Understanding the

LINUX
KERNEL

Other Linux resources from 0'Reilly

Related titles ~ Building Embedded Linux Linux Security Cookbook™
Systems Linux Server Hacks™
Linux Device Drivers Linux Server Security
Linux in a Nutshell Running Linux
Linux Network SELinux

Linux Books
Resource Center

Conferences

O'REILLY NETWORK

Safari

Bookshelf.

Administrator’s Guide Understanding Linux

Linux Pocket Guide Network Internals

chapters and code examples.

linux.oreilly.com is a complete catalog of O’Reilly’s books on
Linux and Unix and related technologies, including sample

ONLamp.com is the premier site for the open source web plat-
form: Linux, Apache, MySQL, and either Perl, Python, or PHP.

ferences.oreilly.com for our upcoming events.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-

ply flip to the page you need. Try it today for free.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-

Understanding the

LINUX
KERNEL

THIRD EDITION

Daniel P. Bovet and Marco Cesati

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

Understanding the Linux Kernel, Third Edition
by Daniel P. Bovet and Marco Cesati

Copyright © 2006 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Darren Kelly

Production Services: Amy Parker

Cover Designer: Edie Freedman
Interior Designer: David Futato
Printing History:

November 2000: First Edition.
December 2002: Second Edition.
November 2005: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Linux series designations, Understanding the Linux Kernel, Third Edition, the
image of a man with a bubble, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN-10: 0-596-00565-2
ISBN-13: 978-0-596-00565-8
M] [9/07]

Table of Contents

Preface Xi
1. Introduction 1
Linux Versus Other Unix-Like Kernels 2
Hardware Dependency 6
Linux Versions 7
Basic Operating System Concepts 8

An Overview of the Unix Filesystem 12

An Overview of Unix Kernels 19

2. MemoryAddressing 35
Memory Addresses 35
Segmentation in Hardware 36
Segmentation in Linux 41
Paging in Hardware 45
Paging in Linux 57

3. Processes 79
Processes, Lightweight Processes, and Threads 79
Process Descriptor 81
Process Switch 102
Creating Processes 114
Destroying Processes 126

4. Interruptsand Exceptionsl 131
The Role of Interrupt Signals 132
Interrupts and Exceptions 133

Nested Execution of Exception and Interrupt Handlers 143

Initializing the Interrupt Descriptor Table 145
Exception Handling 148
Interrupt Handling 151
Softirgs and Tasklets 171
Work Queues 180
Returning from Interrupts and Exceptions 183
Kernel Synchronization 189
How the Kernel Services Requests 189
Synchronization Primitives 194
Synchronizing Accesses to Kernel Data Structures 217
Examples of Race Condition Prevention 222
Timing Measurements 227
Clock and Timer Circuits 228
The Linux Timekeeping Architecture 232
Updating the Time and Date 240
Updating System Statistics 241
Software Timers and Delay Functions 244
System Calls Related to Timing Measurements 252
ProcessSchedulingl 258
Scheduling Policy 258
The Scheduling Algorithm 262
Data Structures Used by the Scheduler 266
Functions Used by the Scheduler 270
Runqueue Balancing in Multiprocessor Systems 284
System Calls Related to Scheduling 290
Memory Management 294
Page Frame Management 294
Memory Area Management 323
Noncontiguous Memory Area Management 342
Process AddressSpace 351
The Process’s Address Space 352
The Memory Descriptor 353
Memory Regions 357

Table of Contents

10.

11.

12.

13.

14.

Page Fault Exception Handler

Creating and Deleting a Process Address Space

Managing the Heap

SystemQalls

POSIX APIs and System Calls

System Call Handler and Service Routines
Entering and Exiting a System Call

Parameter Passing
Kernel Wrapper Routines

Signals

The Role of Signals
Generating a Signal
Delivering a Signal

System Calls Related to Signal Handling

The Virtual Filesystem
The Role of the Virtual Filesystem (VES)

VES Data Structures
Filesystem Types
Filesystem Handling
Pathname Lookup

Implementations of VFS System Calls

File Locking

1/0 Architecture and Device Drivers

I/0O Architecture

The Device Driver Model
Device Files

Device Drivers

Character Device Drivers

Block Device Drivers

Block Devices Handling
The Generic Block Layer
The I/O Scheduler

Block Device Drivers
Opening a Block Device File

376
392
395

398
399
401
409
418

420
433
439
450

456
462
481
483
495
505
510

519
526
536
540
552

560
566
572
585
595

Table of Contents

vii

15. ThePageCache 599

The Page Cache 600
Storing Blocks in the Page Cache 611
Writing Dirty Pages to Disk 622
The sync(), fsync(), and fdatasync() System Calls 629
16. AccessingFiles 631
Reading and Writing a File 632
Memory Mapping 657
Direct I/O Transfers 668
Asynchronous I/O 671
17. PageFrameRedaiming 676
The Page Frame Reclaiming Algorithm 676
Reverse Mapping 680
Implementing the PFRA 689
Swapping 712
18. TheExt2and Ext3 Filesystems 738
General Characteristics of Ext2 738
Ext2 Disk Data Structures 741
Ext2 Memory Data Structures 750
Creating the Ext2 Filesystem 753
Ext2 Methods 755
Managing Ext2 Disk Space 757
The Ext3 Filesystem 766
19. ProcessCommunication ... 775
Pipes 776
FIFOs 787
System V IPC 789
POSIX Message Queues 806
20. ProgramExecutionl 808
Executable Files 809
Executable Formats 824
Execution Domains 827
The exec Functions 828

viii | Table of Contents

A. SystemStartup ... 835

B. Modules 842
Bibliography 852
SourceCodelndex 857
IndeX ... 905

Table of Contents | ix

Preface

In the spring semester of 1997, we taught a course on operating systems based on
Linux 2.0. The idea was to encourage students to read the source code. To achieve
this, we assigned term projects consisting of making changes to the kernel and per-
forming tests on the modified version. We also wrote course notes for our students
about a few critical features of Linux such as task switching and task scheduling.

Out of this work—and with a lot of support from our O’Reilly editor Andy Oram—
came the first edition of Understanding the Linux Kernel at the end of 2000, which
covered Linux 2.2 with a few anticipations on Linux 2.4. The success encountered by
this book encouraged us to continue along this line. At the end of 2002, we came out
with a second edition covering Linux 2.4. You are now looking at the third edition,
which covers Linux 2.6.

As in our previous experiences, we read thousands of lines of code, trying to make
sense of them. After all this work, we can say that it was worth the effort. We learned
a lot of things you don’t find in books, and we hope we have succeeded in conveying
some of this information in the following pages.

The Audience for This Book

All people curious about how Linux works and why it is so efficient will find answers
here. After reading the book, you will find your way through the many thousands of
lines of code, distinguishing between crucial data structures and secondary ones—in
short, becoming a true Linux hacker.

Our work might be considered a guided tour of the Linux kernel: most of the signifi-
cant data structures and many algorithms and programming tricks used in the kernel
are discussed. In many cases, the relevant fragments of code are discussed line by
line. Of course, you should have the Linux source code on hand and should be will-
ing to expend some effort deciphering some of the functions that are not, for sake of
brevity, fully described.

Xi

On another level, the book provides valuable insight to people who want to know
more about the critical design issues in a modern operating system. It is not specifi-
cally addressed to system administrators or programmers; it is mostly for people who
want to understand how things really work inside the machine! As with any good
guide, we try to go beyond superficial features. We offer a background, such as the
history of major features and the reasons why they were used.

Organization of the Material

When we began to write this book, we were faced with a critical decision: should we
refer to a specific hardware platform or skip the hardware-dependent details and
concentrate on the pure hardware-independent parts of the kernel?

Others books on Linux kernel internals have chosen the latter approach; we decided
to adopt the former one for the following reasons:

* Efficient kernels take advantage of most available hardware features, such as
addressing techniques, caches, processor exceptions, special instructions, pro-
cessor control registers, and so on. If we want to convince you that the kernel
indeed does quite a good job in performing a specific task, we must first tell
what kind of support comes from the hardware.

* Even if a large portion of a Unix kernel source code is processor-independent
and coded in C language, a small and critical part is coded in assembly lan-
guage. A thorough knowledge of the kernel, therefore, requires the study of a
few assembly language fragments that interact with the hardware.

When covering hardware features, our strategy is quite simple: only sketch the features
that are totally hardware-driven while detailing those that need some software sup-
port. In fact, we are interested in kernel design rather than in computer architecture.

Our next step in choosing our path consisted of selecting the computer system to
describe. Although Linux is now running on several kinds of personal computers and
workstations, we decided to concentrate on the very popular and cheap IBM-compat-
ible personal computers—and thus on the 80x86 microprocessors and on some sup-
port chips included in these personal computers. The term 80X 86 microprocessor
will be used in the forthcoming chapters to denote the Intel 80386, 80486, Pentium,
Pentium Pro, Pentium II, Pentium III, and Pentium 4 microprocessors or compatible
models. In a few cases, explicit references will be made to specific models.

One more choice we had to make was the order to follow in studying Linux com-
ponents. We tried a bottom-up approach: start with topics that are hardware-
dependent and end with those that are totally hardware-independent. In fact, we’ll
make many references to the 80x86 microprocessors in the first part of the book,
while the rest of it is relatively hardware-independent. Significant exceptions are
made in Chapter 13 and Chapter 14. In practice, following a bottom-up approach
is not as simple as it looks, because the areas of memory management, process

xi | Preface

management, and filesystems are intertwined; a few forward references—that is,
references to topics yet to be explained—are unavoidable.

Each chapter starts with a theoretical overview of the topics covered. The material is
then presented according to the bottom-up approach. We start with the data struc-
tures needed to support the functionalities described in the chapter. Then we usu-
ally move from the lowest level of functions to higher levels, often ending by showing
how system calls issued by user applications are supported.

Level of Description

Linux source code for all supported architectures is contained in more than 14,000 C
and assembly language files stored in about 1000 subdirectories; it consists of
roughly 6 million lines of code, which occupy over 230 megabytes of disk space. Of
course, this book can cover only a very small portion of that code. Just to figure out
how big the Linux source is, consider that the whole source code of the book you are
reading occupies less than 3 megabytes. Therefore, we would need more than 75
books like this to list all code, without even commenting on it!

So we had to make some choices about the parts to describe. This is a rough assess-
ment of our decisions:

* We describe process and memory management fairly thoroughly.

* We cover the Virtual Filesystem and the Ext2 and Ext3 filesystems, although
many functions are just mentioned without detailing the code; we do not dis-
cuss other filesystems supported by Linux.

* We describe device drivers, which account for roughly 50% of the kernel, as far
as the kernel interface is concerned, but do not attempt analysis of each specific
driver.

The book describes the official 2.6.11 version of the Linux kernel, which can be
downloaded from the web site http://www.kernel.org.

Be aware that most distributions of GNU/Linux modify the official kernel to imple-
ment new features or to improve its efficiency. In a few cases, the source code pro-
vided by your favorite distribution might differ significantly from the one described
in this book.

In many cases, we show fragments of the original code rewritten in an easier-to-read
but less efficient way. This occurs at time-critical points at which sections of pro-
grams are often written in a mixture of hand-optimized C and assembly code. Once
again, our aim is to provide some help in studying the original Linux code.

While discussing kernel code, we often end up describing the underpinnings of many
familiar features that Unix programmers have heard of and about which they may be
curious (shared and mapped memory, signals, pipes, symbolic links, and so on).

Preface | xiii

Overview of the Book

To make life easier, Chapter 1, Introduction, presents a general picture of what is
inside a Unix kernel and how Linux competes against other well-known Unix systems.

The heart of any Unix kernel is memory management. Chapter 2, Memory Addressing,
explains how 80x86 processors include special circuits to address data in memory and
how Linux exploits them.

Processes are a fundamental abstraction offered by Linux and are introduced in
Chapter 3, Processes. Here we also explain how each process runs either in an unprivi-
leged User Mode or in a privileged Kernel Mode. Transitions between User Mode and
Kernel Mode happen only through well-established hardware mechanisms called inter-
rupts and exceptions. These are introduced in Chapter 4, Interrupts and Exceptions.

In many occasions, the kernel has to deal with bursts of interrupt signals coming from
different devices and processors. Synchronization mechanisms are needed so that all
these requests can be serviced in an interleaved way by the kernel: they are discussed in
Chapter 5, Kernel Synchronization, for both uniprocessor and multiprocessor systems.

One type of interrupt is crucial for allowing Linux to take care of elapsed time; fur-
ther details can be found in Chapter 6, Timing Measurements.

Chapter 7, Process Scheduling, explains how Linux executes, in turn, every active
process in the system so that all of them can progress toward their completions.

Next we focus again on memory. Chapter 8, Memory Management, describes the
sophisticated techniques required to handle the most precious resource in the sys-
tem (besides the processors, of course): available memory. This resource must be
granted both to the Linux kernel and to the user applications. Chapter 9, Process
Addpress Space, shows how the kernel copes with the requests for memory issued by
greedy application programs.

Chapter 10, System Calls, explains how a process running in User Mode makes
requests to the kernel, while Chapter 11, Signals, describes how a process may send
synchronization signals to other processes. Now we are ready to move on to another
essential topic, how Linux implements the filesystem. A series of chapters cover this
topic. Chapter 12, The Virtual Filesystem, introduces a general layer that supports
many different filesystems. Some Linux files are special because they provide trap-
doors to reach hardware devices; Chapter 13, I/O Architecture and Device Drivers,
and Chapter 14, Block Device Drivers, offer insights on these special files and on the
corresponding hardware device drivers.

Another issue to consider is disk access time; Chapter 15, The Page Cache, shows
how a clever use of RAM reduces disk accesses, therefore improving system perfor-
mance significantly. Building on the material covered in these last chapters, we can
now explain in Chapter 16, Accessing Files, how user applications access normal
files. Chapter 17, Page Frame Reclaiming, completes our discussion of Linux mem-
ory management and explains the techniques used by Linux to ensure that enough

xiv | Preface

memory is always available. The last chapter dealing with files is Chapter 18, The
Ext2 and Ext3 Filesystems, which illustrates the most frequently used Linux filesys-
tem, namely Ext2 and its recent evolution, Ext3.

The last two chapters end our detailed tour of the Linux kernel: Chapter 19, Process
Communication, introduces communication mechanisms other than signals avail-
able to User Mode processes; Chapter 20, Program Execution, explains how user
applications are started.

Last, but not least, are the appendixes: Appendix A, System Startup, sketches out
how Linux is booted, while Appendix B, Modules, describes how to dynamically
reconfigure the running kernel, adding and removing functionalities as needed.
The Source Code Index includes all the Linux symbols referenced in the book; here
you will find the name of the Linux file defining each symbol and the book’s page
number where it is explained. We think you’ll find it quite handy.

Background Information

No prerequisites are required, except some skill in C programming language and per-
haps some knowledge of an assembly language.

Conventions in This Book

The following is a list of typographical conventions used in this book:

Constant Width
Used to show the contents of code files or the output from commands, and to
indicate source code keywords that appear in code.

Italic
Used for file and directory names, program and command names, command-line
options, and URLs, and for emphasizing new terms.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/understandlk/

Preface | xv

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Enabled

=- When you see a Safari® Enabled icon on the cover of your favorite tech-
B§°a!°a" nology book, it means the book is available online through the O’Reilly
wrreams Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top technology books, cut and paste code samples, down-
load chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://safari.oreilly.com.

Acknowledgments

This book would not have been written without the precious help of the many stu-
dents of the University of Rome school of engineering “Tor Vergata” who took our
course and tried to decipher lecture notes about the Linux kernel. Their strenuous
efforts to grasp the meaning of the source code led us to improve our presentation
and correct many mistakes.

Andy Oram, our wonderful editor at O’Reilly Media, deserves a lot of credit. He was
the first at O’Reilly to believe in this project, and he spent a lot of time and energy
deciphering our preliminary drafts. He also suggested many ways to make the book
more readable, and he wrote several excellent introductory paragraphs.

We had some prestigious reviewers who read our text quite carefully. The first edi-
tion was checked by (in alphabetical order by first name) Alan Cox, Michael Kerrisk,
Paul Kinzelman, Raph Levien, and Rik van Riel.

The second edition was checked by Erez Zadok, Jerry Cooperstein, John Goerzen,
Michael Kerrisk, Paul Kinzelman, Rik van Riel, and Walt Smith.

This edition has been reviewed by Charles P. Wright, Clemens Buchacher, Erez
Zadok, Raphael Finkel, Rik van Riel, and Robert P. J. Day. Their comments, together
with those of many readers from all over the world, helped us to remove several
errors and inaccuracies and have made this book stronger.

—Daniel P. Bovet
Marco Cesati
July 2005

xi | Preface

CHAPTER 1
Introduction

Linux" is a member of the large family of Unix-like operating systems. A relative new-
comer experiencing sudden spectacular popularity starting in the late 1990s, Linux
joins such well-known commercial Unix operating systems as System V Release 4
(SVR4), developed by AT&T (now owned by the SCO Group); the 4.4 BSD release
from the University of California at Berkeley (4.4BSD); Digital UNIX from Digital
Equipment Corporation (now Hewlett-Packard); AIX from IBM; HP-UX from
Hewlett-Packard; Solaris from Sun Microsystems; and Mac OS X from Apple Com-
puter, Inc. Beside Linux, a few other opensource Unix-like kernels exist, such as
FreeBSD, NetBSD, and OpenBSD.

Linux was initially developed by Linus Torvalds in 1991 as an operating system for
IBM-compatible personal computers based on the Intel 80386 microprocessor. Linus
remains deeply involved with improving Linux, keeping it up-to-date with various
hardware developments and coordinating the activity of hundreds of Linux develop-
ers around the world. Over the years, developers have worked to make Linux avail-
able on other architectures, including Hewlett-Packard’s Alpha, Intel’s Itanium,
AMD’s AMD64, PowerPC, and IBM’s zSeries.

One of the more appealing benefits to Linux is that it isn’t a commercial operating
system: its source code under the GNU General Public License (GPL)T is open and
available to anyone to study (as we will in this book); if you download the code (the
official site is http://www.kernel.org) or check the sources on a Linux CD, you will be
able to explore, from top to bottom, one of the most successful modern operating
systems. This book, in fact, assumes you have the source code on hand and can
apply what we say to your own explorations.

* LINUX® is a registered trademark of Linus Torvalds.

T The GNU project is coordinated by the Free Software Foundation, Inc. (http://www.gnu.org); its aim is to
implement a whole operating system freely usable by everyone. The availability of a GNU C compiler has
been essential for the success of the Linux project.

Technically speaking, Linux is a true Unix kernel, although it is not a full Unix operat-
ing system because it does not include all the Unix applications, such as filesystem
utilities, windowing systems and graphical desktops, system administrator com-
mands, text editors, compilers, and so on. However, because most of these programs
are freely available under the GPL, they can be installed in every Linux-based system.

Because the Linux kernel requires so much additional software to provide a useful
environment, many Linux users prefer to rely on commercial distributions, available on
CD-ROM, to get the code included in a standard Unix system. Alternatively, the code
may be obtained from several different sites, for instance http://'www.kernel.org. Sev-
eral distributions put the Linux source code in the /usr/src/linux directory. In the rest of
this book, all file pathnames will refer implicitly to the Linux source code directory.

Linux Versus Other Unix-Like Kernels

The various Unix-like systems on the market, some of which have a long history and
show signs of archaic practices, differ in many important respects. All commercial
variants were derived from either SVR4 or 4.4BSD, and all tend to agree on some
common standards like IEEE’s Portable Operating Systems based on Unix (POSIX)
and X/Open’s Common Applications Environment (CAE).

The current standards specify only an application programming interface (API)—
that is, a well-defined environment in which user programs should run. Therefore,
the standards do not impose any restriction on internal design choices of a compli-
ant kernel.’

To define a common user interface, Unix-like kernels often share fundamental design
ideas and features. In this respect, Linux is comparable with the other Unix-like
operating systems. Reading this book and studying the Linux kernel, therefore, may
help you understand the other Unix variants, too.

The 2.6 version of the Linux kernel aims to be compliant with the IEEE POSIX stan-
dard. This, of course, means that most existing Unix programs can be compiled and
executed on a Linux system with very little effort or even without the need for
patches to the source code. Moreover, Linux includes all the features of a modern
Unix operating system, such as virtual memory, a virtual filesystem, lightweight pro-
cesses, Unix signals, SVR4 interprocess communications, support for Symmetric
Multiprocessor (SMP) systems, and so on.

When Linus Torvalds wrote the first kernel, he referred to some classical books on
Unix internals, like Maurice Bach’s The Design of the Unix Operating System (Pren-
tice Hall, 1986). Actually, Linux still has some bias toward the Unix baseline

* As a matter of fact, several non-Unix operating systems, such as Windows NT and its descendents, are
POSIX-compliant.

2 | Chapter1: Introduction

described in Bach’s book (i.e., SVR2). However, Linux doesn’t stick to any particu-
lar variant. Instead, it tries to adopt the best features and design choices of several
different Unix kernels.

The following list describes how Linux competes against some well-known commer-
cial Unix kernels:

Monolithic kernel
It is a large, complex do-it-yourself program, composed of several logically dif-
ferent components. In this, it is quite conventional; most commercial Unix vari-
ants are monolithic. (Notable exceptions are the Apple Mac OS X and the GNU
Hurd operating systems, both derived from the Carnegie-Mellon’s Mach, which
follow a microkernel approach.)

Compiled and statically linked traditional Unix kernels
Most modern kernels can dynamically load and unload some portions of the ker-
nel code (typically, device drivers), which are usually called modules. Linux’s
support for modules is very good, because it is able to automatically load and
unload modules on demand. Among the main commercial Unix variants, only
the SVR4.2 and Solaris kernels have a similar feature.

Kernel threading

Some Unix kernels, such as Solaris and SVR4.2/MP, are organized as a set of ker-
nel threads. A kernel thread is an execution context that can be independently
scheduled; it may be associated with a user program, or it may run only some
kernel functions. Context switches between kernel threads are usually much less
expensive than context switches between ordinary processes, because the former
usually operate on a common address space. Linux uses kernel threads in a very
limited way to execute a few kernel functions periodically; however, they do not
represent the basic execution context abstraction. (That’s the topic of the next
item.)

Multithreaded application support

Most modern operating systems have some kind of support for multithreaded
applications—that is, user programs that are designed in terms of many rela-
tively independent execution flows that share a large portion of the application
data structures. A multithreaded user application could be composed of many
lightweight processes (LWP), which are processes that can operate on a com-
mon address space, common physical memory pages, common opened files, and
so on. Linux defines its own version of lightweight processes, which is different
from the types used on other systems such as SVR4 and Solaris. While all the
commercial Unix variants of LWP are based on kernel threads, Linux regards
lightweight processes as the basic execution context and handles them via the
nonstandard clone() system call.

Linux Versus Other Unix-Like Kernels | 3

Preemptive kernel
When compiled with the “Preemptible Kernel” option, Linux 2.6 can arbitrarily
interleave execution flows while they are in privileged mode. Besides Linux 2.6,
a few other conventional, general-purpose Unix systems, such as Solaris and
Mach 3.0, are fully preemptive kernels. SVR4.2/MP introduces some fixed pre-
emption points as a method to get limited preemption capability.

Multiprocessor support
Several Unix kernel variants take advantage of multiprocessor systems. Linux 2.6
supports symmetric multiprocessing (SMP) for different memory models, includ-
ing NUMA: the system can use multiple processors and each processor can han-
dle any task—there is no discrimination among them. Although a few parts of
the kernel code are still serialized by means of a single “big kernel lock,” it is fair
to say that Linux 2.6 makes a near optimal use of SMP.

Filesystem

Linux’s standard filesystems come in many flavors. You can use the plain old
Ext2 filesystem if you don’t have specific needs. You might switch to Ext3 if you
want to avoid lengthy filesystem checks after a system crash. If you’ll have to
deal with many small files, the ReiserFS filesystem is likely to be the best choice.
Besides Ext3 and ReiserFS, several other journaling filesystems can be used in
Linux; they include IBM AIX’s Journaling File System (JFS) and Silicon Graph-
ics IRIX’s XFS filesystem. Thanks to a powerful object-oriented Virtual File Sys-
tem technology (inspired by Solaris and SVR4), porting a foreign filesystem to
Linux is generally easier than porting to other kernels.

STREAMS
Linux has no analog to the STREAMS I/O subsystem introduced in SVR4,
although it is included now in most Unix kernels and has become the preferred
interface for writing device drivers, terminal drivers, and network protocols.

This assessment suggests that Linux is fully competitive nowadays with commercial
operating systems. Moreover, Linux has several features that make it an exciting
operating system. Commercial Unix kernels often introduce new features to gain a
larger slice of the market, but these features are not necessarily useful, stable, or pro-
ductive. As a matter of fact, modern Unix kernels tend to be quite bloated. By con-
trast, Linux—together with the other open source operating systems—doesn’t suffer
from the restrictions and the conditioning imposed by the market, hence it can freely
evolve according to the ideas of its designers (mainly Linus Torvalds). Specifically,
Linux offers the following advantages over its commercial competitors:

Linux is cost-free. You can install a complete Unix system at no expense other than
the hardware (of course).

Linux is fully customizable in all its components. Thanks to the compilation
options, you can customize the kernel by selecting only the features really

4 | Chapter1: Introduction

needed. Moreover, thanks to the GPL, you are allowed to freely read and mod-
ify the source code of the kernel and of all system programs.”

Linux runs on low-end, inexpensive hardware platforms. You are able to build a
network server using an old Intel 80386 system with 4 MB of RAM.

Linux is powerful. Linux systems are very fast, because they fully exploit the fea-
tures of the hardware components. The main Linux goal is efficiency, and
indeed many design choices of commercial variants, like the STREAMS I/O sub-
system, have been rejected by Linus because of their implied performance pen-
alty.

Linux developers are excellent programmers. Linux systems are very stable; they
have a very low failure rate and system maintenance time.

The Linux kernel can be very small and compact. 1t is possible to fit a kernel image,
including a few system programs, on just one 1.44 MB floppy disk. As far as we
know, none of the commercial Unix variants is able to boot from a single floppy

disk.

Linux is highly compatible with many common operating systems. Linux lets you
directly mount filesystems for all versions of MS-DOS and Microsoft Windows,
SVR4, 0S/2, Mac OS X, Solaris, SunOS, NEXTSTEP, many BSD variants, and so
on. Linux also is able to operate with many network layers, such as Ethernet (as
well as Fast Ethernet, Gigabit Ethernet, and 10 Gigabit Ethernet), Fiber Distrib-
uted Data Interface (FDDI), High Performance Parallel Interface (HIPPI), IEEE
802.11 (Wireless LAN), and IEEE 802.15 (Bluetooth). By using suitable librar-
ies, Linux systems are even able to directly run programs written for other oper-
ating systems. For example, Linux is able to execute some applications written
for MS-DOS, Microsoft Windows, SVR3 and R4, 4.4BSD, SCO Unix, Xenix,
and others on the 80x86 platform.

Linux is well supported. Believe it or not, it may be a lot easier to get patches and
updates for Linux than for any proprietary operating system. The answer to a
problem often comes back within a few hours after sending a message to some
newsgroup or mailing list. Moreover, drivers for Linux are usually available a
few weeks after new hardware products have been introduced on the market. By
contrast, hardware manufacturers release device drivers for only a few commer-
cial operating systems—usually Microsoft’s. Therefore, all commercial Unix
variants run on a restricted subset of hardware components.

With an estimated installed base of several tens of millions, people who are used to
certain features that are standard under other operating systems are starting to
expect the same from Linux. In that regard, the demand on Linux developers is also

* Many commercial companies are now supporting their products under Linux. However, many of them
aren’t distributed under an open source license, so you might not be allowed to read or modify their source
code.

Linux Versus Other Unix-Like Kernels | 5

increasing. Luckily, though, Linux has evolved under the close direction of Linus and
his subsystem maintainers to accommodate the needs of the masses.

Hardware Dependency

Linux tries to maintain a neat distinction between hardware-dependent and hard-
ware-independent source code. To that end, both the arch and the include directo-
ries include 23 subdirectories that correspond to the different types of hardware
platforms supported. The standard names of the platforms are:

alpha
Hewlett-Packard’s Alpha workstations (originally Digital, then Compaq; no
longer manufactured)

arm, arm26
ARM processor-based computers such as PDAs and embedded devices
cris
“Code Reduced Instruction Set” CPUs used by Axis in its thin-servers, such as
web cameras or development boards
frv
Embedded systems based on microprocessors of the Fujitsu’s FR-V family
h8300
Hitachi h8/300 and h8S RISC 8/16-bit microprocessors
i386
IBM-compatible personal computers based on 80x86 microprocessors
ia64
Workstations based on the Intel 64-bit Itanium microprocessor
m32r
Computers based on the Renesas M32R family of microprocessors
m68k, m68knommu
Personal computers based on Motorola MC680x0 microprocessors
mips
Workstations based on MIPS microprocessors, such as those marketed by Sili-
con Graphics
parisc
Workstations based on Hewlett Packard HP 9000 PA-RISC microprocessors
ppc, ppc64
Workstations based on the 32-bit and 64-bit Motorola-IBM PowerPC micropro-
cessors

s390
IBM ESA/390 and zSeries mainframes

6 | Chapter1: Introduction

sh, sh64
Embedded systems based on SuperH microprocessors developed by Hitachi and
STMicroelectronics

sparc, sparc64
Workstations based on Sun Microsystems SPARC and 64-bit Ultra SPARC
Mmicroprocessors

um
User Mode Linux, a virtual platform that allows developers to run a kernel in
User Mode

v850
NEC V850 microcontrollers that incorporate a 32-bit RISC core based on the
Harvard architecture

x86_64
Workstations based on the AMD’s 64-bit microprocessors—such Athlon and
Opteron—and Intel’s ia32e/EM64T 64-bit microprocessors

Linux Versions

Up to kernel version 2.5, Linux identified kernels through a simple numbering
scheme. Each version was characterized by three numbers, separated by periods. The
first two numbers were used to identify the version; the third number identified the
release. The first version number, namely 2, has stayed unchanged since 1996. The
second version number identified the type of kernel: if it was even, it denoted a sta-
ble version; otherwise, it denoted a development version.

As the name suggests, stable versions were thoroughly checked by Linux distribu-
tors and kernel hackers. A new stable version was released only to address bugs and
to add new device drivers. Development versions, on the other hand, differed quite
significantly from one another; kernel developers were free to experiment with differ-
ent solutions that occasionally lead to drastic kernel changes. Users who relied on
development versions for running applications could experience unpleasant sur-
prises when upgrading their kernel to a newer release.

During development of Linux kernel version 2.6, however, a significant change in the
version numbering scheme has taken place. Basically, the second number no longer
identifies stable or development versions; thus, nowadays kernel developers intro-
duce large and significant changes in the current kernel version 2.6. A new kernel 2.7
branch will be created only when kernel developers will have to test a really disrup-
tive change; this 2.7 branch will lead to a new current kernel version, or it will be
backported to the 2.6 version, or finally it will simply be dropped as a dead end.

The new model of Linux development implies that two kernels having the same ver-
sion but different release numbers—for instance, 2.6.10 and 2.6.11—can differ sig-
nificantly even in core components and in fundamental algorithms. Thus, when a

Linux Versions | 7

new kernel release appears, it is potentially unstable and buggy. To address this
problem, the kernel developers may release patched versions of any kernel, which are
identified by a fourth number in the version numbering scheme. For instance, at the
time this paragraph was written, the latest “stable” kernel version was 2.6.11.12.

Please be aware that the kernel version described in this book is Linux 2.6.11.

Basic Operating System Concepts

Each computer system includes a basic set of programs called the operating system.
The most important program in the set is called the kernel. It is loaded into RAM
when the system boots and contains many critical procedures that are needed for the
system to operate. The other programs are less crucial utilities; they can provide a
wide variety of interactive experiences for the user—as well as doing all the jobs the
user bought the computer for—but the essential shape and capabilities of the system
are determined by the kernel. The kernel provides key facilities to everything else on
the system and determines many of the characteristics of higher software. Hence, we
often use the term “operating system” as a synonym for “kernel.”

The operating system must fulfill two main objectives:

* Interact with the hardware components, servicing all low-level programmable
elements included in the hardware platform.

* Provide an execution environment to the applications that run on the computer
system (the so-called user programs).

Some operating systems allow all user programs to directly play with the hardware
components (a typical example is MS-DOS). In contrast, a Unix-like operating sys-
tem hides all low-level details concerning the physical organization of the computer
from applications run by the user. When a program wants to use a hardware
resource, it must issue a request to the operating system. The kernel evaluates the
request and, if it chooses to grant the resource, interacts with the proper hardware
components on behalf of the user program.

To enforce this mechanism, modern operating systems rely on the availability of spe-
cific hardware features that forbid user programs to directly interact with low-level
hardware components or to access arbitrary memory locations. In particular, the
hardware introduces at least two different execution modes for the CPU: a nonprivi-
leged mode for user programs and a privileged mode for the kernel. Unix calls these
User Mode and Kernel Mode, respectively.

In the rest of this chapter, we introduce the basic concepts that have motivated the
design of Unix over the past two decades, as well as Linux and other operating sys-
tems. While the concepts are probably familiar to you as a Linux user, these sections
try to delve into them a bit more deeply than usual to explain the requirements they
place on an operating system kernel. These broad considerations refer to virtually all

8 | Chapter1: Introduction

Unix-like systems. The other chapters of this book will hopefully help you under-
stand the Linux kernel internals.

Multiuser Systems

A multiuser system is a computer that is able to concurrently and independently exe-
cute several applications belonging to two or more users. Concurrently means that
applications can be active at the same time and contend for the various resources
such as CPU, memory, hard disks, and so on. Independently means that each applica-
tion can perform its task with no concern for what the applications of the other users
are doing. Switching from one application to another, of course, slows down each of
them and affects the response time seen by the users. Many of the complexities of
modern operating system kernels, which we will examine in this book, are present to
minimize the delays enforced on each program and to provide the user with
responses that are as fast as possible.

Multiuser operating systems must include several features:

* An authentication mechanism for verifying the user’s identity

* A protection mechanism against buggy user programs that could block other
applications running in the system

* A protection mechanism against malicious user programs that could interfere
with or spy on the activity of other users

* An accounting mechanism that limits the amount of resource units assigned to
each user

To ensure safe protection mechanisms, operating systems must use the hardware
protection associated with the CPU privileged mode. Otherwise, a user program
would be able to directly access the system circuitry and overcome the imposed
bounds. Unix is a multiuser system that enforces the hardware protection of system
resources.

Users and Groups

In a multiuser system, each user has a private space on the machine; typically, he
owns some quota of the disk space to store files, receives private mail messages, and
so on. The operating system must ensure that the private portion of a user space is
visible only to its owner. In particular, it must ensure that no user can exploit a sys-
tem application for the purpose of violating the private space of another user.

All users are identified by a unique number called the User ID, or UID. Usually only
a restricted number of persons are allowed to make use of a computer system. When
one of these users starts a working session, the system asks for a login name and a
password. If the user does not input a valid pair, the system denies access. Because
the password is assumed to be secret, the user’s privacy is ensured.

Basic Operating System Concepts | 9

To selectively share material with other users, each user is a member of one or more
user groups, which are identified by a unique number called a user group ID. Each
file is associated with exactly one group. For example, access can be set so the user
owning the file has read and write privileges, the group has read-only privileges, and
other users on the system are denied access to the file.

Any Unix-like operating system has a special user called root or superuser. The sys-
tem administrator must log in as root to handle user accounts, perform maintenance
tasks such as system backups and program upgrades, and so on. The root user can
do almost everything, because the operating system does not apply the usual protec-
tion mechanisms to her. In particular, the root user can access every file on the sys-
tem and can manipulate every running user program.

Processes

All operating systems use one fundamental abstraction: the process. A process can be
defined either as “an instance of a program in execution” or as the “execution con-
text” of a running program. In traditional operating systems, a process executes a sin-
gle sequence of instructions in an address space; the address space is the set of
memory addresses that the process is allowed to reference. Modern operating sys-
tems allow processes with multiple execution flows—that is, multiple sequences of
instructions executed in the same address space.

Multiuser systems must enforce an execution environment in which several pro-
cesses can be active concurrently and contend for system resources, mainly the CPU.
Systems that allow concurrent active processes are said to be multiprogramming or
multiprocessing.” It is important to distinguish programs from processes; several pro-
cesses can execute the same program concurrently, while the same process can exe-
cute several programs sequentially.

On uniprocessor systems, just one process can hold the CPU, and hence just one
execution flow can progress at a time. In general, the number of CPUs is always
restricted, and therefore only a few processes can progress at once. An operating sys-
tem component called the scheduler chooses the process that can progress. Some
operating systems allow only nonpreemptable processes, which means that the sched-
uler is invoked only when a process voluntarily relinquishes the CPU. But processes
of a multiuser system must be preemptable; the operating system tracks how long
each process holds the CPU and periodically activates the scheduler.

Unix is a multiprocessing operating system with preemptable processes. Even when
no user is logged in and no application is running, several system processes monitor
the peripheral devices. In particular, several processes listen at the system terminals
waiting for user logins. When a user inputs a login name, the listening process runs a
program that validates the user password. If the user identity is acknowledged, the

* Some multiprocessing operating systems are not multiuser; an example is Microsoft Windows 98.

10 | Chapter1: Introduction

process creates another process that runs a shell into which commands are entered.
When a graphical display is activated, one process runs the window manager, and
each window on the display is usually run by a separate process. When a user cre-
ates a graphics shell, one process runs the graphics windows and a second process
runs the shell into which the user can enter the commands. For each user command,
the shell process creates another process that executes the corresponding program.

Unix-like operating systems adopt a process/kernel model. Each process has the illu-
sion that it’s the only process on the machine, and it has exclusive access to the oper-
ating system services. Whenever a process makes a system call (i.e., a request to the
kernel, see Chapter 10), the hardware changes the privilege mode from User Mode to
Kernel Mode, and the process starts the execution of a kernel procedure with a
strictly limited purpose. In this way, the operating system acts within the execution
context of the process in order to satisfy its request. Whenever the request is fully
satisfied, the kernel procedure forces the hardware to return to User Mode and the
process continues its execution from the instruction following the system call.

Kernel Architecture

As stated before, most Unix kernels are monolithic: each kernel layer is integrated
into the whole kernel program and runs in Kernel Mode on behalf of the current pro-
cess. In contrast, microkernel operating systems demand a very small set of functions
from the kernel, generally including a few synchronization primitives, a simple
scheduler, and an interprocess communication mechanism. Several system processes
that run on top of the microkernel implement other operating system—layer func-
tions, like memory allocators, device drivers, and system call handlers.

Although academic research on operating systems is oriented toward microkernels,
such operating systems are generally slower than monolithic ones, because the
explicit message passing between the different layers of the operating system has a
cost. However, microkernel operating systems might have some theoretical advan-
tages over monolithic ones. Microkernels force the system programmers to adopt a
modularized approach, because each operating system layer is a relatively indepen-
dent program that must interact with the other layers through well-defined and clean
software interfaces. Moreover, an existing microkernel operating system can be eas-
ily ported to other architectures fairly easily, because all hardware-dependent com-
ponents are generally encapsulated in the microkernel code. Finally, microkernel
operating systems tend to make better use of random access memory (RAM) than
monolithic ones, because system processes that aren’t implementing needed func-
tionalities might be swapped out or destroyed.

To achieve many of the theoretical advantages of microkernels without introducing
performance penalties, the Linux kernel offers modules. A module is an object file
whose code can be linked to (and unlinked from) the kernel at runtime. The object
code usually consists of a set of functions that implements a filesystem, a device

Basic Operating System Concepts | 11

driver, or other features at the kernel’s upper layer. The module, unlike the external
layers of microkernel operating systems, does not run as a specific process. Instead, it
is executed in Kernel Mode on behalf of the current process, like any other statically
linked kernel function.

The main advantages of using modules include:

A modularized approach
Because any module can be linked and unlinked at runtime, system program-
mers must introduce well-defined software interfaces to access the data struc-
tures handled by modules. This makes it easy to develop new modules.

Platform independence
Even if it may rely on some specific hardware features, a module doesn’t depend
on a fixed hardware platform. For example, a disk driver module that relies on
the SCSI standard works as well on an IBM-compatible PC as it does on
Hewlett-Packard’s Alpha.

Frugal main memory usage
A module can be linked to the running kernel when its functionality is required
and unlinked when it is no longer useful; this is quite useful for small embedded
systems.

No performance penalty
Once linked in, the object code of a module is equivalent to the object code of
the statically linked kernel. Therefore, no explicit message passing is required
when the functions of the module are invoked.”

An Overview of the Unix Filesystem

The Unix operating system design is centered on its filesystem, which has several
interesting characteristics. We’ll review the most significant ones, since they will be
mentioned quite often in forthcoming chapters.

Files

A Unix file is an information container structured as a sequence of bytes; the kernel
does not interpret the contents of a file. Many programming libraries implement
higher-level abstractions, such as records structured into fields and record address-
ing based on keys. However, the programs in these libraries must rely on system calls
offered by the kernel. From the user’s point of view, files are organized in a tree-
structured namespace, as shown in Figure 1-1.

* A small performance penalty occurs when the module is linked and unlinked. However, this penalty can be
compared to the penalty caused by the creation and deletion of system processes in microkernel operating
systems.

12 | Chapter1: Introduction

Figure 1-1. An example of a directory tree

All the nodes of the tree, except the leaves, denote directory names. A directory node
contains information about the files and directories just beneath it. A file or direc-
tory name consists of a sequence of arbitrary ASCII characters,” with the exception of
/ and of the null character \0. Most filesystems place a limit on the length of a file-
name, typically no more than 255 characters. The directory corresponding to the
root of the tree is called the root directory. By convention, its name is a slash (/).
Names must be different within the same directory, but the same name may be used
in different directories.

Unix associates a current working directory with each process (see the section “The
Process/Kernel Model” later in this chapter); it belongs to the process execution con-
text, and it identifies the directory currently used by the process. To identify a spe-
cific file, the process uses a pathname, which consists of slashes alternating with a
sequence of directory names that lead to the file. If the first item in the pathname is
a slash, the pathname is said to be absolute, because its starting point is the root
directory. Otherwise, if the first item is a directory name or filename, the path-
name is said to be relative, because its starting point is the process’s current direc-
tory.

While specifying filenames, the notations “.” and “..” are also used. They denote the
current working directory and its parent directory, respectively. If the current work-
ing directory is the root directory, “.” and “..” coincide.

* Some operating systems allow filenames to be expressed in many different alphabets, based on 16-bit
extended coding of graphical characters such as Unicode.

An Overview of the Unix Filesystem | 13

Hard and Soft Links

A filename included in a directory is called a file hard link, or more simply, a link.
The same file may have several links included in the same directory or in different
ones, so it may have several filenames.

The Unix command:
$ 1n p1 p2
is used to create a new hard link that has the pathname p2 for a file identified by the
pathname p1.
Hard links have two limitations:
* It is not possible to create hard links for directories. Doing so might transform

the directory tree into a graph with cycles, thus making it impossible to locate a
file according to its name.

* Links can be created only among files included in the same filesystem. This is a
serious limitation, because modern Unix systems may include several filesys-
tems located on different disks and/or partitions, and users may be unaware of
the physical divisions between them.

To overcome these limitations, soft links (also called symbolic links) were introduced
a long time ago. Symbolic links are short files that contain an arbitrary pathname of
another file. The pathname may refer to any file or directory located in any filesys-
tem; it may even refer to a nonexistent file.

The Unix command:
$ In -s p1 p2

creates a new soft link with pathname p2 that refers to pathname p1. When this com-
mand is executed, the filesystem extracts the directory part of p2 and creates a new
entry in that directory of type symbolic link, with the name indicated by p2. This new
file contains the name indicated by pathname p1. This way, each reference to p2 can
be translated automatically into a reference to p1.

File Types
Unix files may have one of the following types:
* Regular file
* Directory
* Symbolic link
* Block-oriented device file
* Character-oriented device file
* Pipe and named pipe (also called FIFO)
* Socket

14 | Chapter1: Introduction

The first three file types are constituents of any Unix filesystem. Their implementa-
tion is described in detail in Chapter 18.

Device files are related both to I/O devices, and to device drivers integrated into the
kernel. For example, when a program accesses a device file, it acts directly on the I/O
device associated with that file (see Chapter 13).

Pipes and sockets are special files used for interprocess communication (see the sec-
tion “Synchronization and Critical Regions” later in this chapter; also see
Chapter 19).

File Descriptor and Inode

Unix makes a clear distinction between the contents of a file and the information
about a file. With the exception of device files and files of special filesystems, each
file consists of a sequence of bytes. The file does not include any control informa-
tion, such as its length or an end-of-file (EOF) delimiter.

All information needed by the filesystem to handle a file is included in a data struc-

ture called an inode. Each file has its own inode, which the filesystem uses to identify
the file.

While filesystems and the kernel functions handling them can vary widely from one
Unix system to another, they must always provide at least the following attributes,
which are specified in the POSIX standard:

* File type (see the previous section)

* Number of hard links associated with the file

* File length in bytes

* Device ID (i.e., an identifier of the device containing the file)
* Inode number that identifies the file within the filesystem

* UID of the file owner

* User group ID of the file

* Several timestamps that specify the inode status change time, the last access
time, and the last modify time

* Access rights and file mode (see the next section)

Access Rights and File Mode

The potential users of a file fall into three classes:
* The user who is the owner of the file
* The users who belong to the same group as the file, not including the owner

* All remaining users (others)

An Overview of the Unix Filesystem | 15

There are three types of access rights—read, write, and execute—for each of these
three classes. Thus, the set of access rights associated with a file consists of nine dif-
ferent binary flags. Three additional flags, called suid (Set User ID), sgid (Set Group
ID), and sticky, define the file mode. These flags have the following meanings when
applied to executable files:

suid
A process executing a file normally keeps the User ID (UID) of the process
owner. However, if the executable file has the suid flag set, the process gets the
UID of the file owner.

sgid
A process executing a file keeps the user group ID of the process group. How-

ever, if the executable file has the sgid flag set, the process gets the user group ID
of the file.

sticky
An executable file with the sticky flag set corresponds to a request to the kernel
to keep the program in memory after its execution terminates.”

When a file is created by a process, its owner ID is the UID of the process. Its owner
user group ID can be either the process group ID of the creator process or the user
group ID of the parent directory, depending on the value of the sgid flag of the par-
ent directory.

File-Handling System Calls

When a user accesses the contents of either a regular file or a directory, he actually
accesses some data stored in a hardware block device. In this sense, a filesystem is a
user-level view of the physical organization of a hard disk partition. Because a pro-
cess in User Mode cannot directly interact with the low-level hardware components,
each actual file operation must be performed in Kernel Mode. Therefore, the Unix
operating system defines several system calls related to file handling.

All Unix kernels devote great attention to the efficient handling of hardware block
devices to achieve good overall system performance. In the chapters that follow, we
will describe topics related to file handling in Linux and specifically how the kernel
reacts to file-related system calls. To understand those descriptions, you will need to
know how the main file-handling system calls are used; these are described in the
next section.

Opening a file

Processes can access only “opened” files. To open a file, the process invokes the sys-
tem call:

fd = open(path, flag, mode)

* This flag has become obsolete; other approaches based on sharing of code pages are now used (see Chapter 9).

16 | Chapter1: Introduction

The three parameters have the following meanings:

path
Denotes the pathname (relative or absolute) of the file to be opened.

flag
Specifies how the file must be opened (e.g., read, write, read/write, append). It
also can specify whether a nonexisting file should be created.

mode
Specifies the access rights of a newly created file.

This system call creates an “open file” object and returns an identifier called a file
descriptor. An open file object contains:

* Some file-handling data structures, such as a set of flags specifying how the file
has been opened, an offset field that denotes the current position in the file from
which the next operation will take place (the so-called file pointer), and so on.

* Some pointers to kernel functions that the process can invoke. The set of permit-
ted functions depends on the value of the flag parameter.

We discuss open file objects in detail in Chapter 12. Let’s limit ourselves here to
describing some general properties specified by the POSIX semantics.

* A file descriptor represents an interaction between a process and an opened file,
while an open file object contains data related to that interaction. The same
open file object may be identified by several file descriptors in the same process.

* Several processes may concurrently open the same file. In this case, the filesys-
tem assigns a separate file descriptor to each file, along with a separate open file
object. When this occurs, the Unix filesystem does not provide any kind of syn-
chronization among the I/O operations issued by the processes on the same file.
However, several system calls such as flock() are available to allow processes to
synchronize themselves on the entire file or on portions of it (see Chapter 12).

To create a new file, the process also may invoke the creat() system call, which is
handled by the kernel exactly like open().

Accessing an opened file

Regular Unix files can be addressed either sequentially or randomly, while device
files and named pipes are usually accessed sequentially. In both kinds of access, the
kernel stores the file pointer in the open file object—that is, the current position at
which the next read or write operation will take place.

Sequential access is implicitly assumed: the read() and write() system calls always
refer to the position of the current file pointer. To modify the value, a program must
explicitly invoke the 1seek(') system call. When a file is opened, the kernel sets the
file pointer to the position of the first byte in the file (offset 0).

An Overview of the Unix Filesystem | 17

The 1seek() system call requires the following parameters:
newoffset = lseek(fd, offset, whence);

which have the following meanings:

fd
Indicates the file descriptor of the opened file

offset
Specifies a signed integer value that will be used for computing the new position
of the file pointer

whence
Specifies whether the new position should be computed by adding the offset
value to the number O (offset from the beginning of the file), the current file
pointer, or the position of the last byte (offset from the end of the file)

The read() system call requires the following parameters:
nread = read(fd, buf, count);

which have the following meanings:

fd
Indicates the file descriptor of the opened file

buf
Specifies the address of the buffer in the process’s address space to which the
data will be transferred

count
Denotes the number of bytes to read

When handling such a system call, the kernel attempts to read count bytes from the
file having the file descriptor fd, starting from the current value of the opened file’s
offset field. In some cases—end-of-file, empty pipe, and so on—the kernel does not
succeed in reading all count bytes. The returned nread value specifies the number of
bytes effectively read. The file pointer also is updated by adding nread to its previous
value. The write() parameters are similar.

