3) + 1(—m2 — 75 + 73 — 76)

— 3(—7[4) + 1(7‘[4) + 1(—7[5 — T, — 3 + 7'66) — 1(7‘[5 + Ty — e + 7'63),
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Figure 6.10. Schematic energy-level diagram for ML complexes.
giving

1(Tou) = M — My + T4 — Ts.

(41)

There is no metal orbital of T,, symmetry, so eq. (41) represents a non-bonding MO, #,,, ...

By inspection, the three degenerate MOs of T,, symmetry are
tux = big|m' + 13 — 15" + 7],
tu,y = b’ — e’ — ' — 3],

ta,z: = big[my — My + w4 — 7s).

(42)
(43)

(44)

A schematic energy-level diagram is shown in Figure 6.10. To draw an accurate energy-
level diagram for any specific molecule would require an actual quantum chemical
calculation. The energy levels are labeled by the appropriate group theoretical symbols
for the corresponding IRs. When the same IR occurs more than once, the convention is used
that energy levels belonging to the same IR are labeled 1, 2, 3, beginning at the lowest level.

In summary, in ascending order, there are

(i) the o orbitals: laig, 1ty,, le,, fully occupied by twelve electrons;

(ii) the mainly ligand 7 orbitals: 1t,4, 2t1,,, t2y, 14, Which hold twenty-four electrons;

(iii) the metal d orbitals 2¢,, (or de) (with a small mixture of mainly non-bonding ligand )

and 2e, (or dv) plus ligand o;
(iv) the anti-bonding 2a;,, 3t,,, o* orbitals.
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For example, [MoClg]’~ has a total of thirty-nine valence electrons from the molyb-
denum 4d° 5s and six chlorine 3p° configurations, and the —3 charge on the ion.
Its electron configuration is therefore o'* 7** (thg)3 . Thus the MO theory of these
ML, complex ions confirms that the electrons of prime importance are those occupying
the #,, and e, levels on the metal, as predicted by crystal-field theory. However, the MO
theory points the way to the more accurate calculation of electronic structure and
properties.

Answer to Exercise 6.4-1

The three MOs for the E, representation in eqgs. (11), (12), and (13) are not LI since
¥1(Eg) + 12(Eg) + 13(Eg) = 0. In the ZOA,

(14),(15) <O’| —O'2—|—O'4—0'5‘20'3—O'4—O'5—|-20’6—0'] —O'2>

=—1+1-1+1=0,

so these two basis functions are indeed orthogonal.

Problems

6.1 The point group of dodecahedral Mo(CN)3~ is D»q. List the symmetry operators of this
point group and determine which atomic orbitals of Mo*" form hybrid o bonds in
Mo(CN)g™.

6.2 Show that the LCAO MOs which form bases for the MOs of benzene (in addition
to a,,,) are

V(Bag)="/vs [¢1 — b2 + &3 — ¢4 + b5 — d6],
Y1(Eig) =1/yiz 201 + ¢2 — ¢3 — 24 — b5 + 6],
V2(Erg) =1/viz [¢1 + 202 + ¢3 — ¢4 — 2¢5 — d6),
Y1 (Eau) ="/viz 201 — @2 — @3 + 264 — s — g,

Y2 (Eou) =115 [01 — 26002 + &3 + s — 265 + e)-

Show also that the MOs
eig ="/ [¥1(Eig) + ¥2(Eig)],

ey’ = [¥1(Eg) — ¥a(Epg)]
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6.3

6.4

6.5

6.6

are normalized and orthogonal. Find similarly the pair of orthonormal MOs for the
representation E,,. Indicate in sketches how the signs of the MOs vary around the
benzene ring and mark the nodal planes. Which orbitals would you expect to be
bonding and which antibonding? Confirm your conclusions by working out the
energies of these MOs using the Hiickel approximations. [Hint: Use the ZOA when
determining normalization factors and when checking for orthogonality.]

Determine the MOs for the square planar molecule ML, of Dy, symmetry. [Hint: Set
up right-handed axes o, 7, 7’ on each ligand.]

Determine the symmetry of the o bonded MOs in square-pyramidal MLs. Use projection
operators to find the LCAO Molecular Orbitals for MLs, assuming d”sp® hybridization
to predominate.

sd> hybridization predominates in the tetrahedral MnO, permanganate ion. Find
orthonormal linear combinations #,, #,, " of oxygen p orbitals that are involved in
o bonding. [Hint: The symmetry of the molecule requires that o4, 05, 03, 04 all occur
with equal weighting in the triply degenerate ¢, orbitals. This suggests that we try ¢; +
D2, D1 + @3, O1 + ¢4, Where ¢; is the linear combination projected from o;.] Write
down the bonding o orbitals in matrix form,

la 6,6, ,,"] = [01 05 03 4] M,

and hence determine the sd° hybrid orbitals. Finally, write down equations for the
linear combination of oy, 0,, 03, 04 With these hybrids and make sketches of the bond
orbitals. [Hint: This requires that you decide (by inspection) which of the hybrids
overlaps with which o,.]

(a) Assuming cyclobutadiene (C4H,) to be square planar, determine the symmetry of
the MOs formed from a linear combination of carbon 2p. AOs, one for each of the four
carbon atoms. Use projection operators to determine these MOs and normalize in the
ZOA. Show in sketches how the sign of each MO varies around the square and mark in
the nodal planes. Hence determine the order of the stability of the MOs and show this
in an energy-level diagram which shows which orbitals are occupied in the ground
state. Calculate the energies of the MOs using the Hiickel approximations and add
these energies to your energy-level diagram, marking bonding, non-bonding and
antibonding orbitals.

(b) In fact, cyclobutadiene undergoes a Jahn—Teller distortion so that its shape is
rectangular rather than square. Show the energy-level splittings and re-labeling of
MOs in the reduced symmetry.

(¢) Removing two electrons from the highest occupied level in cyclobutadiene gives
the dication [C,H,]*", which has a non-planar configuration of D,y symmetry. Show
the re-labeling of energy levels that occurs in the dication. Find the symmetries and
spin degeneracies of the ground and first excited electronic states of [C4H4*".
Determine if an E1 transition is allowed between these two states, and, if it is, state
the polarization of the allowed transition. [Hint: Assume that the energy gain from
unpairing spins in the dication is < 2/3.]
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Electron spin

In the early years of quantum mechanics, certain experiments, notably the anomalous
Zeeman effect and the Stern—Gerlach experiment, made necessary the introduction of the
idea that an electron possessed an intrinsic angular momentum in addition to the ordinary
angular momentum L. The additional degrees of freedom were accounted for by postulat-
ing that an electron was spinning about an axis in space. According to the spin postulate of
quantum mechanics, an electron possesses an intrinsic angular momentum described by the
spin vector S and a magnetic moment

M= —gS(mp/h) = —geS(e/2me), (1)

where m, is the mass of the electron and mp is the Bohr magneton, the atomic unit of
magnetic moment, with the numerical value

mp = ehi/2m, = 0.9274 x 1072 J T~ ()

The only allowed value of the spin quantum number, which quantizes the square of the spin
angular momentum, is s = Y,. For free electrons g, is 2.00232. It follows from the com-
mutation relations (CRs) obeyed by the angular momentum operators that the angular
momentum quantum numbers may have integer or half-integer values (Chapter 11). The
Stern—Gerlach experiment had shown that s = I/,. That g, is equal to 2 rather than 1 comes
from Dirac’s theory of the electron (the precise value of g. comes from quantum electro-
dynamics). The components of S are S,, S, S., and the associated self-adjoint spin
operators S‘x, .SA‘),, S‘Z, 2 obey similar CRs to the angular momentum operators
L., L, L., [* Since S,, S,, S. all commute with S, but not with one another, only one
component of S, taken to be S, can have a common set of eigenvectors with S2. The linear
vector space in which the spin vectors operate (spin space) is separate from configuration
space. Consequently, the spin operators do not act on space variables x, y, z, and therefore
they commute with L? and with the components of L. Because of the existence of S,
electrons have a total angular momentum

J=L+S. 3)

J? and the components of J obey similar CRs to those of L? and the components of I:, S0
that results which follow from the CRs for L therefore also hold for S and for J. In
particular, for any operator j that obeys these CRs,
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Jelj m)y=cilj m+1), 4)

jolim)y=c_|j m—1), (5)

where j,, j_ are the raising and lowering operators
f+ :jx + ifya f— :jx - lfAy: (6)

and |j m) are the common set of eigenvectors of j 2 and j., with j and m the corresponding
quantum numbers.

cx =[j+1) —m(m=1)]" (7

The quantum number / is an integer or half-integer. The eigenvalues of /> are j(j + 1) and
the eigenvalues of j,are m = —j, —j+ 1, ..., j (in atomic units). These results, which are
proved in Chapter 11 and in most books on quantum mechanics (for example, Atkins
(1983)), follow from the CRs and therefore hold for L, S, and J. For L, / is an integer, but
for S the only value of s is V/,, so that the eigenvalues of S, are m,= —1/,, +1/, and the
eigenvalue of S? is s(s + 1) =3/,. Since there are only two allowed values for the eigen-
values of S, there are only two spin eigenvectors |s m,), namely |/, Y,) and |/, —1/,). In
function notation, the first of these is called a and the second one is called 8. The
eigenvectors |s m;) have two components which describe their projections along the two
basis vectors. Since one-particle spin space contains only the two vectors |/, /,) and
[/5 V), their matrix representatives (MRs) are |1 0) and |0 1), respectively, which satisfy
the orthonormal conditions for the spin eigenvectors. For example, the matrix representa-
tion of the orthogonality relation

11

55>—° ®

(100 1) = 0. ©9)

Warning: Dirac notation is used in eq. (8); matrix notation is used in eq. (9).
The MRs of the spin operators are readily obtained using their known properties (as
given above) and the MRs of the spin eigenvectors.

Spherical symmetry

Letj, j» denote any two angular momenta (S or L or J) that obey the CRs and letj =j; + j».
Then (in atomic units)

Pl=iG+1), j.=m, (1)
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where

J=j1+ju i+ —1 .. =l ()

The quantum number j must be an integer or half-integer. These results, which are proved
in Chapter 11, hold for j=L or S or J.
In a many-electron atom or ion, the Hamiltonian

H = Hy+ He. + Hs.L 4

consists of three principal terms. H, comprises the kinetic energy of the electrons and the
electron—-nucleus interactions. Approximating H by H; alone leads to the orbital approximation

(1,2, ..., N) =¥ (1)¥(2)...[¥y(N), (5)

with one-electron states characterized by the four quantum numbers n, /, m;, and m,. The
argument (1) in eq. (5) stands for the position variables and spin of electron 1, and similarly.
H.. is the electron—electron interaction, and Hg, is the spin—orbit interaction; it is propor-
tional to o Z%, where « is the fine structure constant 7.29735 x 107> (~1/137), so that in
atoms of low Z H.. > Hsy. The interaction H.,. introduces a coupling of the angular

momenta of the individual electrons such that > L; = L, the total orbital angular momen-
i

tum, and ) S; = S, the total spin angular momentum. This is called Russell-Saunders (RS)

coupling. The quantum numbers L and S are given by the rules in egs. (2) and (3). These rules,
together with the Pauli exclusion principle, that the state function ¥ must be antisymmetric
with respect to the interchange of any two electrons, allow the determination of the quantum
numbers L, S for any electron configuration. To fulfil the antisymmetry requirement, the
product state function in eq. (5) must be antisymmetrized, giving

Yi(1) ¥y (1) - Py (1)
w(1,2, ... N) :\/% ¥102) ¥2(2) ¥y (2) ©
1(v) ¥2(N) ¥y (N)

The coupled energy states in RS coupling are called multiplets and are described by
spectral terms of the form 25" 'X, where 25+ 1 is the spin multiplicity and S is the total
spin quantum number.

X=S,P,D,FG,... (7a)
when the total orbital angular momentum quantum number
L=0,1,2 3 4,.... (7b)

The spin—orbit interaction, which couples L and S to give a total angular momentum J,
splits the multiplets into their components labeled ** " 'X, where J is the total angular
momentum quantum number. The spin—orbit splitting is given by (Bethe (1964))
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AEs.p, = o([J(J +1) = L(L+1) = S(S + 1)], 3

where ((L, S), the spin—orbit coupling constant, is a constant for a given multiplet.
For shells that are less than half filled, ( > 0, and so the state of smallest J lies lowest,
but if a shell is more than half filled then ¢ < 0 and the state of /argest J lies lowest. This is
called Hund’s third rule. While this rule is a good guide, there are some exceptions;
for example, ¢ < 0 for & : *F. For a half-filled shell of maximum multiplicity, ¢ =0 in
first order. For regular multiplets (those that are less than half filled) the lowest energy
state is that of highest S. For states of equal S, that with the largest L lies lowest, and in
this multiplet that with the smallest J lies lowest. Straightforward procedures exist for
finding all the multiplets for a particular electron configuration. For example, for 4 the
terms are °F, 'D, 'G, P, and 'S. This ordering illustrates that the ’F ground state is given
correctly by the above rules and that they do not apply to excited states since 'D lies
below 'G.

Intermediate crystal field

For atoms of “low” Z the Hamiltonian A, with terms in increasing order of smallness, is
H:HO +Hee +I:IS.L (1)

Hcr is the term to be added to the Hamiltonian which describes the electrostatic interac-
tions of the central ion with the surrounding ions or ligands. If this term is larger than the
electron—electron interactions, the electric field due to the surroundings is termed a strong
crystal field; if it is smaller than .. but larger than the spin—orbit coupling it is called an
intermediate crystal field; and if it is smaller than Hy y it is called a weak field. We consider
first the case of an intermediate crystal field, which can be regarded as a perturbation on the
Russell-Saunders multiplets defined by the values of L, S. Consider a one-electron atomic
term with angular momentum /. A representation I'; for any group of proper rotations may
be found by using the angular momentum eigenfunctions, i.e. the spherical harmonics
{¥;"}, as a (21+1)-fold degenerate basis set.

R(¢ 2)Y]"(0,0) = Y["(R"'{0,0}) = Y[ (6,0 — ¢)
= exp(—ime)Y}"(0, ¢) )

(see Figure 7.1) so that each member of the set is transformed into itself multiplied by the
numerical coefficient exp(—im¢). Therefore

R(¢ 2){({Y]"(0,0)} = ({¥]"(0,9)}T1(0) 3)

with [;(¢) a diagonal matrix with entries exp(—im¢), where m=1,1—1,..., -1
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/ ;e
/

X

Figure 7.1. The operator [R(¢ z)]™ ! transforms the vector r into r’ and therefore the azimuthal angle
p into p — ¢ (see eq. (7.2)).

e—ilo
eil=1)¢
2),(3) y(¢) = . : 4)
' elld
20
4) x(Ti(g)) =e Zoew (5)
=

The sum in eq. (5) is a geometric progression, that is a series in which the ratio of any term
to the preceding one has a constant value, the common ratio . The sum to n terms is

Sy =a(" —1)/(r—1), (6)
where the first term a = 1, the common ratio r = ei¢, and the number of terms n =2/+ 1.
(5),(6) X(Li(9)) = e [0 —1]/[e —1]. (7)

On multiplying the numerator and the denominator of the RS of eq. (7) by exp(—ig/2), it is
seen to be

X(Ti(9)) = X'(¢) = sin[(2] + 1)¢/2]/ sin(6/2). ®)

It is shown in Chapter 11 that eq. (8) holds (with / replaced by j) for any operator J with
components J,, jy, J. that obey the angular momentum CRs. (The quantum number j
determines the eigenvalues of J%, from eq. (11.4.40).) Consequently, eq. (8) applies also to
the many-electron case with / replaced by L,

X(TL(9)) = sin [(2L + 1)¢/2]/ sin(/2). ©)

The location of the axes is arbitrary so that this result holds for any proper rotation R(¢ n).
(A formal proof that the MRs of all rotations through the same angle have the same
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Table 7.1. Splitting of the states of angular momentum L in an
intermediate crystal field.

See eq. (9) and Exercise 7.3-1.

X(E) =2L+1
x(Cy) = sin[(2L + 1)n/2]/ sin(n/2) = (71)1‘
1forL=0,3,...
X(C3) = sin[(2L + 1)n/3]/ sin(n/3) = { OforL=1,4,...
—1forL=2,5,...

. . 1 forL=0,1,4,5, ...
X(C4) = sin[(2L + 1)n/4]/ sin(n/4) = {_1 for L —2.3.6.7 .

State I, Direct sum in cubic field
S Ty Ay

P Iy T,

D T, EaT,

F F3 A2 @ T] EB T2

G Iy AGEST, 8T,

character will be given in Chapter 12.) From eq. (9) we may calculate the character system
for any group of proper rotations for any L and, if this is not already irreducible, reduce this
in the usual way into a direct sum of IRs.

Exercise 7.3-1 Show that for a state in which the orbital angular momentum is L,
X(E) =2L+ 1. (10)

The characters x[I';(¢)] for ¢ = n/2, 2n/3, and & are given in Table 7.1, which also shows
the splitting of free-ion states in a cubic field when L > 2. The splitting of states in lower
symmetries is given in correlation tables (see Appendix A4). Should a correlation table not be
available, one can always find the direct sums using the common classes (or corresponding
classes) of the two groups. An example of this procedure will be given later.

Improper rotations

The improper rotations S, /, and ¢ can all be expressed in the form /R, where R is a proper
rotation. Let A be the eigenvalue of the inversion operator,

Iy = M. (11)
A symmetry operator leaves the physical properties of a system unchanged, and therefore
\)> = My =, so that A= exp(iy). Operating on each side of eq. (11) with 7 gives
A =exp(2iy) =1, so L= +1. The eigenvalue of an operator (such as /), the square of
which is the unit operator, is called the parity. The parity of a basis function is said to be
‘even’ if A=+1 and ‘odd’ if A = —1. In molecular symmetry a subscript g or u is used to
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denote even or odd parity, but for atomic states a superscript + or — is commonly used
instead. Thus, if L= +1, Tyy" =47, butif A= —1, Ixp~ = —1)~. The parity of the spherical
harmonics is (—1)/, and since /r = r, the parity of the one-electon states is given by
s pd f
I=0 1 2 3
A=1 -1 1 —1.
The antisymmetrized state function for N electrons is the sum of products such as
P1(D(2) ... Ppp(N) and similar terms with the variables permuted between the same

set of one-electron eigenfunctions {v; v, ... ¥u}. Thus each term contains the same
product of spherical harmonics and the state therefore has parity

r=T1=1" = (-1)7", (12)

Notice that the parity of an atomic state is determined by its electron configuration, not by
its total orbital angular momentum.

Exercise 7.3-2 Determine the parity of the atomic states derived from the electron con-
figurations: nsnp, nd°, npn'p.

If I € G, and the parity is even,
x[I7 (IR)] = x[T[ (R)], (13)
but if the parity is odd
X[, UR)] = —x[I', (R)]. (14)
We can now formulate two rules for the characters of improper groups.

(1) If7€ G, then G=H® C;= {H} + I{H} and the character table for G may be constructed
from that of H. (See, for example, the character tables of Dg}, and Oy,.) O, = O ® C; and the
character table for Oy, is given in Table 7.2, where g and u signify g and « IRs and x{O}
means the characters for the group O. (See the character table of Oy, in Appendix A3.)

(2) If I ¢ G but G contains improper rotations then

G = {Q} +IR{Q}, (15)

where Q is a subgroup of proper rotations (sometimes called a halving subgroup), and
G is isomorphous with the proper point group

P = {Q} + R{Q} (16)
Table 7.2.
Oy {0} O}
g x{0} x{0}
u x{0} —x{0}
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Table 7.3. Character tables for the point groups D, and C,,.

Because there is no unique principal axis in D,, the Mulliken conventions
are not used in naming the representations of D,. These two groups are
isomorphous and the character systems of the four IRs are identical, but
corresponding representations are labeled differently, which tends to
obscure rather than emphasize the isomorphism. Note that C,, and oy are
corresponding elements, and so are C,y and oy. Note that bases for the
corresponding IRs are not necessarily identical (for example, z does not
form a basis for the totally symmetric representation in D). In C,,, the
Mulliken designations B and B, are arbitrary because there are two
equivalent improper binary axes normal to z.

DZ E C2z C2x C2y

A 1 1 1 1 X%, )°, 2
B; 1 1 -1 —1 z, R, xy
B, 1 -1 -1 1 Y, Ry, zx
B; 1 -1 1 —1 X, R, yz
C2v E sz Ox Oy

A, 1 1 1 1 z, x5 %, 2
A, 1 1 —1 —1 R_, xy

B, 1 -1 -1 1 x, R, zx
B, 1 —1 1 —1 v, Ry, yz

(see Table 2.6). G has the same classes and representations as P, though we need to
identify corresponding classes. If G is C,,, and therefore P is D,, the class of C,, that
corresponds to the class Csy in D, is IC,y, = oy. Similarly, C,y and oy are corresponding
classes. Note however, that some basis functions may belong to different representa-
tions in G and in P (see Table 7.3). These rules hold also for “double groups.”

Example 7.3-1 (a) Into which states does the Russell-Saunders term d”: °F split in an
intermediate field of Oy, symmetry? (b) Small departures from cubic symmetry often occur
as a result of crystal defects, substituent ligands, and various other static and dynamic
perturbations. If some of the IRs of O do not occur in the group of lower symmetry, then
additional splittings of degenerate levels belonging to such IRs must occur. Consider the
effect of a trigonal distortion of D3 symmetry on the states derived in (a) above.

(a) For °F, L=3, S=1. The spin quantum number is not affected by an electrostatic
field, and so all the states are still triplets in a crystal field. From eq. (12), the parity
r=( —1)>"2=1. From Table 7.1, the states are 3A2g, 3T1g, 3T2g. (b) Select the common
(or corresponding) classes for the two groups and reduce the representations, where
necessary, in the group of lower symmetry. The relevant characters of O and Ds, which
are isomorphous with Cs,, are shown in Table 7.4. The representations T, and T, of O are
reducible in D3 into the direct sums shown in Table 7.5, a process called subduction. This is
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Table 7.4. Characters for the classes common to O and Ds.

D, E 26, 3¢
A 1 1

A, 1 1 -1

E 2 —1

0) E 8C; 6C,
A, 1 1 —1
T, 3 0 —1
T, 3 0 1

Table 7.5. Correlation of the
representations A,, Ty, and T, of O
with those of Ds.

0 D;
A2 AZ
T, A, BE
T, A BE

the way in which correlation tables are derived, and it is the method that should used in
investigating the possible splitting of degeneracies when the necessary correlation table is
not available.

Answers to Exercises 7.3

Exercise 7.3-1 The character of £ in any representation is the degeneracy of that repres-
entation. The degeneracy of a state with orbital angular momentum L is 2L + 1 because
there are 2L + 1 allowed values of the quantum number M=L,L—1, ..., —L.

Exercise 7.3-2 For nsnp, A=(—1)°"'=—1; for nd®, h=(—1*">"2=+1; for npn'p,
A=(—D'"=41.

Strong crystal fields

A strong crystal field is one in which the electrostatic interactions due to the surroundings
of an ion provide a stronger perturbation than the electron—electron interactions within the
ion. One must therefore consider the effect of the field on the free-ion electron configura-
tion and deduce which states are allowed and their degeneracies. We will then be in a
position to draw a correlation diagram showing qualitatively the shift in the energy levels
as the field strength varies from “intermediate” to “strong.” We have seen that in Oy,
symmetry the five-fold degeneracy of the d levels in a free ion is reduced to a #,, orbital
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153

fhe
Ty Oy

Figure 7.2. Energy-level diagram of the splitting of the five d orbitals in crystal fields of T4 and
octahedral Oy, symmetry.

triplet and an e, doublet (Table 6.4). The three-fold degenerate 1,4 levels lie below the two-
fold degenerate e, levels because of the greater Coulomb repulsion between the ligands and
electrons in dy2_ 2 and ds.._,2 orbitals (Figure 7.2) compared with electrons in d,, d,., or d.,
orbitals, where the charge density lies mainly between the ligands in octahedral symmetry.
This situation is in direct contrast to Ty symmetry in which the two e orbitals point between
the ligands and there is greater electrostatic repulsion between electrons in #, orbitals and
the surrounding ligands. Consequently, the e levels lie below the #, levels in a T4 complex

(Figure 7.2).

Exercise 7.4-1 Predict qualitatively the splitting of the five-fold degenerate free-ion d
states when a positive ion M is surrounded by eight negative ions which are located at the
corners of a cube.

To determine the states in a strong field we shall make use of Bethe'’s method of
descending symmetry. This is based on: (i) the fact that an electrostatic field does not
affect the spin; and (ii) that if ¢(1, 2) =1’ (1) ¢/ (2), where 1’ (1) forms a basis for I and
Y/(2) forms a basis for IV, then the product ¢’ (1) ¢/ (2) forms a basis for the DP
representation I @ IV. To implement Bethe’s method we need to use two rules:

(1) two electrons in the same orbital give rise to a singlet state only; but
(2) two electrons in different orbitals give rise to a singlet and a triplet state.

To understand the reason for this requires a small digression on permutation symmetry. It is
a fundamental law of nature, known as the Pauli exclusion principle, that the total state
function for a system of N indistinguishable particles which are fermions, that is have
spin /5, ¥,, ..., must be antisymmetric with respect to the interchange of any two particles.
Let P; denote the operator that interchanges the positions and spins of indistinguish-
able particles i and j. Then |Py,9)(1, 2)]* =|e(1, 2)]%, so that Pioai(1, 2) = exp(iy) 1(1, 2).
On repeating the interchange, PP ,Y(1, 2) =exp(2iy)¥(1, 2)=1(1, 2). Therefore,
exp (2iy) =1, Ppy(1l, 2) == (1, 2). This means that i) could be either symmetric or
antisymmetric with respect to the interchange of indistinguishable particles, but, in fact, for
fermions 1 is antisymmetric, Py, = —1), so that the state function ) is an eigenfunction of
Py, with eigenvalue —1. For a two-particle system, the state function (spin orbital)
1 =1(1, 2) can be written as a product 1) = ¢x of an orbital ¢(1, 2) and a spinor x (1, 2).
For two electrons in the same orbital ¢ is symmetric, and so xy must be antisymmetric. There
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Table 7.6.

ms  ms, Ms(=mg +mg) S(=largest value of My)
x1=a(1)B(2) Vo =Y2 0 0
X2=a(2)B(1) ) Vo 0 0

Table 7.7. Symmetric and antisymmetric spin functions for two electrons in two
different orbitals.

X(la 2) MS S
a(l) a(2) 1

A B2) ] 1 1
Sa(1) B2)=2""[a(1) B(2) + a(2) B(1)]

Aa(1) f2)=2""[a(1) B2) — a2) (1] 0 0

are two possibilities as shown in Table 7.6. Neither x; nor ¥, are eigenfunctions of Py, so
they must be antisymmetrized by the antisymmetrizing operator

A =271~ Pp). (1

Aa(1)5(2) = 27"[a(1)8(2) — a(2)8(1)] = x(1,2), 2

which is normalized and antisymmetric. Similarly, S =2""2[1 + P,,] is a symmetrizing
operator. Note that _4(x») gives —x(1, 2), which differs from x(1, 2) only by a phase
factor, so there is only one independent antisymmetric spin function x(1, 2), which
describes a singlet state. It is an eigenfunction of S. with Mg=0 and of $* with S=0.
For two electrons in two different orbitals, ¢ may be symmetric or antisymmetric.
Consequently, y may be antisymmetric or symmetric. There is only one antisymmetric
possibility, as seen above, but there are three independent spin functions that are symmetric
(see Table 7.7). The first three spin functions x, are symmetric and the three functions (1,
2) = ¢, describe the triplet state, while the state function ¥(1, 2) = ¢4, corresponds to
the singlet state. This establishes the two rules (1) and (2) listed above.

(Comment: 1t is the action of the antisymmetrizing operator on the product state function
in eq. (7.2.5) that produces the Slater determinant in eq. (7.2.6). However, the factorization
into an orbital function of r and a spinor, that simplifies our work when N =2, does not
occur for N> 2.)

Example 7.4-1 Find all the states that arise from the configuration ¢ in a strong field of Oy,
symmetry. Correlate these states with those of the free ion, and of the ion in an intermediate
field.

The solution using Bethe’s method of descending symmetry is summarized in Table 7.8.
In the strong-field limit the possible electron configurations derived from d” in the free ion



Table 7.8. Application of the method of descending symmetry to the configuration d° in Oy, symmetry.

Direct product Irreducible

Point group Configuration representation representations Allowed states Degeneracy
Oh eé Eg®Eg Alg@AZg@Eg 6
Dan Ay By A ®Byg .

a%g Arg® Ang Alg lAlg3

aighig Aig®@Big B, Bi;"Big

b% Bi;®Big g lg

€ IA 3p 1

Oy Az Ay Ey 6
Oh t%g T2g®T2g A1g®Eg@Tlg@T2g 15
Con A, A,®B, A, ®B,®B, A, ®A, ©B,

a A @A, A, 'A,

dg agz' A @A, A, iAg3Ag

(ag") A, @A, A, 1Ag3

dg {’g Ag®Bg B, lBg 3Bg

a§ by A,®B, B, 1Bg B,

b B ®Bs Ae 1A g 37 1
Oy A BT Tog 15
Op ey To ®E, Tio® Taq Tig Tig Tag Tag 24
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On Dy

Figure 7.3. Splitting of the e, levels when the symmetry is lowered from Oy, to Dyy,.

are: t%g, tlzgei,, and eé. Since all the states derived from the configuration d* are of even
parity, we may use the character table for O in reducing DPs. The result (ii) above is used
continually. The configuration eé gives rise to six states in all, two singlets when the two
electrons are both in the same e, orbital (with opposed spins) and a singlet and a triplet
when they are in different e, orbitals. Since both electrons are in orbitals of e, symmetry,
these six state functions form bases for the IRs that are contained in the DP representation
E, ® E,. From the character table for O, EQ E={44 100} =A; ® A, DE. At this stage
we do not know which of these states are singlets and which are triplets. A reduction in
symmetry has no effect on the spin, and the essence of Bethe’s method is to lower the
symmetry until all representations in the DP are 1-D. From a correlation table (Appendix
A4) we see that if the symmetry is reduced to Dy, the E, representation becomes the direct
sum A;,® Bj,. This means that the two-fold degeneracy of the e, levels is lifted by the
reduction in symmetry to Dy and they become a,,, by, (Figure 7.3). The possible config-
urations are a7 o Aigbig, and b’ - The states derived from these configurations are shown in
the block of Table 7.8 labeled by the Dy, point group. Only the a4b;, configuration can
yield both singlet and triplet states. Therefore the B, state derived from A, in Oy, is the
only triplet state. The states that arise from the electron configuration ezg are, therefore,
'A P 3A2g and 1Eg, with a total degeneracy of 6. We may make use of the degeneracy to
perform a final check on our deductions. Call the two e, orbitals e, and e,'. There are,
therefore, four one-electron spin orbitals egcx, e,0, eg’ «, and eg’ 0, and the two electrons
may be allotted to these four spin orbitals in a total of 4C, = 6 ways. The procedure for the
tég configuration is analogous and is summarized in Table 7.8. The DP representation
T,@T,=A®E® T ®T,. In Cy, symmetry the T, representation becomes the direct
sum A, ® A, @ B,. Call the two orbitals of A, symmetry a, and a;. From the six possible
two-electron configurations, only three can yield triplet states, and the direct sum
A, ®Bg® B, in Cy, identifies the triplet state in Oy, as T;,. Here there are six possible
one-electron spin orbitals obtained by combining each of the three orbital functions #,,, tzg’ s
b/ with either « or 3 for a total degeneracy of ¢C, = 15. Finally, for the configuration £,e,
there is no need to use descending symmetry. Because the two electrons are in different
orbitals, one in #,, and one in e,, both singlets and triplets occur. The configuration #,ze,
requires that the twenty-four spin orbitals obtained by combining any of the six functions
ey, 13 With any of the four functions e,q, e,/ (and antisymmetrizing where necessary)
form bases for the representations T,y ® E; = T, ® To,. Therefore the states from config-
uration #,4e, are T, . T, o szg, 3T2g, with a total degeneracy of 24. Descending symmetry
gives the same result. The whole procedure is summarized in Table 7.8. The correlation
diagram is given in Figure 7.4. This shows qualitatively the dependence of the energy
levels on the strength of the crystal field. The strong-field limit is on the right and the states
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Figure 7.4. Correlation diagram for d*(Oy). All states shown have even parity.

found Table 7.8 must correlate with those of the same symmetry in the intermediate- (or
medium-) field case. In drawing such diagrams we make use of some additional rules. The
non-crossing rule is a strict one: this says that states of the same symmetry and spin
multiplicity may not cross. When the order is not known (from either experiment or
calculation), the ground state may be identified by using two rules from atomic spec-
troscopy (Hund’s first and second rules). These are (i) that states of the highest spin
degeneracy lie lowest, and (ii) that for terms with the same S, the one with the higher orbital
degeneracy lies lower. Therefore in d” the ground state is °F, which lies lower than *P.

We now consider the configuration nd® in Oy,. Two new principles must be observed.
Firstly, we may ignore doubly occupied orbitals since they contribute A, to the DP and
zero to M, and to S. To understand this, consider a lowering of symmetry until all
degeneracies have been lifted so that the electrons in doubly occupied orbitals are now
paired in orbitals that form bases for 1-D representations. This is illustrated for the
configuration tég in Figure 7.5. Whatever the name of the representation in Mulliken
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Figure 7.5. Splitting of #,, levels when the symmetry is lowered to C,,.

notation (it is A; or B; or B, in the example shown) the DP of a non-degenerate
representation with itself always yields the totally symmetric representation so that the
state shown is 'A; in C,,, which correlates with 'A; ¢1n Oy. This argument is quite general
and applies to any configuration containing only doubly occupied orbitals. The second
thing we must do is to take account of spin-pairing energy. Electrons in degenerate levels
tend to have unpaired spins whenever possible. This is because of Pauli repulsion, which is
a consequence of the antisymmetry requirement for a many-electron state function for
fermions. If two electrons have a symmetric spin function they will tend to remain apart in
space. Otherwise, since P1,¢ (1,2) = —¢ (2, 1), the charge density would vanish in the limit
r, — ry. Since two electrons with a symmetric spin function tend to remain further apart
than two electrons with an antisymmetric spin function, they shield each other from the
nucleus to a smaller extent and so their Coulomb interaction with the nucleus is greater than
for two electrons with antisymmetric spin functions. This is the reason why triplets lie
below singlets and why it requires energy to pair up spins. But if electrons have to be
promoted to higher states in order to become unpaired, then this promotion energy must be
offset against the gain in energy from unpairing the spins. So the ground-state configura-
tion will depend on the crystal-field splitting. It is an empirical fact that spin pairing
requires more energy in e, orbitals than in #,, orbitals. Consequently, the ordering of the a®
configurations is 15,e5 < f3g€y < f3€4, because the number of e, pairs in the three config-
urations is 0 < 1 < 2. On the left of Figure 7.6 is shown the actual configurations in a d*
complex. Now use the first principle and re-write the configurations ignoring doubly
occupied orbitals. They are, in order of increasing energy, ezg < eglyy < tzzg. Therefore, d®
behaves as if the ordering of the #,,, e, levels had been inverted (Figure 7.6). Consequently,
the correlation diagram for d® is like that for @* but with the ordering of the high-field states
inverted. Now in T4 symmetry, the ordering of the levels is e < et, < t3. Therefore, the
energy-level diagrams for states from d'°~" (Oy) are like those for d” (Tg), and these are the
inverses of @"(O), which are like those for @'°~"(Ty). Energy-level diagrams for the d° to d®
configurations in octahedral symmetry have been calculated by Tanabe and Sugano (1954)
(cf. Purcell and Kotz (1980), pp. 344-5).

Answer to Exercise 7.4-1

The position of the ligands is the same as that in T4 symmetry but every corner of the cube
is occupied by a negative ion. Consequently, the energy-level diagram is like that for T4
symmetry (see Figure 7.2) but one should expect relatively larger crystal-field splittings for
the same ligands.
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Figure 7.6. Ordering of the high-field energy levels in the d¢® configuration.

Problems

7.1

7.2

Describe the effect of an intermediate crystal field of Ty symmetry on the states of an
ion with the configuration ¢. Assume RS coupling to hold in the free ion so that the
free-ion states, in order of decreasing stability, are 3F, 1D, 3P, lG, IS, (a) First work out
the states, and their spin multiplicities, that arise in the strong-field limit (configur-
ations e, et,, 13) using Bethe’s method of descending symmetry, but employing
different point groups to those used in Example 7.4-1. (b) Next work out the splittings
of the Russell-Saunders states in an intermediate field. (c¢) Finally, draw a correlation
diagram showing qualitatively the splitting of the free-ion states as a function of field
strength. (Hints: For (a) use a correlation table (Appendix A4). For (b) use egs.
(7.3.12)~(7.3.16). As their character tables show, T4 is isomorphous with O. You
will need to identify corresponding classes in these two groups in order to make use of
eqs. (7.3.13) or (7.3.14).)

A Ce*" ion has the configuration 47" so that its ground state is the Russell-Saunders
multiplet *F. In a crystal of CaF, containing dissolved CeFs, the Ce®" ions substitute
for Ca®" ions at lattice sites so that each Ce " ion is at the center of a cube of F~ ions
(see Exercise 7.4-1). This cubic field is of a strength intermediate between the
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73

electron—electron interactions and the spin—orbit coupling. (a) Determine the character
system of the representation I'; and reduce this representation into a direct sum of IRs.
(Hint: The parity of a state is determined by its electron configuration and not by its
spectral term. It is sufficient, therefore, to determine the parity for 4/" and then use the
character table of O.) (b) Charge compensation for the extra positive charge on Ce’ " is
provided by O°~ impurity ions substituting for F~. For electrostatic reasons O*~ ions
prefer to occupy nearest-neighbor sites to Ce** ions. What is the symmetry at these
Ce’" sites which have an O~ ion as a nearest neighbor to the Ce** and what further
splitting and re-labeling of the 4" states occur when the Ce’" site symmetry is
lowered by the presence of an O”~ in a nearest-neighbor position? (Do not use a
correlation table but perform the subduction explicitly.)

(a) Use Bethe’s method of descending symmetry to determine the states that arise from
a d® configuration in a strong crystal field of O, symmetry. (Hint: Correlation tables
are in Appendix A4, but use different point groups to those used in Example 7.4-1.)
Construct a correlation diagram showing qualitatively the shift of the free-ion energy
levels with increasing field strength.
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Double groups

Spin-orbit coupling and double groups

The spin—orbit coupling term in the Hamiltonian induces the coupling of the orbital and
spin angular momenta to give a total angular momentum J =L + S. This results in a
splitting of the Russell-Saunders multiplets into their components, each of which is
labeled by the appropriate value of the total angular momentum quantum number J. The
character of the matrix representative (MR) of the operator R(¢ mn) in the coupled
representation is

(7.3.9) x(Fe(¢)) = sin[(2L + 1)$/2]/ sin(4/2). ey

A detailed analysis (Chapter 1 1) shows that this result depends upon the commutation
relations for the L operators, and, since the spin and the total angular momentum
operators obey the same commutation relations (CRs), this formula holds also for S
and for J:

(1 x(Ls(¢)) = sin[(2J + 1)¢/2]/ sin(¢/2). 2

Now, L is an integer and S is an integer or half-integer; therefore the total angular
momentum quantum number J is an integer or half-integer. Consider a proper rotation
through an angle ¢ + 2x. Then

sin[((27 + 1)6/2 + (2 + D))

_ sin[(2J + 1)¢/2] cos[(2J + 1)7]

—sin(¢/2) )
= (=¥ x(Ts(9)).
If J is an integer,
3) XL (¢ +2m)) = x(T'y(9)), 4)
but if J is a half-integer, as will be the case for an atom with an odd number of electrons,
3) XLy (¢ +2m)) = —x(L'y(¢)). (5)

In configuration space we would expect a rotation through ¢ + 27 to be equivalent to a
rotation through ¢. The curious behavior implied by eq. (5) arises because our state



8.1 Spin-orbit coupling and double groups 149

functions are spin orbitals and not functions in configuration space. Equation (5) suggests
the introduction of a new operator E, with the property ER =R = R(¢ +2n n). Adding
E to the group G = {R} gives the double group G={R} + E{R}. Note that G contains
twice as many elements as G, but does not necessarily have twice the number of classes.
The number of new classes in G is given by Opechowski’s rules. (A proof of these rules is
given by Altmann (1986).)

(1) Cop=EC,, and Cs, are in the same class iff (meaning if, and only if) there is a (proper
or improper) rotation about another C, axis normal to n.

(2) C,=EC, and C,, are always in different classes when n # 2.

(3) Forn>2, C¥and C,* are in the same class, as are C% and C, *.

Exercise 8.1-1 Name the classes in the double point groups C, and C,.

Rewriting egs. (2) and (3) in a slightly more convenient notation, we have

) X[R(¢ m)] = xs(¢) = sin[(2J + 1)¢/2]/ sin(¢/2), (6)

3) XR(¢ m)] =%,(6) = xs(¢+21) = (=1)/xs(). (7)

Table 8.1 shows the characters x,(¢) for R(¢ z), calculated from eq. (6) for half-
integral J, for the rotations of the proper point group O which occur also in O. For
R(¢ z), use eq. (7). For other values of ¢ use eqgs. (6) and (7). For improper rotations,
see Box 8.1. Equations (6) and (7) work equally well for integral J. For the classes of G (in
the current example G is O), integral values of J give the same results as L (in Table 7.1) so
that /=0, 1,2, 3 would generate all the standard representations of O. The characters for
the new classes ¢;C,, of G are the same as those of the classes C; of G, for integral J. For
half-integral J they have the same magnitude but opposite sign, in accordance with eq. (7).
The new representations of G that do not occur in G, and which are generated by half-
integral values of the total angular momentum quantum number J, are called the spinor
representations.

Box 8.1. Improper rotations.

If7 € G, Iy’ = ¢/, G = {H} + I{H} and x[['F(IR)] = £x[['F (R)].

If I € G, then G= {H} + IR{H} is isomorphous with P={H} + R{H}, where R is a
proper rotation and {H} is a subgroup of proper rotations.

Then

x[Ts(UR")] = x[Ts(R')],

where R’ € R{H} and IR’ € G.
These rules hold for J integral or half-integral and so for L and S.
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Table 8.1. Characters of the matrix representatives I ; for half-integral J.

For improper rotations see Table 8.2.

For R(¢ z), xs(¢) = sin[(2J + 1)¢/2]/ sin(¢/2).
For R(¢ z) = ER(¢ z), xs(¢ +27) = (—1)* xs(¢).

E C, Cs Cy
10) 0 T 2n/3 /2
1 =Y2.7,...) 25 =12.%, .)
x (T 2J+1 0 -1 =%,%,...) 0( =5%,7%,...)
0 =5%,1,,...) =2 =%,1%,,...)
J=1, 2 0 2%
J=1, 4 0 —1 0
J=5, 6 0 -2

Table 8.2. 0= {0} + E{O}.

3C, 6Cy E 8C;  6C,4
[9) E 3C, 8C; 6C, 6C,'

Ty A 1 1 1 1 1 1 1 1 X4y 42
A, 1 1 1 -1 -1 1 -1
I;E 2 2 -1 0 0 2 —1 0 *—y? 32—
4Ty 3 -1 0 1 -1 3 0 1 (x ¥ 2)(R« Ry R,
I's T, 3 -1 0 -1 1 3 0 -1 (xy yz zx)
I'cEy, 2 0 1 2% 0 -2 -1 -2%
By, 2 0 1 -2 0 -2 -1 2%
g Fy 4 0 -1 0 0 —4 1 0
I's, 6 0 o -2¢ 0 -6 0 2%

Example 8.1-1 Derive the character table for the double group O.

This is given in Table 8.2. From Opechowski’s rules there are three new classes and
therefore three new representations. Since O contains twice as many elements as O, the
dimensions of the new representations are given by 12413 +13=24,s0thatl¢=2,1,=2,
and /g =4. The characters for J=1/,, 3/,, 5, may be written down from Table 8.1. Again,
two types of notation are mainly used to label the irreducible representations (IRs).
In Bethe’s notation the new representations of G are simply labeled by I';, where i takes
on as many integer values as are necessary to label all the spinor representations.
Mulliken notation was extended by Herzberg to include double groups. The IRs are
labeled E,F, G, H, ... according to their dimensionality 2,4,6,8, ..., with a subscript
that is the value of J which corresponds to the representation I'; in which that IR
first occurs. First write down I',, and test for irreducibility. For half-integral
J, x(R) = —x(R) (see Table 8.2) so that for spinor representations we may work with
the classes of O only,
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Dy Shoa(T) = 104) +8(1) +6(2) = 24 = 2/2.

(Including all the classes of G in the sum would simply repeat these three terms for a
total of 48 =g.) Therefore, I'y, is an IR, named I's or E,,. Next write down Iy, and test for
irreducibility:

Iy : ;|X3/2(T)|2 = 1(16) + 8(1) = 24 = g/2.
Therefore I'y, is an IR, named I's or Fy, Similarly,

I, : ;|X5/2(T)|2 =1(36) 4+ 6(2) + 6(2) = 48 > g/2,

so that I's, is reducible. Performing the reduction in the usual way, but again just using the
classes of G,

c(T's) = (V20)[1(2)(6) +6(2")(=2")] = 0,
c(T's) = (V24)[1(4)(6)] = 1.

NowI's, —T's={2 10 —2%0 -2 -1 2% =Iy= Es,, so the second E representation
does not occur until the reduction of I'sy, =I'; 4 I's. I'; is therefore Es, in Mulliken-Herzberg
notation. Note that all the new representations necessitated by half-integral values of J are at
least doubly degenerate. This means that all energy levels corresponding to half-integral J, that
is arising from a configuration with an odd number of electrons, are at least two-fold
degenerate in any electrostatic field. This result is known as Kramers’ theorem (Kramers
(1930)). Further splittings may, however, be possible in magnetic fields.

Exercise 8.1-2 Write down the characters of I';, and I's, and reduce both these represen-
tations into a direct sum of IRs.

Other groups may be handled in a similar manner to O in Example 8.1-1. For improper
rotations, the two rules formulated previously hold also for double groups (Box 8.1).
If the group contains the inversion operator, even or odd parity is indicated by a super-
script of + or —in Bethe’s notation and by a subscript g or « in Mulliken—Herzberg
notation.

Answers to Exercises 8.1

Exercise 8.1-1 C,={E C{ C, C; EC, C, Cy}; Coy = {E, Coy+ Cas, 0y +7,,
ox + 0y, E}.

Exercise 8.1-2 T, ={8 0 100 —8 —10}, c(T's) = (V24)[1(2)(8) + 8(1)(1)] = 1,
c(l'7) = (24)[1(2)(8) + 8(1)(1)] = 1,
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Iy, —(Te+T7)={40 -1 00 —4 10} =T,
Top={10 0 —1 220 —10 12"},
c(Ts) = (24)[1(2)(10) + 8(1)(=1) + 6(22)(27)] = 1,
c(I'7) = (29)[1(2)(10) + 8(1)(~1) + 6(2"2)(=27)] = 0,

c(T's) = (V24)[1(4)(10) + 8(=1)(=1)] = 2.

Weak crystal fields

Since a “weak” field means one that is smaller than the spin—orbit coupling term Hg,
a weak crystal field acts on the components of the Russell-Saunders multiplets.
Depending on their degeneracy, these components may undergo further splittings in
the weak crystal field. In the symmetry group O, Table 8.2 and Exercise 8.1-1 tell us
thatthe following splittings occur for half-integral values of the total angular momentum
quantum number J:

Iy, =Ty,

I5, =7 & Ly,

Iy, =Ts® ;@ T,
Iy, = [ @ 2.

Example 8.2-1 Examine the effect of spin—orbit coupling on the states that result from an
intermediate field of O symmetry on the Russell-Saunders term *F. Correlate these states
with those produced by the effect of a weak crystal field of the same symmetry on the
components produced by spin—orbit coupling on the *F multiplet.

The solution is summarized in Figure 8.1. The *F state has L = 3, and so (from Table 7.1)
it is split by an intermediate field into three states which belong to the IRs
AT T, =1,ET4PIs. To examine the effect of spin—orbit coupling on these
intermediate-field states, we use the fact that if 1) = ¢"y/, where ¢' forms a basis for I
and y/ forms a basis for IV, then 1= ¢'y’ forms a basis for the direct product (DP)
representation I @ IV. Here S=3,, and the representation I'y, is I's (Table &.2). Take
the DPs of I'g with I',, I'4, and I'5 to obtain

Ns®I', =T%,
I's@Il'y =T's @ 1'; © 2%,
s ®T's =T ®I'7 & 21%.

Exercise 8.2-1 Verify the DPs necessary to determine the spin—orbit splitting of the
intermediate-field states derived from the Russell-Saunders term “F.
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Figure 8.1. Splitting of the *F state in weak and intermediate fields of cubic symmetry.

The correlation diagram that correlates the intermediate- (or medium-) field states with
the weak-field states is shown in Figure 8.1. The same states must arise independently of
the order in which the crystal-field and spin—orbit coupling perturbations are applied. The
numbers in parentheses are the degeneracies of the states; they provide a useful check on
the accuracy of numerical calculations.

The character tables in Appendix A3 include the spinor representations of the common
point groups. Double group characters are not given explicitly but, if required, these may be
derived very easily. The extra classes in the double group are given by Opechowski’s rules.
The character of R in these new classes in vector representations is the same as that of R but
in spinor representations Y(R)= —x(R). The bases of spinor representations will be
described in Section 12.8.

Answer to Exercise 8.2-1

E 8Cs
I's@l',=4 -1 =T,
@Iy =12 0 =T¢apI;®2l%,
I's®I's =12 0 =T¢apl;e2l%.
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e(Ts) = oal1(12)(4)] = 2.

It is easily verified that using the classes of O gives the same results.

Problems

8.1.
8.2.

8.3.

8.4.

Construct the character table of the double group D».

(a) A partial character table of the double group Dy is given in Table 8.3. Complete
this character table by finding the missing classes and IRs. Label the IRs using
both Bethe and Mulliken—Herzberg notation.

(b) An ion with an odd number of electrons has a I'g ground state and a I'; excited
state. Are E1 (electric dipole) transitions between these two states symmetry
allowed in a weak field of D4 symmetry? State the polarization of the electro-
magnetic radiation involved in any allowed transitions.

A partial character table of the point group D3, is given in Table 8.4. Find the missing

characters of the vector and spinor representations of the double group Dsy,. Determine

whether E1 transitions E,, — Ey, and Ey, — Es, are allowed in a weak crystal field of

D3y, symmetry. State the polarization of allowed transitions.

The electron configuration d> produces a number of states, one of which has the

spectral term G. Describe the splitting and/or re-labeling of this >G state under the

following perturbations and summarize your discussion in the form of a correlation

Table 8.3. Partial character table of the double group D.

D4 E 2C4 C2 2C2/ 2C2N

A, 1 1 1 X’ 4y2, 2

As 1 1 1 —1 —1 Z R.

B, 1 -1 1 - x> =2

B, 1 -1 1 -1 1 Xy

E 2 0 -2 0 0 (x )R Rz 2x)
Table 8.4. Partial character table of the point group Dsy,.

D3h E 2C3 3C2, O 2S3 30’V

Af 1 1 1 1 1

Al 1 1 - 1 1 -1

E 2 -1 0 2 -1 0 (x »)
Al 1 1 1 —1 —1 —1

A 1 1 -1 —1 -1 1 z

E' 2 —1 0 -2 1 0
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diagram which shows the degeneracy of each level and the perturbation giving rise to
each set of levels:
(i) the spin—orbit coupling perturbation Hg ;

(i) a crystal field of T4 symmetry that is a weaker perturbation than Hgy ;

(iii) a crystal field of Ty symmetry that is stronger than Hgy ;

(iv) the effect of spin—orbit coupling on the states derived from (iii).

Could further splittings of these states be induced by an electrostatic field of D,
symmetry?

8.5. Describe the splitting of the multiplet *D under the conditions specified in (i)~(iv)
of Problem 8.3, except that the crystal field is of O, symmetry. [Hint: Since a
crystal field does not affect the parity of a state, it is sufficient to work with the
double group O.]

8.6. Investigate the effect of spin—orbit coupling on the crystal-field levels of a Ce*" ion
substituting for Ca® " in CaF, with a nearest-neighbor O® ~ ion (see Problem 7.2). Is
any further splitting of these levels to be expected if the site symmetry at Ce*" is
lowered to C, by a further crystal-field perturbation that is weaker than Hgy?
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Classification of normal modes

The internal vibrational motion of a molecule containing N atoms may be approximated by
the superposition of 3N — n simple harmonic vibrations called normal modes. Here n =15
or 6 and the ambiguity arises because, although each molecule has three degrees of
translational freedom, linear molecules have only two degrees of rotational freedom, whilst
non-linear molecules have three degrees of rotational freedom, each corresponding to a
rotational motion about one of the three Cartesian axes. The normal coordinates Oy, which
are linear combinations of the atomic displacements x;, y;, z; from the equilibrium positions of
the atoms, are properties of the molecule and are determined by the symmetry of the molecule,
so that each transforms according to one of the IRs of the point group of the molecule.

Example 9.1-1 Classify the normal modes of vibration of the carbonate ion CO%’according
to the IRs for which the normal coordinates form bases.

To find the symmetry of the normal modes we study the transformation of the atomic
displacements {x; y; z;},i=0,1,2,3, by setting up a local basis set {e;; e;, e;3} on each of
the four atoms. A sufficient number of these basis vectors are shown in Figure 9.1. The
point group of this molecule is Ds;, and the character table for D5y, is in Appendix A3. In
Table 9.1 we give the classes of Ds;; a particular member R of each class; the number of
atoms Ny that are invariant under any symmetry operator in that class; the 3 x 3 sub-matrix
T'; (R) for the basis ( e;; e e;3] (Which is a 3 x 3 block of the complete matrix representative
for the basis (eg; ... es3]); the characters x; for the representation I';; and the characters for
the whole representation, which are x = x;Nz. We can proceed in this way, working
effectively with a basis (e e, €3, because when an atom is transformed into a different
atom of the same species, then the 3x 3 matrix I'; occupies an off-diagonal block and
therefore does not contribute to the character of the 12 x 12 matrix representative (MR).
The reducible representation I' may be reduced in the usual way to yield the direct sum

I =A/'®A)’@3E ®2A," ®E". (1)

This sum contains the representations for translational motion and rotational motion as
well as for the vibrational motion. From the character table we see that these are

I =Aa&F, ©)



4 - 14 - 0 4! (DX
I - I I— 0 € X
1 I I I I

1 2 I 1 2 I
> I 2 I @I
4 I v 4 I v N
o oy 2o o) i) q bYs
rog KY4 9o ¢ Foxs q YEq

‘74— = (g/27)S00 =2 "UAAIS a1k ()’ T SYIN Y3 JO SIUSWIO [eUOSLIP ) AUQ) "7 MOI Ul SI (Y)' ] puy 01 pasn y remnonred oy,

(16 24n31,y 225)|€€9 ** * W 103 ) uo paspq ] uoyniuasa.ida.d ayy fo uoyonpa "1°6 dqeL



158

9.2

Molecular vibrations

Y

€

€1
2.?

€2 Telz

» > X

ol ¢©o1 1 ©€u
€3 y
3 €3]

Figure 9.1. Numbering of atoms and location of basis vectors used to describe the atomic
displacements in the CO%’ ion. The e;; unit vectors are all normal to the plane of the paper,
pointing towards the reader, and the displacement of the ith atom is r; = e;1x; + €;,); + €;3z;.

= A ®E, (€)

M, @, G Ty = A/ ©2E ® A", )

As a check, we calculate the total vibrational degeneracy from eq. (4) as 6, which is equal,
as it should be, to 3N — 6. The arithmetic involved in the reduction of the direct sum for the
total motion of the atoms can be reduced by subtracting the representations for translational
and rotational motion from I" before reduction into a direct sum of IRs, but the method used
above is to be preferred because it provides a useful arithmetical check on the accuracy of T'
and its reduction.

Allowed transitions

In the theory of small vibrations it is shown that, by a linear transformation of the
displacements {x; y; z;} to a set of normal coordinates {(Qy}, the kinetic energy and the
potential energy may be transformed simultaneously into diagonal form so that

2T = >, Qi and 2& = > w?Q?. The Hamiltonian is therefore separable into a sum of
k k

terms, each of which is the Hamiltonian for a 1-D harmonic oscillator. Consequently, the
Schrodinger equation is separable and the total state function is a product of 1-D harmonic
oscillator state functions

W, (Ok) = |nk) = NeHi(vOx) exp|—Yoy 20x %], (1

where

& = wi/h, )
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ny, is the vibrational quantum number in the kth mode, and H, is a Hermite polynomial of
order ny. Therefore

3N—n

anlnl s (Ql’ QZa ) = H ank(Qk)7 (3)
k

or (in the occupation number representation)

|n1 ny ... ng > = |n1>|n2>|nk> cee = 1__[ |nk> (4)
k=1

Generally, most molecules can be assumed to be in their ground vibrational state at room
temperature, in which case n; =0 for k=1, 2,..., 3N —n. Since H; is a constant, the
ground state wave function is a product of exponential terms and so it is proportional to

exp[—2 ; 2 O, %)

which is invariant under any point symmetry operation.

Exercise 9.2-1 Justify the above statement about the invariance of eq. (5) under point
symmetry operations.

The symmetry properties of eq. (3) in an excited state are determined by a product of
Hermite polynomials. The most common vibrational transition, called a fundamental
transition, is one in which only a single vibrational mode is excited, so that

An; =0, Vji#k An=1, (6)

00...0...0) > [00...1...0). (7

The Hermite polynomial H,(v;Ox) = 27Oy, so that for a fundamental transition the ground
state forms a basis for I'; and the first excited state transforms like Q. The spacing of the
vibrational energy levels is such that transitions between vibrational states are induced
by electromagnetic radiation in the infra-red region of the electromagnetic spectrum.
The operator responsible is the dipole moment operator D, and so a fundamental transition
An; =1 is allowed only if the matrix element

(00...1...0D00...0...0) #0. (8)

/
nj n

Consequently, fundamental vibrational transitions are allowed only if the normal coordi-
nate Q. for that mode forms a basis for the same IR as x, y, or z.

Example 9.2-1 Find the number and degeneracy of the allowed infra-red transitions in a
planar ML; molecule. (“Infra-red” transitions without further qualification implies a
fundamental transition.)
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From the character table for D3, we observe that z forms a basis for A} and x, y form a
basis for E'. Since there are normal modes of symmetry A5 & 2E’ we expect to see three
bands in the infra-red absorption spectrum, two of which are doubly degenerate and
therefore might be split in a lower symmetry. The normal mode of A} symmetry is inactive
in the infra-red absorption spectrum.

Anharmonicity
The vibrational energy in a single mode in the harmonic approximation is
Ey = liwi(ng + ). )

Thus this model predicts an infinite sequence of evenly spaced levels with no allowance for
dissociation. An approximation to the effective potential for a diatomic molecule ®(R)
proposed by Morse has proved to be extremely useful. The Morse potential

®(R) = De{1 — exp[—a(R — Ro)|}* = De(1 —x)* (10)

has a minimum value of zero at the equilibrium separation Ry, and ®(R)— D, (the
dissociation energy) as R — oo. The Schrodinger equation with a Morse potential is
soluble, and yields energy eigenvalues

E = hw(n + %) — xhiw(n + )%, (11)
where the anharmonicity constant
x = hw/4Dk. (12)

Equation (11) fits experimental data quite accurately.

Overtones and combination bands

Most infra-red spectra will show more bands than those predicted from an analysis of the
fundamental transitions, although the intensity of these extra bands is usually less than that
of the fundamental bands. Combination bands are due to the simultaneous excitation of
more than one vibration. Suppose that n/, n/ =1, n)/ =0,V k# i, j, then the symmetry of
the excited state is given by

I'=T(0) ®I'(Q), (13)

which may be reduced in the usual way if I'(Q,), I'(Q;) are degenerate. Degenerate levels
may be split by anharmonic coupling.

Example 9.2-2 Acetylene HC=CH is a linear molecule with point group D, and has
3N — 5 =7 normal modes, which an analysis like that in Example 9.1-1 shows to be of
symmetry
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Suppose that a combination tone involves a single excitation of modes of II, and II,
symmetry. Then, since

I, oI, =% &%, & A, (15)

this excited state consists of one doubly degenerate and two non-degenerate levels, only the
¥." mode being infra-red active.

Overtones occur when Any, > 1, An; = 2 being called the first overtone and so on. If only
modes of one frequency are excited, and if this frequency is non-degenerate, then the excited-
state wave function forms a basis for a non-degenerate representation, the characters of which
are all + 1. Therefore R~'Q, =+ Oy and all state functions containing only even powers of
Oy (those for n; even) belong to the totally symmetric representation, while those containing
only odd powers of Oy (those for n; 0dd) belong to the same IR as Q. For double excitation of
a degenerate mode, the characters of the symmetric direct product (DP) are given by

(5322) X(TF® T4 = Al (R)” + X (R). (16)

In general for n quanta in the mode (that is, the (n — 1)th overtone), eq. (16) generalizes to
Xn (D ® T = Vb (R)XH(R) + XF(RY)]. (17)

Example 9.2-3 If the I, mode of acetylene is doubly excited

(16) I, ® I, = Z; D A, (18)

and the overtone state is split into a non-degenerate E;’ level and a doubly degenerate A, level.

Answer to Exercise 9.2-1

Consider a reduction in symmetry until all representations are reduced to 1-D IRs. Then the
character in any class can only be 41. Consequently, Q7 is invariant under all the operators
of the point group and so belongs to I';, which correlates with the totally symmetric
representation of the point symmetry group of the molecule. Therefore > 2 OF is
invariant under any of the operators of the point group of the molecule. k

Inelastic Raman scattering

In inelastic Raman scattering a photon loses (or gains) one quantum of rotational or vibra-
tional energy to (or from) the molecule. The process involves the electric field of the
radiation inducing an electric dipole in the molecule and so depends on the polarizability
tensor of the molecule. (A (second-order) tensor is a physical quantity with nine com-
ponents.) The induced electric dipole D is proportional to the electric field E:
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D = oF, (1)

the coefficient of proportionality being the polarizability «.. Since both D and E are vectors,
the polarizability has nine components,

D X axx axy aXZ E X
Dy = [y | [ Ey|, )
D, O Oz Oz | | E;

but only six are independent because the polarizability tensor is symmetric. The compo-
nents of the polarizability transform like binary products of coordinates x%, 1, 2%, xy, yz, zx.
Hence a fundamental transition is Raman active if the normal mode forms a basis for one or
more components of the polarizability.

Example 9.3-1 Determine the number of bands to be expected in the Raman spectrum of a
planar ML; molecule.

From the character table for D3}, components of the polarizability form bases for the IRs
A/, E/,and E” . From eq. (9.1.4) the normal coordinates form bases for the representations
A/, 2E/, and A,"”. Therefore the Raman active modes are A’ and 2E’, and there are three
Raman bands, with two coincidences. (A “coincidence” means that a Raman band and an
infra-red band have the same frequency.)

General features of Raman and infra-red spectra

(1) If the symmetry of a molecule is lowered by a perturbation (for example by the
substitution of a foreign ion in a crystal lattice) this may remove degeneracies and/or
permit transitions that were forbidden in the more symmetric molecule.

(2) The number of Raman and infra-red bands can sometimes be used to distinguish
between various possible structures.

(3) Stretching modes (for example, that of the C—0 bond) can often be analyzed sep-
arately because they occur in a characteristic region of the infra-red spectrum. In such
cases a full vibrational analysis is not necessary and one can simply study the
transformation of unit vectors directed along the bonds in question. For example, in
the molecule ML3(CO); shown in Figure 9.2 it is only necessary to study the transfor-
mation of the three unit vectors directed along the C=0 bonds in order to determine
the number of stretching modes. A stretching-mode analysis is often sufficient to
distinguish between possible structures (see Problem 9.3).

Determination of the normal modes

Normal mode coordinates are linear combinations of the atomic displacements {x; y; z;},
which are the components of a set of vectors {Q} in a 3N-dimensional vector space called
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a—+=0

Figure 9.2. mer and fac isomers of ML;(CO);.

displacement vector space, with basis vectors {ey; ey ... ey_; 3} = {e;}, where i =0,
1,..., N—1 labels the atoms and j = 1, 2, 3 is the orientation of each one of the subset of
three orthogonal unit vectors parallel to OX, OY, OZ and centered at the equilibrium
positions of the atoms (see, for example, Figure 9.1). A symmetry operation induced by
the symmetry operator R € G, which interchanges like particles, transforms the basis
(€] to (e,

R(ey;| = (e;| = (e;|Taisp(R) )

The MR of R, L4isp(R), is @ 3Nx3N matrix which consists of N 3x3 blocks labeled rim
which are non-zero only when R transforms atom / into atom 1, and then they are identical
with the MR for an orthonormal basis {e, e, e} in 3-D space. Since a 3x3 matrix I'""
occurs on the diagonal of I'ysp(R) only when /=m, it is a straightforward matter to
determine the character system for I';s, and hence the direct sum of IRs making up I'gigp
and which give the symmetry of the atomic displacements in displacement vector space, in
which we are describing the motion of the atomic nuclei. This basis {e;} is not a convenient
one to use when solving the equations of motion since both the potential energy ® and the
kinetic energy T contain terms that involve binary products of different coordinates
{x; y; z;} or their time derivatives. However, an orthogonal transformation

(e(Iy)] = (el(A™) ! 2)

to a new basis set {e(I'y)} can always be found in which both 7 and ® are brought to
diagonal form so that

2T =30 2% =) wi0;. 3)
k k

The {O:}, k=1,2..., 3N, are a set of normal coordinates, which are the components of
Q(T'y) referred to the new basis {e(I'y)} in which I" denotes one of the IRs and ~ denotes
the component of the IR I" when it has a dimension greater than unity. The particle masses
do not appear in 7 and ® because they have been absorbed into the O, by the definition of
the normal coordinates. A displacement vector Q is therefore
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Q = (eylgy) = (ey|(A)'AD|gy) = (e(I)|0h), 4)
where {g;;}implies the whole set of mass-weighted displacements. Similarly {e;} ineq. (4)
implies the set of Cartesian unit vectors on each of the i =0, 1,..., N — 1 atoms. Note that

A" is the orthogonal matrix which transforms the coordinates g;; into the normal coordi-
nates {Q}. The normal coordinates {Q;} form bases for the IRs, and therefore they will
now be called {Q(I'7)}. We do not need to evaluate A" explicitly since the {Q(I'y)} may
be found by projecting an arbitrary one of the {g;;} into the appropriate I" subspace,

o) = N(ngxf (R)"Rgy. (5)

Here g;; = M ;./Zx,-j, M, is the mass of atom 7, and x;; is the jth component of the displacement
of atom i. The procedure must be repeated for each of the IRs (labeled here by I'); M(I'y) is
anormalization factor. The projection needs to be carried out for a maximum of three times
for each IR, but in practice this is often performed only once, if we are able to write down
by inspection the other components Q(I'vy) of degenerate representations. It is, in fact,
common practice, instead of using eq. (5), to find the transformed basis

@) le(T'y)) = A |ey) (6)

by projecting instead one of the {e;} and then using the fact that O(I'y) is given by the same
linear combination of the {g;;} as e(I'y) is of the {e;} (cf. egs. (6) and (4)). The absolute
values of the displacements are arbitrary (though they are assumed to be small in com-
parison with the internuclear separations) but their relative values are determined by
symmetry.

There is a complication if the direct sum of IRs contains a particular representation I"
more than once, for then we must take linear combinations of the e(I'y) for this IR by
making a second orthogonal transformation. This second transformation is not fully
determined by symmetry, even after invoking orthogonality conditions. This is a common
situation when bases for different representations of the same symmetry are combined: the
linear combinations are given by symmetry, but not the numerical coefficients, the deter-
mination of which requires a separate quantum or classical mechanical calculation. (We met
a similar situation when combining linear combinations of ligand orbitals with central-atom
atomic orbitals (AOs) that formed bases for the same IRs in the molecular orbital (MO)
theory described in Chapter 6.) Because of the assumed quadratic form for the potential
energy @ (by cutting off a Taylor expansion for ¢ at the second term, valid for small-
amplitude oscillations) the time dependence of the normal coordinates is simple harmonic.

Example 9.4-1 Determine the normal coordinates for the even parity modes of the ML
molecule or complex ion with O}, symmetry.

A diagram of the molecule showing the numbering system used for the atoms is given in
Figure 9.3. Set up basis vectors {e;; e, e;3},i=0,1,...,6,oneach of the seven atoms as
shown in the figure. Table 9.2 shows the classes %, of the point group of the molecule,
the number of atoms Ny that are invariant under the symmetry operator R € %), the
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Figure 9.3. Basis vectors used to describe the atomic displacements in the ML molecule, showing the
numbering system used for the seven atoms. (Labeling of the unit vectors at atoms 4, 5, and 6 is not
shown explicitly to avoid overcrowding the figure.)

submatrices I',, the character set {y,}, the characters for the 18 x 18 reducible matrix
representation for L, and finally the characters for the 21 x 21 reducible matrix representa-
tion I'. This representation may be reduced in the usual way to yield the direct sum

r :Alg@Eg@Tlg@TZg@3Tlu€BT21ta (7)

with a total degeneracy of 21. The character table for Oy, shows that the three rotations form
a basis for T, and subtracting off T, from the direct sum in eq. (7) leaves

Dy®Ti=A ®E; ® Tyg ® 3Ty, @ Tay (®)

as the representations to which the 3N — 6 = 15 normal modes and the three translations
belong. We may not separate off I'; since there are in all three degenerate modes of Ty,
symmetry, two vibrational modes and one translational mode. We now apply the projection
operator in eq. (5) for the three even-parity representations A, ® E, ® T,, to obtain

A = Gx1 — x4 +y2 —ys + 23 — z], )
Eg(u) = 1/vi2[223 — 226 — x1 + X4 — y2 + 5], (10)
Eo(v) = Ya[xy — x4 — y2 +ys], (11)

Tag(§) = Yalz2 — 25 + y3 — yels (12)

Toe () = Yalz1 — za + x3 — x6), (13)

Tog(C) = "2lyy — y4 +x2 — xs]. (14)
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6
Y
Ay E,(v) E,(u)
T2g(c) TZg(n) T2g(§)

Figure 9.4. Normal modes of vibration of the even-parity modes of ML¢ in Oy, symmetry. Arrows
show the phases and relative magnitudes of the displacements, but the actual displacements have
been enlarged for the sake of clarity.

The normal mode displacements are sketched in Figure 9.4. The notation u, v for the
degenerate pair of E, symmetry and &, 0, ¢ for the Ty, triplet is standard. Actually, these
projections had already been done in Section 6.4, but this example has been worked in full
here to illustrate the projection operator method of finding normal modes.

Similarly, for the odd-parity T,, modes,

(6) or (6.4.42) T2, (&) = Yaloxs + x6 — x2 — x5, (15)
(6) or (6.4.43) Tou(n) = Y2y + 4 — ¥3 — Vel (16)
(6) or (6444) TZu(C) = l/2[21 +z4— 2 —25]. (17)

Equation (7) tells us that there are, in all, three independent motions of T, symmetry,
the three independent components of each set being designated T ,(x), T1,(»), and Ty,(2).
Omitting normalization factors, the ligand contributions to the z components of the normal
coordinates of two of these modes are

Q) O(Ti, 2z, 1) =q13 +q23 +qa3 + g3, (18)

(%) O(Tiw, 2z, 2) =q33 + ge3- (19)

The third one is just the z component for the central atom

O(Tw, z, 3) = qos. (20)
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Superimposing the normal coordinates in eqgs. (18), (19), and (20) with equal weight and
phase gives

O(Ty, z, 1) = [q03 + q13 + g23 + ¢33 + q43 + 53 + ge3).- (21)

Two more linear combinations of egs. (18), (19), and (20) give the coordinates

O(Tw, z, 1) = [—qo3 + a(q13 + q23 + q43 + q53) — b(g33 + 963)), (22)

O(Tyy, 2z, 1) = [+qo3 + @' (q13 + q23 + qa3 + q53) — b'(q33 + g963)]- (23)

There are three orthogonality conditions between the Q(7},, z) normal coordinates but
four unknown constants in egs. (22) and (23), so this is as far as one can go without a model
for the adiabatic potential.

Problems

9.1 The observed infra-red spectrum of ozone contains three fundamental bands at fre-
quencies 705 cm ', 1043 cm ™', and 1110 cm ™. Use this information to decide which
of I, II, and III in Figure 9.5 are possible structures for ozone. Predict what you would
expect to find in the Raman spectrum of ozone.

9.2 The chromate ion CrO3 "~ has the shape of a tetrahedron. Deduce the symmetries of the
normal modes and explain which of these are infra-red active and which are Raman
active.

9.3 The following bands were found in the region of the spectrum of OsO4N (N denotes
pyridine) associated with the stretching of Os—O bonds:

infra-red \//cm_1 =926, 915, 908, 885,
Raman v/cm™' = 928(p), 916(p), 907(p), 886(dp),

where p indicates that the scattered Raman radiation is polarized and therefore can
only be due to a totally symmetric vibration, and similarly dp indicates that the Raman
band at 886 cm ™' is depolarized and therefore not associated with a totally symmetric
vibration. Four possible structures of OsO4N are shown in Figure 9.5, in each of which
the four arrows indicate unit vectors along the direction of the Os—O stretching mode.
State the point group symmetry of each of the four structures and determine the number
of allowed infra-red and Raman bands associated with Os—O stretching in each
structure, the number of coincidences, and whether the Raman bands are polarized.
Hence decide on the structure of OsO4N. [Hint: It is not necessary to determine the
symmetries of all the normal modes.]

9.4 When XeF, was first prepared it was thought to be highly symmetrical, but it was not
known whether it was a tetrahedral or a square-planar molecule. The infra-red absorp-
tion spectrum of XeF, consists of three fundamental bands and the vibrational Raman
spectrum also has three bands. Determine the symmetry of the normal modes of a
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Figure 9.5. Three possible structures of ozone, I, 11, and III. Four possible structures of OsO4N

(N=

9.5

9.6

9.7

pyridine), IV, V, VI, and VII. Two possible structures for Mo(CN),;*~, X and XI.

square planar AB4 molecule, and hence show that the above evidence is consistent
with a square-planar configuration for XeF,.

The infra-red spectrum of Mo(CO);[P(OCHj3)3]5 (VIII) shows three absorption bands
at 1993, 1919, and 1890 cm " in the region in which CO stretching frequencies usually
appear. But Cr(CO);(CNCH); (IX) has two absorption bands in the C—O stretch
region at 1942 and 1860 cm ™ '. Octahedral ML;(CO); complexes can exist in either the
mer or fac isomeric forms (Figure 9.2). Assign the structures of the above two
molecules. How many bands would you expect to see in the vibrational Raman spectra
of these two molecules, and for which of these bands would the scattered Raman
radiation be polarized?

Two important geometries for seven-coordinate complex ions are the mono-capped
trigonal prism (X) and the pentagonal bipyramid (XI) (Figure 9.5). Infra-red spectra
have been measured for the seven-coordinate complex ion Mo(CN);‘f as solid
K4Mo(CN),.2H,0 and in aqueous solution. In the C—N stretching region the infra-
red spectrum shows six bands at 2119, 2115, 2090, 2080, 2074, and 2059 cm ™! for the
solid, and two bands at 2080 and 2040 cm ™" for solutions. How many Raman and
infra-red bands would you expect for (X) and (XI)? What conclusions can be drawn
from the experimental data given? How many Raman bands are to be expected for the
solid and the solution?

The NO3 ion is planar (like CO%™), but when NOj is dissolved in certain crystals
(called type 1 and type 2) it is observed that all four modes become both Raman active
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Table 9.3.

D3p Csv Cs
A/ A A
Az// Al A//
E’ E 2A!
Table 9.4.

CO stretching frequencies/cm ™"

Infra-red absorption 2028, 1994
Vibrational Raman scattering 2114, 2031, 1984

and infra-red active. In crystals of type 1 there is no splitting of degenerate modes, but
in type 2 crystals the degenerate modes of NO5 are split. Suggest an explanation for
these observations. [Hint: Character tables are given in Appendix A3. Table 9.3 is an
extract from a correlation table for Ds,.]

9.8 Two likely structures for Fe(CO)s are the square pyramid and the trigonal bipyramid.
Determine for both these structures the number of infra-red-active and Raman-active
C—O stretching vibrations and then make use of the data given in Table 9.4 to decide
on the structure of Fe(CO)s.
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10.1

Transitions between electronic
states

Selection rules

As noted in Section 5.4, the transition probability between two electronic states is propor-
tional to the square of the modulus of the matrix element

(5.4.10) (WHOIWE) = (WAIO/1w]) (xulXq)- (1)

where ¥ is the uth spin orbital ¢*({r,})x.({ms}) belonging to the kth (possibly
degenerate) (IR) of the symmetry point group (or double group) and Q/ is an operator
that belongs to the jth IR; {r,} denotes a set of position vectors for the electrons, {mg,}
denotes the arguments of the spinor y,, and u is a (total) spin quantum number. In the
approximation that neglects spin—orbit coupling Hsy, because of the orthogonality of the
spin functions the only allowed transitions are those for which AS = 0. Generally, Hyy, is
not negligible and transitions in which the spin quantum number S is not conserved may
occur, but with weaker intensity than those in which the spin selection rule AS=0 is
obeyed. When the interaction of the electronic system with the radiation field is analyzed
using time-dependent perturbation theory (see, for example, Flygare (1978) or Griffith
(1964)) it is found that the strongest transitions are the E1 transitions for which Q is the
dipole moment operator, with components x, y, z; the next strongest transitions are the M1
transitions in which Q is the magnetic dipole operator, with components R,, R,, R.; while
the weakest transitions are the electric quadrupole or E2 transitions in which the E2
operator transforms like binary products of the coordinates x°, y°, 2%, xy, yz, zx. In systems
with a center of symmetry, the components of the dipole moment operator belong to
ungerade representations. Therefore the only allowed El transitions are those which are
accompanied by a change in parity, g <> u. This parity selection rule is known as the
Laporte rule. As we shall see, it may be broken by vibronic interactions.

Example 10.1-1 Discuss the transitions which give rise to the absorption spectrum of
benzene.

A preliminary analysis of the absorption spectrum was given in Example 5.4-1 as
an illustration of the application of the direct product (DP) rule for evaluating matrix
elements, but the analysis was incomplete because at that stage we were not in a position to
deduce the symmetry of the electronic states from electron configurations, so these were
merely stated. A more complete analysis may now be given. The molecular orbitals (MOs)
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b,
el =H=%: -
-~ * b
ayy ?‘ === ?‘ blu
D¢y Dy,

Figure 10.1. Effect of a lowering in symmetry on the occupied energy levels of benzene.

Box 10.1. Reduction of the direct product representation E;, ® E,,,.

Eg®Ey=1{4 -1 1 —4 00 —4 1 -1 4 0 0}.

This DP representation must be a sum of u representations:

c(A) = (1h)[d —24+2—-44+4—-242—-4]=0,
c(Aw) = (1h)d —24+2—-44+4—-242—-4]=0,
cBi) = (o) 4 +2+2+4+4+2+2+4]=1,
cBa) =(hs)d+2+2+4+442+2+4]=1,
c(Br) = (Yoy)[8—2-2+8+8—-2-2+8]=1.

Therefore, Ei; ® B>, =By, ®B,, D Ey,,.

of benzene were deduced in Example 6.2-1 and Problem 6.2, and an energy-level diagram
is given in Figure 6.4. This figure shows that the ground-state electron configuration of
benzene is (azu)z(el g)4. Consider a lowering in symmetry to D,y,. As shown in Figure 10.1,
this results in a splitting of the degenerate e, level into b, and bs,. In D5, symmetry the
electron configuration would be (b ll,)z(bzg)z(b3 g)z. Since the product of two functions, each
of which is the basis for a particular IR, forms a basis for the DP representation of these two
IRs, and the DP of any 1-D representations with itself is the totally symmetric representa-
tion, it follows that the ground-state wave function for benzene forms a basis for I}, which
in D5y, is A,. Since each level contains two electrons with paired spins, the ground state is
lAg in D,y, which correlates with ‘A, <10 Dgp. This argument is quite general and holds for
any closed shell molecule, atom, or ion. After a lowering in symmetry until all the orbital
functions form bases for 1-D representations, the only state for any closed shell config-
uration that satisfies the Pauli exclusion principle is 'T';, which correlates with 'T'; of the
original group. The first excited state of benzene is (a,)*(e; g)3 (€2,)". The doubly occupied
levels contribute 'A, ¢ so only the singly occupied levels need be included in the DP. From
Box 10.1, Ejg® Es,, =By, ® By, ® Ey,,. In D¢, (x y) belong to E,,, and z belongs to A,,, so
A g 'E,,, is the only symmetry- and spin-allowed E1 transition, and this will be excited
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by radiation polarized in the xy plane. This transition is responsible for the strongest
absorption band in the absorption spectrum of benzene at 1800 A. The very weak band
at 3500 A is due to ‘A, g *E1.., allowed (though with low intensity) through spin—orbit
coupling. The spin—orbit coupling constant is proportional to a>Z, where « is the fine-
structure constant equal to 1/137.036, and so transitions allowed through spin—orbit
coupling will be very weak in molecules comprising atoms of low atomic number Z. The
transitions A g 'B,,and 'A, g™ 'B,, are symmetry forbidden in a rigid molecule, but
may become allowed through vibronic coupling.

Vibronic coupling

The electronic state function ¥,(r, R) depends not only on electron coordinates {r} but
also on the nuclear coordinates {R}. The subscript a denotes a set of electronic quantum
numbers. Because the mass of the electrons is much smaller than the mass of the nuclei, the
electron motion follows the motion of the nuclei adiabatically, so it is customary to adopt
the Born—Oppenheimer approximation, as a result of which the state function may be
written as a product of electronic and nuclear state functions:

qja(r> R) = wa,R(r) ¢a,a(R)9 (D

where a denotes a set of vibrational quantum numbers. The electronic state function depends
parametrically on the positions of the nuclei, and this is indicated by the subscript R.
The electronic energy E,(R), calculated at a series of values of the nuclear displacements
{R}, is the potential energy U,(R) for the vibrational motion. U,(R), which depends on the
electronic state a, is called the adiabatic potential. Being a property of the molecule, it is
invariant under any symmetry operator of the molecular point group. With AS=0, and
making use of the orthonormal property of the spin functions, the matrix element (10.1.1) for
a vibrating molecule becomes

(1) (Yo [D|¥a) = (/6" DIy o) )
which equals zero, unless the DP
NeMelVeIe(xyz) D). (3)

For a fundamental vibrational transition I = T';, and I'* is one of the representations I'(Qy)
to which the normal modes belong, so that the vibronic problem reduces to answering the
question, does

(1) I'olV®I'(x,y,z) D T(0), 4)

where I'(Qy) is one or more of the IRs for which the normal modes form a basis? The
vibronic interaction is a perturbation term H.,, in the Hamiltonian, and so transitions that
are symmetry forbidden but vibronically allowed can be expected to be weaker than the
symmetry-allowed transitions. Consequently, consideration of vibronic transitions is
usually limited to E1 transitions. If a transition is symmetry allowed then the vibronic
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interaction H., broadens the corresponding spectral line into a broad band, and this is the
reason why absorption and emission spectra consist of broad bands in liquids and solids.

Example 10.2-1 Find if any of the symmetry-forbidden transitions in benzene can become
vibronically allowed, given that in the benzene molecule there are normal modes of B, and
E,, symmetry.

In Dg,, symmetry the dipole moment operator forms a basis for the representations
A, ® E;,. The ground-state electronic state function belongs to A, and

B, ® (A2u 53] Elu) = B2g S3) Eng (5)

By, ® (A2u S Elu) = Blg & Ezg' (6)

Since there are normal modes of By, and E,, symmetry, both the transitions A g B,
and 'A, e 'B,, (which are forbidden by symmetry in a rigid molecule) become allowed
through vibronic coupling. These transitions account for the two weaker bands in the
benzene spectrum at 2000 and 2600 A.

Example 10.2-2 The ground-state configuration of an nd" octahedral complex is he,and

the first excited configuration is eg so that optical transitions between these two config-

urations are symmetry-forbidden by the parity selection rule. Nevertheless, Ti(HgO);r3
shows an absorption band in solution with a maximum at about 20 000 cm ™' and a marked
“shoulder” on the low-energy side of the maximum at about 17000 cm™"'. Explain the
source and the structure of this absorption band.