Closing a file

When a process does not need to access the contents of a file anymore, it can invoke
the system call:

res = close(fd);

which releases the open file object corresponding to the file descriptor fd. When a
process terminates, the kernel closes all its remaining opened files.

18 | Chapter1: Introduction

Renaming and deleting a file

To rename or delete a file, a process does not need to open it. Indeed, such opera-
tions do not act on the contents of the affected file, but rather on the contents of one
or more directories. For example, the system call:

res = rename(oldpath, newpath);
changes the name of a file link, while the system call:
res = unlink(pathname);

decreases the file link count and removes the corresponding directory entry. The file
is deleted only when the link count assumes the value 0.

An Overview of Unix Kernels

Unix kernels provide an execution environment in which applications may run.
Therefore, the kernel must implement a set of services and corresponding interfaces.
Applications use those interfaces and do not usually interact directly with hardware
resources.

The Process/Kernel Model

As already mentioned, a CPU can run in either User Mode or Kernel Mode. Actu-
ally, some CPUs can have more than two execution states. For instance, the 80x 86
microprocessors have four different execution states. But all standard Unix kernels
use only Kernel Mode and User Mode.

When a program is executed in User Mode, it cannot directly access the kernel data
structures or the kernel programs. When an application executes in Kernel Mode,
however, these restrictions no longer apply. Each CPU model provides special
instructions to switch from User Mode to Kernel Mode and vice versa. A program
usually executes in User Mode and switches to Kernel Mode only when requesting a
service provided by the kernel. When the kernel has satisfied the program’s request,
it puts the program back in User Mode.

Processes are dynamic entities that usually have a limited life span within the sys-
tem. The task of creating, eliminating, and synchronizing the existing processes is
delegated to a group of routines in the kernel.

The kernel itself is not a process but a process manager. The process/kernel model
assumes that processes that require a kernel service use specific programming con-
structs called system calls. Each system call sets up the group of parameters that iden-
tifies the process request and then executes the hardware-dependent CPU instruction
to switch from User Mode to Kernel Mode.

An Overview of Unix Kernels | 19

Besides user processes, Unix systems include a few privileged processes called kernel
threads with the following characteristics:

* They run in Kernel Mode in the kernel address space.
* They do not interact with users, and thus do not require terminal devices.

* They are usually created during system startup and remain alive until the system
is shut down.

On a uniprocessor system, only one process is running at a time, and it may run
either in User or in Kernel Mode. If it runs in Kernel Mode, the processor is execut-
ing some kernel routine. Figure 1-2 illustrates examples of transitions between User
and Kernel Mode. Process 1 in User Mode issues a system call, after which the pro-
cess switches to Kernel Mode, and the system call is serviced. Process 1 then resumes
execution in User Mode until a timer interrupt occurs, and the scheduler is activated
in Kernel Mode. A process switch takes place, and Process 2 starts its execution in
User Mode until a hardware device raises an interrupt. As a consequence of the inter-
rupt, Process 2 switches to Kernel Mode and services the interrupt.

Process 1 Process 1 Process 2 Process 2

USER MODE
KERNEL MODE
System call Interrupt
handler] Scheduler handler
System call Timer interrupt Device interrupt
Time —»

Figure 1-2. Transitions between User and Kernel Mode

Unix kernels do much more than handle system calls; in fact, kernel routines can be
activated in several ways:

* A process invokes a system call.

* The CPU executing the process signals an exception, which is an unusual condi-
tion such as an invalid instruction. The kernel handles the exception on behalf of
the process that caused it.

* A peripheral device issues an interrupt signal to the CPU to notify it of an event
such as a request for attention, a status change, or the completion of an I/O
operation. Each interrupt signal is dealt by a kernel program called an interrupt

20 | Chapter1: Introduction

handler. Because peripheral devices operate asynchronously with respect to the
CPU, interrupts occur at unpredictable times.

* A kernel thread is executed. Because it runs in Kernel Mode, the corresponding
program must be considered part of the kernel.

Process Implementation

To let the kernel manage processes, each process is represented by a process descrip-
tor that includes information about the current state of the process.

When the kernel stops the execution of a process, it saves the current contents of
several processor registers in the process descriptor. These include:

* The program counter (PC) and stack pointer (SP) registers
* The general purpose registers
* The floating point registers

* The processor control registers (Processor Status Word) containing information
about the CPU state

* The memory management registers used to keep track of the RAM accessed by
the process

When the kernel decides to resume executing a process, it uses the proper process
descriptor fields to load the CPU registers. Because the stored value of the program
counter points to the instruction following the last instruction executed, the process
resumes execution at the point where it was stopped.

When a process is not executing on the CPU, it is waiting for some event. Unix ker-
nels distinguish many wait states, which are usually implemented by queues of
process descriptors; each (possibly empty) queue corresponds to the set of processes
waiting for a specific event.

Reentrant Kernels

All Unix kernels are reentrant. This means that several processes may be executing in
Kernel Mode at the same time. Of course, on uniprocessor systems, only one pro-
cess can progress, but many can be blocked in Kernel Mode when waiting for the
CPU or the completion of some I/O operation. For instance, after issuing a read to a
disk on behalf of a process, the kernel lets the disk controller handle it and resumes
executing other processes. An interrupt notifies the kernel when the device has satis-
fied the read, so the former process can resume the execution.

One way to provide reentrancy is to write functions so that they modify only local
variables and do not alter global data structures. Such functions are called reentrant
functions. But a reentrant kernel is not limited only to such reentrant functions
(although that is how some real-time kernels are implemented). Instead, the kernel

An Overview of Unix Kernels | 21

can include nonreentrant functions and use locking mechanisms to ensure that only
one process can execute a nonreentrant function at a time.

If a hardware interrupt occurs, a reentrant kernel is able to suspend the current run-
ning process even if that process is in Kernel Mode. This capability is very impor-
tant, because it improves the throughput of the device controllers that issue
interrupts. Once a device has issued an interrupt, it waits until the CPU acknowl-
edges it. If the kernel is able to answer quickly, the device controller will be able to
perform other tasks while the CPU handles the interrupt.

Now let’s look at kernel reentrancy and its impact on the organization of the kernel.
A kernel control path denotes the sequence of instructions executed by the kernel to
handle a system call, an exception, or an interrupt.

In the simplest case, the CPU executes a kernel control path sequentially from the
first instruction to the last. When one of the following events occurs, however, the
CPU interleaves the kernel control paths:

* A process executing in User Mode invokes a system call, and the corresponding
kernel control path verifies that the request cannot be satisfied immediately; it
then invokes the scheduler to select a new process to run. As a result, a process
switch occurs. The first kernel control path is left unfinished, and the CPU
resumes the execution of some other kernel control path. In this case, the two
control paths are executed on behalf of two different processes.

* The CPU detects an exception—for example, access to a page not present in
RAM—while running a kernel control path. The first control path is suspended,
and the CPU starts the execution of a suitable procedure. In our example, this
type of procedure can allocate a new page for the process and read its contents
from disk. When the procedure terminates, the first control path can be
resumed. In this case, the two control paths are executed on behalf of the same
process.

* A hardware interrupt occurs while the CPU is running a kernel control path with
the interrupts enabled. The first kernel control path is left unfinished, and the
CPU starts processing another kernel control path to handle the interrupt. The
first kernel control path resumes when the interrupt handler terminates. In this
case, the two kernel control paths run in the execution context of the same pro-
cess, and the total system CPU time is accounted to it. However, the interrupt
handler doesn’t necessarily operate on behalf of the process.

* An interrupt occurs while the CPU is running with kernel preemption enabled,
and a higher priority process is runnable. In this case, the first kernel control
path is left unfinished, and the CPU resumes executing another kernel control
path on behalf of the higher priority process. This occurs only if the kernel has
been compiled with kernel preemption support.

Figure 1-3 illustrates a few examples of noninterleaved and interleaved kernel con-
trol paths. Three different CPU states are considered:

22 | Chapter1: Introduction

* Running a process in User Mode (User)
* Running an exception or a system call handler (Excp)

* Running an interrupt handler (Intr)

TIME

Figure 1-3. Interleaving of kernel control paths

Process Address Space

Each process runs in its private address space. A process running in User Mode refers
to private stack, data, and code areas. When running in Kernel Mode, the process
addresses the kernel data and code areas and uses another private stack.

Because the kernel is reentrant, several kernel control paths—each related to a differ-
ent process—may be executed in turn. In this case, each kernel control path refers to
its own private kernel stack.

While it appears to each process that it has access to a private address space, there
are times when part of the address space is shared among processes. In some cases,
this sharing is explicitly requested by processes; in others, it is done automatically by
the kernel to reduce memory usage.

If the same program, say an editor, is needed simultaneously by several users, the
program is loaded into memory only once, and its instructions can be shared by all of
the users who need it. Its data, of course, must not be shared, because each user will
have separate data. This kind of shared address space is done automatically by the
kernel to save memory.

Processes also can share parts of their address space as a kind of interprocess com-
munication, using the “shared memory” technique introduced in System V and sup-
ported by Linux.

Finally, Linux supports the mmap() system call, which allows part of a file or the
information stored on a block device to be mapped into a part of a process address
space. Memory mapping can provide an alternative to normal reads and writes for
transferring data. If the same file is shared by several processes, its memory mapping
is included in the address space of each of the processes that share it.

An Overview of Unix Kernels | 23

Synchronization and Critical Regions

Implementing a reentrant kernel requires the use of synchronization. If a kernel con-
trol path is suspended while acting on a kernel data structure, no other kernel con-
trol path should be allowed to act on the same data structure unless it has been reset
to a consistent state. Otherwise, the interaction of the two control paths could cor-
rupt the stored information.

For example, suppose a global variable V contains the number of available items of
some system resource. The first kernel control path, A, reads the variable and deter-
mines that there is just one available item. At this point, another kernel control path,
B, is activated and reads the same variable, which still contains the value 1. Thus, B
decreases V and starts using the resource item. Then A resumes the execution;
because it has already read the value of V, it assumes that it can decrease V and take
the resource item, which B already uses. As a final result, V contains —1, and two ker-
nel control paths use the same resource item with potentially disastrous effects.

When the outcome of a computation depends on how two or more processes are
scheduled, the code is incorrect. We say that there is a race condition.

In general, safe access to a global variable is ensured by using atomic operations. In
the previous example, data corruption is not possible if the two control paths read
and decrease V with a single, noninterruptible operation. However, kernels contain
many data structures that cannot be accessed with a single operation. For example, it
usually isn’t possible to remove an element from a linked list with a single operation,
because the kernel needs to access at least two pointers at once. Any section of code
that should be finished by each process that begins it before another process can
enter it is called a critical region.”

These problems occur not only among kernel control paths but also among pro-
cesses sharing common data. Several synchronization techniques have been adopted.
The following section concentrates on how to synchronize kernel control paths.

Kernel preemption disabling

To provide a drastically simple solution to synchronization problems, some tradi-
tional Unix kernels are nonpreemptive: when a process executes in Kernel Mode, it
cannot be arbitrarily suspended and substituted with another process. Therefore, on
a uniprocessor system, all kernel data structures that are not updated by interrupts or
exception handlers are safe for the kernel to access.

Of course, a process in Kernel Mode can voluntarily relinquish the CPU, but in this
case, it must ensure that all data structures are left in a consistent state. Moreover,
when it resumes its execution, it must recheck the value of any previously accessed
data structures that could be changed.

* Synchronization problems have been fully described in other works; we refer the interested reader to books
on the Unix operating systems (see the Bibliography).

24 | Chapter1: Introduction

A synchronization mechanism applicable to preemptive kernels consists of disabling
kernel preemption before entering a critical region and reenabling it right after leav-
ing the region.

Nonpreemptability is not enough for multiprocessor systems, because two kernel
control paths running on different CPUs can concurrently access the same data
structure.

Interrupt disabling

Another synchronization mechanism for uniprocessor systems consists of disabling
all hardware interrupts before entering a critical region and reenabling them right
after leaving it. This mechanism, while simple, is far from optimal. If the critical
region is large, interrupts can remain disabled for a relatively long time, potentially
causing all hardware activities to freeze.

Moreover, on a multiprocessor system, disabling interrupts on the local CPU is not
sufficient, and other synchronization techniques must be used.

Semaphores

A widely used mechanism, effective in both uniprocessor and multiprocessor sys-
tems, relies on the use of semaphores. A semaphore is simply a counter associated
with a data structure; it is checked by all kernel threads before they try to access the
data structure. Each semaphore may be viewed as an object composed of:

* An integer variable
* A list of waiting processes

* Two atomic methods: down() and up()

The down() method decreases the value of the semaphore. If the new value is less
than 0, the method adds the running process to the semaphore list and then blocks
(i.e., invokes the scheduler). The up() method increases the value of the semaphore
and, if its new value is greater than or equal to 0, reactivates one or more processes in
the semaphore list.

Each data structure to be protected has its own semaphore, which is initialized to 1.
When a kernel control path wishes to access the data structure, it executes the down()
method on the proper semaphore. If the value of the new semaphore isn’t negative,
access to the data structure is granted. Otherwise, the process that is executing the
kernel control path is added to the semaphore list and blocked. When another pro-
cess executes the up() method on that semaphore, one of the processes in the sema-
phore list is allowed to proceed.

Spin locks

In multiprocessor systems, semaphores are not always the best solution to the syn-
chronization problems. Some kernel data structures should be protected from being

An Overview of Unix Kernels | 25

concurrently accessed by kernel control paths that run on different CPUs. In this
case, if the time required to update the data structure is short, a semaphore could be
very inefficient. To check a semaphore, the kernel must insert a process in the sema-
phore list and then suspend it. Because both operations are relatively expensive, in
the time it takes to complete them, the other kernel control path could have already
released the semaphore.

In these cases, multiprocessor operating systems use spin locks. A spin lock is very
similar to a semaphore, but it has no process list; when a process finds the lock
closed by another process, it “spins” around repeatedly, executing a tight instruction
loop until the lock becomes open.

Of course, spin locks are useless in a uniprocessor environment. When a kernel con-
trol path tries to access a locked data structure, it starts an endless loop. Therefore,
the kernel control path that is updating the protected data structure would not have
a chance to continue the execution and release the spin lock. The final result would
be that the system hangs.

Avoiding deadlocks

Processes or kernel control paths that synchronize with other control paths may eas-
ily enter a deadlock state. The simplest case of deadlock occurs when process p1
gains access to data structure a and process p2 gains access to b, but pl then waits
for b and p2 waits for a. Other more complex cyclic waits among groups of pro-
cesses also may occur. Of course, a deadlock condition causes a complete freeze of
the affected processes or kernel control paths.

As far as kernel design is concerned, deadlocks become an issue when the number of
kernel locks used is high. In this case, it may be quite difficult to ensure that no dead-
lock state will ever be reached for all possible ways to interleave kernel control paths.
Several operating systems, including Linux, avoid this problem by requesting locks in
a predefined order.

Signals and Interprocess Communication

Unix signals provide a mechanism for notifying processes of system events. Each
event has its own signal number, which is usually referred to by a symbolic constant
such as SIGTERM. There are two kinds of system events:

Asynchronous notifications
For instance, a user can send the interrupt signal SIGINT to a foreground process
by pressing the interrupt keycode (usually Ctrl-C) at the terminal.

Synchronous notifications
For instance, the kernel sends the signal SIGSEGV to a process when it accesses a
memory location at an invalid address.

26 | Chapter1: Introduction

The POSIX standard defines about 20 different signals, 2 of which are user-definable
and may be used as a primitive mechanism for communication and synchronization
among processes in User Mode. In general, a process may react to a signal delivery in
two possible ways:

* Ignore the signal.

* Asynchronously execute a specified procedure (the signal handler).

If the process does not specify one of these alternatives, the kernel performs a default
action that depends on the signal number. The five possible default actions are:

* Terminate the process.

* Write the execution context and the contents of the address space in a file (core
dump) and terminate the process.

* Ignore the signal.
* Suspend the process.

* Resume the process’s execution, if it was stopped.

Kernel signal handling is rather elaborate, because the POSIX semantics allows pro-
cesses to temporarily block signals. Moreover, the SICKILL and SIGSTOP signals can-
not be directly handled by the process or ignored.

AT&T’s Unix System V introduced other kinds of interprocess communication
among processes in User Mode, which have been adopted by many Unix kernels:
semaphores, message queues, and shared memory. They are collectively known as Sys-
tem V IPC.

The kernel implements these constructs as IPC resources. A process acquires a
resource by invoking a shmget(), semget(), or msgget() system call. Just like files,
IPC resources are persistent: they must be explicitly deallocated by the creator pro-
cess, by the current owner, or by a superuser process.

Semaphores are similar to those described in the section “Synchronization and Criti-
cal Regions,” earlier in this chapter, except that they are reserved for processes in
User Mode. Message queues allow processes to exchange messages by using the
msgsnd() and msgrcv() system calls, which insert a message into a specific message
queue and extract a message from it, respectively.

The POSIX standard (IEEE Std 1003.1-2001) defines an IPC mechanism based on
message queues, which is usually known as POSIX message queues. They are similar
to the System V IPC’s message queues, but they have a much simpler file-based inter-
face to the applications.

Shared memory provides the fastest way for processes to exchange and share data. A
process starts by issuing a shmget (') system call to create a new shared memory hav-
ing a required size. After obtaining the IPC resource identifier, the process invokes
the shmat (') system call, which returns the starting address of the new region within

An Overview of Unix Kernels | 27

the process address space. When the process wishes to detach the shared memory
from its address space, it invokes the shmdt() system call. The implementation of
shared memory depends on how the kernel implements process address spaces.

Process Management

Unix makes a neat distinction between the process and the program it is executing.
To that end, the fork() and _exit() system calls are used respectively to create a
new process and to terminate it, while an exec()-like system call is invoked to load a
new program. After such a system call is executed, the process resumes execution
with a brand new address space containing the loaded program.

The process that invokes a fork() is the parent, while the new process is its child.
Parents and children can find one another because the data structure describing each

process includes a pointer to its immediate parent and pointers to all its immediate
children.

A naive implementation of the fork() would require both the parent’s data and the
parent’s code to be duplicated and the copies assigned to the child. This would be
quite time consuming. Current kernels that can rely on hardware paging units fol-
low the Copy-On-Write approach, which defers page duplication until the last
moment (i.e., until the parent or the child is required to write into a page). We shall
describe how Linux implements this technique in the section “Copy On Write” in
Chapter 9.

The exit() system call terminates a process. The kernel handles this system call by
releasing the resources owned by the process and sending the parent process a
SIGCHLD signal, which is ignored by default.

Zombie processes

How can a parent process inquire about termination of its children? The wait4() sys-
tem call allows a process to wait until one of its children terminates; it returns the
process ID (PID) of the terminated child.

When executing this system call, the kernel checks whether a child has already ter-
minated. A special zombie process state is introduced to represent terminated pro-
cesses: a process remains in that state until its parent process executes a wait4()
system call on it. The system call handler extracts data about resource usage from the
process descriptor fields; the process descriptor may be released once the data is col-
lected. If no child process has already terminated when the wait4() system call is
executed, the kernel usually puts the process in a wait state until a child terminates.

Many kernels also implement a waitpid() system call, which allows a process to wait
for a specific child process. Other variants of wait4() system calls are also quite
common.

28 | Chapter1: Introduction

It’s good practice for the kernel to keep around information on a child process until
the parent issues its wait4() call, but suppose the parent process terminates without
issuing that call? The information takes up valuable memory slots that could be used
to serve living processes. For example, many shells allow the user to start a com-
mand in the background and then log out. The process that is running the com-
mand shell terminates, but its children continue their execution.

The solution lies in a special system process called init, which is created during sys-
tem initialization. When a process terminates, the kernel changes the appropriate
process descriptor pointers of all the existing children of the terminated process to
make them become children of init. This process monitors the execution of all its
children and routinely issues wait4() system calls, whose side effect is to get rid of all
orphaned zombies.

Process groups and login sessions

Modern Unix operating systems introduce the notion of process groups to represent a
“job” abstraction. For example, in order to execute the command line:

$ 1s | sort | more

a shell that supports process groups, such as bash, creates a new group for the three
processes corresponding to 1s, sort, and more. In this way, the shell acts on the three
processes as if they were a single entity (the job, to be precise). Each process descrip-
tor includes a field containing the process group ID. Each group of processes may
have a group leader, which is the process whose PID coincides with the process group
ID. A newly created process is initially inserted into the process group of its parent.

Modern Unix kernels also introduce login sessions. Informally, a login session con-
tains all processes that are descendants of the process that has started a working ses-
sion on a specific terminal—usually, the first command shell process created for the
user. All processes in a process group must be in the same login session. A login ses-
sion may have several process groups active simultaneously; one of these process
groups is always in the foreground, which means that it has access to the terminal.
The other active process groups are in the background. When a background process
tries to access the terminal, it receives a SIGTTIN or SIGTTOUT signal. In many com-
mand shells, the internal commands bg and fg can be used to put a process group in
either the background or the foreground.

Memory Management

Memory management is by far the most complex activity in a Unix kernel. More
than a third of this book is dedicated just to describing how Linux handles memory
management. This section illustrates some of the main issues related to memory
management.

An Overview of Unix Kernels | 29

Virtual memory

All recent Unix systems provide a useful abstraction called virtual memory. Virtual
memory acts as a logical layer between the application memory requests and the
hardware Memory Management Unit (MMU). Virtual memory has many purposes
and advantages:

* Several processes can be executed concurrently.

* It is possible to run applications whose memory needs are larger than the avail-
able physical memory.

* Processes can execute a program whose code is only partially loaded in memory.
* Each process is allowed to access a subset of the available physical memory.
* Processes can share a single memory image of a library or program.

* Programs can be relocatable—that is, they can be placed anywhere in physical
memory.

* Programmers can write machine-independent code, because they do not need to
be concerned about physical memory organization.

The main ingredient of a virtual memory subsystem is the notion of virtual address
space. The set of memory references that a process can use is different from physical
memory addresses. When a process uses a virtual address,” the kernel and the MMU
cooperate to find the actual physical location of the requested memory item.

Today’s CPUs include hardware circuits that automatically translate the virtual
addresses into physical ones. To that end, the available RAM is partitioned into page
frames—typically 4 or 8 KB in length—and a set of Page Tables is introduced to spec-
ify how virtual addresses correspond to physical addresses. These circuits make
memory allocation simpler, because a request for a block of contiguous virtual
addresses can be satisfied by allocating a group of page frames having noncontiguous
physical addresses.

Random access memory usage

All Unix operating systems clearly distinguish between two portions of the random
access memory (RAM). A few megabytes are dedicated to storing the kernel image (i.e.,
the kernel code and the kernel static data structures). The remaining portion of RAM is
usually handled by the virtual memory system and is used in three possible ways:

* To satisfy kernel requests for buffers, descriptors, and other dynamic kernel data
structures

* To satisfy process requests for generic memory areas and for memory mapping
of files

* These addresses have different nomenclatures, depending on the computer architecture. As we’ll see in
Chapter 2, Intel manuals refer to them as “logical addresses.”

30 | Chapter1: Introduction

* To get better performance from disks and other buffered devices by means of
caches

Each request type is valuable. On the other hand, because the available RAM is lim-
ited, some balancing among request types must be done, particularly when little avail-
able memory is left. Moreover, when some critical threshold of available memory is
reached and a page-frame-reclaiming algorithm is invoked to free additional memory,
which are the page frames most suitable for reclaiming? As we will see in Chapter 17,
there is no simple answer to this question and very little support from theory. The
only available solution lies in developing carefully tuned empirical algorithms.

One major problem that must be solved by the virtual memory system is memory
fragmentation. 1deally, a memory request should fail only when the number of free
page frames is too small. However, the kernel is often forced to use physically contig-
uous memory areas. Hence the memory request could fail even if there is enough
memory available, but it is not available as one contiguous chunk.

Kernel Memory Allocator

The Kernel Memory Allocator (KMA) is a subsystem that tries to satisfy the requests
for memory areas from all parts of the system. Some of these requests come from
other kernel subsystems needing memory for kernel use, and some requests come via
system calls from user programs to increase their processes’ address spaces. A good
KMA should have the following features:

* It must be fast. Actually, this is the most crucial attribute, because it is invoked
by all kernel subsystems (including the interrupt handlers).

* It should minimize the amount of wasted memory.

* It should try to reduce the memory fragmentation problem.

* It should be able to cooperate with the other memory management subsystems
to borrow and release page frames from them.

Several proposed KMAs, which are based on a variety of different algorithmic tech-
niques, include:

* Resource map allocator

* Power-of-two free lists

* McKusick-Karels allocator

* Buddy system

* Mach’s Zone allocator

* Dynix allocator

* Solaris’s Slab allocator

As we will see in Chapter 8, Linux’s KMA uses a Slab allocator on top of a buddy
system.

An Overview of Unix Kernels | 31

Process virtual address space handling

The address space of a process contains all the virtual memory addresses that the
process is allowed to reference. The kernel usually stores a process virtual address
space as a list of memory area descriptors. For example, when a process starts the
execution of some program via an exec()-like system call, the kernel assigns to the
process a virtual address space that comprises memory areas for:

* The executable code of the program

* The initialized data of the program

* The uninitialized data of the program

* The initial program stack (i.e., the User Mode stack)

* The executable code and data of needed shared libraries

* The heap (the memory dynamically requested by the program)

All recent Unix operating systems adopt a memory allocation strategy called demand
paging. With demand paging, a process can start program execution with none of its
pages in physical memory. As it accesses a nonpresent page, the MMU generates an
exception; the exception handler finds the affected memory region, allocates a free
page, and initializes it with the appropriate data. In a similar fashion, when the pro-
cess dynamically requires memory by using malloc(), or the brk() system call
(which is invoked internally by malloc()), the kernel just updates the size of the heap
memory region of the process. A page frame is assigned to the process only when it
generates an exception by trying to refer its virtual memory addresses.

Virtual address spaces also allow other efficient strategies, such as the Copy On
Write strategy mentioned earlier. For example, when a new process is created, the
kernel just assigns the parent’s page frames to the child address space, but marks
them read-only. An exception is raised as soon as the parent or the child tries to
modify the contents of a page. The exception handler assigns a new page frame to
the affected process and initializes it with the contents of the original page.

Caching

A good part of the available physical memory is used as cache for hard disks and
other block devices. This is because hard drives are very slow: a disk access requires
several milliseconds, which is a very long time compared with the RAM access time.
Therefore, disks are often the bottleneck in system performance. As a general rule,
one of the policies already implemented in the earliest Unix system is to defer writing
to disk as long as possible. As a result, data read previously from disk and no longer
used by any process continue to stay in RAM.

This strategy is based on the fact that there is a good chance that new processes will
require data read from or written to disk by processes that no longer exist. When a
process asks to access a disk, the kernel checks first whether the required data are in
the cache. Each time this happens (a cache hit), the kernel is able to service the pro-
cess request without accessing the disk.

32 | Chapter1: Introduction

The sync() system call forces disk synchronization by writing all of the “dirty” buff-
ers (i.e., all the buffers whose contents differ from that of the corresponding disk
blocks) into disk. To avoid data loss, all operating systems take care to periodically
write dirty buffers back to disk.

Device Drivers

The kernel interacts with I/O devices by means of device drivers. Device drivers are
included in the kernel and consist of data structures and functions that control one
or more devices, such as hard disks, keyboards, mouses, monitors, network inter-
faces, and devices connected to an SCSI bus. Each driver interacts with the remain-
ing part of the kernel (even with other drivers) through a specific interface. This
approach has the following advantages:

* Device-specific code can be encapsulated in a specific module.

* Vendors can add new devices without knowing the kernel source code; only the
interface specifications must be known.

* The kernel deals with all devices in a uniform way and accesses them through
the same interface.

* Itis possible to write a device driver as a module that can be dynamically loaded
in the kernel without requiring the system to be rebooted. It is also possible to
dynamically unload a module that is no longer needed, therefore minimizing the
size of the kernel image stored in RAM.

Figure 1-4 illustrates how device drivers interface with the rest of the kernel and with
the processes.

Device driver interface

System call interface

| Virtual File System |
Kernel (character device files) (block device files)

tty Sound Disk
driver driver driver

| tty l | tty | | Mic. | |Speaker| | Disk | | Disk |

Figure 1-4. Device driver interface

An Overview of Unix Kernels | 33

Some user programs (P) wish to operate on hardware devices. They make requests to
the kernel using the usual file-related system calls and the device files normally found
in the /dev directory. Actually, the device files are the user-visible portion of the device
driver interface. Each device file refers to a specific device driver, which is invoked by
the kernel to perform the requested operation on the hardware component.

At the time Unix was introduced, graphical terminals were uncommon and expen-
sive, so only alphanumeric terminals were handled directly by Unix kernels. When
graphical terminals became widespread, ad hoc applications such as the X Window
System were introduced that ran as standard processes and accessed the /O ports of
the graphics interface and the RAM video area directly. Some recent Unix kernels,
such as Linux 2.6, provide an abstraction for the frame buffer of the graphic card and
allow application software to access them without needing to know anything about
the I/O ports of the graphics interface (see the section “Levels of Kernel Support” in
Chapter 13.)

34 | Chapter1: Introduction

CHAPTER 2

Memory Addressing

This chapter deals with addressing techniques. Luckily, an operating system is not
forced to keep track of physical memory all by itself; today’s microprocessors include
several hardware circuits to make memory management both more efficient and
more robust so that programming errors cannot cause improper accesses to memory
outside the program.

As in the rest of this book, we offer details in this chapter on how 80X 86 micropro-
cessors address memory chips and how Linux uses the available addressing circuits.
You will find, we hope, that when you learn the implementation details on Linux’s
most popular platform you will better understand both the general theory of paging
and how to research the implementation on other platforms.

This is the first of three chapters related to memory management; Chapter 8 dis-
cusses how the kernel allocates main memory to itself, while Chapter 9 considers
how linear addresses are assigned to processes.

Memory Addresses

Programmers casually refer to a memory address as the way to access the contents of
a memory cell. But when dealing with 80x86 microprocessors, we have to distin-
guish three kinds of addresses:

Logical address
Included in the machine language instructions to specify the address of an oper-
and or of an instruction. This type of address embodies the well-known 80 x 86
segmented architecture that forces MS-DOS and Windows programmers to
divide their programs into segments. Each logical address consists of a segment
and an offset (or displacement) that denotes the distance from the start of the seg-
ment to the actual address.

35

Linear address (also known as virtual address)
A single 32-bit unsigned integer that can be used to address up to 4 GB—that is,
up to 4,294,967,296 memory cells. Linear addresses are usually represented in
hexadecimal notation; their values range from 0x00000000 to Oxffffffff.

Physical address
Used to address memory cells in memory chips. They correspond to the electri-
cal signals sent along the address pins of the microprocessor to the memory bus.
Physical addresses are represented as 32-bit or 36-bit unsigned integers.

The Memory Management Unit (MMU) transforms a logical address into a linear
address by means of a hardware circuit called a segmentation unit; subsequently, a
second hardware circuit called a paging unit transforms the linear address into a
physical address (see Figure 2-1).

| |
Logical address SEGMS “ |Tft\ TION Linear address Pﬁﬂ#(i Physical address

— —

Figure 2-1. Logical address translation

In multiprocessor systems, all CPUs usually share the same memory; this means that
RAM chips may be accessed concurrently by independent CPUs. Because read or
write operations on a RAM chip must be performed serially, a hardware circuit called
a memory arbiter is inserted between the bus and every RAM chip. Its role is to grant
access to a CPU if the chip is free and to delay it if the chip is busy servicing a request
by another processor. Even uniprocessor systems use memory arbiters, because they
include specialized processors called DMA controllers that operate concurrently with
the CPU (see the section “Direct Memory Access (DMA)” in Chapter 13). In the case
of multiprocessor systems, the structure of the arbiter is more complex because it has
more input ports. The dual Pentium, for instance, maintains a two-port arbiter at
each chip entrance and requires that the two CPUs exchange synchronization mes-
sages before attempting to use the common bus. From the programming point of
view, the arbiter is hidden because it is managed by hardware circuits.

Segmentation in Hardware

Starting with the 80286 model, Intel microprocessors perform address translation in
two different ways called real mode and protected mode. We'll focus in the next sec-
tions on address translation when protected mode is enabled. Real mode exists
mostly to maintain processor compatibility with older models and to allow the oper-
ating system to bootstrap (see Appendix A for a short description of real mode).

36 | Chapter2: Memory Addressing

Segment Selectors and Segmentation Registers

A logical address consists of two parts: a segment identifier and an offset that speci-
fies the relative address within the segment. The segment identifier is a 16-bit field
called the Segment Selector (see Figure 2-2), while the offset is a 32-bit field. We’ll
describe the fields of Segment Selectors in the section “Fast Access to Segment
Descriptors” later in this chapter.

15 3210
RPL Tl =Table Indicator

Segment Selector index |TI |
RPL = Requestor Privilege Level

Figure 2-2. Segment Selector format

To make it easy to retrieve segment selectors quickly, the processor provides segmen-
tation registers whose only purpose is to hold Segment Selectors; these registers are
called cs, ss, ds, es, fs, and gs. Although there are only six of them, a program can
reuse the same segmentation register for different purposes by saving its content in
memory and then restoring it later.

Three of the six segmentation registers have specific purposes:

cs The code segment register, which points to a segment containing program
instructions

ss The stack segment register, which points to a segment containing the current
program stack

ds The data segment register, which points to a segment containing global and
static data

The remaining three segmentation registers are general purpose and may refer to
arbitrary data segments.

The cs register has another important function: it includes a 2-bit field that specifies
the Current Privilege Level (CPL) of the CPU. The value O denotes the highest privi-
lege level, while the value 3 denotes the lowest one. Linux uses only levels 0 and 3,
which are respectively called Kernel Mode and User Mode.

Segment Descriptors

Each segment is represented by an 8-byte Segment Descriptor that describes the seg-
ment characteristics. Segment Descriptors are stored either in the Global Descriptor
Table (GDT) or in the Local Descriptor Table (LDT).

Usually only one GDT is defined, while each process is permitted to have its own LDT if
it needs to create additional segments besides those stored in the GDT. The address and
size of the GDT in main memory are contained in the gdtr control register, while the
address and size of the currently used LDT are contained in the 1dtr control register.

Segmentationin Hardware | 37

Figure 2-3 illustrates the format of a Segment Descriptor; the meaning of the various
fields is explained in Table 2-1.

Table 2-1. Segment Descriptor fields

Field name Description

Base Contains the linear address of the first byte of the segment.

G Granularity flag: if it is cleared (equal to 0), the segment size is expressed in bytes; otherwise, it is expressed
in multiples of 4096 bytes.

Limit Holds the offset of the last memory cell in the segment, thus binding the segment length. When Gis set to 0,
the size of a segment may vary between 1 byte and 1 MB; otherwise, it may vary between 4 KB and 4 GB.

S System flag: if it is cleared, the segment is a system segment that stores critical data structures such as the
Local Descriptor Table; otherwise, it is a normal code or data segment.

Type Characterizes the segment type and its access rights (see the text that follows this table).

DPL Descriptor Privilege Level- used to restrict accesses to the segment. It represents the minimal CPU privilege level

requested for accessing the segment. Therefore, a segment with its DPL set to 0 is accessible only when the CPL
is 0—that is, in Kernel Mode — while a segment with its DPL set to 3 is accessible with every CPL value.

p Segment-Present flag: is equal to 0 if the segment is not stored currently in main memory. Linux always sets
this flag (bit 47) to 1, because it never swaps out whole segments to disk.

DorB Called D or B depending on whether the segment contains code or data. Its meaning is slightly different in
the two cases, but it is basically set (equal to 1) if the addresses used as segment offsets are 32 bits long, and
itis cleared if they are 16 bits long (see the Intel manual for further details).

AVL May be used by the operating system, but it is ignored by Linux.

There are several types of segments, and thus several types of Segment Descriptors.
The following list shows the types that are widely used in Linux.

Code Segment Descriptor
Indicates that the Segment Descriptor refers to a code segment; it may be
included either in the GDT or in the LDT. The descriptor has the S flag set (non-
system segment).

Data Segment Descriptor
Indicates that the Segment Descriptor refers to a data segment; it may be
included either in the GDT or in the LDT. The descriptor has the S flag set.
Stack segments are implemented by means of generic data segments.

Task State Segment Descriptor (TSSD)
Indicates that the Segment Descriptor refers to a Task State Segment (TSS)—
that is, a segment used to save the contents of the processor registers (see the
section “Task State Segment” in Chapter 3); it can appear only in the GDT. The
corresponding Type field has the value 11 or 9, depending on whether the corre-
sponding process is currently executing on a CPU. The S flag of such descriptors
is set to 0.

38 | Chapter2: Memory Addressing

Data Segment Descriptor
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Al umir D IS

BASE(24-31) G[B|O|V| (16-19) |T| P |=| TYPE BASE (16-23)

L 1

BASE(0-15) LIMIT (0-15)

313029 2827 26 252423 222120191817 161514 13121110 9 8 7 6 5 4 3 2 10

Code Segment Descriptor
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Al umir D |S

BASE(24-31) GID[O|V| (16199 |[T| P |=| TYPE BASE (16-23)

L 1

BASE(0-15) LIMIT (0-15)

313029 2827 26 252423 222120191817 161514 13121110 9 8 7 6 5 4 3 2 10

System Segment Descriptor

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

D
BASE(24-31) H M ‘(1L|6'\—A1I;) H P
L

=| TYPE ‘ BASE (16-23)
0

BASE(0-15) LIMIT (0-15)

313029 2827 26 252423 222120191817 161514 13121110 9 8 7 6 5 4 3 2 10

Figure 2-3. Segment Descriptor format

Local Descriptor Table Descriptor (LDTD)
Indicates that the Segment Descriptor refers to a segment containing an LDT; it
can appear only in the GDT. The corresponding Type field has the value 2. The S
flag of such descriptors is set to 0. The next section shows how 80x 86 proces-
sors are able to decide whether a segment descriptor is stored in the GDT or in
the LDT of the process.

Fast Access to Segment Descriptors

We recall that logical addresses consist of a 16-bit Segment Selector and a 32-bit Off-
set, and that segmentation registers store only the Segment Selector.

To speed up the translation of logical addresses into linear addresses, the 80x 86 pro-
cessor provides an additional nonprogrammable register—that is, a register that can-
not be set by a programmer—for each of the six programmable segmentation
registers. Each nonprogrammable register contains the 8-byte Segment Descriptor
(described in the previous section) specified by the Segment Selector contained in the
corresponding segmentation register. Every time a Segment Selector is loaded in a seg-
mentation register, the corresponding Segment Descriptor is loaded from memory
into the matching nonprogrammable CPU register. From then on, translations of logi-
cal addresses referring to that segment can be performed without accessing the GDT

Segmentationin Hardware | 39

or LDT stored in main memory; the processor can refer only directly to the CPU reg-
ister containing the Segment Descriptor. Accesses to the GDT or LDT are necessary
only when the contents of the segmentation registers change (see Figure 2-4).

Descriptor Table Segment
(\ e » TN .

Segment
Descriptor

N—

Segmentation Register Nonprogrammable Register

Segment Selector I'l Segment Descriptor h i

Figure 2-4. Segment Selector and Segment Descriptor
Any Segment Selector includes three fields that are described in Table 2-2.

Table 2-2. Segment Selector fields

Field name Description

index Identifies the Segment Descriptor entry contained in the GDT or in the LDT (described further in the text
following this table).

TI Table Indicator: specifies whether the Segment Descriptor is included in the GDT (TI =0) or in the LDT
T=1).

RPL Requestor Privilege Level: specifies the Current Privilege Level of the CPU when the corresponding Seg-

ment Selector is loaded into the cs register; it also may be used to selectively weaken the processor priv-
ilege level when accessing data segments (see Intel documentation for details).

Because a Segment Descriptor is 8 bytes long, its relative address inside the GDT or
the LDT is obtained by multiplying the 13-bit index field of the Segment Selector by
8. For instance, if the GDT is at 0x00020000 (the value stored in the gdtr register) and
the index specified by the Segment Selector is 2, the address of the corresponding
Segment Descriptor is 0x00020000 + (2 X 8), or 0x00020010.

The first entry of the GDT is always set to 0. This ensures that logical addresses with
a null Segment Selector will be considered invalid, thus causing a processor excep-

tion. The maximum number of Segment Descriptors that can be stored in the GDT is
8,191 (i.e., 213-1).

Segmentation Unit

Figure 2-5 shows in detail how a logical address is translated into a corresponding
linear address. The segmentation unit performs the following operations:

40 | Chapter2: Memory Addressing

* Examines the TI field of the Segment Selector to determine which Descriptor
Table stores the Segment Descriptor. This field indicates that the Descriptor is
either in the GDT (in which case the segmentation unit gets the base linear
address of the GDT from the gdtr register) or in the active LDT (in which case the
segmentation unit gets the base linear address of that LDT from the ldtr register).

* Computes the address of the Segment Descriptor from the index field of the Seg-
ment Selector. The index field is multiplied by 8 (the size of a Segment Descrip-
tor), and the result is added to the content of the gdtr or 1dtr register.

* Adds the offset of the logical address to the Base field of the Segment Descriptor,
thus obtaining the linear address.

gdt or Idt Linear Address

| —

Descriptor

N/
gdtror Idtr

LJ‘;

I Selector offset
| Index | Tl I'I : | I'I

Logical Address

Figure 2-5. Translating a logical address

Notice that, thanks to the nonprogrammable registers associated with the segmenta-
tion registers, the first two operations need to be performed only when a segmenta-
tion register has been changed.

Segmentation in Linux

Segmentation has been included in 80x 86 microprocessors to encourage program-
mers to split their applications into logically related entities, such as subroutines or
global and local data areas. However, Linux uses segmentation in a very limited way.
In fact, segmentation and paging are somewhat redundant, because both can be used

Segmentationin Linux | 41

to separate the physical address spaces of processes: segmentation can assign a differ-
ent linear address space to each process, while paging can map the same linear
address space into different physical address spaces. Linux prefers paging to segmen-
tation for the following reasons:

* Memory management is simpler when all processes use the same segment regis-
ter values—that is, when they share the same set of linear addresses.

* One of the design objectives of Linux is portability to a wide range of architec-
tures; RISC architectures in particular have limited support for segmentation.

The 2.6 version of Linux uses segmentation only when required by the 80x 86 archi-
tecture.

All Linux processes running in User Mode use the same pair of segments to address
instructions and data. These segments are called user code segment and user data seg-
ment, respectively. Similarly, all Linux processes running in Kernel Mode use the
same pair of segments to address instructions and data: they are called kernel code
segment and kernel data segment, respectively. Table 2-3 shows the values of the Seg-
ment Descriptor fields for these four crucial segments.

Table 2-3. Values of the Segment Descriptor fields for the four main Linux segments

Segment Base G Limit S Type DPL D/B P
user code 0x00000000 1 oxffff 1 10 3 1 1
user data 0x00000000 1 oxffFfff 1 2 3 1 1
kernel code 0x00000000 1 Oxffff 1 10 0 1 1
kernel data 0x00000000 1 oxffff 1 2 0 1 1

The corresponding Segment Selectors are defined by the macros _USER_CS, USER DS,
__KERNEL_CS, and __KERNEL_DS, respectively. To address the kernel code segment, for
instance, the kernel just loads the value yielded by the = KERNEL_CS macro into the cs
segmentation register.

Notice that the linear addresses associated with such segments all start at 0 and reach
the addressing limit of 232 —1. This means that all processes, either in User Mode or
in Kernel Mode, may use the same logical addresses.

Another important consequence of having all segments start at 0x00000000 is that in
Linux, logical addresses coincide with linear addresses; that is, the value of the Off-
set field of a logical address always coincides with the value of the corresponding lin-
ear address.

As stated earlier, the Current Privilege Level of the CPU indicates whether the proces-
sor is in User or Kernel Mode and is specified by the RPL field of the Segment Selector
stored in the cs register. Whenever the CPL is changed, some segmentation registers
must be correspondingly updated. For instance, when the CPL is equal to 3 (User
Mode), the ds register must contain the Segment Selector of the user data segment,

42 | Chapter2: Memory Addressing

but when the CPL is equal to 0, the ds register must contain the Segment Selector of
the kernel data segment.

A similar situation occurs for the ss register. It must refer to a User Mode stack
inside the user data segment when the CPL is 3, and it must refer to a Kernel Mode
stack inside the kernel data segment when the CPL is 0. When switching from User
Mode to Kernel Mode, Linux always makes sure that the ss register contains the Seg-
ment Selector of the kernel data segment.

When saving a pointer to an instruction or to a data structure, the kernel does not
need to store the Segment Selector component of the logical address, because the ss
register contains the current Segment Selector. As an example, when the kernel
invokes a function, it executes a call assembly language instruction specifying just
the Offset component of its logical address; the Segment Selector is implicitly selected
as the one referred to by the cs register. Because there is just one segment of type
“executable in Kernel Mode,” namely the code segment identified by _ KERNEL_CS, it
is sufficient to load _ KERNEL_CS into cs whenever the CPU switches to Kernel Mode.
The same argument goes for pointers to kernel data structures (implicitly using the ds
register), as well as for pointers to user data structures (the kernel explicitly uses the
es register).

Besides the four segments just described, Linux makes use of a few other specialized
segments. We’ll introduce them in the next section while describing the Linux GDT.

The Linux GDT

In uniprocessor systems there is only one GDT, while in multiprocessor systems
there is one GDT for every CPU in the system. All GDTs are stored in the cpu_gdt_
table array, while the addresses and sizes of the GDTs (used when initializing the
gdtr registers) are stored in the cpu_gdt descr array. If you look in the Source Code
Index, you can see that these symbols are defined in the file arch/i386/kernel/head.S.
Every macro, function, and other symbol in this book is listed in the Source Code
Index, so you can quickly find it in the source code.

The layout of the GDTs is shown schematically in Figure 2-6. Each GDT includes 18
segment descriptors and 14 null, unused, or reserved entries. Unused entries are
inserted on purpose so that Segment Descriptors usually accessed together are kept
in the same 32-byte line of the hardware cache (see the section “Hardware Cache”
later in this chapter).

The 18 segment descriptors included in each GDT point to the following segments:

* Four user and kernel code and data segments (see previous section).

* A Task State Segment (TSS), different for each processor in the system. The lin-
ear address space corresponding to a TSS is a small subset of the linear address
space corresponding to the kernel data segment. The Task State Segments are

Segmentationin Linux | 43

Linux’s GDT Segment Selectors Linux’s GDT Segment Selectors

null 0x0 TSS 0x80
reserved LDT 0x88
reserved PNPBIOS 32-bit code 0x90
reserved PNPBIOS 16-bit code 0x98
not used PNPBIOS 16-bit data 0xa0
not used PNPBIOS 16-bit data 0xa8
TLS #1 0x33 PNPBIOS 16-bit data 0xbo
TLS#2 0x3b APMBIOS 32-bit code 0xb8
TLS#3 0x43 APMBIOS 16-bit code 0xco
reserved APMBIOS data 0xc8
reserved not used
reserved not used
kerel code 0x60 (__KERNEL_CS) not used
kernel data 0x68 (__KERNEL_DS) not used
user code 0x73 (__USER_CS) not used
user data ox7b (__USER_DS) double fault TSS oxf8

Figure 2-6. The Global Descriptor Table

sequentially stored in the init_tss array; in particular, the Base field of the TSS
descriptor for the nth CPU points to the nth component of the init_tss array.
The G (granularity) flag is cleared, while the Limit field is set to Oxeb, because the
TSS segment is 236 bytes long. The Type field is set to 9 or 11 (available 32-bit
TSS), and the DPL is set to 0, because processes in User Mode are not allowed to
access TSS segments. You will find details on how Linux uses TSSs in the sec-
tion “Task State Segment” in Chapter 3.

A segment including the default Local Descriptor Table (LDT), usually shared by
all processes (see the next section).

Three Thread-Local Storage (TLS) segments: this is a mechanism that allows
multithreaded applications to make use of up to three segments containing data
local to each thread. The set_thread area() and get _thread area() system calls,
respectively, create and release a TLS segment for the executing process.

Three segments related to Advanced Power Management (APM): the BIOS code
makes use of segments, so when the Linux APM driver invokes BIOS functions to
get or set the status of APM devices, it may use custom code and data segments.

Five segments related to Plug and Play (PnP) BIOS services. As in the previous
case, the BIOS code makes use of segments, so when the Linux PnP driver
invokes BIOS functions to detect the resources used by PnP devices, it may use
custom code and data segments.

44

Chapter 2: Memory Addressing

* A special TSS segment used by the kernel to handle “Double fault” exceptions
(see “Exceptions” in Chapter 4).

As stated earlier, there is a copy of the GDT for each processor in the system. All
copies of the GDT store identical entries, except for a few cases. First, each proces-
sor has its own TSS segment, thus the corresponding GDT’s entries differ. More-
over, a few entries in the GDT may depend on the process that the CPU is executing
(LDT and TLS Segment Descriptors). Finally, in some cases a processor may tempo-
rarily modify an entry in its copy of the GDT; this happens, for instance, when
invoking an APM’s BIOS procedure.

The Linux LDTs

Most Linux User Mode applications do not make use of a Local Descriptor Table,
thus the kernel defines a default LDT to be shared by most processes. The default
Local Descriptor Table is stored in the default_ldt array. It includes five entries, but
only two of them are effectively used by the kernel: a call gate for iBCS executables,
and a call gate for Solaris/x86 executables (see the section “Execution Domains” in
Chapter 20). Call gates are a mechanism provided by 80x86 microprocessors to
change the privilege level of the CPU while invoking a predefined function; as we
won’t discuss them further, you should consult the Intel documentation for more
details.

In some cases, however, processes may require to set up their own LDT. This turns
out to be useful to applications (such as Wine) that execute segment-oriented
Microsoft Windows applications. The modify 1dt() system call allows a process to

do this.

Any custom LDT created by modify 1dt() also requires its own segment. When a
processor starts executing a process having a custom LDT, the LDT entry in the
CPU-specific copy of the GDT is changed accordingly.

User Mode applications also may allocate new segments by means of modify 1dt();
the kernel, however, never makes use of these segments, and it does not have to keep
track of the corresponding Segment Descriptors, because they are included in the
custom LDT of the process.

Paging in Hardware

The paging unit translates linear addresses into physical ones. One key task in the
unit is to check the requested access type against the access rights of the linear
address. If the memory access is not valid, it generates a Page Fault exception (see
Chapter 4 and Chapter 8).

Pagingin Hardware | 45

For the sake of efficiency, linear addresses are grouped in fixed-length intervals called
pages; contiguous linear addresses within a page are mapped into contiguous physi-
cal addresses. In this way, the kernel can specify the physical address and the access
rights of a page instead of those of all the linear addresses included in it. Following
the usual convention, we shall use the term “page” to refer both to a set of linear
addresses and to the data contained in this group of addresses.

The paging unit thinks of all RAM as partitioned into fixed-length page frames
(sometimes referred to as physical pages). Each page frame contains a page—that is,
the length of a page frame coincides with that of a page. A page frame is a constitu-
ent of main memory, and hence it is a storage area. It is important to distinguish a
page from a page frame; the former is just a block of data, which may be stored in
any page frame or on disk.

The data structures that map linear to physical addresses are called page tables; they
are stored in main memory and must be properly initialized by the kernel before
enabling the paging unit.

Starting with the 80386, all 80x 86 processors support paging; it is enabled by set-
ting the PG flag of a control register named cr0. When PG = 0, linear addresses are
interpreted as physical addresses.

Regular Paging
Starting with the 80386, the paging unit of Intel processors handles 4 KB pages.
The 32 bits of a linear address are divided into three fields:
Directory
The most significant 10 bits
Table
The intermediate 10 bits

Offset

The least significant 12 bits

The translation of linear addresses is accomplished in two steps, each based on a
type of translation table. The first translation table is called the Page Directory, and
the second is called the Page Table."

The aim of this two-level scheme is to reduce the amount of RAM required for per-
process Page Tables. If a simple one-level Page Table was used, then it would require

* In the discussion that follows, the lowercase “page table” term denotes any page storing the mapping
between linear and physical addresses, while the capitalized “Page Table” term denotes a page in the last
level of page tables.

46 | Chapter2: Memory Addressing

up to 220 entries (i.e., at 4 bytes per entry, 4 MB of RAM) to represent the Page Table
for each process (if the process used a full 4 GB linear address space), even though a
process does not use all addresses in that range. The two-level scheme reduces the
memory by requiring Page Tables only for those virtual memory regions actually
used by a process.

Each active process must have a Page Directory assigned to it. However, there is no
need to allocate RAM for all Page Tables of a process at once; it is more efficient to
allocate RAM for a Page Table only when the process effectively needs it.

The physical address of the Page Directory in use is stored in a control register
named cr3. The Directory field within the linear address determines the entry in the
Page Directory that points to the proper Page Table. The address’s Table field, in
turn, determines the entry in the Page Table that contains the physical address of the
page frame containing the page. The Offset field determines the relative position
within the page frame (see Figure 2-7). Because it is 12 bits long, each page consists
of 4096 bytes of data.

Linear Address
31 22 21 12 N 0
DIRECTORY TABLE OFFSET

Page

+

Page Table
)

v

Page Directory
— 0—» >

o1

Figure 2-7. Paging by 80x 86 processors

Both the Directory and the Table fields are 10 bits long, so Page Directories and Page
Tables can include up to 1,024 entries. It follows that a Page Directory can address
up to 1024 x 1024 x 4096=232 memory cells, as you’d expect in 32-bit addresses.

Pagingin Hardware | 47

The entries of Page Directories and Page Tables have the same structure. Each entry
includes the following fields:

Present flag

If it is set, the referred-to page (or Page Table) is contained in main memory; if
the flag is 0, the page is not contained in main memory and the remaining entry
bits may be used by the operating system for its own purposes. If the entry of a
Page Table or Page Directory needed to perform an address translation has the
Present flag cleared, the paging unit stores the linear address in a control register
named cr2 and generates exception 14: the Page Fault exception. (We will see in
Chapter 17 how Linux uses this field.)

Field containing the 20 most significant bits of a page frame physical address
Because each page frame has a 4-KB capacity, its physical address must be a mul-
tiple of 4096, so the 12 least significant bits of the physical address are always
equal to 0. If the field refers to a Page Directory, the page frame contains a Page
Table; if it refers to a Page Table, the page frame contains a page of data.

Accessed flag
Set each time the paging unit addresses the corresponding page frame. This flag
may be used by the operating system when selecting pages to be swapped out.
The paging unit never resets this flag; this must be done by the operating system.
Dirty flag
Applies only to the Page Table entries. It is set each time a write operation is per-
formed on the page frame. As with the Accessed flag, Dirty may be used by the
operating system when selecting pages to be swapped out. The paging unit never
resets this flag; this must be done by the operating system.

Read/write flag
Contains the access right (Read/Write or Read) of the page or of the Page Table
(see the section “Hardware Protection Scheme” later in this chapter).

User/Supervisor flag
Contains the privilege level required to access the page or Page Table (see the
later section “Hardware Protection Scheme”).

PCD and PWT flags
Controls the way the page or Page Table is handled by the hardware cache (see
the section “Hardware Cache” later in this chapter).

Page Size flag
Applies only to Page Directory entries. If it is set, the entry refers to a 2 MB—or 4
MB-long page frame (see the following sections).

Global flag
Applies only to Page Table entries. This flag was introduced in the Pentium Pro
to prevent frequently used pages from being flushed from the TLB cache (see the
section “Translation Lookaside Buffers (TLB)” later in this chapter). It works
only if the Page Global Enable (PGE) flag of register cr4 is set.

48 | Chapter2: Memory Addressing

Extended Paging

Starting with the Pentium model, 80x 86 microprocessors introduce extended pag-
ing, which allows page frames to be 4 MB instead of 4 KB in size (see Figure 2-8).
Extended paging is used to translate large contiguous linear address ranges into cor-
responding physical ones; in these cases, the kernel can do without intermediate
Page Tables and thus save memory and preserve TLB entries (see the section “Trans-
lation Lookaside Buffers (TLB)”).

Linear Address
31 2 2 0

| DIRECTORY | OFFSET '

4MB Page

Y

O

Page Directory
)

1|

Figure 2-8. Extended paging

As mentioned in the previous section, extended paging is enabled by setting the Page
Size flag of a Page Directory entry. In this case, the paging unit divides the 32 bits of
a linear address into two fields:

Directory
The most significant 10 bits

Offset

The remaining 22 bits

Page Directory entries for extended paging are the same as for normal paging, except
that:

* The Page Size flag must be set.

* Only the 10 most significant bits of the 20-bit physical address field are signifi-
cant. This is because each physical address is aligned on a 4-MB boundary, so
the 22 least significant bits of the address are 0.

Pagingin Hardware | 49

Extended paging coexists with regular paging; it is enabled by setting the PSE flag of
the cr4 processor register.

Hardware Protection Scheme

The paging unit uses a different protection scheme from the segmentation unit.
While 80x 86 processors allow four possible privilege levels to a segment, only two
privilege levels are associated with pages and Page Tables, because privileges are con-
trolled by the User/Supervisor flag mentioned in the earlier section “Regular Paging.”
When this flag is 0, the page can be addressed only when the CPL is less than 3 (this
means, for Linux, when the processor is in Kernel Mode). When the flag is 1, the
page can always be addressed.

Furthermore, instead of the three types of access rights (Read, Write, and Execute)
associated with segments, only two types of access rights (Read and Write) are asso-
ciated with pages. If the Read/Write flag of a Page Directory or Page Table entry is
equal to 0, the corresponding Page Table or page can only be read; otherwise it can
be read and written.”

An Example of Regular Paging

A simple example will help in clarifying how regular paging works. Let’s assume that
the kernel assigns the linear address space between 0x20000000 and 0x2003ffff to a
running process.t This space consists of exactly 64 pages. We don’t care about the
physical addresses of the page frames containing the pages; in fact, some of them
might not even be in main memory. We are interested only in the remaining fields of
the Page Table entries.

Let’s start with the 10 most significant bits of the linear addresses assigned to the
process, which are interpreted as the Directory field by the paging unit. The
addresses start with a 2 followed by zeros, so the 10 bits all have the same value,
namely 0x080 or 128 decimal. Thus the Directory field in all the addresses refers to
the 129th entry of the process Page Directory. The corresponding entry must contain
the physical address of the Page Table assigned to the process (see Figure 2-9). If no
other linear addresses are assigned to the process, all the remaining 1,023 entries of
the Page Directory are filled with zeros.

* Recent Intel Pentium 4 processors sport an NX (No eXecute) flag in each 64-bit Page Table entry (PAE must
be enabled, see the section “The Physical Address Extension (PAE) Paging Mechanism” later in this chapter).
Linux 2.6.11 supports this hardware feature.

T As we shall see in the following chapters, the 3 GB linear address space is an upper limit, but a User Mode
process is allowed to reference only a subset of it.

50 | Chapter2: Memory Addressing

Page Directory Page Table

1023 (0x3ff) (\ 1023 (0x3ff) ()
64 (0x040)
63 (0x03F)

128 (0x080)

Figure 2-9. An example of paging

The values assumed by the intermediate 10 bits, (that is, the values of the Table field)
range from O to 0x03f, or from O to 63 decimal. Thus, only the first 64 entries of the
Page Table are valid. The remaining 960 entries are filled with zeros.

Suppose that the process needs to read the byte at linear address 0x20021406. This
address is handled by the paging unit as follows:

1. The Directory field 0x80 is used to select entry 0x80 of the Page Directory, which
points to the Page Table associated with the process’s pages.

2. The Table field 0x21 is used to select entry 0x21 of the Page Table, which points
to the page frame containing the desired page.

3. Finally, the Offset field 0x406 is used to select the byte at offset 0x406 in the
desired page frame.

If the Present flag of the 0x21 entry of the Page Table is cleared, the page is not
present in main memory; in this case, the paging unit issues a Page Fault exception
while translating the linear address. The same exception is issued whenever the pro-
cess attempts to access linear addresses outside of the interval delimited by
0x20000000 and 0x2003ffff, because the Page Table entries not assigned to the pro-
cess are filled with zeros; in particular, their Present flags are all cleared.

The Physical Address Extension (PAE) Paging Mechanism

The amount of RAM supported by a processor is limited by the number of address
pins connected to the address bus. Older Intel processors from the 80386 to the Pen-
tium used 32-bit physical addresses. In theory, up to 4 GB of RAM could be installed
on such systems; in practice, due to the linear address space requirements of User
Mode processes, the kernel cannot directly address more than 1 GB of RAM, as we
will see in the later section “Paging in Linux.”

However, big servers that need to run hundreds or thousands of processes at the same
time require more than 4 GB of RAM, and in recent years this created a pressure on
Intel to expand the amount of RAM supported on the 32-bit 80 x 86 architecture.

Paging in Hardware | 51

Intel has satisfied these requests by increasing the number of address pins on its pro-
cessors from 32 to 36. Starting with the Pentium Pro, all Intel processors are now
able to address up to 236 = 64 GB of RAM. However, the increased range of physical
addresses can be exploited only by introducing a new paging mechanism that trans-
lates 32-bit linear addresses into 36-bit physical ones.

With the Pentium Pro processor, Intel introduced a mechanism called Physical
Address Extension (PAE). Another mechanism, Page Size Extension (PSE-36), was
introduced in the Pentium III processor, but Linux does not use it, and we won’t dis-
cuss it further in this book.

PAE is activated by setting the Physical Address Extension (PAE) flag in the cr4 con-
trol register. The Page Size (PS) flag in the page directory entry enables large page
sizes (2 MB when PAE is enabled).

Intel has changed the paging mechanism in order to support PAE.

* The 64 GB of RAM are split into 224 distinct page frames, and the physical
address field of Page Table entries has been expanded from 20 to 24 bits.
Because a PAE Page Table entry must include the 12 flag bits (described in the
earlier section “Regular Paging”) and the 24 physical address bits, for a grand
total of 36, the Page Table entry size has been doubled from 32 bits to 64 bits. As
a result, a 4-KB PAE Page Table includes 512 entries instead of 1,024.

* A new level of Page Table called the Page Directory Pointer Table (PDPT) con-
sisting of four 64-bit entries has been introduced.

* The cr3 control register contains a 27-bit Page Directory Pointer Table base
address field. Because PDPTs are stored in the first 4 GB of RAM and aligned to
a multiple of 32 bytes (25), 27 bits are sufficient to represent the base address of
such tables.

* When mapping linear addresses to 4 KB pages (PS flag cleared in Page Directory
entry), the 32 bits of a linear address are interpreted in the following way:

cr3

Points to a PDPT
bits 31-30

Point to 1 of 4 possible entries in PDPT
bits 29-21

Point to 1 of 512 possible entries in Page Directory
bits 20-12

Point to 1 of 512 possible entries in Page Table
bits 11-0

Offset of 4-KB page

52 | Chapter2: Memory Addressing

* When mapping linear addresses to 2-MB pages (PS flag set in Page Directory
entry), the 32 bits of a linear address are interpreted in the following way:

cr3
Points to a PDPT
bits 31-30
Point to 1 of 4 possible entries in PDPT
bits 29-21
Point to 1 of 512 possible entries in Page Directory
bits 20-0

Offset of 2-MB page

To summarize, once cr3 is set, it is possible to address up to 4 GB of RAM. If we
want to address more RAM, we’ll have to put a new value in cr3 or change the con-
tent of the PDPT. However, the main problem with PAE is that linear addresses are
still 32 bits long. This forces kernel programmers to reuse the same linear addresses
to map different areas of RAM. We’ll sketch how Linux initializes Page Tables when
PAE is enabled in the later section, “Final kernel Page Table when RAM size is more
than 4096 MB.” Clearly, PAE does not enlarge the linear address space of a process,
because it deals only with physical addresses. Furthermore, only the kernel can mod-
ify the page tables of the processes, thus a process running in User Mode cannot use
a physical address space larger than 4 GB. On the other hand, PAE allows the kernel
to exploit up to 64 GB of RAM, and thus to increase significantly the number of pro-
cesses in the system.

Paging for 64-bit Architectures

As we have seen in the previous sections, two-level paging is commonly used by 32-
bit microprocessors”. Two-level paging, however, is not suitable for computers that
adopt a 64-bit architecture. Let’s use a thought experiment to explain why:

Start by assuming a standard page size of 4 KB. Because 1 KB covers a range of 210
addresses, 4 KB covers 212 addresses, so the Offset field is 12 bits. This leaves up to
52 bits of the linear address to be distributed between the Table and the Directory
fields. If we now decide to use only 48 of the 64 bits for addressing (this restriction
leaves us with a comfortable 256 TB address space!), the remaining 48-12 = 36 bits
will have to be split among Table and the Directory fields. If we now decide to reserve
18 bits for each of these two fields, both the Page Directory and the Page Tables of
each process should include 218 entries—that is, more than 256,000 entries.

* The third level of paging present in 80x86 processors with PAE enabled has been introduced only to lower
from 1024 to 512 the number of entries in the Page Directory and Page Tables. This enlarges the Page Table
entries from 32 bits to 64 bits so that they can store the 24 most significant bits of the physical address.

Pagingin Hardware | 53

For that reason, all hardware paging systems for 64-bit processors make use of addi-
tional paging levels. The number of levels used depends on the type of processor.
Table 2-4 summarizes the main characteristics of the hardware paging systems used
by some 64-bit platforms supported by Linux. Please refer to the section “Hardware
Dependency” in Chapter 1 for a short description of the hardware associated with
the platform name.

Table 2-4. Paging levels in some 64-bit architectures

Platformname Pagesize Number of address bitsused ~ Number of paging levels Linear address splitting

alpha 8KBa 43 3 10+10+10+13
ia64 4KBa 39 3 9+9+9+12
ppco4 4KB 41 3 10+10+9+12
sh64 4KB 4 3 10+10+9+12
x86_64 4KB 48 4 9+9+9+9+12

a This architecture supports different page sizes; we select a typical page size adopted by Linux.

As we will see in the section “Paging in Linux” later in this chapter, Linux succeeds
in providing a common paging model that fits most of the supported hardware pag-
ing systems.

Hardware Cache

Today’s microprocessors have clock rates of several gigahertz, while dynamic RAM
(DRAM) chips have access times in the range of hundreds of clock cycles. This
means that the CPU may be held back considerably while executing instructions that
require fetching operands from RAM and/or storing results into RAM.

Hardware cache memories were introduced to reduce the speed mismatch between
CPU and RAM. They are based on the well-known locality principle, which holds
both for programs and data structures. This states that because of the cyclic struc-
ture of programs and the packing of related data into linear arrays, addresses close to
the ones most recently used have a high probability of being used in the near future.
It therefore makes sense to introduce a smaller and faster memory that contains the
most recently used code and data. For this purpose, a new unit called the line was
introduced into the 80x 86 architecture. It consists of a few dozen contiguous bytes
that are transferred in burst mode between the slow DRAM and the fast on-chip
static RAM (SRAM) used to implement caches.

The cache is subdivided into subsets of lines. At one extreme, the cache can be direct
mapped, in which case a line in main memory is always stored at the exact same loca-
tion in the cache. At the other extreme, the cache is fully associative, meaning that
any line in memory can be stored at any location in the cache. But most caches are to
some degree N-way set associative, where any line of main memory can be stored in

54 | Chapter2: Memory Addressing

any one of N lines of the cache. For instance, a line of memory can be stored in two
different lines of a two-way set associative cache.

As shown in Figure 2-10, the cache unit is inserted between the paging unit and the
main memory. It includes both a hardware cache memory and a cache controller. The
cache memory stores the actual lines of memory. The cache controller stores an array
of entries, one entry for each line of the cache memory. Each entry includes a tag and
a few flags that describe the status of the cache line. The tag consists of some bits
that allow the cache controller to recognize the memory location currently mapped
by the line. The bits of the memory’s physical address are usually split into three
groups: the most significant ones correspond to the tag, the middle ones to the cache
controller subset index, and the least significant ones to the offset within the line.

(PU

SRAM Paging
cache unit

DRAM
Main memory

Cache controller

Figure 2-10. Processor hardware cache

When accessing a RAM memory cell, the CPU extracts the subset index from the
physical address and compares the tags of all lines in the subset with the high-order
bits of the physical address. If a line with the same tag as the high-order bits of the
address is found, the CPU has a cache hit; otherwise, it has a cache miss.

When a cache hit occurs, the cache controller behaves differently, depending on the
access type. For a read operation, the controller selects the data from the cache line
and transfers it into a CPU register; the RAM is not accessed and the CPU saves time,
which is why the cache system was invented. For a write operation, the controller
may implement one of two basic strategies called write-through and write-back. In a
write-through, the controller always writes into both RAM and the cache line, effec-
tively switching off the cache for write operations. In a write-back, which offers more
immediate efficiency, only the cache line is updated and the contents of the RAM are
left unchanged. After a write-back, of course, the RAM must eventually be updated.
The cache controller writes the cache line back into RAM only when the CPU exe-
cutes an instruction requiring a flush of cache entries or when a FLUSH hardware
signal occurs (usually after a cache miss).

When a cache miss occurs, the cache line is written to memory, if necessary, and the
correct line is fetched from RAM into the cache entry.

Pagingin Hardware | 55

Multiprocessor systems have a separate hardware cache for every processor, and
therefore they need additional hardware circuitry to synchronize the cache contents.
As shown in Figure 2-11, each CPU has its own local hardware cache. But now
updating becomes more time consuming: whenever a CPU modifies its hardware
cache, it must check whether the same data is contained in the other hardware
cache; if so, it must notify the other CPU to update it with the proper value. This
activity is often called cache snooping. Luckily, all this is done at the hardware level
and is of no concern to the kernel.

(PUO (PUT
Hardware Hardware
Cache Cache
A L
v

RAM

Figure 2-11. The caches in a dual processor

Cache technology is rapidly evolving. For example, the first Pentium models included
a single on-chip cache called the LI-cache. More recent models also include other
larger, slower on-chip caches called the L2-cache, L3-cache, etc. The consistency
between the cache levels is implemented at the hardware level. Linux ignores these
hardware details and assumes there is a single cache.

The D flag of the cr0 processor register is used to enable or disable the cache cir-
cuitry. The NW flag, in the same register, specifies whether the write-through or the
write-back strategy is used for the caches.

Another interesting feature of the Pentium cache is that it lets an operating system
associate a different cache management policy with each page frame. For this pur-
pose, each Page Directory and each Page Table entry includes two flags: PCD (Page
Cache Disable), which specifies whether the cache must be enabled or disabled while
accessing data included in the page frame; and PWT (Page Write-Through), which
specifies whether the write-back or the write-through strategy must be applied while
writing data into the page frame. Linux clears the PCD and PWT flags of all Page Direc-
tory and Page Table entries; as a result, caching is enabled for all page frames, and
the write-back strategy is always adopted for writing.

56 | Chapter2: Memory Addressing

Translation Lookaside Buffers (TLB)

Besides general-purpose hardware caches, 80x 86 processors include another cache
called Translation Lookaside Buffers (TLB) to speed up linear address translation.
When a linear address is used for the first time, the corresponding physical address is
computed through slow accesses to the Page Tables in RAM. The physical address is
then stored in a TLB entry so that further references to the same linear address can
be quickly translated.

In a multiprocessor system, each CPU has its own TLB, called the local TLB of the
CPU. Contrary to the hardware cache, the corresponding entries of the TLB need not
be synchronized, because processes running on the existing CPUs may associate the
same linear address with different physical ones.

When the cr3 control register of a CPU is modified, the hardware automatically
invalidates all entries of the local TLB, because a new set of page tables is in use and
the TLBs are pointing to old data.

Paging in Linux

Linux adopts a common paging model that fits both 32-bit and 64-bit architectures.
As explained in the earlier section “Paging for 64-bit Architectures,” two paging lev-
els are sufficient for 32-bit architectures, while 64-bit architectures require a higher
number of paging levels. Up to version 2.6.10, the Linux paging model consisted of
three paging levels. Starting with version 2.6.11, a four-level paging model has been
adopted.” The four types of page tables illustrated in Figure 2-12 are called:

* Page Global Directory
* Page Upper Directory

* Page Middle Directory
* Page Table

The Page Global Directory includes the addresses of several Page Upper Directories,
which in turn include the addresses of several Page Middle Directories, which in
turn include the addresses of several Page Tables. Each Page Table entry points to a
page frame. Thus the linear address can be split into up to five parts. Figure 2-12
does not show the bit numbers, because the size of each part depends on the com-
puter architecture.

For 32-bit architectures with no Physical Address Extension, two paging levels are
sufficient. Linux essentially eliminates the Page Upper Directory and the Page Mid-
dle Directory fields by saying that they contain zero bits. However, the positions of

* This change has been made to fully support the linear address bit splitting used by the x86_64 platform (see
Table 2-4).

PaginginLinux | 57

Linear Address

GLOBALDIR UPPER DIR MIDDLE DIR TABLE OFFSET '

Page

Page Table 0’

)

Page Middle

Directory
— O

Page Upper
Directory h _1_'\
Page Global 0"
Directory
Py b
)
R

a3

~—

Figure 2-12. The Linux paging model

the Page Upper Directory and the Page Middle Directory in the sequence of pointers
are kept so that the same code can work on 32-bit and 64-bit architectures. The ker-
nel keeps a position for the Page Upper Directory and the Page Middle Directory by
setting the number of entries in them to 1 and mapping these two entries into the
proper entry of the Page Global Directory.

For 32-bit architectures with the Physical Address Extension enabled, three paging
levels are used. The Linux’s Page Global Directory corresponds to the 80 x86’s Page
Directory Pointer Table, the Page Upper Directory is eliminated, the Page Middle
Directory corresponds to the 80x86’s Page Directory, and the Linux’s Page Table
corresponds to the 80 x 86’s Page Table.

Finally, for 64-bit architectures three or four levels of paging are used depending on
the linear address bit splitting performed by the hardware (see Table 2-4).

Linux’s handling of processes relies heavily on paging. In fact, the automatic transla-
tion of linear addresses into physical ones makes the following design objectives
feasible:

* Assign a different physical address space to each process, ensuring an efficient
protection against addressing errors.

* Distinguish pages (groups of data) from page frames (physical addresses in main
memory). This allows the same page to be stored in a page frame, then saved to
disk and later reloaded in a different page frame. This is the basic ingredient of
the virtual memory mechanism (see Chapter 17).

58 | Chapter2: Memory Addressing

In the remaining part of this chapter, we will refer for the sake of concreteness to the
paging circuitry used by the 80 x 86 processors.

As we will see in Chapter 9, each process has its own Page Global Directory and its
own set of Page Tables. When a process switch occurs (see the section “Process
Switch” in Chapter 3), Linux saves the cr3 control register in the descriptor of the
process previously in execution and then loads cr3 with the value stored in the
descriptor of the process to be executed next. Thus, when the new process resumes
its execution on the CPU, the paging unit refers to the correct set of Page Tables.

Mapping linear to physical addresses now becomes a mechanical task, although it is
still somewhat complex. The next few sections of this chapter are a rather tedious list
of functions and macros that retrieve information the kernel needs to find addresses
and manage the tables; most of the functions are one or two lines long. You may
want to only skim these sections now, but it is useful to know the role of these func-
tions and macros, because you’ll see them often in discussions throughout this book.

The Linear Address Fields

The following macros simplify Page Table handling:

PAGE_SHIFT

Specifies the length in bits of the Offset field; when applied to 80x 86 proces-
sors, it yields the value 12. Because all the addresses in a page must fit in the Off-
set field, the size of a page on 80x 86 systems is 212 or the familiar 4,096 bytes;
the PAGE_SHIFT of 12 can thus be considered the logarithm base 2 of the total
page size. This macro is used by PAGE_SIZE to return the size of the page. Finally,
the PAGE_MASK macro yields the value oxfffff000 and is used to mask all the bits
of the Offset field.

PMD SHIFT
The total length in bits of the Offset and Table fields of a linear address; in other
words, the logarithm of the size of the area a Page Middle Directory entry can
map. The PMD_SIZE macro computes the size of the area mapped by a single entry
of the Page Middle Directory—that is, of a Page Table. The PMD_MASK macro is
used to mask all the bits of the Offset and Table fields.

When PAE is disabled, PMD_SHIFT yields the value 22 (12 from Offset plus 10
from Table), PMD_SIZE yields 222 or 4 MB, and PMD_MASK yields 0xffc00000. Con-
versely, when PAE is enabled, PMD_SHIFT yields the value 21 (12 from Offset plus
9 from Table), PMD_SIZE yields 221 or 2 MB, and PMD_MASK yields oxffe00000.
Large pages do not make use of the last level of page tables, thus LARGE_PAGE
SIZE, which yields the size of a large page, is equal to PMD_SIZE (2PMD_SHIFT)
while LARGE_PAGE_MASK, which is used to mask all the bits of the Offset and Table
fields in a large page address, is equal to PMD_MASK.

PaginginLinux | 59

PUD SHIFT
Determines the logarithm of the size of the area a Page Upper Directory entry
can map. The PUD_SIZE macro computes the size of the area mapped by a single
entry of the Page Global Directory. The PUD_MASK macro is used to mask all the
bits of the Offset, Table, Middle Air, and Upper Air fields.

On the 80x 86 processors, PUD_SHIFT is always equal to PMD_SHIFT and PUD SIZE
is equal to 4 MB or 2 MB.

PGDIR_SHIFT
Determines the logarithm of the size of the area that a Page Global Directory
entry can map. The PGDIR_SIZE macro computes the size of the area mapped by a
single entry of the Page Global Directory. The PGDIR_MASK macro is used to mask
all the bits of the Offset, Table, Middle Air, and Upper Air fields.

When PAE is disabled, PGDIR_SHIFT yields the value 22 (the same value yielded
by PMD_SHIFT and by PUD_SHIFT), PGDIR_SIZE yields 222 or 4 MB, and PGDIR_MASK
yields oxffc00000. Conversely, when PAE is enabled, PGDIR_SHIFT yields the value
30 (12 from Offset plus 9 from Table plus 9 from Middle Air), PGDIR_SIZE yields
230 or 1 GB, and PGDIR_MASK yields 0xc0000000.

PTRS_PER_PTE, PTRS_PER_PMD, PTRS_PER_PUD, and PTRS_PER_PGD
Compute the number of entries in the Page Table, Page Middle Directory, Page
Upper Directory, and Page Global Directory. They yield the values 1,024, 1, 1,
and 1,024, respectively, when PAE is disabled; and the values 512, 512, 1, and 4,
respectively, when PAE is enabled.

Page Table Handling

pte t, pmd_t, pud_t, and pgd t describe the format of, respectively, a Page Table, a
Page Middle Directory, a Page Upper Directory, and a Page Global Directory entry.
They are 64-bit data types when PAE is enabled and 32-bit data types otherwise.
pgprot_t is another 64-bit (PAE enabled) or 32-bit (PAE disabled) data type that rep-
resents the protection flags associated with a single entry.

Five type-conversion macros—__pte, _pmd, _pud, _pgd, and __pgprot—cast an
unsigned integer into the required type. Five other type-conversion macros—pte_
val, pmd_val, pud val, pgd val, and pgprot val—perform the reverse casting from
one of the four previously mentioned specialized types into an unsigned integer.

The kernel also provides several macros and functions to read or modify page table
entries:

* pte none, pmd_none, pud none, and pgd_none yield the value 1 if the correspond-
ing entry has the value 0; otherwise, they yield the value 0.

* pte clear, pmd_clear, pud_clear, and pgd clear clear an entry of the correspond-
ing page table, thus forbidding a process to use the linear addresses mapped by
the page table entry. The ptep get and clear() function clears a Page Table
entry and returns the previous value.

60 | Chapter2: Memory Addressing

* set pte, set pmd, set_pud, and set_pgd write a given value into a page table
entry; set_pte atomic is identical to set_pte, but when PAE is enabled it also
ensures that the 64-bit value is written atomically.

* pte same(a,b) returns 1 if two Page Table entries a and b refer to the same page
and specify the same access privileges, 0 otherwise.

* pmd_large(e) returns 1 if the Page Middle Directory entry e refers to a large page
(2 MB or 4 MB), 0 otherwise.

The pmd_bad macro is used by functions to check Page Middle Directory entries
passed as input parameters. It yields the value 1 if the entry points to a bad Page
Table—that is, if at least one of the following conditions applies:

* The page is not in main memory (Present flag cleared).
* The page allows only Read access (Read/Write flag cleared).

* Either Accessed or Dirty is cleared (Linux always forces these flags to be set for
every existing Page Table).

The pud _bad and pgd bad macros always yield 0. No pte_bad macro is defined,
because it is legal for a Page Table entry to refer to a page that is not present in main
memory, not writable, or not accessible at all.

The pte_present macro yields the value 1 if either the Present flag or the Page Size
flag of a Page Table entry is equal to 1, the value O otherwise. Recall that the Page
Size flag in Page Table entries has no meaning for the paging unit of the micropro-
cessor; the kernel, however, marks Present equal to 0 and Page Size equal to 1 for
the pages present in main memory but without read, write, or execute privileges. In
this way, any access to such pages triggers a Page Fault exception because Present is
cleared, and the kernel can detect that the fault is not due to a missing page by
checking the value of Page Size.

The pmd_present macro yields the value 1 if the Present flag of the corresponding
entry is equal to 1—that is, if the corresponding page or Page Table is loaded in
main memory. The pud_present and pgd present macros always yield the value 1.

The functions listed in Table 2-5 query the current value of any of the flags included
in a Page Table entry; with the exception of pte_file(), these functions work prop-
erly only on Page Table entries for which pte_present returns 1.

Table 2-5. Page flag reading functions

Function name Description

pte_user() Reads the Usexr/Supervisor flag

pte_read() Reads the User/Supervisor flag (pages on the 80 X 86 processor can-
not be protected against reading)

pte write() Reads the Read/Write flag

pte_exec() Reads the Usex/Supervisor flag (pages on the 80x 86 processor cannot be

protected against code execution)

PaginginLinux | 61

Table 2-5. Page flag reading functions (continued)

Function name
pte_dirty()
pte_young()
pte file()

Description
Reads the Dirty flag
Reads the Accessed flag

Reads the Dirty flag (when the Present flag s cleared and the Dirty flag
is set, the page belongs to a non-linear disk file mapping; see Chapter 16)

Another group of functions listed in Table 2-6 sets the value of the flags in a Page

Table entry.

Table 2-6. Page flag setting functions

Function name
mk_pte_huge()
pte wrprotect()
pte rdprotect()
pte_exprotect()
pte_mkwrite()
pte mkread()
pte_mkexec()
pte_mkclean()
pte_mkdirty()
pte_mkold()
pte_mkyoung()
pte modify(p,v)

ptep_set wrprotect()
ptep_set_access_flags()

ptep_mkdirty()

ptep_test and clear dirty()

ptep_test and_clear young()

Description

Sets the Page Size and Present flags of a Page Table entry
Clears the Read/Write flag

(lears the Usex/Supervisor flag

Clears the User/Supervisor flag

Sets the Read/Write flag

Sets the User/Supervisor flag

Sets the User/Supervisor flag

Clears the Dirty flag

Sets the Dirty flag

Clears the Accessed flag (makes the page old)

Sets the Accessed flag (makes the page young)

Sets all access rights in a Page Table entry p to a specified value v
Like pte_wrprotect(), butacts on a pointer to a Page Table entry

Ifthe Dirty flag is set, sets the page’s access rights to a specified value and
invokes flush_t1lb_page() (seethe section “Translation Lookaside Buffers
(TLB)” later in this chapter)

Like pte_mkdirty (') butacts on a pointer to a Page Table entry

Like pte_mkclean() butactsona pointer to a Page Table entry and returns
the old value of the flag

Like pte_mkold(') butactson a pointer to a Page Table entry and returns
the old value of the flag

Now, let’s discuss the macros listed in Table 2-7 that combine a page address and a
group of protection flags into a page table entry or perform the reverse operation of
extracting the page address from a page table entry. Notice that some of these mac-

62 | Chapter2: Memory Addressing

ros refer to a page through the linear address of its “page descriptor” (see the section
“Page Descriptors” in Chapter 8) rather than the linear address of the page itself.

Table 2-7. Macros acting on Page Table entries

Macro name

pgd_index(addr)

pgd_offset(mm, addr)

pgd offset_k(addr)

pgd_page(pgd)

pud_offset(pgd, addr)

pud_page(pud)

pmd_index(addr)

pmd_offset(pud, addr)

pmd_page (pmd)

mk_pte(p,prot)
pte_index(addr)

pte offset kernel(dir, addr)

Description

Yields the index (relative position) of the entry in the Page Global Directory
that maps the linear address addr.

Receives as parameters the address of a memory descriptor cw (see

Chapter 9) and a linear address addx. The macro yields the linear address of
the entry in a Page Global Directory that corresponds to the address addr;
the Page Global Directory is found through a pointer within the memory
descriptor.

Yields the linear address of the entry in the master kernel Page Global Direc-
tory that corresponds to the address addx (see the later section “Kernel Page
Tables”).

Yields the page descriptor address of the page frame containing the Page
Upper Directory referred to by the Page Global Directory entry pgd. In a two-
or three-level paging system, this macro is equivalent to pud_page()
applied to the folded Page Upper Directory entry.

Receives as parameters a pointer pgd to a Page Global Directory entry and a
linear address addx. The macro yields the linear address of the entryina
Page Upper Directory that corresponds to addr. In a two- or three-level pag-
ing system, this macro yields pgd, the address of a Page Global Directory
entry.

Yields the linear address of the Page Middle Directory referred to by the Page
Upper Directory entry pud. In a two-level paging system, this macro is equiv-
alent to pmd_page () applied to the folded Page Middle Directory entry.

Yields the index (relative position) of the entry in the Page Middle Directory
that maps the linear address addr.

Receives as parameters a pointer pud to a Page Upper Directory entry and a
linear address addx. The macro yields the address of the entry in a Page Mid-
dle Directory that corresponds to addx. In a two-level paging system, it yields
pud, the address of a Page Global Directory entry.

Yields the page descriptor address of the Page Table referred to by the Page
Middle Directory entry pmd. In a two-level paging system, pmd is actually an
entry of a Page Global Directory.

Receives as parameters the address of a page descriptor p and a group of
access rights prot, and builds the corresponding Page Table entry.

Yields the index (relative position) of the entry in the Page Table that maps
the linear address addr.

Yields the linear address of the Page Table that corresponds to the linear
address addr mapped by the Page Middle Directory dir. Used only on the
master kernel page tables (see the later section “Kernel Page Tables”).

PaginginLlinux | 63

Table 2-7. Macros acting on Page Table entries (continued)

Macro name Description

pte_offset map(dir, addr) Receives as parameters a pointer dir to a Page Middle Directory entry and a
linear address add; it yields the linear address of the entry in the Page Table
that corresponds to the linear address addr. If the Page Table is kept in high
memory, the kernel establishes a temporary kernel mapping (see the section
“Kernel Mappings of High-Memory Page Frames” in Chapter 8), to be released
by means of pte_unmap. The macros pte_offset map nestedand
pte_unmap_nested are identical, but they use a different temporary ker-

nel mapping.

pte_page(x) Returns the page descriptor address of the page referenced by the Page Table
entry x.

pte_to pgoff(pte) Extracts from the content pte of a Page Table entry the file offset corre-

sponding to a page belonging to a non-linear file memory mapping (see the
section “Non-Linear Memory Mappings” in Chapter 16).

pgoff_to_pte(offset) Sets up the content of a Page Table entry for a page belonging to a non-linear
file memory mapping.

The last group of functions of this long list was introduced to simplify the creation
and deletion of page table entries.

When two-level paging is used, creating or deleting a Page Middle Directory entry is
trivial. As we explained earlier in this section, the Page Middle Directory contains a
single entry that points to the subordinate Page Table. Thus, the Page Middle Direc-
tory entry is the entry within the Page Global Directory, too. When dealing with Page
Tables, however, creating an entry may be more complex, because the Page Table
that is supposed to contain it might not exist. In such cases, it is necessary to allo-
cate a new page frame, fill it with zeros, and add the entry.

If PAE is enabled, the kernel uses three-level paging. When the kernel creates a new
Page Global Directory, it also allocates the four corresponding Page Middle Directo-
ries; these are freed only when the parent Page Global Directory is released.

When two or three-level paging is used, the Page Upper Directory entry is always
mapped as a single entry within the Page Global Directory.

As usual, the description of the functions listed in Table 2-8 refers to the 80x86
architecture.

Table 2-8. Page allocation functions

Function name Description

pgd_alloc(mm) Allocates a new Page Global Directory; if PAE is enabled, it also allocates the
three children Page Middle Directories that map the User Mode linear
addresses. The argument mm (the address of a memory descriptor) is ignored
on the 80x 86 architecture.

pgd free(pgd) Releases the Page Global Directory at address pgd; if PAE is enabled, it also
releases the three Page Middle Directories that map the User Mode linear
addresses.

64 | Chapter2: Memory Addressing

Table 2-8. Page allocation functions (continued)

Function name Description

pud_alloc(mm, pgd, addr) In a two- or three-level paging system, this function does nothing: it simply
returns the linear address of the Page Global Directory entry pgd.

pud_free(x) In a two- or three-level paging system, this macro does nothing.

pmd_alloc(mm, pud, addr) Defined so generic three-level paging systems can allocate a new Page Middle

Directory for the linear address addx. If PAE is not enabled, the function simply
returns the input parameter pud — that is, the address of the entry in the
Page Global Directory. If PAE is enabled, the function returns the linear address
of the Page Middle Directory entry that maps the linear address addr. The
argument cw is ignored.

pmd_free(x) Does nothing, because Page Middle Directories are allocated and deallocated
together with their parent Page Global Directory.

pte_alloc_map(mm, pmd, addr) Receives as parameters the address of a Page Middle Directory entry pmd and a
linear address addx, and returns the address of the Page Table entry corre-
sponding to addx. If the Page Middle Directory entry is null, the function allo-
cates anew Page Table by invoking pte_alloc_one(). Ifanew Page Table
is allocated, the entry corresponding to addr is initialized and the Usex/
Supervisor flagis set. If the Page Table is kept in high memory, the kernel
establishes a temporary kernel mapping (see the section “Kernel Mappings of
High-Memory Page Frames” in Chapter 8), to be released by pte_unmap.

pte_alloc_kernel(mm, pmd, If the Page Middle Directory entry pmd associated with the address addx is

addr) null, the function allocates a new Page Table. It then returns the linear address
of the Page Table entry associated with addz. Used only for master kernel
page tables (see the later section “Kernel Page Tables”).

pte free(pte) Releases the Page Table associated with the pte page descriptor pointer.
pte free kernel(pte) Equivalent to pte_free(), but used for master kernel page tables.
clear_page range(mmu, Clears the contents of the page tables of a process from linear address
start,end) start to end by iteratively releasing its Page Tables and clearing the Page

Middle Directory entries.

Physical Memory Layout

During the initialization phase the kernel must build a physical addresses map that
specifies which physical address ranges are usable by the kernel and which are
unavailable (either because they map hardware devices’ I/O shared memory or
because the corresponding page frames contain BIOS data).

The kernel considers the following page frames as reserved:

* Those falling in the unavailable physical address ranges

* Those containing the kernel’s code and initialized data structures

A page contained in a reserved page frame can never be dynamically assigned or
swapped to disk.

As a general rule, the Linux kernel is installed in RAM starting from the physical
address 0x00100000—i.e., from the second megabyte. The total number of page

PaginginLinux | 65

frames required depends on how the kernel is configured. A typical configuration
yields a kernel that can be loaded in less than 3 MB of RAM.

Why isn’t the kernel loaded starting with the first available megabyte of RAM? Well,
the PC architecture has several peculiarities that must be taken into account. For
example:

* Page frame O is used by BIOS to store the system hardware configuration
detected during the Power-On Self-Test (POST); the BIOS of many laptops,
moreover, writes data on this page frame even after the system is initialized.

* Physical addresses ranging from 0x000a0000 to 0x000fffff are usually reserved to
BIOS routines and to map the internal memory of ISA graphics cards. This area
is the well-known hole from 640 KB to 1 MB in all IBM-compatible PCs: the
physical addresses exist but they are reserved, and the corresponding page
frames cannot be used by the operating system.

* Additional page frames within the first megabyte may be reserved by specific
computer models. For example, the IBM ThinkPad maps the 0xa0 page frame
into the 0x9f one.

In the early stage of the boot sequence (see Appendix A), the kernel queries the BIOS
and learns the size of the physical memory. In recent computers, the kernel also
invokes a BIOS procedure to build a list of physical address ranges and their corre-
sponding memory types.

Later, the kernel executes the machine specific_memory setup() function, which
builds the physical addresses map (see Table 2-9 for an example). Of course, the ker-
nel builds this table on the basis of the BIOS list, if this is available; otherwise the
kernel builds the table following the conservative default setup: all page frames with
numbers from 0x9f (LOWMEMSIZE()) to 0x100 (HIGH MEMORY) are marked as reserved.

Table 2-9. Example of BIOS-provided physical addresses map

Start End Type
0x00000000 0x0009ffff Usable
0x000f0000 0x000ffff Reserved
0x00100000 oxo7feffff Usable
0x07f0000 oxo7ff2fff ACPI data
0x07£3000 oxo7ffFff ACPINVS
oxffff0000 Oxffffffff Reserved

A typical configuration for a computer having 128 MB of RAM is shown in
Table 2-9. The physical address range from 0x07ff0000 to 0x07ff2fff stores informa-
tion about the hardware devices of the system written by the BIOS in the POST
phase; during the initialization phase, the kernel copies such information in a suit-
able kernel data structure, and then considers these page frames usable. Conversely,
the physical address range of 0x07ff3000 to ox07ffffff is mapped to ROM chips of

66 | Chapter2: Memory Addressing

the hardware devices. The physical address range starting from oxffff0000 is marked
as reserved, because it is mapped by the hardware to the BIOS’s ROM chip (see
Appendix A). Notice that the BIOS may not provide information for some physical
address ranges (in the table, the range is 0x000a0000 to 0x000effff). To be on the safe
side, Linux assumes that such ranges are not usable.

The kernel might not see all physical memory reported by the BIOS: for instance, the
kernel can address only 4 GB of RAM if it has not been compiled with PAE support,
even if a larger amount of physical memory is actually available. The setup_memory()
function is invoked right after machine_specific_memory setup(): it analyzes the table
of physical memory regions and initializes a few variables that describe the kernel’s
physical memory layout. These variables are shown in Table 2-10.

Table 2-10. Variables describing the kernel’s physical memory layout

Variable name Description

num_physpages Page frame number of the highest usable page frame

totalram pages Total number of usable page frames

min_low pfn Page frame number of the first usable page frame after the kernel image in RAM
max_pfn Page frame number of the last usable page frame

max_low_pfn Page frame number of the last page frame directly mapped by the kernel (low memory)
totalhigh pages Total number of page frames not directly mapped by the kernel (high memory)
highstart pfn Page frame number of the first page frame not directly mapped by the kernel
highend pfn Page frame number of the last page frame not directly mapped by the kernel

To avoid loading the kernel into groups of noncontiguous page frames, Linux pre-
fers to skip the first megabyte of RAM. Clearly, page frames not reserved by the PC
architecture will be used by Linux to store dynamically assigned pages.

Figure 2-13 shows how the first 3 MB of RAM are filled by Linux. We have assumed
that the kernel requires less than 3 MB of RAM.

The symbol _text, which corresponds to physical address 0x00100000, denotes the
address of the first byte of kernel code. The end of the kernel code is similarly identi-
fied by the symbol etext. Kernel data is divided into two groups: initialized and
uninitialized. The initialized data starts right after _etext and ends at _edata. The
uninitialized data follows and ends up at _end.

The symbols appearing in the figure are not defined in Linux source code; they are
produced while compiling the kernel.”

* You can find the linear address of these symbols in the file System.map, which is created right after the kernel
is compiled.

PaginginLinux | 67

Page frame #
0 1 0x9f 0x100 ox2ff

_text _etext _edata _end

- Unavailable page frames
|:| Available page frames
|:| Kernel code

|:| Initialized kernel data
- Uninitialized kernel data

Figure 2-13. The first 768 page frames (3 MB) in Linux 2.6

Process Page Tables

The linear address space of a process is divided into two parts:

* Linear addresses from 0x00000000 to Oxbfffffff can be addressed when the pro-
cess runs in either User or Kernel Mode.

* Linear addresses from 0xc0000000 to Oxffffffff can be addressed only when the
process runs in Kernel Mode.

When a process runs in User Mode, it issues linear addresses smaller than
0xc0000000; when it runs in Kernel Mode, it is executing kernel code and the linear
addresses issued are greater than or equal to 0xc0000000. In some cases, however, the
kernel must access the User Mode linear address space to retrieve or store data.

The PAGE_OFFSET macro yields the value 0xc0000000; this is the offset in the linear
address space of a process where the kernel lives. In this book, we often refer directly
to the number 0xc0000000 instead.

The content of the first entries of the Page Global Directory that map linear
addresses lower than 0xc0000000 (the first 768 entries with PAE disabled, or the first
3 entries with PAE enabled) depends on the specific process. Conversely, the remain-
ing entries should be the same for all processes and equal to the corresponding
entries of the master kernel Page Global Directory (see the following section).

Kernel Page Tables

The kernel maintains a set of page tables for its own use, rooted at a so-called master
kernel Page Global Directory. After system initialization, this set of page tables is
never directly used by any process or kernel thread; rather, the highest entries of the
master kernel Page Global Directory are the reference model for the corresponding
entries of the Page Global Directories of every regular process in the system.

68 | Chapter2: Memory Addressing

We explain how the kernel ensures that changes to the master kernel Page Global
Directory are propagated to the Page Global Directories that are actually used by
processes in the section “Linear Addresses of Noncontiguous Memory Areas” in
Chapter 8.

We now describe how the kernel initializes its own page tables. This is a two-phase
activity. In fact, right after the kernel image is loaded into memory, the CPU is still
running in real mode; thus, paging is not enabled.

In the first phase, the kernel creates a limited address space including the kernel’s
code and data segments, the initial Page Tables, and 128 KB for some dynamic data
structures. This minimal address space is just large enough to install the kernel in
RAM and to initialize its core data structures.

In the second phase, the kernel takes advantage of all of the existing RAM and sets
up the page tables properly. Let us examine how this plan is executed.

Provisional kernel Page Tables

A provisional Page Global Directory is initialized statically during kernel compila-
tion, while the provisional Page Tables are initialized by the startup 32() assembly
language function defined in arch/i386/kernel/head.S. We won’t bother mentioning
the Page Upper Directories and Page Middle Directories anymore, because they are
equated to Page Global Directory entries. PAE support is not enabled at this stage.

The provisional Page Global Directory is contained in the swapper pg dir variable.
The provisional Page Tables are stored starting from pgo, right after the end of the
kernel’s uninitialized data segments (symbol _end in Figure 2-13). For the sake of
simplicity, let’s assume that the kernel’s segments, the provisional Page Tables, and
the 128 KB memory area fit in the first 8 MB of RAM. In order to map 8 MB of RAM,
two Page Tables are required.