From the character Table for O, in Appendix A3, we find that the DP
Ty, ®Eg=T;,® T, does not contain I'(x, y, z) =Ty, so that the transition tzlgﬂ ei, is
symmetry-forbidden (parity selection rule). Again using the character table for Oy,

(4) T2g & Eg ® Ty = A1, © Ay, ®2E, @ 2Ty, @ 2Ty,. (7)

The normal modes of ML¢ form bases for A, @ Eo® Toe @ 2T}, ® Ty,,. Since the DP of
two g representations can give only g IRs, we may work temporarily with the group O:

Tog ®Eg={6-200 0} =Tz Ty

The DP does not contain I'(r) = T}, so the transition t,, — e, is symmetry-forbidden. This
is an example of a parity-forbidden transition. We now form the DP
Ty ®E; ®T1, = {18 2 0 0 0}. The direct sum must consist of u representations.
Still working with O,

==
)
n
oAl
I
—_
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Figure 10.2. Splitting of the #,, and e, energy levels due to the Jahn-Teller effect in an octahedral d !
complex. The short arrow indicates that in the ground state the b5, level is occupied by one electron.

and so the parity-forbidden transition becomes vibronically allowed through coupling
to the odd-parity vibrational modes of T;, and T,, symmetry. The vibronic transition
’T,, — ’E, accounts for the observed absorption band, but why does it show some
structure? This indicates additional splitting of energy levels associated with a lowering
of symmetry (the Jahn—Teller effect). The Jahn—Teller theorem (see, for example, Sugano,
Tanabe, and Kamimura (1970)) states that any non-linear molecule in an orbitally degener-
ate state will undergo a distortion which lowers the energy of the molecule and removes the
degeneracy. Consider here a lowering in symmetry from Oy, to Dy,. The effect on the
energy levels is shown in Figure 10.2. The single d electron is now in a b,, orbital. The
Jahn-Teller splitting between b,, and e, is too small for a transition between these states to
appear in the visible spectrum. The relatively small splitting of the main absorption band
tells us that we are looking for a relatively small perturbation of the #,, — e, transition,
which is forbidden in O, symmetry. So the observed structure of the absorption band is due
to the Zng — zEg transition in Oy, symmetry being accompanied by 2B2g — ZBlg and
2B2g — 2A1g in Dy, symmetry due to the dynamical Jahn—Teller effect.

Example 10.2-3 Since it is the nearest-neighbor atoms in a complex that determine the
local symmetry and the vibronic interactions, trans-dichlorobis(ethylenediamine)cobalt(III)
(Figure 10.3(a)) may be regarded as having D4, symmetry for the purpose of an analysis of
its absorption spectrum in the visible/near-ultra-violet region (Ballhausen and Moffitt
(1956)). The fundamental vibrational transitions therefore involve the 21 — 6 = 15 normal
modes of symmetry: 2A,,, Big, Bog, Eq, 2A5,, By, 3E,.

(1) In O,, symmetry the ground-state configuration of this low-spin complex would be tgg.
Determine the ground-state and excited-state spectral terms in Oy, symmetry.

(2) Now consider a lowering of symmetry from Oy, to D4,. Draw an energy-level diagram
in Oy, symmetry showing the degeneracy and symmetry of the orbitals. Then, using a
correlation table, show the splitting of these levels when the symmetry is lowered to
Dyp. Determine the ground-state and excited-state terms, and show how these terms
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Figure 10.3. (a) The frans-dichlorobis(ethylenediamine)cobalt(Ill) ion, showing only the nearest-
neighbor atoms in the ligands. (b) Absorption spectra of the trans-[Co(en),Cl,]" ion showing the
dichroism observed with light polarized nearly parallel to the Cl-Co—Cl axis OZ (——), and with
light polarized in the xy plane perpendicular to that axis (- - - - ). After Yamada and Tsuchida (1952)
and Yamada et al. (1955).

correlate with the corresponding terms in Oy, symmetry. Determine the symmetry-
allowed vibronic transitions in D4, symmetry between the ground state and the four
excited states, noting the corresponding polarizations.

(3) Figure 10.3(b) shows the absorption spectrum: the continuous line shows the optical
absorption for light polarized (nearly) parallel to OZ (the ClI-Co—Cl axis) and the
dashed line indicates the absorption for light polarized perpendicular to this axis,
namely in the xy plane. Assign transitions for the observed bands. [Hints: (i) The
highest-energy band in the spectrum is a composite of two unresolved bands. (ii) The
oscillator strengths for parallel and perpendicular transitions are not necessarily
equal. (iii) The additional Dy, crystal-field splitting is less than the Oy, splitting,
named A or 10Dgq.]

(1) Co (atomic number 27) has the electron configuration 3d@4s' and Co’" has the
configuration d°. In O, symmetry, the configuration is tz(’g when the crystal-field
splitting is greater than the energy gain that would result from unpairing spins, as in
the present case. The ground-state term is therefore lAlg. The first excited state has the
configuration £, ei,. Since all states for d° are symmetric under inversion, we may use
the character table for O. As already shown in Example 10.2-2, To, X E; =T ;4 + T,
so the excited state terms are ]Tlg, 3T1g, szg, 3T2g. Though parity-forbidden, the
1Alg — lTlg, 1ng are vibronically allowed in O, symmetry, it being known from
calculation that the T, level lies below To,.

(2) Figure 10.4 shows the splitting of the one-electron orbital energies and states as the
symmetry is lowered from Oy, to Dyp,. The ground state is eg*by% : 'Aj,. Since all states
for d° have even parity under inversion, we may use the character table for D, in
Appendix A3. The four excited states and their symmetries are
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Figure 10.4. Splitting of (a) the one-electron orbital energy levels and (b) the electronic states, as the
symmetry is lowered from Oy, to Dyj,.

Table 10.1. Symmetry of the dipole moment matrix elements in
trans-dichlorobis(ethylenediamine)cobalt(Ill) in Dy, symmetry.

Polarization Symmetry of operator Final state
A2g BZg Eg
z AZu A lu B 1u Eu
X,y Eu Eu Eu Alu@A2u®Blu@B2u

by a1y Bog ® Ajg = By,
bye big B ® Big = Ay,
eg big Eg @ Big = Eg,
eg aig E;, ® Ajg = E,.

There are therefore excited singlet and triplet states X, of A,,, By, and E, symmetry. In
Dy, the dipole moment operator —er forms a basis for I'(r) = A,, =E,,. Since all states in
the DP X, x (A, +E, X A, ) are odd under inversion, we may continue to work with the
D, character table in evaluating DPs. The symmetries of the dipole moment matrix
elements for the possible transitions are shown in Table 10.1. All the transitions in Table
10.1 are forbidden without vibronic coupling. Inspection of the given list of the symmetries
of the normal modes shows that there are odd-parity normal modes of A,,, By,, and E,,
symmetry, and consequently four allowed transitions for (x, y) polarization, namely
A a lAzg, leg and lEg(Z), there being two excited states of E, symmetry, one correlat-
ing with T, in Oy, and the other with T»,. These transitions become allowed when there is
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Figure 10.5. Approximate energy-level diagram showing the allowed transitions which are
responsible for the observed absorption spectrum of the trans-[Co(en),Cl,]" ion in Figure 10.4.
The energies shown are optical energies, which are greater than the corresponding thermal energies
because the minima in the adiabatic potential energy curves for the ground and excited states occur at
different values of {R}.

simultaneous excitation of a normal mode of symmetry E,,, E,, and A,,, or By,,, respectively.
Only three bands are actually observed because the two highest energy bands overlap.
(3) Inz polarization (the continuous line in the spectrum) there should be three bands due to
A g leg, lEg, and lEg transitions, but only two bands are resolved. Disappearance of
band 2 with z polarization identifies this with the A g™ 1A2g transition. Given that T,
lies below T, in Oy, symmetry, and since the Dy, splitting is less than A, we deduce that
band 1 is due to 1A1g — lEg (Tg), which is allowed in both polarizations, but with
somewhat different oscillator strengths. The highest-energy absorption consists of the
unresolved bands 3 and 4 due to 'A;, — 'E, (Ta,) and 'A,, — 'B,,, which are both
allowed in both polarizations. These assignments lead to the approximate energy-level
diagram shown in Figure 10.5, which also shows the observed transitions. In interpreting
this diagram one must bear in mind that the energy differences given are optical energies,
which are greater than the corresponding thermal energies because the minima in the
adiabatic potential energy curves for ground and excited states do not coincide.

Charge transfer
Example 10.3-1 Table 10.2 contains a summary of observations on the optical absorption

spectra of the ions Mo(CN)gf and Mo(CN)gf, both of which have D,4 symmetry. Deduce
which transitions are responsible for these absorption bands. The following additional
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Table 10.2. Absorption data for optical spectra of MO(CN)?; and
Mo(CN)g .

The bracket } indicates the presence of two unresolved bands.

—1

Ton Vimax/CM Oscillator strength
Mo(CN)~ 39370 30x10

37310

25770 72%1073
Mo(CN)g ~ 41850 32x107!

27320 295%x 1073

23810 1073

After Golding and Carrington (1962).

Table 10.3. Relative energies of metal d orbitals in Doq symmetry.

Orbital Representation Energy

dy, B, 0.2771A
d,, d- E 0.1871A
dy2 2 Ay —0.0287A
de_yp B, —0.6225A

information is available. (a) The energies of the metal d orbitals in a D,4 environment are as
in Table 10.3. (b) MO(CN)‘;* is diamagnetic. (c¢) Both complexes have an occupied non-
bonding ligand orbital of a, symmetry. (d) Charge transfer bands, which arise from the
excitation of an electron in a ligand orbital into a vacant metal orbital (or from an occupied
metal orbital into a vacant ligand orbital) are rather intense bands and are usually located at
the short-wavelength end of the spectrum.

The atomic number of Mo is 42: Mo(CN)gf contains Mo”* and has the configuration
d'; Mo(CN)gf contains Mo*" and has the configuration ¢*. Inspection of the D,4 character
table shows that the d orbitals transform according to the representations given in Table
10.4. Therefore the ground state of Mo(CN);~ is by : By, while that of Mo(CN);~ is
b%:'A,. Possible symmetry-allowed transitions are identified in Table 10.4. In the event
that the transition is allowed, the necessary polarization of the radiation is given in
parentheses. The column headed “Direct product” gives the DP of the ground- and
excited-state representations which must contain one of the representations of the dipole
moment operator for the transition to be allowed. In D,4, these are B,(z) and E(x, y). The
DPs leading to the excited-state terms are not shown explicitly but may readily be verified
with the help of the D,4 character table. As shown in Table 10.4 there is only one
symmetry-allowed, spin-allowed, d — d transition in Mo(CN)g_, from B — 2E, which
is excited by radiation polarized in the (x, y) plane. For Mo(CN);}* there is also only one
symmetry-allowed, spin-allowed d — d transition, that from 'A; — 'E, which again is (x, y)
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Table 10.4. Determination of symmetry-allowed transitions in MO(CN)§7 and

Mo(CN)g ™.

Ground state

Excited state

Direct product

Symmetry-allowed?

d — d transitions

Mo(CN)y~  bi: ’B,

Mo(CN)g~  bi*:'A,

Charge-transfer transitions
Mo(CN)g’ ay* by 1 *By

Mo(CN)gf a? b2 A,

a; :2A1

e:’E

bz:sz

b1a1 . lBl, 3B1
bie:'E,°E
biby:'A,, CA,

a2b12 12A2
a2b1a1 ZZBZ
azblesz
a2b1b2 : 2A1
axbi?a; ‘A,
azblze: 'E
a2b12b23 lBl

B, ® A, =B,
B1 ®E=E
B ® B,=A;
A ® B =B,
A, ®E=E
AL © A=A,

Bl ®A2=B2
B ®By=A;
B] & E=E

B, ® A;=B,
AR A=A,
A] ®E:E

A, ® B, =B,

no
yes (x, y)
no
no

yes (x, )
no

yes (2)
no

yes (x, y)
no

no

yes (x, y)
no

Table 10.5. Assignment of the observed bands in the absorption spectra of MO(CN)g_ and
Mo(CN); .

Vmax/em ™! Transition Polarization
Mo(CN);~ 39370 CT a2 by :?By — ay b2 A, z

37310 CT ax?b,:*B, — ay bye:’E X,y

25770 d—d b:°B; — e:’E X,y
Mo(CN)g~ 41850 CT a2 b2 Ay s ay be:'E X,y

27320 d—d bi2:'A; > b e 'E X,y

23810 d—d b2 Ay — bre:’E X,y

polarized. These two transitions would be expected to have roughly similar intensities. The
weaker band at long wavelengths in the MO(CN);F spectrum can be identified with the
'A; — ’E transition, partially allowed through spin—orbit coupling. There are still three
more intense bands, and these are due to charge transfer (CT) from the non-bonding orbital
of a, symmetry. The analysis is given in Table 10.4. Three electrons in three different
orbitals give rise to doublet and quartet states, but only the former are recorded in the table
because of the spin selection rule, AS=0. Similarly, the CT excited states for MO(CN);&
are singlets and triplets but only the spin-allowed transitions are observed. As Table 10.4
shows, we should expect two symmetry-allowed, spin-allowed CT bands for Mo(CN)gf,
one z-polarized and the other with (x, y) polarization, but only one CT band for Mo(CN)gf.
The above analysis thus establishes the complete assignment of the observed bands in the
optical absorption spectra of these two complex ions, as summarized in Table 10.5.
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Problems

10.1

10.2

10.3

10.4

10.5

10.6

Determine the ground-state electron configuration and spectral term of the following
octahedral complexes: low-spin Fe(CN)éf; low-spin Cr(CO)s; high-spin Cr(H, O)é*.
A d* complex ion has D, symmetry. It has the electronic configuration (b,)* in the
ground-state and excited-state configurations b,e, b,a;, b,b,. Determine the electro-
nic states that arise from these configurations. Hence decide which of the possible E1
transitions from the ground state to excited states are spin- and symmetry-allowed. If
any of the possible spin-allowed El transitions are symmetry-forbidden, are they
allowed M1 transitions?

The absorption spectrum of low-spin Nin_ shows four absorption bands in the region
below 25000cm™". Find the symmetry- and spin-allowed transtions in octahedral
geometry and suggest a reason for any discrepancies with experiment.

The ground state of octahedral of Co(CN)gf is 1 'A, ¢ and the first excited-state
configuration is #5,° €., which gives rise to four excited states. (a) Are transitions from
the ground state to any of these excited states (i) symmetry-allowed? (ii) spin allowed?
(b) Are transitions to any of these states allowed through vibronic coupling? (c) The
absorption spectrum of K;Co(CN)g in aqueous solution shows two bands at
32050 cm ' and 38 760 cm ™' with oscillator strengths of 5.4 x 107> and 3.5 x 102,
respectively, and a further very intense absorption band in the region of 50 000 cm ',
Give an interpretation of this spectrum. [Hint: The energy-level diagram of this com-
plex ion shows a vacant ligand 7" antibonding orbital of #;,, symmetry.] (d) Co(CN)g_
ions may be dissolved in KCl crystals. The Co®" ion occupies a K site and the six CN ~
ions occupy nearest-neighbor anion sites, thus preserving octahedral coordination. But
charge compensation requires two vacant cation sites. The location of these sites is such
as to lower the site symmetry at Co”" sites from O, to C,. Explain the fact that the
absorption spectrum of this crystal contains six bands in the near-ultra-violet visible
spectral region (in addition to the intense band near 50 000 cm™").

(a) The tetrahedral permanganate ion MnO, ion has the ground-state configuration
(1e)* (16,)° (21,)° (#,)° and the next lowest MO is an antibonding 3f, orbital.
Determine the symmetries of the states that correspond to the excited-state config-
urations ... (2,)° (t)° (3%)" and ... (21,)° (#))° (3%,)'. Find which E1 and M1
transitions from the ground state to these two excited states are symmetry- and
spin-allowed. State the polarization of allowed E1 transitions. (b) In a crystal of
KCIO, containing some MnO, substituting for CIO,, the symmetry at an impurity
anion site is reduced to C;. Describe what splittings and relabeling of states occur in
the ground state of MnO, and the excited states to which E1 transitions were allowed
in the free ion, when the symmetry is lowered from T4 to C;, and state which El
transitions are allowed now and what their polarizations are.

The absorption spectra of pink octahedral Co(HzO)é+ and of deep blue tetrahedral
Co(Cl)if show bands in the visible region at 18 500 cm ™' (¢ = 10) and 15 000 cm '
(e =600), respectively. Both these compounds also show infra-red absorption bands
at 8350 cm™ ! and 6300 cm . Suggest an explanation for these observations. [Hint:
See Griffith (1964) and Harris and Bertolucci (1978).]
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Continuous groups

Rotations in 7*?

The special orthogonal group SO(2) is the group of proper rotations in the 2-D space of real
vectors, :%, about an axis z normal to the plane containing x and y. Since there is only one
rotation axis z, the notation R(¢ z) for the rotation of the unit circle in R will be contracted
to R(¢). Then, for the orthonormal basis (e; e,|,

R(¢)(e1 &2| = (e’ &'| = (e1 &2[T(¢), (1)
__|cos¢p —sing
T(¢) = {sind) cos ¢ ] 2)

Since det I'(¢)=1 and I'($)" T'(#)=E,, T'(¢) is an orthogonal matrix with
determinant +1, and so the group of proper rotations in R is isomorphous with the
group of 2 x 2 orthogonal matrices with determinant +1, which thus forms a faithful
representation of the rotation group. Any function f(x, y) is transformed under R(¢) into
the new function

R(@) f(x.y) = f(R($) " {x.p}) = f(cx+ 5y, —sx+cy), 3)

and so R(¢) f(x,y) is f(x',y’) with the substitutions x’'=cx+sy, y' =—sx—+cy.
In particular, the functions {x, y} form a basis for a 2-D representation of SO(2):

R(@)xyl = ('] = (ex+sy  —sx+c)

= <xy[ _ﬂ — (xJID(9). 4)

c

N

But successive rotations about the same axis commute so that the group SO(2) is Abelian
with 1-D representations with bases (x +iy)”, m=0, £1,+2, ...,

R(¢)(x +iy| = (ex + sy +i(=sx+ecy)| = ((e —is)(x + )]

. : &)
— exp(—ig) (x + iy
The 1-D matrix representatives (MRs) of R(¢) for the bases (x + iy)™ are therefore
I'"(¢) = exp(—ime), m =0, £1, £2, ... (6)

Restricting m to integer values ensures that the set of functions
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{@r) P (x+iy)"} = {@2n) P exp(imp)} = un(r =1,0),m =0, £1, £2, ... (7)
form an orthonormal basis with
(m'|m) = &y (8)
and satisfy the condition

(6) I"(¢ +2m) =T" (o). )

The infinitesimal generator for SO(2)

In % there is only one rotation axis, namely z. Rotations about this axis commute:

R(¢) R(¢') = R(¢+ ') = R(¢') R(¢), (D
a condition on R(¢) that is satisfied by
R(¢) = exp(—i¢ls). 2
On expanding the exponential in eq. (2), we see that
. dR(¢)
“ih=lm s @

I3 is therefore called the infinitesimal generator of rotations about z that comprise SO(2).
Withr=1,

(2) R(P)um(r, ) = exp(—i¢f3)um (r,9)

4
:um(R_l{r,go}):um(r,go—(ﬁ), @

where, as usual, the carat symbol over R (or I3) indicates the function operator that
corresponds to the symmetry operator R (or /5, as the case may be). For infinitesimally
small rotation angles ¢,

¢d

(1=i68) un(ro) = (1= 5 () ©)

on expanding the second and fourth members of eq. (4) to first order in ¢.
id

L=-1¢
(%) 3 i’

(6)

which shows that the infinitesimal generator of rotations about z is just the angular
momentum about z. (Atomic units, in which 7= 1, are used throughout.) The MR I'(¢)
of the symmetry operator R(¢) is

2 I'(¢) = exp(—igLs). (M
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The exponential notation in eqgs. (2) and (7) means a series expansion in terms of powers of
the operator /3, or its MR 15, respectively,

@) R() = exp(~igls) = i (—i)" (1) /!, ()
% I(6) = exp(—ipT3) = §°: (—i)" ()" /n! ©)

For infinitesimally small rotation angles ¢,

. . dT(¢)

9 —il3 = lim——. 10
©) iTs = lim = (10)
I, is the MR of the infinitesimal generator /5 of SO(2), the group of proper rotations in R*.
In the defining 2-D representation with basis (e; e;|

(10),(11.1.2) —ily = {? (1)] (11)

Finite rotations are generated by R(¢)=-exp(—i¢l3). The effect of a rotation of 2-D
configuration space by R(¢) on any function (7, o) is given by

(4) R(Q)f (r, ) = exp(—igh3)f (r, ) (12)

= f(exp(i¢hz){r,¢}). (13)

In eq. (12), R(¢) is the function operator that corresponds to the (2-D) configuration-space
symmetry operator R(¢). In eq. (13), I is the infinitesimal generator of rotations about z
(eq. (8)); exp(i¢ls) is the operator [R(4)]”", in accordance with the general prescription
eq. (3.5.7). Notice that a positive sign inside the exponential in eq. (2) would also satisfy the
commutation relations (CRs), but the sign was chosen to be negative in order that /3 could
be identified with the angular momentum about z, eq. (6).

Rotations in i3

The group of proper rotations in configuration space is called the special orthogonal
group SO(3). There are two main complications about extending R* to R°.
Firstly, the group elements are the rotations R(¢ m), where n is any unit vector in R,
and, secondly, finite rotations about different axes do not commute. In Chapter 4
we derived the MR of R(¢ z) and showed this to be an orthogonal matrix of
determinant +1:

cos¢p —sing O
I'(¢p z)=|sing cos¢p Of, —-n<o<m. (1)
0 0 1
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The {I'(¢ z)} form a group isomorphous with SO(3) and so may be regarded as merely a
different realization of the same group. Since successive finite rotations about the same
axis commute, the infinitesimal generator /3 of rotations about z is given by

dR(¢ 2)

(11.2.3) —ih = llil}) i )
and its MR is given by

0 1 0

r
(1),(11.2.10) LT, =il H g 3)
p—0 do
0 0

The matrix elements of I are thus

where ¢ is the Levi-Civita antisymmetric three-index symbol: € is antisymmetric
under the exchange of any two indices, and €3 is defined to be +1. Here in eq. (4), k=3,
so all diagonal elements are zero, as are the elements of the third row and the third column.

Exercise 11.3-1 Confirm from eq. (4) the entries (I3);, and (I3),;, thus completing the
verification that eq. (4) does indeed give eq. (3).

In like manner, for rotations R(¢ X) about x

1 0 0
I'(¢p x)=|0 cos¢p —sing |. (%)
0 sing cos¢

(11.2.10) i I, =

o O O
—_— o O
S =l O

(I1)y=—ley i,j=123k=1, (6)

and for R(¢ y)

cos¢p 0 sing

I'(¢py) = 0 1 o |, (7N
—sing 0 cos¢

0 0 1
ST = |0 0 0|, (To),=—iem ii=123k=2. 8)
1T 0 0

A general rotation R(¢ n) through a small angle ¢ (Figure 11.1) changes a vector r,
which makes an angle 6 with n, into r’ =r + ér, where the displacement ér of R is normal
to the plane of n and r. Consequently,
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O

Figure 11.1. Rotation of a vector r, which makes an angle 6 with the axis of rotation n, through a small
angle ¢. From the figure, R(¢ n)r =r' = r + ér, and |6r| = (rsin§)¢. Note that ér is perpendicular
to the plane of m and r; it is of magnitude (r sin €)¢; and it is of orientation such that ér = (n x r)¢.

R(¢ m)r=r' =r+ (nxr)op. (10)

On evaluating the vector product, the components of r' are seen to be

!

rp = (6l] — ¢€ijk nk)l"j, i=1,2,3. (11)

For notational convenience, the components of r are here {ry, 7,, 3} rather than {x y z}.
The Einstein summation convention, an implied summation over repeated indices, is used

ineq. (11).
1 —¢ny  ¢my
11 ['(¢n)=| ons 1 —pny |. (12)
—¢ny  Pm 1
The MR I, of the generator of infinitesimal rotations about n is
0 —n3 ny
(12) —il,=| n 0 —ny (13)
—np n 0

with elements

(In),/ = _1 gijk nk = nk(]k)[jﬁ k = 1:2:3

(14)
= (m myn3 | Iy I I3),
which is the ijth element of the MR of the scalar product
Lhi=n-L (15)

I, a vector with components [, I, I3, is the infinitesimal generator of rotations about an
arbitrary axis n. Successive rotations in i’ about the same axis n do commute,

R(¢ m)R(¢' m) =R(¢' m)R(¢ m), (16)
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a condition satisfied by

(15) R(¢ n) = exp(—igl,) = exp(—ign-I). (17)
The MR of the symmetry operator R(¢ ) is

(17) I'(¢ n) = exp(—ipIn), (18)
with the matrix I, given by eq. (13). For a small angle ¢

(17) R(¢ n) =E —i¢n-I; (19)
(18),(19) I'(¢ n) =E —i¢ (n ny n3|I; I, I3). (20)

When the symmetry operator R(¢ n) acts on configuration space, a function f(r, 8, ¢) is
transformed by the function operator R(¢ m) into the new function f”(r, 6, ©), where

(17) I(r,0,0) = F(R(¢ )" {r,0,0}) = f(exp(ign-T){r, 0,¢}). @1)
For an infinitesimal angle ¢

21 1'(r,0,0) = (1 +ign-D{r,0,¢}), (22)
(22) R(¢ n) =E —i¢gn-1. (23)

The differences in sign in the operators in egs. (17) and (21) and between egs. (19) and (22)
have arisen from our rules for manipulating function operators.

Answer to Exercise 11.3-1

(4) (13)12 = —i6123 = —i, (13)21 = —i6213 = 1

Therefore, for k=3,

|

H

(98]

I
—
S = O
S O =
oS O O
|

The commutation relations

As a prelude to finding the irreducible representations (IRs) for SO(3) we now need to establish
the CRs between the components /;, I, I3 of I and I2. To do this we need, as well as
eq. (11.3.9),

(Ik):—l 5ijka i,j,k: 1,2,3, (1)

)

the identity
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Eitk Ejmk = Oij Otm — Oim Oy, (2

[Tis Ll = (Tis Ij = Ljs To)yyy = —Eipi Epmj + Elj Eqmi
= 61[ 6jm - 5lm (Sji - 6]/ 6im + 6lm 6[]'
= 61’1 6jm - 6im 6jl (3)
= €jjk Elmk

=1 ej(Li),

Equation (3) is derived using the MRs of the infinitesimal generators (symmetry operators)
and therefore holds for the operators, so that

3) (L, L] =i ey I, “4)

@) 2, 1] = 0. (5)

Exercise 11.4-1 Prove eq. (2). [Hint: Consider m=1[ and then m # ]
Exercise 11.4-2 Prove eq. (5).

Exercise 11.4-3 Verify that [T, I,] =113 by matrix multiplication of the MRs of the
infinitesimal rotation operators I, I, I3 which are given in eqs. (11.3.3), (11.3.6), and
(11.3.8).

The commutators, egs. (4) and (5), are derived in three different ways, firstly from
eq. (11.3.9) and then in Exercises (11.4-1) and (11.4-2) and Problem 11.1. Note that I, I,
and /3 are components of the symmetry operator (infinitesimal generator) I which acts on
vectors in configuration space. Concurrently with the application of a symmetry operator to
configuration space, all functions f(r, 6, @) are transformed by the corresponding function
operator. Therefore, the corresponding commutators for the function operators are
(4)7 (5) [[:9 ];} = 1 Eijk fka [fzaik] = 09 k = 192939 (6)
where, as usual, the carat sign (") indicates a function operator. We define the shift (or
ladder) operators

I.=L+ibL, I_=1—ib. 7)

R(¢ n) is a unitary operator. Using eq. (11.3.19), which holds for small angles ¢, and
retaining only terms of first order in ¢,

(11.3.19) RTR = (E +i¢n-1T)(E — ign-T)

(®)
—E—ifn-(I—-1") = E.

(8) =1, 9)
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which shows that the infinitesimal generator I of rotations about n is a self-adjoint operator.
Therefore /> and the components of I, 11, I», I5 are also self-adjoint. Consequently,

() LY =1, (10)
(7), (4) Il =P —5L*+1, (11)
(1), (4) I, =I"-L*—1, (12)
(11),(12) [I,1]=2I, (13)
(5).(7) [, 1] =0, (14)
4),(7) s, 1:] = £ L. (15)

Exercise 11.4-4 Prove egs. (11), (12), and (15).

All the above relations, eqgs. (7)—(15), hold for the corresponding function operators, the
presence (or absence) of the carat sign serving to indicate that the operator operates on
functions (or on configuration space).

The effect on a vector r of a rotation through a small angle ¢ about n is

R(¢ m)r=r =r+ (nxr)op. (16)
(11.3.10) R(¢ m) f(r) =f(R"'r) = f(r — (n x 1)) (17)

=f(r) = ¢(mxr) - Vf(r)
=/f(r) —¢n-rx Vf(r),

where eq. (17) has been expanded to first order because the displacement ér =1’ —r is
small. Since

(18)

rxV=irxp)=il, (19)

where J is the angular momentum r X p, the function operator corresponding to the small
rotation R(¢ n) is

(18),(19) R(¢p n)=E —i¢n-J. (20)

Equations (11.3.23) and (20) show that the infinitesimal generator I of rotations in > about
any axis n is the angular momentum about n. The separate symbol I has now served its
purpose and will henceforth be replaced by the usual symbol for the angular momentum
operator, J , and similarly I 1, fz, f3 will be replaced by fx, fy, jz.

Since jx, fy, fz all commute with J 2, but not with each other, only one of the
components (taken to be J.) has a common set of eigenfunctions with J 2. These eigenfunc-
tions are called u/, or, in Dirac notation, |j m):



190

Continuous groups

J|j m) =m|j m), @1

J2j my =j"*|j m). (22)

At this stage, j/ is just a number that determines the value of j and the precise relation
between j and j’ is yet to be discovered.

(15),(21) J(Jelj m)) = (£Ts + i J)|j om)
= (£S5 +Jem)|j m) (23)
=(m=£1)JL|j m).

Equation (23) demonstrates the reason for the name shift operators: if |j m) is an eigen-
vector of J. with eigenvalue m, then J.|j m) is also an eigenvector of J. but with
eigenvalue m + 1. However, J. |j m) is no longer normalized: let ¢, or c¢_ be the
numerical factor that restores normalization after the application of J or J_, so that

(23) Jelj m) =ce|j mE1). (24)
Then
(11),(22),(21) G m I J_|j my=(j mlJ* —J2 +J.|j m)
s (25)
=J  —m" +m,
(10), (25) (G m|JeJ_|j m)=|c_|, (26)
(25),(26) co = [j"* = m(m — 1)) exp(in). 27)

It is customary to follow the Condon and Shortley (1967) (CS) choice of phase for the
eigenfunctions |j m) by setting v =0, thus taking the phase factor exp(i7) as unity for all
values of the quantum numbers j and m. The derivation of the corresponding relation

ex = [ = mlm+ 1)) exp(iv) (28)
is Problem 11.2. With the CS choice of phase,

(27), (28) cr =["* —mm=+1)", (29)

(21),(22) (2 =) m) = (" = m)|j m). (30)
But the eigenvalues of J2 — J2 = J? 4 J2 are positive; therefore
P =m? >0, |ml <. 31

Thus for any particular j’ (defined by eq. (22)) the values of m are bounded both above and
below. Define j (not so far defined) as the maximum value of m for any particular ;" and let
the minimum value of m (for the same ;') be j. Then the allowed values of m (for a
particular j’) form a ladder extending from a minimum value j”/ to a maximum value ;.
Because the values of m are bounded,
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(24) Jiljjy =0, J-1j j") =0, (32)
(32),(12),(22),(21) J i) == =)li i) =0, (33)
(33) J"=iG+1), (34)
(32),(11),(22),(21) Sl ") =G ="+ i) =0, (35)
(35) J* =" =" (36)
(34),(36) J" =" =i+ 1) =0, (37)
(37) j"=1+j, or —j. (38)

Because ; is the maximum value of m, the minimum value ;" of m is —j. And since J_
converts (|j j) into (|j —j) in 2j integer steps, j is an integer or a half-integer. Therefore, for
any allowed value of j (integer or half-integer) the common eigenfunctions of ./ and J. are

Wmy={inliji=10,....J =i}
or {u/ } = {q{,q{_l, . uj_j . (39)
The eigenvalue equation for J 2 is
(22),(34) Jj my =j(j+1)|j m), (40)
(24),(29),(34) Jilj my =[j(j+1) —m(m=1)]"?j m+1) (41)
=[Fm(tm+ 1] mx1). (42)

Exercise 11.4-5 Prove the equivalence of the two forms for ¢ in egs. (41) and (42).

Answers to Exercises 11.4

Exercise 11.4-1 If m =/, thenj =i, and &,y s = —0;j 61 If m # [, then ! =j,m =i and €4
Ejmk = —Oim Oy Therefore ey €= 04 O1m — Oim Oy

Exercise 11.4-2 [I%, [\] = [I,* + L,* + L%, 1)) = [L* + B2, 1],
[122, Lhl=0L b, hl+L, | h=—-1L5—-i5h1,

%, L) =L[L, L)+ (5, L =+iLL+ikh,

whence [, 1] =0; k=2, 3 follow by cyclic permutation.
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Exercise 11.4-3 From eqs. (11.3.6), (11.3.8), and (11.3.3),

0 0 0][0 0 1 0 0 170 0 o
I,I,-I,I;=-|0 0 1|]0 0 o|+1]0 0 0|0 0 T
01 o[|[T o o T 0 0[]0 0
0 0 0 01 0 01 0
=—|1 0 0|+1]0 0 O|=—=|1 0 0| =iTI;.
0 0 0 0 0 0 0 0 0
Exercise 11.4-4
Ll = (I +ib)(I, —ik) = I + L* +i(LL — L)
=" —L*+ @
II. = (I —ib) (I +ih) = I + L? +i(L, — L))
=1’ — I’ — L,
and so
I, 1] =2L. (13)

[P, 1) = [I*, 1) £ih] = (I} £ ih) — (I} £iL)I* = [I*, L) +i[l?, L] =0.  (14)

Exercise 11.4-5

GFm)(jEtm+1)=7+£jm+jFjm—m"Fm
=/ 4i—mFm=j(j+1)—mm=E1).

11.5 The irreducible representations of SO(3)

From eqgs. (11.3.17) and the remark following (11.4.20), any rotation R(¢ n) can be
expressed in terms of the angular momentum operators Jy, J,, J., and therefore in terms
of Jo, J.. Since J.|j m) =m|j m) and J.|j m) = ci|j m=£ 1), the set (11.4.39) is
transformed by R(¢ n) into a linear combination of the same set. Moreover, no smaller
subset will suffice because J.. always raise or lower m, while leaving j unaltered, until the
ends of the ladder at m = % are reached. Consequently,

Wl | = <u]’, ui_l, cees ulj| (D)
is an irreducible basis for representations of SO(3). For a given j, the notation for the basis
(u’ | in eq. (1) is conveniently shortened to (m| = (j j—1 ... —j|.
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(11.4.19) iJ=rxV=

X y z
X y z ; 2)
d/ox 0/dy 0/oz
Jo=—i [y 0/0z —z 0/dy),
() J, =iz 8/0x —x 0/02), (3)
J.=—i[xd/dy —y 0/0x].

Transformation from Cartesian coordinates {x y z} to spherical polar coordinates {r 6 ¢} is
a standard exercise, which yields

e 0 0
3) Je=1 [smgo %+cot9cos<p 8_90}’ 4
- . 0 . 0
Jy=—i {cosap %—cowsmgp 890}’ (5)
J. = —i[9/0g]. (6)
4),(5),(11.4.7) Jr =J,+1iJ, = £exp(+i )gj:' taﬂ (7)
,(5),(11.4. x=JikilJy =Eexp(Eip) o +ico |

Integer values of j will now be distinguished by replacing jby / (=0, 1,2,...) and u/, by
Y. Whenm =1,

. 0 0
@) J Y/ (0,¢) = exp(iyp) {% +icotd 8—@} Y/(6,¢) = 0. ®)

This first-order differential equation may be solved by separation of variables

Y7"(0, ) = Oum(0) L (s0), ©
(8),(9),(6),(11.4.21) Y1 (0, 0) = Nysin’ @ exp(ilyp). (10)
Exercise 11.5-1 Fill in the steps leading from eq. (9) to eq. (10).

The remaining 2/ eigenfunctions withm=/—1,1—2,..., —I follow from eq. (10) by
successive use of the lowering operator J_, eq. (11.4.41). The normalization factor is

Ny = (=121 + 1)!/4r)"2 /21, (11)

where the phase factor (—1)’ is included to satisfy the CS phase convention. As anticipated
by the introduction of the symbol ¥;" for /, when; is an integer, the functions Y;"(6, ¢) are
the spherical harmonics
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Y6, 0) = i P (cos 6) exp(im @), (12)

where the associated Legendre functions

(2z+1)(z—m|)!}‘/z 1 .‘m‘ed”""‘(cosze—l)l 13

p, Il — _
1 (COS 9) { 47‘((1 + |m|); 20 d(COS 9)l+|m|

These are the eigenfunctions of the Laplacian operator V2 over the unit sphere. With the phase
factor included in eq. (12), they satisfy the CS convention, a consequence of which is that

Y= (=) (14)
Exercise 11.5-2 Show that eq. (14) is consistent with egs. (12) and (13).

Exercise 11.5-3
(a) Show from eqs. (12) and (13) that the three spherical harmonics for /=1 are

Y= (3/4m) "y, with yy = =27 (x+1p), yo=2, y 1 =2 — ).
(b) Find the MR of R(¢ z) for the basis (y; yo ¥ '
(c) Find the matrix U defined by | U; Uy U_;) =Ulx y z), where

U =2"x—1y), Uy=—z, U | = —=2""(x+iy). (15)

Show explicitly that the transformation matrix U is a unitary matrix and evaluate det U.
(d) Show that the MR I'"“’(R) defined by

R(¢ 2)|Uy Uy U_)) =TY(R)|U; Uy U_y)

is the same matrix as the MR of R(¢ z) for the basis (y; yo y_1|.

Although this is shown in (d) only for R(¢ z), |U; Uy U_1)and{y; yo y_|arein fact
transformed by the same matrix I'(R) under any proper or improper rotation and are thus
dual bases. |U; U, U_,) is called a spherical vector and the superscript (@ in (d) serves as
a reminder of the basis.

For integer or half-integer j, the CS phase convention requires that
()" = (=1)"ul,,. (16)
Fano and Racah (1959) employ a different convention, which results in
(u),) = (=1 ""ul,,. (16))
(11.3.17) R(¢ z2)ul, = exp(—ip L), = S (n!) ' (—igp )" ul,
n=20

= i(n!)_l(—iqu)”u«in =exp(—igm)u’l;  (17)

n=0
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(17) Rp2)(jj—1 ... =jl=(j—-1.. -]
e—i¥/
e—io(i-1) (18)

The sum of the diagonal elements of the MR I'(¢) of the symmetry operator R(¢ z) forms a
geometric series which we have summed before in Section 7.2 with j replaced by /, an
integer. As before,

X/ (¢) = sin[(2j + 1)¢/2]/ sin(¢/2). (19)

Although eq. (19) has been derived for R(¢ z), all rotations R(¢ m) through the same angle
¢ are in the same class (and therefore have the same character) irrespective of the
orientation of the unit vector n. Therefore, eq. (19) holds for a rotation through ¢ about
any rotation axis. A formal proof that
R(6 m)R(¢ mR(H m)"" = R(¢ '), (20)
where R(0 m) € {R(¢ n)} and
n' = R(6 m)n, (21)

will be provided in Chapter 12 using the quaternion representation. Equation (21) is a
particular case of the effect of a general rotation on a vector: this is called the conical
transformation because under this transformation the vector traces out the surface of a
cone. The proof of the conical transformation, namely that if ¥’ = R(¢ n)r, then

r' =cospr+sing(nxr)+ (1 —cose¢)(n-r)n, (22)

is set in Problem 11.4. Notice that in eq. (11.4.16) the rotation is through a small angle ¢
and that eq. (11.4.16) agrees with eq. (22) to first order in ¢.

(19) X(¢+2m) = (=1)¥x(9); (23)
(23) X’ (¢ +21) = x’(¢), when j is an integer; (24)
(23) X/ (¢ +2m) = —x’(¢) when j is a half-integer. (25)

The matrices I'(¢) do not, therefore, form a representation of R(¢ n) for half-integer ; .
There are two ways out of this dilemma. In one, due to Bethe (1929) and described in
Chapter 8, a new operator E = R(2n n) is introduced, thus doubling the size of the group G
by replacing it by the double group G={G}+ E{G}. The other approach (Altmann
(1986)) introduces no new operators but employs instead a different type of representation
called a multiplier, or projective, or ray representation. This approach will be described in
Chapter 12.

The usefulness of the characters {x’ (R)} of a representation j stems largely from the
orthogonality theorem of Section 4.4, which for a finite group of order g, is that
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g X R)NY(R) = by (26)
In SO(3) the characters for the different classes depend only on ¢ which varies continu-
ously in the range —n < ¢ <. The orthogonality condition eq. (26) is therefore to be
replaced by the integral

T

/ Y R'X (R) du() = 8. @7)

—T

where dyu(¢) (called the measure) must satisfy the condition
v
[ dnto) =1 (8)

in order that the property under the integral sign (which here is x/(R)* x’ ’(R)) will form
a normalized distribution. The measure du(¢) must also ensure that the group rearrange-
ment theorem is satisfied, which means that the integral must be invariant when each
R(¢ n) € G is multiplied by one particular element so that R(¢ n) becomes R(¢' n')e G.
This property of integral invariance together with eq. (28) is sufficient to determine du(¢).
(Mathematical details are given by Wigner (1959) on p. 152, by Jones (1990) in his
Appendix C, and by Kim (1999) on p. 211.) Integral invariance, eq. (28), and eq. (27),
are satisfied by

du(¢) = do (1 — cos §)/2n. (29)

Exercise 11.5-4 Prove that du(¢) given by eq. (29) satisfies eq. (28) and ensures that the
integral, eq. (27), is equal to §;;.

(11.4.41),(11.4.24) Jilj my=[1jG+1) —mm=+ D] m+1) 30)
=czlj m£1),

(11.4.7) Ji =J £iJ, (31)

(11.4.21) Jo|j m)y =m|j m), (32)

(30),31) Jlj m) :é[cm m+1) +c_|j m—1)], (33)

(30),31) Gl my =il m+ 1) = e|j m=1)] (34)
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Forj=1,

(33) JJ1 1) =27121 0)
10y =27"2(]1 1) + 1 T)) (35)
L1 Ty =271 0).

Since j = 1, the basis functions may be abbreviated to m,
R B B 01 0 B
(35) JAOT =@ 0T272|1 0 1|=( 0TIV, (36)
010
The MRs of J, J, for the spherical harmonics basis ( m| derived in a similar manner are

} . (37)

The superscript @ in egs. (36) and (37) serves to remind us of the basis, namely the
(¥m|, which are the spherical harmonics without the normalizing factor (3/4m)"?. From
Exercise 11.5-3,

—o O

0 -1 0 1
(34),(32) Jg¥=2"i o —i|; J¥=]o0
0 i 0 0

S OO

Ui Up U.1) =Ulx y z),

where
1 —i 0
U=2"{0 0o =2n
—1 —i 0

Therefore, with k=x, y, z,
jk|U1 U() U,1> = J;CU)|U1 Uo U,1> = J1EU>U|X y Z>,
S Uy 2) =UJilx y 2) = UJklx y 2)

J,=0"'JVu=ul gV, (38)

i 0 —i 0
,J.=1i 0o of, (39)
0 0 0
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in agreement with eqs. (11.3.6), (11.3.8) and (11.3.3). The lack of superscripts in egs. (39)
indicates that the basis is (x y z | (=(r; r, r3|); however, the basis is shown by a
superscript when there may be grounds for confusion.

Exercise 11.5-5 Derive the MRs in egs. (39) from the corresponding ones for the
basis (u,,| (that is, (m|) in eqs. (36) and (37).

The operators and bases introduced above are not the only possible choices for SO(3).
Consider the functions

[j m) =[G+ m)l(j = m)l] 2 ey, (40)
Then
. _ (.]_m)(]—"_m—’_l) i+m+1 _ j—m—1
(40) x(0/)|j m) = \/(j—i—m—l— DG —m— 11 PR @1)
=cy|j m+1).

Therefore, for this basis,

. 0
J+:xa—y. (42)
1o o,  10+m—0G-=—m n in
(40) 2[x6x yay]'] S T T “
so that
N N A T
Jelj m) =3 {xa—ya—y} |j m) =m|j m). (44)

(See Problem 11.5 for egs. (45), (46), and (47).)

Answers to Exercises 11.5

Exercise 11.5-1

1 391[(9)+ 1 0%(¢)

ot Gn(0) W Bilp) ap

9).(®)

Consequently, the first term is —c and the second one is +c¢, where ¢ is a constant to be
determined. Equation (11.4.21) gives ¢ =1il, whence ®i(p) = N, exp(ilyp) (unnormalized)
and Y/ (6,p) = N, (sin )" exp (ilp). Normalization involves a standard integral and gives
eq. (11) after including the CS phase factor.
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Exercise 11.5-2

(12) (=)™ vy = (=)™ P (cos 6) exp (—imip)
_ (_i)mHIn‘ P‘lm‘(COS 9) exp(—im<p) — Ylm*~

Exercise 11.5-3

(a) (13) Y| =1i""P{(cosb) exp(ip) = —(3/87)">sin O exp(ie)
—(3/47r) [—27"2(x + iy)),
= (3/4m)"2(V,)(sin0)° (2cos) = (3/4m) "z,
Yll (3/4m)"> 27> sin O exp(—ip) = (3/4m)"2[27">(x — iy)],
= (3/4m)" y,
with

_271/2()(—"- 1y>a Yo=2,y-1= 27I/2(x - ly)

e i
() R(® 2)(» yo vl =(n » y_1|[ 1 } = (51 ¥ ya[PR)Y.
e

(c) The adjoint of (y; yo y_1| is
| | 0 X
| —27(x —iy), z, 27 2(x+1ip)) =27 0 0 —2°"
-1 =i 0 z
=—|Uy Uy Uy,

where Uy =2"(x —iy), Uy=—z, U_; = =2~ "(x +iy).
1 -1 0
U, Uy Uy =U}xyz), U=2" 0 o0 —2%].
-1 - 0

U ' U =Ej; therefore U is a unitary matrix. [U|= 1[—i —i]=—2i

@)  R(¢ 2)|Ui Uy U1) =R(¢ 2)Ulx y 2) = UR(¢ z)|x y 2)

1 —i 0 cx—sy e ¢ Ui
=272 0 0 —2%||sx+cy|= 1 Us
-1 =i 0 z U_,

Since T' (R)Y” =T (R)", the bases |Uy Uy U_y)and(y; yo y_1| are transformed by the
same matrix under R(¢ z).
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Exercise 11.5-4

/ﬂ (d¢/2m)(1 — cos ¢) sin[(2/ + 1)(¢/2)] sin[(2/" + 1)(¢/2)]
sin(¢/2) sin(¢/2)

—T
s

- / (46 /2m)2sin[(2) + 1) (6/2)] sinl(2f" + 1)(6/2)]

-7
s

- / (d6/2m)[cos(j — ') — cos(i +" + 1))

y

=0, ifj#j, or=1, if j=j'.

Exercise 11.5-5 This exercise simply requires filling in the steps leading from eq. (38) to
egs. (39). For example, for k=x,

1 0 —=17]0 1 0 -i 0
J,=u0lgVu=2"i o i||lt 0o 1|]0 o0 -2%
0 -2~ 0|0 1 Of|-1 —i 0O
1 0 —17[o o —2% 00 0
=27%i 0 illo —2i o0 [=]0 0 —i
0 -2 0|lo o —2% 0 i 0

Similarly, for k=y and k=z.

The special unitary group SU(2)

In the same manner as in Section 11.5 (egs. (11.5.35)—~(11.5.37)), application of egs.
(11.5.32)—(11.5.34) to the basis (m| = (2 — 4| gives the MRs

o 1 0 —i 10
szi 1 0 5 Jy: 1 0 ) Jzzf 0 T s (1)

() J+=[8 (1)] Jz[? 8} @

[SIE

With the factor %2 removed, these three matrices in egs. (1) are the Pauli matrices oy, 05, 03
(in the CS convention):

ol i A ) S P ®

The MR of the rotation operator for the 2-D basis (Y2 — 4| is
(11.3.18),(11.3.15) I'"2(¢ n) = exp(—Lifn-o), 4)
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where

ns n — in2

n-0 =noy+nyo)+n3o3 = .
101 202 303 ny + iny —n

) &)

which is a 2 x 2 traceless Hermitian matrix, as are the MRs of the three angular momentum
operators (infinitesimal generators) in eq. (1).

Exercise 11.6-1 Prove that
(n~0')2:012:022:032:E2, (6)
where E, denotes the 2 x 2 unit matrix. Hence show that the CR [0}, 0,] = 2io3reduces to

010 = i0'3 = —020]. (7)

Exercise 11.6-2 Show that the 2 x 2 matrix n - o is unitary.

Exercise 11.6-3 Show that

I'"2(¢ n) = cos(}¢)E, —isinl ¢)n - 0. (8)
Exercise 11.6-4 Show that

cos(3¢) —inzsin(3p)  —(n2 +iny) sin(3 ¢)
@ - _—
(ny —im)sin(3¢)  cos(§ ) + inzsin(§P)

1 exp(—3¢) 0
(b) (¢ z) = ; (10)

0 exp(3i¢)

cos(38) —sin(3f)
©) r2(By) = . (11)
sin(% 0) cos(% 0)

Exercise 11.6-5 Show thatdetn-o=—1.

Matrices which represent proper rotations are unimodular, that is they have
determinant +1 and are unitary (orthogonal, if the space is real, as is ®°). Consider the
set of all 2 x 2 unitary matrices with determinant +1. With binary composition chosen to
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be matrix multiplication, the set is associative and closed. It also contains the identity E and
each element has an inverse. This set therefore forms a group, the special unitary group of
order 2, or SU(2). The most general form for a matrix of SU(2) is

a b
A- [_b* a*], (12)
with
det A = aa* + bb* = |a|* + |b]* = 1, (13)

where a and b (which are the Cayley—Klein parameters) are complex, so that there are three
independent parameters which describe the rotation.

Exercise 11.6-6 The most general 2 x 2 matrix is {Ccl z ] ; show that imposing the unitary

and unimodular conditions results in eqs. (12) and (13).

The scalar product H=r. o= r | n- 0o, where r is a position vector in 3-D space with
(real) components {x y z}, is

3) H = (x01 + y0s + 203) = [x iy x:ﬂ = [2; Zﬂ- (14)
H is also a traceless Hermitian matrix, with det H = — (x* 4 % +2°).

(14) x = (hy +hi2)/2; y = (ho — h12)/2i; z = hiy = —ha. (15)
Under the transformation represented by the matrix A,

(14 H-H=AHA'=r.o= x,iiy/ xl__z,iyl} = {Zii Z;] (16)
so that r is transformed into the new vector r’ with components {x' ' z'}.

16 det H = —(x? +y? +2?) =det H= —(x> +)* + 2. (17)

Therefore, associated with each 2 x 2 matrix A there is a 3 x 3 matrix ['(A) which
transforms r into r’. That this transformation preserves the length of r follows from
eq. (17). But if the lengths of all vectors are conserved, the transformation is a rigid
rotation. Therefore, each matrix A of SU(2) is associated with a proper rotation in #°.
The transformation properties of A or the unimodular condition (13) are unaffected if A is
replaced by — A. The matrices of SU(2) therefore have an inherent double-valued nature:
the replacement of A by — A does not affect the values of {x' )’ '} in eq. (16). Therefore
A and — A correspond to the same rotation in . A unitary transformation (16) in SU(2)
induces an orthogonal transformation in R* but because of the sign ambiguity in A the
relationship of SU(2) matrices to SO(3) matrices is a 2 : 1 relationship. This relationship
is in fact a homomorphous mapping, although the final proof of this must wait until
Section 11.8.

(16),(12) Wy ) =T@R)x y 2), (13)
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2 2

(@ -0 +a’ —b") L@+ —a’ —b") —(ab+a'b)
(a* — b* —a* +b*) Ha*+b* + a” +b7)  —i(ab—a'b*) |- (19)
ab* + a*b —i(ab* — a*b) aa* — bb*

N |—

I'(A) =

[

The matrix in eq. (19) represents a general rotation R(¢ n) so that I'(A) € SO(3). It is
moreover clear from eq. (16) that A and —A induce the same orthogonal transformation,
since H’ is unaffected by the sign change. For example, when

a=exp(—3i¢), b=0, (20)
cos¢p —sing 0

(19) I['(¢p z) = |sing cos¢ Of, (21)
0 0 1

which is the MR of R(¢ z). Again, if we choose

a=cos(B/2) b= —sin(3/2), (22)
cosf 0 sing

(19) gy = 0 1 0 |, (23)
—sin@ 0 cosf

which represents a proper rotation through an angle 3 about y. Any proper rotation in }*
can be expressed as a product of three rotations: about z, about y, and again about z.
Therefore, the matrices in egs. (21) and (23) assume special importance.

O(3) is the group of 3 x 3 orthogonal matrices, with determinant +1, which represent
the proper and improper rotations R(¢ n), IR(¢ n). Removal of the inversion, and there-
fore all the matrices with determinant —1, gives the subgroup of proper rotations repre-
sented by 3 x 3 orthogonal matrices with determinant +1, which is called the special
orthogonal group SO(3). To preserve the same kind of notation, adding the inversion
to the special unitary group SU(2) of 2 x 2 unitary unimodular matrices would give
the unitary group U(2). But the symbol U(2) is used for the group of all 2 x 2 unitary
matrices, so Altmann and Herzig (1982) introduced the name SU’(2) for the group of all
2 x 2 unitary matrices with determinant +1. If det A’ = —1, instead of det A= +1 (as in
Exercise (11.6-6) then

A = {"* b*]withaa*—i—bb*:l; 24)
b* —a

A’ is a2 x 2 unitary matrix with det A’ = —1, and therefore A’ € SU’(2). The fact that the

transformation {x y z} — {x' )/ Z'} effected by eq. (16) is a rotation depends only on the

unitarity of A (see eq. (17)), and, since A’ is also unitary, eq. (16) also describes a rotation

when A is replaced by A’. The difference is that A € SU(2) describes a proper rotation

whereas A’ € SU'(2) corresponds to an improper rotation.

(@b +a’ —b7") i@+ —a’ —b") —(ab+a*b?)
PRA)= i@ -2 —a” +b7) (P+b+a” +b7)  —i(ab—a'b?) |5 (25)
—(ab* + a*b) i(ab* — a*b) —(aa* — bb¥)

N|—

(SIE
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which represents the improper rotation IR(¢ m). For T'(A’) to represent the inversion

operator, the conditions x' = —x, y/ = —y, Z = —z are met by
b=0, aa* = 1. (26)
Either
a=—i,a" =+ or a=-+i, a = —i, (27)
(26), (27), (24) A= {_01 Ol or A = [ (‘) ?} . (28)

The first choice is called the Cartan gauge; the second one is the Pauli gauge (Altmann
(1986), p. 108; see also Section 11.8).

Exercise 11.6-7 Find the matrices of SU’(2) that correspond to the MRs in O(3) of the
symmetry operators oy, gy, and o,.

A general rotation R(¢ n) in R requires the specification of three independent para-
meters which can be chosen in various ways. The natural and familiar way is to specify the
angle of rotation ¢ and the direction of the unit vector n. (The normalization condition on n
means that there are only three independent parameters.) A second parameterization R(a b)
introduced above involves the Cayley—Klein parameters a, b. A third common parameter-
ization is in terms of the three Euler angles «, 3, and vy (see Section 11.7). Yet another
parameterization using the quaternion or Euler—Rodrigues parameters will be introduced in
Chapter 12.

Answers to Exercises 11.6

Exercise 11.6-1

27'11 —iny 1n2710_
©) (n-0)" = L ny +iny }Ll+lnz —n3 ][0 1}
=[1 o]l } o o)
L1
» [0 —i _ )
27| OHi 0]_[0 1}’
1 0 1 0 1 0
ng_o —1”0 —1}{0 1}
[U% 0'3] = [Ez 0'3] =0= (%) [(72 0'3] + [(72 0'3] 0y = 2i(0’20’1 + 0'102).

But 01 02=07 01 +2103, therefore g1 0'2:i0'3: — 0, 0.
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Exercise 11.6-2

Q) (n-0)'(n-0) = (n-0)(n-0) = E,.

Exercise 11.6-3 From eq. (4), I"%(¢ n)=exp (=" i¢ n.0o); expand the exponential and
collect terms of even and odd powers of n-¢. The even terms give cos(2¢)E,, while the
odd powers give —i sin(*2¢) n - G.

Exercise 11.6-4 Substituting from eq. (5) into eq. (8) gives eq. (9). Setting n3 = 1 in eq. (9)
gives eq. (10); setting n, =1 in eq. (9) gives eq. (11).

Exercise 11.6-5 Fromeq. (5),detn-0 = —n3 —nj —n3 = —1.

Exercise 11.6-6 The unitary condition gives aa” + cc* =1, ab* +c¢d* =0, a*b+ c*d=0,
bb* 4 dd* =1, and the unimodular condition is ad — bc = 1. These five condititions are
satisfied by d =a”, ¢ = — b", which gives eq. (12).

Exercise 11.6-7 The result of oy is X' = — x, )/ =y, 2 = z. Impose the first two conditions
on the transformation matrix T'(A) in eq. (25); this gives a*=a*? and b* = b*. The
condition z =z gives —aa” +bb" =1, which together with det A’ = —1 (see eq. (24))
gives a =0, and therefore (using y' =y again) b + b =2. But b2 =b*, so b*=1,
b==£1. In like manner, for oy, ' =x, ) = —y, and 2 =z, so that from eq. (24) =0 and
b=+1i.Finally for o,,x' =x,)' =y,z = — z, so that eq. (25) yields 5 =0, a = +1. The three
A’ matrices are therefore

A’(ox)ﬁ:{? (1)] A’(ay)j:[oi (1)} A’(az)j:[(l) OJ.

Note the inherent sign ambiguity in the matrices of SU’(2); the positive and negative signs in
the A’ matrices correspond to the same improper rotation in °. The choice of signs +, —,
and + for the three A’ matrices gives the Pauli matrices in the CS sign convention.

Euler parameterization of a rotation

A general rotation R about any axis n may be achieved by three successive rotations:

(i) R(y z), —n<y<m
(i) R(By), 0<B<m (1)
(iii) R(« z), —n<a<m,

where «, (3, and «y are the three Euler angles. The total rotation, written R(cv 8 7), is
therefore

R(a B v) =R(a z) R(B y) R(y 2). ()

The Euler angles have been defined in the literature in several different ways. We are (as
is always the case in this book) using the active representation in which the whole of
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configuration space, including the three mutually perpendicular unit vectors {e; e, e;}
firmly embedded in this space, is rotated with respect to fixed orthonormal axes {x y z},
collinear with OX, OY, OZ. Here, the order of the rotations and the choice of axes in eq. (2)
follow Altmann (1986) and therefore agree, inter alia, with the definitions of Biedenharn
and Louck (1981), Fano and Racah (1959)," and Rose (1957). There are two ambiguities
about the above definition of the Euler angles. Firstly, if 3= 0, only « + - is significant; the
second one arises when 3 = 7.

Exercise 11.7-1 Using projection diagrams, show that for an arbitrary angle w
Rla m v) =R(a+w, 1,7+ w). 3)
Exercise 11.7-2 Show that

R(—B y)R(m z) =R(n z) R(B y). )

This relation provides a mechanism for dealing with a negative angle 3. The inverse of
R(a B 7) results from carrying out the three inverse rotations in reverse order:

@ [R(a 3 )] =R(— 2) R(=F y) R(~a 2)
=R(=7 2) R(=B y) R(n z) R(n z) R(-a z)
=R(—y z) R(n z) R(B y) R(n z) R(—a z)
= R(—v£n 2) R( y) R(~a£n 2), )
since R(—n z) would produce the same result as R(n z). The sign alternatives in eq. (5)
ensure that the rotations about z can always be kept in the stipulated range —n < a, v < 7.
The MR T'[R(a B y)]of R(ax B 7y)is
(2),(11.3.1),(11.3.7)
I[R(er § 7)] =T [R(er 2)] TIR(B y)] T[R(7 2)]

cosa —sina 0 cosf 0 sinB][cosy —siny 0]
X | sinaw  cosa O 0 1 0 siny cosy O
0 0 1 —sin 0 cosp 0 0 1]
cosa cos 3 cosy — sina siny —cosa cos siny —sina cosy cosasin 3]
= | sina cos B cosy 4+ cosa siny —sina cos 3 siny 4+ cosa cosvy sina sin
—sin G cosy sin /3 sin -y cos3 |
(6)
It is perhaps opportune to remind the reader that, as is always the case in this book,
R(a B 7)(er &2 &3] = (e & &'| = (e e &|T[R(ex 8 7)]; (7
Rla B y)r=r=T[R(a B)|lxyz)=K ) ) (8)
R(a B 7)xyzl={xy 2AlR(a § 7). ©)

* Fano and Racah use 1, 0, ¢ for «, 3, 7.
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Fig 11.2. The points marked 1 through 6 show the result of acting on the representative point E with
the following operators (1) R(vz); 2) R(ry) R(v2); B) R(az) R(ry) R(vz); (4) R(vy+wz);
G)RmY)R(y+wz); (0) R(etwz)R(ny) R(y+wz)=3.

Equation (7) describes the transformation of the set of basis vectors {e; e, es} that are
firmly embedded in configuration space and were originally coincident with fixed ortho-
normal axes {X y z} prior to the application of the symmetry operator R(cc 3 7). Ineq. (8)
the column matrix |x y z) contains the variables {x y z}, which are the components of the
vector r = OP and the coordinates of the point P. In eq. (9) the row matrix (x y z| contains
the functions {x y z} (for example, the angle-dependent factors in the three atomic p
functions py, p,, p,).

Exercise 11.7-3

(a) Write down the transformation matrix I'[R(¢ n)] for the rotation ¢ =—2n/3,
n=3""[111].

(b) Find the Euler angles and the rotation matrix I'[R(«« 8 +)] for the rotation described in
(a) and compare your result for I'(R) with that found in (a).

Answers to Exercises 11.7

Exercise 11.7-1 In Figure 11.2, the points marked (1-6) show the result of acting on the
representative point E with the following operators: (1) R(y z); (2) R(n y) R(y z);
(3) R(az) Rmry) R(v z); (4 R(v+wz), (5 R(mny) R(y+w z); and finally
6)R(a+w Z)R(n y) R(y+w z)=3.

Exercise 11.7-2 In Figure 11.3 (in which the plane of the paper is the plane normal to y),
the points marked (1), (2), and (3) show the effect of acting on the representative point E
with the following operators: (1) R(8y); (2) R(n z); (3) R(r z) R(By) or
R(=( y) R(n 2).

Exercise 11.7-3

0
(@) R(—2m/3 mn)(e; e; es| = (e; e; ey = (e; e, e3|| 0
1

S O =
o = O
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Figure 11.3. The points marked 1 through 3 show the result of acting on the representative point E
with the following operators: (1) R(8y); (2) R(n z); (3) R(n z)R(By) = R(—B y)R(n z).

€3 €1

R(-27/3 n)
_—

e, €3
e €

ll

€3 2 €1 3 €
e —_—
e, e e,
€3
€3 €

Figure 11.4. Effect on the basis vectors {e; e, e3} of the successive operators (1) R(w z); (2) R(n/2 y);
(3) R(n/2 z). The net result is equivalent to that of the single operator R(—27/3 n).

(b) Figure 11.4 shows the effect on the basis vectors {e; e, e;} of the successive opera-
tors: (1) R(n z); (2) R(n/2 y); (3) R(n/2 z). The net result is equivalent to that of
the single operator R(—27n/3 n), so that for this operation the three Euler angles are
a=n/2,=mn/2,y=m.

(6) I[R(ec § )] =T[R(n/2 7/2 m)] =

—_ o O

1 0

0 1],
0 0
in agreement with the transformation matrix obtained in part (a).

11.8 The homomorphism of SU(2) and SO(3)

Any basis (u’| which transforms under the operations of O(3)=SO(3)® C;, where
C;={E I}, according to

R(¢ m){/| = (W[T'(¢ m), (D

1] = (= 1Y (W [Ejpa, 2)
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is a tensor of rank 1 and dimension 2/ + 1. Note that IY(¢ n) is the MR of the rotation
operator R(¢ m); it is an orthogonal matrix with determinant +1 and of dimensions
(2j+ 1) x (2 + 1), since there are 2j+ 1 functions in the basis (#/|. Also, E,;,; is the
(2/ 4+ 1) x (2j + 1) unit matrix; & = (— 1Y is the parity of the basis ( #/| and describes its
response to the inversion operator /. When A =+1 (or —1) the basis is gerade (even) (or
ungerade (odd)). The important feature of egs. (1) and (2) is the two MRs and not the fact
that the basis is a row. For example, the spherical vector |U; Uy U_ ) transforms under
the same matrices I'' and ( —1)E; and so it is a tensor of rank 1 and dimension 3. A tensor of
rank 2 is an array that transforms under the operators of O(3) according to the DP
representation IV' @ IV2, (—1)1 "7 E@j, + @), +1)- Such representations are generally
reducible. Within SO(3),

(uj‘| ® <ujz‘ — <uj1+jz| e <uj1+jz—1| ... <u|j17jz\|’ (3)
which is the Clebsch—Gordan series. Taking j; > >,

(1 1.5.19), (1 1.5.18)
X () X2 (¢) = [2isin(te)] "
< {expli(Gi + 2] — exp[-i(ii +1)0]} 3 exp(imo)

m=-7ja

— Disin(06)]" 35 {expli(is +m + 2)6] — exp[i(is —m + D]} @)

m=—j

But since m runs in integer steps from — j, to + j, over the same range of negative and
positive values, m may be replaced by —m in the second sum, giving

V(@) (@)= ST sin[(j+1)e] fsin(be) = 55 ¥(9). s)

J=h—h J=h—)

which confirms eq. (3). This is an important relation since it tells us how a whole hierarchy
of tensors can be constructed. When j = 0, is the spherical harmonic of degree zero and
the transformation matrices in eqs. (1) and (2) are both just the number 1. Such a tensor that
is invariant under rotation and even under inversion is a scalar. For j="' the basis
functions {u},} (which are called spinors) are u’y,, u”,; or |4 %), |4 —%); or
(avoiding the awkward halves) the ordered pair &, n (Lax (1974)), &, & (Tinkham
(1964)); u, v (Hammermesh (1962)); or py, pp (Altmann (1986)). To avoid further
proliferation of notation, u, v will be used here.

(11.6.10) R(¢ z){uv] = (uvl e exp(Lio)

= (uv|"?(¢ z), (6)
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where I'*(¢ z) e SU(2). The MR of the rotation of a basis which is the DP of two such
spinor bases,

(g vi| ® (up vo| = (wuy uyvy viup vival, (7)
1S
exp(—Lig) | } o [expuias) |
exp(io) exp(3ig)
exp(—io) ®

exp(i¢)

The matrix on the RS of eq. (8) is reducible. The RS of eq. (7) is the uncoupled
representation for the two spinors. Using a table of Clebsch—Gordan coefficients, the
coupled representation is found to be

<Ll1 V1| ® <u2 Vz‘ = <u1u2 271/2(141\/2 —|—v1u2) V]V2| D <2 uyvy — v1u2)|, (9)

which has been written as a direct sum of symmetric and antisymmetric components
because they cannot be converted into one another by any of the operations of O(3).

Exercise 11.8-1 The DP of the two sets {u; vi}, {ux vo} is {u; v} ®@{uy vo} =
{ujus uyvy viuy vivo}. The first and fourth components are symmetric with respect to
the transposition operator P15, but the second and third components are not eigenfunctions
of Py,. Use the symmetrizing (%) and antisymmetrizing (.2/) operators to generate the
symmetric and antisymmetric components in eq. (9) from u,v,. [Hint: For two objects
S =2""[1+Py,], & =2 "[1 — Py,], where P,, means transpose the labels on the two
spinors identified by the subscripts 1 and 2.]

The MR of R (¢ n) for the coupled basis, eq. (9), is the direct sum

exp(—i¢)
1 ®E;. (10)

exp(i¢)
The Clebsch—Gordan decomposition
(3):9) Wh| @ (u" = (u'| & @ (11)

of the DP of two spinors therefore yields an object (u'|, which transforms under rotations
like a vector, and (iz°|, which is invariant under rotation. Under inversion, the spinor
basis (u”|= (%2 %) |% —'%)|=(u v| transforms as

) Fuv| = (=1)"2(u v |Ey = +i(u v | E,. (12)

Clearly, eq. (2) can be satisfied by either choice of sign in eq. (12). In the Cartan gauge the
MR of the inversion operator in eq. (12) is taken to be
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i 0
(1) = [ 0 } (13)
while in the Pauli gauge
i 0
I(l) = [(1) } (14)

which correspond to the choices —i or+i in eq. (12). While neither choice is any more
correct than the other, conventional usage favors the Pauli gauge (Altmann and Herzig
(1994)). An argument sometimes used is that, since angular momentum is a pseudovector,
its eigenfunctions, which include the spinors with half-integral j, must be even under
inversion so that the positive sign should be taken in eq. (12). However, electron spin is
not a classical object and there is a phase factor to be chosen on the RS of eq. (12), so one is
free to work either in the Cartan gauge (choice of —1) or in the Pauli gauge (choice of +-1).
We shall return to this question of the choice of gauge in Section 12.7. With either choice,

(12) f2_1/2 <M1V2—V1Ll2| = (—1) 2_1/2(u1v2—v1u2| El, (15)
(9),(12) I ((wyvi| ® (wava]) = ((wy vi] ® (v [(—1)(Es @ Ey)]. (16)

Therefore (u'| is indeed a vector but { %°| also changes sign under inversion, and so it is
a pseudoscalar.

In order to establish the homomorphism between SU(2) and SO(3), we will consider
first the dual |# v) of the spinor basis |# v). Note that no special notation, apart from the
bra and ket, is used in C? to distinguish the spinor basis (u v| fromits dual |u v). A general
rotation of the column spinor basis in C? is effected by (see Altmann (1986), Section 6.7)

W' V'Y =Auv). (17)

Because the column matrix |# v) is the dual of (u v|, they are transformed by the same
unitary matrix A € SU(2), where

(11.6.12) A= {_‘2* f] det A = aa* + bb* = 1. (18)

The complex conjugate (CC) spinor basis |u* v* ), however, transforms not under A but
under A, as may be seen by taking the CC of eq. (17).

P K)ok K\ Cl* b* u* _ a*u*—l—b*v* ’
(17),(18) "™ V™) = A%|u v}—{_b a][v*}_[—bu*—i—av*]' 17"

However, the choice (Altmann and Herzig (1994))
Uy = vy, vo = —u} (19)

does transform correctly under A:
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A7.(8.(D)  fyv) = A m:[_" ”H v ]:[_avl* —bu]*]

b* a || —u* b'vi* —a*u*
=" —u"). (20)
Now form the DP basis
lu v) @ V' —u") = |Juv' —uu® vv' —vu"). 21

The transformation matrix for the DP basis, eq. (21), is (cf. eq. (8))

aa ab ba b?
—ab* aa* —bb*  ba*
—ab* —bb* aa* a‘b
b*b*  —a'b* —a'b* (a*)’

B=A®A= (22)

This matrix may be reduced by the same prescription as was used earlier in eq. (11),
namely by forming the coupled representation

1
2*1/2 2*1/2

C 2% v —u* w* —uv) =2" ' ,
27 27

x 22|y —u* W —u'v)
1
= 2% 0uv* 272 (—u* 4+ W) =272 (uut + W) —u'v). (23)

Equation (23) defines the transformation matrix C, the extra factor 2" having been
introduced to ensure later normalization.

a2 2"2ab 0 b?
_ Y * * * b, *
(23),(22) CBC ! — 2(;ab aa , bb (1) 2 Z(C)l b (24)
(b*)2 —2ha* bt 0 (a*)2

Equation (24) confirms that the tensor basis in eq. (23) has been reduced by the
transformation C into the direct sum of its antisymmetric and symmetric parts,

202 vt 27 (—ud + W) =) @ |—(uut 4+ w)). (25)

As eq. (24) shows, the 4 x 4 matrix B has been reduced by this basis transformation into
the direct sum

a? 2%ab b?
—2%ab* aa* —bb* 2%a'b | E, =T' (D)@ E,, (26)
b} —2%ab (o)

where the superscript 1 denotes the value of j . The matrix A represents a general rotation
in C?, and its symmetrized DP A® A in eq. (26) represents a general rotation in 3.
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\J
«

P

Figure 11.5. A rotation of the unit sphere describes a rotation of configuration space with respect to
fixed axes {x y z}. For example, a rotation through 27 about P’ P traces a circle on the unit sphere
which projects on to a circle about Q in the xy plane. The figure thus shows in geometrical terms the
mapping of a rotation in %, represented by I''(A), on to a rotation in 2-D, represented by A.

This matrix T''(2) differs from that in eq. (11.6.19) which describes the transformation of
the basis [x y z) . The first term in the symmetrized basis in eq. (25) is the spherical vector

U, Uy U_y) =27 (x—iy) —z —27"2(x+1iy)). (27)

To see this, set
27" (x — iy) = 22wy, (28)
(28) —27 "2 (x +iy) = =2y, (29)

{x y z} are the coordinates of a point P on the surface of a sphere of unit radius, the
projection of which on to the xy plane gives a stereographic projection of the unit sphere
(Figure 11.5). Since P is a point on the surface of the unit sphere, x* +y* +z* = 1, and so

(28),(29) Z=1-+y)=1-(x+1iy)(x—iy) (30)
=1—-Q2u"v)2uv").
But the spinors u, v are orthonormal so that their HSP is unity,
uu +vvt =1, (31)
(30),(31) 2 = (uu* +vv*)? — duutvy*
(32)

= (uu* —vv)?,
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(32) z=uu" —vv¥, (33)

on choosing the phase factor as+1. Equation (33) identifies the second term in the
symmetrized basis, eq. (25), as —z = U,. Therefore eq. (28), (29), and (33) identify the
first ket in eq. (25) — that is, the symmetrized basis — with the spherical vector
U1 Uy U_1),

2% Wt —2"u*v) = |U; Uy U_y). (34)

Consequently, the MR of the rotation operator I'' (A) in eq. (26) will now be identified
as ' (A

Exercise 11.8-2 Prove that det ' (A)Y) =1.

Exercise 11.8-3
(a) The spherical vector |U; Uy U_;) 1is related to the variables |x y z) by
Uy Uy U_,)=U |x y z). Show that the MR T"' (&) of the rotation operator in the r
basis [x y z) is related to that in the U basis |U; Uy U_; ), namely T'' (A)?, by
r'a) =uf r'@@u. (35)

(b) Using T'(A)'® from eq. (26) and U from Exercise 11.5.3, find I''(A) from eq. (35) and
show that the result agrees with that found previously in eq. (11.6.19).

At last we may prove the homomorphism of SU(2) and SO(3). That the mapping of
SU(2) on to SO(3) involves a 2 : 1 correspondence has been shown in Section 11.6, but the
fact that this relationship is a homomorphism could not be proved until now.

(35) T'(A)=U"'T'(a)YU=U"'A®AU, AcsSU(), T'(A) €SO3);  (36)

(36) I''(-A)=U'A®AU=T'A), (37)

so that A and —A correspond to the same I''(A), and are the only matrices of SU(2) that
map on to I''(A). Since the theorem that a product of DPs is the DP of the products holds
also for symmetrized DPs,

(36) MA@ =u'a,AU0U0'A,® AU

=U'(A ®@A)RA, ©A)U

=U'(AR) ® (A1A,)U

=THAA,). (3%)
Equation (38) verifies that the mutiplication rules in SU(2) are preserved in SO(3) and
therefore that the mapping described by eqs. (36) and (37) is a homomorphism. This

mapping is a homomorphism rather than an isomorphism because the two matrices A
and —A of SU(2) both map on to the same matrix I''(A) of SO(3).
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Because of the homomorphism between the groups SU(2) and SO(3), we may take
eq. (11.5.40) as a basis for SU(2),

(11.5.40) (i m)l = ([Grm) G=m)l) " /by (39)

A rotation in configuration space is effected in SU(2) by

(11.6.12) R(a b)(u v| = (u v|A:<uv|[ “ b}
—-b* a*
= {au—Db"v bu+d'v| (40)
The transformed basis R(a b)|j m) is, from egs. (40) and (39),
[+ m)lG = m)l) Y Y = (G m)lG = m)Y) (a5 (b vy

(e S G ) " () S (= m) (b (@)
=[G +m)G—m )']/kZO HGtm—kl 2 K —m—&)

R (G m)lG = m)!] 2 (a) " @) () (b A
—,§0 ,EO KNG +m—k)(j—m— k')

_ LG ml - )@y " @y ()" (b
m'=—j k=0 k'(]+m k)'(] m' _k)'(m/_m+k)‘ (41)

(42)

m'm>

= 5 (NG

where m' =j—k—k,—j<m' <j, and

P RO+ m)G = m)lG 4wl — )@ @) ) ()
mm K\(j+m—k)(G— m—k)!(m—m+k)! '

(43)

The sum in eq. (43) runs over all values of 0 <k <j+ m, using (—n)! =1 when n =0 and
(—n)! =00 when n>0. The formula (43) for matrix elements can be expressed in an
alternative form that involves binomial coefficients instead of factorials (Altmann and
Herzig (1994)) and this may be rather more useful for computational purposes.

Exercise 11.8-4 Evaluate from eq. (43) the term Ty of the matrix I'' and show that this
agrees with the corresponding term in I'' in eq. (28).



216

Continuous groups

Answers to Exercises 11.8

Exercise 11.8-1
SFuivy, = 271/2[1 +P12] Uiy = 271/2[1,{1\/2 + Vluz];

AUy = 2’1/2[1 — Ppluyv, = Z’I/Z[ulvz — vyl
Exercise 11.8-2

IT'(B) Y| = a?a” [(aa” — bb*) + 2bb*] + 2aba*b*[aa* + bb*] + b*b* [aa* + bb*]
=d’a” +2(ad" + bb*) + b*b* = 1.
Exercise 11.8-3 (a)
R(¢ m) [U; Up Ui) =R(¢ m) U |x y z) = UR(¢m)lx y z) = UT' (B)fx y 2).
But

LS =I'(A) YU, Uy U_y) =T'(@A) YUk y 2).

Therefore I' (A)YU = Ur''(A), and so T'(A) = U1 (A) VU = U]LI‘l(A)(U)U.
(b) Take U from Exercise 11.5-3 and T'(A)Y from eq. (26), multiply the three
matrices in U'T! (A)U, and check your result with T'(A) in eq. (11.6.19).

Exercise 11.8-4 Forj=1, if m =0, then k=0 or 1, and with m’ =0, eq. (43) gives

(11112 i Lo (12 . i
Too = "5rmmor X @ (@ )= + ToonT <@ (@ )°b! (=)’
=aa* — bb".
Problems

11.1 Prove that the commutator [R(« 1), R(8 2)]=R(af3 3) —E, where 1, 2, and 3 are
unit vectors along OX, OY, and OZ, respectively. [Hint: Use eq. (11.3.10)]. Then use
eq. (11.3.19) to show that [/}, ] =1 I5.

11.2 Prove eq. (11.4.28), ¢, =[/'* — m(m+ 1)]"* exp (i).

11.3 Prove that eq. (11.5.16), (i/,,) =(—1)"w’,, is true for m =1 and m =2. [Hints:
Drop the j superscript since none of the equations involved depend on the value of ;.
Use ji uy to generate uy, u_y; substitute for j+ from eq. (11.5.7), when u] = —u_,
follows. To prove u5=u_,, proceed similarly, starting from f+u1 and then j,u,l.
You will also need J* = —J,, which follows from eq. (11.5.7).]

11.4 Prove the conical transformation, eq. (11.5.22). [Hints: The proof of the conical
transformation is not trivial. Your starting point is a figure similar to Figure 11.1,
except that the angle of rotation ¢ is now not an infinitesimal angle; n is the unit
vector along OQ; OR =r; and OR’ =r’. In Figure 11.6(a), define vectors Ar and s by
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A
v
Q
v
R’ q S
u -
R P u
R
(@ (b)
Figure 11.6. (a) Compare with Figure 11.1, in which ¢ is a small angle. RS =s; angle RQR’ = ¢;

r'=r+Ar=r+2s;u=nxr;RQ=v=n xu,so|v|=|u|. From (b), s = p (w/|u]) + g (v/|v]), where
p and ¢ are the components of s along u and v, respectively.

r =r+ Ar=r+2s. Write down expressions for p and q, which are defined in
Figure 11.6(b), and hence evaluate s and Ar.]

11.5 (a) Show that for the basis, eq. (11.5.40),

. 0
J=yZ
Y ox’
jo-Lto 2
=2 et (11.5.45)

jo_—i,0_ 9]
YT Mey Vo)

1 0? 0? 1 0? 31 0 0
2 _1]29% 20 g i il 11.5.46
! 4 [X Y 8y2] R {8}«9}/} T3 [x8x+y8y} ( )
(b) Prove that
B m) =j(j+ 1)|j m). (11.5.47)

11.6 (a) Make the assignment of @ and b given in eq. (11.6.20) in the matrix A of eq.
(11.6.12). Evaluate H' =A H A" explicitly and show (using eq. (11.6.14) for
{x' y 2} and {x y z}) that T'(A) becomes the matrix in eq. (11.6.21).
(b) Proceed similarly, starting from the assignment of @ and b in eq. (11.6.22), and
show that in this case the matrix A corresponds to eq. (11.6.23).
(c) Make the same two substitutions directly in eq. (11.6.19) and confirm that this
yields egs. (11.6.21) and (11.6.22).

11.7 Evaluate the complete matrix I'! from eq. (11.8.43) and show that this agrees with the
result for I'! in eqs. (11.8.26).
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Projective representations

Complex numbers

Complex numbers are numbers of the form a + 14, where a and A4 are real numbers and i is
the unit imaginary number with the property i>=—1. The ordinary operations of the
algebra of real numbers can be performed in exactly the same way with complex numbers
by using the multiplication table for the complex number units {1, i} shown in Table 12.1.
Thus, the multiplication of two complex numbers yields

(a+1i4)(b+iB) = ab — AB +i(aB + bA). (D)

Complex numbers may be represented by ordered number pairs [a, 4] by defining
[a, 0] =a[1, 0] to be the real number a and [0, 1] to be the pure imaginary i. Then

a+id = a[1,0] + 4[0,1] = [a,0] + [0, 4] = [a, A]; 2

2),() [a, A][b, B] = [ab — AB, aB + bA|. 3)

The complex conjugate (CC) of a + 14 is defined to be a — i4. The product of the complex
number [a, A] and its CC [a, — A] is

3) [a, A]la, —A] = [@* + 4%,0] = a* + 4%, (4)

which is non-zero except when [a, 4] is [0, 0]. Division by a complex number [a, 4] is
defined as multiplication by its inverse

@) fa, 47" = (@ + A7)V [a, 4], )
whence it follows that division of a complex number by another complex number yields a
complex number.

Exercise 12.1-1 Prove the associative property of the multiplication of complex numbers.

A complex number [a, 4] may be represented by a point P, whose Cartesian coordinates
are a, A in a plane called the complex plane C (Figure 12.1). There is then a 1:1
correspondence between the complex numbers and points in this plane. Let r, 6 be the
polar coordinates of the point P in Figure 12.1. Then

) [a, A] = [rcos®, rsinf] = rlcosf, sinf] =r(cosf +isind). (6)



12.1 Complex numbers 219

Table 12.1. Multiplication table
for the complex number units 1, i.

1 i

1 1 i
i i -1

=
i
1
i
1
1
|

]

[~ SSpEpE

Figure 12.1. Argand diagram for the representation of complex numbers in the complex plane C.

The distance from the origin O to the point P is » = (a> + 4%)”*, which is called the norm or
modulus of the complex number [a, 4]. The product of two complex numbers is as
follows:

(6) [(11, A]Hdz, Az] =nrnn [005(91 + 02) —+ i sin(91 + 92)} (7)

Since the exponential function may be defined everywhere in the complex plane, we may
expand exp(if) and, using the series expansions for the trigonometric functions, obtain
Euler’s formula

exp(if) = cos 6§ + isin 6, ®)

(6),(8) [a, A] = a + id = rexp(if). 9)

Answer to Exercise 12.1-1

[a, 4]([b, Bl[¢, C]) = [a, A][bc — BC, bC + cB|

= [abc — aBC — bCA — ¢AB, abC + caB + bcA — ABC];
([a, 4][b, B))[c,C] = [ab — AB, aB + bA]c, C]

= [abc — cAB — aBC — bCA, abC — ABC + caB + bcA].
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Quaternions

A quaternion ¢ is a hypercomplex number
q=a+q 41 + g4z + Q343 (1)

inwhich a, 4, A,, and A5 are scalars and q, g, and q; are three imaginary quaternion units
with the properties

=g’ =g’ =1 @)
Q=B ="qL B3 =8 = "B AU == 9 J3-

Thus the multiplication of quaternion units is non-commutative. In eq. (1) g is to be

interpreted as a compound symbol that stands for two different objects: the real quaternion,
3
identified with the real number a, and the pure quaternion ), q; A;. This is analogous to the
i=1
compound symbol a + i4 that denotes the complex number [a, 4] (Whittaker and Watson
(1927)).