The objective of this first phase of paging is to allow these 8 MB of RAM to be easily
addressed both in real mode and protected mode. Therefore, the kernel must create a
mapping from both the linear addresses 0x00000000 through 0x007fffff and the lin-
ear addresses 0xc0000000 through oxco7fffff into the physical addresses 0x00000000
through ox007fffff. In other words, the kernel during its first phase of initialization
can address the first 8 MB of RAM by either linear addresses identical to the physical
ones or 8 MB worth of linear addresses, starting from 0xc0000000.

The Kernel creates the desired mapping by filling all the swapper pg dir entries with
zeroes, except for entries 0, 1, 0x300 (decimal 768), and 0x301 (decimal 769); the lat-
ter two entries span all linear addresses between 0xc0000000 and oxco7fffff. The 0,
1, 0x300, and 0x301 entries are initialized as follows:

* The address field of entries 0 and 0x300 is set to the physical address of pgo,
while the address field of entries 1 and 0x301 is set to the physical address of the
page frame following pgo.

PaginginLinux | 69

* The Present, Read/Write, and User/Supervisor flags are set in all four entries.

* The Accessed, Dirty, PCD, PWD, and Page Size flags are cleared in all four entries.

The startup_32() assembly language function also enables the paging unit. This is
achieved by loading the physical address of swapper_pg_dir into the cr3 control regis-
ter and by setting the PG flag of the cr0 control register, as shown in the following
equivalent code fragment:

movl $swapper pg_dir-0xc0000000,%eax

movl %eax,%cr3 /* set the page table pointer.. */

movl %cro,%eax

orl $0x80000000,%eax
movl %eax,%cro /* ..and set paging (PG) bit */

Final kernel Page Table when RAM size is less than 896 MB

The final mapping provided by the kernel page tables must transform linear
addresses starting from 0xc0000000 into physical addresses starting from 0.

The __pa macro is used to convert a linear address starting from PAGE_OFFSET to the
corresponding physical address, while the __va macro does the reverse.

The master kernel Page Global Directory is still stored in swapper pg dir. It is initial-
ized by the paging_init() function, which does the following:

1. Invokes pagetable_init() to set up the Page Table entries properly.
2. Writes the physical address of swapper pg dir in the cr3 control register.

3. If the CPU supports PAE and if the kernel is compiled with PAE support, sets
the PAE flag in the cr4 control register.

4. Invokes __flush_tlb all() to invalidate all TLB entries.

The actions performed by pagetable init() depend on both the amount of RAM
present and on the CPU model. Let’s start with the simplest case. Our computer has
less than 896 MB" of RAM, 32-bit physical addresses are sufficient to address all the
available RAM, and there is no need to activate the PAE mechanism. (See the earlier
section “The Physical Address Extension (PAE) Paging Mechanism.”)

The swapper pg dir Page Global Directory is reinitialized by a cycle equivalent to the
following;:

pgd = swapper pg dir + pgd index(PAGE_OFFSET); /* 768 */
phys_addr = 0x00000000;
while (phys addr < (max_low_pfn * PAGE SIZE)) {
pmd = one_md table init(pgd); /* returns pgd itself */
set_pmd(pmd, __pmd(phys_addr | pgprot_val(__pgprot(0x1e3))));

* The highest 128 MB of linear addresses are left available for several kinds of mappings (see sections “Fix-
Mapped Linear Addresses” later in this chapter and “Linear Addresses of Noncontiguous Memory Areas” in
Chapter 8). The kernel address space left for mapping the RAM is thus 1 GB — 128 MB = 896 MB.

70 | Chapter2: MemoryAddressing

/* 0xle3 == Present, Accessed, Dirty, Read/Write,
Page Size, Global */

phys addr += PTRS PER PTE * PAGE SIZE; /* 0x400000 */

++pgd;

We assume that the CPU is a recent 80X 86 microprocessor supporting 4 MB pages
and “global” TLB entries. Notice that the User/Supervisor flags in all Page Global
Directory entries referencing linear addresses above 0xc0000000 are cleared, thus
denying processes in User Mode access to the kernel address space. Notice also that
the Page Size flag is set so that the kernel can address the RAM by making use of
large pages (see the section “Extended Paging” earlier in this chapter).

The identity mapping of the first megabytes of physical memory (8 MB in our exam-
ple) built by the startup_32() function is required to complete the initialization phase
of the kernel. When this mapping is no longer necessary, the kernel clears the corre-
sponding page table entries by invoking the zap _low mappings() function.

Actually, this description does not state the whole truth. As we’ll see in the later sec-
tion “Fix-Mapped Linear Addresses,” the kernel also adjusts the entries of Page
Tables corresponding to the “fix-mapped linear addresses.”

Final kernel Page Table when RAM size is between 896 MB and 4096 MB

In this case, the RAM cannot be mapped entirely into the kernel linear address space.
The best Linux can do during the initialization phase is to map a RAM window of
size 896 MB into the kernel linear address space. If a program needs to address other
parts of the existing RAM, some other linear address interval must be mapped to the
required RAM. This implies changing the value of some page table entries. We’ll
discuss how this kind of dynamic remapping is done in Chapter 8.

To initialize the Page Global Directory, the kernel uses the same code as in the previ-
ous case.

Final kernel Page Table when RAM size is more than 4096 MB

Let’s now consider kernel Page Table initialization for computers with more than
4 GB; more precisely, we deal with cases in which the following happens:

* The CPU model supports Physical Address Extension (PAE).

* The amount of RAM is larger than 4 GB.

* The kernel is compiled with PAE support.
Although PAE handles 36-bit physical addresses, linear addresses are still 32-bit
addresses. As in the previous case, Linux maps a 896-MB RAM window into the ker-

nel linear address space; the remaining RAM is left unmapped and handled by
dynamic remapping, as described in Chapter 8. The main difference with the previ-

PaginginLinux | 71

ous case is that a three-level paging model is used, so the Page Global Directory is
initialized by a cycle equivalent to the following:
pgd_idx = pgd_index(PAGE_OFFSET); /* 3 */
for (i=0; i<pgd idx; i++)
set_pgd(swapper pg dir + i, _ pgd(__pa(empty zero page) + 0x001));
/* 0x001 == Present */
pgd = swapper_pg dir + pgd_idx;
phys_addr = 0x00000000;
for (; i<PTRS_PER_PGD; ++i, ++pgd) {
pmd = (pmd_t *) alloc_bootmem low pages(PAGE_SIZE);
set _pgd(pgd, _ pgd(__pa(pmd) | 0x001)); /* 0x001 == Present */
if (phys_addr < max_low_pfn * PAGE_SIZE)
for (j=0; j < PTRS_PER PMD /* 512 */
83 phys addr < max_low pfn*PAGE_SIZE; ++j) {
set_pmd(pmd, __pmd(phys_addr
pgprot_val(__pgprot(ox1e3))));
/* 0xle3 == Present, Accessed, Dirty, Read/Write,
Page Size, Global */
phys addr += PTRS_PER _PTE * PAGE_SIZE; /* 0x200000 */
}
}

swapper_pg_dir[0] = swapper_pg dir[pgd idx];

The kernel initializes the first three entries in the Page Global Directory correspond-
ing to the user linear address space with the address of an empty page (empty zero_
page). The fourth entry is initialized with the address of a Page Middle Directory
(pmd) allocated by invoking alloc_bootmem low pages(). The first 448 entries in the
Page Middle Directory (there are 512 entries, but the last 64 are reserved for noncon-
tiguous memory allocation; see the section “Noncontiguous Memory Area Manage-
ment” in Chapter 8) are filled with the physical address of the first 896 MB of RAM.

Notice that all CPU models that support PAE also support large 2-MB pages and glo-
bal pages. As in the previous cases, whenever possible, Linux uses large pages to
reduce the number of Page Tables.

The fourth Page Global Directory entry is then copied into the first entry, so as to
mirror the mapping of the low physical memory in the first 896 MB of the linear
address space. This mapping is required in order to complete the initialization of
SMP systems: when it is no longer necessary, the kernel clears the corresponding
page table entries by invoking the zap low mappings() function, as in the previous
cases.

Fix-Mapped Linear Addresses

We saw that the initial part of the fourth gigabyte of kernel linear addresses maps the
physical memory of the system. However, at least 128 MB of linear addresses are
always left available because the kernel uses them to implement noncontiguous
memory allocation and fix-mapped linear addresses.

72 | Chapter2: MemoryAddressing

Noncontiguous memory allocation is just a special way to dynamically allocate and
release pages of memory, and is described in the section “Linear Addresses of Non-
contiguous Memory Areas” in Chapter 8. In this section, we focus on fix-mapped lin-
ear addresses.

Basically, a fix-mapped linear address is a constant linear address like oxffffco00
whose corresponding physical address does not have to be the linear address minus
0xc000000, but rather a physical address set in an arbitrary way. Thus, each fix-
mapped linear address maps one page frame of the physical memory. As we’ll see in
later chapters, the kernel uses fix-mapped linear addresses instead of pointer vari-
ables that never change their value.

Fix-mapped linear addresses are conceptually similar to the linear addresses that
map the first 896 MB of RAM. However, a fix-mapped linear address can map any
physical address, while the mapping established by the linear addresses in the ini-
tial portion of the fourth gigabyte is linear (linear address X maps physical address
X —PAGE_OFFSET).

With respect to variable pointers, fix-mapped linear addresses are more efficient. In
fact, dereferencing a variable pointer requires one memory access more than derefer-
encing an immediate constant address. Moreover, checking the value of a variable
pointer before dereferencing it is a good programming practice; conversely, the check
is never required for a constant linear address.

Each fix-mapped linear address is represented by a small integer index defined in the
enum fixed addresses data structure:

enum fixed addresses {
FIX HOLE,
FIX_VSYSCALL,
FIX_APIC BASE,
FIX_I0 APIC BASE 0,
__end_of_fixed_addresses
1
Fix-mapped linear addresses are placed at the end of the fourth gigabyte of linear

addresses. The fix_to virt() function computes the constant linear address starting
from the index:

inline unsigned long fix_to virt(const unsigned int idx)

{
if (idx >= __end of fixed addresses)
__this fixmap does not_exist();
return (OxfffffooouL - (idx << PAGE_SHIFT));
}

Let’s assume that some kernel function invokes fix_to virt(FIX_ IO APIC BASE 0).
Because the function is declared as “inline,” the C compiler does not generate a call
to fix_to virt(), but inserts its code in the calling function. Moreover, the check on

PaginginLinux | 73

the index value is never performed at runtime. In fact, FIX_I0 APIC BASE 0 is a con-
stant equal to 3, so the compiler can cut away the if statement because its condition
is false at compile time. Conversely, if the condition is true or the argument of fix_
to_virt() is not a constant, the compiler issues an error during the linking phase
because the symbol __this fixmap does not_exist is not defined anywhere. Eventu-
ally, the compiler computes 0xfffff000-(3<<PAGE_SHIFT) and replaces the fix_to_
virt() function call with the constant linear address oxffffco00.

To associate a physical address with a fix-mapped linear address, the kernel uses the
set_fixmap(idx,phys) and set fixmap_nocache(idx,phys) macros. Both of them ini-
tialize the Page Table entry corresponding to the fix_to_virt(idx) linear address
with the physical address phys; however, the second function also sets the PCD flag of
the Page Table entry, thus disabling the hardware cache when accessing the data in
the page frame (see the section “Hardware Cache” earlier in this chapter). Con-
versely, clear fixmap(idx) removes the linking between a fix-mapped linear address
idx and the physical address.

Handling the Hardware Cache and the TLB

The last topic of memory addressing deals with how the kernel makes an optimal use
of the hardware caches. Hardware caches and Translation Lookaside Buffers play a
crucial role in boosting the performance of modern computer architectures. Several
techniques are used by kernel developers to reduce the number of cache and TLB
misses.

Handling the hardware cache

As mentioned earlier in this chapter, hardware caches are addressed by cache lines.
The L1_CACHE_BYTES macro yields the size of a cache line in bytes. On Intel models
earlier than the Pentium 4, the macro yields the value 32; on a Pentium 4, it yields
the value 128.

To optimize the cache hit rate, the kernel considers the architecture in making the
following decisions.

* The most frequently used fields of a data structure are placed at the low offset
within the data structure, so they can be cached in the same line.

* When allocating a large set of data structures, the kernel tries to store each of
them in memory in such a way that all cache lines are used uniformly.

Cache synchronization is performed automatically by the 80x 86 microprocessors,
thus the Linux kernel for this kind of processor does not perform any hardware

74 | Chapter2: MemoryAddressing

cache flushing. The kernel does provide, however, cache flushing interfaces for pro-
cessors that do not synchronize caches.

Handling the TLB

Processors cannot synchronize their own TLB cache automatically because it is the
kernel, and not the hardware, that decides when a mapping between a linear and a
physical address is no longer valid.

Linux 2.6 offers several TLB flush methods that should be applied appropriately,
depending on the type of page table change (see Table 2-11).

Table 2-11. Architecture-independent TLB-invalidating methods

Method name
flush tlb all

flush_tlb_kernel_range

flush tlb

flush tlb_mm

flush tlb_range
flush_tlb_pgtables

flush_tlb_page

Description

Flushes all TLB entries (including those that
refer to global pages, that is, pages whose
Global flag is set)

Flushes all TLB entries in a given range of
linear addresses (including those that refer to
global pages)

Flushes all TLB entries of the non-global
pages owned by the current process

Flushes all TLB entries of the non-global
pages owned by a given process

Flushes the TLB entries corresponding to a
linear address interval of a given process

Flushes the TLB entries of a given contiguous
subset of page tables of a given process

Flushes the TLB of a single Page Table entry of

Typically used when

Changing the kernel page table
entries

Changing a range of kernel page
table entries

Performing a process switch
Forking a new process

Releasing a linear address inter-
val of a process

Releasing some page tables of a
process

Processing a Page Fault

agiven process

Despite the rich set of TLB methods offered by the generic Linux kernel, every micro-
processor usually offers a far more restricted set of TLB-invalidating assembly lan-
guage instructions. In this respect, one of the more flexible hardware platforms is
Sun’s UltraSPARC. In contrast, Intel microprocessors offers only two TLB-invalidat-
ing techniques:

* All Pentium models automatically flush the TLB entries relative to non-global
pages when a value is loaded into the cr3 register.

* In Pentium Pro and later models, the invlpg assembly language instruction inval-
idates a single TLB entry mapping a given linear address.

PaginginLinux | 75

Table 2-12 lists the Linux macros that exploit such hardware techniques; these mac-
ros are the basic ingredients to implement the architecture-independent methods
listed in Table 2-11.

Table 2-12. TLB-invalidating macros for the Intel Pentium Pro and later processors

Macro name Description Used by

__flush_tlb() Rewrites cx3 register back into itself flush_tlb,
flush _tlb_mm,
flush _tlb_range

__flush_tlb global() Disables global pages by clearingthe PGEflag ~ flush_tlb all,
of cr4, rewrites cr3 register back into itself, ~ flush_tlb_kernel range
and sets again the PGE flag

__flush_tlb_single(addr) Executes inv1pg assembly language flush_tlb_page

instruction with parameter addr

Notice that the flush_tlb_pgtables method is missing from Table 2-12: in the 80 x 86
architecture nothing has to be done when a page table is unlinked from its parent
table, thus the function implementing this method is empty.

The architecture-independent TLB-invalidating methods are extended quite simply
to multiprocessor systems. The function running on a CPU sends an Interprocessor
Interrupt (see “Interprocessor Interrupt Handling” in Chapter 4) to the other CPUs
that forces them to execute the proper TLB-invalidating function.

As a general rule, any process switch implies changing the set of active page tables.
Local TLB entries relative to the old page tables must be flushed; this is done auto-
matically when the kernel writes the address of the new Page Global Directory into
the cr3 control register. The kernel succeeds, however, in avoiding TLB flushes in the
following cases:

* When performing a process switch between two regular processes that use the
same set of page tables (see the section “The schedule() Function” in
Chapter 7).

* When performing a process switch between a regular process and a kernel
thread. In fact, we'll see in the section “Memory Descriptor of Kernel Threads”
in Chapter 9, that kernel threads do not have their own set of page tables; rather,
they use the set of page tables owned by the regular process that was scheduled
last for execution on the CPU.

Besides process switches, there are other cases in which the kernel needs to flush
some entries in a TLB. For instance, when the kernel assigns a page frame to a User
Mode process and stores its physical address into a Page Table entry, it must flush
any local TLB entry that refers to the corresponding linear address. On multiproces-
sor systems, the kernel also must flush the same TLB entry on the CPUs that are
using the same set of page tables, if any.

76 | Chapter2: MemoryAddressing

To avoid useless TLB flushing in multiprocessor systems, the kernel uses a tech-
nique called lazy TLB mode. The basic idea is the following: if several CPUs are using
the same page tables and a TLB entry must be flushed on all of them, then TLB
flushing may, in some cases, be delayed on CPUs running kernel threads.

In fact, each kernel thread does not have its own set of page tables; rather, it makes
use of the set of page tables belonging to a regular process. However, there is no need
to invalidate a TLB entry that refers to a User Mode linear address, because no ker-
nel thread accesses the User Mode address space.”

When some CPUs start running a kernel thread, the kernel sets it into lazy TLB
mode. When requests are issued to clear some TLB entries, each CPU in lazy TLB
mode does not flush the corresponding entries; however, the CPU remembers that its
current process is running on a set of page tables whose TLB entries for the User
Mode addresses are invalid. As soon as the CPU in lazy TLB mode switches to a reg-
ular process with a different set of page tables, the hardware automatically flushes
the TLB entries, and the kernel sets the CPU back in non-lazy TLB mode. However,
if a CPU in lazy TLB mode switches to a regular process that owns the same set of
page tables used by the previously running kernel thread, then any deferred TLB
invalidation must be effectively applied by the kernel. This “lazy” invalidation is
effectively achieved by flushing all non-global TLB entries of the CPU.

Some extra data structures are needed to implement the lazy TLB mode. The cpu_
tlbstate variable is a static array of NR_CPUS structures (the default value for this
macro is 32; it denotes the maximum number of CPUs in the system) consisting of
an active mm field pointing to the memory descriptor of the current process (see
Chapter 9) and a state flag that can assume only two values: TLBSTATE_OK (non-lazy
TLB mode) or TLBSTATE_LAZY (lazy TLB mode). Furthermore, each memory descrip-
tor includes a cpu_vm mask field that stores the indices of the CPUs that should
receive Interprocessor Interrupts related to TLB flushing. This field is meaningful
only when the memory descriptor belongs to a process currently in execution.

When a CPU starts executing a kernel thread, the kernel sets the state field of its
cpu_tlbstate element to TLBSTATE_LAZY; moreover, the cpu_vm_mask field of the active
memory descriptor stores the indices of all CPUs in the system, including the one
that is entering in lazy TLB mode. When another CPU wants to invalidate the TLB
entries of all CPUs relative to a given set of page tables, it delivers an Interprocessor
Interrupt to all CPUs whose indices are included in the cpu_vm_mask field of the corre-
sponding memory descriptor.

When a CPU receives an Interprocessor Interrupt related to TLB flushing and veri-
fies that it affects the set of page tables of its current process, it checks whether the

* By the way, the flush_tlb_all method does not use the lazy TLB mode mechanism; it is usually invoked
whenever the kernel modifies a Page Table entry relative to the Kernel Mode address space.

PaginginLinux | 77

state field of its cpu_tlbstate element is equal to TLBSTATE_LAZY. In this case, the ker-
nel refuses to invalidate the TLB entries and removes the CPU index from the cpu_
vm_mask field of the memory descriptor. This has two consequences:

* Aslong as the CPU remains in lazy TLB mode, it will not receive other Interpro-
cessor Interrupts related to TLB flushing.

* If the CPU switches to another process that is using the same set of page tables
as the kernel thread that is being replaced, the kernel invokes _ flush tlb() to
invalidate all non-global TLB entries of the CPU.

78 | Chapter2: MemoryAddressing

CHAPTER 3
Processes

The concept of a process is fundamental to any multiprogramming operating sys-
tem. A process is usually defined as an instance of a program in execution; thus, if 16
users are running vi at once, there are 16 separate processes (although they can share
the same executable code). Processes are often called tasks or threads in the Linux
source code.

In this chapter, we discuss static properties of processes and then describe how pro-
cess switching is performed by the kernel. The last two sections describe how pro-
cesses can be created and destroyed. We also describe how Linux supports
multithreaded applications—as mentioned in Chapter 1, it relies on so-called light-
weight processes (LWP).

Processes, Lightweight Processes, and Threads

The term “process” is often used with several different meanings. In this book, we
stick to the usual OS textbook definition: a process is an instance of a program in
execution. You might think of it as the collection of data structures that fully
describes how far the execution of the program has progressed.

Processes are like human beings: they are generated, they have a more or less signifi-
cant life, they optionally generate one or more child processes, and eventually they
die. A small difference is that sex is not really common among processes—each pro-
cess has just one parent.

From the kernel’s point of view, the purpose of a process is to act as an entity to
which system resources (CPU time, memory, etc.) are allocated.

When a process is created, it is almost identical to its parent. It receives a (logical)
copy of the parent’s address space and executes the same code as the parent, begin-
ning at the next instruction following the process creation system call. Although the
parent and child may share the pages containing the program code (text), they have

79

separate copies of the data (stack and heap), so that changes by the child to a mem-
ory location are invisible to the parent (and vice versa).

While earlier Unix kernels employed this simple model, modern Unix systems do
not. They support multithreaded applications—user programs having many rela-
tively independent execution flows sharing a large portion of the application data
structures. In such systems, a process is composed of several user threads (or simply
threads), each of which represents an execution flow of the process. Nowadays, most
multithreaded applications are written using standard sets of library functions called
pthread (POSIX thread) libraries.

Older versions of the Linux kernel offered no support for multithreaded applications.
From the kernel point of view, a multithreaded application was just a normal pro-
cess. The multiple execution flows of a multithreaded application were created, han-
dled, and scheduled entirely in User Mode, usually by means of a POSIX-compliant
pthread library.

However, such an implementation of multithreaded applications is not very satisfac-
tory. For instance, suppose a chess program uses two threads: one of them controls
the graphical chessboard, waiting for the moves of the human player and showing
the moves of the computer, while the other thread ponders the next move of the
game. While the first thread waits for the human move, the second thread should
run continuously, thus exploiting the thinking time of the human player. However, if
the chess program is just a single process, the first thread cannot simply issue a
blocking system call waiting for a user action; otherwise, the second thread is
blocked as well. Instead, the first thread must employ sophisticated nonblocking
techniques to ensure that the process remains runnable.

Linux uses lightweight processes to offer better support for multithreaded applica-
tions. Basically, two lightweight processes may share some resources, like the address
space, the open files, and so on. Whenever one of them modifies a shared resource,
the other immediately sees the change. Of course, the two processes must synchro-
nize themselves when accessing the shared resource.

A straightforward way to implement multithreaded applications is to associate a
lightweight process with each thread. In this way, the threads can access the same set
of application data structures by simply sharing the same memory address space, the
same set of open files, and so on; at the same time, each thread can be scheduled
independently by the kernel so that one may sleep while another remains runnable.
Examples of POSIX-compliant pthread libraries that use Linux’s lightweight pro-
cesses are LinuxThreads, Native POSIX Thread Library (NPTL), and IBM’s Next
Generation Posix Threading Package (NGPT).

POSIX-compliant multithreaded applications are best handled by kernels that sup-
port “thread groups.” In Linux a thread group is basically a set of lightweight pro-
cesses that implement a multithreaded application and act as a whole with regards to

80 | Chapter3: Processes

some system calls such as getpid(), kill(), and exit(). We are going to describe
them at length later in this chapter.

Process Descriptor

To manage processes, the kernel must have a clear picture of what each process is
doing. It must know, for instance, the process’s priority, whether it is running on a
CPU or blocked on an event, what address space has been assigned to it, which files
it is allowed to address, and so on. This is the role of the process descriptor—a task_
struct type structure whose fields contain all the information related to a single pro-
cess.” As the repository of so much information, the process descriptor is rather com-
plex. In addition to a large number of fields containing process attributes, the
process descriptor contains several pointers to other data structures that, in turn,
contain pointers to other structures. Figure 3-1 describes the Linux process descrip-
tor schematically.

The six data structures on the right side of the figure refer to specific resources
owned by the process. Most of these resources will be covered in future chapters.
This chapter focuses on two types of fields that refer to the process state and to pro-
cess parent/child relationships.

Process State

As its name implies, the state field of the process descriptor describes what is cur-
rently happening to the process. It consists of an array of flags, each of which
describes a possible process state. In the current Linux version, these states are mutu-
ally exclusive, and hence exactly one flag of state always is set; the remaining flags
are cleared. The following are the possible process states:

TASK_RUNNING
The process is either executing on a CPU or waiting to be executed.

TASK_INTERRUPTIBLE
The process is suspended (sleeping) until some condition becomes true. Raising
a hardware interrupt, releasing a system resource the process is waiting for, or
delivering a signal are examples of conditions that might wake up the process
(put its state back to TASK_RUNNING).

TASK_UNINTERRUPTIBLE
Like TASK_INTERRUPTIBLE, except that delivering a signal to the sleeping process
leaves its state unchanged. This process state is seldom used. It is valuable, how-
ever, under certain specific conditions in which a process must wait until a given
event occurs without being interrupted. For instance, this state may be used

* The kernel also defines the task_t data type to be equivalent to struct task struct.

Process Descriptor | 81

task_struct

state thread_info
thread_info >
usage Low-level information
for the process
flags
mm_struct
T 03090909090 TN >
n_list | TP b » Pointers to memory
Iy areadescriptors

tasks |

ty_struct

.......... » rressneereeseoeee B
real_parent | d tty associated with the process
parent | .
fs_struct
............ >

y Current directory

files_struct

........ .
twead [|1 i L > Pointers to file
X descriptors

fs | e
files signal_struct
signal | T Signals received
pending

Figure 3-1. The Linux process descriptor

when a process opens a device file and the corresponding device driver starts
probing for a corresponding hardware device. The device driver must not be
interrupted until the probing is complete, or the hardware device could be left in
an unpredictable state.

TASK_STOPPED

Process execution has been stopped; the process enters this state after receiving a
SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal.

TASK_TRACED

Process execution has been stopped by a debugger. When a process is being mon-
itored by another (such as when a debugger executes a ptrace() system call to
monitor a test program), each signal may put the process in the TASK_TRACED state.

82

Chapter 3: Processes

Two additional states of the process can be stored both in the state field and in the
exit_state field of the process descriptor; as the field name suggests, a process
reaches one of these two states only when its execution is terminated:

EXIT_ZOMBIE
Process execution is terminated, but the parent process has not yet issued a
wait4() or waitpid() system call to return information about the dead process.”
Before the wait()-like call is issued, the kernel cannot discard the data con-
tained in the dead process descriptor because the parent might need it. (See the
section “Process Removal” near the end of this chapter.)

EXIT_DEAD
The final state: the process is being removed by the system because the parent
process has just issued a wait4() or waitpid() system call for it. Changing its
state from EXIT ZOMBIE to EXIT DEAD avoids race conditions due to other threads
of execution that execute wait()-like calls on the same process (see Chapter 5).

The value of the state field is usually set with a simple assignment. For instance:
p->state = TASK_RUNNING;

The kernel also uses the set_task state and set _current_state macros: they set the
state of a specified process and of the process currently executed, respectively. More-
over, these macros ensure that the assignment operation is not mixed with other
instructions by the compiler or the CPU control unit. Mixing the instruction order
may sometimes lead to catastrophic results (see Chapter 5).

Identifying a Process

As a general rule, each execution context that can be independently scheduled must
have its own process descriptor; therefore, even lightweight processes, which share a
large portion of their kernel data structures, have their own task_struct structures.

The strict one-to-one correspondence between the process and process descriptor
makes the 32-bit addresst of the task struct structure a useful means for the kernel
to identify processes. These addresses are referred to as process descriptor pointers.
Most of the references to processes that the kernel makes are through process
descriptor pointers.

On the other hand, Unix-like operating systems allow users to identify processes by
means of a number called the Process ID (or PID), which is stored in the pid field of
the process descriptor. PIDs are numbered sequentially: the PID of a newly created

* There are other wait()-like library functions, such aswait3() and wait(), but in Linux they are implemented
by means of the wait4() and waitpid() system calls.

T As already noted in the section “Segmentation in Linux” in Chapter 2, although technically these 32 bits are
only the offset component of a logical address, they coincide with the linear address.

Process Descriptor | 83

process is normally the PID of the previously created process increased by one. Of
course, there is an upper limit on the PID values; when the kernel reaches such limit,
it must start recycling the lower, unused PIDs. By default, the maximum PID number
is 32,767 (PID_MAX_DEFAULT - 1); the system administrator may reduce this limit by
writing a smaller value into the /proc/sys/kernel/pid_max file (/proc is the mount point
of a special filesystem, see the section “Special Filesystems” in Chapter 12). In 64-bit
architectures, the system administrator can enlarge the maximum PID number up to
4,194,303.

When recycling PID numbers, the kernel must manage a pidmap_array bitmap that
denotes which are the PIDs currently assigned and which are the free ones. Because a
page frame contains 32,768 bits, in 32-bit architectures the pidmap_array bitmap is
stored in a single page. In 64-bit architectures, however, additional pages can be
added to the bitmap when the kernel assigns a PID number too large for the current
bitmap size. These pages are never released.

Linux associates a different PID with each process or lightweight process in the sys-
tem. (As we shall see later in this chapter, there is a tiny exception on multiprocessor
systems.) This approach allows the maximum flexibility, because every execution
context in the system can be uniquely identified.

On the other hand, Unix programmers expect threads in the same group to have a
common PID. For instance, it should be possible to a send a signal specifying a PID
that affects all threads in the group. In fact, the POSIX 1003.1c¢ standard states that
all threads of a multithreaded application must have the same PID.

To comply with this standard, Linux makes use of thread groups. The identifier
shared by the threads is the PID of the thread group leader, that is, the PID of the first
lightweight process in the group; it is stored in the tgid field of the process descrip-
tors. The getpid() system call returns the value of tgid relative to the current pro-
cess instead of the value of pid, so all the threads of a multithreaded application
share the same identifier. Most processes belong to a thread group consisting of a
single member; as thread group leaders, they have the tgid field equal to the pid
field, thus the getpid() system call works as usual for this kind of process.

Later, we’ll show you how it is possible to derive a true process descriptor pointer
efficiently from its respective PID. Efficiency is important because many system calls
such as kill() use the PID to denote the affected process.

Process descriptors handling

Processes are dynamic entities whose lifetimes range from a few milliseconds to
months. Thus, the kernel must be able to handle many processes at the same time,
and process descriptors are stored in dynamic memory rather than in the memory
area permanently assigned to the kernel. For each process, Linux packs two different

84 | Chapter3: Processes

data structures in a single per-process memory area: a small data structure linked to
the process descriptor, namely the thread info structure, and the Kernel Mode pro-
cess stack. The length of this memory area is usually 8,192 bytes (two page frames).
For reasons of efficiency the kernel stores the 8-KB memory area in two consecutive
page frames with the first page frame aligned to a multiple of 213; this may turn out
to be a problem when little dynamic memory is available, because the free memory
may become highly fragmented (see the section “The Buddy System Algorithm” in
Chapter 8). Therefore, in the 80x86 architecture the kernel can be configured at
compilation time so that the memory area including stack and thread_info structure
spans a single page frame (4,096 bytes).

In the section “Segmentation in Linux” in Chapter 2, we learned that a process in
Kernel Mode accesses a stack contained in the kernel data segment, which is differ-
ent from the stack used by the process in User Mode. Because kernel control paths
make little use of the stack, only a few thousand bytes of kernel stack are required.
Therefore, 8 KB is ample space for the stack and the thread_info structure. How-
ever, when stack and thread info structure are contained in a single page frame, the
kernel uses a few additional stacks to avoid the overflows caused by deeply nested
interrupts and exceptions (see Chapter 4).

Figure 3-2 shows how the two data structures are stored in the 2-page (8 KB) mem-
ory area. The thread_info structure resides at the beginning of the memory area, and
the stack grows downward from the end. The figure also shows that the thread_info
structure and the task_struct structure are mutually linked by means of the fields
task and thread_info, respectively.

0x015fbfff
Stack
0x015fb000
Process
0015fat78 Descriptor
.................................. T theadinfo

0x015fa034 task .

thread_info

structure

<— (urrent

0x015fa000 L ot

Figure 3-2. Storing the thread_info structure and the process kernel stack in two page frames

Process Descriptor | 85

The esp register is the CPU stack pointer, which is used to address the stack’s top loca-
tion. On 80x86 systems, the stack starts at the end and grows toward the beginning of
the memory area. Right after switching from User Mode to Kernel Mode, the kernel
stack of a process is always empty, and therefore the esp register points to the byte
immediately following the stack.

The value of the esp is decreased as soon as data is written into the stack. Because
the thread info structure is 52 bytes long, the kernel stack can expand up to 8,140
bytes.

The C language allows the thread_info structure and the kernel stack of a process to
be conveniently represented by means of the following union construct:
union thread union {
struct thread info thread info;
unsigned long stack[2048]; /* 1024 for 4KB stacks */
1
The thread info structure shown in Figure 3-2 is stored starting at address
0x015fa000, and the stack is stored starting at address 0x015fc000. The value of the
esp register points to the current top of the stack at 0x015fa878.

The kernel uses the alloc_thread info and free thread info macros to allocate and
release the memory area storing a thread_info structure and a kernel stack.

Identifying the current process

The close association between the thread info structure and the Kernel Mode stack
just described offers a key benefit in terms of efficiency: the kernel can easily obtain
the address of the thread_info structure of the process currently running on a CPU
from the value of the esp register. In fact, if the thread union structure is 8 KB (213
bytes) long, the kernel masks out the 13 least significant bits of esp to obtain the base
address of the thread_info structure; on the other hand, if the thread union struc-
ture is 4 KB long, the kernel masks out the 12 least significant bits of esp. This is
done by the current thread info() function, which produces assembly language
instructions like the following:

movl $oxffffe000,%ecx /* or oxfffffooo for 4KB stacks */

andl %esp,%ecx

movl %ecx,p
After executing these three instructions, p contains the thread_info structure pointer
of the process running on the CPU that executes the instruction.

Most often the kernel needs the address of the process descriptor rather than the
address of the thread_info structure. To get the process descriptor pointer of the
process currently running on a CPU, the kernel makes use of the current macro,

86 | Chapter3: Processes

which is essentially equivalent to current_thread_info()->task and produces assem-
bly language instructions like the following:

movl $oxffffe000,%ecx /* or oxfffffooo for 4KB stacks */

andl %esp,%ecx

movl (%ecx),p
Because the task field is at offset O in the thread_info structure, after executing these

three instructions p contains the process descriptor pointer of the process running on
the CPU.

The current macro often appears in kernel code as a prefix to fields of the process
descriptor. For example, current->pid returns the process ID of the process cur-
rently running on the CPU.

Another advantage of storing the process descriptor with the stack emerges on multi-
processor systems: the correct current process for each hardware processor can be
derived just by checking the stack, as shown previously. Earlier versions of Linux did
not store the kernel stack and the process descriptor together. Instead, they were
forced to introduce a global static variable called current to identify the process
descriptor of the running process. On multiprocessor systems, it was necessary to
define current as an array—one element for each available CPU.

Doubly linked lists

Before moving on and describing how the kernel keeps track of the various pro-
cesses in the system, we would like to emphasize the role of special data structures
that implement doubly linked lists.

For each list, a set of primitive operations must be implemented: initializing the list,
inserting and deleting an element, scanning the list, and so on. It would be both a
waste of programmers’ efforts and a waste of memory to replicate the primitive oper-
ations for each different list.

Therefore, the Linux kernel defines the list head data structure, whose only fields
next and prev represent the forward and back pointers of a generic doubly linked list
element, respectively. It is important to note, however, that the pointers in a list_
head field store the addresses of other 1ist head fields rather than the addresses of
the whole data structures in which the list head structure is included; see
Figure 3-3 (a).

A new list is created by using the LIST HEAD(list name) macro. It declares a new vari-
able named 1list_name of type list_head, which is a dummy first element that acts as
a placeholder for the head of the new list, and initializes the prev and next fields of
the list head data structure so as to point to the list name variable itself; see
Figure 3-3 (b).

Process Descriptor | 87

data structure 1 data structure 2 data structure 3

list_head list_head list_head
list_head > next ——|— next — |—> next T<—
next — J prev prev prev
prev

(a) adoubly linked listed with three elements

vy J
list _head

(b) an empty doubly linked list next
prev

Figure 3-3. Doubly linked lists built with list_head data structures

Several functions and macros implement the primitives, including those shown in
Table 3-1.

Table 3-1. List handling functions and macros

Name Description
Inserts an element pointed to by n right after the specified element pointed
list_add(n,p) toby p. (Toinsert n at the beginning of the list, set p to the address of the
list head.)
Inserts an element pointed to by n right before the specified element
list_add_tail(n,p) pointed to by p. (Toinsert n at the end of the list, set p to the address of the
list head.)
. Deletes an element pointed to by p.. (There is no need to specify the head of
List_del(p) the lst) ' ot pecy
list_empty(p) Checks if the list specified by the address p of its head is empty.

Returns the address of the data structure of type t in which the 1ist

list_entry(p,t,m) head field that has the name m and the address p is included.

list_for_each(p,h) Scans the elements of the list specified by the address h of the head; in each
iteration, a pointer to the 1ist_head structure of the list element is
returnedinp.

Similarto 1ist_for_each, but returns the address of the data structure
list _for each_entry(p,h,m) embedding the 1ist_head structure rather than the address of the
list_head structure itself.

88 | Chapter3: Processes

The Linux kernel 2.6 sports another kind of doubly linked list, which mainly differs
from a list head list because it is not circular; it is mainly used for hash tables,
where space is important, and finding the the last element in constant time is not.
The list head is stored in an hlist_head data structure, which is simply a pointer to
the first element in the list (NULL if the list is empty). Each element is represented by
an hlist_node data structure, which includes a pointer next to the next element, and
a pointer pprev to the next field of the previous element. Because the list is not circu-
lar, the pprev field of the first element and the next field of the last element are set to
NULL. The list can be handled by means of several helper functions and macros simi-
lar to those listed in Table 3-1: hlist_add_head(), hlist del(), hlist empty(),
hlist entry, hlist for each_entry, and so on.

The process list

The first example of a doubly linked list we will examine is the process list, a list that
links together all existing process descriptors. Each task_struct structure includes a
tasks field of type list head whose prev and next fields point, respectively, to the
previous and to the next task_struct element.

The head of the process list is the init_task task_struct descriptor; it is the process
descriptor of the so-called process 0 or swapper (see the section “Kernel Threads”
later in this chapter). The tasks->prev field of init task points to the tasks field of
the process descriptor inserted last in the list.

The SET_LINKS and REMOVE_LINKS macros are used to insert and to remove a process
descriptor in the process list, respectively. These macros also take care of the parent-
hood relationship of the process (see the section “How Processes Are Organized”
later in this chapter).

Another useful macro, called for_each process, scans the whole process list. It is
defined as:
#tdefine for_each_process(p) \
for (p=&init task; (p=list entry((p)->tasks.next, \

struct task struct, tasks) \

) != &init task;)
The macro is the loop control statement after which the kernel programmer supplies
the loop. Notice how the init task process descriptor just plays the role of list
header. The macro starts by moving past init task to the next task and continues
until it reaches init_task again (thanks to the circularity of the list). At each itera-
tion, the variable passed as the argument of the macro contains the address of the
currently scanned process descriptor, as returned by the list_entry macro.

The lists of TASK_RUNNING processes

When looking for a new process to run on a CPU, the kernel has to consider only the
runnable processes (that is, the processes in the TASK_RUNNING state).

Process Descriptor | 89

Earlier Linux versions put all runnable processes in the same list called runqueue.
Because it would be too costly to maintain the list ordered according to process pri-
orities, the earlier schedulers were compelled to scan the whole list in order to select
the “best” runnable process.

Linux 2.6 implements the runqueue differently. The aim is to allow the scheduler to
select the best runnable process in constant time, independently of the number of
runnable processes. We’ll defer to Chapter 7 a detailed description of this new kind
of runqueue, and we’ll provide here only some basic information.

The trick used to achieve the scheduler speedup consists of splitting the runqueue in
many lists of runnable processes, one list per process priority. Each task struct
descriptor includes a run_list field of type list_head. If the process priority is equal
to k (a value ranging between 0 and 139), the run_list field links the process descrip-
tor into the list of runnable processes having priority k. Furthermore, on a multipro-
cessor system, each CPU has its own runqueue, that is, its own set of lists of
processes. This is a classic example of making a data structures more complex to
improve performance: to make scheduler operations more efficient, the runqueue list
has been split into 140 different lists!

As we’ll see, the kernel must preserve a lot of data for every runqueue in the system;
however, the main data structures of a runqueue are the lists of process descriptors
belonging to the runqueue; all these lists are implemented by a single prio array t
data structure, whose fields are shown in Table 3-2.

Table 3-2. The fields of the prio_array_t data structure

Type Field Description
int nr_active The number of process descriptors linked into the lists
unsigned long [5] bitmap A priority bitmap: each flag is set if and only if the corre-

sponding priority list is not empty
struct 1ist head [140] queue The 140 heads of the priority lists

The enqueue_task(p,array) function inserts a process descriptor into a runqueue list;
its code is essentially equivalent to:

list add tail(8p->run_list, 8array->queue[p->prio]);

_ set_bit(p->prio, array->bitmap);

array->nr_active++;

p->array = array;
The prio field of the process descriptor stores the dynamic priority of the process,
while the array field is a pointer to the prio_array t data structure of its current run-
queue. Similarly, the dequeue_task(p,array) function removes a process descriptor
from a runqueue list.

90 | Chapter3: Processes

Relationships Among Processes

Processes created by a program have a parent/child relationship. When a process cre-
ates multiple children, these children have sibling relationships. Several fields must
be introduced in a process descriptor to represent these relationships; they are listed
in Table 3-3 with respect to a given process P. Processes 0 and 1 are created by the
kernel; as we’ll see later in the chapter, process 1 (init) is the ancestor of all other
processes.

Table 3-3. Fields of a process descriptor used to express parenthood relationships

Field name Description

Points to the process descriptor of the process that created P or to the descriptor of process 1
real parent (init) if the parent process no longer exists. (Therefore, when a user starts a background process
and exits the shell, the background process becomes the child of init.)

Points to the current parent of P (this is the process that must be signaled when the child process
terminates); its value usually coincides with that of real parent. It may occasionally differ,

parent such as when another process issues a ptrace() system call requesting that it be allowed to
monitor P (see the section “Execution Tracing” in Chapter 20).

children The head of the list containing all children created by P.

sibling The pointers to the next and previous elements in the list of the sibling processes, those that

have the same parent as P.

Figure 3-4 illustrates the parent and sibling relationships of a group of processes. Pro-
cess PO successively created P1, P2, and P3. Process P3, in turn, created process P4.

Furthermore, there exist other relationships among processes: a process can be a
leader of a process group or of a login session (see “Process Management” in
Chapter 1), it can be a leader of a thread group (see “Identifying a Process” earlier in
this chapter), and it can also trace the execution of other processes (see the section
“Execution Tracing” in Chapter 20). Table 3-4 lists the fields of the process descrip-
tor that establish these relationships between a process P and the other processes.

Table 3-4. The fields of the process descriptor that establish non-parenthood relationships

Field name Description

group_leader Process descriptor pointer of the group leader of P

signal->pgrp PID of the group leader of P

tgid PID of the thread group leader of P

signal->session PID of the login session leader of P

ptrace children The head of a list containing all children of P being traced by a debugger

ptrace list The pointers to the next and previous elements in the real parent’s list of traced processes

(used when P is being traced)

Process Descriptor | 91

———————— parent
_____ - sibling.next
..................... » sibling.prev
—— = —— - — children.next
—_———— » children.prev

Figure 3-4. Parenthood relationships among five processes

The pidhash table and chained lists

In several circumstances, the kernel must be able to derive the process descriptor
pointer corresponding to a PID. This occurs, for instance, in servicing the kill() sys-
tem call. When process P1 wishes to send a signal to another process, P2, it invokes
the kill() system call specifying the PID of P2 as the parameter. The kernel derives
the process descriptor pointer from the PID and then extracts the pointer to the data
structure that records the pending signals from P2’s process descriptor.

Scanning the process list sequentially and checking the pid fields of the process
descriptors is feasible but rather inefficient. To speed up the search, four hash tables
have been introduced. Why multiple hash tables? Simply because the process
descriptor includes fields that represent different types of PID (see Table 3-5), and
each type of PID requires its own hash table.

Table 3-5. The four hash tables and corresponding fields in the process descriptor

Hash table type Field name Description

PIDTYPE_PID pid PID of the process

PIDTYPE TGID tgid PID of thread group leader process
PIDTYPE PGID pgIp PID of the group leader process
PIDTYPE_SID session PID of the session leader process

The four hash tables are dynamically allocated during the kernel initialization phase,
and their addresses are stored in the pid_hash array. The size of a single hash table
depends on the amount of available RAM; for example, for systems having 512 MB
of RAM, each hash table is stored in four page frames and includes 2,048 entries.

92 | Chapter3: Processes

The PID is transformed into a table index using the pid _hashfn macro, which
expands to:

#tdefine pid hashfn(x) hash_long((unsigned long) x, pidhash_shift)

The pidhash_shift variable stores the length in bits of a table index (11, in our exam-
ple). The hash_long() function is used by many hash functions; on a 32-bit architec-
ture it is essentially equivalent to:

unsigned long hash long(unsigned long val, unsigned int bits)

unsigned long hash = val * 0x9e370001UL;
return hash >> (32 - bits);

}

Because in our example pidhash_shift is equal to 11, pid_hashfn yields values rang-
ing between 0 and 211 -1 = 2047.

The Magic Constant

You might wonder where the 0x9¢370001 constant (= 2,654,404,609) comes from.
This hash function is based on a multiplication of the index by a suitable large number,
so that the result overflows and the value remaining in the 32-bit variable can be con-
sidered as the result of a modulus operation. Knuth suggested that good results are
obtained when the large multiplier is a prime approximately in golden ratio to 232 (32
bit being the size of the 80x86’s registers). Now, 2,654,404,609 is a prime near to
27 % (/5-1)/2 that can also be easily multiplied by additions and bit shifts, because

itis equal to 221 +2% 2% 427 21 21041,

As every basic computer science course explains, a hash function does not always
ensure a one-to-one correspondence between PIDs and table indexes. Two different
PIDs that hash into the same table index are said to be colliding.

Linux uses chaining to handle colliding PIDs; each table entry is the head of a dou-
bly linked list of colliding process descriptors. Figure 3-5 illustrates a PID hash table
with two lists. The processes having PIDs 2,890 and 29,384 hash into the 200th ele-
ment of the table, while the process having PID 29,385 hashes into the 1,466t ele-
ment of the table.

Hashing with chaining is preferable to a linear transformation from PIDs to table
indexes because at any given instance, the number of processes in the system is usu-
ally far below 32,768 (the maximum number of allowed PIDs). It would be a waste
of storage to define a table consisting of 32,768 entries, if, at any given instance,
most such entries are unused.

The data structures used in the PID hash tables are quite sophisticated, because they
must keep track of the relationships between the processes. As an example, suppose

Process Descriptor | 93

PID hash table

> PD). »[_PID
199 199 | g ereereeeened 29384
PD } - » next element
1466 29385 .
------------ » previous element

2047

Figure 3-5. A simple PID hash table and chained lists

that the kernel must retrieve all processes belonging to a given thread group, that is,
all processes whose tgid field is equal to a given number. Looking in the hash table
for the given thread group number returns just one process descriptor, that is, the
descriptor of the thread group leader. To quickly retrieve the other processes in the
group, the kernel must maintain a list of processes for each thread group. The same
situation arises when looking for the processes belonging to a given login session or
belonging to a given process group.

The PID hash tables’” data structures solve all these problems, because they allow the
definition of a list of processes for any PID number included in a hash table. The core
data structure is an array of four pid structures embedded in the pids field of the pro-
cess descriptor; the fields of the pid structure are shown in Table 3-6.

Table 3-6. The fields of the pid data structures

Type Name Description

int nr The PID number

struct hlist_node pid_chain The links to the next and previous elements in the hash chain list
struct 1list head pid list The head of the per-PID list

Figure 3-6 shows an example based on the PIDTYPE_TGID hash table. The second entry
of the pid_hash array stores the address of the hash table, that is, the array of hlist_
head structures representing the heads of the chain lists. In the chain list rooted at the
71st entry of the hash table, there are two process descriptors corresponding to the
PID numbers 246 and 4,351 (double-arrow lines represent a couple of forward and
backward pointers). The PID numbers are stored in the nr field of the pid structure
embedded in the process descriptor (by the way, because the thread group number
coincides with the PID of its leader, these numbers also are stored in the pid field of
the process descriptors). Let us consider the per-PID list of the thread group 4,351:
the head of the list is stored in the pid_list field of the process descriptor included in

94 | Chapter3: Processes

PID TGID PGID SID
- TGID hash table
pid_hash 0 70 2047
process descriptor
)
pids1] process descriptor process descriptor
nr=4351
% pid_chain pids[1] pids[1]
pid_list < nr=4351 nr=4351
9 pid_chain pid_chain
LV pid_list < L P pid_list
process descriptor
)
pids[1]
nr=246
t P pid_chain
pid_list
\ﬁ
v
Hash chain list

Figure 3-6. The PID hash tables

the hash table, while the links to the next and previous elements of the per-PID list
also are stored in the pid_1ist field of each list element.

The following functions and macros are used to handle the PID hash tables:

do_each task pid(nr, type, task)
while each task pid(nr, type, task)
Mark begin and end of a do-while loop that iterates over the per-PID list associ-
ated with the PID number nr of type type; in any iteration, task points to the
process descriptor of the currently scanned element.
find_task by pid type(type, nr)
Looks for the process having PID nr in the hash table of type type. The function
returns a process descriptor pointer if a match is found, otherwise it returns NULL.
find task by pid(nr)
Same as find_task by pid type(PIDTYPE PID, nr).