Exercise 12.2-1 Show that multiplication of quaternion units is associative. [Hint: The
multiplication rules in eq. (2) may be summarized by q; q,=—1 if [/=m and
Q7 9n = Etmn Qn if [ #£m #n, where [, m, and n = 1, 2, or 3 and ¢, = +1 (—1) according
to whether /mn is an even (odd) permutation of 123.]

Quaternions are thus seen to form a 4-D real linear space R & R°, comprising the real
linear space R (basis 1) and a 3-D real linear space % with basis {q;, g2, q3}. An ordered
pair representation can be established for ¢ by defining

a=all; 0]=[a;0], q;=1[0;¢], i=123; 3)

3 3
(1),(3) g=a+ ;qui =[a; 0]+ >2[0; e]d;

i i=1
3
=la; 0]+ {0; ZeiAi]
i=1
=la; 0]+[0; Al =a; A], o
in which the vector
3
A= Z eiAi (5)
i=1

is a pseudovector. (Recall that the basis vectors {e; e, e;} are pseudovectors while
{4, A, Az} is a set of scalars.) The pure quaternion is

(0; A]=[0; 4n] = 4[0; n] = q4, (6)
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in which the unit pure quaternion q is related to the unit vector n by

(6) q=1[0; n]. (M

#),(3),(6).(7)  [a; Al =la; 0]+[0; A]=a[l; 0]+ 4[0; n] =a+q4, ®)

which expresses a quaternion ¢ =[a ; A] as the sum of a real number @ and the product of
another real number 4 with the unit pure quaternion q, in close analogy with the complex
number [a, A]=a +i4.

The product of two quaternions

(1.2.5.61@) [a; Allb: B] = <a s in,-> (b s qu_,-)
=

i=1
3 3 3
=ab+a) qB;+b) qdi— > AiBi+ ) q;q4:B;
j=1 i=1 i=1 i#
=[ab—A-B; 0] +[0; aB+ bhA + A x B]
Exercise 12.2-2 Show that q* = —1.

The quaternion conjugate of the quaternion ¢ =[a ; A] is

¢ =la; —Al (10)

4),(10),(9) qq =la; Alla; —A] =d* + 4%, 11
which is a real positive number or zero, but is zero only if ¢ =0.
(11 (44" = (@ +47)" (12)

is called the norm of ¢ and a quaternion of unit norm is said to be normalized. The inverse of
q is given by

(11) g ' =q")(@+ A7) =a; —A]/(d + 4°). (13)

If ¢ is normalized, ¢~ ' = ¢*. Division by ¢ is effected by multiplying by ¢ ' so that the

division of one quaternion by another results in a third quaternion,

4),(13),(9)  @1/92 = a5 Aillaz 5 —Az]/(a2® + 45%)
= [alaz +A1LAy; —a1A) +a A — Ay X Az]/(azz —|—A22)
= [a3 ; A3] =(q3. (14)

Equation (9) shows that g,/q, always exists except when g, =0, which would require
a, =0 and A, =0. The quaternion algebra is therefore an associative, division algebra.
There are in fact only three associative division algebras: the algebra of real numbers, the
algebra of complex numbers, and the algebra of quaternions. (A proof of this statement
may be found in Littlewood (1958), p. 251.)
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Answers to Exercises 12.2
Exercise 12.2-1 There are five possibilities for the product q; q,, q,..

(1) If I=m=n, (4, 92)9n = —qn = 9u(dx 9n)-
(i) Ifl# m 7é 1, (41 9n)n = €tmn Dn D = —E€mn> DA D) = A Emnt U= —Emnt = —Elmn-
(111) Ifl=m 7é n, (qm qm)qn = qm(qm qn) = QnEmniN = Emni€Emindn = —qn-
(iv) Ifl# m, n=m, (q; 4 = Etmndnlm = Etmn Enmi U=~ = 9i(Am 9n)-
(v) If'/ 7é m, 1 =1, (q; §) A = Eimn9nd = EtmnEnimAm = Qs Adm91) = A Emin An
= Emin€ntm9m = qm-

The inclusion of one, two or three negative signs in q; q,, q,, does not change the proof of
associativity so that the associative property of multiplication for the set {1 —1 q; —q;},
where i =1, 2, 3, is established.

Exercise 12.2-2 q2:qq:[0 ;][0 ; nN]=[0—n:n ; nxn]=-1.

Geometry of rotations

Rotations may be studied geometrically with the aid of the unit sphere shown in Figure 12.2.
The unit vector OP = n is the axis of the rotation R(¢ n); P is called the pole of the rotation,
and is defined as the point on the sphere which is invariant under R(¢ n) such that the rotation
appears anticlockwise when viewed from outside the sphere. It follows from this definition that
R(—¢ n) = R(¢ n); thatis, a negative (clockwise) rotation about n is the same operation as a
positive (anticlockwise) rotation through the same angle ¢ about —n, the pole of this rotation
being P’ in Figure 12.2. As a consequence, we may concern ourselves only with positive
rotations in the range 0 < ¢ < 7. For a positive rotation, P belongs to the positive hemisphere
h, whereas for negative rotations about n the pole is P/, which is the intersection of —n with

Figure 12.2. The curved arrow shows the direction of a positive rotation R(¢ n) about n. P is the pole
of this rotation since it is invariant under the rotation and is the point from which the rotation appears
anticlockwise when viewed from outside the sphere. From P’, which is the antipole of P, the same
rotation appears to be clockwise.
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the negative hemisphere —. P’ is referred to as the antipole of P. Equivalently (Altmann and
Herzig (1994)), the unit vector n rather than its point of intersection with the sphere could be
taken as the pole of the rotation. The disjoint hemispheres /# and —# shown in Figure 12.2
are appropriate for O(3), but for the point groups, which are subgroups of O(3), # and —#
may have to be discontinuous. An example will occur later in this chapter. Since a rotation
through — is equivalent to a rotation through 7 about the same axis, the antipole of the pole
of a binary rotation is not required. The poles of binary rotations must therefore all be
chosen within 4, even if this means that / has to be discontinuous. No pole is assigned to the
identity operation since for £, n =0 and ¢ = 0. The rotation parameter ¢n for E is therefore
zero and so the identity is R(0) rather than R(0 n), for the latter would imply an infinite
choice for (0 n) from the set {(0 mn)}. The pseudovector ¢n is a single rotation parameter, the
specification of which requires a statement of the rotation angle ¢ and the components of n,
ny, ny, n3, only two of which are independent. The choice of a set of poles obeys some
conventions, which ensure that the character x is a class property. The following two rules
have been adopted in the extensive tables compiled by Altmann and Herzig (1994).

(D) Under the operations of G = {g;}, the pole of g; must either be invariant or transformed
into the pole (not the antipole) of an operation in the class of g;.

(IT) If G contains a subgroup H then the choice of the set of poles made for G should be
such that rule I is still valid for H, otherwise the representations of G will not subduce
properly to those of H. ‘Subduction’ means the omission of those elements of G that
are not members of H and ‘properly’ means that the matrix representatives (MRs) of
the operators in a particular class have the same characters in H as they do in G.

The product of two rotations R(ac a) R(G b), that is, the effect of a second rotation
R(a a) on the rotation R(3 b), may be studied by observing how the pole of a rotation is
transformed by another rotation about a different axis, using a construction due to Euler.
The Euler construction is shown in Figure 12.3: a and b intersect the unit sphere at A and B,
respectively, which are the poles of R(a a) and R(3 b). (To aid visualization, A happens to
be at the N pole of the unit sphere, but this is not essential.) Rotate the great circle through A
and B about A to the /ef? (that is, in the direction of an anticlockwise rotation) by /2, and
again to the right about B (a clockwise rotation) through /2. Let the two arcs thus
generated intersect at C. Similarly, rotate this great circle to the right about A through
a/2 and to the left about B through /3/2 so that the two arcs intersect at C'. Then C is the pole
of the rotation R(av a) R(3 b) because it is left invariant by this pair of successive rotations.
(The first rotation R(S b) transforms C into C’ and the second rotation R(«v a) transforms
C’ back into C.) Let the supplementary angle at C be /2 (see Figure 12.3). Consider now
Figure 12.4 in which two planes OW and OV with the dihedral angle ¢/2 intersect along n.
The reflection o; in OW sends X into Y and a second reflection o, in OV sends Y into Z.
Then the symmetry operator that sends X into Z is the rotation about n through
@1+ 1+ Pr+ Gy =2(¢p1 + o) =2(¢/2) = ¢. Thus the product of the two reflections,
0,071, is equivalent to the rotation R(¢ m). In the Euler construction (Figure 12.3) planes
OCB and OAB intersect along OB =b. A reflection ¢, in OCB followed by a reflection
0, in OAB is equivalent to the rotation R(3 b). The planes OAB and OAC intersect along
OA = a. A reflection o3 in OAB followed by a reflection o4 in OAC is equivalent to the
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D

Figure 12.3. Euler construction which shows that R(« a) R(G b)=R( ¢). A, B, and C are the
respective poles of the rotations R(« a), R(3 b), and R(y ¢); R(5 b) leaves B invariant and R(« a)
rotates B into B'. The angle of rotation about C that sends B into B is ~. Angle BAC = /2 = angle
BACI; angle ABC=//2= ABC/; angle BCD =~/2 = angle DCB/; OA=a;0OB=b; OC=c.

0 / X
Figure 12.4. Angle XOW =angle WOY = ¢;. Angle YOV =angle VOZ = ¢,. Angle WOY + angle

YOV = ¢ + ¢ = ¢/2. Angles ¢, and ¢, are arbitrary as long as their sum equals ¢/2 , which is the
dihedral angle VOW.

rotation R(«v a). Therefore, R(ac a) R(B b)=0403 0,0, =040, =0(0OAC)c(OCB), since
the successive reflections o3 o, in the plane OAB cancel one another. The planes OAC and
OCB intersect along OC = ¢ with dihedral angle +/2. Hence the product o(OAC)o(OCB)is
R(7v ¢). Therefore, the product of the two rotations is

R(a a)R(3 b) = R(y ¢). (1

With the aid of the Euler construction, we have proved that the product of two rotations
R(a a)R(S b) is a third rotation R(y ¢), but we do not yet have explicit formulae for the
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(b)

Figure 12.5. Turns PP, which are part of (a) an equatorial great circle and (b) a general great circle.
Angle XOP; =angle P;0Y = ¢;; angle YOP, =angle P,OZ = ¢,; and ¢; + ¢, = ¢/2. Successive
reflections in planes normal to the arc PP, of the great circle through PP, (and containing OP; or
OP,, respectively) generate the rotation R(¢ n), which traces out the arc XZ equal to twice the length
of the turn PP, = ¢/2. The location of X is arbitrary, but the length of XZ is always equal to ¢. After
Biedenharn and Louck (1981).

rotation angle v and the axis of rotation ¢. These were first derived by Rodrigues (Altmann
(1986)) though we shall obtain them by a different method in Section 12.5.

The theory of turns

The essence of this theory (Biedenharn and Louck (1981)) will be described here because
of the connection it provides between rotations and the algebra of quaternions. The rotation
of a unit vector OP in configuration space can be followed by the path traced out by P on the
surface of the unit sphere centered on O (Figure 12.5(a)). A furn is defined as half the
directed arc traced out on the unit sphere by the rotation, and it is parameterized by the
ordered pair of points (P;, P») on the surface of the unit sphere. One of these points is
designated the fail and the other the head. A rotation is generated by a reflection first in the
plane normal to the arc at the tail P; and then by reflection in the plane normal to the arc at
the head P,. If the angle between these planes is ¢/2, then these two reflections generate a
rotation through ¢ (which is twice the arc length of the turn) about an axis n, which is the
intersection of the two planes (Figure 12.5(b)). Two turns are equivalent if they can be
superimposed by displacing either one along the great circle through PP,. (This is
analogous to the superposition of two equal vectors by displacing one of the vectors
parallel to itself.) We now consider the properties of turns.

(a) Binary composition in the set of turns {T} is taken to be addition, with the sum T + T,
being defined to mean “carry out T, first and then T;.” Choose either of the points Q
where the great circles through T, and T, intersect (Figure 12.6). Place the head of T,
and the tail of T at Q. Then the turn from the tail of T, to the head of T is defined to be
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Figure 12.6. Illustration of the procedure for carrying out the addition of turns T + T, defined to be
the turn from the tail of T, to the head of T;. The notation T, 4+ T; means the turn from the tail of T,
to the head of Tj; this result is not equal to T + T.

T+ T,. Figure 12.6 also shows that the addition of turns is non-commutative:
T+ T #T+ T,

(b) Theset of turns {T} is closed since the addition of two turns always produces another turn.

(¢) The addition of turns is associative. This may be verified by a geometrical construction
in the manner of Figure 12.6.

(d) The set of turns {T} contains the identity T¢, which is a turn of zero length.

(e) The inverse —T of a turn T is a turn of the same length as T on the same great circle
but of opposite sense.

Properties (a)—(e) are just those necessary to ensure that {T} is a group, called by
Biedenharn and Louck (1981) “Hamilton”s group of turns.”

Let QP be a diameter of the unit sphere; then, since great circles defined by Q and P are
not unique, all turns T, defined by pairs of opposite points are equivalent. Since T, can be
chosen on any great circle, it commutes with any turn T. The operation of adding T, to a
turn T is described as conjugation,

T=T,+T=T+T,. (1)

Turns of length 7/2 have some unique properties and are denoted by the special symbol E.

Exercise 12.4-1 (a) Show that Tf, = T,. (b) Show that E¢ = —E. (¢) Prove that any turn T
may be written as the sum E’ + E, where E and E' are each turns of length 7/2. [Hint: For
ease of visualization take Q, the point of intersection of E and E/, to be at the N pole and T
(therefore) along the equator. (The only necessity is that Q be the intersection of the normal
to the great circle of T with the unit sphere.) Take E from the tail of T to Q.]

Figure 12.7 shows three turns E;, E, and E; which sum to T,. The set of turns
{To T, E, E{ E, E§ E; ES} form a group of order eight which is isomorphous with
the quaternion group Q={1 —1 ¢q; —q, g2 —q> g3 —q3} with the mapping given by
the ordering of the terms in each set. Therefore
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Figure 12.7. Ey, E;, and E; mark out a spherical triangle which is the surface of one octant of the unit
sphere. This figure shows that E; + E, + E; =T,.

1, -1 — Ty, Tj=Tx; 2)
¢’=-1-E+E=T, (i=1273); 3)
-q=q — -E=E (i=123); “4

Gy =Em9y — Ei+En=emmE, (#m#n; mn=12,3). %)

Note that ¢, =+1 if [ m n is an even permutation of 1 2 3, but ¢, is the conjugation
operator if / m n is an odd permutation of 1 2 3. This is not inconsistent with the earlier
statement that ¢, = —1 if / m n is an odd permutation of 1 2 3 (because by eq. (12.2.4)
q7isq} = —q;). Remember that E; 4- E,, means perform E,, first, then E, (Figure 12.6). For
example (Figure 12.7),

B =—qq=1—E+E+E; =T, (6)

Exercise 12.4-2 (a) From eq. (5) q; @2=4q3, q1 3= — qp. Prove that E; + E, =E;;
E; + E; = E5. (b) Write down the mapping that corresponds to (q; q»)* and show that
this equals T .

The above analysis shows that the set of turns {Ty T, E; Ef}, i =1,2,3, provides a
geometric realization of the quaternion group and thus establishes the connection between
the quaternion units and turns through n/2, and hence rotations through = (binary rotations).
This suggests that the whole set of turns might provide a geometric realization of the set of
unit quaternions. Section 12.5 will not only prove this to be the case, but will also provide
us with the correct parameterization of a rotation.
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(@) (b)

Figure 12.8. (a) Solution to Exercise 12.4-1(c). (b) Solutions to Exercise 12.4-2(a) and (b):
E +E=Ej; B\ +E = -E=E (@1 @)’ —E +E; =Tx

Answers to Exercises 12.4

Exercise 12.4-1 (a) From the definition of conjugation T =T+ T,; therefore
T; = To + Tr = Tr. (b) E°=E +T,=—E. (c) See Figure 12.8(a).

Exercise 12.4-2 Sce Figure 12.8(b). (@) E; + E; = —E; = ES. (b) (q; @)’ = ¢ = -1 —
Ei+E, +E +E,=E; +E; =T,

The algebra of turns

Let m, p be the unit vectors from O to the points M, P that define, respectively, the tail and

head of the turn T of length |T|= Y, ¢;, and let n; be the unit vector along the axis of
rotation (Figure 12.9). Then T| =T(a;, A,) is described by the two parameters

ay =m-p = cos(}h1) (1)

and
A =m xp=sin(3¢;)n; (2)
(1),(2) ai> + A A= 1. (3)

Exercise 12.5-1 Write down T=T(a, A) for (a) |[T|=0 and (b) [T|==n. If T=T(a, A),
find (¢) —T and (d) —T°".

Figure 12.9(a) shows the addition of two turns T, + T, where T} is characterized by the
unit vectors m and p from O to the tail of Ty and the head of T}, respectively, and T,
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n

T 1¢1

.
S e

(a) Q

(©) S

Figure 12.9. (a) Addition of two turns T, +T;; OM=m, OP=p, OR=r, MP=T,, PR=T,,
MR =T, + T;. (b) Part of the plane of the great circle that contains T so that n; is normal to the
plane of m and p; OQ = q, where q is normal to the plane containing n; and m, which we write as
q L (n;,m). Note that OT = aym = cos(3 ¢;)m; OU = A; x m = sin(} ¢, )q. (c) Part of the plane
of the great circle that contains T, so that m, is normal to the plane of p and r;
OS =s L (n,p); OV = aop = cos(} ¢,)p; OW = Ay X p =sin(}¢,)s. These diagrams are for
angles ¢; and ¢, both positive.

similarly by p and r. Figure 12.9(b) shows part of the plane of the great circle that contains
T so that n; is normal to the plane of m and p, which we signify by n; L (m, p). Note that
A;=m x p is a pseudovector of magnitude sin(} ¢ ) along ny; then from Figure 12.9(b)

Al Xm = Sin(% (bl)q’ q 1 (nla m)’ (4)
p=am+A; xm, (5)
(5),(1),(2) p=(m-p)m+ (m x p) x m. (6)

Similarly, for T, =T(a,, A»),

ay =p-r=cos(3,), Ay =p xr=sinfeo,)ny, (7)
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and by the construction shown in Figure 12.9(c)

Ay xp=sin(3¢,)s, s L (my, p), (3)
r=ap+ A, xp, )
9),(5) r=a(am+A; xm)+ A; X (aym+ A; X m). (10)

Now the triple vector product
Ax(BxC)=B(A-C)—C(A-B)=(C xB) x A. (11)
Remembering that A; 1 m so that m.A; =0,

(11) (A2 X Al) xXm — (A1 'Az)m = Al(m'Az) — Az(m'Al) — (Al 'Az)m
= Al(m'Az) — (A1 'Az)m = A2 X (A1 X m) (12)

(12),(10) r=a(am+A; x m) +a;(A; x m) + (Az x Aj) x m — (A;-Ay)m
:m(alaz—Al-A2)+(a1A2+a2A1 + A, XAl) X m (13)
=asm-+ Az X m,

where

az =ajay — A1 - Ay, A3 = a1A) +arAl + Ay XAy (14)

Equations (13) and (14) show that the addition of turns
T, + T) = T(a2, Az) + T(a1, A1) = T(a3, As) (15)
corresponds to the multiplication of normalized quaternions
a2 5 Aollar 5 Ay] = [as ; As]. (16)

It follows that a furn is the geometric realization of a normalized quaternion, that the addition
of turns is the geometric realization of the multiplication of quaternions of unit norm, and that
the group of turns is isomorphous with the group of normalized quaternions. Furthermore,
egs. (1) and (2) provide the correct parameterization of a normalized quaternion as

(1, (2) q = [cos(30) ; sin(3¢)n], a7

which corresponds to a rotation R(¢ n) through an angle ¢, since a turn T was defined as
half'the directed arc traced out by the rotation R(¢ n) on the surface of the unit sphere. To
make contact with the work of Rodrigues a rotation R(¢ n) will now be re-written in terms
of new parameters [A ; A], called the quaternion or Euler—Rodrigues parameters, as

R(¢ m) — [ ; A], L=cos(3¢), A=sin(3¢)n, (18)
where A is a scalar and A is a pseudovector. The multiplication rule for two rotations

[A2 5 Az],[M ; Aq]isthen the quaternion multiplication rule eq. (12.2.9) or, equivalently,
eq. (14) above,



12.5 The algebra of turns 231

M2 5 Aol 5 Ad] = [A3 5 As), (19)
with
M=Mh—A"A, s=MA+MA +A XA (20)

We have now introduced four parameterizations for SO(3): R(¢ n) (Section 2.1);
R(a, (8, ), where «, (3, v are the three Euler angles (Section 11.7); R(a, b), where a, b
are the complex Cayley—Klein parameters (Section 11.6); and the Euler—Rodrigues para-
meterization [A ; Al

Exercise 12.5-2 Deduce the relations

a=A—1iA;, b=—A, —iA.. 21
[Hint: Recall the homomorphism of SU(2) and SO(3).]

Exercise 12.5-3 Show that as ¢ — 0, [A ; A] tends continuously to the identity [1 ; 0].
Exercise 12.5-4 Show that two rotations through infinitesimally small angles commute.

Exercise 12.5-5 Prove that the product of two bilateral binary (BB) rotations (¢; = ¢, =,
n; L ny) is a binary rotation about n3 L (n;, ny).

One immediate application of the quaternion formulae (19) and (20) for the multi-
plication of rotations is the proof that all rotations through the same angle are in the
same class. To find the rotations in the same class as R(¢ mn) we need to evaluate

R(O m)R(¢ m)R(O m) ", (22)
where # m € {¢ n}. In the quaternion representation,
(22) [cos(16) ; sin(20)m][cos(}¢) ; sin(}@)n][cos(—16) ; sin(—16)m]
= [cos(16) ; sin(10)m][cos(}¢) cos(L6) +sin(}¢) sin(}6)n-m ;
—cos(1¢) sin(}6)m + sin(} ¢) cos(36)n — sin(} ¢) sin(}6)nxm]
= [cos(3¢) ; sin(3¢){(cosO)n + (sinf)mxn + (1 — cosf)(m-n)m}]; (23)

= [cos(3 ) ; sin(J¢)n], n' =R(6 m)n, (24)

which is the quaternion representation of R(¢) n’). The expressionin { } ineq. (23) will be
recognized from the formula for the conical transformation (eq. (11.5.22)) as the effect of
the rotation R(¢ m) on the vector n. Equation (24) shows that in SO(3) all rotations
through the same angle ¢ are in the same class. In other words, we have proved that
conjugation leaves the rotation angle invariant but transforms the rotation axis n into the
new axis n’ (and therefore the pole of the rotation P into P’).
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Answers to Exercises 12.5

Exercise 12.5-1 (a) If [T|=0,a=1, A=0and T=T(1, 0)=T,. (b) If [T|=7, a=—1,
A=0and T=T(-1, 0)=T,. (c) —T(a, A)=T(a, —A). (d) —T°(a, A)=—T(—a, —A)
=T(—a, A).

Exercise 12.5-2

(11.6.9),(11.6.12),(18) a = cos(3¢) —in.sin(J¢) = L —iA.,
b= —(n, +iny)sin(}¢) = —A, —iA,.

Exercise 12.5-3 [L ; A] = [cos (J¢) ; sin(}¢)n]. As ¢ — 0,

cos(lo) =1—(g)/2l... =1, sinlg) =1o— (Lg)'/31... =0,
sothat[A ; A]—[1 ; 0]=E.

Exercise 12.5-4 Inthe product [A; ; A(][As ; As]=[A3 ; As],tofirstorderin ¢, A =1,
Alz%qﬁlnl; Mm=1, Azz%qﬁznz; =1, A3:%¢1n1+%¢)2n2, whence it follows that
the two rotations R(¢; n;), R(¢, my) commute when ¢;, ¢, are infinitesimally small
angles.

Exercise 12.5-5 For BB rotations ¢y =¢>, =7, A; =A, =0, A;- A, =n; -n, =0, and the
product of two BB rotations is [0 ; n; X n;]=[0 ; n3], n3 L (n;, ny).

Projective representations

The double group G was introduced in Chapter 8 in order to deal with irreducible
representations (IRs) that correspond to half-integral values of j. Because

X;(R(¢+2m n)) = (—1)x;R(¢ n), (1)

R(2n z)#E for j equal to a half-integer. Bethe (1929) therefore introduced the new
operatorE = R(2n z) # E, thus doubling the size of G = {g;} by forming the double group

G= {gi, &} ={g} @ {&} 8 = Egi~ (2)

The IRs of G comprise the vector representations, which are the IRs of G, and new
representations called the spinor or double group representations, which correspond to
half-integral j. The double group G contains twice as many elements as G but not twice as
many classes: g; and g; are in different classes in G except when g; is a proper or improper
BB rotation (that is, a rotation about a binary axis that is normal to another binary axis), in
which case g; and g; are in the same class and x(g;), (xg;) are necessarily zero in spinor
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representations. Operations which satisfy this condition are called irregular operations, all
other operations being termed regular (Altmann and Herzig (1994)). The distinction is
important, since the number of spinor (or double group) representations is equal to the
number of regular classes in G.

Example 12.6-1 The point group C,, ={E C, oy oy}, where oy =1C>y and oy, = ICyy.
Because x, y, z are mutually perpendicular axes, all operations except E are irregular and
there is consequently only one doubly degenerate spinor representation, Ei,. Contrast
Con={E Cy, I oy} in which oy, is 0, =1C,, and thus an improper binary rotation about
z. There are therefore no irregular operations, and consequently there are four spinor
representations which occur in two doubly degenerate pairs Ey, , and E,, , because of
time-reversal symmetry (Chapter 13). In Cs, there are three improper binary axes but they
are not mutually perpendicular.

Example 12.6-2 The classes of Tqare {E 4C3 3C, 6S; 604}. The three binary rotations
are BB rotations. The six dihedral planes occur in three pairs of perpendicular improper BB
rotations so both 3C, and 604 are irregular classes. There are therefore N, =5 vector
representations and Ny =3 spinor representations.

Exercise 12.6-1 Determine the number of spinor representations in the point group Ds,.

Inan alternative approach, no new elements are introduced; so G is not altered, but instead
there is a new kind of representation called a projective representation. In a projective
representation (PR) the set of MRs only closes if a numerical factor called a projective
Jactor (PF) and written [g; ; g;] is introduced so that I'(g)I'(g) =[g; ; g I'(gig). The
advantages of this approach are that the group, its multiplication rules, and class structure
remain unchanged. Of course, we need a method of finding the PFs for any given group.
Once these are determined, the spinor representations may be used in the same way as vector
representations, except that when two MRs are multiplied together, the resulting matrix has
to be multiplied by the appropriate PF. One potential difficulty is that the character of an MR
ina PR is not necessarily a property ofits class. But with the conventions applied in choosing
the poles of rotations, the character is a class property for all point groups (Altmann (1979)).
With the conventions to be applied in the calculation of PFs (which will be given shortly) and
the pole conventions used in Section 12.3, the orthogonality relations, and their conse-
quences, are also valid for unitary PRs except for one, and that is that the number of IRs N, is
not equal to the number of classes. However, the relation that the sum of the squares of the
dimensions of the representations is equal to the order of the group (which followed from the
orthogonality theorem) holds for spinor representations as well as for vector representations.
Consequently,

d k=g (3)

where s=1, ..., N, enumerates the spinor representations (Altmann (1977)).
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We begin by reiterating the definition of a PR and listing some conventions regarding
PFs. A projective unitary representation of a group G = {g;} of dimension g is a set of
matrices that satisfy the relations

P(gi)TF(gi) = F(gi)r(gi)T =E, 4)

D(g)T(g) =lgi; gl (g g) Veig €G. (5)

The PFs[g; ; g;]areasetof g* complex numbers, which by convention are all chosen to be
square roots of unity. (For vector representations the PFs are all unity.) PFs have the
following properties (Altmann (1977)):

(a) associativity

85 gllgigis &l = lgi s g &llg s &l (6)
(b) standardization
[E;E]=[E;g]l=[g; E]=1 Vg€G, @)
(c) normalization
gis gl'leii gl=1 Veng €G, (®)
(d) symmetry
gig'l=lg': gl VeeG ©)

The set of PFs {[g; ; g;j]} is called the factor system. Associativity (a) and the symmetry of
[g: ; g '1(d)are true for all factor systems. The standardization (b) and normalization (c)
properties are conventions chosen by Altmann and Herzig (1994) in their standard work
Point Group Theory Tables. Associativity (a) follows from the associativity property of the
multiplication of group elements. For a spinor representation I" of G, on introducing [i ; j]
as an abbreviation for [g; ; gjl,

“4) (g {T(g)T(ex)} =T(gi)[J; kT'(g &)

= [i5 jkl[J 5 KIT(gi & k), (10)
4) {T(g)T(g) T (gr) = [i 5 j1T'(gr g)T (&)

=i Jllij; KT (gi g gk)s (11)

whence eq. (6) follows.

From the pole conventions in Section 11.3 it follows that R(—¢ n) = R(—¢ m), and
this restricts the rotation angle ¢ to the range 0 < ¢ < &, which, in turn, restricts the range
of the quaternion or Euler—Rodrigues parameters to

h=cos(}¢) >0, |Al=sin(}¢)>0. (12)
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Parameters that satisfy eq. (12) are referred to as standard quaternion (or Euler—Rodrigues)
parameters. Note that A = sm( ¢)n belongs to the positive hemisphere % for positive
rotations and to —/ for negative rotations. For binary rotations, ¢ =n, and so A=0, A=1,
and A belongs to 4 because there is no rotation R(—n m). Therefore for any point group,
h must be defined so as to contain the poles of all positive rotations, including binary
rotations. Due to the range of ¢, standard quaternion parameters must satisfy either

A>0 (0<¢p<m)orA=0, Ach (¢p=n). (13)

The PF for the product of any two rotations may now be determined using the quaternion
representation.

Example 12.6-3 Determine the PF for the multiplication of a binary rotation with itself.
For R(m m), cos(% m) =0, sin(% 7) = 1 and the product C,,, C5, in the quaternion repre-
sentation is

O0;n]0;n=[0-nn;0+0+nxn =[-1;0 =-1[1; 0]; (14)

4),(14) T(Con)T(Con) = [Con ; Con]T(E) = —T(E), [Can; Co] = —1. (15)

Example 12.6-4 Determine the PF for C, C5,.
For C;,, ¢ =2mn/3 and
Vap=m/3, M =1 A =Viz=V3001] (16)
For C5,, ¢ =2n/3 and

ho=1/3, M=V, Ay=V¥Z=V3¥,00T1], (17)
(16) s Al s Ad) = [Va s V3,00 0 1]][ V25 V3,00 0 1]]

= [*—3/4, V3,[00 1” + V3,000 1] = [—1/2 V3,00 0 IH
—[V23 V3L[001])] = =[V2; v3hZ] = —[h2; Ad],

(18)
(18),(17) [(C3,)T(C3,) = —T((C5,)), [C5, 5 C3,] = —1. (19)
Example 12.6-5 Determine the PFs for [C,, ; Coyx] and [Cox ; Cy,l.
For R(n z)
M=0, A, =z=100 1], (20)

and for R(m x)

h=0, A, =x=[100] 1)
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Table 12.2. Multiplication table for C..

The multiplication table for the subset {£ C,} is not
closed, showing that C, is not a subgroup of C.

C2 E Cz E 62

E E G, E c,

G &) E [ E

E E C, E G

62 Ez E C2 E

(20),(21) (0;[001]J[0; [100]]=[0;[010]]=[0;y]; (22)
(22) ['(Cy)T(Cox) =T(Cyy), [Coz s Col =15 (23)
(21),(20) (05 [100][0;[001]]=[0;[0T0]]=-[0;y]; (24)
(24) F(CZX)F(CQZ) = —F(Czy), [sz ; sz] = —1. (25)

Equation (15) applies to PRs, and the multiplication rule it obeys is not one of G={E C,}
in which C, C; =E. The only way to maintain a 1:1 correspondence between R and I'(R)
without introducing PFs is to enlarge the size of G={g;} to G={g;} ® {g;}; G is the
double group of G, but G is not a subgroup of G since the multiplication rules of G are
different from those of G; G is a covering group of G because the vector representations of
G subduce to the PRs of G by omitting the MRs of {g;}. The quaternion representation
of E is [—1 ; 0] and so if R has the parameters [A ; A] then the parameters of R =ER are
[-1; O[]~ ; Al=[—A ; —A]. Thus the sign of the quaternion parameters shows
whether the product of two operators is R or R. This rule is exemplified in Table 12.2,
which gives the multiplication table for C,. However, it is not necessary to use the covering
group to find spinor representations since they may be found directly using the quaternion
representation.

Inverse and conjugate in the quaternion parameterization
The inverse of g; g; ' is defined by
g 'g=gg =E (26)

In the quaternion representation, using the abbreviated notation A.(g;) — A;, A(g; ™) — A1,
and similarly for A,
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i 5 Adl[h 5 Aa] =[1; 0]

26
( ) = [7\47\41’71 - Ai .Aifl 3 7\11‘Ai71 + )\,iflAl’ + Ai X Aifl]; (27)

27 Me™') = Mg, Algi™") = —Alg). (28)

If ¢ # 7 so that g; is not a binary rotation and A(g;) > 0, then, from eq. (28), A(g; ') > 0 and
its parameters are standardized (see eqs. (12) and (13)). For ¢ ==, M(g;) =0, and A(g;) € h.
But for ¢ =7, g; ' = R(—n n), and —7 is out of range. However, g; ' is then equivalent to
g, which has been chosen to have standard parameters by ensuring that A(g;) € 4 for all
binary rotations.

From the quaternion representation of g, g; g, ', when g, = R(6 m) and g; = R(¢ n),

(12.5.23) Mee gige ") s Algr gige )] = Pinr 5 Agig] (29)
= (1 =2A0)A; + 20 Ax X A + 2(Ax . A)As]. (30)

The scalar parts of egs. (29) and (30) coincide because conjugation leaves the rotation
angle invariant. We now consider three cases:

(1) If g; is not binary, the range of — ¢ is 0 < — ¢ < 7/2 , and therefore
(13) Miik—t = A; > 0 is standard. (31)

(2) If g;is binary (¢ = 1) but g; gz are not BB, A; ;-1 = A; = 0, and standardization can be
ensured by choosing / such that

Akik" € h (7\,, = 0) (32)
(3) Ifglgk are BB’ )\‘[: )\‘k: 09 Alz :A/\% = 13 Aia Ake ha Ai-Ak: 07
(30) A = (1 =2ADA; = —A;, Agjpr € —h. (33)

Equation (33) shows that the conjugate pole of g; is the antipole of g;, a situation that arises
only when g;, g; are BB rotations.

The characters

From the definition of a class %(g;) = {gx g & '} V & € G (with repetitions deleted) it
follows that for vector representations

xgrgig ) =Trl(g g & ") =TrT(g " g &) = x(g)- (34)

For spinor representations (in abbreviated notation, where k' means g, ")
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x(g & gk‘l)—TrT(gk gig)=Ilk; ik "] TrT(g0)T(gi g ")
= ks ik s )T TeT(g )F(gt) (@)
=lk; ik ] [ k™ ] TrF( kl)r(gk)r(gi)
=[k; ik '|7'i; KK k) TeT(E)D ()
= [k ik iy k)UK KIE 5 g TrT(g)
= (ks ik )7 TN R S KT () (35)
=ik Kk 17 x() (36)

on using associativity twice. Reverting to full notation,

(36) e gg ) =lg g alle s g x(@) 37)

Exercise 12.6-2 Complete the derivation of eq. (36) by filling in the steps between
egs. (35) and (36). [Hint: You will need to use associativity twice.]

In evaluating the PF in eq. (37) note that the conjugation operation g, g; g ', orkik ',
is to be regarded as a single operation. The quaternion parameters A, A for the product of

grgi g | with g are
Meivir = EMihe — A Ap — 2A2 A Ag + 2A; - AAD)
= +(Mihi — Ai . Ap); (38)

Apiirk = Tl 4+ M{ A — 2A0A; + 20 A X Ay 4 2(Ag . A)ALY + As x Ay
—2A7A; X A + 20 Ar X A X Ay (39)
= :l:p\,lAk + }\,kAl' + Ak X Al]

For the product g; g;,
Mi = Mhi — Ax . Ay, (40)
Ak = M + Dl + Ay x A, (41
(37) — (41) x(ge g g") = £x(gi)- (42)

Provided 4 has been properly chosen to contain all conjugate binary poles, the negative sign
will arise only when g, and g; are BB, in which case g, g; g« ' =g:, and eq. (42) shows that
X Vvanishes.

Direct product representations

Given M = G ® H so that M = {m;}, where my=g; h,=h; g;,and PRs "' of Gand I'* of H,
so that
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()T (g) = g5 &I (gi &), DX (h)T%(he) = [y 5 BT (ihy),  (43)
it may be shown that
D (gihy) = [gi 5 b~ 'T (gi) @ T2 (y) (44)
are PRs of M with PFs
@ity goh] = lgis gllhy 5 hollgi g s Wikllgi s m) gy s ) (45)

Proof In the abbreviated notation for PFs

T (gD (gohe) = [i5 ] ' [p 5 7] {T (1) @ T2 () H{I (g) ® T2 (hy)}
=i ps 17T ()T (gp)} @ {T2(h)T?(hy)}
=i s 7 Pl T (g1 gp)} @ {T2(hy By)}
(44) =i 17 s A7 Pl s Alip 5 T (2igphihe). (46)
But
T2 (i) (gphr) = [if ; rIT (igp hyhr); (47)
(46), (47) s prl=1is pllis AAli: A7 s 717 lip s ),

which is eq. (45) in the abbreviated notation. In the event that I'!, I'? are two different PRs
of the same group G with different factor systems a and b so that
a(8)T3(gp) = i3 plT5(gign)s T(e)Th(gp) =[5 plyT3(gigp) (48)
then the direct product (DP)
-l g2 (49)
is a PR with factor system
i pl=1[i; plli; Pl (50)

The proof of eq. (50) is similar to that of eq. (45) and is assigned as Problem 12.9.

Answers to Exercises 12.6

Exercise 12.6-1 D3, = {E 2C; 3C, oy, 255 30}, where 0y, =1C>, 0,=1C,", C, L (C,
C,'"). Thus the improper binary axis C is normal to the 3C,’ proper binary axes and the
three improper C,” binary axes. There are, therefore, three irregular classes oy, 3C5/, and
30,. There are six classes in all and therefore six vector representations (N, = 6). There are
three regular classes and therefore three spinor representations, each of which is doubly
degenerate since 23 P=22+22422=12=g.

s=1"s
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Exercise 12.6-2
GB5) [y ik 7 iy kT K R = ks k) s kN s KT K kA
= [k k™7 ko kT ki K[k i k]!
= [kik™"; K]k ; i,

which proves eq. (36).

Improper groups

The group O(3) comprises all proper and improper rotations in configuration space R>. It is
obtained from the DP

0(3)=S0(3)®C;, C;={E1I}. (1)
Since [ I=E, for PRs
(T = [ 5 1T(E). @)
With the spinor basis ( u v|
(11.8.13) [[; I] = —1 (Cartan gauge), 3)
(11.8.14) [I; I] = 41 (Pauli gauge). 4

The PFs for the other three products EE, EI, IE are all unity because of standardization,
eq. (12.6.6). Irreducible PRs that are related by a gauge transformation may be converted
one into the other by multiplying the characters for each class by a specific phase factor.
Such a gauge transformation does not alter the energy eigenvalues, so, for that purpose,
gauge equivalence may be ignored. However, a choice of phase factors may have other
implications. Character tables for the PRs of the point groups are generally given in the
Pauli gauge (see Altmann and Herzig (1994), equations (13.13) and (13.17)). Table 12.3
shows the multiplication table for C; as well as the factor tables (that is, the set of PFs
{[g; ; g} for each PR) and the character tables in both the Cartan gauge and the Pauli gauge.
The matrices I'(/) in eq. (11.8.13) provide us with two inequivalent reducible PRs of C;:

S [ e |

where I's =A@ A1pg T'a=A1, @Ay, (Table 12.3). If these two IRs are each
multiplied by the phase factors 1 (for £ ) and i (for /) (a gauge transformation from the
Cartan gauge I'(/) = — 1 E,, to the Pauli gauge I'(/) = E,) then they are transformed into the
IRs Ag, A, as shown in Table 12.3. The apparent simplification that results from the use of
the Pauli gauge has disadvantages. The fact that in PRs the inversion operator / behaves just
like the identity E (see eq. (11.8.16)) is in sharp contrast with our treatment of vector
representations in which / means /, a distinction in O(3) that applies to all the improper
point groups that are subgroups of O(3). The choice of gauge is important when forming
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Table 12.3. Multiplication table, factor tables, and character tables for the point group C,.

u° is the spherical harmonic for j =0 (a scalar); #° is the pseudoscalar 2~ "(u;v, — vyu5)
(see egs. (11.8.11) and (11.8.15)); u = |V, Vo), v =1V, —V,).

Multiplication table
G, E I
E E 1
I 1 E
Cartan gauge
Factor table Character table
{lg: s g1} E I G E I basis
E 11 A, 1 1
I 1 -1 A, 1 -1 &
Al/2g 1 —1 u
Al 1 i u*
Pauli gauge
Factor table Character table
tlei s gl} E 1 G E I j=0 j=1,
E 1 1 " 1 u’ u
I 1 1 A, 1 - i u*

tensor products, as the reduction of the DP basis in eq. (11.8.15) into a vector and a
pseudoscalar depends on the two spinors being in the Cartan gauge (see eq. (11.8.14)).

12.7.1 Factor system for O(3)

The elements of O(3) =SO(3) ® C; are my=g; h; , where g;€ SO(3) and ;€ C;={E I}.
The MR of my, is
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T(m) = [gi 5 h) 'T(g:) @ T(hy), (6)

and the factor system for this representation is

(12.6.45) [myc 5 mg] = [gih; ; gphy]
“ e gl Al e b))
where h; and &, € {E I}. Because of standardization,
g El=[E; gl =[E; ] =115 El =1, g € S0(3). (®)

In the Cartan gauge [/ ; I] = —1 and in the Pauli gauge [/ ; I] = 1. Consequently, the only
remaining PFs to evaluate are those involving I, namely [g; ; I]and [/ ; g;], assuming the
factor system for SO(3) to be known. Because the pole of a rotation is invariant under the
inversion operation,

lgi; I=1[;g]=1 Vg €S0(3). )]

This is because inversion transforms the point P, which is the pole of g;, into its antipole P,
but at the same time the sense of the rotation is reversed so that P’ is in fact the antipole of
I g; and P remains the pole of the improper rotation / g;.

(8), (9) [g, ) hj} =1 \4 g € 80(3), I’lj S Ci, (10)

(10),(7),(8) (gihj ; gphr] = [8i 5 &l 5 he] (Cartan gauge), Y
where [A; ; h,]==1, the minus sign applying only when 4, 4, are both /. In the Pauli
gauge, [/ ; I1=1and eq. (11) becomes

lgitj ; gphr] = [gi 5 ] (Pauli gauge). (12)

We may now consider the character theorem for the PRs of improper point groups, which
are all subgroups of O(3), with factor systems defined by eqs. (11) and (12) above. Using
abbreviated notation for PFs,

(12.6.36) X(mg mge mg™)y = [s ks slfs 3 K" x(gi)s (13)
mi = gi h mg=gyh,=h.g, (hj,h, =Eorl), (14)

(14) mymgm;t =g, hem b, g, =g, mi g,
=g ehg =g (15)
(15),(13) X(mgmem™ ) =[pip jiprilprs ifl x(m), (16)
(11) or (12),(16) X(my me m7)y = [pip™; plip; i x(me), (17)

which holds in either the Cartan gauge or the Pauli gauge. For the point groups in egs.
(12.6.37) and (12.6.42)
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pip™ ;s pllps 7 = =1, (18)

the negative sign applying only when g;, g, are proper or improper rotations about BB axes
and therefore when my, , m, are both proper or improper BB rotations. Except for these
irregular cases

(17),(18) X(mg my mi7') = x(my) (19)

and €(my,), called a regular class, is given by the conjugates of m, (with repetitions deleted)
as for proper point groups. When g;, g, are rotations about proper or improper BB axes and
therefore commute,

(15) mg my my~' = g & ng1 hj = gi hj = my. (20)
In these irregular cases the negative sign applies in eq. (18) and
(17), (18),(20) x(mg my m;') = —x(my) =0 (irregular classes). (21)

Thus for improper point groups that are formed by the DP of a proper point group with C,,
the character is a class property which is zero for all irregular classes, namely those formed
from rotations about proper or improper BB axes. All other improper point groups are
isomorphous (~) with a proper point group and have the same characters and representa-
tions as that proper point group. For example: C,, ~ D5; Dyq~ Cyy ~ Dy.

The irreducible representations

We now have all the necessary machinery for working out the matrix elements IY,,, in
the MRs of the proper rotations R in any point group for any required value of j. The I%,,,
are given in terms of the Cayley—Klein parameters a, b and their CCs by eq. (11.8.43). The
parameters a, b may be evaluated from the quaternion parameters A, A for R, using

(12.5.21) a=A—iA.,  b=—A, —iA,

' _ (D
a'=h+iA;, (=b*)=A, —iA,.

Improper rotations are expressed as /R and for j an odd integer the basis is ungerade so that
the matrix IY(a b) must be multiplied by(—1)”. For half-integral j in the Pauli gauge the
matrix for IR is the same as that for R. The sum over kin eq. (11.8.43) runs over all values of
0 <k<j+m for which n in (—n!) is <1 (0! =1). Certain simplifications occur. When
j=0,m=m" =0, so k=0, the basis is u8:|0> and

(11.8.43) Mab)y,=1 VREG, ()

that is, the totally symmetric representation. Cyclic point groups involve rotations about z
only, so that A, A, are zero. Therefore b = 0, the matrix is diagonal, and all bases are 1-D.
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Because b = 0, the only non-vanishing matrix elements I?,,,, are those for which k= 0 and
m' = m, giving

(11.8.43) r

m'm

=at" (a*)jim Omm (Cha)- (€)

Dihedral groups D, consist of the operators C,, and nC,,,’, where m is perpendicular to z.
For these C,’ rotations A =cos(n/2)=0 and A, =0, so that a=0, &" =0, and the expo-
nents of @, a* must vanish,

(11.8.43) jAm—k=0,j—m —k=0=m=—m, (4)

(4), (11.8.43) r

m'm

_ b/7;11(_b*)/.+m 6m’,—m (sz, mJ_n) (5)

Exercise 12.8-1 Justify the remark above eq. (4) that, in order for the matrix element to
remain finite, the exponent of @ must vanish when a is zero.

Only the cubic or icosahedral groups contain operations for which neither a nor b is
zero. When a#0 and b#0, then when m' ==+ and m =+, to ensure non-vanishing
factorials in the denominator, £ > 0 and

(11.8.43) itm' =j, j—m —k=—-k=k=0; (6)
(11.8.43) ifm = —j, j+m—k>0and —j—m+k>0: )
(7 k=j+m (m=-j). (®)

P i a? ¥ m =j

m=j m=—j

The matrix IV in eq. (9) is not necessarily irreducible so this must be checked. It follows
from egs. (3) and (5) that, for dihedral groups, when m =}, the basis (|; ) | can transform
only into itself or into {|j — ) |. For these groups therefore, the matrix in eq. (9) assumes a
particular importance. The general case includes j = 1/2, in which case

©) vl (10)

a

An alternative to determining a and b is to use the complex quaternion parameters p, 7
defined by

p=A+iA, T=A+1A, a1

(1,11, 10) v 2= (12)

—ir  p
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Example 12.8-1 Determine the IRs and the character table for the point group D;. Hence
find the IRs of Cs,.

D; ={E 2C; 3C,}. There are no BB rotations so that the groups both consist of three
regular classes. There are therefore three vector representations (V, = N.) and three spinor
representations (Ng= N,.=N.). The dimensions of the N, vector representations are
{I,} ={112} (because >_I? = g = 6) and of the N, spinor representations also {/;} = {1
12} (because > 12 =g = 6). Figure 12.10 shows the xy plane (# = 7/2) in the unit sphere
and the location of the three binary axes a, b, c¢. The positive half-sphere % is defined by
either

0<60<m/2 (13a)
or
0=mn/2 (13b)
and
—n/6<p<m/6ormn/2 <p<5n/60rTn/6<p<3n/2, (13c)

a choice that ensures that the pole conventions are observed not only for D3 but also for Dg and
for C3,={E 2C; 30}, 30, = {0q 0c 01}. (The pole of IC,,, is the same as the pole of Csy,.)
Furthermore, it is a choice that ensures that during a reduction of symmetry from D¢ to D5 the
character theorem is preserved in D3, something that is not necessarily true for other choices of
h (Altmann (1986)). The quaternion parameters for the operators of D5 are given in Table 12.4
along with the rotation parameter ¢ n. Remember that 0 < ¢ < so that the sign of ¢ n
depends on whether n lies in / or — 4 as defined by egs. (13). The parameters for oq, 0., o7,
where oy, means reflection in the plane normal to m, are also given in the table to enable
later discussion of Cs,,. Unit vectors d, e, f are defined in Figure 12.10. Multiplication tables
for D3 and Cs, are given in a compact form in Table 12.5. As we have often stressed, a
diagram showing the transformation of the projection on the xy plane of a representative
point on the surface of the unit sphere is an invaluable aid in determining the group

Figure 12.10. The xy plane (6 = 7/2) of the unit sphere. The section of the positive half-sphere defined
by eq. (12.8.13) is shown by the shaded regions (which include the tails of the curved arrows but not
their heads). Poles of the proper rotations C,,, C,yp,, and C, are shown by filled digons and the poles of
the improper rotations /Cy,,, m =d, e, f, are indicated by unfilled digons.
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Table 12.4. Rotation parameters ¢ n or ¢ m, real (A, A), and complex (p, T) quaternion
parameters, and the Cayley—Klein parameters a, b for the operators R € Dj.

Also given, for future reference, are the parameters for {oq o, o¢}, where o, =I1Ch,, m
normal to n. Since the pole of a rotation is invariant under inversion, the parameters for
1Cy, are those for Coyy,. The unit vectors d, e, f are defined in Figure 12.10.

D; ¢ nor m A A p T a b
E 0 [000] 1 1 0 1 0
Gy " 23 [001] 1/, [o 0 V3] g 0 e 0
Cs. 2m/3 [00T1] Y, 00 — V3, " 0 € 0
Coa n [100] 0 [100] 0 1 0 —i
Cap n (<2 V3, 0] 0 [~ V3, 0] 0 —& 0 i
Cae n (=12 =3, 0] 0 [, V3, 0] 0 - 0 i
oq T [010] 0 [010] 0 i 0 -1
Oe “ (3, =V, 0] 0 [/, =1, 0] 0 —ie’ 0 €
It n V3, =1/, 0] 0 V¥, =1/, 0] 0 —ie 0 &

A= cos(% ), A= sm( om, p=A+i A, T=AH A, a=h—1A.=p", b=—A, -1 A, =—iT",
e=exp(i n/3).

multiplication table. We then multiply the quaternions for g,, g, € G (from Table 12.4); the
result is equal to the quaternion for the product g, g, (from Tables 12.5 and Table 12.4)
multiplied by a numerical factor which is [g, ; g]. In this way we build up Table 12.6.

Exercise 12.8-2 Determine the PFs [C5,T ; Cyp] and [oe ; oyl

When j =0, the basis u)=|0 ) generates the totally symmetric representation I'; in the
first row of the tables for D3 and Cs, in Table 12.7. Next, the matrices of the standard
representation I'”*(p 7) for D5 and Cs, (see eq. (12)) are written down using the complex
quaternion parameters from Table 12.4.

Exercise 12.8-3 Write down the matrices of the standard representation for oq, oe, 0.
[Hint: Use the Pauli gauge.] Show, when (a) g, = Cs, ", g, = Cop, and (b) g, = 0, g, = 07,
that the product I'(g,)I'(g,) =g, ; gll'(g, g), with g, g, and the PF [g, ; g] as given in
Tables 12.5 and 12.6.

Because Dj is a dihedral group, all its representations may be generated from egs. (9)
and (10) using the standard representation in Table 12.7. These representations generated
in this way are also shown in Table 12.7. For the reflections (which are also in Table 12.7),
one uses o, = IC,p, and evaluates first the matrices for C,,,, where m =d, e, or f. For the
vector representations, a matrix I'(C ,m) has to be multiplied by (—1Y to give that for o,
but for the PRs no change is required in the Pauli gauge. For both vector and PRs the

representation is irreducible if 3° |x,|* = g, the order of the group. This test shows that all
r

the representations in Table 12.7 are irreducible with the exception of I';,,. The matrices of
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Table 12.5. Multiplication tables for the point groups D5 and Cs,.

Read sections I and II for D3, sections I and III for Cs,.

1 11 111
Ds, Csy E Cy," G, Cra Cop Coc Oa Oe ot
E E Cy," G, Cra Cop Coc Oa Oe ot
I Cs,t C," G, E Coc Coa Cop ot o4 Oc
C317 C317 E C31+ C2b C2c C2a Oe ot Oa
Cza CZa CZb C2c E B C?:z+ C3zjr
I C2b C2b C2c CZa C3z+ E _ C3z
CZc C2c C2a C2b C3z CSZ E
Oa Oa Oe o E G~ Gy
111 Oe Oe gf (oF] C3z_ E C3Z+
Ot ot Oa Oe C," G, E

Table 12.6. Factor systems for the point groups D3 and Cj,.

The projective factor [g; ; g;] appears at the intersection of the row g, with the column g.
As in Table 12.5, read sections I and II for D3, sections I and III for Cs,.

I II 1

Ds, Cs, E Cs, Cs, Coa Cop Coe P Oc of
E 1 1 1 1 1 1 1 1 1
1 Cs, " 1 -1 1 — -1 -1 -1 —1 —1
Gy, 1 1 -1 -1 —1 —1 -1 -1 -1
Coa TR B -1 1 1
I Cy 1 -1 -1 1 -1
Coe -1 -1 1 [
o4 1 -1 -1 -1 1 1
11 Oe 1 -1 -1 1 -1
of 1 -1 —1 1 1 —1

this representation may be reduced by constructing the symmetric and antisymmetric linear
combinations

)

, (14)

(&

and the resulting 1-D matrix representations are shown in rows 6 and 7 of Table 12.7. In
dihedral groups the spherical harmonics basis for j = 1 always reduces to (I —1|®(0], the
representation based on (1 —1| being easily obtained from eq. (9). For (0] we use
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Table 12.7. The representations TV (ab) for the point groups D5 and Cs,.

The basis for each representation is a row containing the ket(s) m shown. Thus, for

example, (1

—I| means (|1 1) |1 —1)|. In the last two rows (¥,|_ are abbreviations for

the linear combinations (27"[|%, 3,)%|3, —3,)| which diagonalize the MRs for the
basis (3, —3/,|, 0or (|3, 33)[%> —3¥,)|in the |jm )notation. € = exp(in/3).

Point group D3
j  basis

0 (0]

L (o

I (1 -1
Vo (V2 =V

¥ (=3l

¥ (Gl

Y2 (Yl
Point group Cs,
j  basis

0 (0

3 Gl

1 (1 -1
o (Y2 =Y

¥ G =l

E Cs, " Cs, Cra Cop Cac
1 1 1 1 1 1
1 1 1 -1 -1 -1

E CSZJr C317 04 Oe Of
1 1 1 1 1 1
1 1 1 —1 —1 —1

Y2 al 1 -1 -1 i i i
Y2 (Yals 1 -1 -1 —1 —1 —1
(11.8.43) Tl = aa* — bb* = Tl = aa*(Cyy) or — bb*(Com, mL2). (15)

The 1-D representation for (0| in the second row of the Table 12.7 for D3 may therefore be
written down at once using a, a* and b, b* from Table 12.4. For Cs, ,(j m|=(1 0| is also a
basis for I'; and the basis (3|, must be used to generate I';. We now have all the IRs for D;
and for Cs,. Their characters are given in Table 12.8. Note that, although these two groups
are isomorphous, the basis functions for the representations are not necessarily the same
(see I'p, I's, and I'y). This completes the work for Example 12.8-1. It would be straightfor-
ward to construct the characters for the double groups D3 and Cs,, by a continuation of the
same method. The quaternion parameters for g, are the negatives of the parameters for g,..
Products involving g,, g, are obtained from the products of the corresponding quaternions,
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Table 12.8. Character tables for the isomorphous point groups D; = {E 2C3 3C,'} and
C3V: {E 2C3 3O'V }

The dashed line separates the vector representations, for which j is an integer, from the
spinor representations, which correspond to half-integer values of ;.

D;, Cs, E  2G 3G, 30, j D Csy
AT, 1 1 1 0 {ug|
AT, 1 1 -1 1 (ud] (us|,
E T, 2 ~1 1 (uj ul,y
1 1
By, T 2 1 0 , (w ul)
1 _ ; 3. _3 ¥ Y
E3/2 Ez/z I's 1 1 1 /2 =2 <u3/z ‘+ <u3/z|—
2 _ i 3, —3 Y e
Ey T 1 1 i V2, —32 (ug/i\f (u}/§|+

and in this way the whole double group multiplication table could be derived by multi-
plication of quaternions. Matrix representatives of g, are the negatives of those for g,.
Because D5 and Cs, each contain three regular classes, their double groups will contain six
classes, the characters for % for spinor representations being the negatives of the characters
for €. Irregular classes contain both g, and g, , and consequently the characters for these
classes in spinor representations are necessarily zero. The use of different notation for the
bases in Tables 12.7 and 12.8 is deliberate since both are in common use. The basis (1| in
function notation becomes, in Dirac notation, (|j m)|, which we often abbreviate to (m|. For
degenerate states, in the text m implies a list of the degenerate values of m and therefore a
row of kets. In Table 12.7, the values of m are stated explicitly, asin (3, —3,| for example,
which in an abbrevation for (|3, 3/,) |¥, — ¥,)|. (See also the caption to Table 12.7.)

Exercise 12.8-4 In Dj reduce the following DPs into a direct sum of IRs: (i) ['4;®T'4;
(i) T4RT3.

Answers to Exercises 12.8
Exercise 12.8-1 Consider lin(l) a". If n is finite, the limit is zero. But if n is zero, ® = 1 and
the limit is 1. “

Exercise 12.8-2 From Table 12.5, C3," Cop, = Cs, and o, 0¢=Cs, . FromTable 12.4,

Va5 [00V3,]][05 [=Y2 V3, 0]]
=005 [V V4 O]+ [ —V3, 0]
=[0; [-100]] = —1[0; [1 00]].
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Therefore [C3," ; Co,] = —1. Using Table 12.4 once again,

0: [~ O]][0s [~ 0]
=[=(=%+Y); [0 0 (Vy+V3,)]]
:[1/2;[0 0 \/g/z]]-

Therefore [0, ; of] =1.

Exercise 12.8-3 Using Table 12.4,

R e S

Il
| — |
|
m
*
)
—_
=
=
—
)
5
S—
Il
| — |
o™
(0}
*
—_

From Table 12.7,
Ve ) TV _ e ie | il
F (C3Z )P (C2b) - |: € :| |:1€* :| - |:1 :| - F (C22)9
in agreement with Tables 12.5 and 12.6. Similarly,

1 1 g 6* 1
ra)ion = | || L5 =Hen.
as expected from Tables 12.5 and 12.6.

Exercise 12.8-4 In D3, F4 ® P4 = {4 1 0} = Fl @Fz@r3, F4®F3 = {4 -1 0} =
I'y®I's@l.

Problems

12.1 Express the rotation matrix T'} (ab) in eq. (11.6.19) in terms of the quaternion
parameters A, A.

12.2 This chapter has provided three ways of investigating the conjugation of g; by g: (i)
the direct calculation of g; g; g '; (ii) using eq. (12.6.30); and (iii) using eq. (12.5.24).
Using the quaternion representation of a rotation, find the result of the conjugation of
g; by g by using all three of the above methods for g; = C,, and (a) g, = C,y, and (b)
gr=Cs,". (Note that the choice of 4 in Figure 12.10 satisfies the pole convention
eq. (12.6.13), and the standardization condition, eq. (12.6.32), for the poles of binary
rotations.)

12.3 Evaluate C,, Coy Cp, ! by method (iii) of Problem 12.2. Is this the expected result for
BB rotations?

12.4 Show that the choice 0<f<r, — 1/2<p<m/2, is not a suitable one for / for Ds.
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12.5

12.6

12.7

12.8

12.9
12.10

12.11

Prove that the quaternion parameters for S, =oc,R(2n/m n) are those for
R(n—(2n/m), —n). Find the parameters for Sg, and S3,.

Prove the symmetry relation eq. (12.6.9). [Hint: Use the associativity relation
(12.6.6) and the standardization condition (12.6.7).]

For the group Ds, with g;=C3, ", 8= Cra, g = Cs,~ verify (i) the associativity of
group elements g;(g; gx) = (g &) &« and (ii) the associativity relation for PFs, eq.
(12.6.6). [Hint: Use Tables 12.5 and 12.6.]

For the representation 1Es/2 of D3, verify eq. (12.6.37) with g; = Csa, gx = C3.
Prove eq. (12.6.50).

The following operators were used in Chapter 7 as representative operators of the
five classes of the cubic point group O: E, R(2n/3 [1 1 1]), R(n/2 z), R(n z),
R(m [1 1 0]). Derive the standard representation for these operators and show that
this representation is irreducible. [Hint: You may check your results by referring to
the tables given by Altmann and Herzig (1994) or Onadera and Okasaki (1966).]
(a) Examine the splitting of the j=5/2 atomic state in a crystal field of cubic
symmetry O using both projective representations and the double group method.
[Hint: Character tables need not be derived since they are known from Chapter 8.]
What further splittings occur when the symmetry is lowered from O to Cs,? (b)
Using only PRs verify that the transition Fs,—Es, is allowed for E1 radiation in O
symmetry. Find the allowed transitions and polarizations that originate from
Fs,—E;, when the symmetry is lowered from O to Cs,.



13

13.1

252

Time-reversal symmetry

Warning In the classification of IRs listed after eq. (13.4.12) and again after eq. (13.4.31)
I have followed Altmann and Herzig (1994). In many other books and papers, the labels
(b) and (c) are interchanged.

Time evolution

The invariance of transition probabilities under the action of a symmetry operator 7,

(Tl TY)* = (|}, (1)
requires that either
(To|Ty) = (p|1) )
or
(To|Ty) = (o). 3)

Operators that induce transformations in space satisfy eq. (2) and are therefore unitary
operators with the property 717 = 1. An operator that satisfies eq. (3) is said to be
antiunitary. In contrast to spatial symmetry operators, the time-reversal operator is anti-
unitary. Let U denote a unitary operator and let 7 denote an antiunitary operator.

2) (Up|Ucth) = (pley)) = clply) = c(Up|Ut); (4)

3) (T|Teyy) = (plep)” = c*(plp)" = c*(To|TY). (5)

Hence, unitary operators are linear operators, but an antiunitary operator is antilinear.
Time evolution in quantum mechanics is described, in the Schrédinger representation,
by the Schrodinger time-dependent equation

d1))dt = —iH. (6)
For an infinitesimal increase ¢ in ¢ from an initial time ¢, to ¢; = ¢, + 6¢,
(6) Y(tn) = Plto + &1) = [L = iHbt(19) = U(ty — 10)th(1). (7)
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The operator in square brackets, which is designated by % (ti — 1), tells us how to calculate
(tg + 0f) from 1(ty) and is therefore called the (infinitesimal) time-evolution operator.
Since % does not depend on ¢y,

D) = U = 0)d(n) = U = 0)U (0 — 1)) = U — 10))(1).  (8)
Equation (8) expresses the composition property of the time-evolution operator,
g?l(l‘z - lo) = 02/(1‘2 — tl)@(l‘l - l‘()). 9

When H is independent of #, % (t — ty), for a finite time interval, can be obtained by
applying the composition property repeatedly to n successive time intervals each of length
6t =(t — ty)/n. Then

9),(7) @u—ng%u—mwrzmnu_mg_mmr

n—oo

= exp[—iH (¢ — to)]. (10)

Time reversal with neglect of electron spin

Provided H is real, which will be true at a level of approximation that neglects electron
spin,

(13.1.10) U(—(t — t9)) = exp(+HH(t — to)) = U(t — 1p)". (1)
Therefore, at this level (with spin suppressed) the time-reversal operator is just the complex

conjugation operator #* which replaces i by —i.

Example 13.2-1 The motion of a free particle (to the right, in the positive x direction) is
described by the plane wave (x, f) = exp[i(kx — wr)]. Then

A (e, 1) = (x,1)" = exp[—i(kx — wr)] = expli(k(—x) — w(~1))], 2

which represents a plane wave moving backward in time to the left, in the negative x
direction. Note that the motion has been reversed by the operator %"

Let M denote a Hermitian operator; then the expectation value of the dynamical variable
M in the time-reversed state # 1) = 9" is

(APIM|Ap) = (W |M) = (M* i) = (" |Ma*)*
= (Y|M*|yp) = (M"). 3)

Thus, real operators are unaffected by time reversal but linear and angular momenta, which
have factors of i, change sign under time reversal. Therefore,

AYA "V =r, ApAH ' =—p, HIX ' =-J. 4)
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A 1s antilinear because

H(cy) = Y =" A (), (5)

whereas a linear operator M has the property Mci) = ¢M1). Note that A is also antiunitary
because

(A | A P) = (o). (6)

Time reversal with spin-orbit coupling

We now remove the restriction that 4 is real, introduce the symbol O for the time-reversal
symmetry operator, and choose fo = 0. Now O is the transformed function which has the
same value at —¢ as the original function ¢ at time ¢,

(13.1.10) O(—1) = (1) = exp[—iH1](0). (1)
For the infinitesimal time interval 6¢,
(1) O(—bt) = (61) = [1 — iH81)(0) = [1 — iH51)O¢(0). )

The state described by )(0) evolving backwards in time for the same time interval becomes
one described by

(13.1.7) Y(—6t) = [1 — iH (—61)](0). 3)
Operate on eq. (3) with © to obtain

(3) Oy(—61) = O[1 + iHb61)(0); (4)

(), (4) OiH = —iHO. (5)
If © were a unitary operator,
(5) OH = —H®, (6)

with the consequence that every stationary state 1) of the system with energy E would be
accompanied by one O with energy —E . But time reversal reverses velocities, leaving E
invariant, so © cannot be a unitary operator but is antiunitary. Therefore

(13.1.5),(5) ©H = H6, (7)

which tells us that time reversal commutes with the Hamiltonian. Consequently, if ¢ is an
eigenstate of H then so is @w, with the same energy. This means that either ¢) and é’(/J
represent the same state, and so can differ only by a phase factor, or that they correspond to
distinct (and therefore degenerate) states. Since two successive reversals of time leave all
physical systems invariant,

0% = 1), (8)
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where c is the same phase factor for all systems. Because O is antiunitary
(13.1.5),.8)  (Oply) = (O4]0%) = c(Oylp) = ¢(00|0%¢) = 2(Oplt), (9
so that c=+1. When ¢ =+ and c = —1

) (OY[Y) = —(Oyfh) =0. (10)

Inthiscase (c=—1) C:)w and 1) are orthogonal and so correspond to different degenerate states.

Determination of the time-reversal operator
The product of two antiunitary operators is a unitary operator. Consequently,
ox =0, (11)
where U is unitary.
(11) 6=U0x. (12)

The linear Hermitian operators of quantum mechanics can be divided into two categories
with respect to time reversal. In the first category are those operators 4 which correspond to
dynamical variables that are either independent of 7 or depend on an even power of 7. Let ¢,

be an eigenfunction of A with (real) eigenvalue a;. Then é)d)k is also an eigenfunction of A
with the same eigenvalue,

ABY, = ;0. (13)

Any state ¢ is a linear superposition of the {1/}, and since O is antilinear

Odyp = éfi; e Y = OF ara i = 3 ¢ ay Oy (14)
(13) A6 :/ié)gk; cr Py :/Izk; ¢k Oy = gkj ¢t ap Oy (15)
(14), (15) A6 = 64. (16)

For operators B in the second class, which correspond to dynamical variables that depend
on an odd power of ¢ and for which

By = by, BOY, = —bOy, (17
the same argument yields

BO = —68B. (18)

(16), (18) Or6'=r, OpO6'=—p, 60JO6' =], (19)
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as already seen for systems in which electron spin is neglected and © becomes A .
Therefore the spin operators s, §,, §. which are represented by the Pauli spin matrices
01, 03, 03, anticommute with ©. Because o, and o5 are real (see eq. (11.6.3))

(12), (19) O, = UA'$, = Us; A~ = —5, U, (20)

so that §, anticommutes with U. Similarly, §, anticommutes with U. But o,, which
represents §,, is purely imaginary. Therefore,

(12), (19) 05, =UA' s, = -Us, H = —5,UA, 1)
so that §y commutes with U.
(20), (21) Us=-5U; Us, =5 U; USs =-5U. (22)

Using the commutation properties of the Pauli spin matrices, egs. (22), determine U as 8y
apart from a phase factor exp(iy) which has no effect on eq. (22).

Exercise 13.3-1 Verify explicitly, by using the spin matrices from eq. (11.6.8), that the
matrix representative (MR) of U= S, satisfies the matrix representation of eq. (22).

For an N-electron system, U is a product of the individual imaginary spin operators

O = exp(ivy) §ykf{. (23)

=

=~
Il

1

Let ¢ denote any spinor function; then

N N
23) O = GXp(iv) H@M) <expm) HW*) o= (-1)"p=cop, (24)
k=1 =1

where we have used

A exp(iy) = exp(—iv) A;
A N N A
A 1180 = OV L8075 (25)
=1 =1

jfzap:go; sA)z}:E.

For an even number of electrons N, (— l)N =1, ¢ =+1, and there are no extra degeneracies.
But for an odd number of electrons (—1)"=—1, ¢c=—1, and (:)1/1 and v correspond to
different degenerate states (see eq. (10)). This conclusion assumes the absence of an
external magnetic field. In the presence of a magnetic field, H contains terms linear in L
and § and therefore no longer commutes with 6 (eq. (19)). This means that O is not a
symmetry operator in the presence of an external magnetic field. However, the commuta-
tion of © with A can be restored if the direction of the magnetic field is reversed along with
the reversal of 7. These results from eqs. (24) and (10) are embodied in Kramers’ theorem
(Kramers (1930)), which states that the energy levels of a system containing an odd number
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of electrons must be at least doubly degenerate provided there is no external magnetic field
present to remove time-reversal symmetry.

Exercise 13.3-2 Show that the choice of phase factor exp(iy) = —i makes 6= R(ny),’i/ ,
where R(m y) denotes a binary rotation about y in SU(2). [Hint: See eq. (11.6.11).]

Answers to Exercises 13.3

Exercise 13.3-1 With U = §, the matrix representation of eq. (22) is

) )
e T e

thus verifying §,8, = —S$,§,. Similarly,
030) — = s
. —1] i i
0203 = | . = 1. = —0302,
i —1 i

verifying §,8. = —5.5,..

Exercise 13.3-2 If exp(—iy) = —i,

(11.6.3),(11.6.11)  —ioy = [1 _1} =T"(R(ry), —i§# =R(ny)A.

Co-representations

Consider the set of operators {R} ® {©OR}, where H= {R} is a group of unitary symmetry
operators and {©OR} is therefore a set of antiunitary operators. Since rotations and time
reversal commute, the multiplication rules within this set are

RS=T, R,S,Tec{R}

ORS = OT, a
SOR =OSR =0T, T' € {R}, )
(13.3.24) OROS = RS, ¢ = +1,

where ¢=+41 for N even and ¢ =—1 for N odd. These multiplication rules show that
G={R} + {OR} is a group, that the unitary operators {R} form a normal (invariant)
subgroup H of G, and that the antiunitary operators {OR} form a coset of H,

G = {H} © ©{H}. 2)
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This conclusion is not unique to G = {R, OR} but is true for any group G = {H, AH} that
contains unitary {H} and antiunitary {4H} operators. Let {1} be an orthonormal set of
eigenfunctions which form a basis for H. Then {@R?/J } is also a set of eigenfunctions so that

(5.1.6) ORy, = 1, [(OR),,. 3)
P

Since © is antiunitary and R is unitary,
(ORY,|ORY,) = (R |Ry,) = (1l1,) = by @)
(3),4) bps = (ORY|ORY,) = (S0, T(OR),, |3, T(OR),,)
q r
= >_T(OR),, T(OR), (¥, ¥,)
q,r
= ZF(@R);)F(@R)W
q
= [[(OR)'T(OR)],,. 5)
5) I'(OR)'T(OR) = E, (6)
which shows that I (OR) is a unitary matrix. However, because © is antilinear,
3) OSORY), = Zéﬁwq I'(eR),,

= ZF(@R) 68y,

q r
But the LS of eq. (7) is @S@Iédzp = >_1, I'(©S OR),,. Therefore
(7, (1) [(0S)T'(OR)" =T(OSOR) =T'(cSR) = T'(cT"),c = +1. (8)
Similarly,
['(OS)I'(R)" =T(OSR) =T(0T") )

so that the MRs {I'(R), I'(©R)} do not form a representation of G = {R, ©R}. Such sets of
matrices where the complex conjugate (CC) of the second factor appears (as in egs. (8) and
(9)) when the first operator is antiunitary are called co-representations (Wigner (1959)).

Suppose that the set of eigenfunctions {7,,} form a basis for one of the IRs of G = {R}
and define é% = Ep. The inclusion of time reversal, which enlarges H to G, introduces
new degeneracies if the {wp} are linearly independent (LI) of the {v,}. Under the
transformation induced by the symmetry operator R,

Ry, = ROY), = ORy), = O ¢, I'(R),,
q
- Zd) ( )qp’ (10)
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which shows that if {1),,} forms a basis for the representation I, then {z_bp} forms a basis for
. If ' is an IR, then the orthogonality theorem (OT) for the characters gives

g”%lx(l'?)l2 = (xIx) =1, (11)

where we have introduced the notation | x) to denote the character vector whose components
are the normalized characters \/c;/g xx of the classes {%;} and () is the Hermitian scalar
product (HSP).

(11) (xlx) =1 :g”;x(R)*x(R) :g”;x(R)x(R)* = (X*Ix), (12)

so that if T is an IR then so is I'*. There are three possibilities:

(a) T is equivalent to I'* (I' & I'*), and they are equivalent to a real representation I"';

(b) I, I'* are inequivalent (I" is not ~ I');

(¢c) T'~ T but they are not equivalent to a real representation.

If " is not = I'* then the character system {x} of I" must be complex (that is, contain at least

one complex character) since if {x} is complex, I" and I'* have different characters and so
they cannot be equivalent.

Exercise 13.4-1 Prove the converse statement to that in the preceding sentence, namely
that if {x} isreal, ' =T,

If '~ T (cases (a) and (c)) then there exits a non-singular matrix Z such that

I'(R)*=ZI'(R)Z™' VReG. (13)
(13) L(R) = Z'T(R)"(2")"; (14)
(14),(13) D(R)Z*Z = 7"ZT(R). (15)

Since Z2*Z commutes with I'(R); VR € G, by Schur’s lemma (Appendix Al.5) it is a
multiple of the unit matrix,

2*7 =c(Z)E, (16)
where ¢(Z) is real and non-zero. Consequently,

(16) 72" =¢(Z)E. (17)

Exercise 13.4-2 Verify the above statements about ¢( Z ), namely that it is real and non-zero.
Furthermore, any other matrix Z’ that transforms I into I'* is a non-zero multiple of Z,

Z2'=aZ a#0, (18)

(17), (18) 2'7" = ¢(ZE = |al*c(Z)E. (19)
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Consequently, if ¢(Z) > 0, all possible ¢(Z") > 0. Similarly, if ¢(Z) <0, all the ¢(Z") < 0.
We shall see that these two kinds of transformation (¢(Z) > 0 or ¢(Z) < 0) will enable us to
distinguish between cases (a) and (c) above. Suppose first that ¢(Z) > 0. Then since eq. (13)
is satisfied for any non-zero choice of @ in eq. (18), it is in particular satisfied for
a=c(Z)"", which makes

(19) Z2'7" =E. (20)
Construct a real representation I'' equivalent to I" with matrices

I'(R) = (2' +e"E) 'I'(R)(Z2' +"E) VR G, (21)
where the phase factor 7 is chosen so that 2’ +¢"E is non-singular.

Exercise 13.4-3 What condition must e satisfy in order that Z’' 4 ¢”E shall be non-
singular?

1) I'(R) =(2" +¢™"E)'T(R)'(2" + ¢ E)
(20), (13) =[(2)" +e B (2 TR Z[(Z) ! + e E]
:eiv(eiﬂrE + Z/)le(R)(ei""E + Z')e’”
=T (&), (22)

which verifies that I” = {I”(R)} is a real representation. If ¢(Z) > 0 then I" (and therefore
I'™ which is ~T') is equivalent to a real representation I'. Conversely, if T, T'* are
equivalent to a real representation I, then there exists a transformation

Qr(R)Q™' =T'(R) =T"(R) =QT(R)'(Q)”" VREG. (23)
(23),(13) P(R) =Q'ON(R)Q™'Q" = ZI(R)Z™"; (24)
(24),(17) 22 =(Q7'QQ'Q) =E=c(Z)E c(Z)=1>0. (25)

We have thus established the theorem that if ¢(Z) > 0, then I" and I'* are equivalent to a real
representation (case (a)) and also its converse, that if I', " ~ TV =T"%, then ¢(Z) > 0.
Consequently, if I' ~ T'* but they are not equivalent to a real representation (case(c)) then
c(Z) must be <0. (Note that ¢(Z) is non-zero.) We now have a criterion for deciding
between the two cases (a) and (c), but it will be more useful in the form of a character test.
For unitary, equivalent (IRs) I', I'* of dimension /, the OT takes the form

(A1.6.11) (l/g)%:F(R)pq L(R),, = Zp(Z71),,. (26)

Since Z in eq. (26) may be unitary (Section A1.6), and here is unitary,

(17) o(Z) = +1. 27)
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Exercise 13.4-4 Show that if Z is unitary, then ¢(Z2)==*1.

When Z is unitary

(26) (l/g)ZR:F(R)pq U(R),y = 2pZg, (28)

Set p =s, g =r, and sum over r and s:

(28),(27) g 'SX(R?) =17"Tr(Z Z7) = ¢(Z) = +1; (29)
R

c(Z)=+1 corresponds to case (a) and ¢(Z) = —1 corresponds to case (c). When T", T'* are

inequivalent, case (b),

(A1.5.32),(26) (1/2)2 L (R), T(R), =0 (30)

(30) g 2x(R) =0. (31)

We have therefore established a diagnostic test (called the Frobenius—Schur test) which
classifies the IRs I" of a point group according to the three cases listed after eq. (12). (Note:
See the warning at the beginning of this chapter.)

(a) If T and I'* are equivalent and they are equivalent to the same real representation, then
g Y X(R?) = +1
R
(b) IfTis not ~T*, g ! 3~ x(R?) = 0.

R
(¢) If '=T*, but they are not equivalent to the same real representation, then
g %x(Rz) =-L

Exercise 13.4-5 Show that the dimension / of representations of the third kind (c) is an
even number.

Recall that if {1),} forms a basis for I, then {1} = {©1,} forms a basis for I'*, and
consider first the case when the number of electrons /N is an even number. If " is not ~ ',
case (b), {1/,} and {1, } are linearly independent (LI) and so time reversal causes a doubling
of degeneracy. If " & ", cases (a) and (c), then there exists a non-singular matrix Z which
transforms I into I'*,

I*=2T(R)Z"' VReG, (32)
where, from the remarks following eq. (25),
2 2°=c(Z)E, (a)c(Z)=+1, (c)c(Z)=-1. (33)

Let {v,} denote an LI basis set of dimension /. Then if © does not introduce any new
degeneracies,

OY, =1, = Y 1h, Ly (34
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Table 13.1. The effect of time-reversal symmetry on the degeneracy of quantum states.

When the number of electrons N is even, the spin quantum number S is an integer, and,
when N is odd, S is a half-integer. I denotes a real representation.

Case g Y x(R?) Equivalence of ', I'* N even N odd
R
(a) +1 P~T*~T’ no change doubled
(b) 0 I'not~T* doubled doubled
(o) —1 I~T*not ~T" doubled no change
(34) @2% - Ze)qpszsr = Z qzqs gy = qu(z Z*)qr' (35)
A S, q q

But since the 1, are LI,

(2 2%), =042 2" =E, (36)
and T belongs to case (a). It follows also that if Z Z* is of type (b), 1, = ©1), cannot be a
linear combination of {1),}, so {¢,, ¥, } is of dimension 2/ and © causes a doubling of

degeneracy.
When N is an odd integer, for {¢), } to be linearly dependent on {1/},

_ !
Y, =1, = leszsr (34)
for some non-singular matrix Z.

(13.324),34) O™, = —), = Y00, 2y = Y0, Loy = 3 0,(227),,. (37)
s S,q q

Since the v, are LI,
37 (227),=—b4, Z1Z"=—E (case (¢)). (38)

Therefore linear dependence leads only to case (c). But if the sets {1, }, {1),} are LI, this
can arise only for cases (a) or (b). Thus, for N equal to an odd integer, time reversal leads to
a doubling of degeneracy in cases (a) and (b). The consequences of time-reversal symmetry
are summarized in Table 13.1.

Exercise 13.4-6 It might appear that the last line of Table 13.1 contravenes Kramers’
theorem. Explain why this is not so.

When evaluating the character of the MR of the product g;g; of two symmetry
operators g;g; € G for PRs, remember that I'(g;) I'(g) = [g; ; g;] I'(gk), where g =g,g;
and [g; ; g;] is the appropriate projective factor (PF). For vector representations PF = 1
always.



13.4 Co-representations 263

Exercise 13.4-7 Determine if time-reversal symmetry introduces any additional degener-
acies in systems with symmetry (1) C; and (2) C4 , for (i) N even and (ii) N odd. [Hints: Do
not make use of tabulated PFs but calculate any PFs not already given in the examples in
Section 12.4. Characters may be found in the character tables in Appendix A3.]

Answers to Exercises 13.4

Exercise 13.4-1 If {} is real, I' and I'* have the same characters and they are therefore
equivalent.

Exercise 13.4-2 Take the CC of eq. (16) and pre-multiply it by Z ' and post-multiply by
Z,givingZ '22*2=2"",c¢(Z)EZ,or Z*Z = c(Z)"E. Comparison with eq. (16) shows
that ¢(Z)* =c(Z) so that ¢(Z) is real.

(17) det ZZ2* = |det Z|* = ¢(Z) #0
because Z is non-singular. Therefore ¢(Z) # 0.

Exercise 13.4-3 If B=7'+¢"E is a singular matrix, det B=0 and ¢ is then the
negative of one of the eigenvalues of Z’. Therefore, a non-singular B can be ensured by
having —e'” not equal to any of the eigenvalues of Z'.

Exercise 13.4-4 Since 7 is unitary, so are Z* and Z7Z*. Equation (27) then gives
le(Z)|* = 1, and since, by Exercise 13.4-2, ¢(Z) is real, ¢(Z) can only be +1.

Exercise 13.4-5 From Exercise 13.4-2 and the remark after eq. (29), |det Z*=
e(Z) =(—1). But |det Z|* >0, so / can only be an even number.

Exercise 13.4-6 It was shown in Exercise 13.4-5 that the dimension / of representations of
type (c) is an even integer. Therefore, even though time reversal introduces no new
degeneracies, / is always at least 2 and Kramers’ theorem is satisfied.

Exercise 13.4-7 (1) In C; the PF [C ; C{] = —1, as shown in Example 12.6-2. For Cj,
from Table ]24a [7\’9 A] = [1/2 s ﬁ/Z[O 0 T]] SO) [}\’9 A][)\«, A] = [1/23 \/§/2[0 0 T]]
V2 V3a[0 0 T]] = —[l2, V35[0 0 1]] and for PRs [Cy: C3] = —1, T(C3)I(Cy) =

—T(Cy). For A, g 'S x(R*) = (V3)[l+1+1]=1, so A, is of type (a). For
R
'E, g 'S x(R?) = (V3)[1 +e+¢e]=1+2cos(2n/3) =0, and similarly for °E.
R
Therefore these representations are of type (b). For !Ey,g !> x(R?) =
R

(Y3)[1 +e+¢*] =0, and similarly for *E,, so they are also of type (b). Note that

although (Cy )y = Cy, for spinor representations x((Cy 7) = [Cy s CfIx(Cy) =

—1(—¢*) = ¢* for the class of C{ in 'E,, and similarly. For B, g ' > x(R?) =
R
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Table 13.2.

Type N even N odd
(a) none doubled
(b) doubled none

(V3)[1 + 1+ 1] =1, since X((C;)z) = (—1)x(C;) =(—=1)(—=1) =1, and similarly for
C5 . Therefore By, is of type (a).

2) In C, {R2 ={F C, E (C,}. The PF [E ; E]=1, because of
standardization. For Cy,[A ; A]=1[0; [001]] and [A ; AJ[A ; A]=—1[1 ; [0 0 0]]
so  that C ; G)=—1. For  C;[A; Al=1[Vy5 ;5 Yy30001]] and
A5 AJ[A ; A]=[0 ; [001]], so that for spinor as well as vector representations
D(CHT(CH) =T(Cy).  For  C;,  [A; Al=[i/vz;1/v2001]] so that
A AJA; A]=—[0; [001]] and T'(Cy) T'(C; ) = —T'(C,) for the spinor representa-
tions. Thus, for spinor IRs, x(E?) = x(E), X((Cj)z) = Xx(G2), x((C;)?) = —x(C) and
x((G2)?) = —x(E). For the vector representations, all the PFs are + 1. Therefore for

A, B, g ' xR = (V)1 + 1+ 1+1] =1, type (a). For 'E, ’E, g ' S x(R)* =
R R

(V)1 —=1+1-1]=0, type (b). For 'Ey, %Ey, g 'S x(R)’=(1/4)[1-i-
R

1 +1i] = 0, type (b). The change in degeneracy in states of C;3 and C, symmetry, that are
induced by time-reversal symmetry are, therefore, as shown in Table 13.2.

Problems

13.1 Determine if time reversal introduces any further degeneracy into the quantum states
of systems with N even and N odd and with point group symmetry D,, D3, and D,.

13.2 Repeat Problem 13.1 using the double group G in place of G. [Hint: Remember that
the multiplication rules in G are different from those of G.]

13.3 Prove that the number of inequivalent, real vector IRs of a symmetry group G is equal
to the number of ambivalent classes of G. Test this theorem by referring to character
tables for the point groups D,, D3, and Ty, [Hints: The inverse class % of the class
% = {R} is the class {R~'}. An ambivalent class is one for which 67 = 6. You
will need to use the orthogonality of the rows and of the columns of the character
table.]

13.4 Consider the splitting of a state with j = 3/, in an electrostatic field of C;, symmetry.
[Hint: Assume that there is no external magnetic field.]
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Magnetic point groups

Crystallographic magnetic point groups

Because the neutron has a magnetic moment, neutron diffraction can reveal not only the
spatial distribution of the atoms in a crystal but also the orientation of the spin magnetic
moments. Three main kinds of magnetic order can be distinguished. In ferromagnetic
crystals (e.g. Fe, Ni, Co) the spin magnetic moments are aligned parallel to a particular
direction. In antiferromagnetically ordered crystals, such as MnO, the spins on adjacent Mn
atoms are antiparallel, so there is no net magnetic moment. In ferrimagnetic crystals
(ferrites, garnets) the antiparallel spins on two sublattices are of unequal magnitude so
that there is a net magnetic moment. In classical electromagnetism a magnetic moment is
associated with a current, and consequently time reversal results in a reversal of magnetic
moments. Therefore the point groups G of magnetic crystals include complementary
operators OR, where O is the time-reversal operator introduced in Chapter 13. The
thirty-two crystallographic point groups, which were derived in Chapter 2, do not involve
any complementary operators. In such crystals (designated as type I) the orientation of all
spins is invariant under all R € G. In Shubnikov’s (1964) description of the point groups, in
which a positive spin is referred to as “black” and a negative spin as “white,” so that the
time-reversal operator © induces a “color change,” these groups would be singly colored,
either black or white. Diamagnetic or paramagnetic crystals, in which there is no net
magnetic moment in the absence of an applied magnetic field, belong to one of the thirty-
two type Il “gray” groups which contain © explicitly, so that

G = {R} ® ©{R}. (1)

Magnetic crystals with a net magnetic moment belong to one of the point groups G which
contain complementary operators, but for which © ¢ G. If G=H + QH, where H is a
halving subgroup (invariant subgroup of index 2) of G, and O € G but Q ¢ H, then

G=H+O0H =H+0(G - H). ©)

The distinguishing characteristic of the Shubnikov point groups are summarized in
Table 14.1. A systematic determination of the fifty-eight type III magnetic point groups
is summarized in Table 14.2, which shows G, G, H, O, and the classes of G—H. The
elements of G are {H} and ©{G —H}. The elements of H can be identified from
the character tables of the crystallographic point groups in Appendix A3, except that in
the subgroup m or C;,, of mm2 the elements are {£ oy} instead of {£ 0, } used for the point

265
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Table 14.1. The Shubnikov (or colored) point groups.

M; is the magnetic moment of the ith atom.

Type Number Color Point group Magnetic moment

I 32 singly colored G={R) M, invariant under R
I 32 gray G={R}®{E O} M=>> M;=0

I 58 black and white G={H}®6{G—-H} OM,;=—-M;

Table 14.2. The fifty-eight type III magnetic point groups.

Underlines in the International notation for G show which operators are complementary
ones. Alternatively, these may be identified from the classes of G—H by multiplying each
operator by O; G is the ordinary crystallographic point group from which G was con-
structed by eq. (14.1.2); H is given first in International notation and then in Schonflies
notation, in square brackets. Subscript a denotes the unit vector along [1 1 0].

No G G H G-H 0
1 1 C; 1[Cq] I I
2 2 C; 1[Cy] C Co
3 m C, 1[Cy] o, o,
4 2/m Cop 2[Cs] 1,0, 1
5 2/m Con m[Cp] L, Cy, 1
6 2/m Con T[C,] Cop 0, Co
7 222 D, 2[Cs] Cox, Coy Cox
8 mm?2 Cyy 2[C5] Ox, Oy Oy
9 mmZ C2V m[Clh] C21a Ox Oy
10 mmm D,y 222[D,] I, oy, oy, 0, C,,
11 mmm Doy mm2[Csy] Cox, Coy, 1, 0, 1
12 mmm D2h 2/m[C2h] sz, C2y’ Ox, Oy sz
13 4 C4 2[C,] Ch.Cy, C,
14 4 S4 2[C,] Sips St St
15 422 Dy 4[C4] 2C,,2GC," Coy
16 422 Dy 222[D,] 2C,, 2C," Cha
17 4/m Can 4[C4] 1,840,541, I
18 4/m Can 4[S4] 1,C,0,,Cy, 1
19 4/m Can 2/"’![C2h] CIZ, C4_Z’S4_Z’SIZ C4+z
20 4mm Cyy 4[C4] 20,20, Oy
21 4mm Cay mm2[Csy] 2Cy,20, Oa
22 42m Dog 4[S4] 2Cy, 204 Cxx
23 ézm D2d 222[D2] 2S4z, 20'd Oqa
24 4m2 Dyg mm2[Cyy] 2842,2Cy’ Cha
25 4/mmm Dan 422[D4] 1, 0, 254, 20y, 204 1
26 4/mmm Dy 4mm[Cy4y) 1,0,,284,,2C,, 2C," I
27 4/mmm D mmm [Day] 2Caz,2C5" ,284,, 204 Cha
28 4/mmm Dy 42m[Dsg4] 1,0,,2C4;,20,,2C)" 1
29 4/mmm Dup 4/m[Cap] 2C,,2G,", 20,204 Coy
30 32 D; 3[Cs] 3G Cox
31 3m Csy 3[C5] 30, oy

32 6 Csp 3[Cs] oh, S5, 85 On
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Table 14.2. (cont.)

No. G G H G—H 0
33 6}1’[_2 D3h 6[C3h] 3C2,» 3UV C2x
34 Em; D3h 3m[C3V] Oh, 2S3, 3C2/ Op
35 Emz D3h 32[D3] Oh, 2S3, 30’V Op
36 6 Cs 3[Cs] Cg, Cs.C C,,
37 3 Se 3[C5] 1, Sg,S6+ 1
38 3m Dsq 3[Se] 3Gy, 304 Cox
39 3m D34 3m[Csy] 1,286,3C)’ 1
40 3m D34 32[Ds] 1,286, 304 1
41 622 D¢ 6[Ce] 3C,,3C," Cox
42 622 D¢ 32[Ds] C,,2Cs,3C," C,,
43 6/m Cen 6[Cq] 1, S;,S;,S(,‘,Sg, Oh 1
44 6/m Cen 3[S6] CH Cq,Cp, 87,87, on Cy,
45 6/m Con 6[Csy] 1,S¢, 85, €2, Cq» Cg !
46 6m C6v 6[C6] 30’d, 30'\, Ox
47 6mm Cey 3m[Csy] C,, 2Cs, 30y, C,,
48 6/mmm Dgn 62m[Dsy] 1,C5,286,2C6,3C5", 304 I
49 6/mmm Den 3m[Dsq4] Cy,04,2C6,283,3C,", 30 C,,
50 6/mmm Dgn 622[Dg] 1,01,285,286,304,30y 1
51 6/mmm Den 6mm[Cg,] 1,04,283,286,3C,,3C," 1
52 6/mmm Den 6/m[Cgp] 3C,),3C,", 304,30, Cox
53 m3 Th 23[T] 1, 4S6’,4Sgr,3ah 1
54 43m Tq 23[T] 684, 604 Oa
55 432 O 23[T] 6Cy4,6C,' Coa
56 m3m (0)% 432[0] 1, 8S¢, 301, 684, 604 1
57 m3m Oy 43m[T4] 1,886,301, 6C,',6C, I
58 m3m (0)% m3[Ty] 6Cy4,6C,', 684,604 Cra

group m. In interpreting the International symbols for G, it is necessary to identify the
appropriate symmetry elements from the positions of the symbols as given in the
International Tables for Crystallography (Hahn (1983), (1992)). The total number of
Shubnikov point groups, summarized in Table 14.1 is therefore 32 4324 58 =122.
International notation is used for G (because it is more economical and more common)
and Schonflies notation is used for G. Underlined elements in G show which operators
are complementary ones; removing the underlines would give G, which is why G is given
separately only in Schonflies notation. The subgroup H is identified in both International
and Schonflies notation. (Schonflies notation for G(H) is often used to identify both G
and its subgroup H.)

Co-representations of magnetic point groups

Consider the group G = {H, 4H} that contains unitary {H} and antiunitary {4H} operators.
H is necessarily an invariant subgroup of G of index 2 and 4H is a coset of H with coset
representative 4 (which may be any one of the antiunitary operators of G) so that
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G = {H} @ A{H}. (1)
For example, 4 might be the time-reversal operator © (Section 13.4)
G = {H} ¢ ©{H}. )
Another realization of eq. (1) is
G = {H} ® 60{H}, 3)

with 4 =00, and the unitary operator Q € G — H. The corresponding unitary group is
G={H} @ Q{H}. Equations (2) and (3) provided the basis for the derivation of types II
and III magnetic point groups in Section 14.1. Let R€H and suppose that
(| = (Y|, p=1, 2, ..., forms a basis for the unitary IR I" of H, so that

R{Y| = (YT(R). @)

Define A1), as 1),; then

R(Y| = RA(p|= ( RA)()|
= A{1))| F( RA) A 'RAcH (5)
= (Y| T(A7'RA)" = (Y| T(R)
(/f is anti-linear), where
['(R) = T'(4'RA)". (6)
oo o [TR) 0], o
@.5) Rl = il "y | = @I, Q
Let B=AR; then
) B(y| = AR(| = A(| T(R) (8)
= (@I T(R)" = (Y| T(47'B)";
B(f| = BA (4| = (| I'(BA); ©)
®).9) Bl = wl| p gy 60| = Lo (10)

Equations (7) and (10) confirm that (¢ | forms a 2/-dimensional basis for G. The
representation I' based on (¢ 1| has matrix representatives (MRs)

0 P(BA)]‘ (11

(7.010) o o N P
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However, the set of MRs {I'(R) I'(B)} do not form an ordinary representation of G. As
confirmed in Problem 14.1, the matrices in eq. (11) obey the multiplication rules

L(R) L(S) = L(RS),
L(R) L(B) = L(RB),
L(B) L(R)" =TL(BR),
L(B) L(C)" = L(BC), (12)

which hold for VR, S€ H, V B, C € AH. These equations demonstrate that when two of the
I’ matrices are multiplied together, the second factor must be replaced by its complex
conjugate (CC) when the first factor is the MR of an antiunitary operator. Such a set of MRs
is called a co-representation (Wigner (1959)). Co-representations and their multiplication
rules (egs. (12)) have already been encountered in Section 13.4 for the particular case of
A = O. However, the derivation of the MRs is easier in that case because © commutes with
R so that T for the basis (3| is just I'". Equations (11) show that the matrices of the
co-representation I" can be expressed in terms of the MRs I' of the unitary subgroup H.
Now consider the unitary transformation

W' ¥l = (9. (13)
(13) RW U= W I®) = (3| ULR® 14)
=R Y| U= (¢ ¢| L(R) U;
(14) I'(R)=U"" L(R)U; (15)
(13) B V)= (¥ T'(B)= (49| UL (B 16
= By 4| U= (¢ ¢| L(B) U*
(B is antilinear),
(16) I'(B)=U"" I(B) U". (17)
Therefore T is equivalent to I (I a I'') if there is a unitary matrix U such that
I'R)=U"'T(R) U, I'(B) = U (B)U*, Y REH,V Be 4H. (18)

One might be concerned as to whether the equivalence of I and I depends on the choice of
A. But in fact, two co-representations I, I’ of G being equivalent depends only on the
equivalence of the subduced representations I, IV of H and not on the choice of 4 in
G=H+A4H (Jansen and Boon (1967)). Note that I'(R) = I'(4"'R4)" may or may not
be =~ I'. Suppose first that T is not equivalent to I' (I not =~ T') and attempt the reduction
of T. Since L'(R) = T'(R) @ T(R) (eq. (11)), any equivalent form must also be a direct sum,
which means that U must be the direct sum U; & U,. But no such block-diagonal matrix can
reduce I'(B) in eq. (11), and so we conclude that if T is not ~ I" the co-representation I, which
consists of matrices of the form I'(R), I'(B) in eq. (11), must be irreducible.
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Suppose next that I" /= T'; then there exists a unitary matrix Z such that

'Ry =272 T((R)Z". (19)
But 4> € {R}, so
(19), (6) A =2TUAH 2 ' =2 T1U> 27 (20)
(19),(6) D(R)" = 2" T(A™'RA)(Z7')"; @1)
(6), (19), (21) T(R) =T(A'RA)" = 2" T(42RA*)(Z7")* o2

= 2" T (4T(R) T(A>)(Z2 71"

(19),(22) I'R) =22 T Y4 T(R) T(4*)(z27 ") Z ", VReH. (23)

But I' is an irreducible representation (IR) of H and so by Schur’s lemma (Appendix A1.5)
77* T7'(4?) is a multiple of the unit matrix, or

c(Z)T(4*) =277 (24)

(24) DA% = (c(2)) " 2°Z. (25)

Equations (20), (24), and (25) show that ¢(Z) is real. Moreover, since I'(4?) and Z are
unitary, ¢(Z)==+1, and

77" = +T'(4%). (26)

Whether the co-representation I' of G (which is related to the IR I" of H by egs. (11) and
(6)) is reducible or not, depends on which sign applies in eq. (26). We first of all generate
the equivalent representation IV from I by

N ) i R

v [E 0][0 D@H][E 0 1 _[o r@a*»ezH™!
(11),(18), 20) I'(4) = [0 ZHE R P .

(28)
(Since eq. (18) holds V B € 4H, it holds in particular when B = A.) Choosing the positive
sign in eq. (26),

(28). 26) rw-|y &l 29)

which can be converted to diagonal form by the unitary transformation

I'(4) = W 'T(A)W, (30)
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with

wzz‘/z“ _}] (31)
(29),(30),(31) I'(4) = [ (Z) _ZO ] (32)
(27),(31) I"(R) =W ' ['(R) W =L'(R). (33)

Equations (32) and (33) show that I has been reduced by the unitary transformation in
egs. (30) and (33). But if the negative sign is taken in eq. (26)

(28),(26) I'(4) = [(Z’ ‘ﬂ (34)

which cannot be diagonalized by a unitary transformation, eq. (30), that preserves the
diagonal form of I'(R) in eq. (27). B is any one of the antiunitary operators in G,
i.e. Be G—-H=A{H}={H}A. Therefore the above equations for B hold for B=RA.
The co-representation I'(B) of B=RA is

(12) [(B) = (R4) =L(R) L(4) =L(BA™") L(4). (35)

Since the transformation from the unprimed I’ matrices to the I’ set involves two
successive unitary transformations,

(35) I'(B) = I'(RA) = T'(R) I'(4) = L'(B4™") I'(4), (36)
(35) I'(B) = I"(R4) = L"(R) I"(4) = L"(BA™") I"(4), 37)
(37).(33), (27, (35). (32) I"(B) = |:F(BA1) 0 ] |:Z 0]
,(33),(27),39), L 0 T@BaH]lo -z
B (38)
_[r®A Yz 0
= 0 —T(BA )z |
/ B F(BA—1> 0 0 -7
(36).27).(34)  L'(B) = { 0 r(BAIJ {z 0 ]
» (39)
B 0 -T'(BA™)z
- |T(BAHZ 0

This completes the derivation of the irreducible co-representations I of G =H + 4H from
the IRs I of H. The results may be summarized as follows. Z is the unitary matrix that
transforms I'(R) into T'(R) =T'(47'RA)" when T = T, by

Z7'T(R) Z =T(R). (19)
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Case (a): L(R)~T(R), ¢(Z)=+1, ZZ"=T(4%,

Case (b): I'(R) not ~ T'(R) =T(4'R4)",

Case (c): I'(R) ~T(R), c(2)=—1, 27" = —T'(4%),

py 0 —-T(BA ™ "HZ
L'(8) = [F(BA‘I)Z 0 }

(40)

(41)

(42)

(See the warning at the beginning of Chapter 13 regarding the nomenclature used for (a),

(b), and (c).)

Given the IRs T" of H, all the irreducible co-representations I' of G can be determined
from eqs. (40)—(42). Although the equivalence of I', T and the sign of ¢(Z) provide a
criterion for the classification of the co-representations of point groups with antiunitary

operators, this will be more useful in the form of a character test.

> x(B)= > 3 T(B),, =3 3 TI(4R4R),,

Be AH BeAH p ReH p
=3 X (4, I'(4'R4), T(R),
ReH p,q,r

= ¥ T(#), 3 T(R)," (R,

If T is not ~ T', then from the orthogonality theorem (OT)

(43),(A1.5.27) S X(B?) = 0.

BeAH

IfT" ~ T, then, since Z is unitary,

(AL61l) Y (I/h)Y T(R),,T(R),, = Zy 2,

(43)

(44)

(45)
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where /4 is the order of the unitary halving subgroup H. (Note that the definition of Z is the
same in eqs. (19) and (A1.6.1), where here IV is T and IV is T".)

(45), (43), (26)BzA;Hx(BZ> = (/)Y T(A2),, (227),)

p.q

! (46)
= (h/1) 3 £ Ep = £h,
p=1

where the positive sign corresponds to case (a) and the negative sign corresponds to case (c).
In summary, a diagnostic test (the Frobenius—Schur test) has been established which
classifies the co-representations I' of G=H + AH according to the three cases listed in
eqs. (40)—(42):

+1 case (a)
(44)—(46) ST x(B) =< 0 case (b) 47)
BedH —1  case (c).

Equations (40)—(42) require Z: if Z cannot be determined by inspection, then

(A1.5.30) Z=)>T(R)XT(R), (48)
ReH
where X is an arbitrary matrix, the purpose of which is to ensure that Z is unitary.
For type II magnetic point groups 4 =0, so B=AR becomes B=OR and
S"x(B*) = ©2 3 x(R?), with ©*=c = +1 when N is even and —1 when N is odd. Thus
B R

eq. (47) in this case gives results identical with those in Table 13.1.

Example 14.2-1 Determine the type ((a), (b), or (c)) for the co-representations of the
magnetic point group G =m3 (which is #53 in Table 14.2).

For G=m3,H=23 or T and G =m3 or Tj,. This is the same example as that considered
by Bradley and Cracknell (1972), although the method of solution used here is different.
The character table of H=23 is reproduced in Table 14.3, which also shows the determi-
nation of the type of representation for I'y, ..., I';. Note that 4 = ©/ commutes with all
R € H; therefore, for real vector representations, I'(R) = I'(R)" = T'(R), Z=E. For
the complex representations "?E,T'(R) = I'(R)", which is not ~ I'(R). The case (b)
co-representations may be written down from eq. (41). The same statement applies to the
spinor representations I’ZF;,/2 which are also case (b) (see Table 14.3). For '’E,

0 1
Z_[T 0}—/&

(Bradley and Cracknell (1972)). In fact, Z =« also for the doubly degenerate case (a)
spinor representations of type II magnetic point groups G = H + ©H when H = mm2(C,,),
222(D»), 32(D3), 3m(Csy), 422(Dy), 4mm(Cyy), 42m(Dag), 622(Dg), 6mm(Csy), 62m(Dsp),
432(0), and 43m(T), while for the 432(0) and 43m(Ty) type (a) spinor F representations
Z = Kk ® k. Other examples of Z may be found in Bradley and Cracknell (1972). For the
solution of Example 14.2-1 by the double-group method, see Bradley and Cracknell
(1972), pp. 626-9.
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Table 14.3. Character table of the invariant subgroup H=23 (or T) of G=m3 (T},).

e=exp(—27i/3); G={R} ®OI{R} ={E 3C, 4C{ 4C; }® © {I 30, 4S; 4S¢}; A=0O I commutes
with VR € H.

-1 2
23, T E 3G, acy 4cy h ;X(B ) (case)”
I A 1 1 1 ([l +3+4+4]=1 (a)
I, 'E 1 1 e* £ (1)[1 43 +4e+4e%]=0 (b)
Iy ’E 1 1 e e* (i)[1 +3+4e*+4e]=0 (b)
I, T 30 -1 0 0 (V12)3+9+0+0]=1 (a)
I's Ey 2 0 1 1 (Y )2—-6—-4—-4]1=1 (a)™*
Ts 'Fy 2 0 e* £ (~1o)[2 — 6 — 4 —4e*]=0 (b)™*
I; °Fy, 2 0 € e* (~12)[2 — 6 —4e* —4c]=0 (b)"

“For the (a) representations the Z matrices are: I';, E; ; T4, Es ; T's, & (see text). The (a) and (b)
representations may be found from eqs. (14.2.40) and (14.2.41).

® The minus sign outside the [ ] comes from ©* = —1 for spinor representations (with N an odd
number).

¢ The minus signs within [ ] come from the Projective factors [C, ; Co]=—1,[C ; Cf]= -1,
[C5 ; Cy] = —1, which may be verified by the methods of Chapter 12 or found in tables given by
Altmann and Herzig (1994), p. 602. Recall that [/ ; /]=1 in the Pauli guage.

Exercise 14.2-1 Confirm that Z ~'T'(R)Z = I'(R)* for H =23 (or T) for the MRs I'(R) with
R=Csy, R=Cy,and R = C,. [Hint: Use Z = k (see above).]

These MRs are (see, for example, Altmann and Herzig (1994)):

N N O R RGO P

Example 14.2-2 Find the co-representations of the magnetic point group 4mm or C4,(Csy).
Take O = o,, with a the unit vector along [110].
The character table of 2mm (C,,) is given in Table 14.4, together with the determination
of the type of co-representation of 4mm from A~' " x(B?) and the projective factors
B
(PFs) needed in the solution of this example. Since B=AR=0OQR, for projective

representations (PRs)

X(B*) =© [OR ; OR]"" [Q5 R"* X(QRQR). (49)
The PFs are all 1 so that [Q ; R] > =+1. For PRs, ©%* = —1 (N odd) and so
(49) X(B%) = (=1) [OR : OR]"'X(QROR), (50)

which enables us to write down > x(B?) in Table 14.4. The vector co-representations

B
are I'; from I'y (or Ay), I, from I', (or A,), which both belong to case (a), and I';
from I';, I'y (By, B;), which is case (b). For the case (a) representations, from
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Table 14.5. Rotation parameters ¢ n, quaternion parameters [J. ; A] and Cayley—Klein
parameters a, b for the point group 2mm (or Cyy).

a=/A—il,;, b=— Ay —1i Ay Also included are the values of [4 ; A] for o,, 0}, since this
information is needed in the evaluation of PFs in Example 14.2-2. In spinor representa-
tions, for improper rotations /R, the quaternion parameters [/ ; A] for IR are the same as
[A ; A] for R.

2mm, C,, o norm A A a b
E 0 [000] 1 0 1 0
Co, n [001] 0 [001] —i 0
Cox n [100] 0 [100] 0 —i
Cay n [010] 0 [010] 0 -1
Ox n [100] 0 [100] 0 —i
ay T [010] 0 [010] 0 -1
Oa 0 277[110]

oh 0 277[110]

eq. (40), I"(R) =T'(R), I'"(B) = £I'(BA"1)Z. Since Z=E,, on taking the positive
sign  (the negative sign merely gives an equivalent representation)
I'(B) = T(BA™") = T(RA™") = T(QRQ™") = T(R), for 'y, T, (since x(ay) = x(0) for
these 1-D IRs — see Table 14.4). Thus we obtain the I';, [, in Table 14.4. For
I'; (or By) T3(R) =T3(47'RA)" =T3(Q 'RQ)* = T'4(R). Therefore, from eq. (41),
T3(R) =T'3(R) © T'4(R). Similarly, T4(R) is I';(R), and so, had we started from I'4(R), this
would have given for the case (b) vector co-representation, I'4(R) @ I'53(R), which is an
equivalent representation to ['5(R). The significance of this remark is that the labels B, and
B, are assigned arbitrarily (Mulliken notation giving no guide as to the assigning of
priorities to equivalent vertical planes) and interchanging the labels B;, B, results in
apparently different but equivalent co-representations (see Bradley and Davies (1968)).

_ 0 I'5(BA)
£3(B) - 1“3(A—IB)* 0 ’ (11)
where I'(BA)=T'(4RA)=T'(QRQ) for vector representations. Therefore I'5(BA)=1"4(R)
(Table 14.4). Further, [(4~" B)"=T(4~" A4R)" =T(R), since ['5(R), T4 (R) are real. So, I’y
may now be written down, and is given in Table 14.4. For the projective (spinor) representa-
tion, which also belongs to case (a), I's(R) =I's(R) and I's(B) is 'Y (B) = +T(BA™ ") Z with

PR B e B
Z =42 { 0 . i} (51
(see Bradley and Cracknell (1972), p.631). The derivation of the I's(R) matrices is
summarized in Table 14.5. For spinor representations I'(/R) =T'(R) (Pauli gauge), so
I'"*(a, b) may be written down using eqs. (12.8.3) and (12.8.5). For example, for R = o,
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Is(0y) = { 0 _i] o (52)

i 0|m ==Y,

m=1, =

For the co-representations I'(B) (see eq. (40))
I['(BA™") =T(4R4™") =T(QRO™)

. 111 (53)
=T(QTRTQE O ; R'[OrR ; 07",
rQE"Hr=0"; greE); (54)

(53),(534)  T(QRO™)=T(QT(R)(Q)'[Q; R [OR; 07" [07": Q. (59)

In this group, Q = Cy,, so O ' within the PFs is Cop and [0~ ; Q] = —1. The I'(B) matrices
may now be obtained from egs. (40), (51), (53) and (55), and are given in Table 14.2.

Answer to Exercise 14.2-1

This is straightforward matrix multiplication but a useful exercise nevertheless to confirm
that the matrix Z is correctly given by k.

Clebsch—-Gordan coefficients

The inner direct product (DP) (or inner Kronecker product)

I'Y(H) = I'"(H) X IV(H) (1)
may be reducible,
I'(H) = ;cij,k I%(H), ©)
where
ik =" 3 X (R) X (R) X'(B)', ReEH. (3)

The c;; . are called Clebsch—-Gordan (CG) coefficients. They have the property
3) Cijk = Cji k- “)
Example 14.3-1 From the character table of 3m (Cs,) in Appendix A3, ¢y;;=1,c122=1,

cinz=leni=1lcp3=1land T3 K [3=T01 0T c331=1, c332=1, c333=1.
All the other CG coefficients not given by eq. (4) are zero.
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For magnetic point groups, the inner DP ' of the co-representations I, IV is
IV =T'R = 3 dys T 5)

The generalization of eq. (3) to magnetic groups (Bradley and Davis (1968); Karavaev
(1965)) is

SRR R
Gk = S R R ©

RecH

where the d;;; can be expressed in terms of the CG coefficients of the subgroup H. The
normalization factor in the denominator of eq. (6) is only unity for case (a), since

X*(R), case (a)
(14.2.40)— (14.2.42) Y (®) = { Y*(R) + X*(R), case (b) )
2x*(R), case (c),

where X*(R) denotes the character of I (R). Consequently, in eq. (6)

1 in case (a)

(7) RS XE(R)XH(R)" = 4§ 2 in case (b) (8)
ReH — 4 in case (c).

Again using eqs. (14.2.40)—(14.2.42) for the numerator in eq. (6), the d;; ; can be expressed
in terms of the c;; . Because of the relation

(6) dij.k = djik )

there are 3(3!) = 18 possible different combinations of I, I, I'*. The results of using egs. (7),
(8) and (3) in eq. (6) are given in Table 14.6. For example, for the case aab in Table 14.6, if
the representation I'’ contains r* cjjx times, it also contains T, ¢« times, and since the
denominator is two for case (b), d;; = 2c;; /2. For the case aac, egs. (7) and (8) require that
djj = 2c; 1 /4= "2c; . The rest of Table 14.6 can be completed in similar fashion.

Exercise 14.3-1 Write down the non-zero CG coefficients for the inner DPs of the point
group mm2 (Cs,). [Hints: See Table 14.4. Recall that X;(R) means x(T';) and that for this
group I's = I'y.] Using Table 14.6 derive expressions for the non-zero CG d coefficients of
the magnetic point group 4mm in terms of the c;;  and evaluate these. Hence write down the
CG decomposition for the Kronecker products of the IRs I of 4mm.

Answer to Exercise 14.3-1

Cl1,1 = C123 = C133 = Cl44 = C22,1 = €234 = C243 = (33,1 (10)
=cyup=cy) =css=css; =1, 1=1,2,3,4.

All other CG coefficients except those derived from eq. (10) using eq. (4) are zero. For
the vector representations, from Tables 14.5 and 14.6 and eq. (10) we write down
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Table 14.6. Clebsch—Gordan coefficients for the inner direct products of
irreducible co-representations.

A barred suffix (e.g. k) indicates a I representation, in this instance of , ™
with T'(R) = T4~ 'RA™).

!

e

1=
1,

dij i

Cijk
Cijk

(“2)cij.k

Cij.k + Cij i

Cij,k + Cif,k

(o) (cijok + i)

2¢ik

2cij‘k

Cijk

Cij k + Cif,k + Cff,k + cﬁ,k
Cijok + Cijk + Cljk + C g
(2) (cik + cix + cjn +c51)
2(cik + cik)

2(cyk + Cijx)

Cij,k + Cff,k

4cir

4cijk

zcij,k

000 oo o o oD 0NN DD
OO0 060060 oo o000 oo o
O C® 0T ® 00 DO ocN 0o 0oTD

After Bradley and Davies (1968), but recall the warning at the beginning of Chapter 13.

diji=cui=1, dpr=cp2=1, d3z=c33z+tcuz=1+0=1,
dpi1=cni1=1, dssz=cn3+cuz=0+1=1,

dyz 1 =c331 e teaz tea =1+0+0+1=2,
dyzo=cyo+curtcnatcur=0+1+1+0=2,

(Note the use of eq. (4) in the last expression above.)

(10) £1 &El :Ep £1 &Ez :Ezg £1 X’E; :£3,
£2&£2=£1, £2&£3:£3, E3®E3:2£1+2£2~

For Kronecker products involving the spinor representation I's,

diss=cis;s =1, dyss=cps=1, diss=csss5+cass=1+1=2,
dssjp =css =1, k=1,2,3.

All other dj; ; not derived from egs. (11) and (13) by using eq. (9) are zero.

(12) El &Es :£59 £2 &Es :£59 £3 ®£5 = 225,
25&25 =1 &22&23-

279

(11

(12)

(13)

(14)
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Crystal-field theory for magnetic crystals

The splitting of atomic energy levels in a crystal field (CF) with the symmetry of one of the
magnetic point groups has been considered in detail by Cracknell (1968). Consider an
atomic °P level (L = 1) in an intermediate field of 2mm or C,, symmetry and assume that
Hs.1, < Hcr. The degenerate 2P level is split into three components, I'; & '; & T'y. Butina
field of 4mm symmetry the two levels I'; and T'y “stick together,” that is, are degenerate,
since I'3 =1'3 & 'y (case (b)), while T'; is re-labeled as ' (case (a)). (See Table 14.4 and
the accompanying text.) Therefore,

I"=T, &6 (4mm symmetry). (D
The possible splitting of the Iy, I'; levels due to Hgy, is determined by
LiXT; = Sy I, ©)
where i = 1 or 3 and I, is I'®, which is E,, or L's in Table 14.4. The c;;; must be determined
first, remembering that I'; =I'; @ I'4. Using Table 14.3,
[XIs=Ts, I5XIs =T, T4 X TIT's =T%s. 3)

3) 15,5 = €355 = Ca5,5 = 1, “)
with ¢;; , zero otherwise. From Table 14.6 (in the general case) or eq. (13) (for this example)

diss =c155 =1, dis s = c355 + Ca5,5 = 2; )

(4): (5) El X Es = £5, £3 X £5 = £5 @Ey (6)

The splitting of the *P level in G =4mm due to the CF and weak spin—orbit coupling is
shown on the LS of Figure 14.1. When Hcp < Hgy, (the weak-field case) the crystal field
acts on the components of the P multiplet split by spin—orbit coupling. This is shown on
the RS of Figure 14.1. In evaluating I'* @ I'*, make use of the fact that I'*, I', and T/ all

Lo L2
e T Py
2p6) L. .-~ Tl 2P(6)
RS & P,2)
N ) R
Hy+Hee+ Hep +Hg .L Hep+ Hg Lt H..+H,
intermediate field weak field

Figure 14.1. The splitting and re-labeling of a P': *P term in a crystal field of 4mm symmetry. On the
LS, Hs.p. <Hcr (see egs. (14.3.15) and (14.3.20). The RS shows the weak-field case when
Hcr < Hs. L. The degeneracy of each state is shown in parentheses.
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belong to case (a), so that d;; ; = c;; . The maximum degeneracy of a spinor representation
in 4mm symmetry is 2 (Table 14.4) so, in a field of this symmetry, the Fy, state, with
character vector |4 0 0 0 0) splits into E,, ® E, or I's ® L's.

For a slightly more complicated example, consider a d' : °D term in a field of m3 symmetry
(see Table 14.3). The co-representations of m3 are I'y (from I'; of the subgroup 23), I, (from
I, I'), Ly (from T'y), I's (from I's), and I'¢ (from I'g, T'7). The twenty-three subgroup levels
Iy, I'; “stick together” in the magnetic group m3 to form the doubly degenerate I'; with
[5(R)=T'5(R) ® I's(R) with character vector [x,) =22 —1 —1). Similarly, I'g, T'; “stick
together” to produce I's with ['¢(R) =T'¢(R) © I'7(R) and |xs) =4 0 —1 —1). In an inter-
mediate field of m3 symmetry, the *D(10) term splits into “I',(4) and *I'4(6). In m3 the ',
spinor forms a basis for ['5 so that spin—orbit coupling is described by

[Lols =L4), Iy ®Ls =L5(2) ©Le(4). 7

In a weak m?3 field the 2D multiplet is split by spin—orbit coupling into its 2D3/2(4) and 2D5/2(6)
components. The 2D3/2 state is I'¢(4) while the 2D5/2 state splits into I's(2) and ['¢(4)
components, which correlate with the intermediate field case in eq. (21).

Problems

14.1 Show that the matrices I'(R), I'(B) of eq. (14.2.11) obey the multiplication rules, eq.
(14.2.12), for co-representations.

14.2 Find the type ((a) or (b), or (c)) of the co-representations of the magnetic point group
3m (no. 31 in Table 14.2), which has the unitary subgroup 3. [Hint: A =00 = Ooyq.
See Figure 12.10 for the definition of 04.]

14.3 Find the type ((a) or (b), or (c)) of the co-representations of the magnetic point group 4/m
(no. 19 in Table 14.2) which has the unitary subgroup 2/m. [Hint: A=0Q =0C4,]

14.4 Derive the PFs given in Table 14.4.

14.5 Verify that the I's matrices in Table 14.4 satisfy the multiplication rules for
co-representations. It is not necessary to examine all possible products. Select, as a
typical example, R =0y and B= 00, in eq. (14.2.12). [Hint: Recall ©%=—1 for
spinor representations. |

14.6 Write down the eight 2 x 2 matrices of the co-representation of m3 that are derived
from the 1 x 1 I'(R) matrices of the 'E or T', representation of m3. [Hint: Use the
information in Table 14.3 and eqs. (14.2.40) or (14.2.41).]

14.7 Give a complete analysis of a *D term in an m3 field, justifying the various statements
made in the solution sketched in the text. Include a correlation diagram (like Figure
14.1) that shows the splitting of the *D level and indicate how the intermediate- and
weak-field states shift with increasing strength of the crystal field. Perform a similar
analysis for a °D term in an m3 field.
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Physical properties of crystals

Tensors

I shall hardly do justice in this chapter to the tensor properties of crystals, a subject which
has been discussed in several excellent treatises. Those I am familiar with include
Bhagavantam (1966), Cracknell (1975), Nowick (1995), Nye (1957), and Wooster (1973).
In addition, some books on group theory (for example, Lax (1974) and Lyubarskii (1960))
devote some attention to this topic. That group theory can be useful in this context is shown
by Neumann’s principle that the symmetry of every physical property of a crystal must
include at least that of the point group of the crystal. The physical properties of crystals that
are amenable to group-theoretical treatment are represented by tensors. I shall therefore
begin with a brief introduction to tensors, sufficient for the main purpose of this chapter,
which is the application of group theory to simplify the tensor description of the physical
properties of crystals.

It will be more economical in the first two sections to label the coordinates of a point P by
{x1 x> x3}. Symmetry operations transform points in space so that under a proper or improper
rotation A, P(x; x, x3) is transformed into P’(x;” x,’ x3'). The matrix representation of this
transformation is

|X1,XQ, X3,> :A|x1 X2 X3>. (1)
A more concise representation is
x,'/ = aijxj, (2)

in which the Einstein summation convention implies a sum over repeated indices. Since the
a;; are real, eq. (2) is an orthogonal transformation with

AAT =FE, det A = +1, (3)

where 41 applies to proper rotations and —1 applies to improper rotations (Appendix
A1.3). If two symmetry operators B, A are applied successively, then P — P’ — P" and

(2) xi” = az;'x_/” = a;‘/'bjkxk = CikXk- 4)

The symmetry operator C = 4B is represented by C =[c;] = AB.

A quantity T that is invariant under all proper and improper rotations (that is, under all
orthogonal transformations) so that 77 = T, is a scalar, or tensor of rank 0, written 7(0). If T
is invariant under proper rotations but changes sign on inversion, then it is a pseudoscalar.



15.1 Tensors 283

Pseudoscalars with the property 7" =+ T (where the positive sign applies to proper
rotations and the negative sign applies to improper rotations) are also called axial tensors
of rank 0, T(0)**. A quantity 7 with three components {7} T, 73} that transform like the
coordinates {x; x, x3} of a point P, that is like the components of the position vector r, so
that

Tl'l:al_'/' I}': i:j:19293 (5)
is a polar vector or tensor of rank 1, T(1). If
Ti/::l:aij Z}a i’j:172)39 (6)

where the positive sign applies to proper rotations {R} and the negative sign applies to
improper rotations {/R}, then T is a pseudovector or axial vector, or axial (or pseudo-)
tensor of rank 1, T(1)™*. Given two vectors u and v, the products of their coordinates u; v;
transform as

u' v/ = ag ay ug vy (7)

Any set of nine quantities {7};} that transform like the products of the components of two
vectors in eq. (7), that is so that

Ty = aw ay Tu, ®

is the set of components of a tensor of rank 2, T(2). This definition is readily extended so
that a tensor of rank n, T(n), is a quantity with 3" components that transform like

T"l;k...:aipajqak,... Tpgr- - -» )
where i, j, k, ...,p,q,r, ... =1,2 or 3 and there are n subscripted indices on Tand 7’. If
J:J{k...:ia,-pajqak,...qu,..., (10)

where the negative sign applies to improper rotations only, then 7 is an axial tensor or
pseudotensor of rank n, T(n)**. If a T(2) has

then it is symmetric and consequently has only six independent components. But if
Tj = —Ty, Vi, j (which entails T;; = 0,V i), (12)

then it is antisymmetric with consequently only three independent components. By
extension, any 7(n) that is invariant (changes sign) under the interchange i« is
symmetric (antisymmetric) with respect to these two indices i and j. For example, if
dyji=d;;, V1, then the T(3) d is symmetric with respect to the interchange of j and k.
Symmetric and antisymmetric 7(2)s will be indicated by 7(2)°* and T(2)®, respectively.
The symmetry of a tensor is an intrinsic feature of the physical property represented by
the tensor, which is unaffected by any proper or improper rotation. Depending on the
crystal class such symmetry operations may impose additional relations between the

tensor components.
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Symmetric tensors of rank 2 occur commonly in crystal physics. Consider the quadratic
form

of such a tensor, 7. Then it is always possible to find a principal axis transformation
x| = ay x;, Tj' = ay ay Ty (14)

which results in 77 being in diagonal form, with matrix representative (MR)

v 0 0
=0 1T o0|. (15)
0 0 T

The quadric eq. (13) referred to principal axes (on dropping primes in eq. (15)) is
<X1 X2 X3‘T|X1 X2 X3>:T1 X12+T2 X22+T3 X32:1. (16)

If all three principal values are positive, the quadric surface is an ellipsoid with semiaxes
a; =T, but if one or two of the principal values are negative the quadric surface is a
hyperboloid. For example, the (relative) impermeability tensor 3 is defined by ¢/, where
k s the permittivity and ky is the permittivity of free space. As for any symmetric 7(2) the
components of 3 define the representation quadric 3;x;x;= 1, which here is called the
indicatrix or optical index ellipsoid. Referred to principal axes the indicatrix is

Bixi+ B x? + By xst =1, (17)

where 3; = ko/k; = 1/n? > 0 and the n; are the principal refractive indices.

A single-index notation for symmetric 7(2)s introduced by Voigt is often very con-
venient. The pair of indices ij is contracted to the single index p according to the following
scheme:

ij(orkl) 11 22 33 23o0r32 3lorl3 12or2l
plorg) 1 2 3 4 5 6

The Voigt notation may be extended to a symmetric 7(4) tensor when 7}, becomes 7,,.

Warnings (i) The {7,,} do not form a second-rank tensor and so unitary transformations
must be carried out using the four-index notation 7j;,. (ii) The contraction of T;;; may be
accompanied by the introduction of numerical factors, for example when 7(4) is the elastic
stiffness (Nye (1957)).

In order to apply group theory to the physical properties of crystals, we need to study the
transformation of tensor components under the symmetry operations of the crystal point
group. These tensor components form bases for the irreducible repsensentations (IRs) of
the point group, for example {x; x, x3} for 7(1) and the set of infinitesimal rotations
{R; R, R.} for T(1)*™. (It should be remarked that although there is no unique way of
decomposing a finite rotation R(¢ n) into the product of three rotations about the coordi-
nate axes, infinitesimal rotations do commute and the vector ¢ n can be resolved uniquely
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into its three projections ¢ny, ¢n,, ¢n; when ¢ is an infinitesimal angle.) The components
of the basis vectors are functions of x; x, x3, which transform in configuration space
according to

R<e1 () e3| X1 X2 X3> = (e] € €3 |F(R)| X1 X2 X3>

(18)

= <61 € €3 |x1’ )Czl X3l>.

For tensors of higher rank we must ensure that the bases are properly normalized and
remain so under the unitary transformations that correspond to proper or improper rotations.
For a symmetric 7(2) the six independent components transform like binary products.
There is only one way of writing x; x;, but since x; x, =x, x; the factors x; and x, may be
combined in two equivalent ways. For the bases to remain normalized under unitary
transformations the square of the normalization factor N for each tensor component is
the number of combinations of the suffices in that particular product. For binary products of
two unlike factors this number is two (namely ij and ji) and so N* =2 and x; X; appears as
V2x; x;. The properly normalized orthogonal basis transforming like

1% %% x? V2xx; V2xax V2xx; | (19)
is therefore
<Om Qp (33 \/50123 \/50131 ﬁa12| (20)

or, in single suffix notation,
(o a3 g s gl (21)

Equivalently, in a general 7(2) x; x; is neither symmetric nor antisymmetric but may be
symmetrized by & x; xj:27'/2(x,~ x;+x; x;). But if the 7(2) is intrinsically symmetric
(because of the property it represents) then 7;;= T; and 27 %(x; x;+x; x;) becomes 2%y, X,
asin eq. (19). In general, for a symmetric 7(n), the number of times the component Ty .
occurs is the number of combinations of jjk . . ., that is

P,/Py Py, ...=nl/rlrl ..., (22)

where P, = n! is the number of permutations of n objects and there are n subscripts in all, 7,
alike of one kind, r, alike of another kind, and so on. For example, for a symmetric 7(3), T;;
occurs once (N=1), T;; occurs 3!/2! =3 times (N = \/§), and Tj; occurs 3! =6 times
(N = \/5) Therefore, the orthonormal symmetric 7(3) is

(B1 B2 B3 Ba Bs B B7 Bs Bo Piol, (23)

which transforms like

<x13 2 x37 V3x1%0 V3x12x V3xnig V3nix V3xix V3xtin \/gxlxzxﬂ.
(24)
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Crystal symmetry: the direct method

If a tensor 7T represents a physical property of a crystal, it must be invariant under the
operations of the point group of the crystal. But if 7'is invariant under the generators of the
point group, it is certainly invariant under any of the point group operators and so it will be
sufficient to examine the effect of the group generators on 7.

Example 15.2-1 Consider a crystal property that is described by a symmetric 7(2) for
crystals of (a) D,y and (b) C, symmetry. The transformation of {x; x, x5} and of {a| o, ap
a4 a5 ag} under the group generators of Dy, is given in Table 15.1(a). Only (a; a, a3) are
invariant under {R} and so they are the only non-zero elements of 7(2). The MR T of a
symmetric 7(2) in (i) thus has the structure (ii) in D,;, symmetry:

(i) (i) (ii)
o] Qg Q5 (673 0 0 a]p Qg 0
Qe Qp Oy 0 [6%) 0 Qg Qo 0 . (1)
Q5 Q4 Q3 0 0 (0%} 0 0 a3

triclinic crystal =~ Dj, symmetry  C, symmetry
The group C, = {E C,} has the generator C,. Table 15.1(b) shows that («; a, a3 «ag) are
invariant under {R} and the structure of 7 is therefore as shown in (iii).
Example 15.2-2 Determine the non-zero elements of the elasticity tensor c;;, for a crystal
of D, symmetry. The generalized form of Hooke’s law is
UU :cijkl Ekl» iajakal: 192939 (2)

where both the stress ¢ and strain € are symmetric 7(2)s. They are field tensors that
describe the applied forces and the resulting strains. The eighty-one elastic stiffness
constants ¢y form a 7(4) which is symmetric with respect to the interchanges

i j, k1 ij—kl 3)

These symmetries in eq. (3) reduce the number of independent tensor components for a
triclinic crystal from eighty-one to twenty-one, which in Voigt notation form a symmetric

Table 15.1. Transformation of the tensor components {x1 x, X3} and {a @y a3 a4 a5 Qg }
under (a) the generators of Doy, and (b) the generator of C,.

The definition of the components of « is given in eqs. (15.1.21) and (15.1.19).

R X1 Xo X3 o an a3 oy Qs Qg
(a) Gy, —X1 —X2 X3 ay (€% Qa3 —Qy —Qs Qg

C2y —X1 X2 —X3 aq (65 a3 —Qy s — Qg

I —X1 —Xp —X3 (071 (%) (0%} Oy (67 (673

(b) @) —X1 —X2 X3 Q (€% Qa3 —Qy —Qs Qg
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6 x 6 matrix [c,,]. The symmetry of [c,,] follows from thermodynamic arguments (see, for
example, Nye (1957), pp. 136—7). The generators of D4 are Cy,, C,y, and the transformation
of [c,,] in suffix notation is given in Tables 15.2(b), (c). Since [c,,] is invariant under
the point group generators, if c,, transforms into —c,,, it must be zero, whereas if
Cpq transforms into c,, then c,,=c,,. For example, Tables 15.2(b) and (c) show that
15 =—15=0=24, that 14 =—-25=—14 =0, and so on. The resulting matrix of second-
order elastic stiffness constants (in Voigt notation) is in Table 15.2(d).

A similar procedure may be followed for other point groups and for tensors representing
other physical properties of crystals.

Table 15.2. Table (a) shows the transforms {x|’ x;' x3'} of {x| X, x3} under the group
generators of Dy. Tables (b) and (c) give, in suffix notation, the transforms c,, of ¢,, under
Cox and Cy,. Table (d) gives the upper half of the symmetric matrix [c,,] for crystals of D,
symmetry. The tables on the right of (b) and (c) explain how the entries in the tables on the
left are arrived at, using Table (a) to derive i'j' (or K'T).

(a) D4 xi X x5’
Coy X —X2 —X3
Cyy —X2 X1 X3
(®) . 5
Cax 11 12 13 14 —15 —16 1 11 11 1
22 23 24 -25 —-26 2 22 22 2
33 34 -35 -36 3 33 33 3
44 —45 —46 4 23 23 4
55 56 5 13 —13 -5
66 6 12 —12 -6
q kl Kl q
() r i i r
Cyy 22 12 23 25 —24 -26 1 11 22 2
11 13 15 —14 —16 2 22 11 1
33 35 —-34 -36 3 33 33 3
55 —45 -56 4 23 13 5
44 46 5 13 -23 —4
66 6 12 —-12 -6
q kl Kl q
(d)
[cpq] 11 12 13 0 0 0
11 13 0 0 0
33 0 0 0
44 0 0
44 0
66
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Group theory and physical properties of crystals

A new approach to the application of group theory in the study of the physical properties of
crystals, which is more powerful than the direct method described in Section 15.2, has been
developed by Nowick and is described fully in his book Crystal Properties via Group
Theory (Nowick (1995)). A brief outline of Nowick’s method will be given here. The
equilibrium physical properties of crystals are described by constitutive relations which are
Taylor expansions of some thermodynamic quantity Y; in terms of a set of thermodynamic
variables X;. Usually, only the first term is retained giving the linear relations

Y, = Ky X;. )]

Additional symmetries arise when the tensors X; and/or Y; are symmetric, and from
crystal symmetry in accordance with Neumann’s principle, as seen in Section 15.2. These
symmetries are properties of the tensor and the crystal point group, and, if different
physical properties may be represented by the same kind of tensor, it will exhibit the
same structure, irrespective of the actual physical property under consideration.

In the linear-response region the fluxes J; of matter and heat are related to the
thermodynamic forces F; by linear phenomenological relations

Ji =Ly Fy. 2

The forces F involve gradients of intensive properties (temperature, electrochemical
potential). The L;; are called phenomenological coefficients and the fundamental theorem
of the thermodynamics of irreversible processes, due originally to Onsager (193 1a, b), is
that when the fluxes and forces are chosen to satisfy the equation

T dS/dt = J;Fy, 3)

where dS/df is the rate of entropy production, then the matrix of phenomenological
coefficients is symmetric,

Ly(B) = Lii(—B), “4)

where B is magnetic induction. Onsager’s theorem is based on the time-reversal symmetry
of the equations of classical and quantum mechanics, and therefore if a magnetic field is
present the sign of B must be reversed when applying the symmetry relation, eq. (4).
Onsager’s original demonstration of his reciprocity theorem, eq. (4), was based on the
assumption that the regression of fluctuations in the thermodynamic parameters is gov-
erned by the same linear laws as are macroscopic processes (Callen (1960)). But there are
difficulties in applying this hypothesis to continuous systems (Casimir (1945)), and the
modern proof (De Groot and Mazur (1962)) employs time-correlation functions and the
fluctuation—dissipation theorem. For the purpose of applying group theory to the physical
properties of crystals, we may confidently assume the validity of the Onsager reciprocal
relations (ORRs) for the linear-response coefficients (eq. (4)), which have also been
verified in particular cases experimentally and by statistical-mechanical calculation of
the L;; (Allnatt and Lidiard (1993), chap. 6).
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Table 15.3. Transformation of the bases {x y z} and {R. R, R.} under the generators Cy,
and o of the point group Ca,,.

See the text for an explanation of the determination of the orientation of the polar and axial
vectors in the doubly degenerate E representation.

Basis Cyy Oy IRs Orientation (for E basis)
xyz Xz Xyz A DE X,y
R.R,R. R,R.R. R.R.R. A BE Ry, =R,

The tensor components that form bases for the IRs of the point groups are given in
character tables, usually for 7(1), 7(1)**, and 7(2) only. In all other cases, one may use the
projection operator P7 in

P'X; =Y xX"(R)RX, ®)
R

where X; is a component of the tensor X and -y labels the IRs. For degenerate representations
the projection must be continued with a second and, if necessary, third component until all
the degenerate bases have been obtained. Many examples of finding these symmetry
coordinates (or symmetry-adapted linear combinations, as they are often called) have
been given in Chapters 6 and 9. An easier method of finding the IRs for bases that consist
of products of components of tensors of lower rank is to form direct product (DP)
representations. When more than one set of symmetry coordinates form bases for degen-
erate representations, it is advantageous to ensure that these sets are similarly oriented, that
is that they transform in a corresponding fashion under the point group generators (which
ensures that they will do so under all the operators of the point group). For example, the
generators of Cy4, are Cy, and oy. (Since the components of a polar vector are always
labeled by x y z rather than by x; x, x5 in character tables, we revert now to this notation.)
The Jones symbols for the bases {x y z} and {R, R, R.} are given in Table 15.3 for the
generators of Cg,. This table shows that the pairs (x y) and (R, —R,) transform in a
corresponding manner. To see this, we note that under Cy,, R, transforms into its partner
namely —R, (just as x—y) while —R, transforms into the negative of its partner,
namely —R, (just as y — —x). Again, under oy, R, transforms into —R, (like x into —x)
while —R, is invariant (and so is y). It is not usual in character tables to order the degenerate
pairs (and triples) so as to preserve similarity of orientation, since this is not a consideration
in other applications of group theory. Nevertheless, it may always be worked out in the
above manner using the group generators. Alternatively, one may find tables which give
similarly oriented bases in appendix E of Nowick (1995). In the groups C,, D,,, D, and
also D,4 and Dsg, it is advisable to determine similarity of orientation in E representations
using a4 ass, rather than by x y (as in the Cy4, example above) as this simplifies the analysis
of stress and strain (Nowick and Heller (1965)). Henceforth in this chapter “symmetry
coordinates” will imply similarly oriented bases. If it happens that X7, X, form bases for
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Table 15.4. Matrix elements of S (see eq. (15.3.7)) for the group Cg4, and a basis
comprising the symmetrical T(2) tensor components {«; } defined in eq. (15.1.19).

S transforms |a; ap a3 o ais ) into the symmetry coordinate basis [X 7,). Normalization
factors are included in S but omitted from X 7,), as is usually the case in character tables.
For the reason given in the text, in this group a4 as are used to define similarity of
orientation in the doubly degenerate E representation.

vy rd X S o
A 101 ar+ s 27" 27" 0 0 0 0 o
A 21 as 0 0 1 0 0 0 s
B; 11 ar—as 27" 27" 0 0 0 0 Qs
B, | 1 as 0 0 0 0 0 1 s
E 1{1 oy 0 0 0 1 0 0 Qs

2 as 0 0 0 0 1 0 as

two 1-D representations, then it is necessary to check the transformation of X; + X, to see
which linear combination forms a basis for each of the two IRs.

The first step in the group theoretical determination of the MR K of the physical
property K defined by eq. (1), or its MR,

(1 [¥) = K|X), (6)

is to write down the unitary matrix S that transforms the tensor components {X;} and {¥;}
into (oriented) symmetry coordinates. Note that {X;} and {Y;} denote one of the tensor
bases {x y z}, {R, R, R.}, {ou} (eq. (15.1.21)), or {B¢} (eq. (15.1.23)). This can be done
from the information available in character tables, though a little extra work may be needed
to determine the IRs spanned by {(3;}. Similarity of orientation must also be determined at
this stage. Alternatively, the symmetry coordinate tables given by Nowick (1995) may be
consulted. This transformation is for {X;} (in tensor notation)

X = Sar Xeo (7)

where -y denotes one of the IRs spanned by {X;}, d is the degeneracy index, and r is the
repeat index: r=1, 2, . . . identifies the basis when the same IR occurs more than once, and
d=1, 2,... enumerates the components of {X;} that form a basis for a degenerate
representation. Since S is unitary, each row of S must be normalized and orthogonal to
every other row. As an example, the matrix S for the group C,, and basis {a;} is given in
Table 15.4.

The usefulness of group theory in establishing the non-zero elements of K is a
consequence of the fundamental theorem (FT; Nowick (1995)), which may be stated as
follows.

Provided the different sets of symmetry coordinates that form bases for a particular IR are
similarly oriented, only symmetry coordinates in {Y;} and {X}} that belong to the same IR
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and have the same degeneracy index d are coupled (that is, connected by a non-zero
coefficient in K). For degenerate representations the different sets of symmetry coordinates
are coupled by the same coefficient.

Suppose that the tensor bases in the relation
|¥) = K|X), (6)

have already been expressed in (similarly oriented) symmetry coordinates. Then, under a
symmetry operation R,

') =TW(R) 1x), |¥') =TV(R) |¥), ®)

where the superscripts in parentheses distinguish the bases.

(6),(8) ') =TM(R) |¥) =T (R)K |X)
=K' |X') = KTW(R) |X); ©)
9) K =T"(R) K TW(R)T. (10)

But since K represents a physical property, K is invariant under R and
(10) r'Y(R) K = K TW(R), (11)

in which I'”(R) and T'(R) are each a direct sum of MRs for particular IRs. By Schur’s
lemma (see Section A1.5) all the blocks (submatrices of K) that connect the same IRs
in T(R) and T®Y(R) are multiples of the unit matrix, while those that connect different IRs
are zero. The importance of similarity of orientation lies in the fact that it guarantees that
the blocks of T”(R), T™(R) have the same form rather than just equivalent forms.
It follows as a corollary to the FT that if {X} and {Y} have no IRs in common, then K is
identically zero. For a triclinic crystal, all symmetry coordinates belong to the A repre-
sentation and therefore are coupled, with consequently no zero entries in K. In general, it
follows from the FT that

(6) Y] =K} X}, (12)

where the FT requires the same v and d on X and Y. Note that K is invariant under R € G and
that the superscript v on K, serves as a reminder that it couples a ¥ and an X which form
bases for the IR~. If v is 1-D, d is redundant, and if the repeat indices 7, s = 1 they may also
be dropped, giving

(12) Y'=K" X", (13)
but if X}, X, both form bases for the same 1-D representation (s = 1, 2) then

(12) Y =KX, + KX (14)
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If v is also repeated in ¥, so that r, s=1, 2,

(12) Y =K, X + K X7, (15)
Y =KX + K3

If there are no other IRs common to Y and X, then eqs. (15) show that there are only four
non-zero K, coefficients in K. Depending on the nature of the property it represents, K may
be a symmetric matrix, and if this is true here K, =K,;, leaving three independent
coefficients. Equations (13)—(15) hold also for E or T representations since according to
the FT the K coefficients that belong to different degeneracy indices are zero, while the
coefficients for the same d are independent of d.

Exercise 15.3-1 Determine the number of independent K coefficients when Y is a vector
and X is a symmetric tensor of rank 2, for crystals that belong to the point groups (a) Csy,
and (b) Dygq.

When T is not ~T"" (case (b) in Section 13.4), T', I'" form a degenerate pair which are
generally labeled by 'E, 2E (sometimes with subscripts). Applying the projection operator

> X(R)*lé to a tensor component will therefore yield symmetry coordinates from 'E, 2E
R

that are complex conjugates (CCs) of one another. Suppose that X('E)=X, —iX,,
X(E) =X, + iX,, and similarly for the tensor Y. Then from the FT

Y —ih=K"(X; —iXa), Y1 +i, =K (X +1Xy), (16)
where
K" =Ky, + K. (17)
(16),(17) Yi =Ky, X1 +Kp,, X2, Y2 =—Kp, X1 + Ky, Xa, (18)
Y KE, Kb || X
(18) N s (19)
Y, K, KR, || X2
so that there are two real independent coefficients Kf, and KE , unless K happens to be

symmetric, in which case KE is zero. But if the conjugate bases for 'E and %E are X, F LX>,
Y1 £1Y, then a similar analysis yields

E E
KRe KIm

KE =
KI]%n _K]]%e

(20)

with two independent coefficients.
The method described above is more powerful than earlier methods, especially for
tensors of higher rank and for groups that have three-fold or six-fold principal axes.
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Table 15.5.

¥ Basis {x y z} {ay}

A, z o)+ ag, 03

E o x (a1 — ap, ag), (u ais)
Table 15.6.

E S4 C2x
xyz Xz xXyz
(671075 Q50 405

Answer to Exercise 15.3-1

(a) From the character table for Cs, the IR for which both {x y z} and {«;} form bases are
given in Table 15.5. For both representations » =1, s = 1, 2. Therefore eq. (14) holds for
both IRs and there are four independent components. (Since ay = 2"z, os = 2"zx, and z is
invariant under the generators of Cs,, similarity of orientation requires (y x) as the E-basis
in column 2 of Table 15.5).

(b) For D,q4 the IRs B, and E each have one basis function from {x y z} and { oy}, namely
z and a¢ for B,, and (x y) and (a4 «s) for E. That (x y) is similarly oriented to
(as  «as) is readily confirmed. The transformation of bases under the generators of D,y
are in Table 15.6. Equation (13) holds for v =B,, E, and there are therefore two indepen-
dent coefficients.

Applications

The fundamental equation for the internal energy U of a thermodynamic system is
dU = X; dv;, (D

where the gradient of X; is a generalized force, and the consequent change in Y; is its
conjugate response. For example, X; might be the temperature 7'and ¥; might be the entropy
S of the system. Experiment shows that, in general, a given response depends on all the
forces and that when the forces are sufficiently small this dependence is linear, so

dY; =Ky dX;. 2)
For systems in equilibrium, eq. (2) yields
AY; =K, AX;, A3)

where AY; =Y, — Y, AX;=X; — X}y, and the subscripts zero on Y and X indicate the initial
state of the system. The integration that yields eq. (3) assumes that the K; are independent



294

Physical properties of crystals

of the forces {X;} (the linear approximation). In the majority of cases it is convenient to take
the reference values Y;o, Xjo as zero, which amounts to saying, for example, that the crystal is
not strained (¢;; = 0) when there is no applied stress (¢0;; = 0). In such cases eq. (3) becomes

Yi=Ky X, “

This is the form we have already used to describe the linear responses which define the
properties of materials, but in some cases, notably for the temperature 7, it is inconvenient
to set the initial value T, to zero (this would require redefining the thermodynamic
temperature scale), and so eq. (3) is used instead (see Table 15.7). In the particular example
of a change in temperature, the conjugate response is

AS=(C/T) AT, (5)

where C is the heat capacity of the system. Table 15.7 summarizes the names and symbols
used for the equilibrium properties which determine the linear response AY; to the forces
AX;, or Y; to X; when their values in their initial states are set to zero. The symmetry of
the matrices K in any point group may be determined by the methods that were covered in
Section 15.3.

Example 15.4-1 Obtain the K matrix for a 7(2) for a crystal that belongs to one of the
uniaxial groups. [Hint: Take Y and X both as 7(1)s.]

The uniaxial groups are of two kinds, those that contain case (b) 'E, °E representations
which are CCs of one another (called “lower symmetry” groups), and those with no case
(b) representations (termed “upper symmetry groups”). For the latter, (x y) span an E
irreducible representation while z is the basis of non-degenerate A or B representation.
Consequently,

V=KX, YL=K'X,, Y;=K*BX, (6)

and the dielectric permittivity matrix x, for example, is

K11 0 0
K = 0 K11 0 . (7)
0 0 K33

For the lower uniaxial groups,
Ky, K, 0
(15.3.19) K=|-KE KE 0 (®)
0 0 Kas

But for the dielectric permittivity, and any symmetric 7(2), K is symmetric (KE, = 0) and
k has the same form (eq. (7)) for all uniaxial groups.

Example 15.4-2 For a crystal to exhibit optical activity the gyration tensor [g;] with
i,j=1,2,3, which is a symmetric axial second-rank tensor, must have at least one non-zero
element. Determine the form of the gyration tensor for Cy4, and D,4 symmetry.
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For a symmetric 7(2)™ we may work out the structure of K by taking Yas a 7(1)™ (basis {R,
R, R.})and Xas a 7(1) (basis {x y z}) and then making K symmetric. From the character table
for D4 (on determining the similarity of orientation) we find that (x y) and (R, —R,) both
form a basis for E while z and R, belong to different IRs. Therefore, from the FT, K33 =0 and

Y1 =K1 X1 +Kip Xo,

Y=-Ku X1 — Kn X>. @
Since K is symmetric, the off-diagonal elements are zero and
g1 = {g(‘)l _gn]. (10)
For Cy,, (x y) and (R, —R,) are bases for the E representation. Therefore,
T =-KX,, Y,=KJX. (11)

But since K is symmetric, [g;;] vanishes in this point group (and, in fact, in all the uniaxial
C,v point groups). (Note the importance of similarity of orientation in reaching the correct
conclusions in this example.)

Generally the linear approximation suffices, but, because the refractive index can be
measured with considerable precision, the change in the impermeability tensor due to stress
and electric field should be written as

ABy = riwEx + pinErEr + qijon- (12)

The T(3) ry. gives the linear electro-optic (Pockels) effect, while the 7(4) p;;, is respon-
sible for the quadratic electro-optic (Kerr) effect; g;;; is the photoelastic tensor.
To describe large deformations, the Lagrangian strains 7,; are defined by

1 <8u,- Ou; 8uk%)

=5 (or T et ar (13)

8_xj+ 8x,- + 8x,— 8Xj

where u; is the displacement in the ith direction in the deformed state. A Taylor expansion
of the elastic strain energy in terms of the strains 7; about a state of zero strain gives

U-U :%Cijkl i Mkt +écijklmn T Mkt Mon + * + + (14)
The thermodynamic tensions ¢; are defined by (9U/0n;) so that
(14) tiy = (U /O ny) = ciju M +%Czjklmn Ml N + =+ (15)
In Voigt notation,
(15) ty= (U9 1p) = Cpg 1+ 5 Cpgr g 1+ -+ (16)

The fifty-six components C,,,,- (which do not constitute a tensor) are the third-order elastic
constants: they are symmetric with respect to all interchanges of p, ¢, and r. The expansion
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of U— Uy in eq. (14) can be carried to higher orders, but fourth- (and higher) order elastic
constants are of limited application.

Example 15.4-3 Both the piezoelectric effect and the Pockels effect involve coupling
between a vector and a symmetric 7(2). The structure of K is therefore similar in the two
cases, the only difference being that the 6 x 3 matrix [r,;] is the transpose of the 3 x 6
matrix [d;,] where i =1, 2, 3 denote the vector components and g =1, ..., 6 denote the
components of the symmetric 7(2) in the usual (Voigt) notation. Determine the structure of
the piezoelectric tensor for a crystal of C;, symmetry.

The allocation of vector and tensor components to IRs and similarity of orientation have
already been determined for the point group Cs, in Exercise 15.3-1. Therefore the linear
equations relating the vector {x y z} and the symmetric 7(2) {c;} are

2:27'/2](?‘ (a1 + ) +K?‘oz3
yzzf%KF(Oél —a) +K§a4, (17)
X :KlEa6 + K2Ea5.

The factors 2" ensure normalization of the rows of the S matrix, and the subscripts

1,2 on K are the values of the repeat index. Therefore, on writing Kis = K%, Ky =27 "KE,
K3 =2""KM, K3 =K5",

0 0 0 0 Kis 2Ky
(17) K=Ky -K»n 0 Ks 0 0
Ky K Kz O 0 0

(18)

Group theory can tell us which elements of K are non-zero and about equalities between
non-zero elements, but numerical factors (like v/2 in the first row of K) are simply a matter
of how the K, are defined in terms of the constants Kﬁ‘ , Kf‘ ,K {5, and KE, this being usually
done in a way that reduces the number of numerical factors. In LiNbOj; the electro-optic
coefficient 33 is more than three times 3, which gives rise to a relatively large difference
in refractive index in directions along and normal to the optic (z) axis, thus making this
material particularly useful in device applications.

Thermoelectric effects

In a crystal in which the only mobile species are electrons and there is no magnetic field
present, the flux equations (15.3.2) for the transport of electrons and heat are

J.= —a Vi (B/T) VT, (19)

Jq: _ﬂT Vﬁ—(’}//T) VT, (20)

where [z is the electrochemical potential. To simplify the notation, «, 3, and -y, which are
T(2)s, have been used for the phenomenological coefficients L., L4, and Ly,. (In this
section the superscript ' is used to denote the transpose even when the matrix is real,
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because in thermodynamics a superscript T is often used to denote constant temperature.)
That the thermodynamic forces are Vi and VT /T follows from eq. (15.3.3) (for example
Callen (1960), De Groot and Mazur (1962)). From the ORRs (eq. (15.3.4)), o and ~y are
symmetric 7(2)s; (3 is real, but not symmetric, the ORRs being met by its transpose 31
appearing in eq. (20). Setting

a”'B)T =%, @n

—(Bla'B—7)/T =k, (22)

(19)—(22) Vi=—a'J, - 2VT, (23)
J,=T3"J, — kVT. (24)

2 is the thermoelectric power tensor. In a homogeneous isothermal system, VT = 0,
Vi =Vi+eVe =0 (uis the chemical potential), and the electrical current density j is
given by

(23) j=—eJ. = —ae’Vé = ae’E = oE, (25)

where E = —V¢ is the electric field, o = ae? is the electrical conductivity, and 6~ = p,
the resistivity. Since « is a symmetric 7(2), so are ¢ and p. When there is no electric

current, J, =0 and
J, = —kVT, (26)

which shows that & is the thermal conductivity. The potential gradient produced by a
temperature gradient under open circuit conditions is

(23) Vé = (1/e)(EVT + V). 7)

If eq. (27) is integrated around a circuit from I in a metal b through metal a (with the b/a
junction at T') to Il also in metal b (at the same temperature as I) but with the a/b junction at
T+ AT, then the potential difference A¢ = ¢" — ¢' (which is called the Seebeck effect) is

(27) A¢+ (1/e)(2b — Z9)AT. (28)

Such an electrical circuit is a thermocouple, and —A¢ /AT = 0 is the thermoelectric power
of the thermocouple,

(28) 0= (—1/e)(Z" - 2%). (29)

The sign convention adopted for metals (but not for ionic conductors) is that 6 is positive if
the hot electrode is negative, so that positive current flows from a to b at the hot junction.

Exercise 15.4-1 Why does the term Vy vanish in going from eq. (27) to eq. (28)?

The thermoelectric power tensor X is not symmetric because ~ = o~ ' 3, and although the
ORRs require « to be symmetric, this is not true of the off-diagonal 7(2) (3. Equation (24)
shows that when there is no temperature gradient, a flow of electric current produces heat
(the Peltier effect), the magnitude of which is determined by X
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Table 15.8. Symbols and names used for transport phenomena in crystals.

The tensor components shown in columns 2—5 are obtained by expanding the tensor component in
column 1 in powers of B, as in eqs. (15.4.34) and (15.4.35). The Hall tensor p;; is also commonly
denoted by R;;;. A dash means that there is no common name for that property.

Coefficient of

Tensor component B B, B, B;B,, B,

Galvanomagnetic effects

pix (B)

}(B)

Thermomagnetic effects

ki (B)

2 (B)

P> €lectrical pins» Hall effect Pirims Magnetoresistance Dikimns second-order
resistivity Hall effect
- Zj,d, Ettinghausen ) jk,m, - ) ,Tk,mn, second-order
effect Ettinghausen
effect?
kiz, thermal kixs, Leduc—Righi kixim», magnetothermal Kiximn, second-order
conductivity effect conductivity Leduc—Righi
effect
2k, thermoelectric 2u, Nernst effect 2 ikim, Magneto- 2irimn» Second-order
power thermoelectric Nernst effect
power

15.4.2 Galvanomagnetic and thermomagnetic effects

Names and symbols used for galvanomagnetic and thermomagnetic effects in crystals are
summarized in Table 15.8. In the presence of a magnetic field, crystal properties become
functions of the magnetic induction B, and the ORRs, hitherto applied in the zero-field
form L;, = L,; are

Li(B) = Lyi(—B). (15.3.4)

This means that the resistivity and thermal conductivity tensors are no longer symmetric.
For example,

pik(B) = pia(~B). (30)

However, any second-rank tensor can be written as the sum of symmetric and anti-
symmetric parts, so

pi(B) = p;(B) + pji(B), (€Y
where

P (B) = py;(B), piz(B) = —pii(B), (32)

(30)—(32)  pi(B) + pi(B) = p},(—B) + pi; (—B) = p.(—=B) — pji(—B). (33)
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Equating symmetric and antisymmetric parts of the LS and RS of eq. (33) gives
(33) P (B) = pj(=B), pi(B) = —pf(—B), (34)

which shows that pj, p% are, respectively, even and odd functions of B. We now expand
p;, in powers of B. Terms with even powers give the symmetric component, and those with
odd powers of B provide the antisymmetric component, so that

p;k(B) = pir + PitimB1Bm + - - - (35)
IO?I?(B) = pirtB1 + pitimBi1BmBy + - - - (36)

The thermal conductivity tensor k£ may likewise be split into symmetric and antisymmetric
parts, with expansions in powers of B as in egs. (35) and (36). But X is not necessarily a
symmetric tensor at B=10, and so the expansion of the antisymmetric part of 2 in an
equation like eq. (36) is not applicable. Instead,

2i(B) = i+ Zirs By + Zifim BiBi + -+ (37

Example 15.4-4 Determine the structure of the Nernst tensor for cubic crystals.

2« 1s ameasure of the ith component of the electric field produced by the kth component
ofthe temperature gradient (eq. (27)) and 2, is a measure of the effect of the /th component
of the magnetic induction B; on ;. Therefore, 3;;; describes the coupling between a 7(2),
2, and an axial vector B, the components of which transform like {R, R, R.}. The
components {Y;} of a 7(2) transform like binary products of coordinates, that is like the
nine quantities

(15119) {xl X2 X3}®{X1 X2 X3}
= {X]z XQZ X32 2_1/2)62)(?3 2_]/2)(3)61 2_%)(?1)62 2_1/2)63)(2 2_‘/2X1X3 2_%)(?2)61} (38)

= {xx;} ={Y;}={T}, i, j=1,2,3, k=1, ...,9, 39)

where ¥, transforms like x;x; and the factors of 2~ ensure normalization. The set of nine
components in eq. (39) may be separated into two subsets which are symmetric and
antisymmetric with respect to i < j.

(39) {Vi} ={Yi1 Yo Y33 27" (Yos + Y32) 27 (Y31 + Y13) 27" (Y12 + Ya1)}
® {27 (Y3 — Y32) 27 (Y31 — Yi3) 27 (Y1 — Ya1)}
={ihz Y Ys Ysp@{l7 Y3 Yo} ={Y'} o {Y*} (40)
{Y*®} is just the symmetric 7(2) with basis {a;}, but the components of { Y**} transform like
the axial vector {R, R, R.} (see eq. (40)). Therefore one needs to determine from

character tables the IRs with bases that are components of the 7(1)** {R, R, R.} and the
symmetric 7(2) {«;}. The first-order correction to X, in a magnetic field is

sW = 5B, (41)
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or, in matrix notation, the supermatrix
=W = S, B (42)

where ¥ ;) denotes a 3 X 9 matrix consisting of three 3 x 3 blocks, each of the blocks
describing the coupling to B;, B, and Bj, respectively. The subscript / of the matrix
element in eq. (42) tells us which component of B it will multiply. In the lower cubic
groups T (23), Ty, (m3), (Ry R, R.)and (a4 a5 «) both form bases for a triply degenerate
representation, T or T,, respectively. Therefore, the 7(1)™* (X; X, X3) — which here are
(B1 B, Bs3)—are coupled with both the symmetric components (Y; Y5 Y¢) and the antisym-
metric components (Y; Yg Yo) of the 7(2) (which here is 2;). Therefore, for /=1,

Yy =27 (Y3 + Y3) = K[ By, 43)

Y7 =2""(Yss — Yo) = K3 By, (44)

and similarly for Y5, Yg, which couple with B,, and Y, Yo, which couple with Bs; (Y7 Y5 Y3)
do not occur in this IR and so Y1 =Y, = Y3 =0.

(43), (44) Yo =27 (K] +K7)By, Y3 =2""(K] —KJ]) By. (45)
Re-writing egs. (45) in notation appropriate to the current problem,
(45) I =B, 24 =2 By (46)

Proceeding similarly for /=2 and /=3, and recalling that K[, K] are independent of the
degeneracy index so that the constants in egs. (43)—(46) are independent of /, the X 1
matrix is

0 0 0 0 0 321 0 231 0
0 0 231 0 0 0 21 0 0
0 321 0 231 0 0 0 0 0 (47

in which X is omitted, so that only the subscripts ik/ are given; [ = 1, 2, and 3 mark the three
3 x 3 blocks. In the upper cubic groups Tg4, O, Oy, (43m, 432, m3m), no components of { ¥*}
share a representation with 7(1)** which forms a basis for T; or T,. Therefore {Y; ... Y¢}
are zero and T(1)™ couples only with {¥*°},

Yy =2""(Yp3 + Y33) = 0, (48)
Y; =2 "(Ys — Yo) = K"By, (49)
(43),(49) Y3 =27 "K'By, Yy = —Yu, (50)

with similar results for / =2, 3. In notation appropriate to the Nernst tensor,

(50) 3y =221 By, 2512) = —231 By, (51)
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and similarly, so that ¥; ; takes the form

0 0 0 0 0 —231 0 231 0

0 0 231 0 0 0 231 0 0

0 -231 0 231 0 0 0 o0 o0f- (32)
I=1 /=2 I=3

For other point groups this analysis of the symmetry properties of a 7(3)** can be repeated,
or alternatively tables given by Bhagavantam (1966) or Nowick (1995) may be consulted.
The Hall tensor p;; (and likewise the Leduc—Righi tensor k) is also a 7(3)™ tensor but
differs from the Nernst tensor in that p;; is symmetric and p;; B; = pri(—Bj) so that the
blocks pp, are antisymmetric with respect to i <= k. This follows from the ORRs and is
true in all point group symmetries. For cubic crystals and /=1,

Y, =2""(Yy3 — Y35) = K'By. (53)
But here Y,; = —Y3, and so
Yo3 =27 “K'B) or py} = p231B1, (54)
with 2”K"B, = py3;. Similarly, for /=2,
Yg =27 (Y3 — Y13) = K'B,. (55)
On setting Y3; = —Y 3, because of the antisymmetry of pj}
(55),(54) —Y13=2"K"B; or p\} = —p132By = —2"K"B, = —p»31Bs, (56)

and similarly for Yo = K" B;. Therefore the 7(3)™ Hall tensor is

0o 0 0 0 0 —231 0 231 0

0 o0 231 0 0 0 231 0 0

0 —231 0 231 0 0 0 0 0 (7
B, B, B;

The subscripts and signs of p(; ;; may vary in some published tables, but such variations are
purely conventional. Group theory gives us the structure of the MR of the tensor, that is it
tells us which coefficients are zero and gives equalities between and relative signs of non-
zero coefficients. In the lower cubic groups T and Ty, 7(1)** is not prevented by point group
symmetry from coupling with {¥, Y5 Y4}, but the coupling coefficients have to be zero in
order to satisfy the ORRs.

Answer to Exercise 15.4-1

I and II are points in two phases of identical composition at the same temperature.
Therefore p“(1) = p(10).
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Properties of crystals with magnetic point groups

Two kinds of crystal properties have been considered in this chapter, namely properties of
crystals in equilibrium and transport properties. The latter are associated with thermo-
dynamically irreversible processes and are accompanied by an increase in entropy, AS > 0.
Such processes occur naturally, or spontaneously. Time reversal is not a permitted sym-
metry operation in systems undergoing irreversible processes because the operation t — —¢
would require the spontaneous process to be reversed and so contravene the second law of
thermodynamics. Consequently, time reversal is limited to crystals in equilibrium. Most
physical properties are unaffected by time reversal but because B(—¢) = —B(¢) numerical
values of some properties may be reversed in sign. Consequently Neumann’s principle
must be extended to include time-reversal symmetry as well as spatial symmetry. Tensors
which change sign under © are called c-fensors and those which are invariant under © are
called i-tensors. For crystals which belong to the type II “gray” groups defined by
G=H+ OH, if both Y and X are either both symmetric or both antisymmetric under ©,
K is an i-tensor and its structure is the same as that obtained from the subgroup H= {R}.
But if only one of Y and X is an i-tensor then K is a c-tensor and

K=TOR) K TWRN, ReH;

(1310 K =-IM(B) K T (Bf, B=0R, @
which means that when K is a c-tensor, it must be identically zero.
For magnetic crystals belonging to the type III (black and white) point groups
G=H+0(G—-H)={R} +4{R}, A=00, Q€ G—H. 2)
We may assume that the IRs of
G = {R} + O{R} ©)

are known (Appendix A3). Let I' be one of these IRs and define the complementary IR by
I'.(R) =T(R), I':(OR) = —T'(OR), VR € H, VOR € G — H. “4)

Then the complementary matrices obey eq. (1) for the group G and so can be used to
determine the structure of K. The structure of K for magnetic crystals can thus be found
from the representations of G by substituting the complementary representation I, for v
for c-tensors, and thus avoiding the necessity of actually determining the IRs of G. Most
commonly, the c-tensor will be the magnetic induction B or the magnetic field H, both of
which are axial vectors transforming like {R, R, R .}. Of course, proper orientation has to
be determined, as explained in Section 15.3, or reference must be made to the tables given
by Nowick (1995) for the thirty-two type I and fifty-eight type III magnetic point groups.

Ferromagnetism

A ferromagnetic material is one that possesses a magnetic moment M in the absence of a
magnetic field. The magnetic induction is given by
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Table 15.9. The thirty-one magnetic point groups in which ferromagnetism is possible.

Type I Type 111
1 1
2 m 2/m 2 m 2/m 222 mm2 mm2 mmm
3 3 32 3m 3m
4 4 4/m 422 dmm 2m 4/mmm
6 6 6/m 622 6mm 6m2 6/mmm
B=pH+1, )

where the magnetic intensity I is the magnetic moment per unit volume. Since B and H are
axial vectors, so is I. Therefore the magnetic point groups in which ferromagnetism is
possible are those in which at least one of the components {R, R, R .} belongs to the
totally symmetric representation. A systematic examination of the thirty-two type I and
fifty-eight type III magnetic point groups reveals that this is so only for the thirty-one
magnetic point groups listed in Table 15.9. Since AT and P are invariant under © for
crystals in thermodynamic equilibrium, these magnetic point groups are also those which
exhibit the magnetocaloric effect and the pyromagnetic effect and a particular case of the
piezomagnetic effect in which the applied stress is a uniform pressure.

Magnetoelectric polarizability

The magnetoelectric polarizability [A;] of a crystalline material gives rise to a magnetic
moment I (¥ an axial vector, or 7(1)**) when the crystal is placed in an electric field E (X a
polar vector, or 7(1)). Its transpose [A;;] describes the converse magnetoelectric effect in
which the roles of ¥ and X are interchanged. To find the structure of K =[], we look for
IRs which have components of both {x y z} and {R, R, R.} as bases.