Process Descriptor | 95

attach pid(task, type, nr)
Inserts the process descriptor pointed to by task in the PID hash table of type
type according to the PID number nr; if a process descriptor having PID nr is
already in the hash table, the function simply inserts task in the per-PID list of
the already present process.

detach pid(task, type)
Removes the process descriptor pointed to by task from the per-PID list of type
type to which the descriptor belongs. If the per-PID list does not become empty,
the function terminates. Otherwise, the function removes the process descriptor
from the hash table of type type; finally, if the PID number does not occur in any
other hash table, the function clears the corresponding bit in the PID bitmap, so
that the number can be recycled.

next thread(task)
Returns the process descriptor address of the lightweight process that follows
task in the hash table list of type PIDTYPE_TGID. Because the hash table list is cir-
cular, when applied to a conventional process the macro returns the descriptor
address of the process itself.

How Processes Are Organized

The runqueue lists group all processes in a TASK_RUNNING state. When it comes to
grouping processes in other states, the various states call for different types of treat-
ment, with Linux opting for one of the choices shown in the following list.

* Processes in a TASK_STOPPED, EXIT ZOMBIE, or EXIT DEAD state are not linked in
specific lists. There is no need to group processes in any of these three states,
because stopped, zombie, and dead processes are accessed only via PID or via
linked lists of the child processes for a particular parent.

* Processes in a TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE state are subdivided
into many classes, each of which corresponds to a specific event. In this case, the
process state does not provide enough information to retrieve the process
quickly, so it is necessary to introduce additional lists of processes. These are
called wait queues and are discussed next.

Wait queues

Wait queues have several uses in the kernel, particularly for interrupt handling, pro-
cess synchronization, and timing. Because these topics are discussed in later chap-
ters, we'll just say here that a process must often wait for some event to occur, such
as for a disk operation to terminate, a system resource to be released, or a fixed inter-
val of time to elapse. Wait queues implement conditional waits on events: a process
wishing to wait for a specific event places itself in the proper wait queue and relin-
quishes control. Therefore, a wait queue represents a set of sleeping processes, which
are woken up by the kernel when some condition becomes true.

96 | Chapter3: Processes

Wait queues are implemented as doubly linked lists whose elements include point-
ers to process descriptors. Each wait queue is identified by a wait queue head, a data
structure of type wait_queue_head_t:
struct __wait_queue_head {
spinlock_t lock;
struct list head task list;
1
typedef struct wait queue head wait queue head t;
Because wait queues are modified by interrupt handlers as well as by major kernel
functions, the doubly linked lists must be protected from concurrent accesses, which
could induce unpredictable results (see Chapter 5). Synchronization is achieved by
the lock spin lock in the wait queue head. The task_list field is the head of the list
of waiting processes.

Elements of a wait queue list are of type wait_queue_t:

struct __wait_queue {
unsigned int flags;
struct task struct * task;
wait_queue func_t func;
struct list head task_list;

1

typedef struct wait queue wait queue t;
Each element in the wait queue list represents a sleeping process, which is waiting for
some event to occur; its descriptor address is stored in the task field. The task list
field contains the pointers that link this element to the list of processes waiting for
the same event.

However, it is not always convenient to wake up all sleeping processes in a wait
queue. For instance, if two or more processes are waiting for exclusive access to
some resource to be released, it makes sense to wake up just one process in the wait
queue. This process takes the resource, while the other processes continue to sleep.
(This avoids a problem known as the “thundering herd,” with which multiple pro-
cesses are wakened only to race for a resource that can be accessed by one of them,
with the result that remaining processes must once more be put back to sleep.)

Thus, there are two kinds of sleeping processes: exclusive processes (denoted by the
value 1 in the flags field of the corresponding wait queue element) are selectively
woken up by the kernel, while nonexclusive processes (denoted by the value 0 in the
flags field) are always woken up by the kernel when the event occurs. A process
waiting for a resource that can be granted to just one process at a time is a typical
exclusive process. Processes waiting for an event that may concern any of them are
nonexclusive. Consider, for instance, a group of processes that are waiting for the
termination of a group of disk block transfers: as soon as the transfers complete, all
waiting processes must be woken up. As we’ll see next, the func field of a wait queue
element is used to specify how the processes sleeping in the wait queue should be
woken up.

Process Descriptor | 97

Handling wait queues

A new wait queue head may be defined by using the DECLARE_WAIT QUEUE_HEAD(name)
macro, which statically declares a new wait queue head variable called name and ini-
tializes its lock and task list fields. The init waitqueue head() function may be
used to initialize a wait queue head variable that was allocated dynamically.

The init waitqueue entry(q,p) function initializes a wait queue_t structure q as fol-
lows:

g->flags = 0;

g->task = p;

g->func = default wake function;
The nonexclusive process p will be awakened by default wake function(), which is a
simple wrapper for the try to wake up() function discussed in Chapter 7.

Alternatively, the DEFINE_WAIT macro declares a new wait_queue_t variable and ini-
tializes it with the descriptor of the process currently executing on the CPU and the
address of the autoremove wake function() wake-up function. This function invokes
default wake function() to awaken the sleeping process, and then removes the wait
queue element from the wait queue list. Finally, a kernel developer can define a cus-
tom awakening function by initializing the wait queue element with the init_
waitqueue func_entry() function.

Once an element is defined, it must be inserted into a wait queue. The add wait_
queue() function inserts a nonexclusive process in the first position of a wait queue
list. The add_wait_queue_exclusive() function inserts an exclusive process in the last
position of a wait queue list. The remove wait_queue() function removes a process
from a wait queue list. The waitqueue active() function checks whether a given wait
queue list is empty.

A process wishing to wait for a specific condition can invoke any of the functions
shown in the following list.

* The sleep_on() function operates on the current process:

void sleep on(wait queue head t *wq)

wait_queue_t wait;

init_waitqueue_entry(8wait, current);

current->state = TASK_UNINTERRUPTIBLE;
add_wait_queue(wg,&wait); /*wq points to the wait queue head*/
schedule();

remove wait queue(wq, 8wait);

}
The function sets the state of the current process to TASK_UNINTERRUPTIBLE and
inserts it into the specified wait queue. Then it invokes the scheduler, which
resumes the execution of another process. When the sleeping process is awak-
ened, the scheduler resumes execution of the sleep on() function, which
removes the process from the wait queue.

98 | Chapter3: Processes

* The interruptible sleep on() function is identical to sleep on(), except that it
sets the state of the current process to TASK_INTERRUPTIBLE instead of setting it to
TASK_UNINTERRUPTIBLE, so that the process also can be woken up by receiving a
signal.

* The sleep on timeout() and interruptible sleep on timeout() functions are
similar to the previous ones, but they also allow the caller to define a time inter-
val after which the process will be woken up by the kernel. To do this, they
invoke the schedule timeout() function instead of schedule() (see the section
“An Application of Dynamic Timers: the nanosleep() System Call” in
Chapter 6).

* The prepare to wait(), prepare to wait exclusive(), and finish wait() func-
tions, introduced in Linux 2.6, offer yet another way to put the current process
to sleep in a wait queue. Typically, they are used as follows:

DEFINE_WAIT(wait);

prepare_to wait exclusive(8wq, 8wait, TASK INTERRUPTIBLE);

/* wq is the head of the wait queue */
if (!condition)
schedule();

finish wait(8wq, 8wait);
The prepare_to wait() and prepare to wait exclusive() functions set the pro-
cess state to the value passed as the third parameter, then set the exclusive flag in
the wait queue element respectively to 0 (nonexclusive) or 1 (exclusive), and
finally insert the wait queue element wait into the list of the wait queue head wq.

As soon as the process is awakened, it executes the finish wait() function,
which sets again the process state to TASK_RUNNING (just in case the awaking con-
dition becomes true before invoking schedule()), and removes the wait queue
element from the wait queue list (unless this has already been done by the wake-
up function).

* The wait_event and wait_event_interruptible macros put the calling process to
sleep on a wait queue until a given condition is verified. For instance, the wait_
event (wg, condition) macro essentially yields the following fragment:

DEFINE_WAIT(_wait);
for (55) {
prepare_to wait(8wq, 8 _wait, TASK _UNINTERRUPTIBLE);
if (condition)
break;
schedule();
}

finish_wait(8wg, &__wait);
A few comments on the functions mentioned in the above list: the sleep on()-like
functions cannot be used in the common situation where one has to test a condition
and atomically put the process to sleep when the condition is not verified; therefore,
because they are a well-known source of race conditions, their use is discouraged.

Process Descriptor | 99

Moreover, in order to insert an exclusive process into a wait queue, the kernel must
make use of the prepare to wait exclusive() function (or just invoke add wait
queue_exclusive() directly); any other helper function inserts the process as nonex-
clusive. Finally, unless DEFINE_WAIT or finish wait() are used, the kernel must remove
the wait queue element from the list after the waiting process has been awakened.

The kernel awakens processes in the wait queues, putting them in the TASK_RUNNING
state, by means of one of the following macros: wake_up, wake_up nr, wake up all,
wake up interruptible, wake up interruptible nr, wake up interruptible all,
wake_up_interruptible sync, and wake up_locked. One can understand what each of
these nine macros does from its name:

* All macros take into consideration sleeping processes in the TASK_INTERRUPTIBLE
state; if the macro name does not include the string “interruptible,” sleeping pro-
cesses in the TASK_UNINTERRUPTIBLE state also are considered.

* All macros wake all nonexclusive processes having the required state (see the
previous bullet item).

* The macros whose name include the string “nr” wake a given number of exclu-
sive processes having the required state; this number is a parameter of the
macro. The macros whose names include the string “all” wake all exclusive pro-
cesses having the required state. Finally, the macros whose names don’t include
“nr” or “all” wake exactly one exclusive process that has the required state.

* The macros whose names don’t include the string “sync” check whether the pri-
ority of any of the woken processes is higher than that of the processes currently
running in the systems and invoke schedule() if necessary. These checks are not
made by the macro whose name includes the string “sync”; as a result, execu-
tion of a high priority process might be slightly delayed.

* The wake_up_locked macro is similar to wake_up, except that it is called when the
spin lock in wait_queue_head_t is already held.

For instance, the wake up macro is essentially equivalent to the following code frag-
ment:

void wake up(wait queue head t *q)
{
struct list_head *tmp;
wait_queue_t *curr;

list for each(tmp, &g->task list) {
curr = list entry(tmp, wait queue t, task list);
if (curr->func(curr, TASK_INTERRUPTIBLE|TASK_UNINTERRUPTIBLE,
0, NULL) 8& curr->flags)
break;

100 | Chapter3: Processes

The 1ist_for each macro scans all items in the gq->task_list doubly linked list, that
is, all processes in the wait queue. For each item, the list_entry macro computes the
address of the corresponding wait queue_t variable. The func field of this variable
stores the address of the wake-up function, which tries to wake up the process iden-
tified by the task field of the wait queue element. If a process has been effectively
awakened (the function returned 1) and if the process is exclusive (curr->flags equal
to 1), the loop terminates. Because all nonexclusive processes are always at the
beginning of the doubly linked list and all exclusive processes are at the end, the
function always wakes the nonexclusive processes and then wakes one exclusive pro-
cess, if any exists.”

Process Resource Limits

Each process has an associated set of resource limits, which specify the amount of
system resources it can use. These limits keep a user from overwhelming the system
(its CPU, disk space, and so on). Linux recognizes the following resource limits illus-
trated in Table 3-7.

The resource limits for the current process are stored in the current->signal->rlim
field, that is, in a field of the process’s signal descriptor (see the section “Data Struc-
tures Associated with Signals” in Chapter 11). The field is an array of elements of
type struct rlimit, one for each resource limit:

struct rlimit {

unsigned long rlim cur;
unsigned long rlim_max;

1
Table 3-7. Resource limits
Field name Description
RLIMIT AS The maximum size of process address space, in bytes. The kernel checks this value when the

process usesmalloc() orarelated function to enlarge its address space (see the section
“The Process’s Address Space” in Chapter 9).

RLIMIT CORE The maximum core dump file size, in bytes. The kernel checks this value when a process is
aborted, before creating a core file in the current directory of the process (see the section
“Actions Performed upon Delivering a Signal” in Chapter 11). If the limit s 0, the kernel
won't create the file.

RLIMIT CPU The maximum CPU time for the process, in seconds. If the process exceeds the limit, the ker-
nel sends it a STGXCPU signal, and then, if the process doesn’t terminate, a STGKILL sig-
nal (see Chapter 11).

RLIMIT DATA The maximum heap size, in bytes. The kernel checks this value before expanding the heap of
the process (see the section “Managing the Heap” in Chapter 9).

* By the way, it is rather uncommon that a wait queue includes both exclusive and nonexclusive processes.

Process Descriptor | 101

Table 3-7. Resource limits (continued)

Field name Description

RLIMIT FSIZE The maximum file size allowed, in bytes. If the process tries to enlarge a file to a size greater
than this value, the kernel sends it a STGXFSZ signal.

RLIMIT LOCKS Maximum number of file locks (currently, not enforced).

RLIMIT MEMLOCK The maximum size of nonswappable memory, in bytes. The kernel checks this value when

the process tries to lock a page frame in memory using themlock () ormlockall() sys-
tem calls (see the section “Allocating a Linear Address Interval” in Chapter 9).

RLIMIT MSGQUEUE Maximum number of bytes in POSIX message queues (see the section “POSIX Message
Queues” in Chapter 19).

RLIMIT NOFILE The maximum number of open file descriptors. The kernel checks this value when opening a
new file or duplicating a file descriptor (see Chapter 12).

RLIMIT _NPROC The maximum number of processes that the user can own (see the section “The clone(),
fork(), and vfork() System Calls” later in this chapter).

RLIMIT RSS The maximum number of page frames owned by the process (currently, not enforced).

RLIMIT SIGPENDING The maximum number of pending signals for the process (see Chapter 11).

RLIMIT STACK The maximum stack size, in bytes. The kernel checks this value before expanding the User

Mode stack of the process (see the section “Page Fault Exception Handler” in Chapter 9).

The rlim_cur field is the current resource limit for the resource. For example,
current->signal->r1im[RLIMIT CPU].rlim cur represents the current limit on the
CPU time of the running process.

The rlim max field is the maximum allowed value for the resource limit. By using the
getrlimit() and setrlimit() system calls, a user can always increase the rlim_cur
limit of some resource up to rlim max. However, only the superuser (or, more pre-
cisely, a user who has the CAP_SYS _RESOURCE capability) can increase the r1im_max field
or set the rlim cur field to a value greater than the corresponding rlim max field.

Most resource limits contain the value RLIM_INFINITY (Oxffffffff), which means that
no user limit is imposed on the corresponding resource (of course, real limits exist
due to kernel design restrictions, available RAM, available space on disk, etc.). How-
ever, the system administrator may choose to impose stronger limits on some
resources. Whenever a user logs into the system, the kernel creates a process owned
by the superuser, which can invoke setrlimit() to decrease the rlim max and rlim_
cur fields for a resource. The same process later executes a login shell and becomes
owned by the user. Each new process created by the user inherits the content of the
rlim array from its parent, and therefore the user cannot override the limits enforced
by the administrator.

Process Switch

To control the execution of processes, the kernel must be able to suspend the execu-
tion of the process running on the CPU and resume the execution of some other pro-
cess previously suspended. This activity goes variously by the names process switch,

102 | Chapter3: Processes

task switch, or context switch. The next sections describe the elements of process
switching in Linux.

Hardware Context

While each process can have its own address space, all processes have to share the
CPU registers. So before resuming the execution of a process, the kernel must ensure
that each such register is loaded with the value it had when the process was suspended.

The set of data that must be loaded into the registers before the process resumes its
execution on the CPU is called the hardware context. The hardware context is a sub-
set of the process execution context, which includes all information needed for the
process execution. In Linux, a part of the hardware context of a process is stored in
the process descriptor, while the remaining part is saved in the Kernel Mode stack.

In the description that follows, we will assume the prev local variable refers to the
process descriptor of the process being switched out and next refers to the one being
switched in to replace it. We can thus define a process switch as the activity consist-
ing of saving the hardware context of prev and replacing it with the hardware con-
text of next. Because process switches occur quite often, it is important to minimize
the time spent in saving and loading hardware contexts.

Old versions of Linux took advantage of the hardware support offered by the 80x86
architecture and performed a process switch through a far jmp instruction” to the
selector of the Task State Segment Descriptor of the next process. While executing
the instruction, the CPU performs a hardware context switch by automatically saving
the old hardware context and loading a new one. But Linux 2.6 uses software to per-
form a process switch for the following reasons:

* Step-by-step switching performed through a sequence of mov instructions allows
better control over the validity of the data being loaded. In particular, it is possi-
ble to check the values of the ds and es segmentation registers, which might have
been forged by a malicious user. This type of checking is not possible when
using a single far jmp instruction.

* The amount of time required by the old approach and the new approach is
about the same. However, it is not possible to optimize a hardware context
switch, while there might be room for improving the current switching code.

Process switching occurs only in Kernel Mode. The contents of all registers used by a
process in User Mode have already been saved on the Kernel Mode stack before per-
forming process switching (see Chapter 4). This includes the contents of the ss and
esp pair that specifies the User Mode stack pointer address.

* far jmp instructions modify both the ¢s and eip registers, while simple jmp instructions modify only eip.

Process Switch | 103

Task State Segment

The 80x86 architecture includes a specific segment type called the Task State Seg-
ment (TSS), to store hardware contexts. Although Linux doesn’t use hardware
context switches, it is nonetheless forced to set up a TSS for each distinct CPU in the
system. This is done for two main reasons:

e When an 80x86 CPU switches from User Mode to Kernel Mode, it fetches the
address of the Kernel Mode stack from the TSS (see the sections “Hardware
Handling of Interrupts and Exceptions” in Chapter 4 and “Issuing a System Call
via the sysenter Instruction” in Chapter 10).

* When a User Mode process attempts to access an I/O port by means of an in or
out instruction, the CPU may need to access an I/O Permission Bitmap stored in
the TSS to verify whether the process is allowed to address the port.

More precisely, when a process executes an in or out I/O instruction in User
Mode, the control unit performs the following operations:

1. Tt checks the 2-bit IOPL field in the eflags register. If it is set to 3, the con-
trol unit executes the I/O instructions. Otherwise, it performs the next

check.

2. Traccesses the tr register to determine the current TSS, and thus the proper I/O
Permission Bitmap.

3. Tt checks the bit of the I/O Permission Bitmap corresponding to the I/O port
specified in the I/O instruction. If it is cleared, the instruction is executed,;
otherwise, the control unit raises a “General protection” exception.

The tss_struct structure describes the format of the TSS. As already mentioned in
Chapter 2, the init_tss array stores one TSS for each CPU on the system. At each
process switch, the kernel updates some fields of the TSS so that the corresponding
CPU’s control unit may safely retrieve the information it needs. Thus, the TSS
reflects the privilege of the current process on the CPU, but there is no need to main-
tain TSSs for processes when they’re not running.

Each TSS has its own 8-byte Task State Segment Descriptor (TSSD). This descriptor
includes a 32-bit Base field that points to the TSS starting address and a 20-bit Limit
field. The S flag of a TSSD is cleared to denote the fact that the corresponding TSS is
a System Segment (see the section “Segment Descriptors” in Chapter 2).

The Type field is set to either 9 or 11 to denote that the segment is actually a TSS. In
the Intel’s original design, each process in the system should refer to its own TSS; the
second least significant bit of the Type field is called the Busy bit; it is set to 1 if the
process is being executed by a CPU, and to 0 otherwise. In Linux design, there is just
one TSS for each CPU, so the Busy bit is always set to 1.

The TSSDs created by Linux are stored in the Global Descriptor Table (GDT), whose
base address is stored in the gdtr register of each CPU. The tr register of each CPU

104 | Chapter3: Processes

contains the TSSD Selector of the corresponding TSS. The register also includes two
hidden, nonprogrammable fields: the Base and Limit fields of the TSSD. In this way,
the processor can address the TSS directly without having to retrieve the TSS address
from the GDT.

The thread field

At every process switch, the hardware context of the process being replaced must be
saved somewhere. It cannot be saved on the TSS, as in the original Intel design,
because Linux uses a single TSS for each processor, instead of one for every process.

Thus, each process descriptor includes a field called thread of type thread struct, in
which the kernel saves the hardware context whenever the process is being switched
out. As we’ll see later, this data structure includes fields for most of the CPU regis-
ters, except the general-purpose registers such as eax, ebx, etc., which are stored in
the Kernel Mode stack.

Performing the Process Switch

A process switch may occur at just one well-defined point: the schedule() function,
which is discussed at length in Chapter 7. Here, we are only concerned with how the
kernel performs a process switch.

Essentially, every process switch consists of two steps:

1. Switching the Page Global Directory to install a new address space; we’ll
describe this step in Chapter 9.

2. Switching the Kernel Mode stack and the hardware context, which provides all
the information needed by the kernel to execute the new process, including the
CPU registers.

Again, we assume that prev points to the descriptor of the process being replaced,
and next to the descriptor of the process being activated. As we’ll see in Chapter 7,
prev and next are local variables of the schedule() function.

The switch_to macro

The second step of the process switch is performed by the switch _to macro. It is one
of the most hardware-dependent routines of the kernel, and it takes some effort to
understand what it does.

First of all, the macro has three parameters, called prev, next, and last. You might
easily guess the role of prev and next: they are just placeholders for the local vari-
ables prev and next, that is, they are input parameters that specify the memory loca-
tions containing the descriptor address of the process being replaced and the
descriptor address of the new process, respectively.

Process Switch | 105

What about the third parameter, last? Well, in any process switch three processes
are involved, not just two. Suppose the kernel decides to switch off process A and to
activate process B. In the schedule() function, prev points to A’s descriptor and next
points to B’s descriptor. As soon as the switch to macro deactivates A, the execu-
tion flow of A freezes.

Later, when the kernel wants to reactivate A, it must switch off another process C (in
general, this is different from B) by executing another switch _to macro with prev
pointing to C and next pointing to A. When A resumes its execution flow, it finds its
old Kernel Mode stack, so the prev local variable points to A’s descriptor and next
points to B’s descriptor. The scheduler, which is now executing on behalf of process
A, has lost any reference to C. This reference, however, turns out to be useful to
complete the process switching (see Chapter 7 for more details).

The last parameter of the switch to macro is an output parameter that specifies a
memory location in which the macro writes the descriptor address of process C (of
course, this is done after A resumes its execution). Before the process switching, the
macro saves in the eax CPU register the content of the variable identified by the first
input parameter prev—that is, the prev local variable allocated on the Kernel Mode
stack of A. After the process switching, when A has resumed its execution, the macro
writes the content of the eax CPU register in the memory location of A identified by
the third output parameter last. Because the CPU register doesn’t change across the
process switch, this memory location receives the address of C’s descriptor. In the
current implementation of schedule(), the last parameter identifies the prev local
variable of A, so prev is overwritten with the address of C.

The contents of the Kernel Mode stacks of processes A, B, and C are shown in
Figure 3-7, together with the values of the eax register; be warned that the figure
shows the value of the prev local variable before its value is overwritten with the con-
tents of the eax register.

switch_to(A,B,A) switch_to(C,A,C)
Process A Process B Process € Process A
Process stack prev=A prev=B prev=_C prev=A
next=B next = other next=A next=B
last last
eax register A A C C

Figure 3-7. Preserving the reference to process C across a process switch

The switch_to macro is coded in extended inline assembly language that makes for
rather complex reading: in fact, the code refers to registers by means of a special

106 | Chapter3: Processes

positional notation that allows the compiler to freely choose the general-purpose reg-
isters to be used. Rather than follow the cumbersome extended inline assembly lan-
guage, we'll describe what the switch to macro typically does on an 80x86
microprocessor by using standard assembly language:

1. Saves the values of prev and next in the eax and edx registers, respectively:

movl prev, %eax
movl next, %edx
2. Saves the contents of the eflags and ebp registers in the prev Kernel Mode stack.
They must be saved because the compiler assumes that they will stay unchanged
until the end of switch_to:
pushfl
pushl %ebp
3. Saves the content of esp in prev->thread.esp so that the field points to the top of
the prev Kernel Mode stack:

movl %esp,484(%eax)
The 484(%eax) operand identifies the memory cell whose address is the contents
of eax plus 484.

4. Loads next->thread.esp in esp. From now on, the kernel operates on the Kernel
Mode stack of next, so this instruction performs the actual process switch from
prev to next. Because the address of a process descriptor is closely related to that
of the Kernel Mode stack (as explained in the section “Identifying a Process” ear-
lier in this chapter), changing the kernel stack means changing the current
process:

movl 484(%edx), %esp

5. Saves the address labeled 1 (shown later in this section) in prev->thread.eip.
When the process being replaced resumes its execution, the process executes the
instruction labeled as 1:

movl $1f, 480(%eax)

6. On the Kernel Mode stack of next, the macro pushes the next->thread.eip
value, which, in most cases, is the address labeled as 1:

pushl 480(%edx)

7. Jumps to the __switch_to() C function (see next):

jmp __switch to

8. Here process A that was replaced by B gets the CPU again: it executes a few
instructions that restore the contents of the eflags and ebp registers. The first of
these two instructions is labeled as 1:

1:
popl %ebp
popfl
Notice how these pop instructions refer to the kernel stack of the prev process.
They will be executed when the scheduler selects prev as the new process to be

Process Switch | 107

executed on the CPU, thus invoking switch to with prev as the second parame-
ter. Therefore, the esp register points to the prev’s Kernel Mode stack.

9. Copies the content of the eax register (loaded in step 1 above) into the memory
location identified by the third parameter last of the switch_to macro:

movl %eax, last

As discussed earlier, the eax register points to the descriptor of the process that
has just been replaced.”

The __switch_to() function

The _ switch_to() function does the bulk of the process switch started by the
switch _to() macro. It acts on the prev p and next p parameters that denote the
former process and the new process. This function call is different from the average
function call, though, because __switch to() takes the prev p and next p parame-
ters from the eax and edx registers (where we saw they were stored), not from the
stack like most functions. To force the function to go to the registers for its parame-
ters, the kernel uses the __attribute and regparm keywords, which are nonstand-
ard extensions of the C language implemented by the gcc compiler. The switch_
to(') function is declared in the include/asm-i386/system.h header file as follows:
__switch_to(struct task_struct *prev_p,

struct task_struct *next_p)
__attribute_ (regparm(3));

The steps performed by the function are the following:

1. Executes the code yielded by the __unlazy fpu() macro (see the section “Saving
and Loading the FPU, MMX, and XMM Registers” later in this chapter) to
optionally save the contents of the FPU, MMX, and XMM registers of the prev_p
process.

__unlazy_fpu(prev_p);

2. Executes the smp processor id() macro to get the index of the local CPU,
namely the CPU that executes the code. The macro gets the index from the cpu
field of the thread info structure of the current process and stores it into the cpu
local variable.

3. Loads next_p->thread.espo in the espo field of the TSS relative to the local CPU;
as we’ll see in the section “Issuing a System Call via the sysenter Instruction” in
Chapter 10, any future privilege level change from User Mode to Kernel Mode
raised by a sysenter assembly instruction will copy this address in the esp register:

init_tss[cpu].esp0 = next_p->thread.espo;

* As stated earlier in this section, the current implementation of the schedule() function reuses the prev local
variable, so that the assembly language instruction looks like movl %eax,prev.

108 | Chapter3: Processes

4. Loads in the Global Descriptor Table of the local CPU the Thread-Local Storage
(TLS) segments used by the next p process; the three Segment Selectors are
stored in the tls_array array inside the process descriptor (see the section “Seg-
mentation in Linux” in Chapter 2).

cpu_gdt_table[cpu][6] = next_p->thread.tls array[0];

cpu_gdt table[cpu][7] = next_p->thread.tls array[1];
cpu_gdt table[cpu][8] = next p->thread.tls array[2];

5. Stores the contents of the fs and gs segmentation registers in prev_p->thread.fs
and prev_p->thread.gs, respectively; the corresponding assembly language
Instructions are:

movl %fs, 40(%esi)
movl %gs, 44(%esi)

The esi register points to the prev_p->thread structure.

6. If the fs or the gs segmentation register have been used either by the prev p or
by the next_p process (i.e., if they have a nonzero value), loads into these regis-
ters the values stored in the thread_struct descriptor of the next_p process. This
step logically complements the actions performed in the previous step. The main
assembly language instructions are:

movl 40(%ebx),%fs

movl 44(%ebx),%gs
The ebx register points to the next p->thread structure. The code is actually
more intricate, as an exception might be raised by the CPU when it detects an
invalid segment register value. The code takes this possibility into account by
adopting a “fix-up” approach (see the section “Dynamic Address Checking: The
Fix-up Code” in Chapter 10).

7. Loads six of the dro, ..., dr7 debug registers” with the contents of the next_p->
thread.debugreg array. This is done only if next_p was using the debug registers
when it was suspended (that is, field next_p->thread.debugreg[7] is not 0).
These registers need not be saved, because the prev_p->thread.debugreg array is
modified only when a debugger wants to monitor prev:

if (next_p->thread.debugreg[7]){

loaddebug(&next_p->thread, 0);
loaddebug(&next_p->thread, 1);
loaddebug(&next_p->thread, 2);
loaddebug(&next_p->thread, 3);
/* no 4 and 5 */

loaddebug(&next_p->thread, 6);
loaddebug(&next_p->thread, 7);

* The 80x86 debug registers allow a process to be monitored by the hardware. Up to four breakpoint areas
may be defined. Whenever a monitored process issues a linear address included in one of the breakpoint
areas, an exception occurs.

Process Switch | 109

8.

Updates the I/O bitmap in the TSS, if necessary. This must be done when either
next_p or prev_p has its own customized I/O Permission Bitmap:
if (prev_p->thread.io_bitmap_ptr || next_p->thread.io_bitmap ptr)
handle_io_bitmap(8&next_p->thread, &init_tss[cpul);

Because processes seldom modify the I/O Permission Bitmap, this bitmap is han-
dled in a “lazy” mode: the actual bitmap is copied into the TSS of the local CPU
only if a process actually accesses an I/O port in the current timeslice. The cus-
tomized I/O Permission Bitmap of a process is stored in a buffer pointed to by
the io_bitmap ptr field of the thread info structure. The handle io bitmap()
function sets up the io bitmap field of the TSS used by the local CPU for the
next_p process as follows:

* If the next_p process does not have its own customized I/O Permission Bit-
map, the io_bitmap field of the TSS is set to the value 0x8000.

* If the next_p process has its own customized I/O Permission Bitmap, the io_
bitmap field of the TSS is set to the value 0x9000.

The io bitmap field of the TSS should contain an offset inside the TSS where the
actual bitmap is stored. The 0x8000 and 0x9000 values point outside of the TSS
limit and will thus cause a “General protection” exception whenever the User
Mode process attempts to access an 1/O port (see the section “Exceptions” in
Chapter 4). The do_general protection() exception handler will check the value
stored in the io_bitmap field: if it is 0x8000, the function sends a SIGSEGV signal to
the User Mode process; otherwise, if it is 0x9000, the function copies the process
bitmap (pointed to by the io_bitmap ptr field in the thread_info structure) in the
TSS of the local CPU, sets the io_bitmap field to the actual bitmap offset (104),
and forces a new execution of the faulty assembly language instruction.

. Terminates. The __switch to() C function ends by means of the statement:

return prev_p;
The corresponding assembly language instructions generated by the compiler
are:

movl %edi,%eax

ret
The prev_p parameter (now in edi) is copied into eax, because by default the
return value of any C function is passed in the eax register. Notice that the value
of eax is thus preserved across the invocation of __switch to(); this is quite
important, because the invoking switch_to macro assumes that eax always stores
the address of the process descriptor being replaced.

The ret assembly language instruction loads the eip program counter with the
return address stored on top of the stack. However, the __switch to() function
has been invoked simply by jumping into it. Therefore, the ret instruction finds
on the stack the address of the instruction labeled as 1, which was pushed by
the switch_to macro. If next_p was never suspended before because it is being

110

| Chapter3: Processes

executed for the first time, the function finds the starting address of the ret_
from fork() function (see the section “The clone(), fork(), and vfork() System
Calls” later in this chapter).

Saving and Loading the FPU, MMX, and XMM Registers

Starting with the Intel 80486DX, the arithmetic floating-point unit (FPU) has been
integrated into the CPU. The name mathematical coprocessor continues to be used in
memory of the days when floating-point computations were executed by an expen-
sive special-purpose chip. To maintain compatibility with older models, however,
floating-point arithmetic functions are performed with ESCAPE instructions, which
are instructions with a prefix byte ranging between 0xd8 and oxdf. These instruc-
tions act on the set of floating-point registers included in the CPU. Clearly, if a pro-
cess is using ESCAPE instructions, the contents of the floating-point registers belong
to its hardware context and should be saved.

In later Pentium models, Intel introduced a new set of assembly language instruc-
tions into its microprocessors. They are called MMX instructions and are supposed to
speed up the execution of multimedia applications. MMX instructions act on the
floating-point registers of the FPU. The obvious disadvantage of this architectural
choice is that programmers cannot mix floating-point instructions and MMX instruc-
tions. The advantage is that operating system designers can ignore the new instruc-
tion set, because the same facility of the task-switching code for saving the state of
the floating-point unit can also be relied upon to save the MMX state.

MMX instructions speed up multimedia applications, because they introduce a sin-
gle-instruction multiple-data (SIMD) pipeline inside the processor. The Pentium III
model extends that SIMD capability: it introduces the SSE extensions (Streaming
SIMD Extensions), which adds facilities for handling floating-point values contained
in eight 128-bit registers called the XMM registers. Such registers do not overlap with
the FPU and MMX registers, so SSE and FPU/MMX instructions may be freely
mixed. The Pentium 4 model introduces yet another feature: the SSE2 extensions,
which is basically an extension of SSE supporting higher-precision floating-point val-
ues. SSE2 uses the same set of XMM registers as SSE.

The 80x86 microprocessors do not automatically save the FPU, MMX, and XMM
registers in the TSS. However, they include some hardware support that enables ker-
nels to save these registers only when needed. The hardware support consists of a TS
(Task-Switching) flag in the cr0 register, which obeys the following rules:

* Every time a hardware context switch is performed, the TS flag is set.

* Every time an ESCAPE, MMX, SSE, or SSE2 instruction is executed when the TS
flag is set, the control unit raises a “Device not available” exception (see
Chapter 4).

Process Switch | 111

The TS flag allows the kernel to save and restore the FPU, MMX, and XMM registers
only when really needed. To illustrate how it works, suppose that a process A is
using the mathematical coprocessor. When a context switch occurs from A to B, the
kernel sets the TS flag and saves the floating-point registers into the TSS of process
A. If the new process B does not use the mathematical coprocessor, the kernel won’t
need to restore the contents of the floating-point registers. But as soon as B tries to
execute an ESCAPE or MMX instruction, the CPU raises a “Device not available”
exception, and the corresponding handler loads the floating-point registers with the
values saved in the TSS of process B.

Let’s now describe the data structures introduced to handle selective loading of the
FPU, MMX, and XMM registers. They are stored in the thread.i387 subfield of the
process descriptor, whose format is described by the 1387 _union union:
union 1387 union {
struct 1387 fsave struct fsave;
struct i387_fxsave struct fxsave;
struct i387_soft struct soft;
1
As you see, the field may store just one of three different types of data structures. The
1387 _soft_struct type is used by CPU models without a mathematical coprocessor;
the Linux kernel still supports these old chips by emulating the coprocessor via soft-
ware. We don’t discuss this legacy case further, however. The 1387 fsave struct
type is used by CPU models with a mathematical coprocessor and, optionally, an
MMZX unit. Finally, the 1387 fxsave struct type is used by CPU models featuring
SSE and SSE2 extensions.

The process descriptor includes two additional flags:

* The TS_USEDFPU flag, which is included in the status field of the thread info
descriptor. It specifies whether the process used the FPU, MMX, or XMM regis-
ters in the current execution run.

* The PF_USED MATH flag, which is included in the flags field of the task struct
descriptor. This flag specifies whether the contents of the thread.i387 subfield
are significant. The flag is cleared (not significant) in two cases, shown in the fol-
lowing list.

— When the process starts executing a new program by invoking an execve()
system call (see Chapter 20). Because control will never return to the former
program, the data currently stored in thread.i387 is never used again.

— When a process that was executing a program in User Mode starts execut-
ing a signal handler procedure (see Chapter 11). Because signal handlers are
asynchronous with respect to the program execution flow, the floating-point
registers could be meaningless to the signal handler. However, the kernel
saves the floating-point registers in thread.i387 before starting the handler
and restores them after the handler terminates. Therefore, a signal handler is
allowed to use the mathematical coprocessor.

112 | Chapter3: Processes

Saving the FPU registers

As stated earlier, the _switch_to() function executes the _unlazy fpu macro, pass-
ing the process descriptor of the prev process being replaced as an argument. The
macro checks the value of the TS_USEDFPU flags of prev. If the flag is set, prev has used
an FPU, MMX, SSE, or SSE2 instructions; therefore, the kernel must save the rela-
tive hardware context:

if (prev->thread info->status & TS _USEDFPU)
save_init fpu(prev);

The save_init fpu() function, in turn, executes essentially the following operations:

1. Dumps the contents of the FPU registers in the process descriptor of prev and
then reinitializes the FPU. If the CPU uses SSE/SSE2 extensions, it also dumps
the contents of the XMM registers and reinitializes the SSE/SSE2 unit. A couple
of powerful extended inline assembly language instructions take care of every-
thing, either:

asm volatile("fxsave %0 ; fnclex"

m" (prev->thread.i387.fxsave));
if the CPU uses SSE/SSE2 extensions, or otherwise:

asm volatile("fnsave %0 ; fwait"

: "=m" (prev->thread.i387.fsave));
2. Resets the TS_USEDFPU flag of prev:
prev->thread_info->status &= ~TS_USEDFPU;
3. Sets the TS flag of cr0 by means of the stts() macro, which in practice yields
assembly language instructions like the following:

movl %cro, %eax
orl $8,%eax
movl %eax, %croO

Loading the FPU registers

The contents of the floating-point registers are not restored right after the next pro-
cess resumes execution. However, the TS flag of cr0 has been set by __unlazy fpu().
Thus, the first time the next process tries to execute an ESCAPE, MMX, or SSE/SSE2
instruction, the control unit raises a “Device not available” exception, and the kernel
(more precisely, the exception handler involved by the exception) runs the math_
state_restore() function. The next process is identified by this handler as current.

void math_state restore()

{
asm volatile ("clts"); /* clear the TS flag of cr0o */
if (!(current->flags & PF_USED_MATH))
init fpu(current);
restore fpu(current);
current->thread.status |= TS_USEDFPU;
}

Process Switch | 113

The function clears the TC flags of cr0, so that further FPU, MMX, or SSE/SSE2
instructions executed by the process won'’t trigger the “Device not available” excep-
tion. If the contents of the thread.i387 subfield are not significant, i.e., if the PF_
USED_MATH flag is equal to 0, init fpu() is invoked to reset the thread.i387 subfield
and to set the PF_USED_MATH flag of current to 1. The restore fpu() function is then
invoked to load the FPU registers with the proper values stored in the thread.i387
subfield. To do this, either the fxrstor or the frstor assembly language instructions
are used, depending on whether the CPU supports SSE/SSE2 extensions. Finally,
math_state restore() sets the TS_USEDFPU flag.

Using the FPU, MMX, and SSE/SSE2 units in Kernel Mode

Even the kernel can make use of the FPU, MMX, or SSE/SSE2 units. In doing so, of
course, it should avoid interfering with any computation carried on by the current
User Mode process. Therefore:

* Before using the coprocessor, the kernel must invoke kernel fpu begin(), which
essentially calls save_init fpu() to save the contents of the registers if the User
Mode process used the FPU (TS_USEDFPU flag), and then resets the TS flag of the
cr0 register.

* After using the coprocessor, the kernel must invoke kernel fpu_end(), which
sets the TS flag of the cr0 register.

Later, when the User Mode process executes a coprocessor instruction, the math_
state_restore() function will restore the contents of the registers, just as in process
switch handling.

It should be noted, however, that the execution time of kernel fpu_begin() is rather
large when the current User Mode process is using the coprocessor, so much as to
nullify the speedup obtained by using the FPU, MMX, or SSE/SSE2 units. As a mat-
ter of fact, the kernel uses them only in a few places, typically when moving or clear-
ing large memory areas or when computing checksum functions.

Creating Processes

Unix operating systems rely heavily on process creation to satisfy user requests. For
example, the shell creates a new process that executes another copy of the shell
whenever the user enters a command.

Traditional Unix systems treat all processes in the same way: resources owned by the
parent process are duplicated in the child process. This approach makes process cre-
ation very slow and inefficient, because it requires copying the entire address space
of the parent process. The child process rarely needs to read or modify all the
resources inherited from the parent; in many cases, it issues an immediate execve()
and wipes out the address space that was so carefully copied.

114 | Chapter3: Processes

Modern Unix kernels solve this problem by introducing three different mechanisms:

* The Copy On Write technique allows both the parent and the child to read the
same physical pages. Whenever either one tries to write on a physical page, the
kernel copies its contents into a new physical page that is assigned to the writing
process. The implementation of this technique in Linux is fully explained in
Chapter 9.

* Lightweight processes allow both the parent and the child to share many per-
process kernel data structures, such as the paging tables (and therefore the entire
User Mode address space), the open file tables, and the signal dispositions.

* The vfork() system call creates a process that shares the memory address space
of its parent. To prevent the parent from overwriting data needed by the child,
the parent’s execution is blocked until the child exits or executes a new pro-
gram. We’ll learn more about the vfork() system call in the following section.

The clone(), fork(), and vfork() System Calls

Lightweight processes are created in Linux by using a function named clone(),
which uses the following parameters:

fn
Specifies a function to be executed by the new process; when the function
returns, the child terminates. The function returns an integer, which represents
the exit code for the child process.

arg
Points to data passed to the fn() function.

flags
Miscellaneous information. The low byte specifies the signal number to be sent
to the parent process when the child terminates; the SIGCHLD signal is generally
selected. The remaining three bytes encode a group of clone flags, which are
shown in Table 3-8.

child stack
Specifies the User Mode stack pointer to be assigned to the esp register of the
child process. The invoking process (the parent) should always allocate a new
stack for the child.

tls
Specifies the address of a data structure that defines a Thread Local Storage seg-
ment for the new lightweight process (see the section “The Linux GDT” in
Chapter 2). Meaningful only if the CLONE_SETTLS flag is set.

ptid
Specifies the address of a User Mode variable of the parent process that will hold
the PID of the new lightweight process. Meaningful only if the CLONE_PARENT
SETTID flag is set.

Creating Processes | 115

ctid

Specifies the address of a User Mode variable of the new lightweight process that
will hold the PID of such process. Meaningful only if the CLONE_CHILD SETTID flag

1S set.

Table 3-8. Clone flags

Flag name
CLONE_VM
CLONE_FS

CLONE_FILES
CLONE_SIGHAND
CLONE_PTRACE

CLONE_VFORK
CLONE_PARENT

CLONE_THREAD

CLONE_NEWNS

CLONE_SYSVSEM
CLONE_SETTLS
CLONE_PARENT_SETTID

CLONE_CHILD CLEARTID

CLONE_DETACHED
CLONE_UNTRACED

CLONE_CHILD_SETTID

CLONE_STOPPED

Description
Shares the memory descriptor and all Page Tables (see Chapter 9).

Shares the table that identifies the root directory and the current working directory, as
well as the value of the bitmask used to mask the initial file permissions of a new file
(the so-called file umask).

Shares the table that identifies the open files (see Chapter 12).

Shares the tables that identify the signal handlers and the blocked and pending signals
(see Chapter 11). If this flag i true, the CLONE_VM flag must also be set.

If traced, the parent wants the child to be traced too. Furthermore, the debugger may
want to trace the child on its own; in this case, the kernel forces the flag to 1.

Set when the system call issued is a vfork () (see later in this section).

Sets the parent of the child (parent and real parent fields in the process
descriptor) to the parent of the calling process.

Inserts the child into the same thread group of the parent, and forces the child to share
the signal descriptor of the parent. The child’s tgid and group leader fields are
set accordingly. If this flag is true, the CLONE_ STGHAND flag must also be set.

Set if the clone needs its own namespace, that is, its own view of the mounted filesys-
tems (see Chapter 12); it is not possible to specify both CLONE_NEWNS and CLONE_
FS.

Shares the System V IPCundoable semaphore operations (see the section “IPC Sema-
phores” in Chapter 19).

(reates a new Thread Local Storage (TLS) segment for the lightweight process; the
segment is described in the structure pointed to by the t1s parameter.

Writes the PID of the child into the User Mode variable of the parent pointed to by the
ptid parameter.

When set, the kernel sets up a mechanism to be triggered when the child process will
exit or when it will start executing a new program. In these cases, the kernel will clear
the User Mode variable pointed to by the ctid parameter and will awaken any pro-
cess waiting for this event.

Alegacy flag ignored by the kernel.

Set by the kernel to override the value of the CLONE_PTRACE flag (used for disabling
tracing of kernel threads; see the section “Kernel Threads” later in this chapter).

Writes the PID of the child into the User Mode variable of the child pointed to by the
ctid parameter.

Forces the child to start in the TASK_STOPPED state.

clone() is actually a wrapper function defined in the C library (see the section
“POSIX APIs and System Calls” in Chapter 10), which sets up the stack of the new

116 | Chapter3: Processes

lightweight process and invokes a clone() system call hidden to the programmer.
The sys_clone() service routine that implements the clone() system call does not
have the fn and arg parameters. In fact, the wrapper function saves the pointer fn
into the child’s stack position corresponding to the return address of the wrapper
function itself; the pointer arg is saved on the child’s stack right below fn. When the
wrapper function terminates, the CPU fetches the return address from the stack and
executes the fn(arg) function.

The traditional fork() system call is implemented by Linux as a clone() system call
whose flags parameter specifies both a SIGCHLD signal and all the clone flags cleared,
and whose child stack parameter is the current parent stack pointer. Therefore, the
parent and child temporarily share the same User Mode stack. But thanks to the
Copy On Write mechanism, they usually get separate copies of the User Mode stack
as soon as one tries to change the stack.

The vfork() system call, introduced in the previous section, is implemented by
Linux as a clone() system call whose flags parameter specifies both a SIGCHLD signal
and the flags CLONE_VM and CLONE_VFORK, and whose child stack parameter is equal to
the current parent stack pointer.

The do_ fork() function

The do_fork() function, which handles the clone(), fork(), and vfork() system
calls, acts on the following parameters:

clone flags
Same as the flags parameter of clone()

stack start
Same as the child stack parameter of clone()
regs
Pointer to the values of the general purpose registers saved into the Kernel Mode

stack when switching from User Mode to Kernel Mode (see the section “The do_
IRQ() function” in Chapter 4)

stack size
Unused (always set to 0)
parent tidptr, child tidptr
Same as the corresponding ptid and ctid parameters of clone()

do_fork() makes use of an auxiliary function called copy process() to set up the pro-
cess descriptor and any other kernel data structure required for child’s execution.
Here are the main steps performed by do_fork():

1. Allocates a new PID for the child by looking in the pidmap_array bitmap (see the
earlier section “Identifying a Process”).

2. Checks the ptrace field of the parent (current->ptrace): if it is not zero, the par-
ent process is being traced by another process, thus do_fork() checks whether

Creating Processes | 117

the debugger wants to trace the child on its own (independently of the value of
the CLONE_PTRACE flag specified by the parent); in this case, if the child is not a ker-
nel thread (CLONE_UNTRACED flag cleared), the function sets the CLONE_PTRACE flag.

. Invokes copy_process() to make a copy of the process descriptor. If all needed

resources are available, this function returns the address of the task struct
descriptor just created. This is the workhorse of the forking procedure, and we
will describe it right after do_fork().

. If either the CLONE_STOPPED flag is set or the child process must be traced, that is,

the PT_PTRACED flag is set in p->ptrace, it sets the state of the child to TASK_
STOPPED and adds a pending SIGSTOP signal to it (see the section “The Role of Sig-
nals” in Chapter 11). The state of the child will remain TASK STOPPED until
another process (presumably the tracing process or the parent) will revert its
state to TASK_RUNNING, usually by means of a SIGCONT signal.

. If the CLONE_STOPPED flag is not set, it invokes the wake up_new task() function,

which performs the following operations:

a. Adjusts the scheduling parameters of both the parent and the child (see
“The Scheduling Algorithm” in Chapter 7).

b. If the child will run on the same CPU as the parent,” and parent and child do
not share the same set of page tables (CLONE_WM flag cleared), it then forces
the child to run before the parent by inserting it into the parent’s runqueue
right before the parent. This simple step yields better performance if the
child flushes its address space and executes a new program right after the
forking. If we let the parent run first, the Copy On Write mechanism would
give rise to a series of unnecessary page duplications.

c. Otherwise, if the child will not be run on the same CPU as the parent, or if
parent and child share the same set of page tables (CLONE VM flag set), it
inserts the child in the last position of the parent’s runqueue.

. If the CLONE_STOPPED flag is set, it puts the child in the TASK_STOPPED state.
. If the parent process is being traced, it stores the PID of the child in the ptrace_

message field of current and invokes ptrace_notify(), which essentially stops the
current process and sends a SIGCHLD signal to its parent. The “grandparent” of
the child is the debugger that is tracing the parent; the SIGCHLD signal notifies the
debugger that current has forked a child, whose PID can be retrieved by looking
into the current->ptrace message field.

. If the CLONE_VFORK flag is specified, it inserts the parent process in a wait queue

and suspends it until the child releases its memory address space (that is, until
the child either terminates or executes a new program).

9. Terminates by returning the PID of the child.

* The parent process might be moved on to another CPU while the kernel forks the new process.

118

| Chapter3: Processes

The copy_process() function

The copy_process() function sets up the process descriptor and any other kernel data
structure required for a child’s execution. Its parameters are the same as do_fork(),
plus the PID of the child. Here is a description of its most significant steps:

1. Checks whether the flags passed in the clone flags parameter are compatible. In
particular, it returns an error code in the following cases:

a.

Both the flags CLONE_NEWNS and CLONE_FS are set.

b. The CLONE_THREAD flag is set, but the CLONE_SICHAND flag is cleared (light-

weight processes in the same thread group must share signals).

. The CLONE_SIGHAND flag is set, but the CLONE_WM flag is cleared (lightweight

processes sharing the signal handlers must also share the memory descriptor).

2. Performs any additional security checks by invoking security task_create()
and, later, security task_alloc(). The Linux kernel 2.6 offers hooks for secu-
rity extensions that enforce a security model stronger than the one adopted by
traditional Unix. See Chapter 20 for details.

3. Invokes dup_task_struct() to get the process descriptor for the child. This func-
tion performs the following actions:

a.

g.

Invokes __unlazy fpu() on the current process to save, if necessary, the
contents of the FPU, MMX, and SSE/SSE2 registers in the thread info struc-
ture of the parent. Later, dup_task_struct() will copy these values in the
thread_info structure of the child.

. Executes the alloc_task struct() macro to get a process descriptor (task

struct structure) for the new process, and stores its address in the tsk local
variable.

. Executes the alloc_thread_info macro to get a free memory area to store the

thread_info structure and the Kernel Mode stack of the new process, and
saves its address in the ti local variable. As explained in the earlier section
“Identifying a Process,” the size of this memory area is either 8 KB or 4 KB.

. Copies the contents of the current’s process descriptor into the task_struct

structure pointed to by tsk, then sets tsk->thread_info to ti.

. Copies the contents of the current’s thread info descriptor into the struc-

ture pointed to by ti, then sets ti->task to tsk.

. Sets the usage counter of the new process descriptor (tsk->usage) to2 to

specify that the process descriptor is in use and that the corresponding pro-
cess is alive (its state is not EXIT_ZOMBIE or EXIT DEAD).

Returns the process descriptor pointer of the new process (tsk).

4. Checks whether the value stored in current->signal->r1im[RLIMIT NPROC].rlim
cur is smaller than or equal to the current number of processes owned by the
user. If so, an error code is returned, unless the process has root privileges. The

Creating Processes | 119

11.

12.

13.

function gets the current number of processes owned by the user from a per-user
data structure named user_struct. This data structure can be found through a
pointer in the user field of the process descriptor.

. Increases the usage counter of the user_struct structure (tsk->user->__count

field) and the counter of the processes owned by the user (tsk->user->
processes).

. Checks that the number of processes in the system (stored in the nr_threads

variable) does not exceed the value of the max_threads variable. The default value
of this variable depends on the amount of RAM in the system. The general rule
is that the space taken by all thread_info descriptors and Kernel Mode stacks
cannot exceed 1/8 of the physical memory. However, the system administrator
may change this value by writing in the /proc/sys/kernel/threads-max file.

. If the kernel functions implementing the execution domain and the executable

format (see Chapter 20) of the new process are included in kernel modules, it
increases their usage counters (see Appendix B).

. Sets a few crucial fields related to the process state:

a. Initializes the big kernel lock counter tsk->lock depth to -1 (see the section
“The Big Kernel Lock” in Chapter 5).

b. Initializes the tsk->did_exec field to 0: it counts the number of execve() sys-
tem calls issued by the process.

c. Updates some of the flags included in the tsk->flags field that have been
copied from the parent process: first clears the PF_SUPERPRIV flag, which
indicates whether the process has used any of its superuser privileges, then
sets the PF_FORKNOEXEC flag, which indicates that the child has not yet issued
an execve() system call.

. Stores the PID of the new process in the tsk->pid field.
10.

If the CLONE_PARENT_SETTID flag in the clone_flags parameter is set, it copies the
child’s PID into the User Mode variable addressed by the parent tidptr parame-
ter.

Initializes the 1ist_head data structures and the spin locks included in the child’s
process descriptor, and sets up several other fields related to pending signals,
timers, and time statistics.

Invokes copy semundo(), copy files(), copy fs(), copy sighand(), copy
signal(), copy_mm(), and copy namespace() to create new data structures and
copy into them the values of the corresponding parent process data structures,
unless specified differently by the clone flags parameter.

Invokes copy thread() to initialize the Kernel Mode stack of the child process
with the values contained in the CPU registers when the clone() system call was
issued (these values have been saved in the Kernel Mode stack of the parent, as
described in Chapter 10). However, the function forces the value 0 into the field

120

| Chapter3: Processes

14.

15.

16.

17.

18.

19.

corresponding to the eax register (this is the child’s return value of the fork() or
clone() system call). The thread.esp field in the descriptor of the child process is
initialized with the base address of the child’s Kernel Mode stack, and the address
of an assembly language function (ret_from fork()) is stored in the thread.eip
field. If the parent process makes use of an I/O Permission Bitmap, the child gets
a copy of such bitmap. Finally, if the CLONE_SETTLS flag is set, the child gets the
TLS segment specified by the User Mode data structure pointed to by the tls
parameter of the clone() system call.”

If either CLONE_CHILD SETTID or CLONE CHILD CLEARTID is set in the clone flags
parameter, it copies the value of the child tidptr parameter in the tsk->set_
chid tid or tsk->clear child tid field, respectively. These flags specify that the
value of the variable pointed to by child_tidptr in the User Mode address space
of the child has to be changed, although the actual write operations will be done
later.

Turns off the TIF_SYSCALL TRACE flag in the thread info structure of the child, so
that the ret _from_fork() function will not notify the debugging process about
the system call termination (see the section “Entering and Exiting a System Call”
in Chapter 10). (The system call tracing of the child is not disabled, because it is
controlled by the PTRACE_SYSCALL flag in tsk->ptrace.)

Initializes the tsk->exit signal field with the signal number encoded in the low
bits of the clone flags parameter, unless the CLONE_THREAD flag is set, in which
case initializes the field to -1. As we’ll see in the section “Process Termination”
later in this chapter, only the death of the last member of a thread group (usu-
ally, the thread group leader) causes a signal notifying the parent of the thread
group leader.

Invokes sched fork() to complete the initialization of the scheduler data struc-
ture of the new process. The function also sets the state of the new process to
TASK_RUNNING and sets the preempt count field of the thread info structure to 1,
thus disabling kernel preemption (see the section “Kernel Preemption” in
Chapter 5). Moreover, in order to keep process scheduling fair, the function
shares the remaining timeslice of the parent between the parent and the child
(see “The scheduler_tick() Function” in Chapter 7).

Sets the cpu field in the thread_info structure of the new process to the number
of the local CPU returned by smp_processor_id().

Initializes the fields that specify the parenthood relationships. In particular, if
CLONE_PARENT or CLONE_THREAD are set, it initializes tsk->real parent and tsk->

* A careful reader might wonder how copy thread() gets the value of the t1s parameter of clone(), because
tls is not passed to do_fork() and nested functions. As we’ll see in Chapter 10, the parameters of the system
calls are usually passed to the kernel by copying their values into some CPU register; thus, these values are
saved in the Kernel Mode stack together with the other registers. The copy_thread() function just looks at
the address saved in the Kernel Mode stack location corresponding to the value of esi.

Creating Processes | 121

20.

21.

22.

23.

24.

25.

26.

27.

28.

parent to the value in current->real parent; the parent of the child thus appears
as the parent of the current process. Otherwise, it sets the same fields to current.

If the child does not need to be traced (CLONE_PTRACE flag not set), it sets the tsk->
ptrace field to 0. This field stores a few flags used when a process is being traced
by another process. In such a way, even if the current process is being traced, the
child will not.

Executes the SET_LINKS macro to insert the new process descriptor in the pro-
cess list.

If the child must be traced (PT_PTRACED flag in the tsk->ptrace field set), it sets
tsk->parent to current->parent and inserts the child into the trace list of the
debugger.

Invokes attach pid() to insert the PID of the new process descriptor in the
pidhash[PIDTYPE PID] hash table.

If the child is a thread group leader (flag CLONE_THREAD cleared):
a. Initializes tsk->tgid to tsk->pid.
b. Initializes tsk->group leader to tsk.

c. Invokes three times attach_pid() to insert the child in the PID hash tables of
type PIDTYPE_TGID, PIDTYPE_PGID, and PIDTYPE_SID.

Otherwise, if the child belongs to the thread group of its parent (CLONE_THREAD
flag set):

a. Initializes tsk->tgid to tsk->current->tgid.

b. Initializes tsk->group leader to the value in current->group leader.

c. Invokes attach pid() to insert the child in the PIDTYPE_TGID hash table
(more specifically, in the per-PID list of the current->group leader process).

A new process has now been added to the set of processes: increases the value of
the nr_threads variable.

Increases the total forks variable to keep track of the number of forked pro-
cesses.

Terminates by returning the child’s process descriptor pointer (tsk).

Let’s go back to what happens after do_fork() terminates. Now we have a complete
child process in the runnable state. But it isn’t actually running. It is up to the sched-
uler to decide when to give the CPU to this child. At some future process switch, the
schedule bestows this favor on the child process by loading a few CPU registers with
the values of the thread field of the child’s process descriptor. In particular, esp is
loaded with thread.esp (that is, with the address of child’s Kernel Mode stack), and
eip is loaded with the address of ret_from fork(). This assembly language function
invokes the schedule tail() function (which in turn invokes the finish task_
switch() function to complete the process switch; see the section “The schedule()
Function” in Chapter 7), reloads all other registers with the values stored in the

122

| Chapter3: Processes

stack, and forces the CPU back to User Mode. The new process then starts its execu-
tion right at the end of the fork(), vfork(), or clone() system call. The value
returned by the system call is contained in eax: the value is O for the child and equal
to the PID for the child’s parent. To understand how this is done, look back at what
copy_thread() does on the eax register of the child’s process (step 13 of copy_
process()).

The child process executes the same code as the parent, except that the fork returns a
0 (see step 13 of copy_process()). The developer of the application can exploit this
fact, in a manner familiar to Unix programmers, by inserting a conditional statement
in the program based on the PID value that forces the child to behave differently
from the parent process.

Kernel Threads

Traditional Unix systems delegate some critical tasks to intermittently running pro-
cesses, including flushing disk caches, swapping out unused pages, servicing net-
work connections, and so on. Indeed, it is not efficient to perform these tasks in
strict linear fashion; both their functions and the end user processes get better
response if they are scheduled in the background. Because some of the system pro-
cesses run only in Kernel Mode, modern operating systems delegate their functions
to kernel threads, which are not encumbered with the unnecessary User Mode con-
text. In Linux, kernel threads differ from regular processes in the following ways:

* Kernel threads run only in Kernel Mode, while regular processes run alterna-
tively in Kernel Mode and in User Mode.

* Because kernel threads run only in Kernel Mode, they use only linear addresses
greater than PAGE_OFFSET. Regular processes, on the other hand, use all four
gigabytes of linear addresses, in either User Mode or Kernel Mode.

Creating a kernel thread

The kernel thread() function creates a new kernel thread. It receives as parameters
the address of the kernel function to be executed (fn), the argument to be passed to
that function (arg), and a set of clone flags (flags). The function essentially invokes
do_fork() as follows:

do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, pregs, O, NULL, NULL);

The CLONE_WM flag avoids the duplication of the page tables of the calling process: this
duplication would be a waste of time and memory, because the new kernel thread
will not access the User Mode address space anyway. The CLONE_UNTRACED flag
ensures that no process will be able to trace the new kernel thread, even if the calling
process is being traced.

The pregs parameter passed to do_fork() corresponds to the address in the Kernel
Mode stack where the copy thread() function will find the initial values of the CPU

Creating Processes | 123

registers for the new thread. The kernel thread() function builds up this stack area
so that:

* The ebx and edx registers will be set by copy thread() to the values of the param-
eters fn and arg, respectively.

* The eip register will be set to the address of the following assembly language
fragment:

movl %edx,%eax
pushl %edx
call *%ebx
pushl %eax
call do_exit

Therefore, the new kernel thread starts by executing the fn(arg) function. If this
function terminates, the kernel thread executes the exit() system call passing to it
the return value of fn() (see the section “Destroying Processes” later in this chapter).

Process 0

The ancestor of all processes, called process 0, the idle process, or, for historical rea-
sons, the swapper process, is a kernel thread created from scratch during the initial-
ization phase of Linux (see Appendix A). This ancestor process uses the following
statically allocated data structures (data structures for all other processes are dynami-
cally allocated):

* A process descriptor stored in the init_task variable, which is initialized by the
INIT_TASK macro.

* A thread_info descriptor and a Kernel Mode stack stored in the init_thread_
union variable and initialized by the INIT THREAD INFO macro.

* The following tables, which the process descriptor points to:
— init_mm
— init fs
— 1init_files
— 1init_signals
— 1init_sighand
The tables are initialized, respectively, by the following macros:
— INIT MM
— INIT FS
— INIT_FILES
— INIT_SIGNALS
— INIT_SIGHAND

124 | Chapter3: Processes

* The master kernel Page Global Directory stored in swapper pg dir (see the sec-
tion “Kernel Page Tables” in Chapter 2).

The start_kernel() function initializes all the data structures needed by the kernel,
enables interrupts, and creates another kernel thread, named process 1 (more com-
monly referred to as the init process):

kernel thread(init, NULL, CLONE_FS|CLONE_SIGHAND);

The newly created kernel thread has PID 1 and shares all per-process kernel data
structures with process 0. When selected by the scheduler, the init process starts exe-
cuting the init() function.

After having created the init process, process 0 executes the cpu_idle() function,
which essentially consists of repeatedly executing the hlt assembly language instruc-
tion with the interrupts enabled (see Chapter 4). Process 0 is selected by the sched-
uler only when there are no other processes in the TASK_RUNNING state.

In multiprocessor systems there is a process O for each CPU. Right after the power-
on, the BIOS of the computer starts a single CPU while disabling the others. The
swapper process running on CPU 0 initializes the kernel data structures, then enables
the other CPUs and creates the additional swapper processes by means of the copy
process() function passing to it the value 0 as the new PID. Moreover, the kernel
sets the cpu field of the thread info descriptor of each forked process to the proper
CPU index.

Process 1

The kernel thread created by process 0 executes the init() function, which in turn
completes the initialization of the kernel. Then init() invokes the execve() system
call to load the executable program init. As a result, the init kernel thread becomes a
regular process having its own per-process kernel data structure (see Chapter 20). The
init process stays alive until the system is shut down, because it creates and monitors
the activity of all processes that implement the outer layers of the operating system.

Other kernel threads

Linux uses many other kernel threads. Some of them are created in the initialization
phase and run until shutdown; others are created “on demand,” when the kernel
must execute a task that is better performed in its own execution context.

A few examples of kernel threads (besides process 0 and process 1) are:

keventd (also called events)

Executes the functions in the keventd wg workqueue (see Chapter 4).
kapmd

Handles the events related to the Advanced Power Management (APM).

Creating Processes | 125

kswapd
Reclaims memory, as described in the section “Periodic Reclaiming” in
Chapter 17.

pdflush
Flushes “dirty” buffers to disk to reclaim memory, as described in the section
“The pdflush Kernel Threads” in Chapter 15.

kblockd
Executes the functions in the kblockd_workqueue workqueue. Essentially, it peri-
odically activates the block device drivers, as described in the section “Activat-
ing the Block Device Driver” in Chapter 14.

ksoftirqd
Runs the tasklets (see section “Softirgs and Tasklets” in Chapter 4); there is one
of these kernel threads for each CPU in the system.

Destroying Processes

Most processes “die” in the sense that they terminate the execution of the code they
were supposed to run. When this occurs, the kernel must be notified so that it can
release the resources owned by the process; this includes memory, open files, and
any other odds and ends that we will encounter in this book, such as semaphores.

The usual way for a process to terminate is to invoke the exit() library function,
which releases the resources allocated by the C library, executes each function regis-
tered by the programmer, and ends up invoking a system call that evicts the process
from the system. The exit() library function may be inserted by the programmer
explicitly. Additionally, the C compiler always inserts an exit() function call right
after the last statement of the main() function.

Alternatively, the kernel may force a whole thread group to die. This typically occurs
when a process in the group has received a signal that it cannot handle or ignore (see
Chapter 11) or when an unrecoverable CPU exception has been raised in Kernel
Mode while the kernel was running on behalf of the process (see Chapter 4).

Process Termination

In Linux 2.6 there are two system calls that terminate a User Mode application:

* The exit_group() system call, which terminates a full thread group, that is, a
whole multithreaded application. The main kernel function that implements this
system call is called do_group exit(). This is the system call that should be
invoked by the exit() C library function.

* The _exit() system call, which terminates a single process, regardless of any
other process in the thread group of the victim. The main kernel function that

126 | Chapter3: Processes

implements this system call is called do_exit(). This is the system call invoked,
for instance, by the pthread exit() function of the LinuxThreads library.

The do_group_exit() function

The do_group exit() function kills all processes belonging to the thread group of
current. It receives as a parameter the process termination code, which is either a
value specified in the exit_group() system call (normal termination) or an error code
supplied by the kernel (abnormal termination). The function executes the following
operations:

1. Checks whether the SIGNAL GROUP_EXIT flag of the exiting process is not zero,
which means that the kernel already started an exit procedure for this thread
group. In this case, it considers as exit code the value stored in current->signal-
>group_exit _code, and jumps to step 4.

2. Otherwise, it sets the SIGNAL_GROUP_EXIT flag of the process and stores the termi-
nation code in the current->signal->group exit code field.

3. Invokes the zap other threads() function to kill the other processes in the
thread group of current, if any. In order to do this, the function scans the per-
PID list in the PIDTYPE_TGID hash table corresponding to current->tgid; for each
process in the list different from current, it sends a SIGKILL signal to it (see
Chapter 11). As a result, all such processes will eventually execute the do_exit()
function, and thus they will be killed.

4. Invokes the do_exit() function passing to it the process termination code. As
we’ll see below, do_exit() kills the process and never returns.

The do__exit() function

All process terminations are handled by the do_exit() function, which removes most
references to the terminating process from kernel data structures. The do_exit()
function receives as a parameter the process termination code and essentially exe-
cutes the following actions:

1. Sets the PF_EXITING flag in the flag field of the process descriptor to indicate that
the process is being eliminated.

2. Removes, if necessary, the process descriptor from a dynamic timer queue via
the del timer sync() function (see Chapter 6).

3. Detaches from the process descriptor the data structures related to paging, sema-
phores, filesystem, open file descriptors, namespaces, and I/O Permission Bit-
map, respectively, with the exit_mm('), exit sem(), _exit files(), _exit fs(),
exit_namespace(), and exit thread() functions. These functions also remove
each of these data structures if no other processes are sharing them.

Destroying Processes | 127

4. If the kernel functions implementing the execution domain and the executable
format (see Chapter 20) of the process being killed are included in kernel mod-
ules, the function decreases their usage counters.

. Sets the exit_code field of the process descriptor to the process termination

code. This value is either the exit() or exit group() system call parameter
(normal termination), or an error code supplied by the kernel (abnormal termi-
nation).

6. Invokes the exit_notify() function to perform the following operations:

a.

Updates the parenthood relationships of both the parent process and the
child processes. All child processes created by the terminating process
become children of another process in the same thread group, if any is run-
ning, or otherwise of the init process.

. Checks whether the exit_signal process descriptor field of the process being

terminated is different from -1, and whether the process is the last member
of its thread group (notice that these conditions always hold for any normal
process; see step 16 in the description of copy process() in the earlier sec-
tion “The clone(), fork(), and vfork() System Calls”). In this case, the func-
tion sends a signal (usually SIGCHLD) to the parent of the process being
terminated to notify the parent about a child’s death.

. Otherwise, if the exit signal field is equal to -1 or the thread group

includes other processes, the function sends a SIGCHLD signal to the parent
only if the process is being traced (in this case the parent is the debugger,
which is thus informed of the death of the lightweight process).

. If the exit_signal process descriptor field is equal to -1 and the process is

not being traced, it sets the exit state field of the process descriptor to
EXIT DEAD, and invokes release task() to reclaim the memory of the
remaining process data structures and to decrease the usage counter of the
process descriptor (see the following section). The usage counter becomes
equal to 1 (see step 3f in the copy process() function), so that the process
descriptor itself is not released right away.

. Otherwise, if the exit_signal process descriptor field is not equal to -1 or

the process is being traced, it sets the exit_state field to EXIT ZOMBIE. We’'ll
see what happens to zombie processes in the following section.

. Sets the PF_DEAD flag in the flags field of the process descriptor (see the sec-

tion “The schedule() Function” in Chapter 7).

7. Invokes the schedule() function (see Chapter 7) to select a new process to run.
Because a process in an EXIT_ZOMBIE state is ignored by the scheduler, the pro-
cess stops executing right after the switch_to macro in schedule() is invoked. As

we

Il see in Chapter 7, the scheduler will check the PF_DEAD flag and will decrease

128

Chapter 3: Processes

the usage counter in the descriptor of the zombie process being replaced to
denote the fact that the process is no longer alive.

Process Removal

The Unix operating system allows a process to query the kernel to obtain the PID of
its parent process or the execution state of any of its children. A process may, for
instance, create a child process to perform a specific task and then invoke some
wait()-like library function to check whether the child has terminated. If the child
has terminated, its termination code will tell the parent process if the task has been
carried out successfully.

To comply with these design choices, Unix kernels are not allowed to discard data
included in a process descriptor field right after the process terminates. They are
allowed to do so only after the parent process has issued a wait()-like system call
that refers to the terminated process. This is why the EXIT ZOMBIE state has been
introduced: although the process is technically dead, its descriptor must be saved
until the parent process is notified.

What happens if parent processes terminate before their children? In such a case, the
system could be flooded with zombie processes whose process descriptors would
stay forever in RAM. As mentioned earlier, this problem is solved by forcing all
orphan processes to become children of the init process. In this way, the init process
will destroy the zombies while checking for the termination of one of its legitimate
children through a wait()-like system call.

The release_task() function detaches the last data structures from the descriptor of
a zombie process; it is applied on a zombie process in two possible ways: by the do_
exit() function if the parent is not interested in receiving signals from the child, or
by the wait4() or waitpid() system calls after a signal has been sent to the parent. In
the latter case, the function also will reclaim the memory used by the process
descriptor, while in the former case the memory reclaiming will be done by the
scheduler (see Chapter 7). This function executes the following steps:

1. Decreases the number of processes belonging to the user owner of the termi-
nated process. This value is stored in the user struct structure mentioned ear-
lier in the chapter (see step 4 of copy_process()).

2. If the process is being traced, the function removes it from the debugger’s
ptrace children list and assigns the process back to its original parent.

3. Invokes __exit_signal() to cancel any pending signal and to release the signal
struct descriptor of the process. If the descriptor is no longer used by other
lightweight processes, the function also removes this data structure. Moreover,
the function invokes exit_itimers() to detach any POSIX interval timer from
the process.

Destroying Processes | 129

4. Invokes __exit_sighand() to get rid of the signal handlers.
5. Invokes __unhash_process(), which in turn:
a. Decreases by 1 the nr_threads variable.

b. Invokes detach pid() twice to remove the process descriptor from the
pidhash hash tables of type PIDTYPE_PID and PIDTYPE_TGID.

c. If the process is a thread group leader, invokes again detach_pid() twice to
remove the process descriptor from the PIDTYPE_PGID and PIDTYPE_SID hash
tables.

d. Uses the REMOVE_LINKS macro to unlink the process descriptor from the pro-
cess list.

6. If the process is not a thread group leader, the leader is a zombie, and the pro-
cess is the last member of the thread group, the function sends a signal to the
parent of the leader to notify it of the death of the process.

7. Invokes the sched exit() function to adjust the timeslice of the parent process
(this step logically complements step 17 in the description of copy_process())

8. Invokes put_task struct() to decrease the process descriptor’s usage counter; if
the counter becomes zero, the function drops any remaining reference to the
process:

a. Decreases the usage counter (__count field) of the user struct data struc-
ture of the user that owns the process (see step 5 of copy process()), and
releases that data structure if the usage counter becomes zero.

b. Releases the process descriptor and the memory area used to contain the
thread_info descriptor and the Kernel Mode stack.

130 | Chapter3: Processes

CHAPTER 4
Interrupts and Exceptions

An interrupt is usually defined as an event that alters the sequence of instructions
executed by a processor. Such events correspond to electrical signals generated by
hardware circuits both inside and outside the CPU chip.

Interrupts are often divided into synchronous and asynchronous interrupts:

* Synchronous interrupts are produced by the CPU control unit while executing
instructions and are called synchronous because the control unit issues them
only after terminating the execution of an instruction.

* Asynchronous interrupts are generated by other hardware devices at arbitrary
times with respect to the CPU clock signals.

Intel microprocessor manuals designate synchronous and asynchronous interrupts as
exceptions and interrupts, respectively. We’ll adopt this classification, although we’ll
occasionally use the term “interrupt signal” to designate both types together (syn-
chronous as well as asynchronous).

Interrupts are issued by interval timers and I/O devices; for instance, the arrival of a
keystroke from a user sets off an interrupt.

Exceptions, on the other hand, are caused either by programming errors or by anom-
alous conditions that must be handled by the kernel. In the first case, the kernel han-
dles the exception by delivering to the current process one of the signals familiar to
every Unix programmer. In the second case, the kernel performs all the steps needed
to recover from the anomalous condition, such as a Page Fault or a request—via an
assembly language instruction such as int or sysenter—for a kernel service.

We start by describing in the next section the motivation for introducing such sig-
nals. We then show how the well-known IRQs (Interrupt ReQuests) issued by I/O
devices give rise to interrupts, and we detail how 80x86 processors handle inter-
rupts and exceptions at the hardware level. Then we illustrate, in the section “Initial-
izing the Interrupt Descriptor Table,” how Linux initializes all the data structures

131

required by the 80x86 interrupt architecture. The remaining three sections describe
how Linux handles interrupt signals at the software level.

One word of caution before moving on: in this chapter, we cover only “classic”
interrupts common to all PCs; we do not cover the nonstandard interrupts of some
architectures.

The Role of Interrupt Signals

As the name suggests, interrupt signals provide a way to divert the processor to code
outside the normal flow of control. When an interrupt signal arrives, the CPU must
stop what it’s currently doing and switch to a new activity; it does this by saving the
current value of the program counter (i.e., the content of the eip and cs registers) in
the Kernel Mode stack and by placing an address related to the interrupt type into
the program counter.

There are some things in this chapter that will remind you of the context switch
described in the previous chapter, carried out when a kernel substitutes one process
for another. But there is a key difference between interrupt handling and process
switching: the code executed by an interrupt or by an exception handler is not a pro-
cess. Rather, it is a kernel control path that runs at the expense of the same process
that was running when the interrupt occurred (see the later section “Nested Execu-
tion of Exception and Interrupt Handlers”). As a kernel control path, the interrupt
handler is lighter than a process (it has less context and requires less time to set up or
tear down).

Interrupt handling is one of the most sensitive tasks performed by the kernel,
because it must satisfy the following constraints:

* Interrupts can come anytime, when the kernel may want to finish something else
it was trying to do. The kernel’s goal is therefore to get the interrupt out of the
way as soon as possible and defer as much processing as it can. For instance,
suppose a block of data has arrived on a network line. When the hardware inter-
rupts the kernel, it could simply mark the presence of data, give the processor
back to whatever was running before, and do the rest of the processing later
(such as moving the data into a buffer where its recipient process can find it, and
then restarting the process). The activities that the kernel needs to perform in
response to an interrupt are thus divided into a critical urgent part that the ker-
nel executes right away and a deferrable part that is left for later.

* Because interrupts can come anytime, the kernel might be handling one of them
while another one (of a different type) occurs. This should be allowed as much
as possible, because it keeps the I/O devices busy (see the later section “Nested
Execution of Exception and Interrupt Handlers”). As a result, the interrupt han-
dlers must be coded so that the corresponding kernel control paths can be exe-
cuted in a nested manner. When the last kernel control path terminates, the

132 | Chapter4: Interrupts and Exceptions

kernel must be able to resume execution of the interrupted process or switch to
another process if the interrupt signal has caused a rescheduling activity.

* Although the kernel may accept a new interrupt signal while handling a previ-
ous one, some critical regions exist inside the kernel code where interrupts must
be disabled. Such critical regions must be limited as much as possible because,
according to the previous requirement, the kernel, and particularly the interrupt
handlers, should run most of the time with the interrupts enabled.

Interrupts and Exceptions

The Intel documentation classifies interrupts and exceptions as follows:

* Interrupts:

Maskable interrupts
All Interrupt Requests (IRQs) issued by I/O devices give rise to maskable
interrupts. A maskable interrupt can be in two states: masked or unmasked;
a masked interrupt is ignored by the control unit as long as it remains
masked.

Nonmaskable interrupts
Only a few critical events (such as hardware failures) give rise to non-
maskable interrupts. Nonmaskable interrupts are always recognized by the

CPU.
* Exceptions:

Processor-detected exceptions
Generated when the CPU detects an anomalous condition while executing
an instruction. These are further divided into three groups, depending on
the value of the eip register that is saved on the Kernel Mode stack when the
CPU control unit raises the exception.

Faults

Can generally be corrected; once corrected, the program is allowed to
restart with no loss of continuity. The saved value of eip is the address
of the instruction that caused the fault, and hence that instruction can
be resumed when the exception handler terminates. As we’ll see in the
section “Page Fault Exception Handler” in Chapter 9, resuming the
same instruction is necessary whenever the handler is able to correct the
anomalous condition that caused the exception.

Traps
Reported immediately following the execution of the trapping instruc-
tion; after the kernel returns control to the program, it is allowed to
continue its execution with no loss of continuity. The saved value of eip
is the address of the instruction that should be executed after the one
that caused the trap. A trap is triggered only when there is no need to

Interrupts and Exceptions | 133

reexecute the instruction that terminated. The main use of traps is for
debugging purposes. The role of the interrupt signal in this case is to
notify the debugger that a specific instruction has been executed (for
instance, a breakpoint has been reached within a program). Once the
user has examined the data provided by the debugger, she may ask that
execution of the debugged program resume, starting from the next
instruction.

Aborts

A serious error occurred; the control unit is in trouble, and it may be
unable to store in the eip register the precise location of the instruction
causing the exception. Aborts are used to report severe errors, such as
hardware failures and invalid or inconsistent values in system tables.
The interrupt signal sent by the control unit is an emergency signal used
to switch control to the corresponding abort exception handler. This
handler has no choice but to force the affected process to terminate.

Programmed exceptions

Occur at the request of the programmer. They are triggered by int or int3
instructions; the into (check for overflow) and bound (check on address
bound) instructions also give rise to a programmed exception when the con-
dition they are checking is not true. Programmed exceptions are handled by
the control unit as traps; they are often called software interrupts. Such
exceptions have two common uses: to implement system calls and to notify
a debugger of a specific event (see Chapter 10).

Each interrupt or exception is identified by a number ranging from 0 to 255; Intel
calls this 8-bit unsigned number a vector. The vectors of nonmaskable interrupts and
exceptions are fixed, while those of maskable interrupts can be altered by program-
ming the Interrupt Controller (see the next section).

IRQs and Interrupts

Each hardware device controller capable of issuing interrupt requests usually has a
single output line designated as the Interrupt ReQuest (IRQ) line.” All existing IRQ
lines are connected to the input pins of a hardware circuit called the Programmable
Interrupt Controller, which performs the following actions:

1. Monitors the IRQ lines, checking for raised signals. If two or more IRQ lines are
raised, selects the one having the lower pin number.

2. If a raised signal occurs on an IRQ line:

a. Converts the raised signal received into a corresponding vector.

* More sophisticated devices use several IRQ lines. For instance, a PCI card can use up to four IRQ lines.

134 | Chapter4: Interrupts and Exceptions

b. Stores the vector in an Interrupt Controller I/O port, thus allowing the CPU
to read it via the data bus.

c. Sends a raised signal to the processor INTR pin—that is, issues an interrupt.

d. Waits until the CPU acknowledges the interrupt signal by writing into one
of the Programmable Interrupt Controllers (PIC) 1/O ports; when this occurs,
clears the INTR line.

3. Goes back to step 1.

The TIRQ lines are sequentially numbered starting from 0; therefore, the first IRQ line
is usually denoted as IRQO. Intel’s default vector associated with IRQn is n+32. As
mentioned before, the mapping between IRQs and vectors can be modified by issu-
ing suitable I/O instructions to the Interrupt Controller ports.

Each IRQ line can be selectively disabled. Thus, the PIC can be programmed to dis-
able IRQs. That is, the PIC can be told to stop issuing interrupts that refer to a given
IRQ line, or to resume issuing them. Disabled interrupts are not lost; the PIC sends
them to the CPU as soon as they are enabled again. This feature is used by most
interrupt handlers, because it allows them to process IRQs of the same type serially.

Selective enabling/disabling of IRQs is not the same as global masking/unmasking of
maskable interrupts. When the IF flag of the eflags register is clear, each maskable
interrupt issued by the PIC is temporarily ignored by the CPU. The cli and sti
assembly language instructions, respectively, clear and set that flag.

Traditional PICs are implemented by connecting “in cascade” two 8259A-style exter-
nal chips. Each chip can handle up to eight different IRQ input lines. Because the
INT output line of the slave PIC is connected to the IRQ2 pin of the master PIC, the
number of available IRQ lines is limited to 15.

The Advanced Programmable Interrupt Controller (APIC)

The previous description refers to PICs designed for uniprocessor systems. If the sys-
tem includes a single CPU, the output line of the master PIC can be connected in a
straightforward way to the INTR pin the CPU. However, if the system includes two
or more CPUs, this approach is no longer valid and more sophisticated PICs are
needed.

Being able to deliver interrupts to each CPU in the system is crucial for fully exploit-
ing the parallelism of the SMP architecture. For that reason, Intel introduced starting
with Pentium III a new component designated as the I/O Advanced Programmable
Interrupt Controller (I/O APIC). This chip is the advanced version of the old 8259A
Programmable Interrupt Controller; to support old operating systems, recent moth-
erboards include both types of chip. Moreover, all current 80x 86 microprocessors
include a local APIC. Each local APIC has 32-bit registers, an internal clock; a local
timer device; and two additional IRQ lines, LINTO and LINT1, reserved for local

Interrupts and Exceptions | 135

APIC interrupts. All local APICs are connected to an external I/O APIC, giving rise to
a multi-APIC system.

Figure 4-1 illustrates in a schematic way the structure of a multi-APIC system. An
APIC bus connects the “frontend” I/O APIC to the local APICs. The IRQ lines com-
ing from the devices are connected to the I/O APIC, which therefore acts as a router
with respect to the local APICs. In the motherboards of the Pentium III and earlier
processors, the APIC bus was a serial three-line bus; starting with the Pentium 4, the
APIC bus is implemented by means of the system bus. However, because the APIC
bus and its messages are invisible to software, we won’t give further details.

CPUO PUT
local local IRQs local local IRQs
APIC (LINTO, LINTT) APIC (LINTO, LINTT)
4 A
v 2
Interrupt Controller Communication (1CC) bus
A
v
1/0
APIC
external
IRQs

Figure 4-1. Multi-APIC system

The I/O APIC consists of a set of 24 TRQ lines, a 24-entry Interrupt Redirection
Table, programmable registers, and a message unit for sending and receiving APIC
messages over the APIC bus. Unlike IRQ pins of the 82594, interrupt priority is not
related to pin number: each entry in the Redirection Table can be individually pro-
grammed to indicate the interrupt vector and priority, the destination processor, and
how the processor is selected. The information in the Redirection Table is used to

translate each external IRQ signal into a message to one or more local APIC units via
the APIC bus.

Interrupt requests coming from external hardware devices can be distributed among
the available CPUs in two ways:

Static distribution
The IRQ signal is delivered to the local APICs listed in the corresponding Redi-
rection Table entry. The interrupt is delivered to one specific CPU, to a subset of
CPUs, or to all CPUs at once (broadcast mode).

136 | Chapter4: Interrupts and Exceptions

Dynamic distribution
The IRQ signal is delivered to the local APIC of the processor that is executing
the process with the lowest priority.

Every local APIC has a programmable task priority register (TPR), which is used
to compute the priority of the currently running process. Intel expects this regis-
ter to be modified in an operating system kernel by each process switch.

If two or more CPUs share the lowest priority, the load is distributed between
them using a technique called arbitration. Each CPU is assigned a different arbi-
tration priority ranging from 0 (lowest) to 15 (highest) in the arbitration priority
register of the local APIC.

Every time an interrupt is delivered to a CPU, its corresponding arbitration pri-
ority is automatically set to 0, while the arbitration priority of any other CPU is
increased. When the arbitration priority register becomes greater than 15, it is
set to the previous arbitration priority of the winning CPU increased by 1. There-
fore, interrupts are distributed in a round-robin fashion among CPUs with the
same task priority.”

Besides distributing interrupts among processors, the multi-APIC system allows
CPUs to generate interprocessor interrupts. When a CPU wishes to send an interrupt
to another CPU, it stores the interrupt vector and the identifier of the target’s local
APIC in the Interrupt Command Register (ICR) of its own local APIC. A message is
then sent via the APIC bus to the target’s local APIC, which therefore issues a corre-
sponding interrupt to its own CPU.

Interprocessor interrupts (in short, IPIs) are a crucial component of the SMP archi-
tecture. They are actively used by Linux to exchange messages among CPUs (see
later in this chapter).

Many of the current uniprocessor systems include an I/O APIC chip, which may be
configured in two distinct ways:

* Asa standard 8259A-style external PIC connected to the CPU. The local APIC is
disabled and the two LINTO and LINT 1 local IRQ lines are configured, respec-
tively, as the INTR and NMI pins.

* As a standard external I/O APIC. The local APIC is enabled, and all external
interrupts are received through the I/O APIC.

* The Pentium 4 local APIC doesn’t have an arbitration priority register; the arbitration mechanism is hidden
in the bus arbitration circuitry. The Intel manuals state that if the operating system kernel does not regularly
update the task priority registers, performance may be suboptimal because interrupts might always be ser-
viced by the same CPU.

Interrupts and Exceptions | 137

Exceptions

The 80x86 microprocessors issue roughly 20 different exceptions.” The kernel must
provide a dedicated exception handler for each exception type. For some exceptions,
the CPU control unit also generates a hardware error code and pushes it on the Ker-
nel Mode stack before starting the exception handler.

The following list gives the vector, the name, the type, and a brief description of the
exceptions found in 80x86 processors. Additional information may be found in the
Intel technical documentation.

0 - “Divide error” (fault)
Raised when a program issues an integer division by 0.

1- “Debug” (trap or fault)
Raised when the TF flag of eflags is set (quite useful to implement single-step
execution of a debugged program) or when the address of an instruction or
operand falls within the range of an active debug register (see the section “Hard-
ware Context” in Chapter 3).

2 - Not used
Reserved for nonmaskable interrupts (those that use the NMI pin).

3 - “Breakpoint” (trap)
Caused by an int3 (breakpoint) instruction (usually inserted by a debugger).

4 - “Overflow” (trap)
An into (check for overflow) instruction has been executed while the OF (over-
flow) flag of eflags is set.

5 - “Bounds check” (fault)
A bound (check on address bound) instruction is executed with the operand out-
side of the valid address bounds.

6 - “Invalid opcode” (fault)
The CPU execution unit has detected an invalid opcode (the part of the machine
instruction that determines the operation performed).

7 - “Device not available” (fault)
An ESCAPE, MMX, or SSE/SSE2 instruction has been executed with the TS flag
of cr0 set (see the section “Saving and Loading the FPU, MMX, and XMM Regis-
ters” in Chapter 3).

8 - “Double fault” (abort)
Normally, when the CPU detects an exception while trying to call the handler
for a prior exception, the two exceptions can be handled serially. In a few cases,
however, the processor cannot handle them serially, so it raises this exception.

* The exact number depends on the processor model.

138 | Chapter4: Interrupts and Exceptions

9 - “Coprocessor segment overrun” (abort)
Problems with the external mathematical coprocessor (applies only to old 80386
MICroprocessors).

10 - “Invalid TSS” (fault)
The CPU has attempted a context switch to a process having an invalid Task
State Segment.

11 - “Segment not present” (fault)
A reference was made to a segment not present in memory (one in which the
Segment-Present flag of the Segment Descriptor was cleared).

12 - “Stack segment fault” (fault)
The instruction attempted to exceed the stack segment limit, or the segment
identified by ss is not present in memory.

13 - “General protection” (fault)
One of the protection rules in the protected mode of the 80x86 has been
violated.

14 - “Page Fault” (fault)
The addressed page is not present in memory, the corresponding Page Table
entry is null, or a violation of the paging protection mechanism has occurred.

15 - Reserved by Intel

16 - “Floating-point error” (fault)
The floating-point unit integrated into the CPU chip has signaled an error condi-
tion, such as numeric overflow or division by 0."

17 - “Alignment check” (fault)
The address of an operand is not correctly aligned (for instance, the address of a
long integer is not a multiple of 4).

18 - “Machine check” (abort)
A machine-check mechanism has detected a CPU or bus error.

19 - “SIMD floating point exception” (fault)
The SSE or SSE2 unit integrated in the CPU chip has signaled an error condition
on a floating-point operation.

The values from 20 to 31 are reserved by Intel for future development. As illustrated
in Table 4-1, each exception is handled by a specific exception handler (see the sec-
tion “Exception Handling” later in this chapter), which usually sends a Unix signal
to the process that caused the exception.

* The 80 % 86 microprocessors also generate this exception when performing a signed division whose result
cannot be stored as a signed integer (for instance, a division between —2,147,483,648 and —1).

Interrupts and Exceptions | 139

Table 4-1. Signals sent by the exception handlers

Exception Exception handler Signal

0 Divide error divide_error() SIGFPE

1 Debug debug() SIGTRAP
2 NMI nmi() None

3 Breakpoint int3() SIGTRAP
4 Overflow overflow() SIGSEGV
5 Bounds check bounds () SIGSEGV
6 Invalid opcode invalid op() SIGILL
7 Device not available device not_available() None

8 Double fault doublefault fn() None

9 Coprocessor segment overrun coprocessor_segment_overrun() SIGFPE
10 Invalid TS invalid TSS() SIGSEGV
" Segment not present segment_not_present() SIGBUS
12 Stack segment fault stack_segment() SIGBUS
13 General protection general protection() SIGSEGV
14 Page Fault page fault() SIGSEGV
15 Intel-reserved None None

16 Floating-point error coprocessor_error() SIGFPE
17 Alignment check alignment_check() SIGBUS
18 Machine check machine_check() None

19 SIMD floating point simd_coprocessor error() SIGFPE

Interrupt Descriptor Table

A system table called Interrupt Descriptor Table (IDT) associates each interrupt or
exception vector with the address of the corresponding interrupt or exception han-
dler. The IDT must be properly initialized before the kernel enables interrupts.

The IDT format is similar to that of the GDT and the LDTs examined in Chapter 2.
Each entry corresponds to an interrupt or an exception vector and consists of an 8-byte
descriptor. Thus, a maximum of 256x8=2048 bytes are required to store the IDT.

The idtr CPU register allows the IDT to be located anywhere in memory: it specifies
both the IDT base linear address and its limit (maximum length). It must be initial-
ized before enabling interrupts by using the 1idt assembly language instruction.

The IDT may include three types of descriptors; Figure 4-2 illustrates the meaning of
the 64 bits included in each of them. In particular, the value of the Type field encoded
in the bits 40—43 identifies the descriptor type.

140 | Chapter4: Interrupts and Exceptions

Task Gate Descriptor

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

D
RESERVED Pl P |0]0f1]0(1 RESERVED
|

TSS SEGMENT SELECTOR RESERVED

3130292827 26252423 222120191817 161514 13121110 9 8 7 6 5 4 3 2 10

Interrupt Gate Descriptor
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
D
OFFSET (16-31) P‘ p ‘0‘1‘1‘1‘0‘0‘0‘0‘ RESERVED
L

SEGMENT SELECTOR OFFSET (0-15)

313029 2827 26 2524 2322212019 1817161514 13121110 9 8 7 6 5 4 3 2 10

Trap Gate Descriptor
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
D
OFFSET (16-31) P‘ p ‘0‘1‘1‘1‘1‘0‘0‘0‘ RESERVED
L
SEGMENT SELECTOR OFFSET (0-15)

313029 2827 26 2524 2322212019 1817161514 13121110 9 8 7 6 5 4 3 2 10

Figure 4-2. Gate descriptors’ format

The descriptors are:

Task gate
Includes the TSS selector of the process that must replace the current one when
an interrupt signal occurs.

Interrupt gate
Includes the Segment Selector and the offset inside the segment of an interrupt
or exception handler. While transferring control to the proper segment, the pro-
cessor clears the IF flag, thus disabling further maskable interrupts.

Trap gate
Similar to an interrupt gate, except that while transferring control to the proper
segment, the processor does not modify the IF flag.

As we’ll see in the later section “Interrupt, Trap, and System Gates,” Linux uses
interrupt gates to handle interrupts and trap gates to handle exceptions.”

* The “Double fault” exception, which denotes a type of kernel misbehavior, is the only exception handled by
means of a task gate (see the section “Exception Handling” later in this chapter.).

Interrupts and Exceptions | 141

Hardware Handling of Interrupts and Exceptions

We now describe how the CPU control unit handles interrupts and exceptions. We
assume that the kernel has been initialized, and thus the CPU is operating in Pro-
tected Mode.

After executing an instruction, the cs and eip pair of registers contain the logical
address of the next instruction to be executed. Before dealing with that instruction, the
control unit checks whether an interrupt or an exception occurred while the control unit
executed the previous instruction. If one occurred, the control unit does the following:

1.

Determines the vector i (0<i<255) associated with the interrupt or the
exception.

. Reads the ith entry of the IDT referred by the idtr register (we assume in the fol-

lowing description that the entry contains an interrupt or a trap gate).

. Gets the base address of the GDT from the gdtr register and looks in the GDT to

read the Segment Descriptor identified by the selector in the IDT entry. This
descriptor specifies the base address of the segment that includes the interrupt or
exception handler.

. Makes sure the interrupt was issued by an authorized source. First, it compares

the Current Privilege Level (CPL), which is stored in the two least significant bits
of the cs register, with the Descriptor Privilege Level (DPL) of the Segment
Descriptor included in the GDT. Raises a “General protection” exception if the
CPL is lower than the DPL, because the interrupt handler cannot have a lower
privilege than the program that caused the interrupt. For programmed excep-
tions, makes a further security check: compares the CPL with the DPL of the
gate descriptor included in the IDT and raises a “General protection” exception
if the DPL is lower than the CPL. This last check makes it possible to prevent
access by user applications to specific trap or interrupt gates.

. Checks whether a change of privilege level is taking place—that is, if CPL is dif-

ferent from the selected Segment Descriptor’s DPL. If so, the control unit must
start using the stack that is associated with the new privilege level. It does this by
performing the following steps:

a. Reads the tr register to access the TSS segment of the running process.

b. Loads the ss and esp registers with the proper values for the stack segment
and stack pointer associated with the new privilege level. These values are
found in the TSS (see the section “Task State Segment” in Chapter 3).

c. In the new stack, it saves the previous values of ss and esp, which define the
logical address of the stack associated with the old privilege level.

. If a fault has occurred, it loads cs and eip with the logical address of the instruc-

tion that caused the exception so that it can be executed again.

7. Saves the contents of eflags, cs, and eip in the stack.

142

| Chapter4: Interrupts and Exceptions

8. If the exception carries a hardware error code, it saves it on the stack.

9. Loads cs and eip, respectively, with the Segment Selector and the Offset fields of
the Gate Descriptor stored in the ith entry of the IDT. These values define the
logical address of the first instruction of the interrupt or exception handler.

The last step performed by the control unit is equivalent to a jump to the interrupt or
exception handler. In other words, the instruction processed by the control unit after
dealing with the interrupt signal is the first instruction of the selected handler.

After the interrupt or exception is processed, the corresponding handler must relin-
quish control to the interrupted process by issuing the iret instruction, which forces
the control unit to:

1. Load the cs, eip, and eflags registers with the values saved on the stack. If a
hardware error code has been pushed in the stack on top of the eip contents, it
must be popped before executing iret.

2. Check whether the CPL of the handler is equal to the value contained in the two
least significant bits of cs (this means the interrupted process was running at the
same privilege level as the handler). If so, iret concludes execution; otherwise,
go to the next step.

3. Load the ss and esp registers from the stack and return to the stack associated
with the old privilege level.

4. Examine the contents of the ds, es, fs, and gs segment registers; if any of them
contains a selector that refers to a Segment Descriptor whose DPL value is lower
than CPL, clear the corresponding segment register. The control unit does this to
forbid User Mode programs that run with a CPL equal to 3 from using segment
registers previously used by kernel routines (with a DPL equal to 0). If these reg-
isters were not cleared, malicious User Mode programs could exploit them in
order to access the kernel address space.

Nested Execution of Exception and Interrupt Handlers

Every interrupt or exception gives rise to a kernel control path or separate sequence of
instructions that execute in Kernel Mode on behalf of the current process. For instance,
when an I/O device raises an interrupt, the first instructions of the corresponding ker-
nel control path are those that save the contents of the CPU registers in the Kernel
Mode stack, while the last are those that restore the contents of the registers.

Kernel control paths may be arbitrarily nested; an interrupt handler may be inter-
rupted by another interrupt handler, thus giving rise to a nested execution of kernel
control paths, as shown in Figure 4-3. As a result, the last instructions of a kernel
control path that is taking care of an interrupt do not always put the current process
back into User Mode: if the level of nesting is greater than 1, these instructions will
put into execution the kernel control path that was interrupted last, and the CPU
will continue to run in Kernel Mode.