Example 15.5-1 Determine the structure of the matrix [A;] for the type I magnetic point
group 4mm (Cy4y) and the type III group 4mm with G = C,, and H=C,,.

From the character table of 4mm (Cy,,), I'"=A,E,I'™® = A, ¢ E. Orientation for the
E basis, already determined in Section 15.3, is (x y) and (R, —R,). Therefore

0 tp O
A=|-rn 0 0. (6)
0 0 0

For 4mm, H={E C,, o oy} and G — H = {C}, C,, Ga Op}, where G,, o}, bisect the
angles between x and y. In G= {H} + © {G — H} the complementary representations are
obtained by replacing x by —x in the classes {C;, C,,} and {c, o}, which gives
I'® =B, @ E (I'” is unaffected by ©). Orientation must be re-determined. In 4mm,
under Cy,, R, — R, R, — —R, (Table 15.3); therefore in 4mm under ecC;,, R, — —R,, and
R, — R,. Consequently, in 4mm, the oriented E-bases are (x y) and (R, R,),



15.5.3

Problems 305

0 Ap 0
A=A, 0 0. (7)
0 0 0

The structure of A (and therefore of any property represented by a 7(2)** tensor) for the
fifty-eight magnetic groups in which A is not identically zero, is given by Nowick (1995),
p. 138.

Piezomagnetic effect

The coupling of the magnetic induction B (¥, a T(1)**) with an applied stress (X, a 7(2)°)
gives rise to the piezomagnetic effect O, which is a 7(3)™ tensor, symmetric with respect
toj < k. Its converse Qy;; describes the coupling of the elastic strain with the magnetic field
(Table 15.7). Using the single index notation for elastic stress or strain, Q) is a 3 x 6 matrix,
like that for the piezoelectric effect. The structure of Q) is determined by finding repre-
sentations common to F&R) and T,

Example 15.5-2 Determine the structure of Q) for the magnetic point groups 4mm and
4mm.

In 4mm (or Cyy) FgR) = A, @E and I'“ = A, B, @ B, G E, the orientation of com-
ponents being such that R, is coupled with a4 and —R, with «s. Therefore

0 0 0 QOu 0 0
0=1000 0 —0u 0. (8)
0 0 0 O 0 0

In 4mm, G—H=2C,$ 204, so that FﬁR) =B, ®E. In I‘.(:R), R, is a basis for B, and is
therefore coupled with o. In the degenerate representation, (R, R,) couples with (s ag).
Consequently,

000 Qu 0 0
Q=10 0 0 0 Qu 0 |. 9)
000 0 0 O

The piezomagnetic tensor Q for all magnetic point groups is given by Bhagavantam (1966),
p- 173, and Nowick (1995) in his Table 8-3.

Problems

15.1 Determine the form of the matrix C of second-order elastic constants for crystals with
the point group O.

15.2 Find the similarly oriented bases (symmetry coordinates) for the components of a
7(1), a T(1)*, and a symmetric 7(2), and a symmetric 7(3) for the point group D,q.
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153

15.4

15.5

15.6

15.7

15.8

In a piezoelectric crystal an applied stress c;; produces an electric polarization P so
that P;=d;;0;. Prove that a crystal with a center of symmetry cannot exhibit the
phenomenon of piezoelectricity.

Determine the point groups in which ferroelectricity is possible. [Hint: Check point-
group character tables to see in which point groups at least one of x, y, or z form a
basis for I';.]

Find the structure of K when there is one complex Y coordinate Y| F iY; for 'E, 2E but
two X coordinates X; F iX,, X3 F iX;. What changes arise when there are two Y
coordinates but only one X coordinate for a degenerate pair of CC representations?
Obtain the permittivity matrix « for orthorhombic and monoclinic crystals. What
differences arise in the monoclinic case for a 7(2) that is not symmetric?

Obtain the MRs of the elastic constant tensor for an upper hexagonal crystal and a
lower tetragonal crystal.

Find the 9 x 6 MR of the magnetothermoelectric power 2, for a crystal of orthor-
hombic symmetry. Express your results in four-index notation, giving indices only.
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Space groups

Crystals . .. their essential virtues are but two,; — the first is to be pure and the
second is to be well shaped.
John Ruskin The Ethics of the Dust (1865)

Translational symmetry

A crystal structure is the spatial arrangement of all the atoms (ions, molecules) of which
the crystal is composed. It is represented by the crystal pattern, which is a minimal set of
points having the same symmetry as the crystal structure. These points are commonly
shown in diagrams by small circles, although more elaborate figures (ornaments) may be
used to emphasize particular symmetry elements. The essential characteristic of a crystal
structure (and therefore of the crystal pattern) is its translational symmetry, which is
described in terms of a space lattice (Figure 16.1). A space lattice (or lattice) is an array
of points in space which, for clarity of representation, are joined by straight lines (Figure
16.1(a)). “Translational symmetry” means that the environment of a particular lattice
point O is indistinguishable from that of any other lattice point reached from O by the
lattice translation vector

a, = na; +ma; +nzaz = <a1 a a3|n1 ny 7’13> = <a|n> (1)

The integers n;, n,, and ny are the components of a,, and a;, a,, and az are the
fundamental lattice translation vectors, which we shall often abbreviate to fundamental
translation vectors or fundamental translations (see Bradley and Cracknell (1972)). There
seems to be no generally agreed name for the {a,} which have also been called, for
example, the “primitive translation vectors of the lattice” (McWeeny (1963)), “primitive
vectors” (Altmann 1977), “unit vectors” (Altmann (1991)), “basis translation vectors”
(Evarestov and Smirnov (1997)) and “basis vectors” (Kim (1999)). In a particular lattice
the location of a lattice point P is specified uniquely by the components of the position
vector OP which are the coordinates of P(n; n, n3) referred to the fundamental lattice
translation vectors ( a; a, a3 |. The parallelepiped defined by {a; a, a3} is the unit cell of the
lattice and it follows from eq. (1) that it is a space-filling polyhedron. Each fundamental
translation vector may be resolved into its components along the Cartesian coordinate axes
0X, OY, and OZ,

307
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. . .
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Figure 16.1. (a) Portion of a 2-D (space) lattice. (b) Lattice with a basis, primitive unit cell, x = [00].
(c) Non-primitive unit cell, k; =[0 0], ko =[% 2]. All lattice points are translationally equivalent,
as shown by the alternative choice of fundamental translations a,, a, which give a primitive unit cell.
(d) Non-primitive unit cell: no possible choice of fundamental translations exists which would make
all pattern points translationally equivalent. Two possible unit cells are shown, which differ only in
the choice of origin. Each unit cell of this lattice contains two pattern points, s = 2.

a; = (e e e3|ay ajy aiz), i =1,2,3; (2)

(1),(2) dix  dax A3y n
a, = <e1 € E3| ayy ay Az ny
ay; dp; 4z ns3

= <e1 € e3|A\n1 np n3>. (3)

If every pattern point can be reached from O by a translation a,, the lattice is said to be
primitive, in which case the unit cell contains just one pattern point and is also described as
“primitive” (Figure 16.1). The location of a pattern point in a unit cell is specified by the vector

a, = K1a] + K@y + K323 = (a1 Ay a3 | K Ky K3) = (a| k), 4)

with k1, ko, k3 < 1. Every pattern point in a non-primitive cell is connected to O by the
vector

a,. =a,+a,. Q)

The pattern points associated with a particular lattice are referred to as the basis so that the
description of a crystal pattern requires the specification of the space lattice by {a; a, a5}
and the specification of the basis by giving the location of the pattern points in one unit cell
by x;,i=1,2, ..., s (Figure 16.1(b), (c)). The choice of the fundamental translations is a
matter of convenience. For example, in a face-centred cubic (fcc) lattice we could choose
orthogonal fundamental translation vectors along OX, OY, OZ, in which case the unit cell
contains (1/)8 + (1,)6 = 4 lattice points (Figure 16.2(2)). Alternatively, we might choose a
primitive unit cell with the fundamental translations
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a;

a

a, a

a3

a3

(a) (b)

Figure 16.2. Conventional (non-primitive) unit cells of (a) the face-centered cubic and (b) the body-
centered cubic lattices, showing the fundamental vectors a;, a,, and a; of the primitive unit cells.
(A conventional unit cell is one that displays the macroscopic symmetry of the crystal.)

a; = (a/2)(e; e e3|0 1 1),
a, = (a/2){e; e e3[1 0 1), (6)
a3 = (a/2)<e1 € €3 | 11 0>,

0 1 1
(3),(6) A=(/2)|1 0 1]. (7
1 1 0

Similarly, for the body-centered cubic (bcc) lattice one might choose an orthogonal set for
the fundamental translations giving a non-primitive unit cell with two lattice points per cell
(Figure 16.2(b)) or one could choose a primitive unit cell with the fundamental translations

a; = (a/2)<e1 € €3 |T 1 1>,

a, = (a/2){e; ey e3|1 1 1), 8)
a3 = (a/2)<e1 €y €3 |1 1 T>,

1

1
(3).(®) A=(a/2)|1 1 )
I 1

—_] — —

A primitive centered unit cell, called the Wigner—Seitz cell, is particularly useful. To
construct the Wigner—Seitz cell, draw straight lines from a chosen lattice point to all its near
neighbors and bisect these lines perpendicularly by planes: then the smallest polyhedron
enclosed by these planes is the Wigner—Seitz cell (Figure 16.3). A lattice direction is
specified by its indices [wy w, ws], that is, the smallest set of integers in the same ratio as the
components of a vector in that direction; [[w; w, w3]] denotes a set of equivalent directions.
The orientation of a lattice plane is specified by its Miller indices (% 4, h3), which are the
smallest set of integers in the same ratio as the reciprocals of the intercepts made by the plane
on the vectors ay, a,, a3, in units of ay, a,, as; ((hy hy h3)) denotes a set of equivalent planes.
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a

a;

(b)

(a)

Figure 16.3. (a) Construction of the Wigner—Seitz cell in a 2-D hexagonal close-packed (4cp) lattice.
(b) Primitive unit cell of the Acp lattice.

A crystal pattern may possess rotational symmetry as well as translational symmetry,
although the existence of translational symmetry imposes restrictions on the order of the
axes. The fundamental translations (a | in eq. (1) are the basis vectors of a linear vector
space (LVS). Suppose that they are transformed into a new set (a’| by a unitary
transformation

(a'| = (a| T, (10)

(10) R(@ |=(a'|R'"=R(a|T = (a| RT = (a’ | T"'RT. (11)

R is a unitary matrix, and any unitary matrix can be diagonalized by a unitary
transformation,

(10), (11) R' =T 'RT =T'RT (T unitary). (12)
But the trace of R is invariant under a similarity transformation and therefore
TrR=+1+2cos¢ (13)

whatever the choice of (a]. A symmetry operator R transforms a,, into the lattice translation
vector a,/, where both | ) and | #’) contain integers only.

(1 R(aln) = (a|n) = (a|R|n) = (aln). (14)

Since | n) and | #') consist of integers only, the diagonal form of R can consist only of
integers and so

(13) Tr R=+1+2cos¢ =p, (15)
where p is an integer.
(15) 2cosp=pF1 =0, £1, £2. (16)

The values of 27 /¢ =n (where 7 is the order of the axis of rotation) that satisfy eq. (16) and
therefore are compatible with translational symmetry, are shown in Table 16.1. It follows
that the point groups compatible with translational symmetry are limited to the twenty-
seven axial groups with n =1, 2, 3, 4, or 6 and the five cubic groups, giving thirty-two
crystallographic point groups (Table 2.9).
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Table 16.1. The orders of the axes of rotation, from eq.
(16.1.16), that are compatible with translational symmetry.

Cos @ 0 +h = +1 -1
¢ /2 /3 21/ 3 21 n
n=2n/¢ 4 6 3 1 2

It is not always possible to choose a unit cell which makes every pattern point
translationally equivalent, that is, accessible from O by a translation a,. The maximum
set of translationally equivalent points constitutes the Bravais lattice of the crystal. For
example, the cubic unit cells shown in Figure 16.2 are the repeat units of Bravais lattices.
Because 71, n,, and n3 are integers, the inversion operator simply exchanges lattice points,
and the Bravais lattice appears the same after inversion as it did before. Hence every
Bravais lattice has inversion symmetry. The metric M =[a, - a;] is invariant under the
congruent transformation

M = R'MR, (17)

where R is the matrix representative (MR) of the symmetry operator R. The invariance
condition in eq. (17) for the metric imposes restrictions on both M and R, which determine
the Bravais lattice (from M) and the crystallographic point groups ( ““crystal classes”) from
the group generators {R}. The results of a systematic enumeration of the Bravais lattices
and the assignment of the crystal classes to the crystal systems (see, for example, Burns and
Glazer (1963) and McWeeny (1978)) are summarized in Table 16.2. Unit cells are shown
in Figure 16.4. Their derivation from eq. (17) is straightforward and so only one example
will be provided here.

Example 16.1-1 Find the Bravais lattices, crystal systems, and crystallographic point
groups that are consistent with a Cs, axis normal to a planar hexagonal net.

As Figure 16.5 shows, z is also a Cq axis. From Figure 16.5, the hexagonal crystal
system is defined by

aj=a #a3, ap=21/3, ap=az =m1/2, (18)

where c; is the angle between a; and a;. Consequently,

1 -1 0
M=[a-a]=d|-% 1 0], (19)
0 0 ¢
where ¢ =a3/a. From Figure 16.5,
I 0o -1 0
R(— [001})<ala233|:(aza4a3|:<a1a2a3| 1 -1 0f; (20)
3 0 0 1
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triclinic monoclinic -
P 2P 21
) )
orthorhombic . o O
[ [)
222P 2221 222C 222F
tetragonal .
4p 41
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hexagonal
)
N
3p 3R
isometric o
(cubic) . . o,
L]
(]
23P 231 23F

Figure 16.4. Unit cells of the fourteen space lattices classified into six crystal systems.

Figure 16.5. A hexagonal planar net is generated by the fundamental translations a;, a, (each of
length a) and a1, = 27/3. To generate a space lattice with three-fold rotational symmetry, the second
and third layers must be translated so that P; lies over the points marked P, and P3, respectively, that is
at(1/32/3 1/3) and (2/3 1/3 2/3) . If using hexagonal coordinates a3 is normal to the plane of a;, a, and
lies along es, so that this unit cell (3R) contains three lattice points (Figure 16.4).
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Table 16.2. Crystal systems, space lattices, and crystallographic point groups.

Unit cells are shown in Figure 16.4.

Crystal system Unit cell Lattice Fundamental translations Point groups
Triclinic 1P 1P a; £a,F£az 1,1
a1 7# a3 # a3y
Monoclinic 2P 2P, 21 ajFay#az 2, m, 2/m
a3 Fapp=ap=n/2"
Q3 F Qp = Q3 =n/2"
Orthorhombic 222P 222P, 2221 a; £ a,Faz 222, 2mm
222C, 222F g = Qip3 = (¥3] =n/2 mmm
Tetragonal 4p 4P, 4] aj=a,Faz 4,4, 4/m, 422
ap=oap=0az =n/2 4mm, 4 2m,
4/mmm
Hexagonal 3P 3P, 3R a;=a,F£az 3,3,32
ap=27/3, 3m, 3m
Q3 = Q31 = /2
3P 3P a)=a,7#a3 6, 6, 6/m,
ap,=2mn/3, 622, 6mm, 6m2,
3=z =m/2 6/mmm
Cubic 23P 23P, 231 a; =a, =aj 23, m3, 432,
23F ap=ayy=az =n/2 43m, m3m

“First setting; ? second setting.

0 1 0][1 =1 07[0 =1 0
20) RIMR=d&|-1 -1 of|=% 1 o1 -1 0| =M. 1)
0 o 1|0 o ¢||lo o1

Here both M and R were deduced from the initial information that there is a Cs,, axis, but
eq. (21) is a useful consistency check. The next step is to check for possible C, axes normal
to C3Z,

-1 0 0
R(TC [100})(31 a a3|:<a4 a —a3\z<a1 a a3| -1 1 0 , (22)
0 0 —1
-1 -1 0 1 =% 07[-1 0 0
(22) RIMR=4*| 0 1 O||-1 1 Of||[-1 1 o0o|=M (23
0 0 -1 0 0 0 0 —1

Equations (21) and (23) show that M is invariant under C;, and C,,. Therefore the compatible
point groups are those that contain a proper or improper three-fold axis, with or without
proper or improper two-fold axes normal to the principal axis. These point groups are 3, 3, 32,
3m, 3m (or Cs, Se, Ds, Csy, D3q). To generate a 3-D lattice with three-fold rotational
symmetry, the second and third layers of the hexagonal planar net in Figure 16.5 must
be translated so that Py lies over P, and Ps, respectively, i.e. at (15 24 15) and (25 15 25).
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Figure 16.6. Primitive unit cell of the rhombohedral lattice 3R. The three fundamental translations a,
a,, a3 are of equal length and make equal angles with e;. Hexagonal nets in four successive layers
show how the rhombohedral cell may be constructed.

With a; normal to the plane of a;, a, at O, these fundamental translations generate a
unit cell (named 3R) with two internal points (Figure 16.4). Figure 16.6 shows the primitive
rhombohedral cell of this lattice. There is a third way of adding a second layer to the
hexagonal net of Figure 16.5 which preserves the hexagonal symmetry of the initial net,
and that is by the displacement [0 0 a3]. Compatible symmetry operators that satisfy the
invariance condition in eq. (17) are those associated with an inversion center, a horizontal or
vertical mirror plane, or a two-fold axis giving the following seven point groups: 6, 6, 6/m,
622, 6mm, 6m2, and 6/mmm (Cg, Csp, Con» Do, Covs D3, and Dgp).

Exercise 16.1-1 Could a different lattice be generated by placing P, over P; and P,,
respectively, in the second and third layers of a hexagonal net?

Answer to Exercise 16.1-1

No. This lattice is equivalent to the first one because one may be converted into the other by
arotation through 7 about the normal to the plane containing a; and a, through the center of
the rhombus with sides a,, a,.

The space group of a crystal

The space group G of a crystal is the set of all symmetry operators that leave the appearance of
the crystal pattern unchanged from what it was before the operation. The most general kind of
space-group operator (called a Seitz operator) consists of a point operator R (that is, a proper
or improper rotation that leaves at least one point invariant) followed by a translation v.
For historical reasons the Seitz operator is usually written {R | v}. However, we shall write it
as (R|v) to simplify the notation for sets of space-group operators. When a space-group
operator acts on a position vector r, the vector is transformed into
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Figure 16.7. Action of the Seitz operator (R|v) on the vector r. In this example, R is R(n/2 [0 0 1]) and
v =a,/2. The dashed line shows r’ = Rr+v.

r' = (Rv)r=Rr+v (1)

(Figure 16.7). Note that v is not necessarily a lattice translation t € {a,}, though it must be
if R is the identity E. Special cases of eq. (1) are as follows:

(EJt), a lattice translation; )
(E|0), the identity; 3)
(R|0), a point operator. @)

In each of the equations (1)—(4) the crystal pattern appears the same after carrying out the
operation signified. It follows from eq. (2) that the pattern, and therefore the subset of
lattice translations

T={(El)}, )

is infinite. This inconvenience may, however, be removed by a suitable choice of boundary
conditions (see eq. (18) later).
The product of two Seitz operators is given by

(1) (R2|V2)(R1 |V1> r = (Rlez)(Rll' =+ Vl) = Rlel‘ + R2V1 + \ /)
= (RyRi|Rovi +V2) 15 (6)
(6) (R2|V2)(R1 |V1) = (R2R1 |R2V1 + Vz). (7)

The inverse of a Seitz operator is given by

(7) (RIV)(R™'| =R™'v) = (E| —=v 4 V) = (E|0); (8)

(®) Rv)™ = (®R'[-R"'V). )



316

Space groups

When a Seitz operator acts on configuration space all functions defined in that space are
transformed, and the rule for carrying out this transformation is the same as that for rotation
without translation. However, no special symbol is generally used in the case of the Seitz
operator since it is clear when the corresponding function operator is intended. Thus

(R|v)f(r) implies
RV (r) =f(R"'r —R"v). (10)
The lattice translations form the translation subgroup of G.
(5),(7) (E|t)(E|t) = (E|t + ') = (E|t' +t) = (E[t)(E|t). (an

Equation (11) shows that the set of lattice translations T form an Abelian subgroup of G.
Moreover, T is an invariant subgroup of G, since

(7),(9) (RIV)(EI)(RIv) ! = (RIRt+V)(R™'| =R "'v)
=(E|-v+Rt+v)=(ERt) eT. (12)

A lattice translation t is the sum of its projections along a,, a,, a;,

t=t +t+t3 =na +nay;+ nyas (nl,nz,n3 integers). (13)

(13),(11) (E[t) = (E|t)(E|t2)(E[t3), (14)
where (E |t;) form a subgroup T; of T and similarly for T,, Ts.
(14) Ti NT, = (E(0); 15)

(1n (Elt)(E]t) = (E|)(E]t1), Y t1, to (16)
and similarly for T,, T, and Ts, T;.
(15),(16) T=T,9T, ®Ts. (17)

We now remove the inconvenience of the translation subgroup, and consequently the
Bravais lattice, being infinite by supposing that the crystal is a parallelepiped of sides N;a;
where a;, j=1,2,3, are the fundamental translations. The number of lattice points,
N1N,N3, is equal to the number of unit cells in the crystal, N. To eliminate surface effects
we imagine the crystal to be one of an infinite number of replicas, which together constitute
an infinite system. Then

(E|Nay) = (E|ap)¥ = (E]0), j =1, 2, 3. (18)
Equation (18) is a statement of the Born and von Karman periodic boundary conditions.
T is the direct product (DP) of three Abelian subgroups and so has N;N,N; 1-D

representations. The MRs of Ty, I'(T;), obey the same multiplication table as the corres-
ponding operators, namely

(1) (Elnia))(E|m'a)) = (E| (m +n)ay); (19)

(19) L(E|n a))T(E|nia;) = T(E| (n +ni')ay). (20)
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Equation (20) is satisfied by
I‘(E\nlal) :exp(—iklnlal). (21)

Because of the DP in eq. (17), the representations of T obey the relation

(20) F(E ‘ nya; +nyay + n3 33) F(E | nl’al + I’lz/ ap + }13/ 33)
=T(E|(n +n)ar + (m2 + m')ay + (n3 + n3')as); (22)
(22),(13) T'(E|t) T(E|t') = T(E|t + t); (23)
(23),(21),(13) [(E|t) = exp(—ik - t), t € {a,}, (24)

which are the IRs of the translation group T. The MRs I'(E]t) of the translation operators
(E|t) are defined by

(E[t) iy (r) = ¥y (r) D(E]t); (25)

(25),(24) Pi (r) = exp(ik - 1) u(r). (26)

The functions in eq. (26) are called Bloch functions and are plane waves modulated by the
function u(r), which has the periodicity of the lattice,

u(r) = ux(r+t), Vte{a,}. (27)

We now confirm that egs. (27) and (206) satisfy eq. (24):

(Et) i (r) = i ((E]t)"r). (28)

The configuration space operator on the RS of eq. (28) replaces r by r — t:

(26),(27),(28) (E[t)¢y(r) = explik-(r—t)] uy (r—t)
= exp(—ik - t) 9y (r), (29)
in agreement with eq. (24).
Consider {(R|0)} C G; then

(R|0)(R'|0) = (RR'|0) € G, (30)

and so {(R|0)} C G also form a subgroup of G, called the point subgroup P(G). A general
space-group operator is represented in (modified) Seitz notation by (R|v), where R is a point
operator and v is a translation, though not necessarily a lattice translation (E|t). If
(RIv)=(S|w) € G, where w ¢ {t}, then neither (S]0) nor (E|w) are € G. Here S is being
used to indicate a special point operator that is associated with a particular, unique (non-
lattice) translation w ¢ {t}.

Exercise 16.2-1 Why are (R|w) and (S]t), S & P(G), not € G?
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) (R|0)(R'|0) = (RR'|0) € G, VR, (1)

which demonstrates closure in the set {(R|0)}. Therefore, the set {(R|0)}, which is obtained
from G by setting V v=0, and which may therefore contain some rotations which were
associated in G with special, non-lattice translations w, is a group P called the point group
or sometimes the isogonal point group, which avoids any possible confusion with the point
subgroup P(G). The distinction between eq. (30) and eq. (31) is important: in the former
equation all members of the set {(R|0)} € G, but in eq. (31) some of the set {(R|0)} may not
be € G. In general, the point group P is not a subgroup of G, unless G contains no operators
of the form (S|w) with w ¢ {t}, in which case it will be the same as the point subgroup.
Although (S]0) € G, it is a symmetry operator for the pattern that remains after removing
all the pattern points that lie within the unit cell, but leaving all those which are the lattice
points of the Bravais lattice. In other words, the Bravais lattice is invariant under the
operations of the point group P, and P is therefore either the point group Py of the Bravais
lattice or it is a subgroup of Py . For example, the point subgroup of the Acp lattice is Dy,
whereas the point group is Dg, (Figure 16.5).
There are two kinds of operators (S|w).

(1) A screw rotation is one in which S is a rotation about a specified axis n and w is a
translation along that axis. Screw rotations are described by the symbol 7, in which n
signifies a rotation through 2n/n about the screw axis n, followed by a translation pt/n,
where t is the translation between nearest-neighbor lattice points along n (Figure 16.8).

(2) A glide reflection is one in which S is a reflection in the glide plane followed by a
translation w, not necessarily parallel to the reflection plane. The three possible types
of translation w are described in Table 16.3.

It follows from the existence of operators (S|w) that space groups G may be classified as
either symmorphic or non-symmorphic. Symmorphic space groups consist only of oper-
ators of the type (R|t), where (R|0) and (E]t) are members of the set of G. Non-symmorphic
space groups contain besides operators of the type (R|t) at least one operator(S|w) in which
neither (5]0) nor (E£]w) € G, so that the list of symmetry elements contains one or more
screw axes or glide planes.

The coset expansion of G on its invariant subgroup T is

G=> (Rw)T, VReP, (32)

{R}
where w is either the null vector 0 or the unique special vector associated with some screw
axis or glide plane. (No coset representatives (R|v) are necessary in eq. (32) because
(RIV)T = (R|w) (E|t)T = (R|w)T.) If there are no screw axes or glide planes, then there are
no operators with w # 0 in G and
(32) G=> (R0O)T. (33)
{R}

In this case the point subgroup {(R|0)} of G is identical with the point group P, and G may
be written as the semidirect product

G=T AP (G symmorphic). (34)
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O+
O+
3+0
4
4

$., %,

Figure 16.8. Equivalent positions (shown by open circles) generated by screw rotations about a 4,
screw axis along z. The location of a screw axis 7, is specified by an n-sided filled polygon with
extensions (“hooks’) on ¢ sides where gp / n is the smallest possible integer. The height of the point
above the xy plane is shown by the symbol #/,+ which means (¢/, + z)t. The curved “hooks” indicate
the sign of the rotation through an angle less than n: anticlockwise, or positive, for p < n/2, but
clockwise (negative) for p > n/2. For a 4, axis, ¢ = 2, because 2(2/4) = 1, but for both 4, and 43, g =4
because 4(%4) =1 and 4(%) =3.

Table 16.3.1 Definition of glide planes.

Notation: The fundamental translations are denoted in this book by
ay, ay, a3. Superscript tc denotes tetragonal and cubic systems only.

Type Symbol Translation w

Axial a, b, c lay, lay, lag

Diagonal n 1 +ay), $(a2+as), J(as+a)
%(31 +ax + 33)10

Diamond d H(ar £ ay), {(ap%a3), H(as+a)
L(a; tay+ay)*

In non-symmorphic space groups the point group P is not a subgroup of G and it is not
possible to express G as a semidirect product.

Since T in eq. (32) is an invariant subgroup of G, the cosets (R|w)T form the factor group
(Section 1.4)

F=G/T=Y [(RIW)T] ~P. (35)
x

Each term in square brackets in eq. (35) is itself a set of elements, being T multiplied by the
coset representative (R|w). Therefore F is isomorphous with the point group P. The kernel
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Table 16.4. Coordinates of equivalent positions x' y' z' and the space-group
operators (RIV) that transform x y z into x' y' z', for the Wyckoff position 8g
of the space group 59 ( Pmmn or D%ﬁ)

xyz xXyz xXyz xyz

(E| 000) (Cs,| 000) (x| 000) (oy| 000)
1-x3-yz 1—x i+y,2 1+x, 140z 1+x 3-yz
(11'540) (Coy|'h 14 0) (02|'5140) (Cax|'a140)

K of a homomorphism G — G’ is the subset K C G that is the fiber of E' in G’ (Section 1.7).
If the fibers of G’ all have the same order, then G is an extension of G’ by K with

(1.7.6) g=kg, (36)

where g is the order of G and similarly. It follows from eq. (32) that G is the extension of the
point group P by T. Firstly, the condition (36) is satisfied since

€2)) g =Ng(P), (37

with N and g(P) the orders of T and P, respectively. Secondly, G is homomorphous to P,
with T the kernel of the homomorphism. The mapping (R|lw) — R maintains the multi-
plication rules, since

(RW)(Rlw) = (RRIR'W + W) (38)

maps on to (R")(R) = R'R, thus establishing the homomorphism (Section 1.7). Each one of
the subgroup of translations T = {(E|t)} maps on to the identity so that T is indeed the
kernel of the homomorphism.

The matrix representation of the space-group operation

r = (RV)r=Rr +v (39)
is
vi | [x X
/
PR a7, (40)
V3 z y4
0 0 0 1 1 1

where the 3 x 3 submatrix I'(R), or R, is the MR of the point symmetry operator R. The
positions x, y, z and x/, )/, Z' are called equivalent positions. They are given in the
International Tables of Crystallography (Hahn (1983), and subsequently refered to as
the ITC) for every space group, and from these coordinates the space-group operators can
be determined. For example, for the space group 59, Pmmn or Déﬁ, we find in the ITC the
coordinates of the eight equivalent positions in Table 16.4. Given below each set of
coordinates is the space-group operator (R|v) that transforms the general point x, y, z into
X', ¥, 7. Inthe second row of the table the space-group operators are of the form (R|v), but in
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the fourth row each point operator is associated with the non-lattice translation w = [ % 0].
This group is therefore a non-symmorphic space group. The corresponding symmetry
elements are shown in the figures for space group 59 in the ITC. In addition to the equivalent
positions of the general point x y z, the ITC also give equivalent positions for points in special
positions on symmetry elements. The generating elements for the 230 space groups are listed
by Bradley and Cracknell (1972) in their Table 3.7.

A set of points equivalent by symmetry form a crystallographic orbit. All the points in
an orbit may be obtained from one, the generating point q, by (R|v)q, where, in general,
v =w + t. The site symmetry group G, which is isomorphous to one of the crystallographic
point groups, comprises the set of symmetry operators (R|v) that leave q invariant. The
site symmetry groups G; of different points q; of the same orbit are conjugate; that is,
G;=g;Gq g ' For a point q in a general position, G, = C,, but for special points G, has
higher symmetry. All the symmetry points that have the same site symmetry group belong
to a subset of the crystallographic orbits called a Wyckoff position. A particular Wyckoff
position consists of only one orbit unless this contains one or more variable parameters.
Wyckoff positions are labeled successively by lower case letters. For example, the
Wyckoff position in Table 16.4 is called 8g: 8 because there are eight equivalent
positions that would be obtained from the general point x y z by the symmetry operators
(R|v) listed in this table, and g because there are six Wyckoff positions labeled a—f which
have lower site symmetry. The number of orbit points in the primitive unit cell is g(P)/
2(q), where g(P) is the order of the point group P and g(q) is the order of the site
symmetry group Gq. In this example, g(q) =1 (for C,) and g(P) =8 (for D5,y) so there
are eight equivalent positions for the Wyckoff position 8g of Dy;,. But for a point 0 y z in
the mirror plane x=0, the site symmetry group is m or Cy;={Eo,} with g(q)=2,
and so there are 8/2=4 equivalent positions in the unit cell. The ITC table for
space group 59 confirms that there are four equivalent positions and gives their coordi-
nates as

0yz 0yz 'h h=—»z 'h bty

Exercise 16.2-2 List the space-group operators (R|v) which generate the above four
positions from the point 0 y z.

In a space group the choice of origin is refered to as the setting. Suppose the coordinate
axes O; X'Y Z are shifted to O, X Y Z by a vector t,. Then any vector r; referredto Oy X Y Z
becomes, in the new coordinate system,

r,=r; —t. (41)
The space-group operation
(Ri|vi)ri =Riri+vi =1/ (42)
becomes

(Rava)ra =Ryry +v) =12 43)
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(41),(42),(43) (Ro[v2) = (Ri|vi + Ry to — to). (44)

For example, two different settings are used for space group 59 (Pmmn or Défl). The first
setting was used in Table 16.4; the second setting is related to the first by t, = (a;/4) — (a,/4).
Therefore, in this second setting, the space group operator which replaces (C,,/000) of the
first setting is

(44) (Cl =1 0), 00 (Cyulh /o 0), (45)

on adding the fundamental translation a; to simplify (R,|v,). From eq. (45), (Ca,)2 %2 0)
[x y z]=[Y%—x Y% —y z], which is one of the equivalent positions in Table 16.4. The other
Seitz operators in the second setting may be written in a similar manner. The choice of a
particular setting is arbitrary, and the settings chosen by various authors do not always
agree with those in the ITC.

Example 16.2-1 List the symmetry operators of the space group 33, Pna2;. What is the
point group of this space group? Find the equivalent positions [x” y’ z'] that result from
applying these operators to the general point [x y z].

The position of a symmetry element in the space-group symbol gives the unique
direction associated with that element, namely the axis of a rotation or the normal to
a reflection plane (see Table 16.5). Therefore, in Pna2, the symmetry elements are:
a diagonal glide plane normal to [100]; an axial glide plane normal to [010] with
glide direction [100]; and a 2, screw axis parallel to [001]. The symmetry operators of
Pna2, are therefore (£]000), (040 2 2), (oy|/2 0 0), and (C,|0 0 '2). The point group
P={E oy oy C5,} = C,,. Since there are two improper C, axes normal to one another and
to the proper C, axis, this space group belongs to the orthorhombic system. The space-
group symbol tells us the symmetry elements but not their /ocation in the unit cell. For
this we must consult the ITC, which gives, for each space group, diagrams showing the
location of equivalent points and space-group symmetry elements. Part of this informa-
tion about space group 33 is in Figure 16.9; (E|]0 0 0) leaves the point x y z at its
original position. The MR of the Seitz operator (0| 0 Y2 ¥2) operating on x y z, with the
glide plane at x =Y, is

Table 16.5. Conventions used to specify, in a space-group symbol, the unique
direction associated with a space-group operator.

Unique direction for

Crystal system First position Second position Third position
Monoclinic and orthorhombic [100] [010] [001]
Tetragonal and hexagonal [001] [100] [110]

Isometric (cubic) [001] [111] [110]
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Figure 16.9. Location of some of the equivalent points and symmetry elements in the unit cell of
space group Pna2;. An open circle marked + denotes the position of a general point xyz, the + sign
meaning that the point lies at a height z above the xy plane. Circles containing a comma denote
equivalent points that result from mirror reflections. The origin is in the top left corner, and the filled
digon with “tails” denotes the presence of a two-fold screw axis at the origin. Small arrows in this
figure show the directions of a;, a,, which in an orthorhombic cell coincide with x, y. The dashed line
shows the location of an axial glide plane at y = % and the —- — line shows the location of the diagonal
glide plane at x = V.

T 0 0 1/2 X l/zfx
010 hll|y h+y

= . 4
00 1 Whilz h+z (46)
0 0 0 1 1 1

The displacement by 72 in the first row and fourth column comes from the mirror reflection
in the plane at x =1/4. The % in the second and third rows of the fourth column are the
components of the diagonal glide. The location of the transformed point is that marked
by a comma (,) and /2+. The MR of the operation (o|/2 0 0)[xyz], when the axial glide plane
lies at y="4,is

1 0 O 1/2 X 1/2 —+ X

01 0 Al{y|_|h-y

001 0 z | z ’ “7)
00 0 1 1 1

The % in the second row and fourth column is the displacement in y due to reflection in
the axial a-glide plane at y =" The location of the equivalent point resulting from
this operation is that marked by a ““,” and 2+ in Figure 16.9. The MR of the operation
of the 2 screw axis at the origin on the general point xyz, that is (Cy,| 0 0 ¥2)(xyz), is

1 0 0 O X —X

01T 0 0]y -y

O O 1 1/2 z 1/2 +z ’ (48)
0 0 0 1 1 1

and the resulting equivalent point is that marked by an open circle and Y2+.
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Answers to Exercises 16.2

Exercise 16.2-1 If (R|0) € G, then R leaves the appearance of the crystal pattern indis-
tinguishable from what it was before this operation. Therefore to maintain the crystal
pattern any subsequent translation must be € {t}. Similarly, since S & P(G) it does not leave
the pattern self-coincident and a subsequent translation w must therefore ¢{t}, in order to
restore self-coincidence.

Exercise 16.2-2 (E]0 0 0), (Cy,|0 0 0), (Cayl V5 ¥ 0), (Cay| ¥4 ¥4 0).

Reciprocal lattice and Brillouin zones

The reciprocal lattice is generated from the fundamental translations {b; b, b3} defined by
bl' . aj:27u5,-j, i,j:1,2,3, (1)

where the fundamental translations {a;} define a primitive unit cell of the Bravais lattice.
The solutions to eq. (1) are given by

b1 = (Zﬂ/Va)(az X 33), b2 = (Zn/va)(a3 X 31), b3 = (2n/va)(a1 X 32). (2)
Vo =aj; - ap X az (3)

is the volume of the unit cell in the direct lattice. (In crystallography the reciprocal lattice is
usually defined without the factor 27 in eq. (1), which, however, is invariably introduced in
solid state physics.) Since the space lattice is primitive, then so is the reciprocal lattice, and
each lattice point can be reached from O by a translation

b, = mi by +my by +m3 by = (b by bz | my myms) = (b|m), “4)

where m, m,, and m; are integers.

(4), (1613) bm = <e1 € €3 |B| my mp I’}’I3>; (5)
blx b2x b3x

B=|by by bsy|. (6)
blz bZz b3z

The MR of the scalar product (SP) b,,-a, (which conforms with the laws of matrix
multiplication) is

(bm)" - (a|n) = (my my ms| bibybs)-(as az a3 | ny na n3)

= (my mym; |BTA| ny no n3) (7

(D = (my my m3|2nE3|n; ny n3); 3
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(8) b, -a, =2np, p = mn; + myn, + mz n3 = an integer. 9)

(7). (8) B=2n(A " = Qn/|A[)(=1)" (o), (10)

where o, is the complementary minor of a,, in |A| = |a,].

Example 16.3-1 Find the reciprocal lattice of the fcc direct lattice. From Figure 16.2(a),

01 1
A=(a/2)|1 0 1|; (11)
110

11
B=2r(A Y =Q@n/a)| 1 -1 1], (12)
1

so that the reciprocal lattice of the fcc lattice is bcc with cube edge b =4n/a (Figure
16.2(b)).

Example 16.3-2 Find the reciprocal lattice of the planar hexagonal net which has the
primitive unit cell shown in Figure 16.10.

In the hexagonal net a lattice vector a,=mn;a; + n,a,, where |a;|=|ay|=a, and
a1y =2n/3. From Figure 16.10,

a; =ejai+eap =e (a\/§/2) —e;(a/2), (13)

a =ejay + e az, = € (0) + e ((1) (14)

(13), (14) a1 23] = ale; &) [_ﬁli (1’] (15)

(15) A=a {_ﬁlﬁ ﬂ; (16)
11

(16), (10) B = (4n/aV/3) [o @2} (17)

(17), (6) b, = (4n/aV/3)er; by = (2n/aV/3)(e; + V3e2), (18)

so that the reciprocal lattice is also a planar hexagonal net.

Exercise 16.3-1 Confirm that BTA =2zE,.

The direct lattice and reciprocal lattice unit cells are marked on the crystal pattern of a
planar hexagonal net in Figure 16.10, using egs. (13), (14), and (18). The scales chosen for
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Figure 16.10. Hexagonal net with primitive lattice vectors a;, a,. The reciprocal lattice vectors by, b,
also generate a hexagonal net which, at first sight, does not appear to be the same as the original net.
However, the two nets may be brought into coincidence by using the alternative choice of
fundamental lattice translation vectors a}, a} (shown by the unit cell marked by dashed lines) and
rotating by, b, through an angle of /6. The two nets would then be proportional but have been made
to coincide through the choice of the scales used in the drawing of the two nets.

the two lattices in Figure 16.10 are « = b = v/2m. From eq. (17) the angle between b, and
b, is 7/ 3, but the two nets may be brought into coincidence by a rotation through an angle
of /6, as emphasized by the rotated unit cell defined by’, b,’. For any crystal pattern there
may be alternative choices of fundamental translations, for example {a;’, a,’} and {a|, a,}
in Figure 16.10. The fact that the original net and the reciprocal lattice net coincide, rather
than scale, is a consequence of our deliberate choice of scales making b = a = v/27. Any
other choice of @ would have resulted in a reciprocal net that (after rotation) scaled, rather
than coincided, with the original net.

The crystal lattice and the reciprocal lattice representations have different purposes. The
crystal lattice describes, and enables us to visualize, the crystal structure. The reciprocal
lattice will provide a means of describing electron states and phonon states in crystals.

Applying periodic boundary conditions, eq. (16.2.18), to the Bloch functions of
eq. (16.2.26) yields

exp(ik - ) ug(r) = exp lik : <r+ iNjﬂj)] u (). (19)

M

3
(19), (1) kK=Y (m/N)b=> kb, m=0+1,+2..., (20)
j=1

Jj=1

showing that k is a vector in the reciprocal lattice with components k; = m;/ N;.

3 3
(19), (20) k- (Z Njaj> =2n)y m;=2mp, p an integer, (21)
j=1 J=1

which confirms that eq. (19) is satisfied by eq. (20). Equation (20) tells us that the number
of k vectors allowed by the periodic boundary conditions (PBC) is N1 N,N; = N, the number
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of unit cells in the crystal lattice, and that these k vectors just fill a volume of the reciprocal
lattice equal to v,, the volume of the primitive unit cell of the reciprocal lattice. This
volume is the first Brillouin zone (BZ). It could be chosen in various ways, but it is usual to
take the Wigner—Seitz cell of the reciprocal lattice as the first BZ, except for monoclinic
and triclinic space groups where the primitive unit cell is used instead. The number of k
vectors per unit volume of the reciprocal lattice is

N(K) =N/v, =V /81, (22)

where V' = Nv,, is the volume of the crystal.

The MR I'(E| t) of the translation operator (E| t) is given by eq. (16.2.24) asexp (—i k- t),
where t is a translation a,. As Kk runs over its N allowed values in eq. (20) it generates the
N irreducible representations (IRs) of the translation group T, which we therefore label by
k, as in I'y (E]t).

(16224),(D—©) Ty, (Elay) = exp[-i(k +b,)-a,)] = T(E]a,). (23)

Therefore, k-+b,, and k label the same representation and are said to be equivalent (=2). By
definition, no two interior points can be equivalent but every point on the surface of the BZ
has at least one equivalent point. The k = 0 point at the center of the zone is denoted by I'.
All other internal high-symmetry points are denoted by capital Greek letters. Surface
symmetry points are denoted by capital Roman letters. The elements of the point group
which transform a particular k point into itself or into an equivalent point constitute the
point group of the wave vector (or little co-group of k) P(k) C P, for that k point.

We now describe a general method for the construction of the BZ. It is a consequence of
the SP relation eqs. (7)—(9) that every reciprocal lattice vector b, is normal to a set of
planes in the direct lattice. In Figure 16.11(a), b,, is a reciprocal lattice vector that connects
lattice point O to some other lattice point P;. Let 1 be the plane through P, that is normal to
b,, and let 0 be the plane parallel to 1 through O. Let a,, be the lattice vector from O to some

(@ (b)

Figure 16.11. (a) b,, is a vector from the origin O to a lattice point P, in the reciprocal lattice
representation, and plane 1 isnormal to b,,.. The lattice translation a,, is a vector from O to another lattice
point P, on plane 1. Plane 0 is parallel to plane 1 through O. (b) a,, intersects plane 1 at one of the other
lattice points in plane 1. If a,, lies along ay, n, and n3 are zero and a,, = n,a,. Similarly for a,, a;.
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other lattice point P, on plane 1; a, makes an angle 6 with plane 1. The distance D between
these planes is given by

©) D = [a,|cos (3= 8) = (bula)/Ibu| = 27p/|b. 24)

where p = mn; + myny + msns is an integer. The intercept made by this plane 1 on a; is
nia;. When a,, lies along a,, n, and n3 are zero and n; = p/ m,. Similarly the intercepts n,a,,
n3az along a,, a3 are given by n, =p/m,, ny=p/ms respectively. Therefore the Miller
indices of this plane, and so of a whole stack of parallel planes, are proportional to ((m; m,
m3)). Removal of any common factor gives the Miller indices ((#; %, %3)). The spacing
between each pair of adjacent planes is given by

24 D/p = dw =27/|by|. (25)

The plane normal to b,, with the same Miller indices, but located at a distance |b,,|/2 from
0O, is one of the faces of the BZ. The equation & (x y z) to this face is

k-u, = |b,|/2, (26)

where K is a vector in the reciprocal lattice from O to this face, u,, is a unit vector normal to
the face and |b,,|/2 is the length of the normal from O to this face. A similar analysis for
another vector |b,,| from O to a nearby lattice point yields another face of the BZ, and so on,
until the equations to all the faces not connected by symmetry have been obtained and the
whole BZ has thus been determined. Equation (23) emphasizes the primary importance of
the first BZ. Consequently, BZ, or Brillouin zone, when unqualified, means the first BZ.
The use of successively larger reciprocal lattice vectors b, in eq. (25) gives the second,
third, ... BZs (see, for example, Landsberg (1969)). For example, the smallest volume
(lying outside the first zone), and enclosed by the next set of planes that satisfy eq. (25),
forms the second BZ, and so on.

Exercise 16.3-2 Show that if k is the wave vector of incident radiation (X-ray or neutron)
or the wave vector of a particle or quasiparticle, then eq. (25) leads to the Bragg diffraction
condition.

Example 16.3-3 Construct the BZs of the primitive cubic and fcc lattices.
For the primitive cubic lattice A =aE3, so that the reciprocal lattice is also primitive
cubic with cube edge b =2n/a. The shortest vectors from O to its near neighbors are

+ (2n/a)[100], £ (2n/a)[010], =+(2n/a)[001], or

27
+ (2n/a)[[1 0 0]] @)

where the double brackets signify the set of vectors equivalent by symmetry. The planes
which bisect these vectors perpendicularly at +(n/a) [[1 0 0]] determine the zone boundaries
so that the BZ is a cube with cube edge 2n/a. Symmetry points are marked in Figure 16.12(a),
and their coordinates and point groups are given in Table 16.6.
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Figure 16.12. Brillouin zones, with symmetry points marked, of (a) the primitive cubic Bravais lattice
and (b) the cubic close-packed or fcc Bravais lattice.

The reciprocal lattice of the fcc lattice (see eq. (12)) is bee, and the fourteen planes which
bisect the shortest vectors to near-neighbor reciprocal lattice points have Miller indices

+((111)), £((200)), (28)

which are, respectively, the eight hexagonal faces and the six square faces shown in
Figure 16.12(b), which also shows the principal symmetry points. In these straightforward
examples it was hardly necessary to find the equations for the faces of the BZ by the general
method outlined earlier (see eq. (25)). The BZ for each of the fourteen Bravais lattices is shown
in Bradley and Cracknell (1972), who also list the symmetry points and their point groups P(k).
In their Table 3.7 they give the generating elements for all the 230 space groups. The principal
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Table 16.6. Symmetry points in the Brillouin zones (see Figure 16.12) of the reciprocal
lattices of (a) the primitive cubic space lattice (simple cubic, sc), for which the reciprocal
lattice is also sc, and (b) the fcc space lattice, which has a bcc reciprocal lattice.

k=ab, + Ob, + vbs; =E&e| + ne, + (e;. In column 2, the coordinates of the point k are the
components of the vector k with respect to the basis (b; b, bs|, in units of 27/a for both (a)
and (b). For the sc lattice, B =E3 and [£ 7 (] =[a 5 7]. In (b), [§ 7 (] are the Cartesian
coordinates of the point k in units of 27t/a, so to obtain [§ 1 (] for k in units of the cube edge
4r/a, divide the values in column 5 by two.

(a) Point Coordinates P(k)
r [00 0] m3m Oy,
X [0 % 0] 4/mmm Dy
M [72 2 0] 4/mmm Dy
R [ 2 V5] m3m Oy
A(TX) [0 3 0] dmm  Cay
»(I'M) [a a 0] mm?2 Cyy
A(TR) [ aal 3m Csy
S(XR) [a s a] mm?2 Cyy
Z(XM) [a ¥ 0] mm2  Csy
T(MR) [2 Y5 7] 4mm Cyy

(b) Point Coordinates P(k) [En]
T [000] m3m Oy [00 0]
X [0 4] 4/mmm Dy [010]
L [2 2 2] 3m Dsq [z "2 ]
W [V Y4 %] 2m Dag [210]
K [4%7%] mm?2 Coy [% 7% 0]
ATX) [0 a] 4mm Cyy [0 7 0]
3(I'K) [ 2a] mm2 Cyy [EE0]
AT'L) [oraa] 3m Csy [EEE]
S(XU) [+ a, 20, Yo+ ] mm?2 Cyy [E1E&]
Z(XW) [, a, 2+ ] mm2 Cay [ 10]
QLW) [2, Va—a, 2+ o] 2 C, [, Va4,

V2=l

symmetry points in the BZs shown in Figure 16.12 are listed in Table 16.6, together with their
coordinates and point groups P(k). The notation A(I'X), for example, means any point on the
axis of symmetry I'X (excluding the end points when they have different symmetry).

Answers to Exercises 16.3

Exercise 16.3-1 From eqgs. (17) and (16),

BTA=(2b/\/§)“H2 fg)/zH_ﬁlz (1)]

— (ba)(2/V3) [sz \/2/2} — 21 E,. (16)
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Exercise 16.3-2 From egs. (25) and (26),

k-u, = 2n/A)sinf = n/d,, 1=2d, siné. (29)

Space-group representations

The action of the space-group operator (R|v) € G (with R € P), the point group of the
space group G on the Bloch function ¢ (r) gives the transformed function ¢, (r). To find
the transformed wave vector k’ we need the eigenvalue exp (—ik’- t) of the translation
operator (E|t).

(EII(RIV) ()] = (RIV) (EIR™"0) (1) (1)
— (RIv) exp(—ik - R vy (r) @)
— exp(—i Rk - )(R[v) ty(r). 3)

The space-group operator (R| v) acts on functions of r, and therefore the exponential factor
in eq. (2), which is not a function of r, is unaffected by (R|v).

Exercise 16.4-1 (a) Verify the equality of the operator products on each side of eq. (1).
[Hint: Use the multiplication rule for Seitz operators.] (b) Verify the equality of the RS of
eqs. (2) and (3). (c) Find the transformed Bloch function v (r) when (R |v) is (/] 0).

Equation (3) shows that the space-group operator (R |v) transforms a Bloch function
with wave vector k € BZ into one with wave vector R k, which either also lies in the BZ or
is equivalent to (=2) a wave vector K’ in the first BZ. (The case k' =k is not excluded.)
Therefore, as R runs over the whole {R} = P, the isogonal point group of G, it generates a
basis (1 for a representation of the space group G,

3) (RIV) ¥, = ¥prs  Vk€BZ,YREP,Rk € BZ or =k € BZ. 4)

On introducing the notation (k|, meaning the whole set of Bloch functions that form a
basis for a representation of G,

“4) (RIv) (K| = (R K|. )
Because Rk = k' € (k|, (R|v)(k| simply reorders the basis as eq. (5) implies.

Exercise 16.4-2 Prove that two bases (k|, (K| either have no k vector in common or they
are identical.

The point group P C Pg; and when P = P (which is so for a holosymmetric space group)
the points and lines of symmetry mark out the basic domain () of the Brillouin zone. When



332

Space groups

P C Ppp the points and lines of symmetry define the representation domain ® 2O €2, such
that > R®,V R € P, is equal to the whole BZ. If Rk; = k; + b,,,, where the reciprocal lattice
vector b,, may be the null vector 0, so that Rk; = k’1 is either identical (=) or = k;, then
R € P(k;), the point group of the wave vector k;. But if Rk, = k,, where k, is not = or =~ k;,
then ki, ky, ... € “K;, called the star of k;. That is, the star of k; is the set of distinct
(inequivalent) k vectors € {Rk,}. The {R} for which Rk, is not = or = k; are called the
generators of K.
The little group (or group of the wave vector) G(k) is the space group

G(k) =2 _(Rjlw)) T, VR;€P(k), (6)

where w; is either the null vector 0 or the special non-lattice vector associated with some
screw axis or glide plane. The product of two coset representatives in eq. (6)

(6) (Ri| wi) (Rj| w;) = (Ri Rj|R; wj + W;) = (E [t;;) (Re| W) (7)
= (Rl wi) (E| R ), ®)
where
tijZWj+Rin—WkET. (9)

Equations (8) and (9) show that {(R|w;)} is not, in general, closed since only for
symmorphic groups is t;=0, V i, j. They also establish the multiplication rule for the
cosets as

[(Ri [ wi) TH[R; [ w;) T] = [(Ric | wi) T], (10)

and that {(R|w; T} is closed, thus confirming that G(k) is a group. T is an invariant
subgroup of G(k), and so the little factor group

©) F(k) = G(K)/T = {(R; | w;)T}, ¥ R; € P(k). (11)

Equation (10) confirms that F(k) is a group and that F(k)~P(k). In view of the
mappings of the factor group

on to P, F « P, and of the little factor group F(k) < P(k),

(12),(11) F=G/T=7Y (R|w)F(k), Rke k. (13)
J
(13) P~ YRPK), j=1,...,s(k); (14)
J
(14) s(k) = g(P)/p(k), (15)

where g(P) is the order of P and s(k), p(k) are the orders of “k and of P(k).

Equation (11) represents a major simplification in the problem of determining the IRs
of G(k) C G. Because it contains the translation subgroup T = {(E|t)}, t € {ay}, G(k)is a
very large group. F(k) is a much smaller group than G(k), but the elements of F(k) are the
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ky

Figure 16.13. Brillouin zone of the reciprocal lattice of the strictly 2-D square lattice, demonstrating
the construction of “k; : Ek; = k;, Cr ki = ko, Cjzkl = k3, C, ki = ky.

cosets {(R|w;)T} and it is easier to work with its isomorph, the point group P(k), which is
therefore also known as the little co-group. For symmorphic space groups, or for internal
points of non-symmorphic space groups, P(k) (or F(k), see, for example, Cornwell (1984))
will provide a satisfactory route to the space-group representations. The disadvantage is
that not only the translations for which exp(—ik-t)=1, but the whole set {(E|t)} is
mapped on to the identity. For points that lie on surface lines of symmetry, or for surface
symmetry points, this results in a loss of information which can, however, be restored by
finding projective representations (PRs) of P(k), although for symmetry points that lie on
the surface of the BZ an alternative method proposed by Herring (1942) is generally
somewhat easier to apply (Section 16.7).

The star of k was defined as the set of distinct (inequivalent) k vectors that are C {R; k},
the R; k that are = or 2 k being € P(k). Equation (14) establishes the equivalent definition

*k={R;k},YR, in P~SR,P(k),j=1, ..., s(k). (16)

The isomorphism in eq. (14) is a sufficient requirement, but in fact the equality often holds,
as it does in Example 16.4-2 below. An example of the isomorphism is provided by
Altmann (1977), p. 208.

Example 16.4-1 Construct the star of k; in the BZ of the reciprocal lattice of the strictly
2-D square lattice shown in Figure 16.13.

The point group P is Cy4y={E C, 2C4 20, 204}, of order g(P)=8. Shown in
Figure 16.13 are the vectors of “k;, comprising the inequivalent vectors K;, K,, k3, Ky
generated by R k; with R € {E Cy, C;, C,} = Ca.

Exercise 16.4-3 Show graphically that the vectors produced by the remaining operators of
C,, are equivalent to a member of “k; = {K; K, k3 K4}.

Example 16.4-2 Write a coset expansion of the point group P, for the strictly 2-D square
lattice, on P(k), where k is the vector from the origin to point Z in Figure 16.14.

Here P is Cy4, and P(K) at Z is C;= {E o} because Z' =2 Z, but no other R € P give
R k=Z or = Z. Therefore, p(k) =2, and from eq. (15) the number of elements in *Z is
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Figure 16.14. Brillouin zone of the reciprocal lattice of the strictly 2-D square lattice. The symmetry
points mark out the basic domain; Z’ and Z are equivalent points.

s(Z)=8/2 =4. From Example 16.4-1, “Z is Rk, with {R} = {E C, C}, C,,}, and there-
fore the coset expansion on P(k) is
(14) E{E oy} ® Co, {E 0y} ® C}, {E ox} ® C,, {E 04}

= {E ox Cy, 0y C,, 0a Cy op} = Cay =P,

where a=2""[110],b=2""[110].

16.4.1 Representations of the little group

Let {T'(R| W)} be the set of MRs of the coset representatives in eq. (6).

M, ) Ti(Ri | wi) T (R | wj) = exp(—ik - t;) T (Ri | wi). (17)
Define
Tw(R) = exp(ik - w) Ty (R|w). (18)
(17), (18) T (R) Tw(Ry) = exp[—ik- (t; — wi — w; +w,)] T (Ry)
9) = exp[—ik- (Rw; — w;)] T (R¢)
= exp(ik - w;) exp(—iR; 'k - ;) Ti(Ry). (19)

R; 'k 2 k and so can differ from k only by a reciprocal lattice vector,

R 'k =k +b;. (20)
In eq. (20) b; is different from 0 only if k lies on the surface of the BZ.
(19),(20) [ (Ri) Tw(R;) = exp(—ib; - w;) i (Ry). €2y

Ineq. (21) w; is either 0 or the non-lattice translation associated with R;. Equations (18) and
(21) show that the MRs I' (R|w) of the coset representatives (R | w) in the little group of the
k vector G(k) can be written as the product of an exponential factor exp(—i k- w) and the
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Figure 16.15. This figure, in conjunction with Figure 16.13, proves that {R}, Rk; = "k, is Cy4, since
Uykl =~ kz, O'xkl %kl, Uakl = k3, Ubkl = k4

MR T'i(R), where the set of matrices {I'(R)} form a PR of the point-group operators R that
form the point group P(k) of the little group G(k).

Exercise 16.4-4 Explain why the {I"\(R)} are just vector representations for symmorphic
space groups.

An alternative method due to Herring (1942) (see also Altmann (1977) and Bradley and
Cracknell (1972)) avoids the use of PRs and instead involves finding the ordinary vector

representations of a point group of order greater than that of P(k). Herring’s method will be
illustrated in Section 16.7.

Answers to Exercises 16.4

Exercise 16.4-1 (a) (R|V)(E|R '")=R|t+v)=(R|v+t)=(E|t)(R|v). (b) k, t are
vectors in the same space, the space of the crystal pattern and the Bravais lattice. The
scalar product of two vectors is invariant under a rigid rotation of the LVS, and so

k-R't=Rk-RR 't=Rk -t
(©) (110)hy(r) = i) = 1_ (1)

Exercise 16.4-2 Rk € (k|, Rk’ € (k'|,Y R, R’ € P. Suppose that Rk = R'k’; then k' =R’ ™"
Rk =R"k (closure in P). Therefore k' € (k|, and consequently Rk’ € (k|, V R’ € P, so that
(k| = (K|. Therefore two bases either have no k vector in common, or they are identical.

Exercise 16.4-3 Figure 16.13 showed the result Rk; when R € C,4. The remaining elements
of Cy4y (namely, oy, oy, 04, 0p) yield vectors (shown by dashed lines in Figure 16.15) which
are 2 to members of the “k;.

Exercise 16.4-4 For symmorphic space groups w; =0,V (R;| w;) and the projective factors
(PFs) exp(—b; - w)) are all unity.
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The covering group

The problem of finding space-group representations of the little group G(k) has been
reduced in Section 16.4 to that of finding PRs of the point group P(k), as defined by
eq. (16.4.18). The way that we shall do this (Altmann (1977); but ¢f. Hurley (1966) and
Kim (1999)) is by finding the vector representations of the covering group P(K)’.
The construction of P(k)’ involves finding the central extension of P(k) by a cyclic
Abelian subgroup Z,. Since we always use a factor system that is normalized and
standardized, the PFs (which are known from eqgs. (16.4.21) and (16.4.20)) are all nth
roots ofunity,

[i; /] =exp(2rin~'zy), (1)
where n and z;; are integers. The cyclic group Z,, of order z(n), is defined by

Z,={z}, z=1,2,...,n=0, )

with binary composition defined as addition modulo . The covering group P(Kk)’, of order
z(n)p(Kk), is then

P(k) = {(Ri.z1)}, V Ri € P(K), V z € Zy, (3)
with binary composition defined by
{Ri,z)) H{(Rj»zm)} = {(RiR}, z1 + z + z7) }, addition modulo . 4
The set {(R;, z;)} has the following properties:

(1) it is closed, which follows from eq. (4);
(i1) it contains the identity (E, 0);
(iii) each element (R;, z;) has an inverse

(Riz) ™' = (R, —z —z); (5

(iv) it exhibits associativity,

[(RDZI)(RisZm)] (Ri,z,) = (Ri’ z1) [(Riszm)(Rka Zn)]- (6)

Exercise 16.5-1 Verify the above assertions concerning the inverse of (R;, z;) and the
associative property of {(R;, z))}.

Exercise 16.5-2 Prove that zgp = zggr, = zg,g = n,mod n. Hence verify that (£, z,)
commutes with (R;, z;).

That P(k)’ defined by eq. (3) is a central extension of P(K) by Z, is readily established.
Firstly, (R;, z;) — R;, V z; € Z,,, so that (R, z;) is the pre-image of R;, while eq. (4) shows that
binary composition is preserved. Secondly, (R;, z;) — R; is a homomorphous mapping, and
since (E, z)) — E, V z; € Z,, is the kernel of the homomorphism. Lastly (£, z;) commutes
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with V (R;, z;) € P(K)’ so that (E, z;) is the center of P(k)’. Therefore, P(k)’ is a group which
is the central extension of P(k) by Z,, and the further condition

(R;,0) — R; (7

ensures that P(k)’ is a covering group of P(k). This is so because of a general theorem
that, given a group G and its central extension G’ by H' C Z(G’), G’ is a covering group of
G, with the property that the irreducible vector representations of G’ are irreducible
projective representations of G, provided that there exists a rule (such as eq. (7)) that
establishes the pre-image of g;, V g; € G. Moreover this procedure gives all the IRs of G for
a given factor system. I shall not reproduce the rather lengthy proof of this theorem here: it
is given, for example, in Altmann (1977), pp. 868, 95—6, and Bradley and Cracknell
(1972), pp. 181-3.

Answers to Exercises 16.5
Exercise 16.5-1
(Riz))(R7Y, — 21— zi) = (E, — 21 — zii + 21 + zi;) = (E, 0).
On substituting eq. (1) in eq. (12.6.6), z;; + z;;x = z; jx + z; 1 and eq. (6) follows.
Exercise 16.5-2 [E, E]=1=exp(2nin 'zzp); therefore zpz=n and similarly for

the other two relations. (E,zy,)(Ri,zi) = (ERi,zm + 21 + zgr,) = (Riyzm + 21 + 1),
(Ri,z1)(E,zm) = (RiE,z1 + zm + zre) = (Riyzm + 21 + 1).

The irreducible representations of G

Now that we have the PRs of P(k), the small IRs T (R | w) of the little group G(k) follow
from

(16.4.18) Tk (R|w) = exp(—ik - w) [k(R). (1)

The final step going from the small IRs of the little group G(Kk) to the IRs of G requires the
theory of induced representations (Section 4.8). At a particular k in the representation
domain, the left coset expansion of G on the little group G(K) is

G = %(R|w) G(k), VR € k. ©)

(2),(4.8.18) Tk(RIV) g = Tl (Rewe) ™ (RIV) (Ry )]

rs

= L(Rulvg),  (Rulvy) € G(K) )

= Oa (Ru|vq) ¢ G(k)’ 4
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3) R, =R 'RR,, Q)

3) Vg = R (Rwy +v —w,). (6)

Exercise 16.6-1 Verify eqgs. (5) and (6) by evaluating the product of space-group operators
in eq. (3).

Let w, be the non-lattice translation vector that belongs to R, in the coset expansion,
eq. (2). Then

(Ru‘vq) = (Ru|w,)(E| - R;lwu + R;lvq) (7

= (RuW.)(E| = R, 'W.) (EIR, 'vq)- (®)

But the only coset representative in {(R|w)} with R =E is (E|0); therefore, the second
and third space-group operators on the RS of eq. (8) must be € G(k). Define {R}' as {R} in
eq. (2) with the exception of E. Then from egs. (3) and (8), (R,|v,) € G(k) implies that
(R.|w,) € G(k) and therefore that R, & {R}'. Conversely, (R,|v,) ¢ G(k) implies that R, €
{R}'. Therefore, this criterion R, € or & {R}’ enables us to decide whether the [r 5] element

of the supermatrix I'(R|v) in the induced representation T'y(R|w) =Ty 1 G is to be
replaced by the null matrix or by ' (R, |vy) with R,,, v, given by egs. (5) and (6). Therefore,

(3) 1—‘k(R|V[r 5]) = f‘k(Ru‘Vq)’ Ru € {R}l (9)

) =0, R,e{R}. (10)
This method of finding all the IRs of the space group G at any particular value of k in the
representation domain of the BZ will now be summarized.
(i) Form the little co-group
P(k) ={R}, Rk=k+b,, RcP. (11)

(ii) Find the "k, that is the set of distinct, inequivalent k vectors € {Rk}, R € P.
(ii1) Write down the coset expansion

SR P(k), Rk € k. (12)

The set {(R|w)}, with R from eq. (12), label the rows and columns of the supermatrix
Tw(R|w).
(iv) Find the factor system for the little co-group P(k),
[(Rilw;) 5 (R;|w;)] = exp(—ib; - w;), b; = R,'k — k, ¥ R € P(K). (13)

(v) Find all the I'(R) matrices of the projective IRs of P(k) with the factor system, eq. (13);
hence write down the small representations, that is, the IRs of the group of the k vector
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Figure 16.16. (a) Crystal pattern of a 2-D non-symmorphic space group.(b) Brillouin zone of the
reciprocal lattice; I' =[0 0], X =['2 0].

T (RlW) = T (R) exp(—ik - w). (14)

When w = 0 the small representations are vector representations, I'(R|0) = I'(R).

(vi) Use the I'y(R|w) (including those with w = 0) to determine the induced representa-
tions I'(R|w) from egs. (9) and (10). These matrices, when multiplied by I'y(E| t),
give the space-group representations.

Repeat steps (i)—(vi) for each k vector for which the space-group representations
T'k(R|w) T'(E|t) are required.

Special cases

The above procedure is simplified in either of two special cases. For symmorphic groups
w; =0,V g; € G; hence the PFs are all unity and the representations of the little co-group are
all vector representations. For internal points k there are no other points equivalent to K,
and so from eq. (16.4.20) b, = 0 and, again, there are no PRs, so that all one needs to do is to
find the IRs of the little co-group.

Example 16.6-1 The pattern of a strictly 2-D space group is shown in Figure 16.16.
There is a C,, axis normal to the plane at the intersection of a; and a,. The vector
w=a,/2=a,[ 0]. Find the IRs of G at X['2 0].

G={(EI)T (Coul0)T (0l W)T (oxW)T}, (15)
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Table 16.7. (a) Projective factors [(R;|W;) ; (R;| W;)] calculated from eq.(16.6.13).
(b) Multiplication table R; R;. (c) Table of values of z;;.

In (a) and (b) R; labels the rows and R; labels the columns. In (c), i and j label rows and
columns, respectively.

(a) RAR; E C,, oy Oy
E 1 1 1 1
Cs, 1 1 —1 -1
oy 1 1 1 1
Oy 1 1 -1 -1
(b) R)\R; E Cy, oy ox
E E C,, oy Ox
CZZ CZZ E Ox O'y
oy oy Oy E Cy,
Ox Ox Oy Cs, E
(C) i\ E Cs, oy Oy
E 0 0 0 0
Cy, 0 0 1 1
oy 0 0 0 0
Ox 0 0 1 1
P = {E Cy, oy oy}. (16)

Exercise 16.6-2 Does the set of coset representatives in (15) form a group?

(1) At X, k=b,/2 (Figure 16.16(b)) and

P(k) = {E Cy, 0y oy} = Cyy. 17)

(i) AtX,
Ek=k Cpuk=-k=k—a, >k oyk=k, oy k=—k=k; (18)
(17) 'k = {k}, s(k) =1, p(k) = g(P)/s(k) = 4. (19)
(iit) EP(K) = P. (20)

(iv) The factor table follows from eq. (13) and is given in Table 16.7, which also shows the
multiplication table of C,,.

(v) From Table 16.7(a), the PFs are all roots of unity of order 2 so that n=2 in
eq. (16.5.1), and
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Table 16.8. Multiplication table for the covering group G’ of G = C,, showing the
isomorphism of G’ with Dy,

Dy , E Cox C, Ch Cox Coy Coa Cop
G E,0 E 1 oy, 0 Oy, 1 Gy, 0 Cyy, 1 oy, 0 oy, 1
E E 0 E,0 E, 1 oy, 0 Oy, 1 C,,, 0 Cy,, 1 oy, 0 oy, 1
Cs, E, 1 E, 1 E,0 Oy, 1 oy, 0 Cyy, 1 Cy,, 0 oy, 1 oy, 0
c, oy, 0 0x, 0 oy 1 E, 1 E 0 gy, 0 ay, 1 Cyy, 1 Cyy, 0
CL oy, 1 ox1 ox, 0 E 0 E 1 oy, 1 oy, 0 Cs,, 0 Cy,, 1
Cox C5,, 0 Cs,, 0 Cy,, 1 oy, 1 oy, 0 E O E 1 oy, 1 oy, 0
Cyy Cy,, 1 Cyy 1 C5,, 0 oy, 0 oy, 1 E 1 E 0 0y, 0 Ox, 1
Ca oy, 0 oy, 0 oy, 1 C,,, 0 Cyy, 1 ox, 0 oy, 1 E,0 E, 1
Cop oy, 1 oy, 1 oy, 0 Cyy, 1 Cy,, 0 Oy, 1 oy, 0 E 1 E,0

Table 16.9. Character table of the abstract group Gg, showing the corresponding classes
of the covering group C), and its isomorph Dy,

Gg E P’ PP 0, P20 PO, P°0
Chy (E, 0) (E, 1) (0%, 0) (C2,, 0) (0y, 0)
(Jxa 1) (CZZs 1) (Uya 1)

D4 E Cy, sz Cox, CZy Coa, Cop
T, 1 1 1
I, 1 1 -1 -1
Iy 1 1 _ _
I, 1 1 -1 -1
Ts 2 -2 0 0

i 5 j]=exp(2mi n~'zy), (21)

from which we calculate the values of z;; shown in Table 16.7(c). C,, is Abelian and
therefore has four 1-D vector IRs. Since n = 2, the order of G’ = C), is 8 = 4(1)* + 22,
showing that there is one 2-D PR, I's. When n =2, Z, = {1, 0}, and the elements of G’
are {(g;, 0) (g, 1)} with g; € C,,. The multiplication table of G’ in Table 16.8 is now
readily calculated from eq. (16.5.4) using the values of z;; in Table 16.8.

Exercise 16.6-3 Evaluate the products (C,,, 1)(0y, 0) and (oy, 1) (ay, 1).

The multiplication table for G' = C), shows that it is isomorphous with the abstract
group Gg defined by the generating relations P* = E, 0* = E, OP = P*Q. From Table 16.8,
(05, 0)*=(E, 1> =(E, 0) — E and (C,,, 0)> = (E, 0) — E, which show that (o, 0) — P and
(Caz 0) — Q. Asa check: QP = (Cay, 0)(0y, 0) = (0, 1), and P°Q = (0, 0)* (Cas 0) = (0, 1)
(Cy 4, 0)=(oy, 1). The point group D, is also isomorphous with Gg with C;, — P and
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Table 16.10. (a) Matrices T'(R) of the PR of C,,, which is the vector representation I's
of Dy ~ Cl,. (b) Matrices T'\(R|W) of the 2-D space-group representation at k=[1/2 0].
(c) Values of R, and v, for R, € {R}' and the PF exp(—iKk-w) used in calculating the
matrices in (b).

The column headings in (a) identify the operators (g;, 0) € C5,, which map onto g; € Cy,
and also the corresponding operators of D4 used in the calculation of these matrices. As
the supermatrix, (b), has only one row and column, it follows from egs. (3), (23), and (24)
that the space-group representation I'y (R|w) is identical with the small representation

fk(R|w) of the little group given by eq. (16.6.14).

o (E, 0) (C2,, 0) (0y, 0) (0%, 0)
Dy E Cox Coa Ci,
(@) I'(R) 10 1 0 0 1 0 —1
0 1 0 -1 1 0 1 0
G (E]0) (C2,|0) (ay|w) (ox|W)
(b) Tk(R|w) 1 0 1 0 0 —i 0 i
0 1 0 —1 —-i 0 —i 0
(C) Ru sz Uy Ox
Vq W w
exp(—ik-w) 1 —1 —i

Cox — Q. Therefore, C5, is isomorphous with Dy, with the mappings (C,,, 0)— Cay,
(0y, 0) — CJ,. Corresponding elements of G’ and D, are shown in Table 16.8. For G§, g
=8, n. =5, n,, = 5. The character table of Gg is shown in Table 16.9, in which column
headings include the corresponding classes of G' = C), and D,. Note that C;, has five
vector representations: I'y to I'y are identical with those of C,,. Since it is the operators (g;,
0) of G which map on to the operators g; of G = C,,, the column headed (£, 1) is omitted,
because it is in C), but not in C,,. Therefore, I's is the PR of C,,. (Check:
> Xj|2 =4 = g.) Since (g;, 0) — g;, we choose a suitable basis for I's in C,, and calculate
the MRs of (g;, 0). The simplest basis to use is (e; e,|. For example, using the correspon-
dence of (gy, 0) with Cz,,

0 1
C23<e1 € | = <ez € | = <e1 € [l 0:| (22)

The MRs of the (g;, 0) operators calculated in this way are given in Table 16.10(b). There is
only one coset representative (R,|w,) = (Rs|w,) = (£]0) and so

) R, =R, (23)

(6) vy=R'Rws+w-w,)=E'"(RO+w—-0)=w. (24)
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In this way we derive the values of v, shown in Table 16.10(c). Since k=b,/2 =n/a, and
w=a,/2 (Figure 16.16), k- w=(n/2) and exp (—i k- w) = —1, as entered in Table 16.10(c).
In this example the supermatrix has only one row and column, so that

Tk (Rlw) = T (R) exp(—ik-w).

Exercise 16.6-4 Using the MRs T"(R|w) in Table 16.10 evaluate the product I'(C,,|0)
T (ay|w). Evaluate also the corresponding operator products in C,,, in C’zv, and in Dy,.

Finally, the matrices I'y(R|w) in Table 16.10 have to be multiplied by the appropriate
representation I'(E|t) of the translation subgroup to give the space-group representations
T'k(R|v). At X,

k'tzl/zbl.(n131+nzaz):ﬂn1, (25)
= —E2 (n1 Odd)

(25) Fk(E|t) = exp(—i k - t)Eg (26)
= E; (n; even)

and similarly at any other k point.

Answers to Exercises 16.6

Exercise 16.6-1 (R.|w;) " (R|v)(Rg|ws) ! —R'w,) (RRs|[Rws + V)

= (R
= (R'RRR ' (Rwy +v) —R'w,)
= (R'RRR " (RW, +v —w,))

= (Ru‘vq)-

Exercise 16.6-2 No, because it is not closed. For example, (oy|W) (oy|w = (O'y2 |w+w)=
(E[2w) = (E|ay).

Exercise 16.6-3 (C»,,1)(0y,0) = (04,1 + 0+ 1) = (0y,0)
(0%, 1)(Uy, 1) =(Co 1 + 14 1) = (Cyp, 1).

Exercise 16.6-4 (C»,|0)(ay|w) = (0x| — W+ 0) = (E| — a;,)(0x|W);
1 0770 1 0 1 0 i
[(Co|0)T (0y|W) = —i =—i =—1

0 —-1]J[1 O -1 0 -1 0

= (o] W),
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and so does T'(E|—a))(ox|w)=—T(ox|w). In Cs,, G, oy=o0y; in C),(Cy,0)
(0y,0) = (0x, 1) = C,, in D4. In Dy, Cox Coa = Cy,.

Herring method for non-symmorphic space groups

In Sections 16.4—16.6 the problem of finding the representations of a space group G at any
particular k point was solved by reducing the size of the group of the wave vector

G(K) = Y (RIW)T, ¥ R € P(K), (1)
by forming its factor group with respect to T,
F(k) = G(k)/T = {(RW)T}, VR € P(k), 2

which is isomorphous with the point group of the wave vector P(k). The whole of T is
thereby mapped on to the identity in F(k), so that all the translations are represented by the
unit matrix E. This device results in a loss of information, which may be restored by
finding PRs of P(k) as vector representations of its central extension P(k)'. In Herring’s
method one uses instead an isomorph of the factor group of G(k) with respect to a subgroup
of T, T(k), defined by

T(k) = {(E[t)}, exp(—ik-t) =1, )

so that the elements of T(k) are represented by the unit matrix. This avoids the loss of
information referred to above, and consequently the representations of G(k) may be found
via vector representations of a group of order larger than that of P(k), called the Herring
group (k). For points of high symmetry the use of Herring’s method may involve
isomorphisms with abstract groups of rather large order, but character tables for all the
abstract groups required in deriving the representations of the 230 space groups have been
given by Bradley and Cracknell (1972).

(1, (3) G(k) = > > (Rlw) (E|t) T(K), “4)

(Rlw) (E]t)
where
((EI)} = (E0) &V (EJf) & T(K)

= (E|0) @V (E|t) for which exp(—ik - t) # 1 Q)

= 7 (k). (6)
The Herring factor group is
(4)—(6) G(k)/T(k) = {(R|w) 7 (k) T(K)}, (7
which is isomorphous with the Herring group

(4)—(6) A (K) = {(RIw)} {(E|)}, V ReP(k), V(EIt) €T (k) ®)
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The law of binary composition in (k) is the Herring multiplication rule, which is the
Seitz rule for the multiplication of space-group elements supplemented by the additional
condition that (E|t) is to be replaced by (E£|0) whenever exp(—ik-t) =+ 1.

The steps involved in Herring’s method for a non-symmorphic space group will now be
summarized as was done for the PR method in Section 16.6.

(i) Form the little co-group for any k in the representation domain of the BZ,
P(k) ={R}, Rk=k+b,. 9)

(ii) Find k.
(iii) Write down the coset expansion

S R P(k), Rk € k. (10)

The coset representatives {R} are the star generators found in (ii).
(iv) Write down the set (which is not necessarily a group)

{(RIW)}, V R € P(K). (11)

(v) Construct the translation group T(K) (eq. (3)).

(vi) Construct the group 7 (k) (eq. (5)).

(vil) Write down the Herring group (k) (eq. (8)).

(viii) The IRs of (k) give the small representations, but many of the representations of
A (k) will duplicate information in the vector representations of the little co-group,
so the only ones required are those for which

I'(Elt) = exp(—ik - t) E;y), I(k) = dimension of T. (12)

On using egs. (16.6.9) and (16.6.10) the matrices of the required representations found in
(viii) give the elements I'y of the supermatrix as in step (vi) of Section 16.6, and these
matrices, when multiplied by T'y(E|t), are the space-group representations.

Comment The “required representations” are also referred to in the literature as “per-
mitted” or “allowed” representations.

Example 16.7-1 Herring’s method will be illustrated by re-working Example 16.6-1 on a
2-D non-symmorphic space group. As before,

P={E Cy, 0y 0y} = Cay. (13)

(1) At X, k=[% 0], and the little co-group

P(k) = {E Cy, 0y 0y} = Cay. (14)

(ii) Therefore, the only star generator is E and “k is Ek.
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(ii1) The coset expansion on P(K) is
E Cy, =P. (15)

The supermatrix therefore consists of just one submatrix I'j(z)o)(z0))-
(iv) The set

{(RIw)} = {(E]0)(Cxz|0) (oy|W) (ox[ W)} (16)

(V) T(k) = {(E| nia; + ny 32), np €ven, Vnz. (17)

(n, must be an even integer in order to satisfy eq. (3).)
(vi) (E|a,) is excluded from T(k) because exp(—ik-a;) =exp(— in) = — 1. Therefore

7 (k) = {(E|0)(E]a1)}. (18)
(vii)
A (k) = {(E]0)(C2]0) (oy|w) (ox|W) H (E]0)(E|a1) }
{(E10)(C2.|0) (oy|W)(ox|W)} @ {(E|a1)(Cazlar) (oy|W + a1)(ox|W + ay) }.
(19)

The direct sum in eq. (19) would not close without the Herring multiplication rule.
For example, (ox|W)(E|a;)=(0x|W+ 0xa;)=(ox|Ww —a;)=(ox|w-+a;), because
exp(—ik-2a;)=+1.

(viii) #(K) is isomorphous with Gi, which has the generating relations P'=E= Q2,
OP=PQ. In #(K), (C,|0)* = (E|0) — E, so that (Ca,|0)— Q; (oy|w)* =
(E]2w) = (E|a;) — (E,1) of C,, and (E|a,)*=(E|2a;)=(E|0)—E, so that
(oy|w) — P. (Note the difference between Cj, and #’(k): in the former it is (oy, 0)
that maps on to P.) Therefore, the character table of (k) is the same as that of D,. It
is the required representations of /# (k) that are small representations of G(k). These
required representations are those which satisfy eq. (12) with k = %b;. Only the 2-D
representation I's of D4 does this for the class (E|a;).

Exercise 16.7-1 Confirm that OP = P* Q in the isomorphism #’ (k) ~ Gg.

Table 16.11. Corresponding classes in the isomorphisms of A (K) for the 2-D
non-symmorphic space group of Figure 16.7(a).

(gl (gz (63 (64 (65
G E P? P, P’ 0, P*0 PQ, P°Q
(k) (E10) (Elay) (oy|w) (C2|0) (ox|W)
(oylw+ap) (Caqlar) (ox|w+ay)
D, E Cy, Ccs, Coyx, Coy Caa, Cop
Cy, (£,0) (£, 1) (0%, 0) (C2z, 0) (0y, 0)

(Um 1) (sz’ 1) (Uy’ 1)
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(ix) The four 2 x 2 matrices for {(R|w)} = {(E[0)(C2,|0) (cy|W)(0x|W)} in eq. (19) have
already been given in Table 16.10(a) (with the difference noted above). The remaining
four matrices for {(R|w)(E|a;)} are obtained by multiplying those for {(R|w)} by that
for (E|a;) =exp(—ik-a;) E,=—E,. Table 16.11 clarifies the isomorphisms of (k)
with G¢, Dy, and C),.

Example 16.7-2 A more substantial example is provided by the problem of finding the
representations of the space group 227 (Fd3m or O]), which is the space group of the
diamond structure. As specific examples, the space-group representations will be constructed
at the surface points W and X (Figure 16.12(b), Table 16.6(b)). For Fd3m the little group

G(k) = {AZ}(A|0)T + %(B|W)T, w=[ls s V], (20)

where 4 € P(k) N Ty, B € {P(k)} that are not in T4. For example, at W, for which
k= l/2b1 + 1/41)2 + 3/4].')3 = 1/261 + e + 063,P(k) = Dyq and

{4} ={E Cx S{, S}, {B} = {Cac Coq 0y 0,}. 21
(21),(20) {(RIw)} = {(E]0)(C2x|0) (S [0) (S5 |0) (Cac[W) (Caa|W) (o [W) (o[ W) };  (22)

(5).(6) 7 (k) = {(E[0)(E]as)(Ela) (Elaz) } (23)

with exp(—ik-t)=1, i, —1, —1i, respectively. (The translations in eq. (23) are the funda-
mental translations for the fcc lattice.)

Table 16.12. Character table for the required representations of the Herring group at the
symmetry point W in the BZ (Figure 16.6(b)) for space group 227 (Fd3m or 0}71).

W, =R,; and W, =R;,, where Ry, Ry, are representations of the abstract group Gg‘z
which is isomorphous with (k). Column headings for the classes are the coset
representatives {(R|w)}. Time-reversal symmetry is of type a for both representations.

% b, B ‘A b Cs €~
W (E10) (Elaz)  (Ela)  (Elay) (Cx0) (Cxxlay) (410
(Cxxlas) (Coxlaz) (Syxla2)
W, 2 2i -2 —2i 0 0 1-1
W, 2 21 -2 —2i 0 0 —1+i
s o G0 C 612 G113 Cra
W (Silas)  (Sila)  (Silaz)  (oylw+as) (aylw) (CaalWw+23) (CaalW)
(Sxl0)  (Sixlas) (Silai) (oy|w+ay) (oy|wHa) (CaglWwHay) (Caglw+a))
(Gzlw) (Uz|w + a3) (C2c‘w) (CZC‘W + a3)
(Uz|w+al) (Uz|w+32) (CZc‘W+aI) (CZC‘W+a2)
W, 141 —1+41 —-1-1 0 0 0 0

W, —1—i 1—i I+i 0 0 0 0
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Table 16.13. Classes of the abstract group G§2.

The classes of #'(k) in Table 16.12 may be checked from
these classes of Gg‘z and the generators in eq. (24).

G3, G3

%> 0

@5 o

b4 0

%5 Pz’ P2Q2

%, PZQ, P2Q3

% P,P*Q?

s PQ, P

N PO?, P°Q

%10 PQ*, P°Q?

“n POR, P°R, PO°R, P°O°R
AP PR, PO°R, P°OR, P°O°R
%13 OR, O°R, P°R, P*O°R
4 R, O°R, P*QR, P*O°R

Table 16.14. Matrix representatives of the Herring
translations 7 (K).

E; is the / x [ unit matrix.

(E]0) (Elas) (Elay) (Elaz)

E2 1E2 —Ez —1E2

Table 16.15. Generating matrices for the required
representations of A (K)~ ng at W.

P 0 R
Ry p” iq r
Ri» ip iq r

p=[b Oa=[b =[]

Exercise 16.7-2 Verify the values of exp(—ik-t) at k=[% Y% %]Q2n/a).

The Herring group #° (k) = {(R|w)} {7 (k)} at W is the set product of egs. (22) and (23)
and is isomorphous with the abstract group G3,, with generators

P = (S4[0), 0= (Elas), R = (CaalW). 24
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Table 16.16. Character table for the required IRs of the Herring group for the space group
227 (Fd3m or OZ) at the symmetry point X in the BZ (see Figure 16.12 and Table 16.6).

R0, Ri1, Ry3, Ryy4 are representations of the abstract group ng ~ A (k).

Xi(Ry0) Xo(Ry1) X3(Ry3) Xa(Ryq)

% \(E|0) 2 2 2 2
(gz(Czy‘O) 2 -2 2 -2
€5(E|a;) -2 -2 -2 -2
(54(C2y\31)

Es(Ilw), (Ilw +a,)
(66(0y|w)’ (Uy|w+al)
©+(0¢|0), (01/0)
Fs(oelar), (or|ay) -
Bo(CaelW+2y), (Carl W)

G 10(Cae|W), (Corlw +2,)

(gll(CZZw)ﬁ (C2x|0) (C21|31), (C2x|al)

EC12(0,|W), (0,|W +a,), (04|W), (0x|W+a))
%13(S4y10), (Siylar)

(514(C4§,|W), (ny|w + al)

(C)

I
)
I
®)

» O OO oOoNMNO O
I
PO oo oOoNMNOoOOoOoOON
el oo RoXeoX=2 SN S o)
I
PO OO NDOOoOoOoOON

The character table of ng is given by Bradley and Cracknell 1972, p.241. The required
representations in which (E|a;z) is represented by iE; are Ry; and Ry, with /=2. The
character table of the Herring group (k) at W is given in Table 16.12. It is customary
to label the IRs I'y, T'p, ... by substituting the label for the symmetry point for I, so
here W, W,, ... The classes of Gg‘z are given in Table 16.13 and the MRs of T(k) are
given in Table 16.14. The generating matrices for the required representations of
H(K) ~ ng at W are given in Table 16.15, and the generators P, O, R are defined in
eq. (24).

At X, k=14/b;+%bs and k-a;=Qn/a)[!, 0 15H].a[l 0 0]=m=m, so that
exp(—ik-a;)=exp(—in) = —1. Therefore 7 (k)={(E|0)(E|a;)}. The Herring group
A (K) is the set product of {(R|w)} and 7 (k). At X, P(k) = D4, = D, ® C;, and therefore

A (K) = {>_(d4]0) + >_(14|w) + > (B|w) + >_(IB|0) {(E[0)(Ela))},  (25)
{4} {4} {8} {8}
where 4 € D4, N Ty, B € Dy but & Ty.
(25) A (k) = {(E|0)(Cay|0)(Cqy [W)(C22|0) (Cax|0) (Cae W) (Cax [ W) (1] W)
(oy W) (S5 0) (02 |w) (ox|W) (0 |0) (0¢]0) }{ (£]0) (E]ay ) }. (26)
A (k) is isomorphous with the abstract group ng with generators

P=(oxw), Q= (S4/0), R=(Cx|0). @7
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Table 16.17. Generating matrices for the
representations X to Xg.

P 0 R
X, P r r
X5 p -bP r
X3 p I Y
X4 b Y r
o 1] ot

P=1y o) *=1|1 ol

The classes of this realization of G3, are given in Table 16.16. The extra translation apart
from (E|0) in 7 (k) is (E|a;), which forms the class %3. The required representations of
A (K) are those with character exp(—ik.a;)/=—I, for x(%3). (I is the dimension of the
representation.) These are the representations R, Rij, Ryz, Riy (With /=2) in the
character table of G%z (Bradley and Cracknell (1972), p.240; see also Jones (1975),
Table 44, in which (E|a,) is € 14). Table 16.16 is a partial character table of #(k), giving
only the four required representations. Matrix representatives can be obtained from those
of the generators in Table 16.17, using eq. (27) and the classes of ng which are given in
Problem 16.8.

Tables of space-group representations are given by Bradley and Cracknell
(1972), Kovalev (1993), Miller and Love (1967), Zak (1969). Stokes and Hatch (1988)
describe various errors in these compilations and discuss the different settings and labels
used.

Answers to Exercises 16.7
Exercise 16.7-1
PQ = (Ela1)(oy|w)(C2]0) = (E|ar)(ox|W);
OP = (G2]0)(ay|w) = (0x | — W) = (E|ar)(0x|W) = P°Q.
Exercise 16.7-2
exp(—ik - t) = exp(—i(2n/a)[lp s 3/s).al0 O 0] =1;
exp(—i(2n/a)['/ s 3/s].al0 0 1]) =exp(—i(3n/2) =1,
(—i(2n/a)['2 /s 3/al.all 0 0]) = exp(—in) = —1,
(—i(2n/a)['/2 Va 3/a.al0 1 0]) = exp(—in/2) = —i.

exp

Alternatively, the same results could be obtained using Cartesian axes.
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Spinor representations of space groups

We have seen that the determination of space-group representations involves the study of
point-group representations, albeit sometimes of rather large order, either by finding PRs or
by the Herring method. The results for ordinary Bloch functions (r), which may be used
when electron spin is neglected, must be generalized when the basis functions are two-
component spinors. This may be done either by replacing the groups G, P and P(k) by the
corresponding double groups G, P, and P(k) (Chapter 8) or by using PRs (Chapter 12).
Double space groups corresponding to Ollq,Oﬁ,O]Z and Og were first studied by Elliott
(1954) and an account of double space-group representations has been given by Bradley
and Cracknell (1972). Here, I shall show, by means of a few examples, how to derive the
projective spinor representations of a space group at particular symmetry points. I shall use
as an example the space group 219 (F43c or T3) because its double group representations
have been discussed by Bradley and Cracknell (1972), thus affording the reader an
opportunity of comparing the two methods. The method of deriving spinor representations
has been described in Chapter 12, for the point groups D3 and Cj,, and in Chapter 14 for
C,,. It involves the following steps.

(i) For any required point symmetry operator R write down the rotation parameters ¢ n.
(ii) Write down the quaternion parameters [4, A] for R.
(iii) Calculate the Cayley—Klein parameters a, b.
(iv) Write down the MRs IY(R) using egs. (12.8.3) and (12.8.5). For improper rotations use
the Pauli gauge, I'(IR) =T'(R).
(v) Sum the diagonal elements to obtain the characters of {I'(R)}.

If only characters but not MRs are required, steps (i)—(iv) need only be carried out for one
member of each class. In this case the usual checks for normalization and orthogonality of the
character systems for each spinor representation should be applied. For point groups of large
order the tables of Altmann and Herzig (1994) may be consulted. Otherwise, one may use the
representations of double groups given in Chapter 6 of Bradley and Cracknell (1972),
omitting the information that relates to double group operators (R|w). However, multiplica-
tion rules (from PFs) will be required if products of group elements are to be evaluated.

Example 16.8-1 Determine the spinor representations for space group 219 (F43c or T(Sj) at
the symmetry points X and W.

The lattice is again fcc with the BZ shown in Figure 16.12. At X,

k=[4015], P(k)=Dy, 7 (k)=/{(E]0),(Ela:)}. ey

Exercise 16.8-1 Explain why (E|a,) could be replaced by (E|a3) in eq. (1).
The set {(R|w)} is a subgroup of (k) and is ~ Gg ~ D,q with generators

P = (S5,Iw), 0= (Cxl0), )
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Table 16.18. Rotation parameters ¢ n (or ¢ m), quaternion parameters [, A], and
Cayley—Klein parameters a, b for the elements of subgroup Gg of H(X).

a=/—1iA,, b=—A, —iA,. Parameters for IR are the same as for R (Pauli gauge).

10) norm A A a b

E 0 [00 0] 1 [0 0 0] 1 0
Siy /2 [010] 1 1500 10] s —15
Siy /2 (0710 Y 15 [0T0) Y Y3

Cay n [010] 0 [010] 0 -1

x n [100] 0 [100] 0 —i

Co, n [001] 0 [001] —i 0
e n s [101] 0 s [101] —il3 —ils3
o% T Y5 [10T] 0 s [10T] 5 =il

Table 16.19. Matrix representatives for elements of the subgroup Gg of H(X) calculated
from egs. (12.8.3) and (12.8.5) using the Cayley—Klein parameters in Table 16.18 for the
symmetrized bases.

(uvl=(1h 1) [1h =1LV =] =({ =" =1k 1))

(v* —u’| is the ungerade spinor from Chapter 12.

E Sy S4+y Coy
Y i a1 1) 0 o)
S I B IR S I
E'? sz0 —i szi 0 - (=i —i " i i

B I i L [ I
S I B i ] a7 ]

where w = 2a, + %a, + Y2a; and {a, a, a3} are the fundamental vectors of the fcc lattice.
The group elements of {(R|w)} ~ Gy are

E = (E|0), P = (SgIw), P* = (Cyy0), P* = (Sg|w),
0 = (Cx0), PO = (0e|w). PO = (C2[0), P°Q = (o¢|w). (€)

The character table of D,4 shows the five vector representations A, A,, By, B,, E which we
re-label as X, X,, X3, X4, Xs. Matrix representatives of P, O for X5 in Gg are

P
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Table 16.20. Character table for the spinor representations of the Herring subgroup of the
space group 219 (F43c or T(Sj) at the symmetry point X.

These characters are real and therefore no additional degeneracies are to be expected in
crystals exhibiting time-reversal symmetry.

(Sa|W) (Cax[0) (A
E (Ca4]0) (Si,w) (C5,]0) (oi]w) e
E'"? 2 0 V2 0 0
E¥? 2 0 -2 0 0

Exercise 16.8-2 The generating relations for Gg are P*=E = 0%, OP = P>Q. Verify these
relations using (a) P, Q defined in eq. (2), and (b) the MRs, P, Q) defined in eqs. (4).

Rotation parameters, quaternion parameters, and Cayley—Klein parameters for the point
operators R in {(R|w)}~D,q are given in Table 16.18. Table 16.19 shows the MRs for the
PRs of Gg. Since Gg ~ D,gq, this information could have been obtained from the tables of
Altmann and Herzig (1994) but MRs have been worked out here to illustrate the method
used in deriving PRs. The number of PRs (namely two) is equal to the number of regular
classes (that is, those with no bilateral binary (BB) rotations), which is two in this group.
Remember that the MR of the ungerade spinor changes sign on inversion so that for
improper rotations only, the MR in E*? is the negative of that in E"?. Summing the
diagonal elements gives the characters in Table 16.20.

At the symmetry point W, k=['% Y 34], P(k) =S4, and (k) is the DP G}‘ ® 7 (k),
where

7 (k) = {(E|0) (E|az) (E|2a2) (E|3a2)}. (5)

The generator of G}1 is P=(Si|w) with w=[% % 1]; G}‘ is isomorphous with the point
group S, and therefore has four 1-D representations W;=A, W,="2E, W;=B, and
W, ="E. These IRs are of type b, and the pairs W, W3 and W,, W, become degenerate
under time-reversal symmetry. Matrix representatives for the spinor bases (u v|, (v —u*|
are in Table 16.21. The character systems for these representations are {2 +2 0 +2} so
that for both representations, g~' 3" |x|* = 3 # 1. These MRs may be reduced by the
transformation S~ 'MS = M/, where

S :21/2“ H s (6)

The IRs and their characters are given in Table 16.21. The space-group representations are

obtained by multiplying these 1-D IRs in Table 16.21 by the MRs of 7 (k).

Exercise 16.8-3 Write down the quaternion parameters for R € S, and hence verify the
matrices in Table 16.21.
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Table 16.21. Spinor representations and irreducible spinor representations for the
Herring subgroup of the space group 219 (F 43¢ or Tf]) at the symmetry point W.

e =exp(—in/4). To obtain the space-group representations, multiply the 1-D
irreducible representations by the matrix representatives of .7 (k). The spinor basis

vl =(lp 1 11 1))

E (Sixw) (Cx%|0) (S‘mw) Basis (C)
Ei 1 0 " 1 —i 0 —i Y 1 i (uv|

0 1 VIl - 0 V2l
Esp 10 e i 0 —i I B (vi—u"

{o 1} /ﬁ[ i —1} [—i o} M
1E1/2 1 13 —1i E* u b
’Eipp 1 e* i € v b
Es) 1 —€ —1 —&* —u* b
Esp 1 - i —c v b

Answers to Exercises 16.8

Exercise 16.8-1 exp(—ik-0)=1; k-a;=Q2n/a)[2 0 2].a[l 0 0] ==, exp(—in)=—1;
k-a;=(2n/a)[’2 0 2].a[0 0 1]=m, as for a;. The MRs are exp(—ik-t) (here 1 or —1)
multiplied by the unit matrix E;.

Exercise 16.8-2 P = (S;,|w) with
w=1a +ia+1a3=1[e; +e +e;

P? = (S§IW)(Siy|w) = (Cayles) = (Cy0),
= (Syy[W)(Coy[0) = (SyyIw),

P = PPP* = (Cy|0)* = (E)0),

Q2 (sz‘ ) = (E|0)
OP = (Cx|0)(Si5|w) = (o711 — 1262 — 1re3) = (oW — €3 — €3) = (o¢|W),
P’0 = (S|W)(C2x|0) = (ar|w),

(=)

Fo)ls
-

- o
1

—|
—

S
—_
—

S
o

| — |
—_ O
(=
|

—|
S
—I
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Table 16.22. Quaternion and Cayley—Klein parameters for
the symmetry operators of the point group S,.

R A A a b
E 1 [000] 1 0
S & 2710 0] 27" —27%
Cax 0 [100] 0 —i
S5 27" 2710 0] 27" 27"

Lolfo 1] fo 1],
0 THT 0]_[1 o]_ (o).

Exercise 16.8-3 Quaternion and Cayley—Klein parameters are given in Table 16.22. Using

eq. (12.8.3),I'(R) = {_ab* f*}, and the MRs in Table 16.21 follow.

Problems

16.1 Find the Bravais lattice and crystallographic point groups that are compatible with a
C, axis. [Hint: Use eq. (16.1.17).]

16.2 Demonstrate, by drawing unit cells, that a 4F space lattice is equivalent to type 41.

16.3 Write down the matrix representation of eq. (16.2.1). Hence find the coordinates
(x" ' 2') of a general point (x y z) after the following symmetry operations:

(a) a screw rotation 4, about the [001] axis;

(b) a diagonal glide operation (o,|%%a; 4 Y4a,) in a cubic lattice.

16.4 Find the space-group operators for space group 59 in the second setting, in which the
origin is displayed by —[ % 0]. Find, for Wyckoff position 8g, the points equivalent
to (x y z) in the second setting. Check your working by referring to the International
Tables for Crystallography (Hahn (1983), (1992)).

16.5 (i) For space group 33 draw separate diagrams showing the location of (a) symmetry

elements and (b) equivalent points. [Hint: Do not forget translational symmetry!]
(i) For space group 33 prove that the product of the two glide reflections gives the
screw rotation, using (a) Seitz operators, and (b) MRs.

16.6 Prove that the reciprocal lattice of the bcc lattice is a fcc lattice. Find the equations to
the faces of the BZ and sketch the BZ.

16.7 The primitive rhombohedral cell in Figure 16.6 can be specified by giving the length
a=|a;| and the angle « between any pair of the fundamental translation vectors ay, a,,
a3. Choose e; along the projection of a; in the xy plane; 6 is the angle made by a; with es.
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16.8

16.9

16.10

16.11

16.12

Find the matrix A in terms of a and 6, and hence find an expression for € in terms of cv.
Prove that the reciprocal lattice of a rhombohedral lattice is also rhombohedral. Take
|b| = b, the angle between any pair of by, b,, bs as 3, and the angle between b; and e;
as ¢, and find expressions for b and 3 in terms of a and «. Find also the equations that
determine the faces of the BZ.
To determine the classes of a point group not given in the usual compilations of
point-group character tables (such as Appendix A.3) one would calculate its multi-
plication table from the group generators (or group elements) and then find the
classes by the methods in Chapter 1. However, character tables of all the abstract
groups required in the calculation of space-group representations have been given in
the book by Bradley and Cracknell (1972). To find the classes of any particular
realization of an abstract group one needs only to evaluate their expressions for the
classes using the law of binary composition for that group. Verify the classes of
space group 227 at X, which have been given in Table 16.16.

The group generators for this realization of G3, are P = (04|w), Q= (S4+y|0),
R= (C2x|0)'

The classes of G3, are

G =P'=0"'=R% =05 G =P G=P0% %5=PRPR;
%s =P’ Q°R,PO°R; %7 =0R,Q°R; %5=PQ’R,P’OR; %9 =PQ,P’Q’;
%\ =PQ*,P>0, %), =R,P’R,0°R,P’Q°R; %\, =P,P*,PQ?*, P*Q?

%3 =0,P*0,0°,P*Q°; %4 = POR,P>OR, PO’R,P*O°R.

For the space group 225 (Fm3m or Oﬁ) write down the coset expansion of the little
group G(k) on T. Hence write down an expression for the small representations.
State the point group of the k vector P(k) at the symmetry points L(}2 % !2) and
Y(a a 2a0). Work out also the Cartesian coordinates of L and X. Finally, list the
space-group representations at L and .

Find the representations of the space group 227 (Fd3m or O}) at the surface point
B(2+ 3, a+ 3, 2+ «), point group Cs={E oy}. [Hints: Use the method of
induced representations. Look for an isomorphism of C; with a cyclic point group
of low order. The multiplication table of C/ will be helpful.]

Determine the space-group representations of 227 (Fd3m or O}) at L using the
Herring method. The Herring group contains twenty-four elements and is the DP
C3y ® {(E|0) (]W)} ® T, where T, consists of two translations. [Comment: Even
though this is a surface point of the BZ and a non-symmorphic space group, its
representations turn out to have the same characters as those of a symmorphic space
group (Fm3m), as may sometimes happen at particular symmetry points.]

Find the spinor representations of the space group 219 (F43c or Tg) at A and at 3.
Comment on whether time-reversal symmetry introduces any extra degeneracy.
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Electronic energy states
in crystals

Translational symmetry

Within the adiabatic and one-electron approximations, when electron spin is neglected,
electron states in crystals are described by the eigenfunctions and their corresponding
eigenvalues, which are the solutions of the Schrodinger equation,

Hip = —(1/2me)V*1p + Vip = —1 hdwp/0t, (1)

in which the potential energy V has the periodicity of the crystal lattice. Surface effects
may be eliminated by the choice of periodic boundary conditions (PBCs). If we make the
simplest possible assumption that the potential energy may be approximated by a
constant value V inside the crystal and set Vo =0 by our choice of the arbitrary energy
zero, then

(1) —(W* |2me) V1) = —i h o/, )
which has plane-wave solutions
Ui, 1) = Py () (1) = V" expli(k - v — wr)], 3)

Ey = 72k /2m, “)

where V is the volume of the crystal. The assumption that V may be replaced by V,
is called the free-electron approximation. In reality, V #V, but has the periodicity
of the crystal lattice described by its translational symmetry. The translational
symmetry operators 7' commute with the Hamiltonian and, after separating out the
time-dependence of (r, 7), the common eigenfunctions of 7"and H are the Bloch func-
tions {¢x(r)}, where

(16.2.26) P (r) = exp(ik - r) ug(r), %)

in which u(r) has the periodicity of the lattice. The eigenfunctions ¢y (r) and eigenvalues
Ex depend on the wave vector k and are therefore labeled by the subscript k. The effect
of a periodic potential is to introduce discontinuities in E at zone boundaries so that
the continuous series of states implied by eq. (4) is broken up into bands separated by

energy gaps.
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Electronic energy states in crystals

Time-reversal symmetry

So far, electron spin has been neglected. Up to Chapter 11, electron spin was accounted for at
an elementary level by recognizing that the existence of spin angular momentum resulted in a
doubling of single-electron states and the presence of an extra term Hg_y, in the Hamiltonian
to account for spin—orbit coupling. In Section 11.8 the two-component spinor |u v) was
introduced to describe the j = +% states. In the non-relativistic limit (v/c — 0) of the Dirac
equation (where v is the electron velocity and c is the speed of light) and removing the self-
energy mec” of the electron by our choice of energy zero, the Hamiltonian is just 7+ V+ Hg 1,
which operates on a two-component eigenvector (r)|u v), where, in a crystal, the ¢(r) are
the Bloch functions 1/, (r). Applying the time-reversal operator (Chapter 13)

O ()u v) = 62 Ay (r)u v) = Yy (r)|=iv" iw). (M

Apart from the phase factor — i, the transformed spinor will be recognized as the ungerade
spinor of Chapter 11. The original and time-reversed states are orthogonal and therefore
degenerate, and consequently

Ex = E_y. 2

Equation (2) is clearly true for the free-electron model and is true in general if G(k)
contains the inversion operator (/|0) (Exercise 16.4-1), but eq. (2) shows that the energy
curves Ey are always symmetrical about k =0 and so need only be displayed for k > 0.

Translational symmetry in the reciprocal lattice representation

Because of the translational symmetry of the reciprocal lattice (Section 16.3) and the
definition of the Brillouin zone (BZ), the BZ faces occur in pairs separated by a reciprocal
lattice vector. For example, the cubic faces of the first BZ of the simple cubic (sc) lattice
occur in pairs separated by the reciprocal lattice vectors b= (2n/a)[[1 0 0]] (see
eq. (16.3.27)). In general, for every k vector that terminates on a BZ face there exists an
equivalent vector k' (Figure 17.1) such that

K =k—b,, [K|=k (1)

Equations (1) are the von Laue conditions, which apply to the reflection of a plane wave in
a crystal. Because of egs. (1), the momentum normal to the surface changes abruptly from
7k to the negative of this value when k terminates on a face of the BZ (Bragg reflection).
At a general point in the BZ the wave vector k+ b, cannot be distinguished from the
equivalent wave vector k, and consequently

Imagine k increasing along a line from the zone center I" to the face center at '2b,,. When
k = Yb,, + 8, where § is a small increment in k normal to the face,

(17.2.2),(2) E(Y%b,, + &) = E(= Y%b,, — 8) = E(%b,, — 6). 3)
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Figure 17.1. Illustration of the relation k' =k — b,,,.

It follows from eq. (3) that the gradient of E(k) normal to the zone boundary vanishes at a
face center,

Vi E(k) =0, k=15b, (face center). 4)

Equation (4) holds generally at the face center but is valid over the whole face if
the crystal point group contains a reflection plane through the zone center that is
parallel to the face. It also holds for all k vectors that terminate on a line in the BZ face
that is parallel to a binary axis. The E(k) may be described either by a single-
valued function of k (with k > 0), which is called the extended zone scheme, or by
a multivalued function of k within the first BZ, the reduced zone scheme (see
Figure 17.2).

Exercise 17.3-1 Show that the gradient of E(k) normal to a BZ face vanishes over a face
when there is a symmetry plane through the origin that is parallel to this face.

Answer to Exercise 17.3-1
Let ke BZ and let § be a small increment in kK normal to the face which is parallel to

the symmetry plane through I'. The perpendicular distance from I to the center of the face
is ¥4b,,,. Then

E(k —68) =E(o(k —8)) = E(o(k — &) +b,) = E(k +6),

Vi E(k) = lim {[E(k +8) — E(k - §)]/25} = 0.

Point group symmetry

At any symmetry point in the BZ,

(1643)  (R|V)¥(r) = (E|)(R| W)ty (r) = exp(—iRK - t)ri(r), YRE P(K). (1)
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E(K)

N

-1.5 -1.0 0.5 0 0.5 1.0 1.5b

Figure 17.2. E(K) for the 1-D free electron model in (a) the extended zone scheme and (b) the reduced
zone scheme.

Since the physical system (crystal) is indistinguishable from what it was before the
application of a space-group operator, and a translational symmetry operator only changes
the phase of the Bloch function without affecting the corresponding energy E(k),

E(Rk) =E(k), VR eP(k). )

Equation (2) shows that the band energy has the symmetry of the point group of the wave
vector. As R runs over the whole {R} = P(k), it generates a set of degenerate eigenfunctions
{¢rx(r)} which belong to the eigenvalue E(k) and which form a basis for a representation of
G(k). The point group of the wave vector P(k) may be determined by inspection of the
representation domain of the first BZ, but most of the P(k) likely to be encountered have
already been given in the literature (see, for example, Table 3.5 in Bradley and Cracknell
(1972)). The BZ of the sc lattice is in Figure 16.12(a) with symmetry points marked using the
notation of Bouckaert ef al. (1936), henceforth abbreviated to BSW. The point group
symmetry at X and at M is D4, = D4 ® C;. At X the four-fold axis is along &, and at M it is
parallel to k.. Table 17.1 lists the symmetry of the states at X and the corresponding bases for
each irreducible representation (IR). At M replace X by M and perform the cyclic permuta-
tion y—z, z—x, and x—y on the bases. The IRs are labeled by three sets of commonly used
notation due to Mulliken (M), Bethe (B), and Bouckaert et al. (BSW). The basis functions of
the primed representations are antisymmetric with respect to 7, which transforms k into —k,
as does the time-reversal operator ©, and this is denoted by a prime in BSW notation. Besides
the familiar s- , p- , and d- like functions, the bases include higher-order Cartesian tensors
which may be verified either by forming direct product (DP) representations (Chapter 5) or
by projecting a suitable function into the appropriate subspace (Chapters 6 and 9).

Exercise 17.4-1 Confirm the bases given in Table 17.1 for X4, X,’, X;/, and X,'. [Hint: Use
the character table of D4y, and form the necessary DP representations.]

At the point A along I'X, P(k) is C4, which is isomorphous with Dy4. The character table
(Appendix A3) is therefore the same as the upper left quadrant of Dy, but the basis
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Table 17.1. Irreducible representations and basis functions for the symmetry point X in
the BZ of the sc Bravais lattice.

IRs are labeled by three sets of commonly used notation due to Mulliken (M), Bethe (B),
and Bouckaert ef al. (1936) (BSW). The character table for Dy, is in Appendix A3.

State State
M B BSW Basis M B BSW Basis
N " X, 1 Al I~ X,/ xyz(x® — %)
Ase Iy X4 (2 —x%) Ay r,” Xy y
By, syt X, (22 —x%) By, Iy~ X' xyz
B, IV X3 2x By, Ty~ X5' ¥ =27
E, Is* Xs (xy, y2) E, s~ Xs' (z, x)

Table 17.2. The common classes of C4, and Dgy,.

These basis functions are the appropriate ones when the principal axis is along k, as it is
for A in Figure 16.12(a). Binary axes e and f are defined in Figure 2.12. For T the principal
axis is parallel to k. and the bases would therefore be as given in Appendix A3. The
representations at X that are compatible with (have the same characters as) those at A show
how the BSW notation for the representations at A is derived.

Dy (X) Cay (A, T)

BSW M B BSW E C4iy ny Oy Ox Oe, O Basis

Xl Al F] AI 1 1 1 1 1 1 Y

X,/ A, I, A 1 1 1 -1 -1 2x(z* — x7)
X, B, I, A, 1 -1 1 1 -1 22— x?
X, B, I, A 1 -1 1 -1 1 zx

X E s As 2 0 -2 0 0 (z, x)

functions are different (Table 17.2) and depend on the choice of principal axis. (Jones
(1962) takes A on k, and BSW have A on k,.) In Figure 16.12(a) A is on k, because it is
easier to visualize the symmetry points in the representation domain while maintaining the
usual directions for the (right-handed) x, y, and z axes.

Exercise 17.4-2 Derive the basis function for A in Table 17.2 by expressing A} as a DP
representation.

When a lowering in symmetry occurs, an IR of the higher symmetry group is generally
either re-labeled or, if it is not irreducible in the subgroup of lower symmetry, it forms a
direct sum of the IRs of the subgroup,

I = Z,- Ci,j Fj 3)
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Table 17.3. Irreducible representations of the point group Oy, =0 ® C; and their
Cartesian tensor bases (for principal axis along k).

The character table of Oy, is in Appendix A3. The BSW notation for the IRs depends on
compatibility relations which are derived in Table 17.5.

IR
M B BSW Basis
A, r* I, 1, ¥ +)y*+2
Azg ry* I A=)+ 0P =)+ E -0
E, st Ty (222 27— (P +a2)
Tig Iy* s {zx (2 =2, xy (=), y2 (0 =29}
Tag Is* I {zx, xy, yz}
Ay NN ry 0z [ (P =)+ 0P =) +)0 (@ - X))
Az PN Iy xyz
E, s~ I, oz (22 =x%), 2 [2° — (2 +x3))]}
Tlu I‘47 F15 {Z, X, y}
Tou I's™ s (@ =2, 2% =37, x(7 =)}
3) {xit =205 {xh 4)

where {x;} denotes the character set of the ith IR of P(k) at some symmetry point (say, K)
and the {;} are the character sets of the IRs in the point group (which is a subgroup of P(k)
at K) at a point on a line of symmetry terminating at K. Representations that either change
their labels or split into two or more IRs are said to be compatible. Only classes that are
common to the subgroup and its parent group occur in the character sets in eq. (4). For
example, if K is X, with P(k) = Dyy,, then its subgroup at A on I'X is Cy4,. The characters of
the classes common to Cy4, and Dy, are given in Table 17.2. As these character sets show,
the compatibility relations for Dy;, and Cy, are

Xi=Ay, X =A, Xo =4, X, =A% Xs=As, %)

which explain the reason for the BSW notation for the IRs of C,,. Equals signs in eq. (5)
and other compatibility relations means equality of the character sets for these IRs. The
point group symmetery at I" and at R is Oy,. Table 17.3 lists the IRs of Oy, in the three sets of
principal notation used, together with the Cartesian tensors that form bases for these IRs.
Since we wish to examine the lowering in symmetry that occurs along the line TAX, the
principal axis has been chosen along k, instead of the more usual £..

Exercise 17.4-3 Find a basis for the IR I"}, of Oy, by forming the DP of two other
representations in Table 17.3.

Exercise 17.4-4 Verify the basis given for I'|5 in Table 17.4 by projecting a fourth-order
polynomial into the I'|5 subspace. [Hint: Use the substitutions provided in Table17.4.]
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Table 17.4. Jones symbols for the transformation of functions
(that is, R~ {x y z}) for the twenty-four operations R € O.

E xyz

3C3 Xz, Xz, XyZ

acyt ZXY, YZX, ZXY, VIX, ZXV, VZX, ZXY, VZX
3C4i VXZ, YXZ, XZY, XZV, ZVX, ZVX

6C, VXZ, ZYX, X2V, YXZ, ZVX, XZ)

Table 17.5. Characters of the IRs T\, "5, and I'ys of Oy, for classes common to Oy, and Cys.

In the left-hand column are the direct sums of representations of C4, which yield the same
character sets as the IR of Oy, in column 7. The o, oy are vertical planes in Cy4, because they
contain the four-fold axis but are horizontal planes in Oy, because they are normal to the C,
axes along z and x, respectively. The planes o, and o¢ in Cy4, are two of the six dihedral
planes in Oy, (Figure 2.12).

C4v E C‘%y City O, Ox Oe, Of

On E 3C3 3CE 3oy, 604

IRs of Cy4, IRs of Oy,
A DA, 2 2 0 2 0 'y,

Al @ As 3 -1 1 -1 -1 I's

Al @ As 3 -1 1 -1 1 I

Compatibility relations for C4, and Oy, are derived in Table 17.5. This table shows again,
as does eq. (5), that the primes and subscripts in BSW notation come from compatibility
relations. Here:

Ay @AQ:FM; A/l D As :F/15; A;@As :FIZS. (6)

Tables of compatibility relations for the simple cubic structure have been given by Jones
(1962, 1975), and similar tables can be compiled for other structures, as shown by the
examples in Tables 17.2 and 17.5. Compatibility relations are extremely useful in assigning
the symmetry of electronic states in band structures. Their use in correlation diagrams in
crystal-field theory was emphasized in Chapters 7 and 8, although there it is not so common
to use BSW notation, which was invented to help describe the symmetry of electronic states
in energy bands in crystals (Bouckaert et al. (1936)).

Compatibility relations between states at points on symmetry axes and states at end
points of these axes are independent of the particular choice made from a set of equivalent
axes. For example, it would make no difference to the compatibility relations in egs. (5) and
(6) if X were to be chosen on k. or k, instead of on k, as in Figure 16.12(b). But there is
another kind of compatibility relation which governs states on symmetry axes that lie in a
plane and which can only be described in relation to a particular choice of coordinate axes.



364

Electronic energy states in crystals

Table 17.6. Compatibility relations for the symmetry
plane k,= 0 in the simple cubic structure.

Symmetric Antisymmetric
21,24 2,23

Ay, Ay, As AL AL As
Zl3 Z3 Zz, Z4

For example, the symmetry points A, 3J, and T all lie in the k. =k, plane. Therefore,
basis functions for A states that are antisymmetric with respect to reflection in this plane
are only compatible (because of continuity within the BZ) with basis functions for > and
T states that are also antisymmetric with respect to reflection in this plane. Similarly,
Z, T, and S all lie in the k,=b/2 =n/a plane. Compatibility relations for the plane
k. =0 in the simple cubic structure are in Table 17.6. For example, for A} and A,
(see Table 17.2),

o, (2 —x*) = —zx(Z —xP), o, (P -xF)=2-x 7

so that these bases are, respectively, antisymmetric and symmetric with respect to reflec-
tion in the plane z = 0. To resolve questions of compatibility due to symmetry planes one
needs to know the necessary basis functions expressed as Cartesian tensors (Altmann and
Herzig (1994); Jones (1962, 1975)).

Exercise 17.4-5 The X point lies on [1 1 0] between " and M in the &k, = 0 plane (Figure
16.12(b)). What is P(k) at X? List the basis functions for the IRs, naming them in both
Mulliken and BSW notation. Note that 3, A, and T all lie in the (1 1 0) plane through I"
defined by x —y =0. Can the states A, T, and T, exist in the same energy band as a ¥,
state? What other X state is compatible with these A and T states? [Hint: These basis
functions will differ from those usually seen in character tables with vertical planes x =0,
y =0; here the vertical planes are z=0,x —y=0.]

Answers to Exercises 17.4

Exercise 17.4-1 The basis of a DP representation A ® B is the DP of the bases of A and B.
Therefore, in Dy, (Table 17.1),

DP basis

X, @ X5 =Xy, 2x(z* — x%),
X3 X X4/ = Xz/, xXyz,

X, @ X4 =Xy, W —x),
X, @ Xy =X{/, xyz(z2 — x°).

Exercise 17.4-2 x(A, ® Ay) = {111 —1 —1} = x(A)). Therefore, the basis of A/ is

zx(Z = x7).
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Table 17.7. Character table for C,, with principal axis along a.

sz (E) E CZa 04 Op

Jones symbols Xyz IXZ XYz yXz

A Y 1 1 1

Ay, 1 1 -1 -1 z(x —y)
B ¥; 1 -1 -1 1 z

B2 24 1 —1 1 -1 X—=y

Exercise 17.4-3 From the character table for Oy, I';; ® Iy = I'},. Therefore, a Cartesian
tensor basis for I', is

{2} @ {Z -, 27 = (2 +2%)} = {wpz(2® —2%), w22y = (2 +7)]}-
The principal axis has been taken along &, because of our interest in the line TAX.

Exercise 17.4-4 x* does not provide a basis for I's but (after removing any unnecessary
common factor ¢ )

C_]%:X(Flsl)*lé(fy) =c YB3 -1(1 -1 —1}]
+x7 [L(=1 =1) =1(1 + 1]} = (6 = »7).

The other two independent functions yz(y* — z%) and zx(z* — x*) follow by cyclic permuta-
tion of this result.

Exercise 17.4-5 At 3, P(Kk) is C,, the character table for which is shown in Table 17.7. The
basis functions shown are those for the IRs of C,, when the principal axis is along a. Table
17.8 contains the character table for Cs, with basis functions for a choice of principal axis
along [1 1 1]. The easiest way to transform functions is to perform the substitutions shown
by the Jones symbols in these two tables. The states >, and Y4 are antisymmetric with
respect to oy, which interchanges x and y (see the Jones symbol for oy, in Table 17.7). Note
that oy, is also one of the three vertical planes at A and, as Table 17.8 shows, A, is
antisymmetric with respect to oy,. The plane x =y is one of the dihedral planes in Cy,
and from Table 17.2 we see that the bases for T} and T, are antisymmetric with respect to
op- (The four-fold axis at T is parallel to k., and carrying out the permutation y — z, z — x,
x — ) on the bases for A and A, gives xp(x* — %) and x* — y* for the bases of T} and Ty,
which are antisymmetric with respect to oy,.)

Energy bands in the free-electron approximation: symmorphic space
groups

Substituting eq. (17.1.5)

i(r) = exp(i k- 1) wu(r) (D
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Table 17.8. Character table for Cs, with principal axis along [1 1 1].

Csy ( A) E 2C; 3oy

Jones symbols xyz ZXY, yIX VXzZ, ZYX, XZy

Al A 1 1

Ay Ay 1 1 -1 xy(x —y)+yz(y — z) + zx(z — x)
EA; 2 -1 0 (x—z, y—2)

(which satisfies the PBCs) into the Schrédinger one-electron time-independent equation
— (1 2me)V24(r) = [E = V()]y(r) )

gives
V2 (r) + 2ik - Vi (r) + (2me/B*)[E(K) — (B°k* /2me) — V()] (r) =0,  (3)

which must be solved self-consistently because of the difficulty involved in finding a
satisfactory approximation to V(r). However, useful insight into the form of the energy
bands in a crystal may be gained by setting V(r) = 0, which is called the free-electron (FE)
approximation. With V(r) =0,

(3) uk(r) = exp(—i by, - 1), (4)
En(k) = (h2/2m6)|k - bm|za Q)
(1, ) Yk (r) = expli(k — by,) - r]. (6)

In egs. (5) and (6) the energy E,, (k) and eigenfunctions ,,(r) carry the subscript m
because, in general, at any particular symmetry point, there may be several different
values of [m; m, mz] which give the same energy. When degeneracy due to symmetry
occurs, the appropriate eigenfunctions at that point are linear combinations of the
¥,k(r). Such linear combinations of the correct symmetry may be determined by the use
of projection operators (Chapter 5). Although historical usage dictates the continued use of
the “free-electron” approximation, this is not perhaps the best description since the
electron eigenfunctions are still required to obey the PBCs due to the translational
symmetry of the lattice. Shockley (1937) used the phrase “empty lattice” in order to
describe the test made by setting V=0, which was used in connection with
the Wigner—Seitz cellular method for calculating wave functions in crystals. While
“empty lattice approximation” would be a more accurate description in the present
context, in view of historical precedence and familiarity I have continued to use “free
electron” to describe the approximation of setting V =0. Accidental degeneracies not due
to symmetry can occur in the FE approximation, but these are often removed when a more
realistic potential is imposed.
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When calculating FE energy states along particular directions in the BZ it is often
convenient to work in Cartesian coordinates, that is to use the (e| basis rather than the (b
basis. The matrix representation of a reciprocal lattice vector b, is

(blm) = (e|B|m) = (e e, e3|m, m, m.). (7)

For the simple cubic lattice B is E5 and so |m, m, m.) is identical to [m; m, ms) for this
lattice only. But, in general, we must use eq. (7) to find |m, m, m.) at a point whose
coordinates |m; m, m3 ) in the reciprocal lattice are given in the (b basis.

bix by by mi my
(7),(16.3.6) Blm) = by, by by, my | = [m, |; ()
biz by b3 | | ms m;
(3) my = byymy + byymy + byms,
my, = blyml + bemZ + b3ym3» (9)

m; = blzml + b22m2 + b3zm3-

The symmetrized eigenfunctions at k form bases for the group of the wave vector (the
“little group”) G(k) C G. These IRs may be constructed in a number of ways, two of
which were described in Chapter 16, namely via the central extension P(k)’ of the point
group of the wave vector, P(k), or by constructing the Herring group # (k). For sym-
morphic space groups, or for non-symmorphic space groups at internal points of sym-
metry (including points on lines of symmetry), there are no projective representations
(PRs), and the IRs of G(k) are just vector representations of P(k) multiplied by the
representations ' (E|t) of the translation subgroup. To find the IRs of G(k) for non-
symmorphic space groups at points that are on surface lines of symmetry, we use instead
of P(K) its central extension P(K)'. For surface points of symmetry we use either P(k)’ or
its isomorph the Herring group #(k), constructed from P(k). In these cases P(k)" and
A (K) are isomorphous with an abstract group Gy, or with Gy ® T, or with G, ® T, ® T,
Here T, and T, are low-order Abelian subgroups which consist of translations (£|t) and
which may therefore be ignored because they affect only the phase of the Bloch functions
Y. The abstract group G;’ may be, but is not necessarily, isomorphous with a crystal-
lographic point group. The superscript denotes the ordinal number # in the list of abstract
groups of order g. For example, for the 2-D space group of Sections 16.6 and 16.7, at the
surface symmetry point X, P(k) is C,, and P(k)’ and (k) are isomorphous with the
abstract group Gg ~ Dy.

In applying the projection operator method for the calculation of symmetrized linear
combinations of eigenfunctions, we shall need the effect of a space-group function operator
(R|v) on the FE eigenfunction 1, (r), which is

(Rlv)wmk(r) :wmk((R|V)_lr) = wmk(R_lr - R_lv)
= expli(k — b,) - (R"'r — R71v)]
=exp(i b, - R 'v)exp(—i k-R7'v)exp[i(k — b,)-R'r].  (10)
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In eq. (10), v =0, VR, for symmorphic space groups; r and v are vectors in the space
of the crystal lattice and are measured in units of a lattice constant a of that lattice,
so that r/a=xe; +ye,+zes=[x y z], where [x y z] means a vector whose
Cartesian components x, y, and z are dimensionless numbers. Similarly, when
v=w#0, [w wy w3] = wie; + wre; + wse; means the vector whose Cartesian com-
ponents are wy, w,, and ws, in units of a.

Example 17.5-1 A crystal belonging to the symmorphic space group 221 (O]i or Pm3m)
has the simple cubic lattice. The unit cell is a cube with cube edge of length a. The
reciprocal lattice defined by B =5E; is also simple cubic with cube edge of the
unit cell b =27/a. Expressing Kk in units of b gives k/b =[£ 1 (], where the components
of k/b, [£ n (], are the coordinates of symmetry point K, k being the vector from the
origin to K.

(%) (hz/zmeaz)ilEm(K) =en(K) = (f - mx)z +(n— my)z + (C - m2)2§ (11)

(6) %(K) = exp{Zni[(f - mX)x + (77 - my)y + (C - mZ)Z]}. (12)

1, 1s a function of r, as eq. (6) shows, but the notation ,,(K) is used to convey that it is
(r) at the symmetry point K[¢ 1 (], for this b,,, the components of which enter paramet-
rically into eq. (12). Likewise, €,,(K) is the dimensionless energy at K.

AtT[0 0 0], P(k) = Oy, and

(11) en(D) = m? +m? +m?, (13)
(12) ), (T) = exp[—2mi(mex + myy + m.z)). (14)
The lowest energy at I' occurs for b,, =0 and is o(I") = 0. The corresponding (unnorma-
lized) eigenfunction is 1)y (I') =1, and the symmetry of this state is therefore I'; (or Ay).

Note that A is a point on I'X, which is along £, so that A[0 1 0]. At A, P(K) is Cyy. In the
lowest band (m, =m, =m.=0),

(11), (12) eo(A) =17, 1o(A) = exp[2miny], 0<n<1/,, (15)

which is of symmetry A, in Cy4, (Table 17.2). This first band (m, = 0) ends at the zone
boundary (= !/,) where the second band (m, = 1) starts. Therefore, at X,

e0o(X) ="Vs,  ¥o(X) = exp(iny), my, = 0; (16)
e010/(X) = Var  Ypo10/(X) = exp(—imy), m, = 1. (17)
We now use the projection operator method for finding the linear combinations of the

degenerate eigenfunctions 1y(X), Y19 1 0)(X) that form bases for the IRs of P(k) = Dyy. For
J =X, (or A,,), which is compatible with A,
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(5.2.10) Ppy(X) = ¢! ;xf(R)*Iéwo(X), R € Dy
= Y,[exp(iny) + exp(—iny)]
= cos(my), (18)

where ¢ is simply a common factor that is cancelled in order to achieve a result without
unnecessary numerical factors. Similarly for j = X4’ (or Ay,)

Pyo101(X) = sin(my). (19)
Along I'X, the second band (1, = 1) is given by
(11) 5[010](A) =(1- 77)2, z/J[Olo](A) = exp[27i(n — 1)y], (20)
which forms a basis for A,. The second band ends at I', where m, = 1 gives
(13) g1 () = 1. ey

This energy is six-fold degenerate since the states with [ 1 0 0]] all have the same energy
en(I") = 1. The eigenfunctions are linear combinations of the ¢,,(I') in eq. (14) which are of
the correct symmetry. To find these IRs we need to know the subspaces spanned by the m
basis, which consists of the six permutations of m=[1 0 0], and then use projection
operators. But actually we have already solved this problem in Section 6.4 in finding the
molecular orbitals of an ML complex ion. There we found the IRs of {oy, ..., 0}, which
map on to the six permutations of [1 0 0], tobe A4, E,and Ty, (or I'y, I'15, and I'; 5) and also
the symmetrized bases listed in eqgs. (6.4.19)—(6.4.25).

(14),(5.2.10) Py () = ¢! ; ¥(R) exp(—2miR™'y), j=T\; 22)

(6.4.19) P(T'1) = cos(2mx) + cos(2my) + cos(2nz). (23)

Proceeding similarly for I';, and T'y 5 yields

(6.4.20) Y (T'12) = cos(2nz) — cos(2mx), (24)
(6.4.21) P (T12) = 2cos(2my) — [cos(2nz) + cos(2nx)], (25)
(6.4.22) P (Tys5) = sin(2mx), ¢y (T1s) = sin(2ny), ¥y (Tis) = sin(2rz).  (26)

At A, P(k) is C4y, with the principal four-fold axis along k,. The coordinates at A are
[0 7 0], 0< n < Y. The possible values of m are the six permutations of [1 0 0]. The energies
in this band are
2 2
o1 = (1-1)7, 6[0T0]2(1+77)» @7
2
€100 = €190 = €001 =Egor = L+1"

One of these, namely e[ | o= (1 — n)?, is the band described by eq. (20). The band
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(1 5[010](A) = (147, ¢[0T0](A) = exp[27i(1 + n)yl, (28)

is also of symmetry A since ¢[O T0) is invariant under the operations of C,4,. The four bands
that correspond to the remaining four permutations [+1 0 0], [0 0 £1] are degenerate with
em = 1 4 1. For these bands, the character set x(I',,) of the permutation representation is

Cy =1{E 2ny Coy  04,0% e, 01}
xT)={4 0 0 20}, (29)

the classes of Cy4, being shown on the previous line. Therefore

Fm=A1+A2+A5:A]+B1+E; (30)

(12) Yoo 1)(A) = exp[2mi(ny = 2)], Ppi 9 )(A) = exp[2mi(ny —x)]. €2))

Projecting the first of these into the A;, A,, and A5 subspaces, and projecting the second
one into the A5 subspace, yields

Y(A)) = exp(2miny) [cos2nz + cos 27x], (32)
¥(Az) = exp(2miny) [cos 2nz — cos 2mx], (33)
P1(As) = exp(2miny) sin2nz, Py (As) = exp(2rminy)sin 2mx. 34)

At X, n=1/2, and the energy of the four degenerate bands A, A,, As (egs. (32)—(34)) is
en(X)=5/4. Since £ and ( are zero,

en(X) = m2 + (my, — 1/2)* +m? =5/4, (33)
which is satisfied by
[my my, m;) =[£100],[0 0£1],[£1 10],[0 I £1]. (36)

P(Kk) at X is Dy, and the character set of the permutation in eq. (36) is therefore given by

Dy = {E C4iy Ciy Ca, Cox Coe, Cop 1 0y Sjg, 0z,0x  Oey Ot}
xTw)={8 0 0 0 0 0 0 O 4 0},
whence

Iy = Alg@Blg ® Az, ® By, @Eg@Eu

37
=X 00X X Xy ©Xs X5\ 37)

Classes of Dy, for X on k, are specified above the character set for I',,. The translation into
BSW notation in eq. (37) may be checked from Table 17.1.
Exercise 17.5-1 Verify the direct sum in eq. (37).

The symmetrized linear combinations that form bases for these IRs are now determined
using the projection operator
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Table 17.9. Jones symbols R {x y z} for the set {R} of the point group Dy, = {R} @ {IR}.

Jones symbols for the set {/R} are obtained by changing the sign of the symbols for {R}.
The principal axis has been chosen along y; for the choices z or x, use cyclic permutations of
{x y z}, or derive afresh, using the appropriate projection diagram.

E ny ny Coz Cox Cae, Cor
Jones symbol xyz ZyX Xz Xyz Zyx
Zyx xXyz ZyXx

(12) ! = Pyog(X) = ¢ 2 X (R) exp[~ 2R~ (x + Yy, (38)

where j denotes one of the IRs in eq. (37). The simplest way to effect the substitutions
R 7'(x+ Y%y) is to first make a list of the Jones symbols. For degenerate states, project a
different function in eq. (38). The symmetrized linear combinations obtained from eq. (38)
using Table 17.9 are as follows:

P(X1) = cosmy [cos 2nz + cos 27x], (39)
P(Xy) = cosmy [cos 2mz — cos 27x], (40)
(X3') = sinmy [cos 2nz — cos 2mx], (41)
P(X4') = sinmy [cos 27z + cos 2mx], (42)
¥(Xs) = {sinmy sin2nz, sinnmy sin2nx}, (43)
P(Xs') = {cosmy sin2nz, cosmy sin2mx}. (44)

Figure 17.3 shows the energy bands along I'AX in the BZ of the sc lattice. Degeneracy and
compatibility are satisfied at I" and at the zone boundary. Since from eq. (11), &(I") in the
next band is 2, (A) =2 — 7* and m is one of the four permutations of [1 1 0] which have
m, = 1. From eq. (30) the IRs in this band are A;, A, and As, as shown in Figure 17.3.

Example 17.5-2 Free-electron energy bands for the face-centered cubic (fcc) lattice. For
the fcc lattice,

9) my = Yab (—my + my + ms),
m, = 2b (m1 —my + I’H3), (45)

m, = Y2b (my + my — m3),

where b =4n/a and a is the cube edge of the unit cell in the fcc lattice. The dimensionless
energy at K [£ 1 (] 2n/a) is
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2.0
Xy, Xp, Xs
X3, X4, X5

[T Ts 1.0

X, X4

0 01 02 03 04 05

Figure 17.3. Energy bands for the simple cubic Bravais lattice in the free-electron approximation at A
on I'X. The symmetry of the eigenfunctions at I' and at X given in the diagram satisfy compatibility
requirements (Koster ez al. (1963)). Degeneracies are not marked, but may be easily calculated from
the dimensions of the representations.

em(K) = (€= m)* + (n—my)* + (¢ = m.)?, (46)
and the corresponding FE eigenfunction is given by
U (K) = exp{2mi[(§ — mo)x + (7 — my)y + (¢ — m2)z]}. (47)
AtT,
(46) en(T) = m? +m? 4+ m.?; (48)
(47) ,,(T) = exp[—2mi(mx + myy + m,z)]. (49)

The lowest energy state, o(I') =0, has 1),,(I') = 1 and is of symmetry I'; or A,. The next
highest level is

eay(l) =3, Yy (L) = exp[—2mi(£x £y +2)], (50)

where the subscript {111} indicates that m is one of the eight permutations of [1 1 1]. These
points lie at the corners of a cube. The permutation representation is

Py =A@ Ay @ Ty @ Ty =T1 0T, @ T’ @ Ts; (51)

I',, may also be derived by reducing the representation spanned by the ligand orbitals in a
cubic MLg molecule or configuration, as occurs, for example, when an ion such as In"isa
substitutional impurity in CsCl.
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Table 17.10. Basis functions ¢ ... ¢g, and their variables,
for the IRs of the permutation representation of [1 1 1].

These same Jones symbols are used in the derivation of the
ligand orbitals of an MLg molecule.

o1 Xyz ®s xyz
05 xXyz b6 XVZ
o3 Xyz &7 Xyz
o Xyz o xyz

Exercise 17.5-2 Verify the permutation representation I',, in eq. (51).

(50) Yy (T) = exp[—27i(x +y + 2)] = ¢1. (52)

The sets of variables (coordinates) for the complete list of ¢ functions are in Table 17.10.
Basis functions of the correct symmetry may be found by using projection operators. For
the jth IR in eq. (51),

P/ = CilzR:X/(R)*fé YD) (53)

To reduce writing we give only the transformed coordinates (Jones symbols) which are to
be substituted for {x y z} in eq. (52), rather than the actual functions, using parentheses to
separate the classes of Oy,. Forj =T,

(53) Y(T) = ¢ (xyz) + X7z + 192 + 0Z)
+ (zxy + yzx + Zxy + YZX + Zx + zXy + yzX + ZX))
+ (xz 4 yXz + xZy + x2V + zyX + Zyx)
+ OXZ +JXZ + 29x + ZPX + Xzy + XyZ)
+ IR '(xy2)], R€O; (54)

(54) P(T) = xyz + Xvz + XVz + XVz + XVZ + XVZ + XPZ + XVZ. (55)

Recall that the notation in egs. (54) and (55) is evocative rather than literal, so that “+xyz”,
for example, means “+ exp[—2ni(—x +y+z)]”. Alternatively, from eq. (55) and
Table 17.10,

P(Aig) = d1 4+ ¢2 + O3 + ds + b5 + b6 + D7 + ¢s. (56)

The ¢ notation for the basis functions is often convenient since it offers considerable
economy in writing down the bases for each IR.

(55), or (56) Y(T'1) = cos(2nx) cos(2my) cos(2nz). (57)
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2 7
d
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8 \ =~ 1
\ T~a
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\\ ~4b
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\ 7
\ /7 ead
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\ 7/ 4
\ 7/
\ /7
\ /7
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Figure 17.4. Labeling of the symmetry elements of a cube as used in the derivation of I, and of the
symmetrized bases. The points 1, 2, 3, and 4 label the three-fold axes. The poles of the two-fold axes
are marked a, b, c,d, e,and f. The points 1,2, 3,4, 5, 6, 7, and 8 provide a graphical representation of
the permutations of [1 1 1] (cf. Table 17.10).

Exercise 17.5-3 Derive eq. (56) directly from v/ = c’lZXJ( ) *Ry, where {¢;} labels
the points i=1, 2, ..., 8 in Figure 17.4.

In the same way, for j = I'y’ (or As,), for which {}/(%,)} ={1 1 1 —1 —1} for the
five classes of O (in the same order as in the Oy, table in Appendix A3)

(53) P(I"y) = sin(2nx) sin(2ny) sin(2nz). (58)

For j = 'y, with {\/(6)} ={3 —1 0 —1 1},

(L) =361 — (d2 + @3 + ¢a) — (d5 + &7 + dg) + 35 =1y (59)
Projecting, in turn, ¢,, ¢3, ¢4 gives
Uy, =3¢ — (&3 + da + ¢s) — (&1 + ¢s + d7) + 3, (60)
V3 =303 — (4 + ds + ¢6) — (92 + b1 + ds) + 367, (61)
Vg =304 — (&5 + d6 + &7) — (93 + 2 + 1) + 3. (62)

Of course, it is not necessary to carry out the actual projections because 1,, 13, and ¢4 are
simply written down as cyclic permutations of 1/;. There are only three linearly indepen-
dent bases for a T,, representation and we choose these to be v="4[t¢ + 3],
Y= Y[, + 4], Y= Y[, +1,]. On using Table 17.10 and eq. (52),

(59), (61) Y(Ts) = cos(2mx) sin(2my) sin(27z), (63)
(59), (62) Y (Ths) = sin(27x) cos(2my) sin(2nz), (64)

(59), (60) Y (Ts) = sin(27x) sin(2my) cos(2nz). (65)
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Alternatively, Y2[v; + ;] = ¥y = sin(27x) sin(2ny) cos(2nz), and cyclic permutation of
xyz gives 1y and 1y The three symmetrized bases for I' ;5 are symmetric under inversion,
as they should be. In a similar way, the bases for I';5(T},,) are obtained by projecting ¢y, ¢-,
@3, ¢4 into the I'y5 subspace, with the following result:

(54) Y(T'15) = sin(27mx) cos(2my) cos(2mz). (66)
Cyclic permutation of {xyz} in eq. (66) gives
(66) Y(Ts) = cos(2nx) sin(2my) cos(2nz), (67)
(66) Y (Th1s) = cos(2mx) cos(2my) sin(2nz). (68)
At symmetry point L, with coordinates [ 5 Y2](27/a),
(46) en(L) = (Y2 —m)* + (Yo —my) + (Yo —m.)?, (69)
47) (L) = exp{27i[(2 — my)x + (V2 —my)y + (V2 — m.)z]}. (70)
The lowest energy, which occurs form=0and m=[11 1], is

eo(L) = ¥s. (71)
This (L) = 7 state is degenerate, with
(70) Yo(L) = explin(x +y +z)], (72)
(70) Y1 1)(L) = exp[—in(x +y +2)]. (73)

P(k) at L is D3g={R} @ {IR}, where {R}={F R(£(Q2n/3)[1 1 1]) Ca, Cra Co}
(Figure 17.4). The Jones symbols describing the effect of these operators on a function
f(x, y, z) are in Table 17.11.

Exercise 17.5-4 Derive the permutation representation I',,(L). [Hint: See Figure 17.5.]
Projecting ¢o(L) into the L;, L’Z(Alg, A,,) subspaces yields
(72) P(Ly) = cos[n(x +y +2)], (74)
(L)) = sin[n(x +y + 2)]. (75)
Ate(L)=2%,
47) Yy 7(L) = exp[—in(x +y — 32)]. (76)
Projecting into the L;, L',, L3, L5 subspaces gives

Yy (Ly) = cos[n(x +y — 32)] + cos[n(y + z — 3x)] + cos[n(z + x — 3y)]; (77)
¥y 7(Ly) = sin[n(x +y — 32)] + sin[z(y + 2 — 3x)] + sin[z(z +x - 3y)]; (78)

Y1) (L3) = cos[n(x +y — 3z)] — cos[n(y + z — 3x)]; (79)
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Table 17.11. Jones symbols R~ (xyz) for R € Dsq and character table for Dsg.

Each of the three C, operators transforms ¢; into ¢s (see Figure 17.4).

E C5 Con, Cag, Cor 1 S Ob, 04, Of

xyz zxy xXyz xXyz ZXy xyz

yzx xXyz yzx xyz

xXyz xyz
Ly Ay 1 1 1 1 1 1
Ly Ay, 1 1 1 -1 -1 -1
Ly Ay, 1 1 -1 1 1 -1
Ly Ay, 1 1 -1 -1 -1 1
L; E, 2 -1 2 -1 0
L;' E, 2 -1 0 -2 1 0

2

Figure 17.5. View looking down the [111] axis in Figure 17.4. The triangle containing 6, 7, 8 lies
above the plane of the triangle containing the binary axes labeled b, d, and f, while that containing 2,
3, and 4 lies below this plane. Points marked 1 and 5 in Figure 17.4 lie on the axis through the center of
this figure.

YT (L3)" = cos[n(z +x — 3y)] — cos[n(y +z — 3x)]; (80)
Yy (L}) = sin[n(x +y — 3z)] — sin[n(y + z — 3x)]; (81)
YT (L)' = sin[n(z 4+ x — 3y)] — sin[z(y + z — 3x)]. (82)

These results can all be derived very easily with the aid of Table 17.11.

Exercise 17.5-5 Confirm the above results for the L; representation. For a point A on I'L,

(47) em(A) = (£ - mx)z + (€ - my)2 + (€~ mz)zs 0 < &<y, (83)

whence the free-electron energy bands along A are readily calculated, the representations
being determined from compatibility requirements.
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Answers to Exercises 17.5
Exercise 17.5-1 Use the character table for Dy, and eq. (4.4.20).

Exercise 17.5-2 Using Figure 17.4, the character set I',, is given by

E 3C7 4CF 3CFf 6Cy I 3o, 4ST 3S] 604
xTw)={8 0 2 0 0 0 0 0 0 4}
I',, then follows from the character table for O;, and eq. (4.4.20). (The easiest way of
determining x(T',,) is to look at the figure representing the set of points to be permuted (in
this case, a cube) and determine the number of points that are unshifted under one operation
from each class. This number is the character for that class in the permutation representa-
tion I',,,. For example, each of the dihedral planes contains four points which are invariant
under reflections in that plane.)

Exercise 17.5-3

ST (R) Ry = (1) + (h2 + b3 + ¢a)
feo + (1 + 1+ P53+ s+ da + D2+ D2+ ¢3)
b3 + O7 + D6 + Pg + P71 + de)

+(
+ (¢ + ¢s + dg + ds + d7 + ¢s)].

The order of the operators here is the same as that used in the derivation of eq. (54). Each ¢
function occurs three times in this list, and consequently occurs another three times in the

sum from IR, R € O. Therefore, withc =6, (') = ¢1 + @2 + D3 + Ps+ s+ dg + P7+ ¢s.

Exercise 17.5-4 From Figure 17.5,

E C; 3C2 1 Sétl 30’d
x(Tw) = {6 0 0 0 0 2}

| :A1g®A2u@Eg+Eu =L @L;@I_@ @Lg
then follows from the character table for D34, either by inspection or by use of eq. (4.4.20).

Exercise 17.5-5 Projecting eq. (76) into the L3 subspace yields

¢¢M):c4R§;Xbmykeq¢4mx+y—3@]
=2cos [n(x +y — 3z)] — cos [n(z + x — 3y)] — cos [n(y + z — 3x)],
¥, (L3) = 2cos[n(y 4z — 3x)] — cos [n(x +y — 3z)] — cos [n(z +x — 3y)],

¥3(L3) = 2cos[n(z +x — 3y)] — cos [n(y + z — 3x)] — cos [n(x +y — 3z2)].



378

17.6

Electronic energy states in crystals

These three functions are not linearly independent, but on choosing linear combinations to
give the simplest form,

ti(Ls) = [th(Ls) — ¥5(Ls)] /3 = cos [m(x +y — 32)] — cos [n(y +z — 3x)],

i(Ls) = [3(Ls) — 1,(L3)] /3 = cos[m(z +x — 3y)] — cos [x(y +z — 3x)].

Free-electron states for crystals with non-symmorphic space groups

For internal points of the BZ there are no PRs and the procedure for constructing space-
group representations from P(K) is the same as that for symmorphic space groups. But for
points on surface lines of symmetry we must use instead of P(K) its central extension P(k)’.
For surface symmetry points it is generally easier to construct the Herring group and to use
A (K) instead of P(k)". Note that # (k) or P(k)’ is isomorphous either with an abstract group
Gg or with the DP of an abstract group with one or more low-order translation groups;
GZ may or may not be isomorphous with a crystallographic point group (Table 17.12).
The space group of diamond, and also silicon and germanium, is 227 (Fd3m or Oy”).
The point group of Fd3m is T4, and the little group
(16.7.20) G(k) = > (4|0)T + > (B|wW)T, (1)
A B
in which w=[% Y Y] in units of the cube edge a, {4} = P(k) N T4, and B € P(k) but
¢ Tq. In the III/V semiconductor InSb, the Ge atom at [000] is replaced by an In atom and
that at w by an Sb atom. The point group P is again T4 but P(k) at I' is T4 instead of Oy,. The
point group of the wave vector P(k) and the Herring group J#(k) for the InSb and Si
structures at the symmetry points K=1T", A, and X are given in Table 17.12. The derivation
of the Herring groups from their corresponding point groups has been described in Section
16.7, where it was illustrated by the derivation of (k) ~ ng for space group 227 at X.
The other (k) in Table 17.12 may be obtained similarly, using eq. (1). For space group
216 at X, P(k) is D,4 and the Herring translation group .7 (k) is T, = {(£]0) (E|a, or a3)},
where {a,, a,, a3} are the fundamental translations of the fcc lattice. In this case, #°(k) is
isomorphous with the DP D,y ® T». The advantage of identifying (k) or P(k’) with an
abstract group Gg (which, if inspection fails, requires a determination of the symmetry
elements and of the group generators of # (k) or P(k’), and a comparison of generating
relations with those of the abstract groups G, to find 7) is that when Gg is not isomorphous
with a crystallographic point group, its classes and character table are then available from
the literature (e.g. Bradley and Cracknell (1972)) and need not be worked out each time
(cf. Jones (1962), (1975), Morgan (1969)).

Example 17.6-1 Free-electron energy bands along ' AX for space groups 216 and 227.
For InSb (or some other AB compound with the same structure) the point group at I' is
Td and

(17.5.45), (17.5.46) em(D) = m +m) +m? =0,3,4, ... )
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Table 17.13. Free-electron band energies c,, for InSb (space group 216) at I, A, and X,
the BZ of the fcc Bravais lattice (Figure 16.12(b)).

The BSW symbol for K is followed by its Cartesian coordinates [£ 7 (] in units of 2x / a,
so that the zone boundary at X lies at =1 (see Table 16.6). K is either a symmetry point
(I, X) or a point on a line of symmetry (A); [m, m, m.] are the Cartesian components of
b,,inegs. (17.5.11) and (17.5.12); l is the dimension of the permutation representation I',,,;
{mym, m.} means all possible permutations of [m, m, m.], but components of m in bold-face
type are not permuted. For example, {1 1 1} means the / =4 permutations [£1 1 +1]. The
IRs that comprise the direct sum I',, are given in the notation of Mulliken and Koster et al.
(1963). Character tables may be found in Table 17.14, Appendix A3, Bouckaert et al. (1936),
Altmann and Herzig (1994), or Koster et al. (1963).

m Em / Mulliken Koster et al. (1963)
T'[0 0 0], P(k) =Ty = {E 3C; 4C;* 38,® 604} ~ G},

[000] 0 1 A I

{111} 3 8 2A, 82T, 20 @ 2T's

{020} 4 6 A GE®T, Nerorls

A0 0], P(k) =Cpy={E C2y O Ogf ~ Gi

[000] ' 1 A T,

{111} (7’]—1)2+2 4 2A1@B1@B2 2P1@F2@F4
(111} m+1)*+2 4 2A, 9B, ©B, el @y
[020] (n—2y 1A I,

(02 0] (n+2)° 1A T,

{200} 7 +4 4 APA, DB @B, Ielh,elel,
X[010], # (k) =D3qg @ T2, Dog={E Sfy Cayy Cyy Cox 0 01} ~ G§§

[000],[020] 1 2 A®B; rerl,

{111} 2 4 A ®B SGE Iel,ols
{200}, {220} 5 8 A®ADB ®B,®2E T, ¢l,olol,d2ls

form=[000], [£1 £1 +1],[£2 0 0], ..., with degeneracies of 1, 8, 6, ... The eight
permutations of [1 1 1] can be represented by the points lying at the corners of a cube. At
I, Tg = {E 3C, 4C5 35 604} and x(I',)={8 0 2 0 4}, whence I, = 2A; & 2T, =
2T} @ 2T's. The six permutations of [2 0 0] can be represented by the six points lying at
the vertices of an octahedron; x(I',,)) = {62002} and ', = A @ Ee T, =113 &Ts.
Band energies calculated from eq. (17.5.46) are in Table 17.13. The symmetrized
eigenfunctions are obtained by using projection operators. For example, for
en(D)=(n—17+2,

U(A) =c*1§>J(R)*1€w[l 1y(A), m=[£11 £1], ReCy 3)

since, as Table 17.14 shows, there are no non-lattice translations. Projecting y; ; 17 into the
A subspace gives, with the aid of Table 17.14,

(17.5.47) Wi 1 (A) = expai(—x + (n — 1)y = 2)]; @)
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Table 17.14. Jones symbols and character tables for InSb (space group 216) at A and X.

Symmetry transformations may be deduced from the transformation of the points 1, 6, 4,

and 7 in Figure 17.4. The reflecting plane of o, contains the points 6 and 7, and that of o¢
contains the points 1 and 4. In C,,, the Mulliken designations B, and B, are arbitrary since
they depend on which plane is chosen to determine the subscript. Only B; & B, appears in
the direct sums in Table 17.13. BSW(M) signifies the designations of IRs given by Morgan
(1969).

A[0 7 0], P(K)~Cs,

Gj ~ Cyy (E10) (Cxy0) (01]0) (0e[0)
xyz XyzZ zZyx Zyx
M BSW(M) K XVZ Xyz ZyX Zyx
Ay Ay I 1 1 1
A, A, I3 1 1 -1 -1
B, A I, 1 -1 1
B, Ay T, 1 -1 -1 1

X[0 1 0], #(K) =Dag @ T»

Gg ~ Dag (E[0)  (S5l0)  (Cyl0)  (C2[0),(Cox[0)  (0e]0), (07]0)
M BSW(M) K xXyz ZPX,ZPX Xz Xyz,xyz ZYX,ZyX
A Xy I, 1 1 1 1 1
A Xy r, 1 1 1 ~1 ~1
B, X5 I's 1 -1 1 1 -1
B, X; r, 1 ~1 1 ~1 1
E Xs I's 2 0 -2 0 0
3),® i(Ay) = exp[2wi(—x + (n — 1)y — z)] + exp[2ni(x + (n — 1)y + 2)]
= exp[27i(n — 1)y] cos[2n(x + 2)]. (5)

A second function of A; symmetry may be obtained by projecting 1 1T](A) =
exp[27i(—x + (n — 1)y + z)] (Table 17.14), which gives

Pn(Ar) = exp[2mi(n — 1)y cos[27(x — 2)]. (6)

On projecting ¥y 117(A) withj=Ajz and x(A;) ={1 -1 1 —1},

¥(As3) = exp2mi(n — 1)y] sin[2n(x + 2)]. @)

Since x(A4) ={1 —1 —1 1}, it can be seen from Table 17.14 that the projection of
1 1 17 into the A4 subspace will be zero. The results in eqs. (5)—(7) already obtained at A
suggest that we should project ¢y, | 1, (A), and this yields

B(As) = expl2ni(y — )] sin2n(x — 2)] (8)
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Table 17.15. Character table and Jones symbols for the rotational part R of
the space group operator (R|v) € Fd3m (227 or OZ) at A.

Because (R|V)r = Rr + v, the non-lattice translation w = [¥; Y, V4]a is to be
added to the rotated vector r' when v # 0. Characters for (R|w) are obtained by
multiplying x(R) by exp (—ik - v), when v = w # 0 (see eq. (16.6.14)).

Cay H(K) (E0) (Cjlw) (Coyl0) (W), (0xW)  (0cl0), (0 0)
xyz Zyx,zyX XyzZ Xyz,Xyz, ZYX,ZyX
A A 1 1 1 1 1
Ay AY 1 1 1 -1 -1
B; A, 1 -1 1 1 -1
B, A 1 -1 1 -1 1
E As 2 0 -2 0 0
exp(—ik.v) 1 exp(—ik-w) 1 exp(—ik-w) 1

Exercise 17.6-1 Confirm the derivation of egs. (6), (7), and (8).

The additional symmetry elements in the silicon structure are given in Table 17.12.
At A, P(k) ~ C4y, which is isomorphous with Gg. Jones symbols and the character table
are in Table 17.15.

Exercise 17.6-2 The group generators in this realization of the abstract group Gg are
P= (ij\w), Q= (0¢0). Confirm the generating relations P* = Q> = E, QP = P°Q.

The permutation representation at A is
X(Tn)={40002}, 'y = A1 @A) @ As. 9)

On projecting ¢y, 1 17(A), symmetrized eigenfunctions of A;, A5, and As symmetry are
given by

P(A)) = Cil;xm (RIv)"exp[2mi(n — 1)y] exp[-2mi{R"" (z +x) — (R"'v)y}],

(R|v) € G§,v=0o0rw

= exp[27i(n — 1)y] cos2n[(z + x) + icos(z — x)]; (10)
P(A)) = exp[2mi(n — 1)y] [cos{2n(z + x)} — icos{2n(z — x)}]; (11)
P(As) = exp[27i(n — 1)y] [sin{27(z + x)} + isin{27(z — x)}]. (12)

The second eigenfunction for As,

U (As) = exp[2ni(n — 1)y] [sin{2n(z + x)} — i sin{27(z — x)}], (13)
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is obtained by projecting ¥ 1 17 (A). Equations (12) and (13) are sometimes replaced by
their linear combinations. All these symmetrized eigenfunctions for Si at A are complex,
and so their degeneracy is doubled under time reversal.

Answers to Exercises 17.6

Exercise 17.6-1 For the A5 basis, in the short-hand notation introduced earlier in this
chapter, projecting vy; ; 1) gives (with the aid of the second and sixth lines of Table 17.14)

(xyz) — (BZ) + (29x) — (%),

P(Az) = exp[2mi(n — 1)y] sin[2x(x + z)]. @)

The Jones symbols which provide the substitutions for ¢y, ; 1j(A) are in the third line of
Table 17.14. On making use of these substitutions, a second basis for the A representation
is provided by

(0Z) + (Xyz) + (29%) + (Zx),

(A1) = exp2ri(n — 1] cosf2m(x — 2)). (©)
Similarly, for the A4 representation,

(02) — (yz) — (29%) + (2w),
P(Aq) = exp[2mi(n — 1)y] sin[27(x — 2)]. ®)
Exercise 17.6-2 P? = [(Cyi[w)* = (Coylla Vo — Y] + [V Ja Ja))
= (Cyl[2 /2 0]) = (Cayla3);
P = [(Coylas)* = (EI[=}> 1> 0]+ [}2 } 0]) = (E][0 1 0]) = (E]0);
0 = [(0e0)]* = (E|0), P'=Q'=E;
P = (CLIW)(Coyl[/2 12 0)) = (Cyl[0 1o — o] +w) = (Cyylw);

P’Q = (Ciyw)(0e|0) = (0 w);

OP = (0e|0)(C{ W) = (0u] —Ja /s —14) = (02|W — a2) = (0|w).

17.7 Spinor representations

We have seen that the calculation of FE energy bands at a point k in the BZ depends on the
determination of the symmetrized eigenfunctions that form bases for the representations of
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P(k), P(k)’, or the Herring group #(k), using plane-wave solutions (17.5.6) of the
Schrodinger wave equation. This procedure is applicable only when electron spin is
neglected. When spin is allowed for, the group representations include the j = half-integer
spinor representations. These may be calculated using Bethe’s double groups G(k) and
Opechewski’s rules. However, this procedure would leave us without a group multiplica-
tion table. The alternative is to find the spinor representations as PRs of P(k), P(k)’, or
A (k) by calculating projective factors (PFs) using the quaternion representation.
Examples of the calculation of spinor representations for space groups were given in
Section 16.8. Here we shall consider again the line ’AX in the BZs of crystals with the
silicon and indium antimonide structures, which belong to space groups 227 (Fd3m or Oz)
and 216 (F43m or Tfl), respectively. These are non-symmorphic space groups and so, for
surface points, the Herring group should be used in place of P(k). Table 17.12 shows that
for space groups 216 and 227, P(k) at I" and A is isomorphous with a point group so that its
projective spinor representations can be obtained from compilations of character tables of
point groups, as in Appendix A3. At X for InSb, #(k) ~ Gg ® T,, where Gg ~ Cyy, S0 again
tables of spinor representations can be used. But for Si at X, #(k) ~ ng, which is not
isomorphous with a crystallographic point group. The characters of the four required vector
representations were given in Table 16.16. In such cases, the character systems of spinor
representations can be determined either by the methods given in Chapter 12 or by
extracting the characters for R from the spinor representations of the double group
{R ®R}. At X the double group is isomorphous with the abstract group GZ,. The character
table of G%, is given by Bradley and Cracknell (1972, p. 262), and this includes the spinor
representations of G%z. There are five regular classes in G%z (61, €3, €5, €13, €14 In
Table 17.16) and therefore five spinor representations of dimensions 2, 2, 2, 2, and 4.
(Check: Y P2 =4(2%)+1(4%) =32 =g.) Their characters are included in the

representatfons R;s5 to Ry in the character table of G§4. Only the spinor representation
with /=4 satisfies the Herring requirement that x(%5)=exp(—ik.a;)/=—I. When
x(€1) = x(E)=—4 and x(%3) = —4, normalization of the character system of this row
requires that the characters for all the other classes of G2, be zero. Orthogonality of the
rows requires that x(%5)=+2 for the four 2-D IRs, which shows that the four 2-D
representations are not required representations. Therefore, at the point X in the first BZ
of Si, all the states are four-fold degenerate.

Transitions between electronic states

Electron states in a crystal with space group G are described by state functions that belong
to one of the IRs of G

I” =T7[G(k)] T G, (1)

1

where I'’[G(k;)] is the pth small representation of the little group G(k;) and eq. (1) defines
the abbreviated notation that will be used in this discussion of transitions between electro-
nic states in crystals. In Section 5.4 it was shown that the matrix element (1/7)Q%¢)?),
which governs the transition probability from an initial state ¢/ to the final state /7 induced
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Table 17.16. Classes of #(k) ~ G%z at X for the space group of Si (227, O/, or Fd3m).

The group generators for this realization of G3, are P = (ox|W), 0 = (54510), R = (Cx]0).

%) =P*=0'=R? = (E|0)

> Q2 = (C2y|0)

@ =P = (Elay)

(54 :P2Q2 = (C2y|al)

%s = {P*R PR} = {(Ilw+a;) (I|lw)}

s = {P°O*R PO’R} = {(oy|w +a1) (0y|w)}

%7 ={0R QO’R} = {(0%]0) (0e[0)}

%y = {P?O°R PQR} = {(0c[a)) (o¢la))}

9 ={PO P°Q°} = {(Cax|W) (Cae|lw +a1)}

10 ={PQ> PO} = {(CaelW) (Cat|lw +a1)}

%1 ={R PR O°R P*Q°R} = {(Cxx|0) (Caxlar) (C2)0) (Caflar)}
€12 ={P P> PO P3Q*} = {(ox|W) (ox|W+a;) (o,|W) (o./w+2a;)}
i3 =1{0 P°Q @ P°O°} = {(S,410) (Silar) (S,/0) (Siylai)}

%14 = {POR P*QOR PQ’R P’Q°R} = {(CHIw) (Cilw +a1) (Ciylw) (Cyylw+a1)}

by the operator O°, is zero unless the DP I @ 'Y @ I'® contains the totally symmetric
representation I';. An equivalent statement (see section 5.4) is that this matrix element is
zero unless the DP of any two of the representations I', 'Y, I'*, contains the third one. In a
crystal, the transition from a state 97 (which forms a basis for I*}) to a state 1% under the
operator Q7 is forbidden unless the Clebsch-Gordan (CG) coefficient c‘;?f in the DP

LY @] = el )

is non-zero. The coefficient c‘;’;s, which is the number of times the representation I'}’
appears in the direct sum on the RS of eq. (2), is called the frequency of I'j in I @ I'%. Tt is
vital to appreciate that 1% is not determined by just the single wave vector k;, for 17 is a
linear combination of the Bloch functions of the whole star of k; (and similarly, of course,
for 1)/). Thus the situation is a great deal more complicated than for molecules. One
possible approach would be to use the little groups G(k;) and G(k;) but with the possibility
that transitions between other members (“prongs”) of the stars of k; and k; could be missed
unless eq. (2) was evaluated for all possible initial and final states. Fortunately this turns out
not to be necessary, since Bradley (1966) has shown how the problem of determining the
c;¢;” frequency coefficients may be solved by using the induction of the little groups G(k),
G(k;), G(k;) and on to the space group G. This requires the use of double cosets.

Double cosets
If Hy and H, are subgroups of a group G and d,, € G then
G = > Hid,H, (with repetitions ignored) 3)
a
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is the double coset expansion of G on Hy, H,. In eq. (3) each term H;d,H, is counted once
only. The {d,} are the double coset representatives of G with respect to its subgroups H;, H,.
The d, are not unique, but the expansion is unique since the double cosets are all distinct.

Example 17.8-1 Write a double coset expansion of S(3) on H; = {Py P3}, Hy = {Po P4}.
H1P0H2 = {POP3}{POP4} = {P() P4 P3 Pl};
H,PsHy = {PoP3}{PsP2} = {Ps P, P, Ps}
= {P,Ps} (repetitions ignored).

H;PoH, & H;PsH, = G and the double coset representatives are { Py Ps}.
Bradley (1966) has shown that

‘Zqzs*ZZgab > XT((R|ve) ™ (Relve) (Rolvs))

(Re[ve)€Gap
X X (Ralva) ™ (RelVe) (Ralva) )X (Relve) )
where g, is the order of
Gap = G(kpi) N G(Kky); %)

I, T, and I'] are IRs of the little groups G(k;), G(k;), and G(k;),and T} 1 G, I/ 1 G, I71G

ivjo
are representations of G induced by these small representations; G(ky,) is the little group of
R k; and I'};is a small representation of G(ky,); (R |v.) € G(ky,) so that

LR ((Relve)) = T (Ryvs) ™ (Re|ve) (Ro V) (6)

because representations at different prongs of a star are conjugate. (R,|v,) and (R,|v,) are
double coset representatives in

G =2 G(k)(Ralva) G(K)), ™

G= Zb: [G(kqj) N G(K1)](Ro|v5)G(K)). ®)

Not all such pairs R,,, R, will do but only those pairs for which
Rik; + Rk = k. ©)

On summing over translations, it follows from the orthogonolity theorem for the characters
of the IRs of the translation group that

K -1
i = ZZgab 2 X L(Rove) " (Relve) (Rolvy)]
(Re|ve)E€Gap /T
-1 s %
X X;‘{((Rah’a) (Re|ve) (Ralva))xi* (Re|ve)™, (10)
where the two sums over a and b are restricted to those terms for which eq. (9) is satisfied.

We may expect that relatively few terms in the triple sum in eq. (10) will survive this
restriction, which emphasizes the considerable simplification introduced. These results
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were first given by Bradley (1966) and are quoted here without proof, which may be found
in his 1966 paper and also in books by Altmann (1977) and Bradley and Cracknell (1972).

71" CG coefficients is as follows.
(i) Determine the star of k;, that is the vectors R, k; with R, € P(k;).
(ii) Determine the star of k;, that is the vectors R, k; with R, € G(k;) N G(k;).
(iii) With the required R,, R, established from eq. (9), evaluate from eq. (10) the ¢}
frequency coefficients.

To summarize, the procedure for evaluating the ¢

Example 17.8-2 Find the allowed transitions from a B; M-state to a B, M-state in a crystal
with space group 195. This is an example used by Bradley (1966) of a case in which more
than one term survives the sums over a and b in eq. (10). The Bravais lattice of the
symmorphic space group 195 (P23 or T,) is simple cubic and the point group P of G =
Ty isT={E3C,4Cs}, m =Xx,y,z j=1,2,3, 4 (Figure 2.12). The BZ is in Figure
16.12(a), from which we see that the stars of I', M are

I'=1[000], (11)

M=[hh0, M=C"™M=[0hh, M=C M=[h0h. (12

Here both k; and k; refer to the symmetry point M. We thus need to see which possible
prongs of the star of M in eqs. (12) will satisfy eq. (9). This is summarized in Table 17.17.
The column headed = k shows that the only possible k vectors k; are I' and M. (A star is
fully determined by any one of its members, say M, so that the pairs R,,, R;, that give M,, M3

Table 17.17 Determination of the pairs of wave vectors Rpk; and
RK; that satisfy eq. (17.8.9) when k;=k;=["2 2 0].