Nested Execution of Exception and Interrupt Handlers | 143

(User Mode £ D
9 IRQi iret Y.
'd)\
\/ AMMMA MM
IRQ jl iretT IRQk | irelT
HHHH FXXXXXX
IRQn iret
Kernel Mode
\)

Figure 4-3. An example of nested execution of kernel control paths

The price to pay for allowing nested kernel control paths is that an interrupt handler
must never block, that is, no process switch can take place until an interrupt handler
is running. In fact, all the data needed to resume a nested kernel control path is
stored in the Kernel Mode stack, which is tightly bound to the current process.

Assuming that the kernel is bug free, most exceptions can occur only while the CPU
is in User Mode. Indeed, they are either caused by programming errors or triggered
by debuggers. However, the “Page Fault” exception may occur in Kernel Mode. This
happens when the process attempts to address a page that belongs to its address
space but is not currently in RAM. While handling such an exception, the kernel
may suspend the current process and replace it with another one until the requested
page is available. The kernel control path that handles the “Page Fault” exception
resumes execution as soon as the process gets the processor again.

Because the “Page Fault” exception handler never gives rise to further exceptions, at
most two kernel control paths associated with exceptions (the first one caused by a
system call invocation, the second one caused by a Page Fault) may be stacked, one
on top of the other.

In contrast to exceptions, interrupts issued by I/O devices do not refer to data struc-
tures specific to the current process, although the kernel control paths that handle
them run on behalf of that process. As a matter of fact, it is impossible to predict
which process will be running when a given interrupt occurs.

An interrupt handler may preempt both other interrupt handlers and exception han-
dlers. Conversely, an exception handler never preempts an interrupt handler. The
only exception that can be triggered in Kernel Mode is “Page Fault,” which we just
described. But interrupt handlers never perform operations that can induce page
faults, and thus, potentially, a process switch.

Linux interleaves kernel control paths for two major reasons:

* To improve the throughput of programmable interrupt controllers and device
controllers. Assume that a device controller issues a signal on an IRQ line: the
PIC transforms it into an external interrupt, and then both the PIC and the

144 | Chapter4: Interrupts and Exceptions

device controller remain blocked until the PIC receives an acknowledgment from
the CPU. Thanks to kernel control path interleaving, the kernel is able to send
the acknowledgment even when it is handling a previous interrupt.

* To implement an interrupt model without priority levels. Because each interrupt
handler may be deferred by another one, there is no need to establish predefined
priorities among hardware devices. This simplifies the kernel code and improves
its portability.

On multiprocessor systems, several kernel control paths may execute concurrently.
Moreover, a kernel control path associated with an exception may start executing on
a CPU and, due to a process switch, migrate to another CPU.

Initializing the Interrupt Descriptor Table

Now that we understand what the 80x86 microprocessors do with interrupts and
exceptions at the hardware level, we can move on to describe how the Interrupt
Descriptor Table is initialized.

Remember that before the kernel enables the interrupts, it must load the initial
address of the IDT table into the idtr register and initialize all the entries of that
table. This activity is done while initializing the system (see Appendix A).

The int instruction allows a User Mode process to issue an interrupt signal that has
an arbitrary vector ranging from 0 to 255. Therefore, initialization of the IDT must
be done carefully, to block illegal interrupts and exceptions simulated by User Mode
processes via int instructions. This can be achieved by setting the DPL field of the
particular Interrupt or Trap Gate Descriptor to 0. If the process attempts to issue one
of these interrupt signals, the control unit checks the CPL value against the DPL field
and issues a “General protection” exception.

In a few cases, however, a User Mode process must be able to issue a programmed
exception. To allow this, it is sufficient to set the DPL field of the corresponding
Interrupt or Trap Gate Descriptors to 3—that is, as high as possible.

Let’s now see how Linux implements this strategy.

Interrupt, Trap, and System Gates

As mentioned in the earlier section “Interrupt Descriptor Table,” Intel provides three
types of interrupt descriptors: Task, Interrupt, and Trap Gate Descriptors. Linux
uses a slightly different breakdown and terminology from Intel when classifying the
interrupt descriptors included in the Interrupt Descriptor Table:

Initializing the Interrupt Descriptor Table | 145

Interrupt gate
An Intel interrupt gate that cannot be accessed by a User Mode process (the
gate’s DPL field is equal to 0). All Linux interrupt handlers are activated by
means of interrupt gates, and all are restricted to Kernel Mode.

System gate
An Intel trap gate that can be accessed by a User Mode process (the gate’s DPL
field is equal to 3). The three Linux exception handlers associated with the vec-
tors 4, 5, and 128 are activated by means of system gates, so the three assembly
language instructions into, bound, and int $0x80 can be issued in User Mode.

System interrupt gate
An Intel interrupt gate that can be accessed by a User Mode process (the gate’s
DPL field is equal to 3). The exception handler associated with the vector 3 is
activated by means of a system interrupt gate, so the assembly language instruc-
tion int3 can be issued in User Mode.

Trap gate
An Intel trap gate that cannot be accessed by a User Mode process (the gate’s
DPL field is equal to 0). Most Linux exception handlers are activated by means
of trap gates.

Task gate
An Intel task gate that cannot be accessed by a User Mode process (the gate’s
DPL field is equal to 0). The Linux handler for the “Double fault” exception is
activated by means of a task gate.

The following architecture-dependent functions are used to insert gates in the IDT:

set_intr gate(n,addr)
Inserts an interrupt gate in the nth IDT entry. The Segment Selector inside the
gate is set to the kernel code’s Segment Selector. The Offset field is set to addr,
which is the address of the interrupt handler. The DPL field is set to 0.

set_system gate(n,addr)
Inserts a trap gate in the nth IDT entry. The Segment Selector inside the gate is
set to the kernel code’s Segment Selector. The Offset field is set to addr, which is
the address of the exception handler. The DPL field is set to 3.
set_system intr gate(n,addr)
Inserts an interrupt gate in the nth IDT entry. The Segment Selector inside the
gate is set to the kernel code’s Segment Selector. The Offset field is set to addr,
which is the address of the exception handler. The DPL field is set to 3.

set_trap gate(n,addr)
Similar to the previous function, except the DPL field is set to 0.

146 | Chapter4: Interrupts and Exceptions

set_task gate(n,gdt)
Inserts a task gate in the nth IDT entry. The Segment Selector inside the gate
stores the index in the GDT of the TSS containing the function to be activated.
The Offset field is set to 0, while the DPL field is set to 3.

Preliminary Initialization of the IDT

The IDT is initialized and used by the BIOS routines while the computer still oper-
ates in Real Mode. Once Linux takes over, however, the IDT is moved to another
area of RAM and initialized a second time, because Linux does not use any BIOS
routine (see Appendix A).

The IDT is stored in the idt_table table, which includes 256 entries. The 6-byte idt_
descr variable stores both the size of the IDT and its address and is used in the sys-
tem initialization phase when the kernel sets up the idtr register with the lidt
assembly language instruction.”

During kernel initialization, the setup_idt() assembly language function starts by
filling all 256 entries of idt_table with the same interrupt gate, which refers to the
ignore_int() interrupt handler:

setup_idt:
lea ignore int, %edx
movl $(__KERNEL_CS << 16), %eax
movw %dx, %ax /* selector = 0x0010 = cs */
movw $0x8e00, %dx /* interrupt gate, dpl=0, present */
lea idt_table, %edi
mov $256, %ecx
rp sidt:
movl %eax, (%edi)
movl %edx, 4(%edi)
addl $8, Z%edi
dec %ecx
jne rp_sidt
ret

The ignore_int() interrupt handler, which is in assembly language, may be viewed
as a null handler that executes the following actions:
1. Saves the content of some registers in the stack.
2. Invokes the printk() function to print an “Unknown interrupt” system message.
3. Restores the register contents from the stack.

4. Executes an iret instruction to restart the interrupted program.

* Some old Pentium models have the notorious “f00f” bug, which allows User Mode programs to freeze the
system. When executing on such CPUs, Linux uses a workaround based on initializing the idtr register with
a fix-mapped read-only linear address pointing to the actual IDT (see the section “Fix-Mapped Linear
Addresses” in Chapter 2).

Initializing the Interrupt Descriptor Table | 147

The ignore_int() handler should never be executed. The occurrence of “Unknown
interrupt” messages on the console or in the log files denotes either a hardware prob-
lem (an I/O device is issuing unforeseen interrupts) or a kernel problem (an inter-
rupt or exception is not being handled properly).

Following this preliminary initialization, the kernel makes a second pass in the IDT
to replace some of the null handlers with meaningful trap and interrupt handlers.
Once this is done, the IDT includes a specialized interrupt, trap, or system gate for
each different exception issued by the control unit and for each IRQ recognized by
the interrupt controller.

The next two sections illustrate in detail how this is done for exceptions and interrupts.

Exception Handling

Most exceptions issued by the CPU are interpreted by Linux as error conditions.
When one of them occurs, the kernel sends a signal to the process that caused the
exception to notify it of an anomalous condition. If, for instance, a process performs
a division by zero, the CPU raises a “Divide error” exception, and the corresponding
exception handler sends a SIGFPE signal to the current process, which then takes the
necessary steps to recover or (if no signal handler is set for that signal) abort.

There are a couple of cases, however, where Linux exploits CPU exceptions to man-
age hardware resources more efficiently. A first case is already described in the sec-
tion “Saving and Loading the FPU, MMX, and XMM Registers” in Chapter 3. The
“Device not available” exception is used together with the TS flag of the cr0 register
to force the kernel to load the floating point registers of the CPU with new values. A
second case involves the “Page Fault” exception, which is used to defer allocating
new page frames to the process until the last possible moment. The corresponding
handler is complex because the exception may, or may not, denote an error condi-
tion (see the section “Page Fault Exception Handler” in Chapter 9).

Exception handlers have a standard structure consisting of three steps:

1. Save the contents of most registers in the Kernel Mode stack (this part is coded
in assembly language).

2. Handle the exception by means of a high-level C function.

3. Exit from the handler by means of the ret_from exception() function.

To take advantage of exceptions, the IDT must be properly initialized with an excep-
tion handler function for each recognized exception. It is the job of the trap_init()
function to insert the final values—the functions that handle the exceptions—into all
IDT entries that refer to nonmaskable interrupts and exceptions. This is accom-
plished through the set trap gate(), set intr gate(), set system gate(), set_
system_intr gate(), and set_task_gate() functions:

set_trap_gate(0,8divide error);
set trap gate(1,8debug);

148 | Chapter4: Interrupts and Exceptions

set_intr gate(2,8nmi);

set_system_intr gate(3,&int3);
set_system_gate(4,8overflow);

set_system gate(5,8&bounds);
set_trap_gate(6,8invalid op);
set_trap_gate(7,8device_not_available);
set_task gate(8,31);
set_trap_gate(9,8coprocessor_segment_overrun);
set trap gate(10,&invalid TSS);

set_trap gate(11,8segment not present);
set_trap_gate(12,8stack_segment);

set trap gate(13,8general protection);
set_intr_gate(14,8page_fault);
set_trap_gate(16,8coprocessor_error);
set_trap_gate(17,&alignment_check);
set_trap gate(18,8machine check);

set_trap _gate(19,8simd_coprocessor_error);
set_system gate(128,8system call);

The “Double fault” exception is handled by means of a task gate instead of a trap or
system gate, because it denotes a serious kernel misbehavior. Thus, the exception
handler that tries to print out the register values does not trust the current value of
the esp register. When such an exception occurs, the CPU fetches the Task Gate
Descriptor stored in the entry at index 8 of the IDT. This descriptor points to the
special TSS segment descriptor stored in the 32nd entry of the GDT. Next, the CPU
loads the eip and esp registers with the values stored in the corresponding TSS seg-
ment. As a result, the processor executes the doublefault fn() exception handler on
its own private stack.

Now we will look at what a typical exception handler does once it is invoked. Our
description of exception handling will be a bit sketchy for lack of space. In particular
we won’t be able to cover:

1. The signal codes (see Table 11-8 in Chapter 11) sent by some handlers to the
User Mode processes.

2. Exceptions that occur when the kernel is operating in MS-DOS emulation mode
(vm86 mode), which must be dealt with differently.

3. “Debug” exceptions.

Saving the Registers for the Exception Handler

Let’s use handler name to denote the name of a generic exception handler. (The
actual names of all the exception handlers appear on the list of macros in the previ-
ous section.) Each exception handler starts with the following assembly language
instructions:
handler_name:
pushl $0 /* only for some exceptions */

pushl $do_handler name
jmp error_code

Exception Handling | 149

If the control unit is not supposed to automatically insert a hardware error code on
the stack when the exception occurs, the corresponding assembly language fragment
includes a pushl $0 instruction to pad the stack with a null value. Then the address
of the high-level C function is pushed on the stack; its name consists of the excep-
tion handler name prefixed by do_.

The assembly language fragment labeled as error_code is the same for all exception
handlers except the one for the “Device not available” exception (see the section
“Saving and Loading the FPU, MMX, and XMM Registers” in Chapter 3). The code
performs the following steps:

1. Saves the registers that might be used by the high-level C function on the stack.

2. Issues a cld instruction to clear the direction flag DF of eflags, thus making sure
that autoincreases on the edi and esi registers will be used with string
instructions.”

3. Copies the hardware error code saved in the stack at location esp+36 in edx.
Stores the value —1 in the same stack location. As we’ll see in the section “Reexe-
cution of System Calls” in Chapter 11, this value is used to separate 0x80 excep-
tions from other exceptions.

4. Loads edi with the address of the high-level do_handler name() C function
saved in the stack at location esp+32; writes the contents of es in that stack
location.

5. Loads in the eax register the current top location of the Kernel Mode stack. This
address identifies the memory cell containing the last register value saved in
step 1.

6. Loads the user data Segment Selector into the ds and es registers.

7. Invokes the high-level C function whose address is now stored in edi.
The invoked function receives its arguments from the eax and edx registers rather
than from the stack. We have already run into a function that gets its arguments

from the CPU registers: the __switch_to() function, discussed in the section “Per-
forming the Process Switch” in Chapter 3.

Entering and Leaving the Exception Handler

As already explained, the names of the C functions that implement exception han-
dlers always consist of the prefix do_ followed by the handler name. Most of these
functions invoke the do_trap() function to store the hardware error code and the

* A single assembly language “string instruction,” such as rep;movsb, is able to act on a whole block of data
(string).

150 | Chapter4: Interrupts and Exceptions

exception vector in the process descriptor of current, and then send a suitable signal
to that process:

current->thread.error code = error code;

current->thread.trap_no = vector;

force sig(sig number, current);
The current process takes care of the signal right after the termination of the excep-
tion handler. The signal will be handled either in User Mode by the process’s own
signal handler (if it exists) or in Kernel Mode. In the latter case, the kernel usually
kills the process (see Chapter 11). The signals sent by the exception handlers are
listed in Table 4-1.

The exception handler always checks whether the exception occurred in User Mode
or in Kernel Mode and, in the latter case, whether it was due to an invalid argument
passed to a system call. We’ll describe in the section “Dynamic Address Checking:
The Fix-up Code” in Chapter 10 how the kernel defends itself against invalid argu-
ments passed to system calls. Any other exception raised in Kernel Mode is due to a
kernel bug. In this case, the exception handler knows the kernel is misbehaving. In
order to avoid data corruption on the hard disks, the handler invokes the die() func-
tion, which prints the contents of all CPU registers on the console (this dump is
called kernel oops) and terminates the current process by calling do_exit() (see “Pro-
cess Termination” in Chapter 3).

When the C function that implements the exception handling terminates, the code
performs a jmp instruction to the ret from exception() function. This function is
described in the later section “Returning from Interrupts and Exceptions.”

Interrupt Handling

As we explained earlier, most exceptions are handled simply by sending a Unix sig-
nal to the process that caused the exception. The action to be taken is thus deferred
until the process receives the signal; as a result, the kernel is able to process the
exception quickly.

This approach does not hold for interrupts, because they frequently arrive long after
the process to which they are related (for instance, a process that requested a data
transfer) has been suspended and a completely unrelated process is running. So it
would make no sense to send a Unix signal to the current process.

Interrupt handling depends on the type of interrupt. For our purposes, we’ll distin-
guish three main classes of interrupts:

I/O interrupts
An /O device requires attention; the corresponding interrupt handler must
query the device to determine the proper course of action. We cover this type of
interrupt in the later section “I/O Interrupt Handling.”

Interrupt Handling | 151

Timer interrupts
Some timer, either a local APIC timer or an external timer, has issued an inter-
rupt; this kind of interrupt tells the kernel that a fixed-time interval has elapsed.
These interrupts are handled mostly as I/O interrupts; we discuss the peculiar
characteristics of timer interrupts in Chapter 6.

Interprocessor interrupts
A CPU issued an interrupt to another CPU of a multiprocessor system. We cover
such interrupts in the later section “Interprocessor Interrupt Handling.”

1/0 Interrupt Handling

In general, an I/O interrupt handler must be flexible enough to service several
devices at the same time. In the PCI bus architecture, for instance, several devices
may share the same IRQ line. This means that the interrupt vector alone does not tell
the whole story. In the example shown in Table 4-3, the same vector 43 is assigned
to the USB port and to the sound card. However, some hardware devices found in
older PC architectures (such as ISA) do not reliably operate if their IRQ line is shared
with other devices.

Interrupt handler flexibility is achieved in two distinct ways, as discussed in the fol-
lowing list.

IRQ sharing
The interrupt handler executes several interrupt service routines (ISRs). Each ISR
is a function related to a single device sharing the IRQ line. Because it is not pos-
sible to know in advance which particular device issued the IRQ, each ISR is exe-
cuted to verify whether its device needs attention; if so, the ISR performs all the
operations that need to be executed when the device raises an interrupt.

IRQ dynamic allocation
An IRQ line is associated with a device driver at the last possible moment; for
instance, the IRQ line of the floppy device is allocated only when a user accesses
the floppy disk device. In this way, the same IRQ vector may be used by several
hardware devices even if they cannot share the IRQ line; of course, the hardware
devices cannot be used at the same time. (See the discussion at the end of this
section.)

Not all actions to be performed when an interrupt occurs have the same urgency. In
fact, the interrupt handler itself is not a suitable place for all kind of actions. Long
noncritical operations should be deferred, because while an interrupt handler is run-
ning, the signals on the corresponding IRQ line are temporarily ignored. Most
important, the process on behalf of which an interrupt handler is executed must
always stay in the TASK_RUNNING state, or a system freeze can occur. Therefore, inter-
rupt handlers cannot perform any blocking procedure such as an I/O disk operation.
Linux divides the actions to be performed following an interrupt into three classes:

152 | Chapter4: Interrupts and Exceptions

Critical
Actions such as acknowledging an interrupt to the PIC, reprogramming the PIC
or the device controller, or updating data structures accessed by both the device
and the processor. These can be executed quickly and are critical, because they
must be performed as soon as possible. Critical actions are executed within the
interrupt handler immediately, with maskable interrupts disabled.

Noncritical
Actions such as updating data structures that are accessed only by the processor
(for instance, reading the scan code after a keyboard key has been pushed).
These actions can also finish quickly, so they are executed by the interrupt han-
dler immediately, with the interrupts enabled.

Noncritical deferrable
Actions such as copying a buffer’s contents into the address space of a process
(for instance, sending the keyboard line buffer to the terminal handler process).
These may be delayed for a long time interval without affecting the kernel opera-
tions; the interested process will just keep waiting for the data. Noncritical defer-
rable actions are performed by means of separate functions that are discussed in
the later section “Softirgs and Tasklets.”

Regardless of the kind of circuit that caused the interrupt, all I/O interrupt handlers
perform the same four basic actions:
1. Save the IRQ value and the register’s contents on the Kernel Mode stack.

2. Send an acknowledgment to the PIC that is servicing the IRQ line, thus allowing
it to issue further interrupts.

3. Execute the interrupt service routines (ISRs) associated with all the devices that
share the IRQ.

4. Terminate by jumping to the ret_from intr() address.
Several descriptors are needed to represent both the state of the IRQ lines and the
functions to be executed when an interrupt occurs. Figure 4-4 represents in a sche-

matic way the hardware circuits and the software functions used to handle an inter-
rupt. These functions are discussed in the following sections.

Interrupt vectors

As illustrated in Table 4-2, physical IRQs may be assigned any vector in the range
32-238. However, Linux uses vector 128 to implement system calls.

The IBM-compatible PC architecture requires that some devices be statically con-
nected to specific IRQ lines. In particular:
* The interval timer device must be connected to the IRQO line (see Chapter 6).

* The slave 8259A PIC must be connected to the IRQ2 line (although more
advanced PICs are now being used, Linux still supports 8259A-style PICs).

Interrupt Handling | 153

HARDWARE SOFTWARE

)) (Interrupt Handler)
Device 1 Device 2

IDT[32+n]

v
(itemptin])

(do_IRQ(n))

A4

Interrupt service Interrupt service
routine 1 routine 2

INT

=
~

Figure 4-4. I/O interrupt handling

* The external mathematical coprocessor must be connected to the IRQ13 line
(although recent 80x 86 processors no longer use such a device, Linux contin-
ues to support the hardy 80386 model).

* In general, an I/O device can be connected to a limited number of IRQ lines. (As
a matter of fact, when playing with an old PC where IRQ sharing is not possible,
you might not succeed in installing a new card because of IRQ conflicts with
other already present hardware devices.)

Table 4-2. Interrupt vectors in Linux

Vector range Use

0-19 (0x0-0x13) Nonmaskable interrupts and exceptions

20-31 (0x14-0x1f) Intel-reserved

32-127 (0x20-0x7f) External interrupts (IRQs)

128 (0x80) Programmed exception for system calls (see Chapter 10)

129-238 (0x81—0xee) External interrupts (IRQs)

239 (oxef) Local APIC timer interrupt (see Chapter 6)

240 (0xf0) Local APIC thermal interrupt (introduced in the Pentium 4 models)

241-250 (0xf1-0xfa) Reserved by Linux for future use

251-253 (0xfb-0xfd) Interprocessor interrupts (see the section “Interprocessor Interrupt Handling” later in this
chapter)

154 | Chapter4: Interrupts and Exceptions

Table 4-2. Interrupt vectors in Linux (continued)

Vector range
254 (oxfe)
255 (oxfA)

Use

Local APIC error interrupt (generated when the local APIC detects an erroneous condition)

Local APIC spurious interrupt (generated if the CPU masks an interrupt while the hardware
device raises it)

There are three ways to select a line for an IRQ-configurable device:

* By setting hardware jumpers (only on very old device cards).

* By a utility program shipped with the device and executed when installing it.
Such a program may either ask the user to select an available IRQ number or

probe the system to determine an available number by itself.

By a hardware protocol executed at system startup. Peripheral devices declare
which interrupt lines they are ready to use; the final values are then negotiated to
reduce conflicts as much as possible. Once this is done, each interrupt handler
can read the assigned IRQ by using a function that accesses some I/O ports of
the device. For instance, drivers for devices that comply with the Peripheral
Component Interconnect (PCI) standard use a group of functions such as pci_
read_config byte(') to access the device configuration space.

Table 4-3 shows a fairly arbitrary arrangement of devices and IRQs, such as those
that might be found on one particular PC.

Table 4-3. An example of IRQ assignment to I/O devices

IRQ

0
1
2
3
4
6
8

10
n
12
13
14
15

INT

32
3
34
35
36
38
40
Iy}
Ik}
4
45
46
47

Hardware device

Timer

Keyboard

PIC cascading

Second serial port

First serial port

Floppy disk

System clock

Network interface

USB port, sound card

PS/2 mouse

Mathematical coprocessor
EIDE disk controller’s first chain
EIDE disk controller's second chain

The kernel must discover which I/O device corresponds to the IRQ number before
enabling interrupts. Otherwise, for example, how could the kernel handle a signal

Interrupt Handling

155

from a SCSI disk without knowing which vector corresponds to the device? The cor-
respondence is established while initializing each device driver (see Chapter 13).

IRQ data structures

As always, when discussing complicated operations involving state transitions, it
helps to understand first where key data is stored. Thus, this section explains the
data structures that support interrupt handling and how they are laid out in various
descriptors. Figure 4-5 illustrates schematically the relationships between the main
descriptors that represent the state of the IRQ lines. (The figure does not illustrate
the data structures needed to handle softirgs and tasklets; they are discussed later in
this chapter.)

0 i NR_IRQS-1
irq_desc | | | | | .
- - hw_irq_controller
L gy »
irg_desc_t H
handler Beeeeeeeeeesesssnnnst i
e D S — .
irqaction irqaction
............. >
next FReeceeas -E next

Figure 4-5. IRQ descriptors

Every interrupt vector has its own irq_desc_t descriptor, whose fields are listed in
Table 4-4. All such descriptors are grouped together in the irq_desc array.

Table 4-4. The irq_desc_t descriptor

Field Description

handler Points to the PIC object (hw_irq_controller descriptor) that services the IRQ line.
handler_data Pointer to data used by the PIC methods.

action Identifies the interrupt service routines to be invoked when the IRQ occurs. The field points to

the first element of the list of irgaction descriptors associated with the IRQ. The
irgaction descriptoris described later in the chapter.

status A set of flags describing the IRQ line status (see Table 4-5).

depth Shows 0 if the IRQ line is enabled and a positive value if it has been disabled at least once.
irqg_count Counter of interrupt occurrences on the IRQ line (for diagnostic use only).
irgs_unhandled Counter of unhandled interrupt occurrences on the IRQ line (for diagnostic use only).

lock A spin lock used to serialize the accesses to the IRQ descriptor and to the PIC (see Chapter 5).

156 | Chapter4: Interrupts and Exceptions

An interrupt is unexpected if it is not handled by the kernel, that is, either if there is
no ISR associated with the IRQ line, or if no ISR associated with the line recognizes
the interrupt as raised by its own hardware device. Usually the kernel checks the
number of unexpected interrupts received on an IRQ line, so as to disable the line in
case a faulty hardware device keeps raising an interrupt over and over. Because the
IRQ line can be shared among several devices, the kernel does not disable the line as
soon as it detects a single unhandled interrupt. Rather, the kernel stores in the irq_
count and irgs_unhandled fields of the irq desc t descriptor the total number of
interrupts and the number of unexpected interrupts, respectively; when the
100,000th interrupt is raised, the kernel disables the line if the number of unhandled
interrupts is above 99,900 (that is, if less than 101 interrupts over the last 100,000
received are expected interrupts from hardware devices sharing the line).

The status of an IRQ line is described by the flags listed in Table 4-5.

Table 4-5. Flags describing the IRQ line status

Flag name Description

IRQ_INPROGRESS A handler for the IRQ is being executed.

IRQ DISABLED The IRQ line has been deliberately disabled by a device driver.

IRQ_PENDING An IRQ has occurred on the line; its occurrence has been acknowledged to the PIC, but it has not
yet been serviced by the kernel.

IRQ_REPLAY The IRQ line has been disabled but the previous IRQ occurrence has not yet been acknowledged
tothe PIC.

IRQ_AUTODETECT The kernel is using the IRQ line while performing a hardware device probe.

IRQ_WAITING The kernel is using the IRQ line while performing a hardware device probe; moreover, the corre-
sponding interrupt has not been raised.

IRQ LEVEL Not used on the 80 x 86 architecture.

IRQ_MASKED Not used.

IRQ_PER_CPU Not used on the 80 x 86 architecture.

The depth field and the IRQ DISABLED flag of the irq_desc_t descriptor specify
whether the IRQ line is enabled or disabled. Every time the disable irq() or
disable irq nosync() function is invoked, the depth field is increased; if depth is
equal to 0, the function disables the IRQ line and sets its IRQ DISABLED flag.” Con-
versely, each invocation of the enable irq() function decreases the field; if depth
becomes 0, the function enables the IRQ line and clears its IRQ_DISABLED flag.

During system initialization, the init IRQ() function sets the status field of each
IRQ main descriptor to IRQ_DISABLED. Moreover, init IRQ() updates the IDT by
replacing the interrupt gates set up by setup_idt() (see the section “Preliminary

* In contrast to disable_irq_nosync(), disable_irq(n) waits until all interrupt handlers for IRQ# that are run-
ning on other CPUs have completed before returning.

Interrupt Handling | 157

Initialization of the IDT,” earlier in this chapter) with new ones. This is accom-
plished through the following statements:
for (i = 0; i < NR_IRQS; i++)
if (i+32 != 128)

set_intr gate(i+32,interrupt[i]);
This code looks in the interrupt array to find the interrupt handler addresses that it
uses to set up the interrupt gates. Each entry n of the interrupt array stores the
address of the interrupt handler for IRQn (see the later section “Saving the registers
for the interrupt handler”). Notice that the interrupt gate corresponding to
vector 128 is left untouched, because it is used for the system call’s programmed
exception.

In addition to the 8259A chip that was mentioned near the beginning of this chap-
ter, Linux supports several other PIC circuits such as the SMP 10-APIC, Intel PIIX4’s
internal 8259 PIC, and SGI’s Visual Workstation Cobalt (I0-)APIC. To handle all
such devices in a uniform way, Linux uses a PIC object, consisting of the PIC name
and seven PIC standard methods. The advantage of this object-oriented approach is
that drivers need not to be aware of the kind of PIC installed in the system. Each
driver-visible interrupt source is transparently wired to the appropriate controller.
The data structure that defines a PIC object is called hw_interrupt_type (also called
hw_irq_controller).

For the sake of concreteness, let’s assume that our computer is a uniprocessor with
two 8259A PICs, which provide 16 standard IRQs. In this case, the handler field in
each of the 16 irq desc_t descriptors points to the 18259A irq type variable, which
describes the 8259A PIC. This variable is initialized as follows:

struct hw_interrupt_type i8259A irq_type = {
.typename = "XT-PIC",

.startup = startup 8259A irq,
.shutdown = shutdown_8259A irq,
.enable = enable 8259A irgq,
.disable = disable 8259A irgq,
.ack = mask_and_ack_8259A,
.end = end_8259A irq,

.set_affinity = NULL
1

The first field in this structure, "XT-PIC", is the PIC name. Next come the pointers to
six different functions used to program the PIC. The first two functions start up and
shut down an IRQ line of the chip, respectively. But in the case of the 8259A chip,
these functions coincide with the third and fourth functions, which enable and dis-
able the line. The mask_and_ack 8259A() function acknowledges the IRQ received by
sending the proper bytes to the 8259A 1/0O ports. The end 8259A irq() function is
invoked when the interrupt handler for the IRQ line terminates. The last set_
affinity method is set to NULL: it is used in multiprocessor systems to declare the
“affinity” of CPUs for specified IRQs—that is, which CPUs are enabled to handle
specific IRQs.

158 | Chapter4: Interrupts and Exceptions

As described earlier, multiple devices can share a single IRQ. Therefore, the kernel
maintains irqaction descriptors (see Figure 4-5 earlier in this chapter), each of which
refers to a specific hardware device and a specific interrupt. The fields included in
such descriptor are shown in Table 4-6, and the flags are shown in Table 4-7.

Table 4-6. Fields of the irqaction descriptor

Fieldname Description

handler Points to the interrupt service routine for an 1/0 device. This is the key field that allows many devices to share
the same IRQ.

flags This field includes a few fields that describe the relationships between the IRQ line and the I/0 device (see
Table 4-7).

mask Not used.

name The name of the 1/0 device (shown when listing the serviced IRQs by reading the /proc/interrupts file).

dev_id A private field for the 1/0 device. Typically, itidentifies the /0 device itself (for instance, it could be equal to its
major and minor numbers; see the section “Device Files” in Chapter 13), or it points to the device driver's data.

next Points to the next element of a list of irqaction descriptors. The elements in the list refer to hardware
devices that share the same IRQ.

irq IRQ line.

dir Points to the descriptor of the /proc/irg/n directory associated with the IRQn.

Table 4-7. Flags of the irqaction descriptor

Flag name Description

SA_INTERRUPT The handler must execute with interrupts disabled.

SA_SHIRQ The device permits its IRQ line to be shared with other devices.

SA_SAMPLE_RANDOM The device may be considered a source of events that occurs randomly; it can thus be used by

the kernel random number generator. (Users can access this feature by taking random num-
bers from the /dev/random and /dev/urandom device files.)

Finally, the irq_stat array includes NR_CPUS entries, one for every possible CPU in the
system. Each entry of type irq cpustat_t includes a few counters and flags used by
the kernel to keep track of what each CPU is currently doing (see Table 4-8).

Table 4-8. Fields of the irq_cpustat_t structure

Field name Description

__softirq_pending Set of flags denoting the pending softirgs (see the section “Softirgs” later in this chapter)
idle timestamp Time when the CPU became idle (significant only if the CPU is currently idle)
__nmi_count Number of occurrences of NMI interrupts

apic_timer irgs Number of occurrences of local APIC timer interrupts (see Chapter 6)

IRQ distribution in multiprocessor systems

Linux sticks to the Symmetric Multiprocessing model (SMP); this means, essentially,
that the kernel should not have any bias toward one CPU with respect to the others.

Interrupt Handling | 159

As a consequence, the kernel tries to distribute the IRQ signals coming from the
hardware devices in a round-robin fashion among all the CPUs. Therefore, all the
CPUs should spend approximately the same fraction of their execution time servic-
ing I/O interrupts.

In the earlier section “The Advanced Programmable Interrupt Controller (APIC),”
we said that the multi-APIC system has sophisticated mechanisms to dynamically
distribute the IRQ signals among the CPUs.

During system bootstrap, the booting CPU executes the setup_I0 APIC irgs() func-
tion to initialize the I/O APIC chip. The 24 entries of the Interrupt Redirection Table
of the chip are filled, so that all IRQ signals from the I/O hardware devices can be
routed to each CPU in the system according to the “lowest priority” scheme (see the
earlier section “IRQs and Interrupts”). During system bootstrap, moreover, all CPUs
execute the setup local APIC() function, which takes care of initializing the local
APICs. In particular, the task priority register (TPR) of each chip is initialized to a fixed
value, meaning that the CPU is willing to handle every kind of IRQ signal, regardless
of its priority. The Linux kernel never modifies this value after its initialization.

All task priority registers contain the same value, thus all CPUs always have the same
priority. To break a tie, the multi-APIC system uses the values in the arbitration pri-
ority registers of local APICs, as explained earlier. Because such values are automati-
cally changed after every interrupt, the IRQ signals are, in most cases, fairly
distributed among all CPUs."

In short, when a hardware device raises an IRQ signal, the multi-APIC system selects
one of the CPUs and delivers the signal to the corresponding local APIC, which in
turn interrupts its CPU. No other CPUs are notified of the event.

All this is magically done by the hardware, so it should be of no concern for the ker-
nel after multi-APIC system initialization. Unfortunately, in some cases the hard-
ware fails to distribute the interrupts among the microprocessors in a fair way (for
instance, some Pentium 4-based SMP motherboards have this problem). Therefore,
Linux 2.6 makes use of a special kernel thread called kirqd to correct, if necessary,
the automatic assignment of IRQs to CPUs.

The kernel thread exploits a nice feature of multi-APIC systems, called the IRQ affin-
ity of a CPU: by modifying the Interrupt Redirection Table entries of the I/O APIC, it
is possible to route an interrupt signal to a specific CPU. This can be done by invok-
ing the set_ioapic_affinity irq() function, which acts on two parameters: the IRQ
vector to be rerouted and a 32-bit mask denoting the CPUs that can receive the IRQ.
The IRQ affinity of a given interrupt also can be changed by the system administra-

*

There is an exception, though. Linux usually sets up the local APICs in such a way to honor the focus pro-
cessor, when it exists. A focus process will catch all IRQs of the same type as long as it has received an IRQ
of that type, and it has not finished executing the interrupt handler. However, Intel has dropped support for
focus processors in the Pentium 4 model.

160 | Chapter4: Interrupts and Exceptions

tor by writing a new CPU bitmap mask into the /proc/irg/n/smp_affinity file (n being
the interrupt vector).

The kirqd kernel thread periodically executes the do_irq balance() function, which
keeps track of the number of interrupt occurrences received by every CPU in the
most recent time interval. If the function discovers that the IRQ load imbalance
between the heaviest loaded CPU and the least loaded CPU is significantly high, then
it either selects an IRQ to be “moved” from a CPU to another, or rotates all IRQs
among all existing CPUs.

Multiple Kernel Mode stacks

As mentioned in the section “Identifying a Process” in Chapter 3, the thread_info
descriptor of each process is coupled with a Kernel Mode stack in a thread union
data structure composed by one or two page frames, according to an option selected
when the kernel has been compiled. If the size of the thread_union structure is 8 KB,
the Kernel Mode stack of the current process is used for every type of kernel control
path: exceptions, interrupts, and deferrable functions (see the later section “Softirgs
and Tasklets”). Conversely, if the size of the thread_union structure is 4 KB, the ker-
nel makes use of three types of Kernel Mode stacks:

* The exception stack is used when handling exceptions (including system calls).
This is the stack contained in the per-process thread union data structure, thus
the kernel makes use of a different exception stack for each process in the system.

* The hard IRQ stack is used when handling interrupts. There is one hard IRQ
stack for each CPU in the system, and each stack is contained in a single page
frame.

* The soft IRQ stack is used when handling deferrable functions (softirgs or
tasklets; see the later section “Softirqs and Tasklets”). There is one soft IRQ
stack for each CPU in the system, and each stack is contained in a single page
frame.

All hard IRQ stacks are contained in the hardirq stack array, while all soft IRQ
stacks are contained in the softirq_stack array. Each array element is a union of type
irq_ctx that span a single page. At the bottom of this page is stored a thread_info
structure, while the spare memory locations are used for the stack; remember that
each stack grows towards lower addresses. Thus, hard IRQ stacks and soft IRQ
stacks are very similar to the exception stacks described in the section “Identifying a
Process” in Chapter 3; the only difference is that the thread info structure coupled
with each stack is associated with a CPU rather than a process.

The hardirg_ctx and softirq_ctx arrays allow the kernel to quickly determine the
hard TRQ stack and soft IRQ stack of a given CPU, respectively: they contain point-
ers to the corresponding irq_ctx elements.

Interrupt Handling | 161

Saving the registers for the interrupt handler

When a CPU receives an interrupt, it starts executing the code at the address found
in the corresponding gate of the IDT (see the earlier section “Hardware Handling of
Interrupts and Exceptions”).

As with other context switches, the need to save registers leaves the kernel developer
with a somewhat messy coding job, because the registers have to be saved and
restored using assembly language code. However, within those operations, the pro-
cessor is expected to call and return from a C function. In this section, we describe
the assembly language task of handling registers; in the next, we show some of the
acrobatics required in the C function that is subsequently invoked.

Saving registers is the first task of the interrupt handler. As already mentioned, the
address of the interrupt handler for IRQn is initially stored in the interrupt[n] entry
and then copied into the interrupt gate included in the proper IDT entry.

The interrupt array is built through a few assembly language instructions in the
arch/i386/kernel/entry.S file. The array includes NR_IRQS elements, where the NR_IRQS
macro yields either the number 224 if the kernel supports a recent I/O APIC chip,” or
the number 16 if the kernel uses the older 8259A PIC chips. The element at index n
in the array stores the address of the following two assembly language instructions:

pushl $n-256

jmp common_interrupt
The result is to save on the stack the IRQ number associated with the interrupt
minus 256. The kernel represents all IRQs through negative numbers, because it
reserves positive interrupt numbers to identify system calls (see Chapter 10). The
same code for all interrupt handlers can then be executed while referring to this
number. The common code starts at label common_interrupt and consists of the fol-
lowing assembly language macros and instructions:

common_interrupt:
SAVE_ALL
movl %esp,%eax

call do_IRQ
jmp ret from_intr

The SAVE_ALL macro expands to the following fragment:

cld

push %es
push %ds
pushl %eax
pushl %ebp
pushl %edi
pushl %esi

* 256 vectors is an architectural limit for the 80x86 architecture. 32 of them are used or reserved for the CPU,
so the usable vector space consists of 224 vectors.

162 | Chapter4: Interrupts and Exceptions

pushl %edx

pushl %ecx

pushl %ebx

movl $_USER_DS,%edx

movl %edx,%ds

movl %edx,%es
SAVE_ALL saves all the CPU registers that may be used by the interrupt handler on the
stack, except for eflags, cs, eip, ss, and esp, which are already saved automatically by
the control unit (see the earlier section “Hardware Handling of Interrupts and Excep-
tions”). The macro then loads the selector of the user data segment into ds and es.

After saving the registers, the address of the current top stack location is saved in the
eax register; then, the interrupt handler invokes the do_IRQ() function. When the ret
instruction of do_IRQ() is executed (when that function terminates) control is trans-
ferred to ret from intr() (see the later section “Returning from Interrupts and
Exceptions”).

The do_IRQ() function

The do_IRQ() function is invoked to execute all interrupt service routines associated
with an interrupt. It is declared as follows:

__attribute_ ((regparm(3))) unsigned int do IRQ(struct pt regs *regs)

The regparm keyword instructs the function to go to the eax register to find the value
of the regs argument; as seen above, eax points to the stack location containing the
last register value pushed on by SAVE_ALL.

The do_IRQ() function executes the following actions:

1. Executes the irq_enter() macro, which increases a counter representing the
number of nested interrupt handlers. The counter is stored in the preempt_count
field of the thread info structure of the current process (see Table 4-10 later in
this chapter).

2. If the size of the thread union structure is 4 KB, it switches to the hard IRQ
stack.In particular, the function performs the following substeps:

a. Executes the current thread info() function to get the address of the
thread_info descriptor associated with the Kernel Mode stack addressed by
the esp register (see the section “Identifying a Process” in Chapter 3).

b. Compares the address of the thread info descriptor obtained in the previ-
ous step with the address stored in hardirq_ctx[smp_processor_id()], that
is, the address of the thread info descriptor associated with the local CPU.
If the two addresses are equal, the kernel is already using the hard IRQ
stack, thus jumps to step 3. This happens when an IRQ is raised while the
kernel is still handling another interrupt.

c. Here the Kernel Mode stack has to be switched. Stores the pointer to the
current process descriptor in the task field of the thread info descriptor in

Interrupt Handling | 163

irq ctx union of the local CPU. This is done so that the current macro
works as expected while the kernel is using the hard IRQ stack (see the sec-
tion “Identifying a Process” in Chapter 3).

d. Stores the current value of the esp stack pointer register in the previous_esp
field of the thread info descriptor in the irq_ctx union of the local CPU (this
field is used only when preparing the function call trace for a kernel oops).

e. Loads in the esp stack register the top location of the hard IRQ stack of the
local CPU (the value in hardirq ctx[smp_processor id()] plus 4096); the
previous value of the esp register is saved in the ebx register.

3. Invokes the __do IRQ() function passing to it the pointer regs and the IRQ num-
ber obtained from the regs->orig_eax field (see the following section).

4. If the hard IRQ stack has been effectively switched in step 2e above, the function
copies the original stack pointer from the ebx register into the esp register, thus
switching back to the exception stack or soft IRQ stack that were in use before.

5. Executes the irq exit() macro, which decreases the interrupt counter and
checks whether deferrable kernel functions are waiting to be executed (see the
section “Softirgs and Tasklets” later in this chapter).

6. Terminates: the control is transferred to the ret from intr() function (see the
later section “Returning from Interrupts and Exceptions”).

The __do_IRQ() function

The __do IRQ() function receives as its parameters an IRQ number (through the eax
register) and a pointer to the pt_regs structure where the User Mode register values
have been saved (through the edx register).

The function is equivalent to the following code fragment:

spin_lock(&(irq desc[irq].lock));
irq desc[irq].handler->ack(irq);
irq_desc[irq].status &= ~(IRQ_REPLAY | IRQ WAITING);
irq desc[irq].status |= IRQ PENDING;
if (!(irq desc[irq].status & (IRQ DISABLED | IRQ INPROGRESS))
8& irq_desc[irg].action) {
irq_desc[irq].status |= IRQ_INPROGRESS;
do {
irq_desc[irq].status &= ~IRQ_PENDING;
spin_unlock(&(irq_desc[irq].lock));
handle IRQ event(irq, regs, irq_desc[irq].action);
spin_lock(&(irq desc[irq].lock));
} while (irq desc[irq].status & IRQ_PENDING);
irq desc[irq].status 8= ~IRQ_INPROGRESS;
}
irq_desc[irq].handler->end(irq);
spin_unlock(&(irq_desc[irq].lock));

Before accessing the main IRQ descriptor, the kernel acquires the corresponding spin
lock. We’ll see in Chapter 5 that the spin lock protects against concurrent accesses

164 | Chapter4: Interruptsand Exceptions

by different CPUs. This spin lock is necessary in a multiprocessor system, because
other interrupts of the same kind may be raised, and other CPUs might take care of
the new interrupt occurrences. Without the spin lock, the main IRQ descriptor
would be accessed concurrently by several CPUs. As we’ll see, this situation must be
absolutely avoided.

After acquiring the spin lock, the function invokes the ack method of the main IRQ
descriptor. When using the old 8259A PIC, the corresponding mask_and_ack_8259A()
function acknowledges the interrupt on the PIC and also disables the IRQ line. Mask-
ing the IRQ line ensures that the CPU does not accept further occurrences of this type
of interrupt until the handler terminates. Remember that the __do IRQ() function
runs with local interrupts disabled; in fact, the CPU control unit automatically clears
the IF flag of the eflags register because the interrupt handler is invoked through an
IDT’s interrupt gate. However, we’ll see shortly that the kernel might re-enable local
interrupts before executing the interrupt service routines of this interrupt.

When using the I/O APIC, however, things are much more complicated. Depending
on the type of interrupt, acknowledging the interrupt could either be done by the ack
method or delayed until the interrupt handler terminates (that is, acknowledgement
could be done by the end method). In either case, we can take for granted that the
local APIC doesn’t accept further interrupts of this type until the handler terminates,
although further occurrences of this type of interrupt may be accepted by other CPUs.

The _ do_IRQ() function then initializes a few flags of the main IRQ descriptor. It
sets the IRQ_PENDING flag because the interrupt has been acknowledged (well, sort of),
but not yet really serviced; it also clears the IRQ_WAITING and IRQ REPLAY flags (but we
don’t have to care about them now).

Now __do_IRQ() checks whether it must really handle the interrupt. There are three
cases in which nothing has to be done. These are discussed in the following list.

IRQ_DISABLED is set
A CPU might execute the __do IRQ() function even if the corresponding IRQ
line is disabled; you’ll find an explanation for this nonintuitive case in the later
section “Reviving a lost interrupt.” Moreover, buggy motherboards may gener-
ate spurious interrupts even when the IRQ line is disabled in the PIC.

IRQ_INPROGRESS is set

In a multiprocessor system, another CPU might be handling a previous occur-
rence of the same interrupt. Why not defer the handling of this occurrence to
that CPU? This is exactly what is done by Linux. This leads to a simpler kernel
architecture because device drivers’ interrupt service routines need not to be
reentrant (their execution is serialized). Moreover, the freed CPU can quickly
return to what it was doing, without dirtying its hardware cache; this is benefi-
cial to system performance. The IRQ INPROGRESS flag is set whenever a CPU is
committed to execute the interrupt service routines of the interrupt; therefore,
the do IRQ() function checks it before starting the real work.

Interrupt Handling | 165

irq desc[irq].action is NULL
This case occurs when there is no interrupt service routine associated with the
interrupt. Normally, this happens only when the kernel is probing a hardware
device.

Let’s suppose that none of the three cases holds, so the interrupt has to be serviced. The
__do_IRQ() function sets the IRQ INPROGRESS flag and starts a loop. In each iteration,
the function clears the IRQ_PENDING flag, releases the interrupt spin lock, and executes
the interrupt service routines by invoking handle IRQ event() (described later in the
chapter). When the latter function terminates, __do_IRQ() acquires the spin lock again
and checks the value of the IRQ_PENDING flag. If it is clear, no further occurrence of the
interrupt has been delivered to another CPU, so the loop ends. Conversely, if IRQ_
PENDING is set, another CPU has executed the do_IRQ() function for this type of inter-
rupt while this CPU was executing handle_IRQ event(). Therefore, do_IRQ() performs
another iteration of the loop, servicing the new occurrence of the interrupt.”

Our __do_IRQ() function is now going to terminate, either because it has already
executed the interrupt service routines or because it had nothing to do. The function
invokes the end method of the main IRQ descriptor. When using the old 8259A PIC,
the corresponding end_8259A irq() function reenables the IRQ line (unless the inter-
rupt occurrence was spurious). When using the I/O APIC, the end method acknowl-
edges the interrupt (if not already done by the ack method).

Finally, do IRQ() releases the spin lock: the hard work is finished!

Reviving a lost interrupt

The _ do IRQ() function is small and simple, yet it works properly in most cases.
Indeed, the IRQ PENDING, IRQ INPROGRESS, and IRQ DISABLED flags ensure that inter-
rupts are correctly handled even when the hardware is misbehaving. However, things
may not work so smoothly in a multiprocessor system.

Suppose that a CPU has an IRQ line enabled. A hardware device raises the IRQ line,
and the multi-APIC system selects our CPU for handling the interrupt. Before the
CPU acknowledges the interrupt, the IRQ line is masked out by another CPU; as a
consequence, the IRQ DISABLED flag is set. Right afterwards, our CPU starts handling
the pending interrupt; therefore, the do_IRQ() function acknowledges the interrupt
and then returns without executing the interrupt service routines because it finds the
IRQ DISABLED flag set. Therefore, even though the interrupt occurred before the IRQ
line was disabled, it gets lost.

To cope with this scenario, the enable_irq() function, which is used by the kernel to
enable an IRQ line, checks first whether an interrupt has been lost. If so, the func-
tion forces the hardware to generate a new occurrence of the lost interrupt:

* Because IRQ PENDING is a flag and not a counter, only the second occurrence of the interrupt can be recog-
nized. Further occurrences in each iteration of the do_IRQ()’s loop are simply lost.