The column headed =k lists all possible wave vectors that could
result from summing a member of the star of k; with one from the
star of k;. Not all of these yield k; because of the restriction
imposed by eq. (17.8.9), that is by translational symmetry.

Prong of star of

k; k; R, R, Rpk;+ Rk ~k k;
M M E E [110] r r
M, E &} [41%] M; -
M; E C3; [1% %] M, -
M2 M 6‘31+ E [1/2 1 1/2 M3 -
M, Cy ™" s [011] r -
M; Cyt C5, [ ¥ 1] M M
M; M Cs, E [1% %] M, -
M, C3, cy [ ¥ 1] M M

M, Cy o [101] r -
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need not be considered.) The little groups G(M,), G(M3;) are ~ G(M) and the representa-
tions ™2, T™: are conjugate representations of ™. For k; = I, the double coset expansion
of G on its subgroups G(k;) = G(I') and G(k;) = G(M) is

) G =2 G(I)(Ra|Wa) GM),  (Ra|Wa) = (E]0). (13)

Only a single term survives in the sum over a because of the “no repetitions” rule and the
fact that G(M) is a subgroup of G(I).

®) G = ij [GM) N G(I)](Ry|wp) G(M) (14)
- ;G(M)(R”Wb) GM),  (Rp|ws) = (E[0), (C5,]0), (C5,]0).

Of these possibilities (as Table 17.17 shows) only the pair d, = E, d;,, = E are double coset
representatives that satisfy (eq. 9),

9), (13), (14) R)ki+ Rk =EM+EM =T, E€{R,},E€{Ry}. (15)
Although C;;M+C;M =M, +M, =T, C3, € {R,}. Fork,= M,
(7 G =3 G(M)(Ry|Wa) G(M),  (RaW,) = (E]0), (C5,]0), (C5,10), (16)

®) G= X};[G(M) NGM)](Ry|w;)G(M),  (Ry|ws) = (E|0), (C50), (C5,10).  (17)
Table 17.17 shows that only the pairs R,, R, = C5;; C3; or C5;, C5, yield M.

Transition probabilities

) VD EVIED Breviviel R D Be v vievi AV (18)
N u

Since k; is I" or M, the transition probability M(B;) — M(B,) is allowed if c&ﬁf’f and/or
cf,fﬁf’l\f[‘ are non-zero, that is if the perturbation (electromagnetic radiation, for example)
contains a term that transforms according to the sth IR at I" and/or the uth IR at M. We have

established in Table 17.17 that at I', R, = E, R, = E. Therefore,
G(Ryk;) N G(Rk;) N G(k;) = G(M) NG(M) NG(T") = G(M), (19)

which is of order 4.

(18),(13),(19) WM = S (RX™ (R (Re) = 8ot (20)
G(kb‘.) =GM,) ~ G(M), G(ka/) = G(M3) ~ G(M), (21)
(21) G(kb[) N G(kaj) NG(k;) = G(M), (22)

which is of order 4.
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UMM = Zx | (Re)xar, (Re)xi(Re)
(18),(22)
+ 20 (RXRE (R (Re)' (23)

Representations at different prongs of the same star are conjugate; therefore since
M, = R,M = C5;'M

Ty (Re) =T (R, 'RRy) = T (G317 ReCsy ) =T (R,). (24)
Likewise,

Iy =TW, I'w =Ty, andIy =Ty (25)

Exercise 17.8-1 Verify the conjugate representations given in eq. (25). [Hint: M3 = C5;M.]

(24) NN = RZXE; (Re)xnt (Re)Xiq(Re)™ = 85, s (26)

(25) N = sz‘fz (Re)xmt (Re) Xy (Re)* = 8., - 27)

Therefore a transition between an electronic state described by the state function 1/}15[1 toone
described by wﬁz is symmetry-forbidden unless the perturbing operator belongs to the IR T
at I" or to A or B3 at M (see egs. (20), (26), and (27)).

Bradley’s (1966) work has removed the uncertainties about the subgroup method. The
only comprehensive alternative seems to be a method described by Birman (1962, 1963)
that uses the full group G. The effect of time-reversal symmetry on selection rules in
crystals has been described by Lax (1962, 1965).

Answer to Exercise 17.8-1

C;l CZXle <e1 € 63| = C;l C2x<e2 €3 e1| = C;l <éz 63 e1| = <é1 éz €3
= Cy(ereze3(;

C;IC2yC;rl <e1 () e3| = C;IC2y<62 €3 e1| = C;l <62 63 E]| = <e1 [ 53
= Cx (el ere3);

C:;lCZZC;rl <e1 e e3| = (35, sz<e2 e3 el\ = (35, <éz €3 é1| = <él e €3
= Cyy(er ey e3].

Deduction of the conjugate representations is summarized in Table 17.18.
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Table 17.18. Character table for the small representations of M
and for the required conjugate representations.

M E Cox Cyy Cy,

A 1 1 1

B, 1 —1 —1 1

B, 1 -1 1 -1

B 1 —1 -1

M, E Cop Cox Coy

B,(Ms) 1 1 —1 -1 B;(M)

B,(M,) 1 -1 -1 1 B,(M)

M3 E Cyy G, Cox

B,(M;) 1 ~1 1 -1 B,(M)

By(Ms) 1 1 —1 -1 B3(M)

Problems

17.1 Prove that V LE(k) = 0 for all k vectors which end on a line in a BZ face which is
parallel to a binary axis. [Hint: See Exercise 17.3-1.]

17.2 Prove that VE(Kk) vanishes at the center of the BZ. [Hint: A cusp is impossible.
Why?]

17.3 For the BZ of the sc lattice, find compatibility relations between IRs at Z (which lies
on the line XM) and at the end-points X and M.

17.4 Verify the eigenfunctions at X that are given in eqs. (17.5.39)—(17.5.44).

17.5 Give a detailed derivation of the FE eigenfunctions which form bases for the I';5
representation at I' in the BZ of the sc lattice. Check your results against eqs.
(17.5.66)—(17.5.68).

17.6 Confirm the generating relations for the abstract groups Gi, GJ,, and ng (which are
isomorphous with Herring groups for InSb and Si at I" and A) using the realizations of
these groups that are given in Table 17.12.

17.7 Write down the Jones symbols and character table for the Herring group at the point 3
in the BZ of the Si structure. Calculate the FE energy at 3. for the first three bands and
find the symmetrized FE eigenfunctions in these bands. Plot the FE energy as a
function of k, marking in your figure the IRs of these symmetrized bases.

17.8 Find expressions for, and sketch in the reduced zone scheme, FE energy bands along
I'H in the reciprocal lattice of the bcc lattice.

17.9 Find expressions for, and sketch in the reduced zone scheme, FE energy bands along

I'M in the reciprocal lattice of the Acp lattice.
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18.1

Vibration of atoms in crystals

Equations of motion

In the harmonic approximation the potential energy ® of a crystal in which the atoms are
vibrating about their equilibrium positions differs from @, the potential energy with each
atom on its equilibrium site, by

Q- Py =33 3 Gup(nr,n's) ua(nk)us(n's'), (D
nka n'k' 3
where u,(nk) is the ath Cartesian component of the displacement u(nx) of the xth atom
(k=1,2, ..., s) in the nth unit cell from its equilibrium position, a,,. = a,, + a,, (Section
16.1). The
’P

2)

!l 0
Dap(nr ') = Ouo (nk)Oug(n's') |,
are atomic force constants, and the zero subscript means that the second derivatives are to
be evaluated with the atoms at their equilibrium sites. Equation (1) is the result of a Taylor
expansion of ¢ about ®,. There is no term linear in the displacements because there is no
net force on each atom at equilibrium. Truncation of the Taylor expansion at terms
quadratic in the displacements constitutes the harmonic approximation, the usefulness of
which is due to the fact that the displacements are generally small in comparison with the
interatomic distances. Since ¢ is a continuous function of the atom displacements, with
continuous partial derivatives, the first-order partial derivatives on the RS of eq. (2)
commute, with the result that the force constants are symmetric with respect to the
interchange of the indices (nxa) with (n'k/(3),

bap(nk,n'K') = ¢po (0K, nK). 3)

Because the potential energy is invariant under an arbitrary displacement of the whole
crystal, the force constants obey the sum rule

5= buslnr. ') = 0. @

From translational symmetry, with / € {n},

bap(nk,n'c') = gpop(n+lk ; n'+LK). (5

391
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In particular, if /= —n', or [= —n,

(5) ¢(¥J3(n’ia nl‘%l) = d)aﬂ(nin/; R 7 07 K//)> (6)
%) bap(nk,n'k) = ¢pup(0,k ; n'—n, k). 7
Summing each side of eq. (7) over ' yields

(7 > Gap(nr, k) =3 ¢ap(0,6 5 n'—n,K'). ®)
Replacing the summation index »’ on the RS of eq. (8) by 2n—n’ yields

(8) Z ¢m3(n’{” nlml) = Z ¢0¢ﬁ(0’ K3 n_nla K’,); (9)
9, (7 > Gap(nr,n'k') =3 Gap(n'k,nk'). (10)

The equations of motion are

a¢ ! ! ! !
==Y Pap(nr,n'x") ug(n's'). (11)

(1) MKZ/IO,(”I{) = —m %

Equation (11) describes the time dependence of the displacements. In the harmonic
approximation the displacements are plane waves
(1) Uy (nK) = M "u, (k) expli(q-a, — wt)), (12)

where q is the wave vector; u,(x) is the amplitude of the vibration of the xth atom, and it is
independent of both » and the time ¢.

(12), (11) wPug (k) = 27; uﬂ(n’)(MHM,i,)*‘/zZ bop(nk, n'K')expl—iq-(a, —ay)], (13)

(13) WPuto (k) = 3 Das(rr'|q) up(x'). (14)
KB
The D, 5(kx’'|q), which are defined by eqs. (13) and (14) as

(13),(14)  Das(rkr'lq) = (MHM,{/)%Z Pap(nr,n'v') exp[—iq- (a, — ay)] (15)

are the elements of the Fourier-transformed dynamical matrix D(q) and they are independ-
ent of n because of translational symmetry.

Exercise 18.1-1 Show that D(q) is a Hermitian matrix.
The 3s linear homogeneous equations (14) have non-trivial solutions if

IDas(kk'|q) — W apbum| = 0. (16)
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Equation (16) is an algebraic equation of degree 3s in «w?, and the solutions {w}(q)},

j=1,2, ..., 3s, are the eigenvalues of D(q). Since D(q) is a Hermitian matrix, its
eigenvalues are real. But the frequencies {w;(q)} must also be real if eq. (12) is to describe
a vibrational motion, so the eigenvalues {wf(q)} are positive as well as real. At each q the
3s values of wi(q) form the branches of the multivalued function

w(q) =ws(q), j=12,....,3s, (17)

which is the dispersion relation. Three of the 3s branches (the acoustic modes) tend to zero
as q — 0. The other 35 — 3 modes are optic modes. Substituting the wf(q), one at a time, in
eq. (14) gives the eigenvector components u,(x), which will now be written as e, (k|qj) to
emphasize their correspondence with the 3s eigenvalues wjz(q) at each wave vector . With
this notational change,

(14) wi(@)ea(klaj) = S Das(rn’|a)es(x'|a)). (18)

K3
Because these equations are homogeneous, the eigenvector components e,(k|qj) are

determined only to within a constant factor, which may be chosen to satisfy the
orthonormal

> ea(klq)) ea(kla)) = & (19)
and closure
Zes’f(’iqq]‘)*eﬂ(ﬂ‘q]‘) = 504(5614,/@’ (20)
J

conditions. (Closure follows from the completeness property of the eigenvectors of a
Hermitian matrix.) In eq. (18), we replace q by —q and take the complex conjugate:

(18),(15) < (~@ealsl=a))" = 3 Daslrnla)es(| /)" 1)

Therefore, wf(q) and wf(—q) are eigenvalues of the same matrix D(q),
(18),(21) W (q) =} (—q). (22)

Thus the dispersion relation is symmetric about q = 0. It follows from egs. (18) and (21)
that the components of e*(—q j) satisfy the same set of 3s linear homogeneous equations
as the components of the eigenvector e(qj). Therefore, if degeneracy is absent, e(q )
and e*(—q /) can only differ by a phase factor (which preserves normalization). The
physical properties of the system are independent of the choice of this phase factor, which
we take to be

exp(id) = +1 (23)
(Born and Huang (1954), but see also Liebfried (1955)). With this convention,
ea(k]=q/)" = ea(kla)), (24)

which can always be ensured, even when there is degeneracy.
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Since
a, b, =2mp, (25)
where b,, is a reciprocal lattice vector and p is an integer,
(15),(25) Das (| +b,,) = Das(sr'|q), (26)

and D_g(kr'|q) has the periodicity of the reciprocal lattice. Therefore the vibrational
frequencies and the eigenvectors also have the periodicity of the reciprocal lattice:

wi(q +b,) = w;(q), (27)

ea(klq + b, j) = eq(xlq)). (28)

Consequently, the dispersion relation is usually displayed by plotting w;(q) along high-
symmetry directions in the Brilliouin zone. If w/(q) is degenerate, then the RS of eq. (27)
should read w;(q), where ;' labels one of the modes degenerate with w(q). However, the
choice j/ = is a convenient one that ensures that points of degeneracy can be treated in the
same way as points where degeneracy is absent. However, eq. (28) would then be true only
to within a phase factor, so that in this form eq. (28) implies that this phase factor has been
chosen to be unity (Maradudin et al. (1971)).

Answer to Exercise 18.1-1
(15) Dga(K'k|q)" = (M,{rM,i)f'/ZZnga(nn’,n'n) exp[—iq- (a, — a,)]

3) — (MKMH,)*‘/ZZW(M, nk') exp[—iq - (ay — a,)]. (29)

On replacing the summation variable n’ by 2n—n’,
(29)9 (10) Dﬁa("'{'/’ﬂq)* = (MHMH’)il/ZZ(baﬁ(nHa nl“{/) exp[—iq . (an - an’)]
= Daﬁ(liﬂl|q). (30)

Therefore D(q) is a Hermitian matrix.

Space-group symmetry

The symmetry operators of the space-group G of a crystal are of the form
(Rlv) = (Rlw +t), t < {a,}. (1

Ineq. (1), v is not necessarily a lattice translation t, since w may be either the null vector 0
or the particular non-lattice translation associated with some screw axis or glide plane.
Ifv e {a,} V R, then there are no screw axes or glide planes among the symmetry elements
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of the crystal and G is a symmorphic space-group (Section 16.2). When (R|v) acts on the
position vector a,,, of the xth atom in the nth cell,

(RIw + t)a,, = Ra,, + W+t = ayx, )

in which (following Maradudin and Vosko (1968)) the capital letters (NK) are used to label
the transformed vector (or site). Since (R|v) is a symmetry operator the site (NK) is one
occupied by an atom of the same chemical species as that at the site (nx). When (R|v) acts
on the crystal pattern, in the active representation as in eq. (2), any function f{(a,,) that
depends on the atom positions is transformed into the function

(R|W + t)f(ann) :f/(ann) :f(R_lam —R'w— R_lt)~ (3)

Note that in eq. (3), as in Chapter 16, no special symbol is used to signify when (R|w + t) is
a space-group function operator since this will always be clear from the context. It will
often be convenient (following Venkataraman et al. (1975)) to shorten the notation for a
Space-group operator to

Ry = (Rlw +ay). “4)
For example,
(4)7 (2) iRlann" = Ra,, + W+ a; = ayg. (5)

In addition, to minimize the need for multiple subscripts, a,,, will now be denoted by the
alternative (and completely equivalent) notation a(n«) and similarly r,,,, will be denoted by
r(nk).

4),(5 Rir(nk) = Ry[a(nk) + u(nk)] = Ra(nk) + Ru(nk) + w + a;
= R,a(nk) + Ru(nk) = a(NK) + u(NK) = r(NK); 6)
(6) u(NK) = Ru(nk). 7

Thus, because of the space-group symmetry, the displacement at (NK) is equal to Ru(nk),
the rotated displacement from the equivalent site (nk).

(7 ug(NK) = > Rya un(nk), (8)

where R is the 3 x 3 matrix representative (MR) of the point symmetry operator R. The
potential energy ® is invariant during any space-group operation ‘R,

(6) ®(r(nk)) = (N, r(nk)) = ®(r(NK)); )
9), (6),(7) O(r(nk)) = ®(a(nk) + u(nk)) = ®(a(NK) + Ru(nk)). (10)

Expanding the LS of eq. (10) in powers of u(n«x) and the RS in powers of u(NK) = Ru(nk)
gives (to terms of second order in the displacements)
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(8) 3o Sua(nk) gap(nr,n's') us(n's')

nk, W'k o, 3

= Z ZuA(NK) ¢AB(NK,N/K/) MB(N/K/)

nk,n's’ A,B

= > > Y Ruatia(nr) ¢4s(NK,N'K") RBg’f”x’i(n/”l)

nk, 'k A,B «, 3

=3 Sua(nk)| S RY, p4s(NK,N'K") Ry | us(n's’)
A,B

nk, W'k «, B

=2 X ua(nk)[RTG(NK,N'K')R],5 us(n'x'). (11)

nk,n'k" af}

On equating coefficients of the arbitrary displacements u.(nx) ug(n's’),

(11) bop(nri, ') = [RTG(NK,N'K' )R],V 0,8, (12)

(12) p(nk,n'r') = RT¢(NK,N'K')R, (13)

where ¢(nk, n'x') is the 3 x 3 matrix with elements ¢ 5(nx, n'x’). Since the MR of the point
symmetry operator R is a 3 x 3 orthogonal matrix,

(13) #(NK,N'K') = Ro(nr,n'x')R". (14)

The result in eq. (14) is not limited to the harmonic approximation because coefficients of
like powers of the displacements on each side of eq. (10) are equal, irrespective of the order
to which the Taylor expansions are made.

If R, is a point group operator (w =0, a,= 0) then (NK) = (nx) and

(14) o(nk,n'r') = Ro(nr,n's')RT. (15)
Equation (15), together with the permutation symmetry condition
(18.1.3) bap(nr,n'K') = dpo(n'r', nk) (16)

determine the non-zero elements of the force constant matrix ¢(nx,n'x’) (Chapter 15).
Similarly, if R, is a space-group operator that interchanges the sites (nx) and (n'x’)

(14) é(n'k,nk) = Ro(nk, 'R, (17)

and eq. (17) with eq. (16) determine the non-zero elements of ¢(nk, n'x’).

Periodic boundary conditions

Suppose the crystal is a parallelepiped of sides N;a;, where a;, j=1, 2, 3, are the funda-
mental lattice translations (Section 16.1). To eliminate surface effects, we imagine the
crystal to be one of an infinite number of replicas, so that

(16.2.18) (E|Nja) = (Elay)¥ = (E0), j = 1,2,3. (18)
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Equation (18) is a statement of the Born—von Karman periodic boundary conditions;
N = N{N,Nj; is the number of unit cells in the crystal lattice.

(18) u(n+N,k) =u(n, k), (19)

where the LS of eq. (19) is the displacement of the ~«th atom in the (n+N)th unit cell which
is connected to the origin by the vector

a(n+N) = (a; ay a3|m+N, my+Ny n3+N3); (20)

(19), (18.1.12) exp [iq-sz\gaj] =1. 1)
Jj=1

Equation (21) shows that q is a vector in the reciprocal lattice,

Mm

(m;/N)b;, m; =0, 1, £2, ..., £(N; — 1)/2,if Nj is odd, o)
1

m; =0, £1, £2, ..., £(N; — 2)/2, N;/2,if N; is even.

q=

J

Exercise 18.2-1 Show that eq. (21) is satisfied by eq. (22).

The N q vectors allowed by the boundary conditions just fill the first Brillouin zone
(BZ) of volume equal to v,, the volume of the primitive unit cell of the reciprocal lattice.
Because of this dense, uniform distribution of q vectors it is possible to treat q as a
continuous variable and thus replace

) by / £(q) dq, 23)

where V' = Nv,, is the volume of the crystal and the integration is over the volume of the first
BZ. But the BZ is invariant under the g(P) operations of the point group P so that an
irreducible volume of the first BZ of volume v,/g(P) can be defined, such that the g(P)
operators of P will generate from this irreducible volume the whole BZ. Thus the range of
integration can be limited to this irreducible volume.

Answer to Exercise 18.2-1

exp [1q ZNaj] expl ij : ] =exp(2nip) =1,

j=1

since p is an integer or zero.
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Symmetry of the dynamical matrix

The ath component of the displacement u(n«) of the xth atom in the nth unit cell due to the
normal mode of vibration (q;) is a function of a,, and time ¢,

(18.1.12),(18.1.14), (18.1.17) et seq. uq(nr) = e4(k|qj)M, " expli(q-a, — w;(q)?)].
(1)

Under the pure translation ‘R, = (E|a,),
(1) (Elar) ua(nk) = ua[(Elar) 'y, 1] = exp(—iq- a)) uq(n). 2)

The wave vector q in the transformed displacement (E|a;)u.(nk) appears in the scalar
product with a, in the eigenvalue of the function operator (E|a,), and is unaffected by a pure
translation, as we should expect. Under the pure rotation (R|0), the rotated displacement

Ruy (nk) = uo (R 'a,, 1)
= eq(klq))M, " expli(q- R 'a, — wi(q)?)] 3)

= ea(rlaj)M; " expli(Rq-a, — wi(q)1)]. 4)

Equation (4) follows from eq. (3) because the scalar product (SP) in eq. (3) is invariant
under the rigid rotation R.

(2),(4) (Ela;) Ruq(nk) = (Elar) (R|0) ua(nr) = Riuua (nr) )

%), (®),(2) = exp(—iRq-a;,)R u,(nk). (6)

Equation (6) verifies that under the rotation (R|0) the wave vector q is rotated into Rq, just
as we might have anticipated in the active representation. The transformed function

(1),(5),(6) Uo(NK) = Ryuo (nk) = ua (R, a(nk),t)
= exp(—iRq- a;)Ru, (nk). @)

Since ‘R, is a symmetry operator, (nx) and (NK) are equivalent sites occupied by the
same kind of atom, so that Mg = M,.. It follows from eq. (7) that the Fourier-transformed
dynamical matrix D(q) is transformed by R; into D(Rq). The AK, BK' element of D(Rq) is

(18.1.7) D4s(KK'|Rq)

= (MxMx) """ ¢u5(NK,N'K') exp[—iRq - (ay — ay/)] ®)
e

= (MKMK’)_%%;¢AB(NK9N,K/) exp[—iq-R™'(ay — ay)], 9
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where eq. (9) follows from eq. (8) because of the invariance of the SP under rotations.

R,a(nk) = (Rlw+ a;)(a, + a,) = Ra, + Ra, + w+a,=a(NK) =ay +ag; (10)
(10) R 'ay =a, +a, — N, 'a. (11)

(9),(11),(18.2.14)  Dyp(KK'|Rq) = (MxMx:)™"* " Ryq expliq - (R, 'ag — a,,)]

afn’
X ¢ap(nk,n'k") exp[—iq - (a, — a,,r)]REB exp[—iq - (R; 'ag —ay)]
(12)
= S Tua(Kklq , R )Dos(kr'|Q) T sa(W'K'|q , R))', (13)
af
where
Tyo(Kr|q, R;) = Ryq expliq - (R ax — a,)]6(K, (R|W)k), (14)
(13) D(Rq) = ['(q,%)D(q)T(q,R)". (15)

In eq. (13), the first factor in the sum is the (4K, o) element of T'(q, R;) and the last factor
is the (8K, BK') element of I'(q, R))", that is the (BK , 8r’) element of '(q, R;)*. (Note that
A, B, a, and 3 label the Cartesian components x, y, or z, and that x, K, ', and K’ label the
atoms in the unit cell.) The factor 6(K, (R|w)x) ensures that it is an atom on the sublattice
occupied by atom K that results from applying the symmetry operator R, to the atom at a,.
(The sublattice labeling by «, K, ... is invariant under lattice translations.) R is the 3 x 3
orthogonal MR of R, and I is the 35 x 3s unitary matrix that transforms D(q) into D(Rq) by
the unitary transformation, eq. (15).

Exercise 18.3-1 Prove that the matrix T' defined by eq. (14) is unitary.

Exercise 18.3-2 Show that w/(Rq)* = w;(q)>.

Suppose that R, =R, R,, where R,, R, ‘R; € the space group G and

ag = R, = R;Nja, = Ria,,. (16)

(14) T 4a(K5|q, Ri) = Ry expliq. (R 'R, 'ax — a,)] 6(K, (RIw)k), (17)
where

S(K, (RIw)r) = 28K, (Rilwi)kr) 8(k1, (Rj[w))k)- (18)

The choice of R; R, and therefore of x,, is immaterial as long as eq. (16) is satisfied. The
exponent in eq. (17) is

iq.(R7' R ag —a,) = iRiq - (R 'ax —a,) +iq- (R} 'a,, —ay), (19)
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in which iijla,;,l has been subtracted and added to the RS of eq. (19).

(17)3(18)5 (19) f‘Aa(KH‘q’ iRl) - ZRA’Y eXp[leq . (‘R;lak — am)

K1

O(K, (Ri|lw;)k1)Ryq expliq- (‘.Rq_,laHl —a,)|0(k1, (P|We)k); (20)

(20) I'(q, %) =T (Rq, R) T'(q, R)). 1)

Because q is replaced by R,q in the first factor on the RS of eq. (21), {f(q, 9R;)} does not
form an MR of the space group G. Butif R, R;, N; € G(q) (the little group, or group of the
wave vector q) then

Rq=q—b, (22)

where b is a reciprocal lattice vector that is non-zero only if q terminates on the surface of
the first BZ. On using eq. (22) the first exponential in eq. (20) may be written as

Rua expliq- SR;l(aK —a,, )] explibg - (‘.RflaK —a)), (23)

where (as described by the Kronecker 6 in eq. (20)) ‘.R]_ "ax — a,,, is a lattice translation (see
eq. (14) et seq.). Consequently, the second factor in eq. (23) is unity and

(21),(23) T(q, % N;) =T(q, N;) T'(q, R), Ni, R; € G(q). (24)
Thus {T'(q, R;)} do form a unitary MR of dimension 3s of the little space group G(q). Define

I'(q,R) = expliq- (W +a,)] T(q,R); (25)

(25) T(q,R)T(q,R;) = expliq- (w; + a;)] expliq- (w; + a;)]T'(q, R:)T'(q, R))

(24) = expliq- (w; + a;)] exp[iq- (W; + a;)] exp[—iq - Ri(W; + a;) + W; + a;]['(q, RiR))
= expli(q — R;'q) - (w; + 2))]T(q, RiR))
(22) = exp[ib;-w;|I'(q, RiR)). (26)

Equation (26) shows that {I'(q, R)} forms a unitary projective (or multiplier) representation
of {R} =P(q). Only for non-symmorphic groups with b different from zero (that is, when q
lies on the surface of the BZ) are the projective factors exp [ib;.w;] in eq. (26) different from

unity.

(18.1.26) D(q - b) =D(q). b € {b,}; 27)
(15),(22), 27) D(q) = I'(q. %)D(q)T(q. %" (28)
Equation (28) shows that the unitary matrices f(q, R,) commute with the dynamical
matrix,

(28) D(q)I'(q, %;) = T'(q, %/)D(q), (29)
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(29),(25) D(q)I'(q,R) = T'(q,R)D(q), (30)

so that the I'(q, R) matrices also commute with D(q).

Answers to Exercises 18.3
Exercise 18.3-1 From egs. (12), (13), and (14),

[T(Kklq, %D (K wla, %) ]p = S Rua expliq. (R ag — a,)]
x §(K, (RIw)r)R] g exp[—iq- (R, ag — a,)]6(K’, (R|W)K). (31)

The second delta function on the RS of eq. (31) is zero unless K’ = K, when the exponential
factors cancel and

(31) SRR, = (RRY),; = 64p (32)
since R is an orthogonal matrix. Therefore, RRT=E and I'(q, R,) is a unitary matrix.

Exercise 18.3-2 D(Rq) and D(q) are related by the unitary transformation, eq. (15), and since
the eigenvalues of a matrix are invariant under a unitary transformation, w_/-(Rq)2 = w_,-(q)2.

Symmetry coordinates

The determination of the eigenvalues wj(q)2 may be simplified by an orthogonal transfor-
mation to “symmetry coordinates,” which are linear combinations of the Cartesian dis-
placements of the atoms which represent the actual displacements of the atoms in the unit
cell. Simultaneously, the eigenvectors undergo the same orthogonal transformation (see
Section 9.4, especially egs. (9.4.4) and (9.4.6)). In matrix notation,

(18.1.18) D(q)le(q,)) = wi(q)*le(q,))- (1)

Multiplying each side of eq. (1) by I'(q, R), R € P(q), and using the commutation of D(q)
with I'(q, R),

(1),(18.3.30) D(q)I'(q.R)[e(q/)) = wi(q)°T(q.R)|e(q,))- ()

The eigenvalues cuj(q)2 in eq. (2) are not necessarily all distinct, so the index j will now
be replaced by the double index oA where o labels the distinct eigenvalues of D(q) and

A=1, 2, ..., (o) labels the linearly independent (LI) eigenvectors associated with the
degenerate eigenvalue o. In this notation,
(D D(q)le(qon)) = wo(q)’[e(qoh)). 3)

Equation (2) shows that I'(q, R)|e(qoA)) must be a linear combination of the LI eigenvectors
of D(q) with eigenvalue w,(q)?,
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o) _, ,
(2),3) I'(q,R)le(qon)) = > I';y/(q, R)le(qo)), VR € P(q), 4
N=1

where the coefficients T';,,(q, R) are the elements of the Ath row of the MR T'(q, R) of R in
the irreducible representation T'. Multiply both sides of eq. (4) by I'(q, R'), R’ € P (q),

I(o) (o)

C) I'(q.R)T'(q,R)le(qoh)) = Z KE D (@ R0 (0. R e(qon)). ()
=1)"=1

Since {I'(q, R)}, with R, R', R'R € P(q), forms a projective representation (PR) of P(q), the
LS of eq. (5) is given by

o) _
) [R'; RIT'(q, R'R)|e(qoR)) = [R';R] 3 Ty, (q, R'R)|e(qo)”)). (6)
V=1
It follows from egs. (5) and (6) that {T(q, R)} forms a PR of P(q) with the same PFs as the
PR {I'(q, R)}. The {I'(q, R)} form a unitary PR of P(q), therefore,
r°(q.R)T7 (a,R) = E 6(00). ™

Multiply this /(o) x /(o) square matrix from the left by (e(qoA)| and from the right
by |e(qo’)))), where (e(qo})| is the row matrix containing the /(o) eigenvectors e(qo),
A=1,2...,1(c). Then

(7). (18.1.18) (e(qo1)|T7(q.R)'T7 (q. R)|e(qo'2))
= (e(qon)le(qo’))) = 6(0, 0)6(h, X). )

Multiply each side of eq. (8) by I(0)/p(q), where p(q) is the order of P(q),and >  .TheLS
of eq. (8) then becomes ReP(q)

(o) (o) o
®.@)  (e@n)] X S X [(0)/p@]T (0. R, ((0.R)[e(qo’r))

A=12"=1 ReP(q)

N
2

() !
gRp 1< (qon)[8(a, o) S(N', K)6(A, 1) |e(qo’D"))

e(qor)|6(o, 0")6(N, M) |e(qo’))) = 6(a,0’)6(A, 1)) = RSofeq.(8) (9)

=~
Q
fub

—~ >

iff the {fg(q, R)} forms an irreducible unitary PR of P(q). Consequently, the eigenvalues
and eigenvectors of D(q) may be classified (and labeled) by the irreducible PRs {fﬂ(q, R}
of P(q). Reduction of the reducible representation I'(q, R) is effected in the usual way from

¢ =[p(q)]" §x<q,R)7’(q,R>*, (10)

where ¢ is the number of times that the IR T (q, R) occurs in the reduction of T'(q, R); x(q, R)
is the character of T'(q, R); X’ (q, R) is the character of I’ (q, R); and p(q) is the order of P(q).
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Since there may be more than one IR T”(q, R) of the same symmetry, an additional index
n=1,2,..., ¢ may be needed to label the different eigenvalues of the same symmetry o:

(1) D(q)|e(qouk)) = wey (q) |e(qoph)). (11)

Equation (4) holds for each value of i so that

1) _, ,
“) F(@.Rle(aopn)) = 3 Ty (@, R)le(aonn))- (12)
'—1

Symmetry coordinates are linear combinations of the eigenvectors e(qouA) that
describe the displacement patterns of the atoms in the unit cell (see Section 9.4). These
patterns observe the symmetry of the IRs {fg(q, R)} and they may be calculated by
applying the projection operator

7.(q) = [1(0)/p(q)]%3fiw(q, R)'T(q, R) (13)

to an arbitrary vector |¢)) with 3s rows to give

lv(qoh)) = Py, (q)[¥), (14)

which transforms according to the Ath row of the MR of R in the oth representation
I"(q.R),

o) ,
I'(q, R)|¢(qon)) = kZ Ly (a, R)[¢(qopd)), (15)
‘=1

as do the |e(qop)). Therefore
©).(7) [¥(a01) = e, le(aonn). (16)
=

The coefficients c,, are not determined by symmetry but depend on the particular form of
D(q) (see the molecular case in Section 9.4). To find the ¢” LI vectors [t)(qop)) in the ok
subspace, set A’ =\ and obtain the 3s vectors:

(13) lib(qoak)) = WU)/P(Q)]XRTZx(%R)*Fa(q,R)a a=12,...,3s )

where I',(q, R) is the ath column of I'(q, R) (Worlton and Warren (1972)). From these 3s
vectors ¢” LI orthonormal vectors {|[¢(qop))) }, which are the symmetry coordinates, can be
obtained by the Schmidt procedure (see, for example, Margenau and Murphy (1943), Section
10.8). These vectors [¢)(qouh)) transform according to eq. (15) for each value of y so that

o) /
L(q, R)[Y(qopr)) = > 15;(q, R)[Y(qoud’)). (18)
A=1

The matrix elements of D(q), D(q) = ((I'?) '|D(q)|T?) (where (|) denotes the Hermitian
SP) are
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D(qloph, o' /') = ((qopd) [T D(@)T7 [¥(q0'1'X)
5 T, ! I(OJ)_U/ Y,
:<Hrm (q. R)w(qauxl)\D(anlrW (q, R)¥(qo’ x2)>‘ (19)

Divide each side of eq. (19) by p(q) and sum over R; then from the orthogonality theorem
for the MRs T

D(q|p. i) = [1(0)] " (w(qop)|D(q) v (qop'h)). (20)

Thus the matrix D has been transformed into one with a block-diagonal structure.The
diagonal blocks labeled D’ (q) are matrices of dimensions ¢”x ¢, with elements

D" (qlp, i) = ((qopd) D|v(qop's))
= 23 (Y (Klqopd) Do (k' |a) |90 (£ |qop'h)).

aka'k

e2y)

Each ﬁ”(q) block appears ¢ times along the diagonal. The eigenvalues of ﬁ”(q) are w’,
and their degeneracy is /(o), the dimension of the IR ¢. This completes the solution to the
problem of finding the frequencies and the eigenvectors of the dynamical matrix D(q),
except for a consideration of extra degeneracies that may arise from time-reversal
symmetry.

Time-reversal symmetry

It was shown in Secion 13.2 that for motion in which spin is neglected, the time-reversal
operator © is just the complex conjugation operator #". Therefore

(18.1.12) Hu(nk) = M "u, (k) expli(—q-a, + wr)] (1)

so that ¢ is replaced by —# and q by —q. The equations of motion in the time-reversed state
are therefore

(18.4.1) D(—q)le(—a))) = w;(—a)’|e(—q))), ©))
(18.1.15) D(—q) = D(q)", 3)
(18.4.1) D(q)"e(q))" = w(q)’e(a))", 4)
(2),3) D(q)"e(—q/j) = w(—q)’e(~q/), (5)
(4),(5) w(-q)* = w(a)’, (6)

“4),05) e(—qj) = e(qj), (M
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with the appropriate choice of phase in eq. (7). Thus the symmetry of the normal mode
frequencies in the BZ about q = 0 is a consequence of time-reversal symmetry. (A similar
situation was encountered with the symmetry of E(k) about k=0 (see Section 17.2).) If ¢
is an arbitrary vector that is a linear combination of the e(q), then

Hp = P*. ®)

Exercise 18.5-1 (a) Find the operator #;, ~'. (b) Prove that 4, is an antiunitary operator.
(c) Show that

HoDAy ' = D" 9)

Time-reversal symmetry may be responsible for additional degeneracies beyond that
stated in eq. (6). These arise when P(q) contains an operator Q such that

Oq=—-q€’q, QecP(q). (10)
In this case P(q) is an invariant subgroup of index 2 of
(10) P(q, —q) = P(q) + #'OP(q) = P(q) + 4 P(q), (1)

where 4 is antiunitary. The MRs of P(q) are I'(q, R), and those of 4 P(q) are
L.s(kk'|q, AR) = expliq- (W(OR) + ;)| # T o5(kr'|q, (2R),), (12)
where

(2%), = (OR|W(QR) + ay). (13)

We note the following (Maradudin and Vosko (1968)).
(1) I'(q, 4R) is antiunitary,

(13.1.3) (P(q, AR)|T'(q, AR)) = (V]). (14)

(ii) Since I'(q, R) and 4" both commute with D(q), the {I'(q, 4R)} commute with D(q).
This is referred to as the time-reversal invariance of the dynamical matrix.
(iii) Multiplying each side of eq. (18.4.11) by I'(q, AR) and using (ii) gives

(184.11)  D(q)|T(q.4R)le(qon)) = wy,(a)*T(q. 4R)|e(qopd.). (15)

Equations (15) and (18.4.11) state that [e(qou))) and [T'(q, AR) |e(qop))) are eigenvectors
of D(q) with the same eigenvalue w(,,,,(q)z. Whether or not this involves any extra
degeneracy depends on whether or not these eigenvectors are LI. This question can be
answered by applying the Frobenius—Schur test described in Section 13.4 (see also the
warning given at the beginning of Chapter 13). This test depends on the value of

W(q) =p(a)"" X [4;4)x(q.4%), (16)
ReP(q)

(16), (18.3.26) [4; 4] = exp[—i(q+47'q) - w(4)] (17)
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(a) If W(qQ)=+1, |e(qour)) and T'(q, AR)le(qour)) are not LI and there is no extra
degeneracy.

(b) If W(q)=0, then two frequencies w,, and w,,, (¢’ # o), which correspond to two
different irreducible PRs, I'?(q) and F"J(q), are degenerate through time-reversal
symmetry. I'?(q) and F‘f(q) occur in pairs.

(c) W(q)=—1, then wgﬂ(q) = wiﬂ,(q) (1 # p); that is, two frequencies corresponding to
two different occurrences of the same irreducible PR T'?(q) are degenerate. In this case
I'?(q) will occur an even number of times.

There are two instances in which the antiunitary operator is just " rather than 20,
namely at ¢ =0 and q = '%b,,,.

D(%b,,) = D(Vsb,, — b,,) = D(—%b,,) = D*(%b,,); (18)

(9).(18) D* (¥4b,,) = # D(Vsb,,) # = D(¥by,); (19)

(16),(17)  W(¥%b,) = > exp[—Y%i(b, + R 'by,) - W(R)] X (¥sb,, R?). (20)
ReP{q)

Similarly, at q =0,

W(0) = > x7(0, R?). 21
ReP(q)

This rather brief sketch of the consequences of time reversal in lattice dynamics may be
amplified by fuller accounts to be found in an article by Maradudin and Vosko (1968) and
the books by Lax (1974), Maradudin et al. (1971), and Venkataraman et al. (1975).

Answer to Exercise 18.5-1

@) A=A Hp=E, A ' =A.

(b) <%¢1\9{¢2> = <1/)1|¢2>* (see eq. (13.1.3)).
(c) Using (a), # DA ~"4p = # Dyp* = D*4), therefore #' DA ' =D*.

An example: silicon

Silicon, and also germanium, have the diamond structure, which is face-centered cubic.
With cube edge a, the fundamental translations are (a/2)[0 1 1], (a/2)[1 0 1], (a/2)[1 1 0].
There are two atoms per unit cell with x; =[0 0 0], kK, =(a/4)[1 1 1]. The space group
of diamond (and of silicon and germanium) is 227 (Fd3m or O]), which is non-
symmorphic. The reciprocal lattice is body-centered cubic with cube edge b =4n/a
and reciprocal lattice vectors (b/2)[1 1 1], (b/2)[1 1 1], and (5/2)[1 1 1]. The free-electron
band structure along [0 1 0] was described in Section 17.6. The nearest neighbors are the
pair of atoms x; and k, separated by a distance of a/4 along [1 1 1]. (Sometimes an origin
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displaced to the midpoint between x; and x, may be convenient.) The symmetry group
of the nearest-neighbor pair interaction (also called the “group of the bond” (Lax
(1974)) is C3y = {E C§ op 04}. Note that oy, interchanges x and y, so that (in tensor
notation) xy =yx. The two nearest-neighbors are invariant under the Cj rotations
R(£2n/3 [1 1 1]) which produce the transformations (xyz) — (yzx), (zxy). Therefore
the three diagonal terms in the matrix representation of the nearest-neighbor force-
constant tensor are equal. Again, because of the C; axis xy=yz=zx and yx=zx.
Therefore, the nearest-neighbor force constant matrix is

a B B
oo g
BB a

For brevity, the eigenvectors e(x) and e(x,) will now be denoted by e; and e,. The point
group of Fd3m is T4 and the little group

G(q) = %:(A|0)T+ %:(B|W)T, ()

in which {4} =P(q) N Tqand B € P(q) but ¢ T,4. The non-lattice translation w interchanges
k1 and k,. Therefore the characters of the 6 x 6 MRs of (R|v) are

X(410) =2x(4), x(B|w) =0, 2

where x'®(4) is the character of the MR of 4 for the polar vector basis [e) =e, e, e.).
(Compare with Section 9.1; here N =2. Because of using a column vector basis |e) to
symmetrize D, this MR I'® is the transpose of our usual MR for a polar vector basis I'™ or
R. However, x‘®(4) = x""(4).) Note that e, and e, each have three Cartesian components
e,, e, e, so that |e; e;) is a 6 x 1 column matrix.

The point group of the wave vector P(q) at I" is Oy,. The classes of the factor group
{(R|v)} atI" are given in Table 18.1. The characters are not reprinted here since at I'[0 0 0]
they are the characters of the point group O,. When (R|v) is (4|0), the characters for the
basis |e; e, ) are those for 4 with the polar basis |e ), multiplied by two because Nz =2 in
the notation of Chapter 9. When (R|v) is (B|w), the characters are zero since Ng = 0 and the
submatrices T®(B) occupy off-diagonal positions because the translation w exchanges
the two atoms in the unit cell at x; and x, . Hence the characters x[(R|v)] at " are either
2x(R, T,) or zero and so can be obtained from the character table for the point group Oy,.
This representation is reducible and, as shown in Table 18.1,

L[(R[V)] = Tiu @ Tag = T'1s 0 Ths. 3)

The displacements at I' are linear combinations of e; and e, obtained by projecting an
arbitrary, but suitably chosen, vector e(q) into the Ty, and T, subspaces using

e(q, 0) = gx"(q,R)(qu) e(q), )

x7(q,R) = x(R) exp(—iq - w) = x(R), R € Op, (5)
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Table 18.1. Classes, and a typical element of each class, for the factor group F(q) = G(q)/T
at "' [0 0 0].

Since € = exp( —iq - w) = 1, the characters of (4 | 0) for the basis |e; e,) are just those of 4 in
P(q) = O, multiplied by two (see the Oy, character table in Appendix A3). The characters of
(B|w) are zero. Axes are defined in Figure 2.12.

Class (E10) 3(CJ0) 4(C510) 3(Cslw) 6(Calw)
Element (E)0) (ny |0) (C510) (C4+y |w) (Caalw)
X [(Rv), | e1 €)] 6 -2 0 0 0

Class I w) 3(o4w) A4S [w) 3(S510) 6(04/0)
Element 1l w) (oylw) (Sg11w) (S;y|0) (04l0)
X [(RI V), | e e2)] 0 0 0 —2 2

X[(RIv), lerez) = x(T1.) = x(Tag) = x(T'15) + x(I'%s)

since q =0 at I". Choosing e(q) = |e; ) = |e;, e}, e;.), Where e;, is the component of e,
along x, and making use of the character set for T, from the character table for O,

|e(I‘,T1u)> = 1/2|el + e e + ez>. (6)
Similarly, we find
|e(F, ng)> = 1/2|€1 —€2;€) — e1>. (7)

Note that the factor /(o)p(q) is omitted from the projection operator in eq. (4) and that
common factors may also be omitted in the penultimate step of the derivations of egs. (7)
and (8) because the final eigenvector is always renormalized.

In eq. (6) the two atoms in the unit cell vibrate in phase as in an acoustic mode, while in
eq. (7) the two atoms in the unit cell vibrate in antiphase so that it is called an optic mode.

Vibrational modes at A [0 n 0]

At A, the point group of the wave vector P(q) is Cy,. The character table of the factor group
G(q)/T={(R|v)}, R € C4y, is shown in Table 18.2.

Exercise 18.6-1 Verify the following compatibility relations at I" [0 0 0].
Acoustic modes: I'is = A; @ As; (8)
optic modes: I'ys = A) & As. 9)
Re-write the relations (8) and (9) in Mulliken notation.

Projecting the general vector

|€1 ez> = |e1x €1y €1z, € €2y e22> (10)
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Table 18.2. Character table of the factor group G(q)/T at A [0 1 0], together with the
corresponding classes of G(q)/T at T" and the Jones symbols R(xyz), where (xyz) is an
abbreviation for (e, e, e.).

The phase factor € = exp[—iq - W] = exp[—inn]. Without this phase factor, the characters
would be those of the point group Cy,.

GI)/T (£10) 3(C310) 3(Cylw) 3(onw) 6(04l0)
G(A)/T (£10) (Coy[0) (Ciylw) (oW), (0xIW) (0cl0), (o1/0)
R(xyz) xyz Xz Zyx, ZyX XVZ, Xyz ZYX, ZyX

Ay A 1 1 € €

A, A} 1 1 5 —& -1

B1 Az 1 1 —& 3 —1

B, A} 1 1 —c —€ 1

E As 2 -2 0 0 0

into the A; = A subspace and utilizing the Jones symbols in Table 18.2 yields
0, e1, + €, 0; 0, e, + e,0). (11

But ey,, e, are both unit vectors along y, and so the normalized eigenvector e(q, o) (in the
usual notation for an eigenvector when the crystal has two atoms per unit cell (see, for
example, Lax (1974)) is

(11) LA: e(A,A)=1010;010). (12)

(It is customary not to give the normalization factor explicitly in such expressions.) Equation
(12) describes a longitudinal acoustic (LA) mode; it is an acoustic mode because the two
atoms in the unit cell vibrate in phase, and it is a longitudinal mode because the direction of the
displacements is along the wave vector, that is along y. Similarly, the characters for A5 (or B,)
in Cy, require that the displacements of the two atoms in the unit cell be out of phase by 7, so
that on projecting eq. (10) into the B, subspace, we find the longitudinal optic (LO) mode

LO: e(A,By)=1010;010). (13)
Projecting the vector, eq. (10), into the A5 (or E) subspace gives for e(q o 12 A)
TA[1 0 1]: e(AE, 1,1)=1(101;101). (14)

where TA [1 0 1] signifies a transverse acoustic mode polarized along the [1 0 1] direction.
The degenerate As mode with the same frequency is an optic mode, since egs. (8) and (9)
tell us that there is one acoustic and one optic mode of As symmetry. The eigenvector
of this transverse optic (TO) mode is orthogonal to eq. (14) and therefore polarized along
[10 1], so that it is

TO[1 0 T}: e(AE,2,1)=[10T;T01). (15)
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Table 18.3 Projection of the vector |11 1; 00 0) into the E, (Xs) and E,, (X5) subspaces.

The projected eigenvectors e(qol) in egs. (21) and (22) are obtained by addition of these
transformed vectors, multiplied by the character for (R|v) (which is the character for R in
Dy, multiplied by exp(—iq - v)). All the classes with non-zero characters have only one
member.

Class Character of (R|v) in E, Transformed vector Character of (R|v) in E,
(E)0) 2 |[111;000) 2
(C2l0) -2 IT1T;000) -2
(IIw) —2i 1000 ; TTT) 2i
(oyw) 2i 000 ; 1T1) —2i

The IR o =E is two-fold degenerate, and since the L = 1, A = 2 eigenvectors are mutually
orthogonal, the remaining two eigenvectors at A are

TA[1 0 1J: e(AE 1,2)=[10110T1), (16)

TO[1 0 1]: e(AE,2,2)=1(101;T0T1). (17)

Vibrational modes at X [0 V2 0]

The point group P(q) at X is Dy, =D4 ® C;; Dy is isomorphous with Cgy, so the compat-
ibility relations at X (at which w=exp(—in/2)= —1i) are, in both Mulliken and BSW
notation,

Al = X1 (OI’ Al), Alz = Xl (OI' Al), (18)

As =Xs (or E,), As =X (or E,). (19)

Therefore the A; (LA) and A), (LO) modes become degenerate at X where they are both
labeled by X; (Weber (1977)). There is no group-theoretical reason for the TA and TO As
modes to become degenerate at the BZ surface, and in the older literature (for example,
Bilz and Kress (1979)) these modes are often referred to as X3 and X4. The space-group of
silicon is non-symmorphic and the non-lattice translation w in the space-group operators
(BJw has two effects: (i) it interchanges the atoms at the sites x; and k,; and (ii) it introduces
a phase factor exp(—iq.w) into the characters of {(B|w)}. At X, this factor is —i. The results
of projecting the vector |11 1; 00 0) into the E, and E,, subspaces are given in Table 18.3.
Multiplying each of these projections (for the four classes with non-zero characters) by the
character for (R|v) given in Table 18.3 and adding the results gives the e(qoA) in egs. (21)
and (22). These show that the mode of symmetry E,(Xs) is the acoustic mode and that
E,(X5) is the optic mode,

TA e(X,E,,1)=1]101;i01), (20)

> g
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TO e(X,E,,1)=1]101;101). 1)

(Each of these representations E,, E, occurs once only so that the index p is redun-
dant here.) The degenerate A = 2 eigenvectors are orthogonal to these, and therefore are
given by

(20) TA e(X,E,,2)=1101;i01), (22)

> go

@21) TO e(X,E,2)=[10T;i0i). (23)

Note that phase factors are included in the four eigenvectors in eqs. (20)—(23) so that the
relative magnitudes of the displacements in e(X, E,, 2), for example, are given by

(23) TA 1o1 [10T;10T). (24)

However, eq. (24) does not convey the information that the displacement of atom 2 in the
unit cell is 7/2 out of phase with that of atom 1.

I have not described the calculation of the eigenvalues, which requires the solution of
the equations of motion and therefore a knowledge of the force constants. The shell model
for ionic crystals, introduced by Dick and Overhauser (1958), has proved to be extremely
useful in the development of empirical crystal potentials for the calculation of phonon
dispersion and other physical properties of perfect and imperfect ionic crystals. There is
now a considerable literature in this field, and the following references will provide an
introduction: Catlow ef al. (1977), Gale (1997), Grimes et al. (1996), Jackson et al. (1995),
Sangster and Attwood (1978). The shell model can also be used for polar and covalent
crystals and has been applied to silicon and germanium (Cochran (1965)).

Answer to Exercise 18.6-1

At T, the phase factors w in x are unity, so the characters of the relevant direct sums for the
classes of the factor group at I that occur also at A, are as given in Table 18.4. (See the Cy4,
and Oy, character tables in Appendix A3.) Therefore A; + As=T";5 (or A + E=T,,) and
A+ As=T"s (or B, + E=T,,).

Table 18.4. Corresponding classes of the factor group G/T at T and A in the BZ of silicon
and characters for the direct sums at A that are compatible with IRs at T

GI)T (£]0) 3(C310) 3(Cylw) 3(onlw) 6(04l0)
G(A)T (£]0) (C10) (Ciylw) (W), (04W) (0el0), (00)
Ar+ As 3 —1 1 1 1

Ab+ As 3 ~1 -1 -1 1
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Problems

18.1 In some crystals (NaCl is an example) every atom is at a center of symmetry. Show
that when this is true

¢(09 K3 n/ —n, K//) = ¢(0, K3 N — le ’i/)'

18.2 In the diamond and fluorite structures, for example, the inversion operator inter-
changes like atoms on different sublattices, so that K = ', K’ = k, where &, ' signify
atoms on different sublattices.

(a) Show that for such crystals, ¢(nx, n’ k') is a symmetric matrix.

(b) Show, when R, is the space-group operator that exchanges the pair of atoms on the
same sublattice at (nk), (n'k) for the pair at (Nk), (N k), respectively, where
(0 —n)= —(N — N)=A, that

#(0,k; A, k) = d(A, K3 0, K).

18.3 Show that in silicon at X, the acoustic modes are of 3 @ 35 @ ¥4 symmetry and the
optic modes are of X1 @ X5 @ X, symmetry. Write down the character table for the
factor group (including phase factors) and deduce the eigenvectors of the modes at 3.
Make a rough sketch of the w(q) dispersion curves along I'>X. Discuss the classifi-
cation into acoustic and optic modes along .. [Hint: The group-theoretical classifi-
cation of the modes according to their IRs is a fundamental property imposed by the
symmetry of the system, but a classification into LA, TA, LO, and TO modes is not
always possible at points other than I'.]
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Appendices

A1 Determinants and matrices

Determinants

A determinant det A or |A] is an n X n array of elements

all alz DR DR aln
a21 a22 DR DR azn

|A|:|ars|: R (1)
27 7y N

where a, is the element common to the 7th row and sth column. The complementary minor
of a,,, M"°(A), is the (n — 1) x (n — 1) determinant obtained by deleting the rth row and sth
column of |A|. The co-factor of a,,, A™, is obtained from M™“(A) by attaching the sign
(—=1)"** so that

A — (_l)r+S M"S(A). (2)
The determinant of A is evaluated by the following rules:

(i) expansion down a column (s constant)
n ) n s )
Al =3 anA™ = 3 (=1) " aMP(A); 3)
r=1 r=1
(i1) expansion across a row (» constant)

A= YanA™ = Y (=1)a; M (4), 4)

s=1

(3) or (4) OIA| /Dy = (1) MP(A). (5)

Product of determinants

If |C[=|A[[B],

Cik = ;ay bjk- (6)
j=

This is the same rule as the “row by column” rule for the multiplication of two matrices.

413
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Determinants and matrices

Properties of determinants

(a) The value of |A| is unchanged if rows and columns are transposed.
This follows from points (i) and (ii) above.

(b) If two rows or columns of |A| are interchanged, the sign of |A] is reversed. This also
follows from the expansion rules for evaluating |A].

Exercise A1.1-1 Given

a; by ¢
Al=|ax by o,
az by c3

express |A| as the sum of three 2 x 2 determinants by expanding across the first row.
Form |A|' by interchanging the first and second rows of |A| and prove that |A' = — |A].
[Hint: Expand across the second row of |A['.]

(c) If two rows or columns of |A| are identical, then |A| = 0.

(d) If each element of any row (or column) is the sum of two (or more) elements, the
determinant may be written as the sum of two (or more) determinants of the same order.
This follows from the rules for evaluating |A|.

(e) If alinear combination of any number of rows or (columns) is added to a particular row
(or column), that is if a;; is replaced by

a;j:al‘j‘FZchakjajzlaza'-'ana (7)
k=1 j=1
then the value of |A| is unchanged.
, n n ..
7 |A'] = kZl 2(%‘ + crai) A
1 j=
n . n k B
= > ayA’ + > ) _ayA’ = |Al. ®)
j=1 k=1 j=1

The second sum in the second term in eq. (8) is zero because A” includes the kth row,
and so this term is the expansion of a determinant in which two rows, are identical.

Answer to Exercise A1.1-1
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@ b e by a a b
!
|A| = |a b] Cl1| = —a b c +b1 a c — C1 a b = —|A|
as by s 3 3 C3 3 D3
A1.2 Definitions and properties of matrices
A matrix A is a rectangular array of elements
ann an e cee Aip
ar an “ee “ee Aoy
A=lay=| - - - o | (1)

Am1 Am2 - 0 dmn

(A),s, usually written a, or A, is a typical element of A, and the subscripts indicate that it

is the element common to the 7th row and sth column. In this matrix there are m rows (r =1,

2,...,m)and n columns (s=1, 2, ..., n). f m=n, A is a square matrix. The set of

elements with »=s in a square matrix are the diagonal elements. A square matrix

with a,., =, is a unit matrix, E. The dimensions of E may usually be understood from

the context, but when necessary the unit matrix of dimensions n x n will be denoted by E,,.
Ifm=1, A is a row matrix

(a| = (a1, az, ..., ayl. ()
If n=1, A is the column matrix
|@) = |a1, az, ..., am). 3)

For example, the components of a vector r in configuration space may be represented by
the column matrix |x y z ).

A1.2.1 Rules of matrix algebra

(1) A=Bifa,,=b,, Vr,s.

(2) If C=A+ B, then ¢,,=a,,+ b, V 1, s. It follows that k A =[k a,]. Clearly, in rules
(1) and (2) the matrices A and B must contain the same numbers of rows and columns.

(3) A and B are conformable for the product AB if the number of columns in A is equal to
the number of rows in B. This product is then C = [¢;;], where

cit = D _aibjx- “4)
J
This is the “row x column” law of matrix multiplication.
Example A1.2-1 If the row matrix ( e| contains the 3-D configuration space basis vectors

{e; e, e3} and the column matrix |r) contains the components |x y z) of a vector r, then the
matrix representative (MR) of the vector r is
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(e|r) = (e; ez e3lx y 2)

5
4) =ex + ey +esz. )

(4) Matrix multiplication is associative,
A(BC) = (AB)C. (6)

(5) Matrix multiplication is not necessarily commutative, but if AB = BA the matrices A
and B are said to commute.

(6) Division by a matrix A is defined as multiplication by the inverse of A, written A~",
and defined by the relation

A'A=AA"'=E. (7)
Because the multiplication of determinants and of matrices obey the same “row x column”
rule
|AB| = [A||B], (®)
where |A| signifies the determinant of the matrix A,
®),(7) AT'A|= AT Al=E|=1. ©)
It follows from eq. (9) that A has an inverse only if
|A| = |ay| # 0. (10)

If a matrix A has a determinant |A| =0, it is said to be singular. Consequently, A has an
inverse A~ only if eq. (10) is satisfied and A is non-singular. The trace of a square matrix
A is the sum of the diagonal elements of A,

Tr A =Ygy, (11)
J

J

i j i

If Q is a non-singular matrix and B = QAQ ', B and A are said to be related by a similarity
transformation. The trace of a matrix is invariant under a similarity transformation, for

(12) Tr QAQ™' =Tr Q(AQ™") =Tr (AQ"HQ =Tr A. (13)
The determinant of A is also invariant under a similarity transformation, for
(8),(9) IQAQ | = QIIAIIQ | = [QIIANIQI™ = |A]. (14)

The transpose AT of a matrix A = [a;;] is obtained by interchanging rows and columns of A,
so that

A" = [a;]. (15)
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If AT = A the matrix A is symmetric; if A" = — A, A is skew-symmetric.

§55k

(AB)j = (AB), = S ayby = Y bjaj, = (BTAT),, Vi k,
J
so that
(AB)" =BTAT. (16)
The complex conjugate (CC) matrix of A = [a;] is A= [aij*]. The adjoint matrix of A is
Af= (AT)*. If AT =A, A is Hermitian, but if AT = —A, then A is skew-Hermitian.
Exercise A1.2-1 Show that (AB)T =BT AT,

Define the matrix A as the transpose of the matrix of co-factors of |A| so that
A= (AY)T, where AY is the co-factor of a; in |A|. From the expansion property of |A|,

(Al.1.4) Sas A = [Al5, (17)
s=1

4),(17) AR =B = [by], by = X ai(AN)" = Y a;,A* = [Al6, (18)

(18) AA =B = |AlE, (19)

(19) A" =1A/A| (20)

Clearly, the inverse A" of A may only be evaluated if A is non-singular.

Exercise A1.2-2 Show that (AB) ' =B ' A~ [Hint: Use the definition of the inverse of
AB, namely that (AB) ™" is the matrix which on multiplying AB gives the unit matrix.]

If A~'=AT", A is an orthogonal matrix.

Exercise A1.2-3 Show that the product of two orthogonal matrices A and B is an
orthogonal matrix.

Exercise A1.2-4 Show that if A is an orthogonal matrix, then

2_ai ajx = by, 1)
k

Zaki akj = (Sl] (22)
k

[Hint: Make use of the definition of the inverse matrix, eq. (7), and the property of the
transposed matrix.]

Equations (21) and (22) state that the rows or columns of an orthogonal matrix are
orthonormal. A is a unitary matrix if
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Table Al.1. Names, symbols, and defining relations for various special
matrices.

E is the n X n unit matrix and gy is the ijth element of A.

Name of matrix Notation used Definition
Diagonal D a;=a; 6;
Inverse Al A 'A=E
Transpose AT (AT),-]- =ay
Symmetric AT=
Skew-symmetric AT=—_Aa
Complex conjugate A (B);=aj
Adjoint Af Al=(ATY
Orthogonal ATA=E
Unitary ATA=E
Hermitian Af=Aa
Skew-Hermitian Af=—A
Normal AAT=ATA
Permutation, Pseudo-permutation see text
A=At = (@aTy. (23)
If A is unitary,
(23) ATA| = |AT]A| = [A'Al = 1, (24)

so that the determinant of a unitary matrix is a complex number of modulus unity.

Exercise A1.2-5 Prove that, if A is a unitary matrix,

;aik a;k = 6ij, (25)

doay ag = by (26)
k

Equations (25) and (26) show that the rows or the columns of a unitary matrix are
orthonormal when the scalar product is defined to be the Hermitian scalar product.

A permutation ( pseudo-permutation) matrix is one in which every element in each row
and column is equal to zero, except for one element which is +1 (—1 or +1). For
convenience of reference the defining relations for special matrices are summarized in
Table Al.1.

Exercise A1.2—6 Show that

X1
X2
X3

S~ O
—_ o O
S O =
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produces a cyclic permutation of the elements of the column matrix |x; x; x3 ). Construct
the permutation matrix that on multiplying |x; x, x3 ) produces the permutation [x; x 3 x; ).

A normal matrix is one that commutes with its adjoint, AAT = ATA. Normal matrices
include diagonal, real symmetric, orthogonal, unitary, Hermitian (self-adjoint), permuta-
tion, and pseudo-permutation matrices.

Answers to Exercises A1.2

Exercise A1.2-1 (AB)'=((AB)") =(BTAT)"=BTA

Exercise A1.2-2 B~ 'A~! AB =E; therefore (AB) '=B'A~L

Exercise A1.2-3 Since A, B are orthogonal, (AB) '=B'A'=BTAT=(AB)".
Exercise Al1.2-4 If A is an orthogonal matrix, AA " '=AAT=E. Therefore

> ay azj = ay aj = 6;;, which proves that the rows of an orthogonal matrix A are
k k. .
orthonormal. Again, ATA =E, and Soa}, ay = > an ay = b, showing that the col-

. k
umns of an orthogonal matrix are orthonormal.

Exercise A1.2-5 If A is unitary, AAf = AAY) =E, Y ax ay = 6, and the two
vectors (in a unitary linear vector space) whose components kare the elements in two rows
of a unitary matrix, are orthonormal. Similarly, afa = (AT'A =E, Y da}; ay = &, and
vectors whose components are the elements in two columns of a unitarﬁr matrix are ortho-
normal. These results are important in applications of group theory where symmetry

operators are represented by unitary matrices. The reader has no doubt noted that a real
unitary matrix is an orthogonal matrix.

Exercise A1.2-6

0 0 1 X1 X3
1 0 0 X2 = | X1 |,
01 0 X3 _XQ

X3 X| X5 ) is a cyclic permutation of |x; x; x3 ). Similarly,

01 0 X1 X2
0 0 1 X2 = | X3
1 0 0 _X3 X1

Eigenvalues and eigenvectors; diagonalization

Generally, when a square matrix A multiplies a column matrix |x ) from the left, it changes
|x ) into a new column matrix |x’). In the particular case that |x’ ) is just |x ) multiplied by a
constant a,

Alx) = alx), (1)
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[x ) is an eigenvector of A and a is the corresponding eigenvalue. The set of homogeneous
linear equations (1) has non-trivial solutions only if

|A—aE| =0. ()

Equation (2) is called the characteristic (or secular) equation of A, and its roots are the
eigenvalues of A, {a;}. The problem of finding the eigenvalues of a matrix is intimately
connected with its conversion to diagonal form. For if A were a diagonal matrix, then its
characteristic equation would be

-

) (a; — a;)6; =0, 3)

i=1

and its eigenvalues @; would be given by the diagonal elements, a;;, i=1, ..., n. Two
matrices A; and A, of the same dimensions are equivalent, A =~ A,, if they are related by a
similarity transformation, that is there exists a non-singular matrix S such that

A, =S A S 4)

A matrix is diagonalizable if it is equivalent to a diagonal matrix D. The characteristic
equation of A is invariant under a similarity transformation, for

[SA S —aE|=|S(A—aE)S ! =S| [(R—aE)| S| = |R—dE), (5

and this means that the eigenvalues of a matrix are invariant under a similarity transforma-
tion. A matrix A can be diagonalized by the unitary matrix S,

SAS!'=D, (6)

iff (meaning if and only if) A is a normal matrix.

Proof
(6) AS'=5"D; (7)
) (s™Hiaf =pr(s); ®)
(8) s AT =D*Ss (S unitary); 9)
9),(7) satAs!'=D'S S°'D=D'D; (10)
9),(7) A s'saf=s'DD'S = aaf; (11)
(11) saal s'=p D"=D* D; (12)

(12), (10) aAf—af A, (13)
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which proves that A can be diagonalized by a similarity transformation with a unitary
matrix S, iff A is a normal matrix.

In quantum mechanics special importance attaches to Hermitian matrices, which
have real eigenvalues. Multiply each side of eq. (1) from the left by the adjoint of |x ), <x*|

(x*|Alx) = alx"|x). (14)

Take the adjoint of each side of eq. (3), using the result in Exercise A1.2-1 that the adjoint
of a product is the product of the adjoints, in reverse order.

(14) AT = o (x|x), (15)

since the adjoint of the complex number « is a*. But if A is Hermitian or skew-Hermitian,
A=+ A and so

(14), (15) a=+ta". (16)

Therefore, the eigenvalues of a Hermitian matrix are real, and the eigenvalues of a skew-
Hermitian matrix are pure imaginary. Now consider the eigenvectors |x ) and |x’ ) belonging
to two different eigenvalues a, ¢’ of a self-adjoint matrix A.

Al) = aly), Al) = d'|¥); (17)
(17) ("Alx) = al¥"|x); (18)
(17) ((AR) = d () (19)
(10) (AT = o () (20)
(12),(8) (*|AlY) = alx*|¥') (A Hermitian); (21)
(19), (21) (a—d)(x*|¥') = 0. (22)

Thus, if a and o' are distinct eigenvalues, their eigenvectors |x ), [x' ) are orthogonal, and
since they may always be normalized

(R) = bpw or DD xix; = bu (23)
j

If the eigenvalues are degenerate, a = d, then the eigenvectors |x ), |[x' ) are not necessarily
orthogonal, but a mutually orthogonal set may always be found (Schmidt orthogonaliza-
tion). Consequently, a Hermitian matrix of order » has » mutually orthogonal and normal-
izable eigenvectors |x ). The same result holds for skew-Hermitian matrices.

For orthogonal matrices,

Afx) = alx); (24)

(24) (AT = afxl; (25)
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(24), (25) (x|ATAlx) = a®(x|x) = (x]x) (A orthogonal). (26)

Equation (26) implies that the real eigenvectors of an orthogonal matrix must correspond
to eigenvalues with ¢® = 1. For real orthogonal matrices, A =A",

(24) A'x") = a'|x*), Alx*) = a"|x"). 27

Equations (24) and (27) show that the eigenvalues and eigenvectors of real orthogonal
matrices occur in CC pairs. Furthermore, if |x ) is real, eqs. (24) and (27) imply that a = a,
that is that the eigenvalues that correspond to real eigenvectors of real, orthogonal matrices
are also real. In fact, because a= 1,

a==+1 (for real eigenvectors of real orthogonal matrices). (28)

The MRs of proper and improper rotations in 3-D configuration space R are 3 x 3 real
orthogonal matrices (see eqs. (3.2.11) and (3.2.12)). There are, therefore, three eigenvalues
and therefore only two possibilities: either there is one real eigenvector and one CC pair, or
there are three real eigenvectors. If there is one real eigenvector then the eigenvalues
are + 1, w, and W'

(3.2.11), (3.2.12) Al = =+1, (29)

where |A|=+1 corresponds to a proper rotation R(¢ n) and |A| = —1 corresponds to an
improper rotation S(¢ n). Binary rotations ¢ =mn are excluded since, in this case, the
eigenvalues of A are all real. The four possible cases that can arise when a 3 x 3 real
orthogonal matrix has three real eigenvalues are summarized in Table A1.2.

For a unitary matrix A,

Al) = alx); (30)
(30) (AT = @ (r); 31)
(31), (30) e ATAR) = aa* () = aa*zk:|xk|2; (32)
(32) ag® = 1, |a| = 1 (A unitary), (33)

Table A1.2. Real eigenvalues of a real 3 x 3 orthogonal matrix A with real eigenvectors.

Eigenvalues
Symmetry operation _ Reference to MR |4
ay az as
Identity 1 1 1 Example 3.2-1 +1
Inversion —1 -1 -1 Equation (2.1.4) -1
Binary rotation 1 -1 -1 Equation (3.2.11) +1

Reflection 1 1 -1 Equation (3.2.15) —1
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since eq. (32) reminds us that (x"|x)is positive definite. The eigenvalues of a unitary
matrix are therefore complex numbers of modulus unity. If A is real, a real unitary matrix
becomes a real orthogonal matrix, and ATA =E (see eq. (3.2.14) et seq.).

In the general case, if A is not a normal matrix, then it is not necessarily diagonalizable.
However, it is diagonalizable if the characteristic equation has #n distinct roots.

2) A—dE| = S (=1)oa” = 0, (34)
v=0

where o, is the sum of all the (n — v)-rowed principal minors of A. In particular,
oo = |A|, oypey = Tr A, 0, = L (35)

(A (n — v)-rowed principal minor of a matrix A of order 7 is the determinant of the matrix
formed by removing from A any v rows and the corresponding v columns with the same
indices.) Since |A — ¢E| and the eigenvalues of A are invariant under a similarity transfor-
mation, the o, are similarly invariant, as we already know for Tr A and |A|, egs. (A1.2.13)
and (A1.2.14). The n roots of eq. (34) are the n eigenvalues of A. Substituting one of these
eigenvalues (say a;) in the homogeneous linear equations (1) gives the eigenvector |x; ).
This contains an arbitrary constant which can be removed by normalization. Repeat for all
the other eigenvalues in turn, and then construct the square matrix X, the columns of which
are the eigenvectors |x; ):

X = {|x1) |x2) - x) - x| (36)
(36), (1) A X = (a|x1) axlx2) ... ag|xe) ... anlxn)| = Xlaibul; (37)
(37) X' A X = [a;64]. (38)

This reduction of A to diagonal form is unique, except for the order in which the eigenvalues
occur on the diagonal. When the roots are not all distinct, it may not be possible to convert
A to diagonal form. However, A may then be reduced to Jordan canonical form in which the
eigenvalues occur on the diagonal, with the position immediately above each eigenvalue
occupied by unity or zero and with a zero everywhere else.

If a number of normal matrices A, A,, ... commute with one another then they can all
be diagonalized by a similarity transformation with the same unitary matrix S. If A, A, are
both diagonalized by S, then

SA S =Dy, SAS! =Dy (39)
(39) S A A 571 =S A4 871 S A S = Dy Dy; (40)
(39) SA, Ay ST =D, Dy =D Dy (41)

(40), (41) A A=A, Ay, (42)
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showing that the condition that A, A, commute is necessary. It is also sufficient, for if A,
is diagonalized by S and A, A, commute,

SA A S l= D; S A Sl = D, B, say,
SA, A S'=5A, S D =BD,. (43)

S A, S~ '=Bis a matrix that commutes with a diagonal matrix D, and is therefore also
diagonal. For if BD = DB, with D diagonal,

(DB)y =22 d; by bix = di bix = (BD)y = >_ by dj o = b di.  (44)
J J

So BD=DB requires that b be zero unless i =k and therefore B=S A, S~ 'isa
diagonal matrix, say D,.

Matrix representations

The direct sum of two matrices A, A, is the block-diagonal matrix
_ _ | A
A-mam= P | (1)

A matrix A is reducible if it is equivalent to a direct sum of two or more matrices. A matrix
system of order g is a set of g matrices

(A} ={A A, ... A} )

Two matrix systems of the same order g are equivalent if there exists a non-singular matrix
S such that

A =8SAS™ i=1,2....g (3)

The matrix system {A} = {A; A, ... A,} is reducible if it is equivalent to a direct sum of
matrix systems,

A ={aAYe{A)ae... 4)

If each of the blocks in the matrices comprising the matrix system {A} cannot be reduced
further, the matrix system has been reduced completely and each of the matrix systems
(A"}, {A?}, ... in the direct sum is said to be irreducible. Matrix systems that are
isomorphous to a group G are called matrix representations (Chapter 4). Irreducible
representations (IRs) are of great importance in applications of group theory in physics
and chemistry. A matrix representation in which the matrices are unitary matrices is called
a unitary representation. Matrix representations are not necessarily unitary, but any
representation of a finite group that consists of non-singular matrices is equivalent to a
unitary representation, as will be demonstrated in Section A1.5.
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Schur’s lemma and the orthogonality theorem

This section contains the proofs of the orthogonality theorem (OT) and three other results
that are required in the proof of the OT (Wigner (1959)). They need not be studied in detail
by readers willing to accept the orthogonality relations embodied in the OT, eq. (29). The
implications and applications of these orthogonality relations are discussed in the text,
beginning at Section 4.3. The proofs are for the most part standard ones and follow
arguments presented in the classic book on group theory by Wigner (1959).

Lemma 1 Any matrix representation consisting of non-singular matrices is equivalent to a
unitary representation.

Proof

Denote by I'(R), I'(S), ... the matrices representing the group elements R, S, ... in the
group G, and construct a Hermitian matrix H by

H=STRrR =t (1)
R

A Hermitian matrix H is an example of a normal matrix and can therefore be
diagonalized by the similarity transformation U H U™ ' with U a unitary matrix (see eq.
(A1.3.6)).

(1) D=UHU'=YUT®R) R v
R

-S> Uur® ' ur® vl = rew re)f, @

where the primed matrices are members of a representation {I"(R)} = {I'(R)}. The unitary
property of U, namely that U~! = U', has been used in writing the last equality in eq. (2).
The diagonal elements of D = [d; 6,;] are the (real) eigenvalues of H, and the definition H
ensures that these d; are positive real numbers. We may therefore construct the real positive
diagonal matrices

1 1 R 1
D' =[d;* &5, D™ =1d; " oy, 3
1
where di/ ? is the positive square root of d;. Since diagonal matrices commute,

2) D [ZF’(R) F’(R)T] D" —E. )
R

Now define the set of matrices {I"/(R)} by
I'"(R) =D’ I''(R) D". (5)

It will be shown that the set {I'’(R)} is a unitary representation.
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) I"(R) "R =D r'(®) D" D" MR D"
) =D I'(R) D" D™:[5 I'(5) F’(S)T} D~ D I'(R)f D"

—D " {Z r'(R) T'(s) T'(s)f r/(R)T]D-‘/z
4),(RS=T) =D [Z r'(7) r’(T)q D —E. 6)

Therefore, given a representation {I'(R)}, an equivalent unitary representation {I"/(R)} can
always be constructed by forming

I"(R)=D"" U I(R) U D", (7)
where U and D are defined in eq. (2).

Lemma 2 (Schur’s lemma) A matrix which commutes with every matrix of an IR must be
a multiple of the unit matrix. Schur’s lemma provides a criterion for the reducibility of a
matrix representation. For if a matrix can be found which commutes with I'(R), VR € G,
and which is not a multiple of E, then I' = {I'(R)} is a reducible representation. Because of
Lemma 1, we may restrict our considerations to unitary representations. Let M be a matrix
that commutes with I'(R), VR € G. Then

M I(R) = [(R) M. 8)
®) r®)! mt = uf Ty ©)
(9), (T(R) unitary) M r(r) = r(r) MT. (10)

Equation (10) shows that M" also commutes with the unitary matrices of I, and so therefore
do the two Hermitian matrices

H = M+ M) (11
and
H, = i(M — Mh). (12)

But a Hermitian matrix H (which could be either H, or H,) can always be diagonalized by a
unitary transformation

UHU!=D. (13)
Define I'(R) by
I'(R)=U I'(R) U (14)
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(14),(13) I'R) D=UTR) U'UHU!
—UHT(R) U (I'(R) commutes with H)
=UHU!'UTIR) U
=D I''(R); (15)

(15) T'(R); d; o =d; 65 T'(R)y. (16)
Summing each side of eq. (16) over j gives
(16) F'(R)ik(dk —d;)=0. 17)

The subscripts i, k=1, 2, ...,/ fall into two sets (one of which may be empty): (i) d; =d,,
Vike{a};(i)d#d,Vje{b},Viec {a}. When d;# d; (so that D is not a multiple of the
unit matrix), eq. (17) requires that

I'(R); =T'(R); =0, Vic{a}, Vje{b}, ¥ REG. (18)

In this case, the transformation of T" to I'" has brought {I"(R)} into block-diagonal form and
the matrix representation I' was therefore reducible. But if T is irreducible, then d;, = d;, V &,
and D is a constant matrix, that is the constant d; times the unit matrix. But if UHU ' is a
multiple of the unit matrix, then so is H. And if H; and H, are multiples of the unit matrix,
then so also is M = %(H| — iH,), which proves Schur’s lemma.

Lemma 3 IfT", IV are two IRs of the same group G of dimensions /, 1;, respectively, and if
there exists a rectangular matrix M such that

MTI'(R)=TIY(R) M, V ReQG, (19)

then there are two possibilities: (i) if /; # [, then M = 0; (ii) if /; = [;, either M = 0 or |[M| # 0.
In this latter case, M has an inverse and

(19) V(R)=MT'(R)M~', V RE€G, (20)

so that IV ~ T". Matrix M is called the intertwining matrix, and Lemma 3 asserts that two
IRs I and IV can be intertwined only trivially, that is either M =0 or IV ~T".

Proof

From Lemma 1, we may take the representations I'', I as unitary. Assume, without loss in
generality, that /; </,.

(19) ) uf = Mf D@R)l: 1)
@1) iR Mt = Mf DR (22)

(22) MR Y M =M Mf DR, (23)
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(23),(19) rRYH MM =u M DR, vReG. (24)

Therefore M M' commutes with all the matrices of IV, and so by Schur’s lemma it must be a
multiple of the unit matrix,

M M= cE. (25)
If l;=1;=1, M is a square matrix and
M ME| = M M| = |det MP? = ¢ (26)
Ifc0,|M|# 0 and M has an inverse, so that I" ~ T If ¢ = 0, MM" = 0 and the prth element
of M Mf
El:l My, M, =0, Vp,r (27)
4=

For the diagonal elements r=p
SIM, =0, Vp=12,....1 (28)
gq=1

which necessitates that M,,, =0,V ¢=1,2, ..., [, that is that M = 0. The other possibility is
that /; < [; so that M has /; columns and /; rows. A square matrix M’ of dimensions l; x [;can be
constructed from M by adding /; — /; columns of zeros. Since \M/| =0and M MT=M M,
IM' M| =0. Therefore eq. (25) requires that ¢ =0 and consequently that M =0 (from the

above argument that includes eqs. (27) and (28)). This completes the proof of Lemma 3.

The orthogonality theorem The inequivalent irreducible unitary matrix repre-
sentations of a group G satisfy the orthogonality relations

> Vii/g T'(R); /178 TU(R),, = 65 6 by, (29)

where /; is the dimension of I and g is the order of the group.

Proof: Define
M= D(R) X TVR™, (30)

R

where X is an arbitrary matrix with /; rows and /; columns. Then
I/(s) M= Z I/(s) T'(R) X T'(R™)
=> IV(S) P'(R) XITY(R™") T'(S™") I(S)
R
=[S D(sR) X T((SR) ] ()
R

_ [%: IV(R) X F"(R")] r'(s) 31)



A1.5 Schur’s lemma and the orthogonality theorem 429

since the sum is over all group elements. Therefore
(31),(30) ES)M=MT(S), VSecG. (32)

Since I, I are inequivalent representations (I not ~I"), Lemma 3 requires that M is the
null matrix. Therefore,

(30) M, = ; > Y V(R),, Xy T'(RTY),, =0, (33)
s oq

the second equality holding when I is not ~ I". But X is an arbitrary matrix, and we may
choose the elements of X in whatever way we please. If we choose X, = 1 and all the other
elements of X to be zero, then

(33) %:Ff(R)m (R, =0. (34)

But since I is a unitary representation,

2T(R),, T'(R),, = 0 (I ~ TY). (35)
R
Now suppose that i =, then
M=3T/(R) X TR (36)
R

commutes with all the other I'(S), S € G, because none of the steps from eq. (30) to eq. (32)
preclude j =i. By Schur’s lemma, M = cE and so

(36) M, = ,Z %:I‘i(R)rt : r"(R—l)W =cby, rp=12..1L (37)

Choosing all the X, =0 except for X,, =1 reduces eq. (37) to

;r"(k)m 'R, = ¢ bpr. (38)
Set » = p and sum over p,
ZR: %:F"(R‘l)qp F”(R)ps =c %:QW; 39
(39) STR'R), =c L, (40)
R
(40) XR:Fi(E)qS =g 04 =cl, (41)
(41) ¢ =g b4/l (42)

(38), (42) ST (R)y TR,y = (/)6 b, 43)
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43) S (R);, T'(R),y = (2/1)6 by (44)

Combining eqs. (35) and (44) yields the general form, eq. (29), of the OT for unitary IRs
that are inequivalent when i #; and identical when i =;. This is the situation met in most
practical applications of group theory using character tables that contain the characters of
the inequivalent IRs of a group of spatial symmetry operators. Moreover, eqs. (38) and (42)
provide the generalization for non-unitary representations. However, in developing a test to
determine whether extra degeneracies are introduced by time-reversal symmetry, we need
an orthogonality theorem for equivalent IRs. This is derived in section A1.6.

Orthogonality theorem for equivalent irreducible representations

When I is not &~ IV we have shown in Section A1.5 that

Fj(R) M=M F[(R), VReQG, (A1.5.32)
leads to

ZF’() 'R, =0, (A1.5.34)

which, for unitary representations, becomes

S I(R),, TV(R),, = 0. (A1.5.35)
R

Now suppose that ' ~T" and let Z be the non-singular matrix that transforms I" into T,

I'R)=272 TV(R) 27!, YReG, (1)
(A1.5.32),(1) VR)M=MZ IV(R) 27, ()
) V(R)YM Z =M Z TV(R). 3)

From Schur’s lemma (Lemma 2 of Section A1.5)
MZ=cE. 4

Since M depends linearly on X, eq. (A1.5.30), ¢ must also depend linearly on X, its most
general form being

c=> chq Xét]’ (%)

s=lg=
where the coefficients Cy, are independent of X.

M, =c(Z7h), =G Xy (Z7),

(A1.5.34),(4),(5) A (6)
ZZZF’( )m v TR g
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But X is an arbitrary matrix, so on equating coefficients of X,

Cyg (27, = 2D (R),, T'(RTY) ™
Multiply each side of eq. (7) from the right by Z,,. and sum over p:
(7. (1) Cy En = ;F’(R»s [T'(R™") 2], (8)
On summing over 7,
®) Coq li =8 Zgs 9
9.7 Zgs (27, = (G2 (R), T'(RY),, (10)
For unitary representations (R~ ') = T'(R)', and

(10) (h/&)2 T'(R)yy T'(R)y = 2y (271),,, (11)

Equations (10) and (11) hold when I ~ TY; if i =, then eq. (1) shows that Z is a multiple
of the unit matrix and

(11) 2\/hilg V(R), A/ li/8 TV (R),s = bpr 845 (i =), (12)

in agreement with (A1.5.29) when i =j.

We shall also need the following corollary to Schur’s lemma: the complete set of
matrices {Z} that transforms I" into I is ¢Z, where Z is one such matrix and ¢ # 0; if
I and IV are unitary then {Z} contains unitary matrices and the complete set of unitary
matrices that transform IV into I is {e"Z }.

Proof

If 2’ € {Z}, then

) I"R)=2 TVR)Z"'=ZTVR)Z', VReG (13)
(13) DR)=2""Z2DR) 27" 2 =2"' 2 V(R)(2"'2)"! (14)
sothat 2! 7 commutes with IY(R), ¥ R € G. By Schur’s lemma (Section A1.5) Z'~! Z
is a multiple (say, ¢~ ') of the unit matrix and so Z’ =c¢ 7 and {¢ Z} is the complete set
that transforms IV into I'". Now suppose I'" and IV to be unitary.

(1) r@®)! =z el 2t (15)

(15) rR") =z Y e 2T, (16)



432

A1.7

Determinants and matrices

(16), (R"'€G) r'@®) =z H vw zt. (17)

Equations (1) and (17) show that Z is unitary and therefore that {¢”'Z } is the complete set
of unitary matrices that transform I" into T,

Direct product matrices

If A, B are two square matrices of dimensions m X m and n X n, respectively, then the
direct product (DP) of A and B is

anB alzB al,,,B
a21B azzB cee e asz

A@B=| ... ... ... ... ... (1)
amB anB ... ... au.B

A ® B is of dimensions mn x mn. The general term is denoted by

[A®BI, . = dp by )

pr,qs

Note that in eq. (2) the first two subscripts denote the two row indices, p and r, while the
second pair of indices denote the two column indices ¢ and s.

Example A1.7-1 Find A ® B when A and B are both 2 x 2 matrices:
by b
A — an alz]_ B—[ 11 12} 3
|:a21 ay |’ by b ®)

aytbyy  anbr apbi  anbp
aiby  anby apby  apbxn

A®B= 4
@ axnbn  anbiy anby  anbp ( )
axibyr  axby  axnby  anby
column indices (g s) 11 12 21 22

For example, the element [A ® B],; »; of the DP matrix is a»,b;;. An alternative notation,
based on the definition of the DP matrix in eq. (1), is to represent one block of the
supermatrix A ® B by

A ® BJy,, = aB. (5)

A supermatrix is a matrix, each element of which is itself a matrix. The subscripts [pg] on
the LS of eq. (5) denote that the general term [pq] of the supermatrix A ® B is the pgth term
of the first matrix a,, mutiplying the second matrix B. For example, the upper right-hand
block of A® B ineq. (4) is
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[A ®BJjjy = aiB. (6)

The product of two DPs is the direct product DP of the product of the first members of each
DP, and the product of the second members of each DP,

(A®B)(C®D)=AC®BD. (7)
The proof of this formula is an application of the second notation for a DP, introduced in
eq. (5):
(A®B)(C@D)y=) anBewD
t

~[AC®BD]

sl
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The Dirac character

The jth class €; of a group G is the set of all the elements of G that are conjugate to g;, so
that

¢ ={arg g'}, k=1,2,..., g with repetitions deleted. (1)

Because binary composition is unique, the classes of G are all disjoint, with no elements in
common. For example, the classes of the permutation group S3 are €= {Py}, €, =
{P1 Py}, 3= {P5 P4 Ps} (see Section 1.2). The Dirac character () of a class (sometimes
called the “class sum”) is the sum of the elements in a class

G=>g 2

j=1
(18.14), (1.8.15) =Se g 3)
where g, r=1,2 ..., ¢; (with g, = E) are the c; coset representatives of the centralizer of

gj» Z;=Z (g|G), which is the set (of order z) of all the elements of G which commute with
g;. The {g,} are found from the coset expansion of G on Z,

(1.8.13), (1.8.15) G=>Xg 7. g =E. 4)
r=1

Equation (3) determines 4, = {g;},j =1, 2, ..., c;, without repetitions.
The inverse class of €, written (gj—., is the set of elements of G that are the inverses of the
elements of the class %, so that

@ = {g'}j=12....¢, g €% (5)

It follows from the definition of the inverse class that the mapping %; — % is isomorphous,
so that ¢; = ¢;.

Exercise A2.1-1 Show that if g; € %), then {g; "'} form a class with ¢; = ¢;.

From the multiplication table for S(3), Table 1.3,
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—:{Po}:(gl, %zZ{Pz Pl}:(gz, %gZ{P3 P4P5}=(g3. (6)

67 = E = %, always. It often happens, as in S(3), that a class % is the same as its inverse
%, in which case the class ¢; = ¢ is said to be ambivalent. Any group G contains at least
one ambivalent class, namely 4| = E. Equation (6) shows that all three classes of S(3) are
ambivalent. A class %; may be ambivalent because each element is equal to its inverse,
5ng1 =g, Vj=1,2,...,c; as is true for ¥5 in S;. Or a class might be ambivalent with
g]’1 # gj, ¥ g € €, as is true for % in S3, in which P;"! = P,. The Dirac character of the
inverse class 5 is

G=>g" (7

Answer to Exercise A2.1-1

Suppose that g; € 4={g; g ... }. Then for some 2% €G, g=g g g ' and
gl= (gkgjgljl)*l:gk&flg,gl, so that g',g' are in the same class
%;={g;' g'...}. From the definition of the inverse class, %; contains only those
elements {g;'} that are the inverses of the elements g; € %,. Since each of the %
clements g; € 6; has a unique inverse gj’l, and these are all in the same class %, the
order c; of % is the same as the order ¢; of €.

Properties of the Dirac characters (class sums)

(a) The Dirac characters commute with every element g, of G. Suppose that the transform
of g; by gr is g,
Sk g8 =g g <€ &eG. (1)
Since binary composition is unique, asj=1, 2, ... , ¢; with the same gy, a different element
g is generated for each g; € %, and so there are ¢; different elements in all. Each of these
¢; elements g; € %, and so applying the procedure, eq. (1), to V g; € € in turn simply
regenerates the elements of 4, albeit usually in a different order. Therefore,

ijgQIZXng&g;1=;g1=Qj, )
= ~
2 gk =gr . (3

(b) The Dirac characters commute with each other. The elements of € each commute with
Q; and so

Q = Zﬂlgl ZgJQ*QQ “4)

In the last equality we have made use of the fact that classes are disjoint.
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(¢) The product of two Dirac characters is a linear combination of Dirac characters.
Suppose that €, 6; are two of the N, classes of G. Then,

i G

QQ_ZZglgj Q)

i=1j=

By closure, a particular one g; g; of the ¢; ¢; terms on the RS of eq. (5) is an element of G
which must be the inverse of some element of G, g,;l,

g g =g €% (6)

Every element of % occurs equally often on the RS of eq. (5). Let g;! €%7; then g lis
related to g; ' by a similarity transformation and consequently, for some g, €G,

&' =28'e' =228 =288 ' 2888 =g (7)

where g, €%;, g;€%;. Thus for every product g, g = g; ! on the RS of eq. (5), there
occur also the products g, g, =g ' =g, g gp , Wthh are in the same class as g; '

<

Therefore, if g; ' €% occurs Ck times in the sum > Z gi gj, every element of € must
i=1j=1

appear the same number of times, and

NC
O Q=> Cf‘j Q. (8)
k=1
The C{‘j are integers, or zero, called class constants.

Remark The reader will no doubt have noticed that the above argument could be carried
out equally well for the classes 4, instead of for the inverse classes 4;. Why then have we
used the seemingly more complicated route of expressing the RS of eq. (8) as a linear
combination of inverse classes rather than as a linear combination of classes, as is done, for
example, in the books by Hall (1959) and Jansen and Boon (1967)? It is because the
symmetry properties of the class constants defined by eq. (8) are more extensive than they
would have been had the product €2; €2; been expressed as a linear combination of classes.
Of course, each class has an inverse class and so the same terms will occur on the RS of
eq. (8), but their ordering by the index k will differ unless all classes of G are ambivalent.

(d) The product g; g; on the RS of eq. (5) can equal g; = E only if 6; = %;, and then E
occurs ¢; times so that with k=1

3 C;=ci 6. i )]
Exercise A2.2-1 Show that

= C; 6,1 (9,)

[Hint: Consider the product {); €;.]
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Table A2.1. Multiplication table for the Dirac characters (class
sums) of S(3).

Since

QT:Pal :P() :EZQb QE :Prl + szl =P2—|—P1 :Qz,
Q5 =Py' + P, + Py' = Py + Py + Ps = Q3, all three classes
of S(3) are ambivalent.

2, 2, Q,
o, 0; 0, 05
0, 0, 20 + 0, 20;
0, 05 20; 307 +39;

Example A2.2-1 Develop the multiplication table for the Dirac characters of S(3).

Using the multiplication table for S(3) in Table 1.3, we find the multiplication table for
the Dirac characters in Table A2.1. The entries in this table illustrate eq. (8). The class
constants ij. form a 3-D cubical array. For fixed k the C{‘j,i =12,...,N,
j=12, ...,N. may be arranged in an N, x N, square matrix, these square matrices
being successive “slices” of the 3-D array for k=1,2, ..., N..

Remark If we were to take in eq. (8) a linear combination of classes, instead of inverse
classes, the slices of the 3-D array might, in general, occur in a different order and this
would result in some loss of symmetry in the class constants for groups with non-
ambivalent classes.

For S(3),

0 1

0 2. (10)
2 0

Exercise A2.2-2 Evaluate the class constants Cg. for k=1 for the group S(3) from eq. (9)
and check your results against the matrix Cl.ll. in eq. (10).

N,
Exercise A2.2-3 Showthatc; ¢; = > ¢ Cl’; [Hint: Consider the number of terms on each
k=1

side of eq. (8).] Demonstrate the validity of this result for (i) i =2, j=3,and (ii) i =3,/ =3
for the group S(3).

(e) The symmetry properties of the class constants Cg. may be summarized by the statement
that ¢ Cf‘/. is invariant under (i) a permutation of indices and (ii) when all the classes are
inverted.
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Proof (i) The triple product
8),(9) Q0 0 = (z cl Q;)Qk — e CE Qe (11)
1

The second equality in eq. (11) follows because {2; = E and the identity, which can only
arise when [ =k, is repeated ¢, times. Because the Dirac characters commute (eq. (4)), the
triple product in eq. (11) is invariant under any permutation of i, j, k, so that

k i _ J _ y _ i k
Ch Cz'/' =q C_/k =¢ C,=¢ Cp=c¢ ij =i C_'/.l-. (12)

The numerical factor ¢, multiplying Cg. in eq. (12) may be inconvenient in some applica-
tions. It can be avoided by defining the average class sums by

Q=Q/c, i=12,...,N,, (13)

and a new set of class constants cg by

ch=Chjecs, ijk=12, ..., Ne. (14)
.o c‘ cj
(ii) LYy=3>gg 6)

i=1j=1

Each term g; ! of the double sum is a member of some class (the kth) of G. From eq. (8) the
number of terms v that are in the kth class is c; Cf. Butifg; g; = g ', theng; ' ¢! = &
and so vy is also the number of terms that are in the kth class in the product §2; Q; = Q: €,
namely c; Cg Therefore,

k _ ok
Cij = Cﬁ. (15)

Exercise A2.2-4 Show that ijCg’{ = > C,Cly. [Hint: Evaluate the triple product in

eq. (10) in two different Wayé, making use of the fact that the multiplication of group

elements, and therefore of the Dirac characters, is associative.]

Answers to Exercises A2.2

Exercise A2.2-1

(8) Q Q,-:Cé. Q7+

The terms on the RS can be {2; = E only when j =1, and then {); €}; =¢; E, so that

C;i = Cj 61] (9/)
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Exercise A2.2-2 Fromeq. (9), Ci} = ¢i 0 = ¢; b; for S(3), since all classes are ambiva-
lent. Therefore, all non-diagonal elements of Ci} are zero, so that Ci} =0,ifjA£iIfi=1,
Cll1 =c; =1, fori=2, Czl2 =c, =2; and with i=3, C313 =3, in agreement with
eq. (10).

Exercise A2.2-3 The number of terms g; g; = g; ! on the LS of eq. (3) is ¢; c;. Bach of
these belongs to some class k of G, and the number of terms in the kth class is the number of
times the kth class occurs, Cf/., multiplied by the order of the kth class c;. Summing over all
classes of G gives the total number of terms. For the group S(3), for which all three classes are
ambivalent, the number of terms in {2, €23 is, from the LS of eq. (8), ¢; ¢3 =(2)(3) = 6. From

3
the RS it is Y. ¢ Ch = 1(Ch) +2(C%) +3(C35) = 6. Similarly, for i =3, j =3,
k=1
LS = (3)(3) =9,RS = 1C}; +2C2, +3C3; = 1(3) +2(3) + 3(0) = 9.

Exercise A2.2-4

QU= C, o %= ¢, I O
1 I,m

n

G ) =2 Cf U Q=3 Ch Ol O

Equating coefficients of (2,

I m __ n m
Yo=Y

The class algebra as a vector space

Multiplication of the Dirac characters produces a linear combination of Dirac characters
(see eq. (4.2.8)), as do the operations of addition and scalar multiplication. The Dirac
characters therefore satisfy the requirements of a linear associative algebra in which the
elements are linear combinations of Dirac characters. Since the classes are disjoint sets, the
N, Dirac characters in a group G are linearly independent, but any set of N+ 1 vectors
made up of sums of group elements is necessarily linearly dependent. We need, therefore,
only a satisfactory definition of the inner product for the class algebra to form a vector
space. The inner product of two Dirac characters €2, €, is defined as the coefficient of the
identity Cl.'j in the expansion of the product €); ); in eq. (A2.2.8),

(2.2.9) ) = ci = ¢ . (1)

This definition satisfies all the requirements of an inner product (see, for example,
Cornwell (1984), p.274). Therefore, the Dirac characters form a set of orthogonal but
not normalized vectors. An orthonormal basis can be defined by {(c;)~ " €;}, for then

()™ Q)™ ) = (e )" C} =6y 2)
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A general vector in this space is
X=X (Ci)_% Q x;, 3)
where x; is the ith component of X. The inner product of two vectors X and Y is then
(X[|Y) :Z Xty 0y = Z x; Xx;. 4
ij j
Equation (A2.2.8),

N,
% U=3 C o )
=1

may now be re-interpreted in terms of a vector space in which the basis vectors are the
normalized Dirac characters {(c;)~ * Q;}. If Q in eq. (5) is a basis vector, then Q; is an
operator that acts on € (the operation being that of multiplication of Dirac characters) to
produce a linear combination of basis vectors £2;. In vector notation,

Nc
Qj\fm:l; CLl), (6)
N. N.
(6),(2), (A2.2.11) <Q,«|Qj|9k>:l§j1 Cl (1) =2 Clou
= c,-C}k = chf;l. = cka;. (7

This is the matrix element of €);, and according to eq. (A2.2.11) it is invariant under any
permutation of the indices i, j, .

Diagonalization of the Dirac characters

In Section A 1.4 we proved that each one of a set of normal matrices can be diagonalized by
a similarity transformation with the same unitary matrix S provided that they commute. In
Chapter 4 a matrix representation of a group G was defined as a set of matrices that form a
group isomorphous with G. Such a matrix system is reducible when it is equivalent
(Section A1.4) to a direct sum of matrix systems of smaller dimensions and irreducible
when it cannot be reduced any further into a direct sum of matrix systems of smaller
dimensions. Each of the matrix systems in this direct sum forms an irreducible representa-
tion (IR). The character system of an IR I is the set of N, numbers {X;”}, ji=12,...,N,
called the characters, where X} is the sum of the diagonal elements (the trace) of the matrix
representative (MR) of any member of the jth class in the mth IR. The character X;' is the
same for all members of the same class, and is therefore a class property. For symmetry
groups the MRs are unitary. In general, matrix representations are not necessarily unitary,
but any representation of a finite group consisting of non-singular matrices is equivalent to
a unitary representation (Section Al.5). Consequently we may confine our attention to
unitary representations. Since the Dirac character of the ith class is the sum of the group
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elements in that class, the MR of the Dirac character of any class is the sum of the MRs of
the elements comprising that class,

mzig,rmazir@» (1)

Whereas the MRs of group elements do not necessarily commute, the MRs of the Dirac
characters do commute with one another and therefore also with their adjoints. They
therefore form a set of normal matrices which can all be diagonalized by similarity
transformations with the same unitary matrix S. The Dirac character matrices therefore
have N, (not necessarily distinct) eigenvalues and N,. corresponding eigenvectors.

In general, when a Dirac character multiplies a Dirac character, as in eq. (A2.2.8), it
produces a linear combination of Dirac characters (vectors). But for a particular linear
combination of Dirac characters

A=Yy @)
that is an eigenvector of €,

In this case, when (), operates on A the result is just A multiplied by a constant A;, the
eigenvalue of €);.

(2),(3) Q> vy =03y “)
J J
(4),(A22.8) 2 Gy =My b O ®)
Js ‘ Js
5) 3 (Cf], — M)y =0, k=12,...,N,. (6)
J

The set of equations (6) is a set of linear homogeneous equations for the y; (which are the
components of A; in the {{);} basis). The N,=N, eigenvalues for the ith class,
{M}, p=1,2,...,N,, are the roots of the characteristic equation

|Cj}—x,-6_,-k|:o, jk=1,2,...N., i=12,...N,. (7)

Remark One would normally expect to complete the solution of an eigenvalue problem
by substituting the eigenvalues 1% one at a time into eq. (6) and solving for the ratios of the
coefficients of {); and Q;, yf /yV. This would give the components of the pth eigenvector
AP, apart from an arbitrary constant which could be fixed by normalization. We shall not
need to do this here, however, since our aim of determining the characters of all the IRs is
satisfied by finding the eigenvalues.

Since the MRs of the pth IR of G form a group isomorphous with G, it follows from the
definition of a class that

(A2.2.2) IP(gi) TP() TP(gr") = TP(), ®)
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where I (€2;) is the sum of the MRs of the members of the ith class of G in the pth
representation.

®) I7(ge) TP() = TP() T¥(g) , VegreG. ©)
By Schur’s lemma (see Section A1.5)
(€)) () = A T'(E), (10)

where I'(E) is the unit matrix of dimension /, and 27 is a scalar. If the MR I'” ); of an
operator §2; is a scalar times the unit matrix, then that scalar is one of the eigenvalues of €2;,
and that is why the scalar in eq. (10) is written as A

(10) Tr IP() = > IP(g) = ¢ Xf = N? Ly; (11)
g€C;

(10), (11) () = (e X} /1p)E; (12)

(12) O = (i /) = 13)

Therefore the characters x/ in the pth representation are just the eigenvalues of 2 multi-
plied by /,/c;. Thus the calculation of the characters involves two steps: (i) the calculation
of the eigenvalues A by finding the roots of the characteristic equation, eq. (7), and (ii) the
calculation of the characters x/ from eq. (13). If the dimensions /, of the IRs are not known,
as for example when there is not a unique solution to

N,
> =g, (14)
p=1
then the {/,} must be determined first. This may be done from the normalization condition
| 2
g Zl alxil” =1, (15)
N, -1
(15),(13) 2= g[z cr‘lxﬂz} (16)
i=1

Since [, > 1, only the positive square root of the RS of eq. (16) is physically significant.
This method yields the eigenvalues {\'}, p = 1,2, ..., N,, of the ith class in an arbitrary
order. Since the characters are given by

(13) Xi = (Ip/ci)M, (17

we need to determine this order, that is to settle on the values forp=1,2 ... , N.in any one
of the N, sets {\}. This can usually be decided by satisfying normalization and orthogon-
ality requirements.

Example A2.4-1 Determine the character table for the permutation group S(3).
From the multiplication table for S(3) (Table 1.3) we have, as already determined in
€q. (A216),g: 6,Nc: 3,(61 = {Po},(gz = {P1P2}, (63 = {P3P4P5}, so that {Ci} = {1 2 3}
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Table A2.2. Character table of S(3)
deduced from the diagonalization
of the MRs of the Dirac characters.

S(3) 2 % ;s
T, 1 1

I, 1 ~1
T, 2 - 0

All three classes are ambivalent €;= %, j=1, 2, 3. The multiplication table for the Dirac
characters is in Table A2.1. The entries in this table are Ziv;] Clkj Q so that the character-
istic polynomials |Cl"j — Nidje| fori=1,2, 3 are:

i=1 i=2 i=3
k= 1 2 3 1 2 3 1 2 3
1-2 0 A 0 - 0 1
0 1—2 0 A 0 0 —A 2 |. @198
0 0 - X 0 0 2—) 3 3 =\

i=1,2, 3 labels the classes, k=1, 2, 3 labels the columns of the determinants, and the rows
are labeled by j = 1, 2, 3. Equating the three determinants to zero and solving for the roots
yields the eigenvalues for the ith class in the pth representation

p\i 1 2 3
1 1 2 3 1
2 1 2 -3 1 (19)
3 1 -1 0 2
[, is the dimension of the pth representation. Here we know the values of /, since

N,
> lg = g = 6 has only one solution /; =1, I, =1, I =2. Nevertheless, we will illustrate
p=1

the procedure to be used when {/,} is not known. From eq. (16), I} =6[1*+
()22 4 (3)3%7", 1y = 1; similarly, L=1, and 12 = 6[12 + (%) (=1)*] ' = 4,5 = 2.
Finally, using eq. (17), we deduce from the eigenvalue table (19), the character table
shown in Table A2.2, which is in complete agreement with that of its isomorph Cs,.

Example A2.4-2 Deduce the character table for the quaternion group Q defined in
Chapter 12.

For Q, g=8, N.=5, then, €, =1, €, =—1, €3={q1 —q1}, €a=1{q2 —q2}, €5=
{q5 —q3}. Again, each of these classes is ambivalent. From the multiplication table for Q,
we deduce the multiplication table for the Dirac characters (Table A2.3). All the entries in
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Table A2.3. Multiplication table for the Dirac characters of the quaternion group Q.

All five classes of Q are ambivalent.

Q Q 2 0 2 Qs
o o 0, 0, O Qs
0, O, Q) o, Q4 Q5
O, O, O, 205 20, +29, 20,
Qs Qs Qs 20, 20, 20, +29,

Table A2.4 Characteristic determinants obtained in the diagonalization of the Dirac
characters for the quaternion group Q.

The rows of these determinants are labeled by j=1, ..., 5. Null entries are all zero.
i=1 i=2
k= 1 2 3 4 5 1 2 3 4 5
11— - 1
-2 -2,
-2 1—X,
i=3 i=4
k= 1 2 3 4 5 1 2 3 4 5
s 1 s 1
— A3 1 — g 1
2 2 — — g 2
— 2 2 2 —
2 -3 2 — Ny
i=5
k= 1 2 3 4 5
—As 1
2 —As
2 2 — s

N,
this table are )
=1

A

ambivalent.

Clkj Q7 but they are entered as sums of ) because all classes of Q are

From the entries in Table A2.3 we find the characteristic determinants |Clk —Ai0j| given in
Table A2.4. The roots of the characteristic equations yield the eigenvalues 7]{' in Table A2.5.
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Table A2.5. Eigenvalues ). for the ith class in the pth IR of Q calculated
from the diagonalization of the MRs of the Dirac characters.

The degeneracy /, of the pth representation is given in the right-hand
column. The order ¢; of the ith class is given in the bottom row.

pi 1 2 3 4 5 I,
1 1 1 2 2 2 1
2 1 1 2 -2 -2 1
3 1 1 -2 2 -2 1
4 1 1 -2 -2 2 1
5 1 —1 0 2
ci 1 1 2

Table A2.6. Character table for the quaternion group Q found
by the diagonalization of the MRs of the Dirac characters.

Q %, %, %, N %5
T, 1 1 1 1 1
r, 1 1 —1 -
T, 1 1 - 1 -
T, 1 1 ~1 —1

Ts 2 -2

The degeneracies /, in Table A2.5 were calculated from eq. (16). Thus
(16) B=8[1+1+2+2+2]", (20)

so that /; = 1. Similarly, L =1=1,=1,but 2 = 8[1 + 1]71, Is=2. Finally, the character
table for Q calculated from eq. (17) is given in Table A2.6. The order of the eigenvalues A7
is not determined by solving the characteristic equations. But considerations of normal-
ization and orthogonality require the character table for Q to be as shown in Table A2.6
apart from the labels I',, I'5, 'y, the order of which is arbitrary, but conventional.

There is available a variant of this method of determining character tables by diagona-
lization of the Dirac characters which is completely unambiguous (apart from the ordering
of the rows of the character table, which is arbitrary) but which involves rather more work.

(6) L —XE[ = 0; 2

Ne
(6),(21) Ly = ; v C . (22)

Here the determination of |;), the column of eigenvalues for the ith class, from egs. (21)
and (22) provides a consistent ordering of the rows without the need to appeal to normal-
ization and orthogonality conditions.
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Example A2.4-3 Determine the character table for the quaternion group Q from egs. (21)
and (22).
Using Table A2.3 to determine the Cl’j‘ (see eq. (A2.3.5))

N »2 3 Ya ys
Y2 N0 y3 Y4 Vs
(22) L=1{2ys 2y3 yi+y2 2 2ys |- (23)

24 2y4 2ys yi+y2 2p3
2ys 2ys 2y 2y3 Y1+

Multiplying out the determinant |L| and solving the fifth-order characteristic equation
|L| =0 may be accomplished using one of the mathematical packages available. Using
Mathematica, 1 obtained

11 2 2 2][n
11 22 2||»

Wy=11 12 2 2||»n]. (24)
112 2 2|y
1 T 00 0]]ys

The square matrix in eq. (24) is [A], where p labels the representations (rows) and i labels
the classes (columns). For Q,

(el =(11222], (25)
) =111112), (26)
1 1 % % %
1 1 % % %
(25),(26) L) () =1]1 1 % % % 27)
1 1 % % Y
2 2 1 1 1

Multiplying each element in the square matrix [A\7] in eq. (24) by the corresponding element
in eq. (27) (see eq. (17)) yields Table A2.6 without the need to use normalization and
orthogonality conditions.



A3 Character tables for point groups

This appendix contains tables of characters for vector and spinor representations of the
point groups G that are encountered most commonly in practical applications of group
theory in chemical physics. Correlation tables are given separately in Appendix A4.

The character tables are grouped together in the following sections. page
A3.1 The proper cyclic groups C, (n=1, 2, 3, 4, 5, 6); 450
A3.2 The improper cyclic groups C;, C,, S,, (n=4, 6, 8); 452
A3.3 The dihedral groups D,, (n =2, 3, 4, 5, 6); 453
A3.4 The C,, groups (n=2, 3,4, 5, 6); 455
A3.5 The C,,, groups (n=2, 3,4, 5, 6, 00); 457
A3.6 The D,;, groups (n=2, 3, 4, 5, 6, 00); 459
A3.7 The D, 4 groups (n=2, 3, 4, 5, 6); 461
A3.8 The cubic groups T, Ty, Ty, O, O; 463
A3.9 The icosahedral groups Y, Y4, 465

There are no tables for double groups G since these are made unnecessary by the inclusion
of spinor representations. However, there is enough information in Chapters 8 and 11, and in
these character tables, for readers who insist on using double groups to construct their own
tables for the characters of double group representations very easily. The construction of the
additional classes in G = {R, R} is explained in Chapter 8. For vector representations, which
are the irreducible representations of symmetry groups for systems with integral values of the
total angular momentum quantum number j, the characters of classes containing only {R;}
are the same as the characters of the corresponding classes that contain {R;}. For spinor
representations (systems with half-integral total angular momentum quantum number ;)
the characters of classes that contain only {R;} are the negatives of the characters of the
corresponding classes that contain {R;}. As an example, the classes and characters of the
double group Cs, are given in Table A3.1. To derive multiplication rules inG, or to multiply
two matrix representatives R;, R;, requires projective factors [R; ; R;]. Projective factors are
not given explicitly because they may be calculated from the quaternion parameters [4 A]
(Chapter 12), which are obtained from the rotation parameter (¢ n). (See the definition of a
rotation R(¢ n) in the “Notation and conventions” section, pp. Xiii—xx).

Except for doubly degenerate complex conjugate representations, vector representations
are named according to the Mulliken rules, which are explained in Section 4.5. For spinor
representations, and the complex conjugate pairs of vector representations (which are
degenerate through time-reversal symmetry), the notation follows that of Altmann and
Herzig (1994), except that a non-degenerate representation with j=3/2 and a character

447



448

Character tables for point groups

Table A3.1. Characters of the classes of the double group Cs,.

Csy E 2C; 3o, E 2C; 35,
A, 1 1 1 1 1 1
A, 1 1 -1 1 -1
E 2 -1 0 2 -1 0
E,, 2 1 0 -2 -1 0
'Es, 1 -1 i -1 1 —i
’Ey, 1 -1 —i -1 1 i

Table A3.2. Time-reversal classification of representations I, as listed in the column
headed TR in the character tables.

Vector representations correspond to integral values of the angular momentum quantum
number j and therefore to systems with an even number of electrons. Spinor representations
correspond to systems with half-integral j and therefore to systems with an odd number of
electrons. Note that I'"is the complex conjugate of I'.

Extra degeneracy for

If Tand T'" are vector IRs spinor IRs
a real and equal none doubled
b complex and inequivalent doubled doubled
c complex and equivalent doubled none

of — 1 for the rotation C, about the principal axis is called Bs,. In addition to the characters of
vector and spinor representations, the tables include (in the column headed “TR”) the time-
reversal classification of the representations (a, b, or ¢) using the Altmann and Herzig (1994)
criteria. Since the symbols b and c are interchanged in many other books and publications,
this classification is repeated here in Table A3.2. The character tables include the bases of the
vector representations, namely the infinitesimal rotations R,, R, R., the p and d functions,
and Cartesian tensors of rank 2. (The atomic s function is invariant under any proper or
improper rotation and so always forms a basis for the totally symmetric representation.)
Complete tables of spinor bases are given by Altmann and Herzig (1994), and it is recom-
mended that the reader refers to these tables if spinor bases are required. Vector representa-
tions may include complex conjugate pairs named 'E, °E. These pairs are bracketed together
and the real bases given are those of 'E @ E. It may be dangerous to use more than one set of
tables at a time. Though internally consistent, different sets of tables may differ in the naming
of IRs. These tables have been checked against those in Altmann and Herzig (1994) and agree
with them except in the definition of € and the naming of B;/,. The derivation and naming of
IRs for cyclic groups do not necessarily conform with eq. (4.7.7), but results are equivalent.

My aim has been to give in these tables only the most commonly required information.
For character tables for n > 6, Cartesian tensor bases of rank 3, spinor bases, rotation
parameters, tables of projective factors, Clebsch—Gordan coefficients, direct product
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Table A3.3. Rotation parameter (¢ n), quaternion parameters [A A, and Cayley—Klein
parameters a, b for the point group C; (b=0).

Cs R(¢ m) A A, a

E R(0[000]) 1 0 1

cs R(2n/3[00 1]) cos(n/3) sin(7/3) exp(—in/3)
Cs, R(—27/3[001]) cos(n/3) — sin(7n/3) exp(i 7/3)

representations, multiplication tables, and matrix representatives one should refer to the
extensive compilation by Altmann and Herzig (1994). Although correlation tables (com-
patibility relations) are easily calculated from character tables, it is nevertheless useful in
some applications (such as descent of symmetry) to have correlation tables available, and
so correlation tables are included in Appendix A4. Character tables for groups of larger
order (up to n = 10), direct product representations, and Cartesian bases of rank 3 are also
given by Harris and Bertolucci (1978). However, those tables contain only vector repre-
sentations. Other useful sources are: Atkins et al. (1970), Flurry (1980), Kim (1999),
Koster et al. (1963) and Lax (1974).

The character ¥’ (R) is the sum of the diagonal elements of the matrix representative
IV(R) of the rotation R(¢) n),

X (R) = Zl“mm( )s (1
where
jtm . i—m—k k
(]_|_m l(] m)[ a/er k *)/ bk(_b*)

11.8.43 , 2
I R Y iy e ”
in which

(—n)l=00, ifn>0; (—n)l=1, ifn=0. 3)
(12.5.21) a=/—1iA;, b= —A, —iA,, 4)
(12.5.18) A= cos %qﬁ, A= (sin ;QS)n. (5)

If j is an integer, for improper rotations /R, multiply IV (a, b) by (—1Y. If j is a half-integer,
I'(IR) =T'(R) (Pauli gauge). For cyclic groups,

(12.8.3) U (a,0)=d™ (@Y. (6)

Example A3.1 Find the character table for the cyclic group Cs.
The calculation of a is in Table A3.3. The irreducible representations are 1-D,
and x(R) follows from eq. (6). From (6), x(R)=d&'*" (a")’ ™. For j=0,m=0, x(R) =1,
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VR, so that the basis |0 0) gives the totally symmetric representation A. For the basis |1 1),
IV (a) = @, therefore x(Cy) = ¢, x(C;y) = €*, where £ = exp(— i 2n/3). Similarly, for a
basis |1 1), T, (a) = (a*)*, x(C) =e*, x(C5) =e. For the spinor basis |I, 1/5),
I,.(a) = @', X(CF) = expli /3) = . x(C5) = —&%5 for |1 1), Ty, (@) =
\(C) = expl(—i n/3) = =", X(C7) = —e.  For ¥ %2}, T (a) = &, x(CY) =
exp(—3i n/3) = —1,and x(C5) = exp(in) = —1.

A3.1 The proper cyclic groups C,,

I G
C E TR Bases
A 1 a any f(x, y, z)
Al/z 1 a
2 G
G, E C TR Bases
A 1 a 2R, %)% 2 xy
B 1 — a X, ¥, R, Ry, yz, zx

'E,, 1 i b
’Ey, 1 —i b
3 G
Cs E ¢ C; TR  Bases
A 11 1 a z, R, x>+ )% 22

. Lo T P ) R 0 0 )
2E 1 E* E* b 5 V), x, Ry), (Vz, ZX), (X)), V
]E'/z 1 —&, —€ b
2E1/2 1 —¢ —€ b
B, 1 -1 -1 a
€ =exp(—i2n/3).
4 Cy4

Cy E C C, Cy TR Bases
A 1 1 1 1 a zZ, R, x*+)*,z°
B 1 -1 1 -1 a Xy, x2—y?

1 .

E 1 —i -1 i b }

Rx, Ry), (vz,

- L A SRCSONCNY NGRS
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Table 4 (cont.)

Cy E & G, o TR Bases
'Ey, 1 —i : b
’Ey, 1 : i b
'Ey, 1 - —i — b
’Ey, 1 - i —€ b

€ =exp(—i2n/4).

5 Cs
Cs E C&f CcF o C; TR  Bases
A 1 1 1 1 1 a z, R, x>+, 2
] * *
E, 1 6 € e 6 b
* * X, ¥), (R, Ry), (yz, zx
- e . ) b}(y)( ), (2, 23)
l * *
E, 1 € 1) 6 € b } 5 o
* " Xy, X° —
2, 1 &6 5 e p SOy
'Ey, 1 —¢ 5 6 —&" b
’Ey, 1 - 6 & —e b
'Ey, 1 & € € -0 b
’Ey, 1 =6 € e -l b
Bs, 1 -1 1 1 -1 a
6 =exp(—i2n/5); e = exp(—idn/5).
6 Cs
Cs E cs i G Cy C; TR Bases
A 1 1 1 1 1 1 a R, X*+)A 7
B 1 -1 1 -1 1 -1 a
Ey I - e -1 & - b} (5. 7), (Re, Ry), (v2, 20)
g, 1 —& e -1 € — b
l * *
E, 1 € € 1 € € b} v x2 — 2
’E, 1 e e 1 € e b (. )
IEVZ 1 —ie" —& — ie b
2E1/2 1 ie —" -1 —€ —ie" b
'Es, 1 i -1 i -1 i b
°Ey, 1 i -1 -i -1 —i b
IES/Z 1 —ie —" i —¢ ie" b
2Es/Z 1 ie" —& - =" —ie b

€ =exp(—i2n/3).
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A3.2 The improper cyclic groups C;, C,, S,

1 C;

G E I TR Bases

A, 1 1 a Ry, Ry, R, x%, y%, 2%, xp, yz, 2x
A, 1 —1 a X, ¥,z

Ay, o 1 1 a

Ay 1 -1 a
m  C
C, E on TR Bases
A/ 1 1 a X, ), Rza xza y29 ZZ’ Xy
11'\’ ! 1 —! a z, Ry, Ry, yz, zx

El/2 1 1 b
’E,, 1 —i b

4 S,

S4 E Sy C Sy TR  Bases

A 1 1 1 1 a  R.X+)y%7

B 1 -1 1 -1 a Z, XY, X" —y

1 ; ;

2E 1 —1 —1 1 b (xa )/), (RX9 Ry)a ()/Z: ZX)
E 1 i -1 —1 b

'Ey, 1 € —i € b

2 *

Ey, 1 € i €, b

'Es, 1 —e, —i —€ b

2E3/z 1 —& i —€ b

e =exp(—imn/4).

6 S

Se E c Cy I Sg S¢ TR Bases

%’ i ] I i 1 I Z R., x>+, 2

g € € € € } R, R, z,2x), (xp, x> — y?

= L i L . (R, Ry), (vz,2x), (xp,x" — »*)
A, 1 1 1 -1 -1 -1 a z

1 * *

E, 1 € e -1 —& —¢ b }

* * X,
g, 1 € e -1 —¢ —€ b (x.)
IE*/Z, B 1 -« —" 1 — — b
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Table 6 (cont.)

Se E Cf ¢G I S S TR Bases

By, o 1 - - 1 € - b

By, . 1 -1 -1 1 -1 -1 a

]El/z’ u 1 — " -1 € —" b

*Ev, 4 1 - - -1 —£ e b

By, . | . e | 1 a

e =exp(—i2n/3).

8§ Sy

Sg E S ¢ S G S§ ¢y St TR Bases
A 1 1 1 1 1 1 1 1 a R.x¥*+)4 7
B 1 -1 1 -1 1 -1 1 -1 a z

1 . * . %

E, 1 —¢ —i € -1 € i —€ b }

* * x’ ’ RX’R
2E, 1 —¢ i € -1 e -1 —¢ b (), € )
1 . . . .

E, 1 —i -1 i 1 - -1 i b } S
g, T T R i o1 - p S )
1 . * . *

E; 1 € —i — -1 —¢ i € b }

* * Z, ZX
2E, 1 e i — -1 - = € b v )
'Ey, 16 e i i i 6 b
’Ey, 14 e —i" i i6 & b
'Es, 1 —i8" - =6 i & - 6 b
’Ey, 16 - =8 - =5 - - b
'Es, 1 i = 5 i & —e —i6 b
°Ey, 1 -6 —¢ 5 i § — i b
'Ey, 1 -6 e -6 i i e =6 b
’Ey, 1 -4 £ 6" —i -6 & =& b
6 =exp(—in/8); e =exp(—in/4).

A3.3 The dihedral groups D,,

222 D,

D, E C,, Cox Cay TR Bases
A 1 1 1 1 a P
B, 1 1 -1 -1 a z, R, xy
B, 1 -1 -1 1 a » R, zx
B; 1 — 1 —1 a X, Ry, yz
E,, 2 0 0 c

453
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32 Dy

Ds; E 2C; 3¢ TR Bases

A, 1 1 1 a P 2

A, 1 1 -1 a ZR.

E 2 —1 0 a (xa y): (Rx: Ry): (Xy, x2_y2)’ (yZ> Z)C)
Ey, 2 1 0 c

'Es, 1 -1 i b

’Ey, 1 -1 —i b

422 Dy,

D4 E 2C4 C2 2C2/ 2C2// TR Bases

A 1 1 1 1 1 a X447

A, 1 1 1 -1 -1 a zR,

B, 1 -1 1 1 -1 a x—)

B, 1 -1 1 -1 1 a xy

E 2 0 -2 0 0 a (%), Ry Ry), (2, 2x)
E,, 2 2 0 0 0 ¢

Ey, 2 2 0 0 0 ¢

52 Ds

Ds E 2Cs 2C 5Cy TR Bases

A 1 1 1 1 a x2+y2, 2

A, 1 1 1 —1 a zZ, R,

E1 2 20% 2C§ 0 a (xay)9 (Rxa Ry)a (J’Z> ZX)
E, 2 2c4 2¢2 0 a (y, x*—57)
EI/Z 2 —2cg 2c§ 0 c

E3/2 2 —26% 26? 0 c

'Es, 1 -1 1 i b

’Ey, 1 -1 1 —i b

¢n=cos (mmn/n). This economical notation was used by Altmann and Herzig (1994) and
I have adopted it in order to reduce column within the tables.

622 D¢

D¢ E 2C 2C; C, 3G’ 3CY TR  Bases

A, 1 1 1 1 1 a xX*pA7
A, 1 1 1 -1 -1 a zR,

B, -1 1 -1 1 -1 a
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Table 622 (cont.)

D6 E 2C6 2C3 C2 3C2, 3 Cz// TR Bases

—1 1 -1 -
-1 2
—1 -1 2
V3 10
0
0

B,
E
E,
E‘/z
E3/2
ES/z

(x, »), (Rx, Ry), (vz, 2x)
(xp, =7

0 -2
/3 1

NN NN N
(= e = =
(= e e =
o 0 o0 Q Q 8

A3.4 The C,, groups

2/m C2h

C2h E C, 1 o TR Bases

2 2 2
x’y7z’xbeZ
R R, yz, zx
z

X,y

1 -1 -1
-1 -1 1

i -1 —i
—1 -1 i

e2
o
— e e b e = e
—
—
—
ST TR QR

3/m C3h

Cs, E 5 Cy on Sy Sy TR  Bases

R, ¥ +)%, 2
b r?)

z

} (R, RY), (2, 2x)

D
=
—_—_, e e e e e e
|
™
|
™
-
—
®
|
—
®
(SRS SRS SN ST IR IR R SR RS N

& =exp(—i2n/3).
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456

Can

4m

TR Bases

Oh Sz—

Sy

oy

G

=
N
o -
N N
S
SN
y, ~
Fo &
(o e}
== R
f an
S
~ =
SRS TR
T e -
|
o
[
—_— o
[
—_— o —
—
—_—— — —
[
—_ e
I
—_— o —
S
% Sory )
<M= q&

z

-1 a
1 a

-1
-1

-1
-1

b
b

i
i

-1
1

Lo SIS S G N
* * * *
W W W WY Ww L w
[
L T e T L B T R
* *
WL Wy e W
[ .
_ o
| B
* * * *
W W W W W W W w
[
D
|
* * * *
W W Y L W W w W
[ [
o
% S %% & I I I 03
A A 4 A& noa A
I T e A e
[SaysalysapycapycaRaa Y aysd
— N o~ &N —~ &N —~ &

e =exp(—in/4).

CSh

5/m

Bases

TR

+ @2+ @2- -
S5 S5 5 5

Oh

s

G Ghoar

E

C5h

R., x2+y2, 2

>, )

(xy’ )C2 _y2)

(R«, R)), (yz, zx)

~= o~ ~=

SIS S S S N S N S B S B S S S I SR SIS I SIS SRS

* * * * * * *
—w iy WY w2 BRI L LRR LYY
[ N | I I |
* * * 0o w ity o ow o w
.I.EEQOvO.I,.ﬁtc,ccOJOl.lll.l.lll.ll
| I | | | I |
* % PR * * * *
— LW~ BTN RR WY L e R
[ N | I I |
* * * * E*E*QOS 5*8*55
—_ 0 W 81,2\04 W Jc SRR E R R
| I | | I |

i
—i
i
i
i
i
i
i
i
—i

* * * * * *
LB ORI GRZe 7o il O =R 2R e B R e T VR V2o R o]

* *
— W W

* *
—n0 0 W W

— e —

*® * *
LI C RGN el e e R R O T B CER R e R/ o)

* *
—0 0 W W

®  ® * %
W W == OO W W

€ = exp(—idn/5).

6 = exp(—i2n/5);
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6/m C6h

Cen E C& ¢ & ¢ ¢ I S S o S& S TR Bases

A, 11 111 1 11 1 11 1 a R, XH7
B, 1 -1 I -1 1 -1 1 -1 I -1 1 -1 a

'Ei; 1 S, - € 1 e —e -1 = € a (R, Ry), (v2, %)
By, 1 e e 1 e - -1 -—¢ & a } R
"Epe 1 —¢ —" 1 — =< 1 —e —" 1 — —¢ a } o, =32
2E2g 1 - —¢ 1 — —¢ 1 - —¢ 1 - — a ’

A, 1 1 1 1 1 1 -1 -1 -1 -1 -1 —1 a z

B, 1 -1 1 -1 1 - -1 1 —1 1 -1 1 a

EL, 1 . € -1 - € 1 e —¢ a )

2, 1 - -1 - S e 1 e — a } R

By 1 —e = 1 — - -1 ¢ e -1 € & a }

2By, 1 - —¢ 1 - —¢ -1 g e -1 e € a

lEl/Z ¢ 1 —ie"  —¢ i = i€ 1 —ie" —¢ i = ie b

By, | ie —& —i —e —ie 1 ie —& —i —e —ie" b

B R e N e B 1 - -1 - -1 i b

o R e I B I S S e S )

"By, 1 —ie"  —&" i —e ie" 1 —ie =€ i —e e b

ZES/Z,g 1 ie" —e - - —ie 1 i’ —e -1 - —ie b

"By 1 A i - i -1 ie" e - & —ie b

2E1’/2’u 1 ie - i —e —iet -1 —ie e i € ie" b

By, 1 - -1 i -1 i -1 i =i 1 - b

By, 1 i -1 - -1 i -1 —i 1 i 1 i b

1E5/Z D B i —e ie -1 ie e —i e —ie’ b

By, 1 ie" —e i - —ie -1 —i € i & ie b

e =exp( —in/3).

A3.5 The C,, groups

2mm  Cy,

Cyy E Cs, Oy oy TR Bases

A, 1 1 1 a z, xz, y2, 2

Ay 1 1 - -1 a R., xy

B, 1 —1 — 1 a x, Ry, zx

B, 1 -1 -1 a v, Ry, yz

Ey2 2 0 0 c

3m C3v

Csy E 2C; 30, TR Bases

A, 1 1 1 a z, x2+y2, 2

A, 1 1 -1 a R,

E 2 -1 0 a (xa .y)’ (Rxs Ry)’ (xya xz_yz)’ (st Zx)



458

Character tables for point groups

Table 3m (cont.)

Csy E 2C; 30, TR Bases
Ey, 2 1 0 c

'Ey, 1 -1 i b

’Ey, 1 -1 —i b

For n =1z, 30, are g4, 0., o¢ in Figure 12.10.

4dmm  Cyy

Cyy E 2C, G 20, 204 TR  Bases

A 1 1 11 1 a  z,x*H7 7
A, 1 1 1 -1 -1 a R,

B: 1 -1 11 —1 a x*—)

B, 1 —1 1 1 1 a Xy

E 2 0 -2 0 0 a (x, ), (R,, Ry), (yz, zx)
E, 2 2 0 0 0 c

Ey, 2 2 0 0 0 c

Sm CSV

Cs, E 2C;s 2C2 50, TR Bases

A 1 1 1 1 a z, ¥+, 2
A, 1 1 1 -1 a R,

E, 2 2¢2 2¢t 0 a (. ), (Ry, Ry), (yz, 2x)
E, 2 2ct 2¢2 0 a xy, xX2=y*
Ey, 2 -2t 2¢2 0 c

Es, 2 72c§ 2c‘51 0 c

'Es, 1 -1 1 i b

’Ey, 1 -1 1 —i b

¢ = cos(mm/n).

6mm  Cegy

Cev E 2C¢ 2C; C, 304 30, TR Bases

A, 1 1 1 1 1 1 a z,x*H% 7
A, 1 1 1 1 -1 1 a R

B, 1 -1 1 -1 -1 1 a

B, 1 -1 1 -1 1 1 a

E, 2 1 -1 =2 0 0 a (5,1, (RyR), (2, 2x)
E, 2 -1 -1 2 0 0 a  (xy,x*=°)
E.. 2 3 1 0 0 0 c

Ey, 2 0 -2 0 0 0 ¢

Es, 2 _\3 1 0 0 0 c




A3.6 The D,, groups

&

2Co(9)

G

g
2

TR

Bases

E,(ID)
Ex(A)
E3(®)

Ey,.
E@nr1)2

NN NN N = —

1

1

2cos ¢
2cos 2¢
2cos 3¢
2cos ng
2cos Y20

2cos ()¢

-2

-2
2(=1"

SO OO OO = —

O 0 Q {8 ” Q Q

2,.2 2
Z,X+y, Z

R

(x, ), (Ry, R)), (2, zx)
(y, x*—y7)

n=1,2,3,...

A3.6 The D, groups

mmm Dy

CZZ

C2x

Q
N

Ox

0.

>—]
=

y Bases

E‘/z,u

o]
[ S I S R T T T T RS

1
1
-1
-1
1
1
-1
-1
0
0

1
-1
-1

1

1
-1
-1

1

0

0

—
I

O O = o e =

1
-1
-1

1
-1

1

1
-1

1

-1

-1
-1

-1

0
0

2 2 2
x’y ’Z
RZ"xy
R,, zx

Ry, yz

O 0 Q 2 2 Q2”2 QR

6m2

g
=

w)
w
=

N

2C;

3¢}

Oh

28;

30,

TR

Bases

e2}
NN NN~ =N ==

S O OO = = O = -

[
S O ON = =N ==

S O OO = = O = -

QO 0O 0 Q8 ” Q8 * * 9

x2+y2’ Z2
R.
(X, y)> (x}’, Xz*yz)

z

Ry, Ry), (yz, zx)

459
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Character tables for point groups

4/mmm  Dyy

Dy, E 20, C 2C, 20y I 28 o, 20, 204 TR Bases

Al 1 1 1 1 1 1 11 1 1 a X*+)47
Asg 1 1 1 -1 -1 1 1 1 -1 -1 a R

B, 1 -1 1 1 -1 1 -1 1 1 -1 a x*—)?
Bsg 1 -1 1 -1 1 1 -1 1 -1 1 a xp

E, 2 0 -2 0 0 2 0 =2 0 0 a (R.R),(yz 2x)
AL 1 1 1 1 1 -1 -1 -1 -1 -1 a

A, 1 1 1 -1 -1 -1 -1 -1 1 1 a z

Bi. R 1 1 -1 -1 1 -1 -1 1 a

B,, 1 -1 1 -1 1 -1 1 -1 1 -1 a

E, 2 0 -2 0 0 -2 0 2 0 0 a (xy)

Ey, ¢ 2 2 0 0 0 2 V2 0 0 0 ¢

Ey, . 2 .\ 0 0 0 2.2 0 0 0 ¢

Ey, 4 2 V2 0 0 0 —2_y2 0 0 0 ¢

Ey, 4 2 _\ 0 0 0 -2 2 0 0 0 ¢

10m2 Ds,

Dy, E 2Cs 2C¢ 5C, o,  28s 282 50, TR Bases

A, 1 1 1 1 1 1 1 1 a X442
A, 1 1 1 -1 11 1 -1 a R

E; 2 22 280 2 24 20t 0 a ()

E,,/z 2 2c§ 2c§ 0 2 202 20% 0 a (xy, x2 —yz)
Al 1 1 1 1 -1 -1 -1 —1 a

A, 1 1 1 -1 -1 -1 -1 1 a z

E, 2 22 2t 0 2 2k —act 0 a (R, R), (yz,2%)
E, 2 2t 22 0 -2 2t —acd 0 a

E,, 2 =28 230 0 2l 2cio 0 c

Ey, 2 -2 24 0 0 —2ciy 2cio 0 c

Es, 2 -2 2 0 0 0 0 0 c

Ey, 2 -2 2¢8 0 0 28 —2¢k 0 c

Ey, 2 =28 230 0 —2ci9 —2clo 0 c

e = cos (mm/n).

6/mmm  Dgy

D¢n E 2Cs 2Cs C, 3C, 3C) I 2S5 2S¢ o 304 30, TR Bases

A 11 1 1 1 1 1 1 1 1 1 1 a X*+)47
Ay 11 1 ! -1 -1 1 1 1 1 -1 -1 a R

B, | —I 1 -1 1 -1 1 -1 1 -1 1 -1 a

By, | -1 1 -1 -1 1 1 -1 1 -1 =1 1 a

E, 2 1 -1 -2 0 0 2 1 -1 -2 0 0 a (R,R) (yz2x)
B,y 2 -1 —1 2 0 0 2 -1 -1 2 0 0 a (x—
A, 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 a

Ay, 11 1 1 -1 -1 -1 -1 -1 -1 1 1 a z



A3.7 The D,4 groups

Table 6/mmm (cont.)

461

o

D6h

[\
e
[\
e
e

3¢ 3¢y

I 28

286 304

Q
=

30,

TR Bases

Blu
B2u
Elu
E2u
E'/z~<§7
E3/2~g
Es/zsg
Ey,

E3/ .U
Ej/z k7

DN N NN NN~ —

| [

SeodSeGLoLL
—

cCo o oo ow

OO O OO OO~ =

[ e R = = e e

-1
-1
2 _
-2

2 V3

_.
|

|

[\S]
SO O OO O~ =
[ e R e = = e e e

OO O OO OO0~ —

>, »)

o0 o0 oo 0 Q8 Q9

oo /mm

Dooh

Dooh

E 2C(9)

o000y,

285o()

ooC,’ TR Bases

Alg(zg)
A2g(E;)
Elg(Hg)

EZg(Ag)
E3g((1)g)
E, ¢
Alu(zr)
Ax(%,)
E, (L)
EZU(AM)
E?m(q)u)
En, u
Ey, ¢
Eoni1)2, o
By, 4

E(2n+1 )2, u

1
1
2

NN D NN~ —DNDDNDDN

1
1
2cos ¢

2cos2¢
2cos 3¢

2cosng 2(-1)"

1

1

2cos ¢
2cos2¢
2cos 3¢

2cos ng 2(-1)"

2cos 1¢
2cos ()¢
2cos 1¢
2cos (2)¢

-1

S O o oo oo o, ,OOoO

2(—

1y’

1
1
—2cos ¢

2cos2¢
—2co0s 3¢
2(—1)"cosng
-1

-1

2cos ¢
—2c0s2¢
2cos 3¢
—2(—1)"cosn¢
2sini¢
2sin(2H) ¢
—2sinlg
—2sin(2H) ¢

N = =

1 a xX+)°7
-1 a R.
(Rs Ry),
(yz, zx)
(v, 2% =)

(=]
1N}

[=Eei e =l ==l e e = =]

>, )

a6 6 060 Q9 Q QR 2

n=1,2,3,

A3.7 The
Z2m D2d

D,q groups

Dyqg

E

284

20'd TR

Bases

A
Ay
B,
B,
E
E,.
E3/2

NN~ — —

-1
-1

V2
-2

|
C O~ = =

(= I .

a0 Q8 2 2 ”

x2+y2, 2
R

X —

o

(S}

2

z, Xy
(*x, ), (Re, R,), (2, zx)




462  Character tables for point groups

§m D3d

Dsq E 2C; 3¢ I 2S¢ 304 TR Bases

Al 11 1 1 1 1 a X477

Asg 1 1 -1 1 1 -1 a R,

E, 2 -1 2 -1 a (R, R), (xy, x> —)7), (vz zx)
Aw 11 1 -1 -1 -1 a

Az, 1 1 -1 -1 -1 a z

E, 2 -1 0 -2 1 0 a (x,p)

Ey, ¢ 21 0 2 1 0 ¢

'Ey,. ¢ 1 -1 i 1 -1 b

By, ¢ | 1 -1 - b

Ey, 4 2 1 0 -2 -1 ¢

'Es, u 1 -1 i -1 1 - b

By, u I R | 1 i b

82m D4d

Duq E 2C, C, 4G 283 2S; 404 TR Bases

A 1 11 1 1 11 a X447
A, 1 1 1 -1 1 1 -1 a R,

B: 1 11 R -1 -1 a

B, 1 1 1 -1 -1 -1 1 a z

E,| 2 0 -2 0 -2 V2 0 a (x)

E, 2 -2 2 0 0 0 0 a (G, x*—)%
Es 2 0 -2 0 V2 —v2 o0 a  (R,R), vz zx)
Ey, 2 V2.0 0 2 28 0 ¢

Es, 2 _\/E 0 0 202 72cé 0 c

Es, 2 _\/E 0 0 7203 2cgg 0 c

Ey, 2 V2 0 0 -2 —2¢8 0 ¢

e = cos(mm/n).

gm D5d

Dsq E 2Cs 2C2 5C¢ I 28, 2S0 S04 TR Bases
Al 1 1 1 1 11 1 1 a xX+)47
Ase 1 1 1 -1 11 1 -1 a R,

Eig 2 25% 2c‘51 0 2 2c§ ch 0 a R.R, (yz, zx)
Eae 2 24 22 0 2 28 22 0 a xpxX—)
A 1 1 1 1 -1 -1 -1 -1 a

Asy 1 1 1 -1 -1 -1 -1 1 a z

Ei, 2 2c¢2 2t 0 -2 -2 -2¢8 0 a (x)
E,, 2 26‘5‘ 2c§ 0 -2 72c‘5‘ 720§ 0 a

Ey, ¢ 2 2t 2c 0 2 —2¢t 2¢2 0 c

Es, ¢ 2 —2c¢z 2t 0 2 —2¢2 2t 0 c



A3.8 The cubicgroups T, Ty, Ty, O, Oy, 463

Table 5m (cont.)

D5d E 2C5 2C§ 5C2/ I 2S%0 2S10 SO'd TR Bases

-1 1 i 1 -1 1 i
-1 1 —i 1 -1 1 —i
—2c¢t 2c2 0 -2 2¢t =22 0
-2c2 2t 0 -2 2¢2 =280
-1 1 1 -1 1 -1 —i
-1 1 —i -1 1 -1 1

1
ES/z»g
’E
2.8

El/2s“
E3/2s“

1
ZES/Z’u
ES/Z»“

—_— N N — —
SRS R SO S S ]

¢ = cos (mm/n).

EZm D6d

Deq E 2C, 2C; C, 6C 285, 28, 2S5, 604 TR Bases

A, 1 1 1 1 1 1 1 1 1 a X*+)y° 72
As 1 1 11 -1 1 1 1 -1 a R.

B, 1 1 11 1 -1 -1 -1 -1 a

B, 1 1 11 -1 -1 -1 -1 1 a z

E, 2 1 -1 =2 0 _.\3 0 V3 0 a (xy

E, 2 -1 -1 2 0 1 =2 1 0 a (x*—))
E; 2 =2 2 =2 0 0 0 0 0 a

E, 2 -1 -1 2 0 -1 2 -1 0 a

Es 2 1 -1 =2 0 V3 0 -3 0 a (R,R), (yz2x)
E,, 2 3 1L 0 0 2, V2 203, 0 ¢

Ey, 2 0 -2 0 0 V2 -2 —v2 0 ¢

Es, 2 /3 1 0 0 2¢3, —\2 20{2 0 c

Ey;, 2 V3 1 0 0 —2c?2 V2 —20{2 0 c

Es, 2 0 2 0 0 2 V2 V2 0 ¢

EII/2 2 \/§ 1 0 0 —2Ci2 — 2 72C?2 0 C

e = cos(mn/n).

A3.8 The cubicgroups T, T;, Tq4, O, Oy,

23 T

T E 3C, 4C{ 4C; TR Bases

A 1 1 1 1 a X4y 47

1 *

E 1 1 € € b 22 _

E 1 1 e &b }(x V37 =r)

T 3 -1 0 0 a (*x, y, 2), Ry, Ry, R.), (x, yz, 2x)
E., 2 0 1 1 c

'Fy, 2 0 £ € b

’Fs, 2 0 € £ b

e =exp (—i2n/3).



464  Character tables for point groups

m3 Th

—
=
=y

3C, 4CF 4C;

~

30 4S; 4SF TR  Bases

—_

a Py 47
b 2 2

. — ,322—12
b} (" —y )

€
0 a (RyRy,R), (xp,yz, 2x)
Xyz

*
*
o™ =

|
— oo oo
*

*

S OO OO,

(x5, »,2)

— o M 0

E‘/z, g

*

1
Fz/zsg

*

Fs/zag

= o O™

E‘/z, u

1
2F3/2, u
Fs/z, u

*

*

[NS I NI NG T NS I N I N R O R O e
M m =M MmO = OO0 M —= O M O =
U [

NN R NN WS = = W = —
NN e =K==

ST TS0 QR

m M

€ =exp(—i2n/3).

Z3m Td

Tq

Ty

3G,

(e
S
[=))
Il
D
2
—
~

Bases

A
Ay
E
T,
T,
Ey,
Es,
Fy,

X2+y2+22

& —y%327 =)
(Rv, Ry, R)
(x’ Y, Z)’ (Xy, Yz, ZX)

BN W W ==
I

O OO = =N -

—_ O O =

S OO = = O =

o 0 0 Q8 2 Q& Q8

432 O

o
by

3G,

o0
a
N
o

6C)

.—]
=

Bases

xz—i—yz—i-y2

(xz 7y2’ 322 - rz)
(. »,2), (R, Ry, R.)
(xy, yz, zx)

Ey
F3/ 2

O 0O 0 Q8 8 ” 9

—

N}
BN W W ==

|
[ T T e R e N
—_— —_ —, OO = = =

|

N] —
SO OO, —~ O = —




A3.9 The icosahedral groups Y, Yy

432 Oy

465

t

3G,

8Cs

30’h

8Ss

654

604 TR Bases

BN N B D DNDWWNRFR—WWN——
|

_ e e e O O ek e OO = =

|
o -

I | I
—_—_ O = = = e

S

S

|
NN
NN
cC o oo ocOoR~R~,O R~~~ —~O

S

[ T N
[\ S S N\ Y S

(=l el e e ==

— o O, m, —, OO = = -

[
ek

SANES PSSR

I I
—_ O = m O = -
|

OO OO O O e O o ek ek ek O e

QO 0 060 60 0 Q9 Q2 Q 228 Q ” ”

x2+y2+22
(xz_yzr 322_”2)

(R, R, R.)
(xy, yz, 2x)

(x, »,2)

A3.9 The icosahedral groups Y, Yy,

53 Y

Y

b

12Cs

12¢?

20C;

15

G

TR

Bases

A
T,
T
F
H
Ey,
E7/2
Fy,
IS/z

AN PR DD UB A W W=

1 1
2(:; 2c§
23 2cl
1 -1
0 0
20% 2c§
2c3 2cd
1 -1

-1 1

1
0
0
1
-1
1
1
-1
0

SO OO~ O = =~

o0 o0 60 8 ” Q Q

x2 +y2 +ZZ
(x» Y, Z), (Rxa Rya Rz)

(x2 —yz, 32— r2, XY, ¥z, ZX)

" = cos(mm/n).

53m Yy

E 12Cs

12¢?

20C;

12850

208

150 TR

Bases

1
3 2l
3 2
4 -1
5
1
3

1
2cs

2¢3
2c}
-1

3
2cs

(=R ==

2¢3
2ct
-1

-1
—2¢3

S — mk—_= O O

1
1
1

0
1

QI Q2L

4y 422
(R R, R.)

five d orbitals*

.y, 2)



466  Character tables for point groups

Table 53m (cont.)

Yh E 12C5 12C§ 20C3 15C2 1 12S?0 12S10 20S6 1506 TR Bases

T, 3 2c§ ZC; 0 -1 -3 7202 720; 0 1 a
F, 4 —1 —1 1 0 —4 1 1 -1 0 a
H, 5 0 0 -1 1 -5 0 0 1 -1 a
E,. g 2 2c§ 2(:% 1 0 2 2cé ch 1 0 c
Ey o 2 23 2 1 0 2 23 2 1 0 ¢
Fy, o, 4 1 —1 -1 0 4 1 -1 -1 0 c
Iy, o 6 —1 1 0 6 —1 1 0 0 c
Ex/z_ u 2 2cé 2c§ 1 0 -2 —20% —2c§ —1 0 c
Epo 2 28 2 1 0 -2 228 -—2¢8 —1 0 ¢
Fy, . 4 1 —1 -1 0 —4 -1 1 1 0 c
Ly, . 6 —1 1 0 0 —6 1 -1 0 0 c

“Five d orbitals = (x> —y2, 32212, Xy, yz, zx). cif = cos(mm/n).



A4 Correlation tables

The following tables show how irreducible vector representations of point groups are
re-labeled or reduced when the symmetry of the point group is lowered. The tables are in
the reverse order to that given at the beginning of Appendix A3. For groups with pairs of
complex conjugate representations, E means the direct sum 'E @& 2E, and similarly for
E,and E,.

467



468

Correlation tables

Oh (0] Td Th D4h D3d

A A A Ag Al A

Ay A, A, A, By, Age

E, E E E, A1, ® By, E,

Ty, T, T, T, 2e®E, Ay BE,
Tag T, T, T, B,, ® E, A, ®OE,
Alu AI AZ Au Alu Alu

A2u A2 Al Au Blu AZu

Eu E E Eu Alu 2] Blu Eu

Tlu Tl T2 Tu AZu 2] Eu A2u 2] Eu
T2u TZ Tl Tu BZu 2] Eu Alu 2] Eu
o) T D, D,

A A A, A

E E A, ©B, E

T, T A, ®E A ®E
T, T B,&E A ®E
Td T D2d C3v S4

Ay A A A A

A, A B, A, B

E E A @B, E AGB
T, T A, ©E A, ©E ASDE
T, T B,®E A @QE B@®E
Ty T Dy, Se

Ag A A, Ag

E, E 24, E,

T, T By, ® By @ B, A BE,
Au A Au A"‘

E, E 2A, E,

Tu T Blu 2] B2u 2] B3u Au S2] Eu
T Dz C3

A A A

E 2A E

T B, ®&B,®B; A®DE




Correlation tables

469

Deqg Ds Cev Dog
Ay Ay Ay Ay
Ay Ay Ay Ay
B, Ay Ay B,
B, Ay Ay B,
E, E, E,; E
E, E, E, B, ®B;
E; B ® B, B, ® B, E
B4 E, E, ALDA;
Es E, E, E
Dsq4 Ds Csy
Ay Ay Ay
2g Ay Ay
Eig E, E;
Eog E; E,
1u Ay Ay
A2u A2 Al
1u E, E,
E2u E2 E2
Dygq Dy Cav Sg
Ay Ay A, A
B, A A, B
E, E E E,
E, B, ®B, B, &B; E,
E, E E E,
D34 Ds Csy Se Cs Con
Aig Ay A, A, A A,
2 A, A, A A B,
. E E E, E A, BB,
A A A, A, A A,
A2u AZ A1 Au A Bu
E, E E E, E A, ®B,




470

Correlation tables

Dsg S4 D, Cay

Ay A A A4

A, A B, A,

B, B A Ar

B, B B, A

E E B, ®B; B, ®B,

D D¢ Du’ D’ Ca  Co  Dsg” D" Dy Cof
Ay A A A A, A A, A, A A

A2g A2 A’Z A/2 Ag A2 A2g AZ& Blg A2

By, B/ Al A} B, B, Ay Aig B, B,

B,, B, Al Al B, B, Al Asg B,, B,

E, E E” E" E, E E, E, B,,®B;, B @B,
E,, E, F E B, E, E, E, A By, ALDA,
A]u Al A,{ Alll Au AZ Alu Alu Au A2

A2u A2 A’z’ Ag Au Al A2u A2u Blu Al

B B, A A B, B, Ay, Ay, B3, B,

B2u BZ A’z All Bu BZ Alu A2u BZu Bl

Ei, E; E' E' Ei, E; E, E, By, ® By, B,®B;
E2u E2 E// EH E2u E2 Eu Eu Au 2] Blu A1 2] A2
“Ch bCé’; oy — ox.

Dsp, Ds Csy Csn Cs G’

A, A, A A A A

AL A, A, A’ A B,

E| E, E, E E, A OB,

E} E, E, E} E, A ®B,

Al A As A A A,

Al A A A" A B,

E/ E, E, E/ E, A, @B,

E/ E, E, EJ E, A, OB,

“ oy — oy.



Correlation tables 471

Dan  Can Dy, Doy Dy” Dag”  Ca” Ca” Con' Cay
Ay A, A A, A A A, A, Ag A
Ay A, By, By, A, A, A, B, B, A,
By Byg A, Big B, B, A, A, B, B,
22 Fg ) Ag Ig B, B, Ay B, A, B,
g E,®E; Byp®Bs, Byg®Bsz E E 2B, A,®B, A,®B, E
Alu Au u u BI Bl Au Au Au A2
A2u Au Blu Blu BZ B2 Au Bu Bu A1
Blu Bu Au Blu Al A2 Au Au Bu BZ
B2u Bu Blu Alu Al A2 Au Bu Au Bl
E, 'E,®’E, B, ®Bs, By ®B; E E 2B, A,®B, A®B, E

“Cy " Chi ey

D3h D3 C3h C3v C2v Cs“ Csb C3
Al A A A A A A A
A, A, A A, B A A A
E E 'Ee’ E A ®B, 24 A$®A’ 'E}’E
Al A A Ay, A, A" A A
Al A, A A B, A A A

E// E IE// D 2E// E Az o Bz ZA// A/ o A// lE D 2E

D2h DZ CZhU CZh b CZhL C2v “ C2v b C2vl
Ae A A, A, A, AL A A
B, B A, B, B, A, B, B,

2g B> B, B, A, B, B, A,

3g B; Bg Ay Bg B, A, B,

u A Au Au Au A2 A2 A2
Blu Bl Au Bu Bu AI B2 Bl
B2u B2 Bu Bu Au B2 Bl Al
B3u B3 Bu Au Bu Bl Al BZ
“ C2z; b C2x; ¢ C2y-

C6v C6 C3vu C.’yv/7 C2v(

Al A Al A1 A1

A, A A, A, A,

B, B A A, B,

B, B A, A, B,

E, E, E E B ®B;
E, E, E E A DA,

a . b .c
Ov; 0g; " Oy — Oy.
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Correlation tables

CSV CS Cs
Ay A A
A, A A
E, E, A oA
E, E, A DA
C4v C4 C2v “ C2v b
A] A A1 Al
A2 A A2 A2
B 1 B Al A2
B2 B A2 AI
E E B, @®B; B, @®B;
“oy; P og
C3v C3 Cs
Ay A A
A, A A"
E E A A’
Cay C C,’ c,’
A A A A
Az A A A
B, B A A
B, B A" A
“oy; " ox
Cen Cs Csh Se Con
A, A Al A, A,
B, B A Ag B,
E, E, E E, 2B,
2 E, E/ E, 24,
A, A A A, A,
Bu B A’ Au Bu
EL. E, E E, 2B,
E,, E, E" E, 2A,




Correlation tables

Csn Cs Cs
A A A
E} E, 2A/
E} E, 2A’
AH A A/I
Ef E, 2A"
E] E, 2A"
C4h C4 S4 C2h
A, A A A,
B, B B A,
E, E E 2B,
A, A B Ay
B, B A A,
E, E E 2B,
Csn Cs Cs
A A A
E E 2A/
AH A A/l
E// E 2 A//
Con &) Cs G
A, A A A,
B, B A A,
A, A A’ A,
B, B A A,
Ds D;" D;"” D,

Ay Ay Ay A

B, Ay A, B;

B2 A2 Al B 2

E, E E B, ®B;
E, E E A®B,
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474  Correlation tables

D, C4 D, D,’ G G
A A A A A

A A B, B, A B

B, B A B; A

B, B B, A A B

E 'E9E B,®B; B,®B; 2B A®B

“Ch Pl ey Ch; el

Ds (&) G,

A, A A

A, A B

E E A®B
Dz Czu C2 b CZ(
A A A A
B, A B B
B, B B A
B B A B

S C,

A A

B A

E, E

E, 2B

Es E

Se Cs Ci
A, A A,
E, E 24,
A, A A,
E, E 2A,




Correlation tables

S, C,
A A
B A
E 2B
Cs G &)
A A A
B A B
E, E 2B
E, E 2A
Cy C,
A A
B A
E 2B
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Index

Abelian group 2
acoustic mode 393
active representation 23
adiabatic potential 173
adjoint 54

of an operator 102
adjoint matrix 418
algebra of turns 228
ambivalent class 435
angular momentum 184, 189
anharmonicity 160

constant of 160
antibonding orbitals 106, 125
antiferromagnetic crystal 265
antilinear operator 252
antipole 223
antisymmetrical direct product 100
antisymmetrizing operator 141
antiunitary operator 252, 267, 405
associated Legendre functions 194
associative 2, 220
axial groups 82
axial tensor 283
axial vector 82

basic domain 331
basis 53, 96

of a lattice 308
basis functions, construction of 97
bce see body-centred cubic
benzene 104, 109, 174
Bethe 80, 150, 151
bilateral binary (BB) 232
binary composition 1, 15, 70
binary rotation 25
Bloch functions 317, 357
block-diagonal structure 404
body-centred cubic (bcc) 309
bonding orbitals 106, 125
Born and von Karman boundary conditions 316
Born—Oppenheimer approximation 173
bra 102
Bragg reflection 358
Bravais lattice 311, 318
Brillouin zone 327, 329, 358, 397
BSW notation 361, 362, 370

c-tensors 303

Cartan gauge 204, 210, 240, 241, 242
Cartesian tensors 360

Cayley—Klein parameters 202, 243, 351
celebrated theorem 79

central extension 336, 337, 367
centralizer 14, 19, 434
centre 19
character 74, 99
character system 74
character tables 7678, 80, 447
character vector 259
characteristic equation 420, 441
charge overlap 107
charge transfer 178
chemical bond 106
class 5, 19
class algebra 439
class constants 436
class property 440
Clebsch—Gordan series 209, 277, 385
closed shell 172
closo B, H, 2 51
closure 1, 393
co-factor 413
coincidence 162
column matrix 415
combination bands 160
commutation relations (CRs) 131, 187
compatibility relations 362
complementary IR 303
complementary minor 413
complementary operators 265
complex conjugate 218
complex conjugation operator 253
complex number 218
complex plane 219
complex quaternion parameters 244
component (of a vector) 57
Condon and Shortley (CS) choice of phase 190
conical transformation 195
conjugate 18
conjugate bases 292
conjugate elements 5
continuous groups 182
conventional unit cells 309
co-representation 257, 267, 269-273
correlation tables 467
corresponding elements 43
coset 7

expansion 318

representatives 7
coupled representation 210
covering group 336, 337
crystal classes 311
crystal field

intermediate 134
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Index

crystal field (cont.)

strong 139

weak 152
crystal pattern 307
crystallographic orbit 321
crystallographic point groups 45, 46, 310
crystals (physical properties of) 282
cubic groups 244
cyclic group 3, 36, 86, 243
cyclobutadiene 130

degeneracy index 290
degenerate mode 161
delocalization energy 113
descending symmetry 140
determinants 413
diagonal matrix 420
diagonalization of the Dirac characters 440
diamond 378
dibenzene chromium 50
dihedral groups 36
dihedral planes 39, 41
dimension (of a representation) 70, 74
dimensionality (of a vector space) 53
dipole moment operator 159
Dirac character 14, 20, 434
Dirac notation 101, 102, 132
direct product

of groups 8, 12, 39

of matrices 99, 432

of representations 99

of sets 99
direct sum 72, 424
dispersion relation 393, 394
displacement vector 163
displacement vector space 162
double cosets 385
double group 82, 148, 149, 195, 248
dynamical matrix 392, 398

E; (electric dipole) transition 104, 171
E, (electric quadrupole) transition 104, 171
eigenvalues 393, 420

eigenvector 97, 99, 420

Einstein summation convention 186, 282
elastic constants (third order) 296
elastic stiffness 286

electrical conductivity 298
electrochemical potential 297
electron spin 131

empty lattice approximation 366
energy bands 357, 360, 371

entropy production 288

equivalent matrices 420

equivalent points 327

equivalent positions 320

equivalent representations 72, 259
equivalent wave vector 331

Euler angles 205

Euler construction 223
Euler-Rodrigues parameters 230
Euler’s formula 219

extended zone 359

extension 320

face-centred cubic (fcc) 308

factor group 8, 12, 319, 407

factor system 234

faithful representation 58
ferrimagnetic crystal 265

ferrocene 50

ferromagnetic crystal 265
ferromagnetism 304

fec see face-centred cubic

fibre 13

fine structure constant 133, 173
flux 288

force constants 391

free-electron approximation 357, 366
frequency 92, 385

Frobenius reciprocity theorem 93
Frobenius—Schur test 261, 273, 405
function operator 63, 183, 316
function space 97, 104

fundamental theorem (Nowick) 290
fundamental theorem (Onsager) 288
fundamental transition 159
fundamental translations 307

galvanomagnetic effects 299
geometry of rotations 222
germanium 378, 406
glide plane 318
ground representation 88
group 1
of the Hamiltonian 68, 96
of the Schrodinger equation 68
of the wave vector 367
group generators 3
group representation 62
gyration tensor 294

Hall tensor 302
halving subgroup 265
Hamiltonian 133

invariant under R 67
harmonic approximation 160, 391
Hermitian matrix 421
Hermitian scalar product 54
Herring factor group 344
Herring group 344, 367
Herring multiplication rule 345
Herring’s method 335, 344
holosymmetric space group 331
homomorphism 208
homomorphous group 14
Hiickel 113
Hund’s rules 134, 144
hybridization 106, 116

i-tensors 303

icosahedral point group 37, 244
identity 2, 28, 223

identity representation 70
image 13, 60

indicatrix 284



Index

induced representation 90
improper axis 28

improper rotation 26, 282
indices 7, 309
indistinguishability 3

indium antimonide 384

induced representation 88, 93
infinitesimal generator 183, 189
infinitesimal rotation 83, 284
inner direct product 16

integral invariance 196
International notation 28, 36, 267
intertwining matrix 427
intertwining number 93
invariant subgroup 7, 8

inverse 2

inverse class 22, 434

inversion operator 58
irreducibility criterion 92
irreducible representation (IR) 73, 243
irreducible volume 397
irregular operations 233, 243
irreversible processes 288
isomorphous group 2, 42

Jahn-Teller effect 175
Jones symbol 58

kernel 17, 336

Kerr effect 296

ket 102

Kramers’ theorem 151, 256

LA mode 409

LO mode 410

Lagrange’s theorem 21
Lagrangian strain 296
Laporte rule 171

LCAO approximation 109
left coset 88

length (of a vector) 55
Levi—Civita three-index symbol 185
linear operator 252

linear response 288

linear vector space 53
little co-group 327, 333
little factor group 332
little group 332, 367
lowering operator 132

M, (magnetic dipole) transition 104, 171
magnetic point groups 265, 303
crystal-field theory for 280
magnetoelectric polarizability 304
many-electron atom 133
mapping 13, 60
matrices 415
special 418, 420
matrix element 102, 103
matrix multiplication 415
matrix representation 53, 70, 424
matrix representative 56, 57, 415
metric 55, 311

Miller indices 309, 328
mixing coefficient 115
modulus 219

molecular orbital 107, 115
molecular point groups 48
Morse potential 160
Mulliken 81
Mulliken—Herzberg notation 151
multiplet 133

multiplication table 1, 34
multiplier representation 400

negative hemisphere 223
negative rotation 24

Nernst tensor 301

Neumann’s principle 282, 288

non-symmorphic space group 318, 344, 367, 378

norm 221
normal matrix 420
normal mode coordinates 156, 162, 163, 164
normal modes 156
symmetry of 156
normalization 112
normalized basis 285
normalized vector 55
normalizer 19

0(3) 203, 208, 240
occupation number representation 159
octahedral complex 117, 174
octahedral point group 37
Onsager 288
Onsager reciprocal relations (ORR) 288, 298
Opechowski’s rules 149
optic mode 393
optical activity 294
optical energies 178
orbital approximation 133
order
of aclass 5, 21
of a group 2
of an axis 23
orthogonal group O(3) see O(3)
orthogonal matrix 61, 421
orthogonality theorem 73, 425, 428, 430
for the characters 76, 77, 195
orthonormal basis 55
orthonormal eigenvectors 393
outer direct product 15
overlap integral 112
overtone 161

7 bond 106, 126

7 electron systems 109, 113
parity 136, 164, 167, 209

parity selection rule 171, 174
passive representation 23

Pauli exclusion principle 133, 140
Pauli gauge 204, 211, 240, 242, 243
Pauli matrices 200

Pauli repulsion 145

Peltier effect 298

pentagonal dodecahedron 37
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Index

periodic boundary conditions (PBCs) 316, 326, 357,

366, 397
periodicity (of the reciprocal lattice) 394
permutation 3
permutation matrix 88, 419
permutation representation 372, 375
phase factor 67
phenomenological coefficients 288
relations 288
piezomagnetic effect 305
plane waves 392
Pockels effect 296
point group 30, 48
of a space group 318
of the wave vector 327, 332, 360, 407
point group generators 286
point subgroup 317
point symmetry operations 28
polar vector 26
polarizability 161
pole (of a rotation) 222
pole conventions 245
poles (choice of) 223
positive hemisphere 222
positive rotation 24
primitive lattice 308
principal axis transformation 284
principal minor 423
projection (of a vector) 56
projection diagram 27
projection operator 98, 366, 368, 403, 408
projective factor 233, 274

projective representation 67, 195, 218, 233, 234, 333,

335, 400
prongs (of a star) 385, 386
proper point group 36
proper rotations 282
properties of the characters 74
pseudoscalar 26, 211, 282
pseudovector 26, 82, 220

quaternion 220

quaternion conjugate 221
quaternion group 226, 443
quaternion parameters 230, 351
quaternion units 220

raising operator 132

Raman scattering 161

range (of ¢) 23

rearrangement theorem |
reciprocal lattice 324

reduced zone 359

reduction (of a representation) 78
reflection 59

regular classes 233, 384

regular operation 233

regular representation 79

repeat index 290

representation domain 332
required representations 345, 346
right-handed axes 23

Rodrigues 225

rotation 23
rotation operator 23
rotation parameter 223
rotational motion 156
rotational symmetry 310
rotations
in R 182
in % 184
rotoreflection axis 28
rotoreflection operator 27
row matrix 415
Russell-Saunders coupling 132, 133
Russell-Saunders multiplets 148, 152

o bond 106
sc see simple cubic lattice
scalar 209, 282
scalar product 101, 102
Schmidt orthogonalization 112
Schonflies notation 28, 80, 267
Schur’s lemma 259, 270, 291, 425, 426
screw rotation 318
Seebeck effect 298
Seitz operator 314
semidirect product 13
setting 322
shell model 411
shift operators 188
Shubnikov 265
silicon 378, 384, 406
similarity of orientation 289
similarity transformation 72, 416, 420
simple cubic (sc) lattice 368
singlet state 141
singular matrix 416
site symmetry 321
space group 314
space group representations 331, 336, 339
space group symmetry 394
space lattice 307
special orthogonal groups
SO(2) 182, 184
SO(3) 61, 182, 184, 192, 203, 208, 231
special orthogonal (SO) matrices 61
special unitary groups
SU(2) 200, 202, 208
SU'(2) 203
spectral term 133
spherical harmonics 193
spherical vector 194
spin eigenvector 132, 133
spin—orbit coupling 104, 133, 148, 173, 281
spin orbital 103
spin pairing 145
spin postulate 131
spin quantum number 131
spin selection rule 103, 171
spinor 209
spinor representation 82, 149, 232, 236, 237
standard parameters 235
standard representation 246
standardization 240
star 332, 333



Index

stereographic projection 213
Stern—Gerlach experiment 131
subduced representation 93
subduction 93, 138, 223
subgroup 6
sum rule 391
symmetric group 4, 5
symmetric tensor 284
symmetrical direct product 100
symmetrizing operator 141
symmetry coordinates 289, 401, 403
symmetry element 27, 28
symmetry groups

lower 294

upper 294
symmetry operations 23, 26
symmorphic space group 318, 333, 367

TA mode 411
TO mode 411
tensor 209, 282

of rank 2 209

of rank n 283
tensor properties of crystals 282
tetrahedral point group 37
thermal conductivity 298
thermodynamic force 288
thermoelectric effects 297
thermoelectric power 298
thermomagnetic effects 299
time-evolution operator 253
time reversal 252, 255, 358, 404
time-reversal symmetry 262
total angular momentum 131, 148
totally symmetric representation 70
trace of a matrix 416
trans-dichloroethylene 50

transform 5, 21
transformation

of functions 63, 64

of operators 102
transition metal complexes 117
transition probability 104, 171, 388
translation subgroup 316
translational motion 156
translational symmetry 307, 357, 391
translations 27
transposed matrix 61
triplet state 141
turn 225

uniaxial groups 294
unimodular 201

unit cell 307-310, 325, 327
unitary basis 55

unitary matrix 61, 422
unitary operator 252
unitary representation 424
upper cubic groups 301

vector representations 81

vibrational motion 156
degeneracy of 158

vibrational quantum number 159

vibronic coupling 104, 173

vibronic interaction 173, 175

Voigt notation 284, 286

von Laue conditions 358

wave vector 392
Wigner—Seitz cell 309, 327
Wyckoff position 321

zero overlap appproximation (ZOA) 112
zone boundary 368
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