166 | Chapter4: Interruptsand Exceptions

spin_lock_irgsave(&(irq_desc[irq].lock), flags);
if (--irq_desc[irq].depth == 0) {
irq desc[irq].status &= ~IRQ DISABLED;
if (irq_desc[irq].status & (IRQ_PENDING | IRQ REPLAY))
== IRQ_PENDING) {
irq_desc[irq].status |= IRQ REPLAY;
hw_resend_irq(irq_desc[irq].handler,irq);
}

irq_desc[irq].handler->enable(irq);

ipin_lock_irqrestore(&(irq_desc[irq].lock), flags);
The function detects that an interrupt was lost by checking the value of the IRQ_PENDING
flag. The flag is always cleared when leaving the interrupt handler; therefore, if the IRQ
line is disabled and the flag is set, then an interrupt occurrence has been acknowledged
but not yet serviced. In this case the hw_resend_irq() function raises a new interrupt.
This is obtained by forcing the local APIC to generate a self-interrupt (see the later sec-
tion “Interprocessor Interrupt Handling”). The role of the IRQ_REPLAY flag is to ensure
that exactly one self-interrupt is generated. Remember that the __do IRQ() function
clears that flag when it starts handling the interrupt.

Interrupt service routines

As mentioned previously, an interrupt service routine handles an interrupt by execut-
ing an operation specific to one type of device. When an interrupt handler must exe-
cute the ISRs, it invokes the handle IRQ event() function. This function essentially
performs the following steps:

1. Enables the local interrupts with the sti assembly language instruction if the SA_
INTERRUPT flag is clear.

2. Executes each interrupt service routine of the interrupt through the following
code:
retval = 0;
do {
retval |= action->handler(irqg, action->dev_id, regs);
action = action->next;
} while (action);
At the start of the loop, action points to the start of a list of irgaction data struc-
tures that indicate the actions to be taken upon receiving the interrupt (see
Figure 4-5 earlier in this chapter).

3. Disables local interrupts with the c1i assembly language instruction.
4. Terminates by returning the value of the retval local variable, that is, 0 if no

interrupt service routine has recognized interrupt, 1 otherwise (see next).

All interrupt service routines act on the same parameters (once again they are passed
through the eax, edx, and ecx registers, respectively):

Interrupt Handling | 167

irq
The IRQ number

dev_id
The device identifier

regs
A pointer to a pt_regs structure on the Kernel Mode (exception) stack contain-
ing the registers saved right after the interrupt occurred. The pt_regs structure
consists of 15 fields:

* The first nine fields are the register values pushed by SAVE_ALL

* The tenth field, referenced through a field called orig_eax, encodes the IRQ
number

* The remaining fields correspond to the register values pushed on automati-
cally by the control unit

The first parameter allows a single ISR to handle several IRQ lines, the second one
allows a single ISR to take care of several devices of the same type, and the last one
allows the ISR to access the execution context of the interrupted kernel control path.
In practice, most ISRs do not use these parameters.

Every interrupt service routine returns the value 1 if the interrupt has been effec-
tively handled, that is, if the signal was raised by the hardware device handled by the
interrupt service routine (and not by another device sharing the same IRQ); it returns
the value 0 otherwise. This return code allows the kernel to update the counter of
unexpected interrupts mentioned in the section “IRQ data structures” earlier in this
chapter.

The SA_INTERRUPT flag of the main IRQ descriptor determines whether interrupts
must be enabled or disabled when the do_IRQ() function invokes an ISR. An ISR that
has been invoked with the interrupts in one state is allowed to put them in the oppo-
site state. In a uniprocessor system, this can be achieved by means of the cli (disable
interrupts) and sti (enable interrupts) assembly language instructions.

The structure of an ISR depends on the characteristics of the device handled. We’ll
give a couple of examples of ISRs in Chapter 6 and Chapter 13.

Dynamic allocation of IRQ lines

As noted in section “Interrupt vectors,” a few vectors are reserved for specific
devices, while the remaining ones are dynamically handled. There is, therefore, a way
in which the same IRQ line can be used by several hardware devices even if they do
not allow IRQ sharing. The trick is to serialize the activation of the hardware devices
so that just one owns the IRQ line at a time.

168 | Chapter4: Interrupts and Exceptions

Before activating a device that is going to use an IRQ line, the corresponding driver
invokes request_irq(). This function creates a new irqaction descriptor and initial-
izes it with the parameter values; it then invokes the setup_irq() function to insert
the descriptor in the proper IRQ list. The device driver aborts the operation if setup_
irq() returns an error code, which usually means that the IRQ line is already in use
by another device that does not allow interrupt sharing. When the device operation
is concluded, the driver invokes the free irq() function to remove the descriptor
from the IRQ list and release the memory area.

Let’s see how this scheme works on a simple example. Assume a program wants to
address the /dev/fd0 device file, which corresponds to the first floppy disk on the sys-
tem.” The program can do this either by directly accessing /dev/fd0 or by mounting a
filesystem on it. Floppy disk controllers are usually assigned IRQ6; given this, a
floppy driver may issue the following request:
request_irq(6, floppy interrupt,
SA_INTERRUPT|SA_SAMPLE_RANDOM, "floppy", NULL);

As can be observed, the floppy interrupt() interrupt service routine must execute
with the interrupts disabled (SA_INTERRUPT flag set) and no sharing of the IRQ (SA_
SHIRQ flag missing). The SA SAMPLE RANDOM flag set means that accesses to the floppy
disk are a good source of random events to be used for the kernel random number
generator. When the operation on the floppy disk is concluded (either the I/O opera-
tion on /dev/fd0 terminates or the filesystem is unmounted), the driver releases IRQ6:

free_irq(6, NULL);

To insert an irgaction descriptor in the proper list, the kernel invokes the setup_irg(
) function, passing to it the parameters irq nr, the IRQ number, and new (the
address of a previously allocated irqgaction descriptor). This function:

1. Checks whether another device is already using the irq nr IRQ and, if so,
whether the SA_SHIRQ flags in the irqaction descriptors of both devices specify
that the IRQ line can be shared. Returns an error code if the IRQ line cannot be
used.

2. Adds *new (the new irqaction descriptor pointed to by new) at the end of the list
to which irq_desc[irq_nr]->action points.

3. If no other device is sharing the same IRQ, the function clears the IRQ_DISABLED,
IRQ_AUTODETECT, IRQ WAITING, and IRQ INPROGRESS flags in the flags field of *new
and invokes the startup method of the irq_desc[irq nr]->handler PIC object to
make sure that IRQ signals are enabled.

Here is an example of how setup_irq() is used, drawn from system initialization.
The kernel initializes the irqo descriptor of the interval timer device by executing the
following instructions in the time_init() function (see Chapter 6):

* Floppy disks are “old” devices that do not usually allow IRQ sharing.

Interrupt Handling | 169

struct irqaction irqo =
{timer interrupt, SA INTERRUPT, 0, "timer", NULL, NULL};

setup_irq(0, &irqo);
First, the irqo variable of type irqaction is initialized: the handler field is set to the
address of the timer_interrupt() function, the flags field is set to SA_INTERRUPT, the
name field is set to "timer", and the fifth field is set to NULL to show that no dev_id
value is used. Next, the kernel invokes setup irq() to insert irqo in the list of
irqaction descriptors associated with IRQO.

Interprocessor Interrupt Handling

Interprocessor interrupts allow a CPU to send interrupt signals to any other CPU in
the system. As explained in the section “The Advanced Programmable Interrupt
Controller (APIC)” earlier in this chapter, an interprocessor interrupt (IPI) is deliv-
ered not through an IRQ line, but directly as a message on the bus that connects the
local APIC of all CPUs (either a dedicated bus in older motherboards, or the system
bus in the Pentium 4-based motherboards).

On multiprocessor systems, Linux makes use of three kinds of interprocessor inter-
rupts (see also Table 4-2):

CALL_FUNCTION VECTOR (vector 0xfb)

Sent to all CPUs but the sender, forcing those CPUs to run a function passed by
the sender. The corresponding interrupt handler is named call function_
interrupt(). The function (whose address is passed in the call data global vari-
able) may, for instance, force all other CPUs to stop, or may force them to set
the contents of the Memory Type Range Registers (MTRRs).” Usually this inter-
rupt is sent to all CPUs except the CPU executing the calling function by means
of the smp_call function() facility function.

RESCHEDULE_VECTOR (vector 0xfc)
When a CPU receives this type of interrupt, the corresponding handler—named
reschedule_interrupt()—Ilimits itself to acknowledging the interrupt. Resched-
uling is done automatically when returning from the interrupt (see the section
“Returning from Interrupts and Exceptions” later in this chapter).

INVALIDATE TLB VECTOR (vector 0xfd)
Sent to all CPUs but the sender, forcing them to invalidate their Translation
Lookaside Buffers. The corresponding handler, named invalidate_interrupt(),

flushes some TLB entries of the processor as described in the section “Handling
the Hardware Cache and the TLB” in Chapter 2.

* Starting with the Pentium Pro model, Intel microprocessors include these additional registers to easily cus-
tomize cache operations. For instance, Linux may use these registers to disable the hardware cache for the
addresses mapping the frame buffer of a PCI/AGP graphic card while maintaining the “write combining”
mode of operation: the paging unit combines write transfers into larger chunks before copying them into the
frame buffer.

170 | Chapter4: Interrupts and Exceptions

The assembly language code of the interprocessor interrupt handlers is generated by
the BUILD INTERRUPT macro: it saves the registers, pushes the vector number minus
256 on the stack, and then invokes a high-level C function having the same name as
the low-level handler preceded by smp_. For instance, the high-level handler of the
CALL_FUNCTION_VECTOR interprocessor interrupt that is invoked by the low-level call
function_interrupt() handler is named smp_call function_interrupt(). Each high-
level handler acknowledges the interprocessor interrupt on the local APIC and then
performs the specific action triggered by the interrupt.

Thanks to the following group of functions, issuing interprocessor interrupts (IPIs)
becomes an easy task:

send IPI all()
Sends an IPI to all CPUs (including the sender)

send _IPI allbutself()
Sends an IPI to all CPUs except the sender

send IPT self()
Sends an IPI to the sender CPU

send IPI mask()
Sends an IPI to a group of CPUs specified by a bit mask

Softirgs and Tasklets

We mentioned earlier in the section “Interrupt Handling” that several tasks among
those executed by the kernel are not critical: they can be deferred for a long period of
time, if necessary. Remember that the interrupt service routines of an interrupt handler
are serialized, and often there should be no occurrence of an interrupt until the corre-
sponding interrupt handler has terminated. Conversely, the deferrable tasks can exe-
cute with all interrupts enabled. Taking them out of the interrupt handler helps keep
kernel response time small. This is a very important property for many time-critical
applications that expect their interrupt requests to be serviced in a few milliseconds.

Linux 2.6 answers such a challenge by using two kinds of non-urgent interruptible
kernel functions: the so-called deferrable functions” (softirgs and tasklets), and those
executed by means of some work queues (we will describe them in the
section “Work Queues” later in this chapter).

Softirgs and tasklets are strictly correlated, because tasklets are implemented on top
of softirgs. As a matter of fact, the term “softirq,” which appears in the kernel source
code, often denotes both kinds of deferrable functions. Another widely used term is

* These are also called software interrupts, but we denote them as “deferrable functions” to avoid confusion
with programmed exceptions, which are referred to as “software interrupts” in Intel manuals.

Softirgs and Tasklets | 171

interrupt context: it specifies that the kernel is currently executing either an interrupt
handler or a deferrable function.

Softirgs are statically allocated (i.e., defined at compile time), while tasklets can also
be allocated and initialized at runtime (for instance, when loading a kernel module).
Softirgs can run concurrently on several CPUs, even if they are of the same type.
Thus, softirgs are reentrant functions and must explicitly protect their data struc-
tures with spin locks. Tasklets do not have to worry about this, because their execu-
tion is controlled more strictly by the kernel. Tasklets of the same type are always
serialized: in other words, the same type of tasklet cannot be executed by two CPUs
at the same time. However, tasklets of different types can be executed concurrently
on several CPUs. Serializing the tasklet simplifies the life of device driver developers,
because the tasklet function needs not be reentrant.

Generally speaking, four kinds of operations can be performed on deferrable functions:

Initialization

Defines a new deferrable function; this operation is usually done when the ker-
nel initializes itself or a module is loaded.

Activation
Marks a deferrable function as “pending”—to be run the next time the kernel
schedules a round of executions of deferrable functions. Activation can be done
at any time (even while handling interrupts).

Masking
Selectively disables a deferrable function so that it will not be executed by the ker-
nel even if activated. We’ll see in the section “Disabling and Enabling Deferrable
Functions” in Chapter 5 that disabling deferrable functions is sometimes essential.

Execution
Executes a pending deferrable function together with all other pending deferra-
ble functions of the same type; execution is performed at well-specified times,
explained later in the section “Softirgs.”

Activation and execution are bound together: a deferrable function that has been
activated by a given CPU must be executed on the same CPU. There is no self-evi-
dent reason suggesting that this rule is beneficial for system performance. Binding
the deferrable function to the activating CPU could in theory make better use of the
CPU hardware cache. After all, it is conceivable that the activating kernel thread
accesses some data structures that will also be used by the deferrable function. How-
ever, the relevant lines could easily be no longer in the cache when the deferrable
function is run because its execution can be delayed a long time. Moreover, binding
a function to a CPU is always a potentially “dangerous” operation, because one CPU
might end up very busy while the others are mostly idle.

172 | Chapter4: Interrupts and Exceptions

Softirgs

Linux 2.6 uses a limited number of softirqs. For most purposes, tasklets are good
enough and are much easier to write because they do not need to be reentrant.

As a matter of fact, only the six kinds of softirgs listed in Table 4-9 are currently

defined.

Table 4-9. Softirgs used in Linux 2.6

Softirq Index (priority) Description
HI_SOFTIRQ 0 Handles high priority tasklets
TIMER_SOFTIRQ 1 Tasklets related to timer interrupts

NET_TX_SOFTIRQ
NET_RX_SOFTIRQ
SCSI_SOFTIRQ
TASKLET SOFTIRQ

Transmits packets to network cards
Receives packets from network cards
Post-interrupt processing of SCSI commands

v AW N

Handles regular tasklets

The index of a sofirq determines its priority: a lower index means higher priority
because softirq functions will be executed starting from index 0.

Data structures used for softirgs

The main data structure used to represent softirgs is the softirq vec array, which
includes 32 elements of type softirq action. The priority of a softirq is the index of
the corresponding softirq action element inside the array. As shown in Table 4-9,
only the first six entries of the array are effectively used. The softirq_action data
structure consists of two fields: an action pointer to the softirq function and a data
pointer to a generic data structure that may be needed by the softirq function.

Another critical field used to keep track both of kernel preemption and of nesting of
kernel control paths is the 32-bit preempt_count field stored in the thread info field
of each process descriptor (see the section “Identifying a Process” in Chapter 3). This
field encodes three distinct counters plus a flag, as shown in Table 4-10.

Table 4-10. Subfields of the preempt_count field (continues)

Bits Description

0-7 Preemption counter (max value = 255)
8-15 Softirq counter (max value = 255).
16-27 Hardirq counter (max value = 4096)
28 PREEMPT ACTIVE flag

The first counter keeps track of how many times kernel preemption has been explic-
itly disabled on the local CPU; the value zero means that kernel preemption has not

Softirgs and Tasklets | 173

been explicitly disabled at all. The second counter specifies how many levels deep
the disabling of deferrable functions is (level 0 means that deferrable functions are
enabled). The third counter specifies the number of nested interrupt handlers on the
local CPU (the value is increased by irq enter() and decreased by irq exit(); see
the section “I/O Interrupt Handling” earlier in this chapter).

There is a good reason for the name of the preempt_count field: kernel preemptability
has to be disabled either when it has been explicitly disabled by the kernel code (pre-
emption counter not zero) or when the kernel is running in interrupt context. Thus,
to determine whether the current process can be preempted, the kernel quickly
checks for a zero value in the preempt_count field. Kernel preemption will be dis-
cussed in depth in the section “Kernel Preemption” in Chapter 5.

The in_interrupt() macro checks the hardirq and softirq counters in the current_
thread_info()->preempt count field. If either one of these two counters is positive,
the macro yields a nonzero value, otherwise it yields the value zero. If the kernel does
not make use of multiple Kernel Mode stacks, the macro always looks at the
preempt_count field of the thread info descriptor of the current process. If, however,
the kernel makes use of multiple Kernel Mode stacks, the macro might look at the
preempt_count field in the thread info descriptor contained in a irq_ctx union asso-
ciated with the local CPU. In this case, the macro returns a nonzero value because
the field is always set to a positive value.

The last crucial data structure for implementing the softirgs is a per-CPU 32-bit
mask describing the pending softirgs; it is stored in the __softirq_pending field of
the irq_cpustat_t data structure (recall that there is one such structure per each CPU
in the system; see Table 4-8). To get and set the value of the bit mask, the kernel
makes use of the local softirq pending() macro that selects the softirq bit mask of
the local CPU.

Handling softirqs

The open_softirq() function takes care of softirq initialization. It uses three parame-
ters: the softirq index, a pointer to the softirq function to be executed, and a second
pointer to a data structure that may be required by the softirq function. open_
softirg() limits itself to initializing the proper entry of the softirq vec array.

Softirgs are activated by means of the raise softirq() function. This function,
which receives as its parameter the softirq index nr, performs the following actions:

1. Executes the local irq save macro to save the state of the IF flag of the eflags
register and to disable interrupts on the local CPU.

2. Marks the softirq as pending by setting the bit corresponding to the index nr in
the softirq bit mask of the local CPU.

3. If in_interrupt() yields the value 1, it jumps to step 5. This situation indicates
either that raise softirq() has been invoked in interrupt context, or that the
softirgs are currently disabled.

174 | Chapter4: Interrupts and Exceptions

4. Otherwise, invokes wakeup_softirqd() to wake up, if necessary, the ksoftirqd
kernel thread of the local CPU (see later).

5. Executes the local irq restore macro to restore the state of the IF flag saved in
step 1.

Checks for active (pending) softirgs should be perfomed periodically, but without
inducing too much overhead. They are performed in a few points of the kernel code.
Here is a list of the most significant points (be warned that number and position of
the softirq checkpoints change both with the kernel version and with the supported
hardware architecture):

* When the kernel invokes the local bh enable() function” to enable softirgs on
the local CPU

* When the do_IRQ() function finishes handling an I/O interrupt and invokes the
irq_exit() macro

* If the system uses an I/O APIC, when the smp_apic_timer interrupt() function
finishes handling a local timer interrupt (see the section “Timekeeping Architec-
ture in Multiprocessor Systems” in Chapter 6)

* In multiprocessor systems, when a CPU finishes handling a function triggered by
a CALL_FUNCTION VECTOR interprocessor interrupt
* When one of the special ksoftirqd/n kernel threads is awakened (see later)

The do_softirq() function

If pending softirgs are detected at one such checkpoint (local softirq_pending() is
not zero), the kernel invokes do_softirq() to take care of them. This function per-
forms the following actions:

1. If in_interrupt() yields the value one, this function returns. This situation indi-
cates either that do_softirq() has been invoked in interrupt context or that the
softirgs are currently disabled.

2. Executes local _irq_save to save the state of the IF flag and to disable the inter-
rupts on the local CPU.

3. If the size of the thread union structure is 4 KB, it switches to the soft IRQ stack,
if necessary. This step is very similar to step 2 of do_IRQ() in the earlier section
“I/O Interrupt Handling;” of course, the softirq_ctx array is used instead of
hardirq ctx.

4. Invokes the __do_softirq() function (see the following section).

* The name local bh enable() refers to a special type of deferrable function called “bottom half” that no
longer exists in Linux 2.6.

Softirqs and Tasklets | 175

5. If the soft IRQ stack has been effectively switched in step 3 above, it restores the
original stack pointer into the esp register, thus switching back to the exception
stack that was in use before.

6. Executes local irq restore to restore the state of the IF flag (local interrupts
enabled or disabled) saved in step 2 and returns.

The __do_softirq() function

The _ do_softirq() function reads the softirq bit mask of the local CPU and exe-
cutes the deferrable functions corresponding to every set bit. While executing a soft-
irq function, new pending softirqs might pop up; in order to ensure a low latency
time for the deferrable funtions, __do_softirq() keeps running until all pending soft-
irgs have been executed. This mechanism, however, could force __do_softirq() to
run for long periods of time, thus considerably delaying User Mode processes. For
that reason, __do_softirq() performs a fixed number of iterations and then returns.
The remaining pending softirgs, if any, will be handled in due time by the ksoftirqd
kernel thread described in the next section. Here is a short description of the actions
performed by the function:

1. Initializes the iteration counter to 10.

2. Copies the softirq bit mask of the local CPU (selected by local softirq_
pending()) in the pending local variable.

3. Invokes local bh disable() to increase the softirq counter. It is somewhat coun-
terintuitive that deferrable functions should be disabled before starting to exe-
cute them, but it really makes a lot of sense. Because the deferrable functions
mostly run with interrupts enabled, an interrupt can be raised in the middle of
the do softirq() function. When do IRQ() executes the irq_exit() macro,
another instance of the __do_softirq() function could be started. This has to be
avoided, because deferrable functions must execute serially on the CPU. Thus,
the first instance of __do_softirq() disables deferrable functions, so that every
new instance of the function will exit at step 1 of do_softirq().

4. Clears the softirq bitmap of the local CPU, so that new softirgs can be activated
(the value of the bit mask has already been saved in the pending local variable in
step 2).

5. Executes local _irq_enable() to enable local interrupts.

6. For each bit set in the pending local variable, it executes the corresponding soft-
irq function; recall that the function address for the softirq with index n is stored
in softirqg_vec[n]->action.

7. Executes local irq disable() to disable local interrupts.

8. Copies the softirq bit mask of the local CPU into the pending local variable and
decreases the iteration counter one more time.

176 | Chapter4: Interrupts and Exceptions

9. If pending is not zero—at least one softirq has been activated since the start of
the last iteration—and the iteration counter is still positive, it jumps back to
step 4.

10. If there are more pending softirgs, it invokes wakeup_softirqd() to wake up the
kernel thread that takes care of the softirgs for the local CPU (see next section).

11. Subtracts 1 from the softirq counter, thus reenabling the deferrable functions.

The ksoftirqd kernel threads

In recent kernel versions, each CPU has its own ksoftirqd/n kernel thread (where n is
the logical number of the CPU). Each ksoftirqd/n kernel thread runs the ksoftirgd()
function, which essentially executes the following loop:
for(5;) {
set _current state(TASK _INTERRUPTIBLE);
schedule();
/* now in TASK_RUNNING state */
while (local softirq pending()) {
preempt_disable();
do_softirq();
preempt_enable();
cond_resched();

}

When awakened, the kernel thread checks the local softirq pending() softirq bit
mask and invokes, if necessary, do_softirq(). If there are no softirqs pending, the
function puts the current process in the TASK_INTERRUPTIBLE state and invokes then
the cond_resched() function to perform a process switch if required by the current
process (flag TIF_NEED RESCHED of the current thread_info set).

The ksoftirqd/n kernel threads represent a solution for a critical trade-off problem.

Softirq functions may reactivate themselves; in fact, both the networking softirqs and
the tasklet softirgs do this. Moreover, external events, such as packet flooding on a
network card, may activate softirgs at very high frequency.

The potential for a continuous high-volume flow of softirgs creates a problem that is
solved by introducing kernel threads. Without them, developers are essentially faced
with two alternative strategies.

The first strategy consists of ignoring new softirgs that occur while do_softirq() is
running. In other words, the do_softirq() function could determine what softirgs
are pending when the function is started and then execute their functions. Next, it
would terminate without rechecking the pending softirgs. This solution is not good
enough. Suppose that a softirq function is reactivated during the execution of do_
softirq(). In the worst case, the softirq is not executed again until the next timer
interrupt, even if the machine is idle. As a result, softirq latency time is unacceptable
for networking developers.

Softirqs and Tasklets | 177

The second strategy consists of continuously rechecking for pending softirgs. The
do_softirg() function could keep checking the pending softirqs and would termi-
nate only when none of them is pending. While this solution might satisfy network-
ing developers, it can certainly upset normal users of the system: if a high-frequency
flow of packets is received by a network card or a softirq function keeps activating
itself, the do_softirq() function never returns, and the User Mode programs are vir-
tually stopped.

The ksoftirqd/n kernel threads try to solve this difficult trade-off problem. The do_
softirq() function determines what softirqs are pending and executes their func-
tions. After a few iterations, if the flow of softirgs does not stop, the function wakes
up the kernel thread and terminates (step 10 of __do_softirq()). The kernel thread
has low priority, so user programs have a chance to run; but if the machine is idle,
the pending softirgs are executed quickly.

Tasklets

Tasklets are the preferred way to implement deferrable functions in I/O drivers. As
already explained, tasklets are built on top of two softirqs named HI_SOFTIRQ and
TASKLET_SOFTIRQ. Several tasklets may be associated with the same softirq, each
tasklet carrying its own function. There is no real difference between the two soft-
irgs, except that do softirq() executes HI SOFTIRQ’s tasklets before TASKLET
SOFTIRQ’s tasklets.

Tasklets and high-priority tasklets are stored in the tasklet vec and tasklet hi vec
arrays, respectively. Both of them include NR_CPUS elements of type tasklet head, and
each element consists of a pointer to a list of tasklet descriptors. The tasklet descrip-
tor is a data structure of type tasklet struct, whose fields are shown in Table 4-11.

Table 4-11. The fields of the tasklet descriptor

Field name Description

next Pointer to next descriptor in the list

state Status of the tasklet

count Lock counter

func Pointer to the tasklet function

data An unsigned long integer that may be used by the tasklet function

The state field of the tasklet descriptor includes two flags:

TASKLET _STATE_SCHED
When set, this indicates that the tasklet is pending (has been scheduled for exe-
cution); it also means that the tasklet descriptor is inserted in one of the lists of
the tasklet vec and tasklet hi vec arrays.

178 | Chapter4: Interrupts and Exceptions

TASKLET _STATE_RUN
When set, this indicates that the tasklet is being executed; on a uniprocessor sys-
tem this flag is not used because there is no need to check whether a specific
tasklet is running.

Let’s suppose you’re writing a device driver and you want to use a tasklet: what has
to be done? First of all, you should allocate a new tasklet struct data structure and
initialize it by invoking tasklet init(); this function receives as its parameters the
address of the tasklet descriptor, the address of your tasklet function, and its
optional integer argument.

The tasklet may be selectively disabled by invoking either tasklet disable nosync()
or tasklet disable(). Both functions increase the count field of the tasklet descrip-
tor, but the latter function does not return until an already running instance of the
tasklet function has terminated. To reenable the tasklet, use tasklet enable().

To activate the tasklet, you should invoke either the tasklet schedule() function or
the tasklet hi schedule() function, according to the priority that you require for
the tasklet. The two functions are very similar; each of them performs the following
actions:

1. Checks the TASKLET STATE_SCHED flag; if it is set, returns (the tasklet has already
been scheduled).

2. Invokes local irq_save to save the state of the IF flag and to disable local inter-
rupts.

3. Adds the tasklet descriptor at the beginning of the list pointed to by tasklet_
vec[n] or tasklet hi vec[n], where n denotes the logical number of the local
CPU.

4. Invokes raise_softirq_irqoff() to activate either the TASKLET SOFTIRQ or the HI
SOFTIRQ softirq (this function is similar to raise softirq(), except that it
assumes that local interrupts are already disabled).

5. Invokes local irq restore to restore the state of the IF flag.
Finally, let’s see how the tasklet is executed. We know from the previous section
that, once activated, softirq functions are executed by the do_softirq() function.
The softirq function associated with the HI_SOFTIRQ softirq is named tasklet hi_
action(), while the function associated with TASKLET SOFTIRQ is named tasklet
action(). Once again, the two functions are very similar; each of them:

1. Disables local interrupts.

2. Gets the logical number n of the local CPU.

3. Stores the address of the list pointed to by tasklet vec[n] or tasklet hi vec[n]
in the list local variable.

Softirgs and Tasklets | 179

4. Puts a NULL address in tasklet_vec[n] or tasklet_hi vec[n], thus emptying the
list of scheduled tasklet descriptors.

5. Enables local interrupts.
6. For each tasklet descriptor in the list pointed to by 1ist:
a. In multiprocessor systems, checks the TASKLET _STATE_RUN flag of the tasklet.

* Ifitis set, a tasklet of the same type is already running on another CPU,
so the function reinserts the task descriptor in the list pointed to by
tasklet_vec[n] or tasklet_hi vec[n] and activates the TASKLET_SOFTIRQ
or HI_SOFTIRQ softirq again. In this way, execution of the tasklet is
deferred until no other tasklets of the same type are running on other
CPUs.

* Otherwise, the tasklet is not running on another CPU: sets the flag so
that the tasklet function cannot be executed on other CPUs.

b. Checks whether the tasklet is disabled by looking at the count field of the
tasklet descriptor. If the tasklet is disabled, it clears its TASKLET STATE_RUN
flag and reinserts the task descriptor in the list pointed to by tasklet vec[n]
or tasklet hi vec[n]; then the function activates the TASKLET SOFTIRQ or HI
SOFTIRQ softirq again.

c. If the tasklet is enabled, it clears the TASKLET STATE_SCHED flag and executes
the tasklet function.

Notice that, unless the tasklet function reactivates itself, every tasklet activation trig-
gers at most one execution of the tasklet function.

Work Queues

The work queues have been introduced in Linux 2.6 and replace a similar construct
called “task queue” used in Linux 2.4. They allow kernel functions to be activated
(much like deferrable functions) and later executed by special kernel threads called
worker threads.

Despite their similarities, deferrable functions and work queues are quite different.
The main difference is that deferrable functions run in interrupt context while
functions in work queues run in process context. Running in process context is the
only way to execute functions that can block (for instance, functions that need to
access some block of data on disk) because, as already observed in the section
“Nested Execution of Exception and Interrupt Handlers” earlier in this chapter, no
process switch can take place in interrupt context. Neither deferrable functions nor
functions in a work queue can access the User Mode address space of a process. In
fact, a deferrable function cannot make any assumption about the process that is
currently running when it is executed. On the other hand, a function in a work
queue is executed by a kernel thread, so there is no User Mode address space to
access.

180 | Chapter4: Interrupts and Exceptions

Work queue data structures

The main data structure associated with a work queue is a descriptor called
workqueue_struct, which contains, among other things, an array of NR_CPUS elements,
the maximum number of CPUs in the system.” Each element is a descriptor of type
cpu_workqueue_struct, whose fields are shown in Table 4-12.

Table 4-12. The fields of the cpu_workqueue_struct structure

Field name Description

lock Spin lock used to protect the structure

Temove_sequence Sequence number used by flush_workqueue()

insert_sequence Sequence number used by flush_workqueue()

worklist Head of the list of pending functions

more_work Wait queue where the worker thread waiting for more work to be done sleeps
work_done Wait queue where the processes waiting for the work queue to be flushed sleep

wq Pointer to the workqueue_struct structure containing this descriptor

thread Process descriptor pointer of the worker thread of the structure

run_depth Current execution depth of run_workqueue () (this field may become greater than one

when a function in the work queue list blocks)

The worklist field of the cpu_workqueue_struct structure is the head of a doubly
linked list collecting the pending functions of the work queue. Every pending func-
tion is represented by a work struct data structure, whose fields are shown in
Table 4-13.

Table 4-13. The fields of the work_struct structure

Field name Description

pending Set to 1if the function is already in a work queue list, 0 otherwise

entry Pointers to next and previous elements in the list of pending functions

func Address of the pending function

data Pointer passed as a parameter to the pending function

wq_data Usually points to the parent cpu_workqueue_struct descriptor

timer Software timer used to delay the execution of the pending function
Work queue functions

The create_workqueue("foo") function receives as its parameter a string of charac-
ters and returns the address of a workqueue_struct descriptor for the newly created

* The reason for duplicating the work queue data structures in multiprocessor systems is that per-CPU local
data structures yield a much more efficient code (see the section “Per-CPU Variables” in Chapter 5).

Work Queues | 181

work queue. The function also creates n worker threads (where n is the number of
CPUs effectively present in the system), named after the string passed to the func-
tion: foo/0, foo/1, and so on. The create_singlethread workqueue() function is simi-
lar, but it creates just one worker thread, no matter what the number of CPUs in the
system is. To destroy a work queue the kernel invokes the destroy workqueue() func-
tion, which receives as its parameter a pointer to a workqueue_struct array.

queue_work() inserts a function (already packaged inside a work_struct descriptor) in
a work queue; it receives a pointer wq to the workqueue struct descriptor and a
pointer work to the work_struct descriptor. queue_work() essentially performs the fol-
lowing steps:

1. Checks whether the function to be inserted is already present in the work queue
(work->pending field equal to 1); if so, terminates.

2. Adds the work_struct descriptor to the work queue list, and sets work->pending
to 1.

3. If a worker thread is sleeping in the more_work wait queue of the local CPU’s cpu_
workqueue_struct descriptor, the function wakes it up.

The queue_delayed work() function is nearly identical to queue_work(), except that it
receives a third parameter representing a time delay in system ticks (see Chapter 6).
It is used to ensure a minimum delay before the execution of the pending function.
In practice, queue_delayed work() relies on the software timer in the timer field of the
work_struct descriptor to defer the actual insertion of the work struct descriptor in
the work queue list. cancel delayed work() cancels a previously scheduled work
queue function, provided that the corresponding work struct descriptor has not
already been inserted in the work queue list.

Every worker thread continuously executes a loop inside the worker thread() func-
tion; most of the time the thread is sleeping and waiting for some work to be queued.
Once awakened, the worker thread invokes the run workqueue() function, which
essentially removes every work struct descriptor from the work queue list of the
worker thread and executes the corresponding pending function. Because work
queue functions can block, the worker thread can be put to sleep and even migrated
to another CPU when resumed.”

Sometimes the kernel has to wait until all pending functions in a work queue have
been executed. The flush workqueue() function receives a workqueue_struct descrip-
tor address and blocks the calling process until all functions that are pending in the
work queue terminate. The function, however, does not wait for any pending func-
tion that was added to the work queue following flush_workqueue() invocation; the

* Strangely enough, a worker thread can be executed by every CPU, not just the CPU corresponding to the
cpu_workqueue_struct descriptor to which the worker thread belongs. Therefore, queue_work() inserts a
function in the queue of the local CPU, but that function may be executed by any CPU in the systems.

182 | Chapter4: Interrupts and Exceptions

remove_sequence and insert sequence fields of every cpu workqueue struct descrip-
tor are used to recognize the newly added pending functions.

The predefined work queue

In most cases, creating a whole set of worker threads in order to run a function is
overkill. Therefore, the kernel offers a predefined work queue called events, which
can be freely used by every kernel developer. The predefined work queue is nothing
more than a standard work queue that may include functions of different kernel lay-
ers and I/O drivers; its workqueue_struct descriptor is stored in the keventd wgq array.
To make use of the predefined work queue, the kernel offers the functions listed in
Table 4-14.

Table 4-14. Helper functions for the predefined work queue

Predefined work queue function Equivalent standard work queue function
schedule_work(w) queue_work(keventd wq,w)
schedule_delayed work(w,d) queue_delayed work(keventd wq,w,d) (onany CPU)

schedule_delayed work on(cpu,w,d) queue_delayed work(keventd wq,w,d) (ona given CPU)
flush_scheduled work() flush_workqueue(keventd wq)

The predefined work queue saves significant system resources when the function is
seldom invoked. On the other hand, functions executed in the predefined work
queue should not block for a long time: because the execution of the pending func-
tions in the work queue list is serialized on each CPU, a long delay negatively affects
the other users of the predefined work queue.

In addition to the general events queue, you’ll find a few specialized work queues in
Linux 2.6. The most significant is the kblockd work queue used by the block device
layer (see Chapter 14).

Returning from Interrupts and Exceptions

We will finish the chapter by examining the termination phase of interrupt and
exception handlers. (Returning from a system call is a special case, and we shall
describe it in Chapter 10.) Although the main objective is clear—namely, to resume
execution of some program—several issues must be considered before doing it:

Number of kernel control paths being concurrently executed
If there is just one, the CPU must switch back to User Mode.

Pending process switch requests
If there is any request, the kernel must perform process scheduling; otherwise,
control is returned to the current process.

Pending signals
If a signal is sent to the current process, it must be handled.

Returning from Interrupts and Exceptions | 183

Single-step mode
If a debugger is tracing the execution of the current process, single-step mode
must be restored before switching back to User Mode.

Virtual-8086 mode
If the CPU is in virtual-8086 mode, the current process is executing a legacy Real
Mode program, thus it must be handled in a special way.

A few flags are used to keep track of pending process switch requests, of pending sig-
nals, and of single step execution; they are stored in the flags field of the thread
info descriptor. The field stores other flags as well, but they are not related to return-
ing from interrupts and exceptions. See Table 4-15 for a complete list of these flags.

Table 4-15. The flags field of the thread_info descriptor (continues)

Flag name Description

TIF_SYSCALL_TRACE System calls are being traced

TIF_NOTIFY_RESUME Not used in the 80x 86 platform

TIF_SIGPENDING The process has pending signals

TIF_NEED_RESCHED Scheduling must be performed

TIF_SINGLESTEP Restore single step execution on return to User Mode

TIF_IRET Force return from system call via iret rather than sysexit
TIF_SYSCALL_AUDIT System calls are being audited

TIF_POLLING NRFLAG The idle process is polling the TTF_NEED_RESCHED flag

TIF_MEMDIE The process is being destroyed to reclaim memory (see the section “The Out of Memory

Killer” in Chapter 17)

The kernel assembly language code that accomplishes all these things is not, techni-
cally speaking, a function, because control is never returned to the functions that
invoke it. It is a piece of code with two different entry points: ret_from intr() and
ret from_exception(). As their names suggest, the kernel enters the former when ter-
minating an interrupt handler, and it enters the latter when terminating an excep-
tion handler. We shall refer to the two entry points as functions, because this makes
the description simpler.

The general flow diagram with the corresponding two entry points is illustrated in
Figure 4-6. The gray boxes refer to assembly language instructions that implement
kernel preemption (see Chapter 5); if you want to see what the kernel does when it is
compiled without support for kernel preemption, just ignore the gray boxes. The
ret_from_exception() and ret from_intr() entry points look quite similar in the
flow diagram. A difference exists only if support for kernel preemption has been
selected as a compilation option: in this case, local interrupts are immediately dis-
abled when returning from exceptions.

184 | Chapter4: Interrupts and Exceptions

ret_from_intr: '

(ret_from_exception:)

Nested kernel
control paths?

Virtual
8086 mode?

resume_kernel:

¢

YES
Kernel preemption
enabled?

NO

restore all:

Restore hardware context |

resume_userspace:

Is there work to
be done (rescheduling,
signals, single step)

-~

YES
work_resched:

schedule()
need_resched: l

Need to
reschedule?

Resuming a YES
kernel control path

with [F=07

preempt_schedule irq()

YES

Need to
reschedule?

work_notifysig:

Virtual

8086 mode?
NO

work_pending:

| save_v86_ state()

v

.

do_notify resume()

NO

Figure 4-6. Returning from interrupts and exceptions

The flow diagram gives a rough idea of the steps required to resume the execution of
an interrupted program. Now we will go into detail by discussing the assembly lan-

guage code.

The entry points

The ret_from intr() and ret from exception() entry points are essentially equiva-
lent to the following assembly language code:

ret from exception:

cli ; missing if kernel preemption is not supported

ret from intr:

movl $-8192, %ebp ; -4096 if multiple Kernel Mode stacks are used

andl %esp, %ebp

Returning from Interrupts and Exceptions |

185

movl 0x30(%esp), %eax

movb 0x2c(%esp), %al

testl $0x00020003, %eax

jnz resume_userspace

jpm resume_kernel
Recall that when returning from an interrupt, the local interrupts are disabled (see
step 3 in the earlier description of handle IRQ event()); thus, the cli assembly lan-
guage instruction is executed only when returning from an exception.

The kernel loads the address of the thread_info descriptor of current in the ebp regis-
ter (see “Identifying a Process” in Chapter 3).

Next, the values of the cs and eflags registers, which were pushed on the stack when
the interrupt or the exception occurred, are used to determine whether the inter-
rupted program was running in User Mode, or if the VM flag of eflags was set.” In
either case, a jump is made to the resume_userspace label. Otherwise, a jump is made
to the resume_kernel label.

Resuming a kernel control path

The assembly language code at the resume_kernel label is executed if the program to
be resumed is running in Kernel Mode:

resume_kernel:

cli ; these three instructions are
cmpl $0, 0x14(%ebp) ; missing if kernel preemption
jz need_resched ; 1is not supported

restore all:

popl Z%ebx
popl %ecx
popl %edx
popl %esi
popl %edi
popl %ebp
popl %eax
popl %ds
popl %es
addl $4, %esp
iret

If the preempt count field of the thread info descriptor is zero (kernel preemption
enabled), the kernel jumps to the need resched label. Otherwise, the interrupted pro-
gram is to be restarted. The function loads the registers with the values saved when
the interrupt or the exception started, and the function yields control by executing
the iret instruction.

* When this flag is set, programs are executed in virtual-8086 mode; see the Pentium manuals for more details.

186 | Chapter4: Interrupts and Exceptions

Checking for kernel preemption

When this code is executed, none of the unfinished kernel control paths is an inter-
rupt handler, otherwise the preempt count field would be greater than zero. How-
ever, as stated in “Nested Execution of Exception and Interrupt Handlers” earlier in
this chapter, there could be up to two kernel control paths associated with excep-
tions (beside the one that is terminating).
need_resched:

movl 0x8(%ebp), %ecx

testb $(1<<TIF_NEED RESCHED), %cl

jz restore all

testl $0x00000200,0x30(%esp)

jz restore all

call preempt schedule_irq

jmp need_resched
If the TIF_NEED RESCHED flag in the flags field of current->thread info is zero, no
process switch is required, thus a jump is made to the restore_all label. Also a jump
to the same label is made if the kernel control path that is being resumed was run-
ning with the local interrupts disabled. In this case a process switch could corrupt
kernel data structures (see the section “When Synchronization Is Necessary” in
Chapter 5 for more details).

If a process switch is required, the preempt_schedule irq() function is invoked: it
sets the PREEMPT_ACTIVE flag in the preempt_count field, temporarily sets the big ker-
nel lock counter to -1 (see the section “The Big Kernel Lock” in Chapter 5), enables
the local interrupts, and invokes schedule() to select another process to run. When
the former process will resume, preempt_schedule irq() restores the previous value
of the big kernel lock counter, clears the PREEMPT_ACTIVE flag, and disables local inter-
rupts. The schedule() function will continue to be invoked as long as the TIF_NEED_
RESCHED flag of the current process is set.

Resuming a User Mode program

If the program to be resumed was running in User Mode, a jump is made to the
resume_userspace label:
resume_userspace:

cli

movl 0x8(%ebp), %ecx

andl $0x0000ff6e, %ecx

je restore_all

jmp work pending
After disabling the local interrupts, a check is made on the value of the flags field of
current->thread _info. If no flag except TIF SYSCALL TRACE, TIF SYSCALL AUDIT, or
TIF_SINGLESTEP is set, nothing remains to be done: a jump is made to the restore all
label, thus resuming the User Mode program.

Returning from Interrupts and Exceptions | 187

Checking for rescheduling

The flags in the thread info descriptor state that additional work is required before
resuming the interrupted program.

work_pending:
testb $(1<<TIF_NEED_RESCHED), %cl
jz work_notifysig
work resched:
call schedule
cli
jmp resume_userspace

If a process switch request is pending, schedule() is invoked to select another pro-

cess to run. When the former process will resume, a jump is made back to resume_
userspace.

Handling pending signals, virtual-8086 mode, and single stepping
There is other work to be done besides process switch requests:

work notifysig:
movl %esp, %eax
testl $0x00020000, 0x30(%esp)
je 1f
work notifysig v86:
pushl %ecx
call save v86 state
popl %ecx
movl %eax, %esp

xorl %edx, Z%edx

call do_notify resume

jmp restore all
If the WM control flag in the eflags register of the User Mode program is set, the save_
v86_state() function is invoked to build up the virtual-8086 mode data structures in
the User Mode address space. Then the do_notify resume() function is invoked to
take care of pending signals and single stepping. Finally, a jump is made to the
restore all label to resume the interrupted program.

188 | Chapter4: Interrupts and Exceptions

CHAPTER 5
Kernel Synchronization

You could think of the kernel as a server that answers requests; these requests can
come either from a process running on a CPU or an external device issuing an inter-
rupt request. We make this analogy to underscore that parts of the kernel are not run
serially, but in an interleaved way. Thus, they can give rise to race conditions, which
must be controlled through proper synchronization techniques. A general introduc-
tion to these topics can be found in the section “An Overview of Unix Kernels” in
Chapter 1.

We start this chapter by reviewing when, and to what extent, kernel requests are exe-
cuted in an interleaved fashion. We then introduce the basic synchronization primi-
tives implemented by the kernel and describe how they are applied in the most
common cases. Finally, we illustrate a few practical examples.

How the Kernel Services Requests

To get a better grasp of how kernel’s code is executed, we will look at the kernel as a
waiter who must satisfy two types of requests: those issued by customers and those
issued by a limited number of different bosses. The policy adopted by the waiter is
the following;:

1. If a boss calls while the waiter is idle, the waiter starts servicing the boss.

2. If a boss calls while the waiter is servicing a customer, the waiter stops servicing
the customer and starts servicing the boss.

3. If a boss calls while the waiter is servicing another boss, the waiter stops servic-
ing the first boss and starts servicing the second one. When he finishes servicing
the new boss, he resumes servicing the former one.

4. One of the bosses may induce the waiter to leave the customer being currently
serviced. After servicing the last request of the bosses, the waiter may decide to
drop temporarily his customer and to pick up a new one.

189

The services performed by the waiter correspond to the code executed when the
CPU is in Kernel Mode. If the CPU is executing in User Mode, the waiter is consid-
ered idle.

Boss requests correspond to interrupts, while customer requests correspond to sys-
tem calls or exceptions raised by User Mode processes. As we shall see in detail in
Chapter 10, User Mode processes that want to request a service from the kernel must
issue an appropriate instruction (on the 80x86, an int $0x80 or a sysenter instruc-
tion). Such instructions raise an exception that forces the CPU to switch from User
Mode to Kernel Mode. In the rest of this chapter, we will generally denote as “excep-
tions” both the system calls and the usual exceptions.

The careful reader has already associated the first three rules with the nesting of ker-
nel control paths described in “Nested Execution of Exception and Interrupt Han-
dlers” in Chapter 4. The fourth rule corresponds to one of the most interesting new
features included in the Linux 2.6 kernel, namely kernel preemption.

Kernel Preemption

It is surprisingly hard to give a good definition of kernel preemption. As a first try,
we could say that a kernel is preemptive if a process switch may occur while the
replaced process is executing a kernel function, that is, while it runs in Kernel Mode.
Unfortunately, in Linux (as well as in any other real operating system) things are
much more complicated:

* Both in preemptive and nonpreemptive kernels, a process running in Kernel Mode
can voluntarily relinquish the CPU, for instance because it has to sleep waiting for
some resource. We will call this kind of process switch a planned process switch.
However, a preemptive kernel differs from a nonpreemptive kernel on the way a
process running in Kernel Mode reacts to asynchronous events that could induce
a process switch—for instance, an interrupt handler that awakes a higher priority
process. We will call this kind of process switch a forced process switch.

* All process switches are performed by the switch _to macro. In both preemptive
and nonpreemptive kernels, a process switch occurs when a process has finished
some thread of kernel activity and the scheduler is invoked. However, in nonpre-
emptive kernels, the current process cannot be replaced unless it is about to switch
to User Mode (see the section “Performing the Process Switch” in Chapter 3).

Therefore, the main characteristic of a preemptive kernel is that a process running in
Kernel Mode can be replaced by another process while in the middle of a kernel
function.

Let’s give a couple of examples to illustrate the difference between preemptive and
nonpreemptive kernels.

While process A executes an exception handler (necessarily in Kernel Mode), a higher
priority process B becomes runnable. This could happen, for instance, if an IRQ occurs

190 | Chapter5: Kernel Synchronization

and the corresponding handler awakens process B. If the kernel is preemptive, a forced
process switch replaces process A with B. The exception handler is left unfinished and
will be resumed only when the scheduler selects again process A for execution. Con-
versely, if the kernel is nonpreemptive, no process switch occurs until process A either
finishes handling the exception handler or voluntarily relinquishes the CPU.

For another example, consider a process that executes an exception handler and
whose time quantum expires (see the section “The scheduler_tick() Function” in
Chapter 7). If the kernel is preemptive, the process may be replaced immediately;
however, if the kernel is nonpreemptive, the process continues to run until it finishes
handling the exception handler or voluntarily relinquishes the CPU.

The main motivation for making a kernel preemptive is to reduce the dispatch latency
of the User Mode processes, that is, the delay between the time they become runna-
ble and the time they actually begin running. Processes performing timely scheduled
tasks (such as external hardware controllers, environmental monitors, movie play-
ers, and so on) really benefit from kernel preemption, because it reduces the risk of
being delayed by another process running in Kernel Mode.

Making the Linux 2.6 kernel preemptive did not require a drastic change in the ker-
nel design with respect to the older nonpreemptive kernel versions. As described in
the section “Returning from Interrupts and Exceptions” in Chapter 4, kernel pre-
emption is disabled when the preempt_count field in the thread info descriptor refer-
enced by the current thread info() macro is greater than zero. The field encodes
three different counters, as shown in Table 4-10 in Chapter 4, so it is greater than
zero when any of the following cases occurs:

1. The kernel is executing an interrupt service routine.

2. The deferrable functions are disabled (always true when the kernel is executing a
softirq or tasklet).

3. The kernel preemption has been explicitly disabled by setting the preemption
counter to a positive value.

The above rules tell us that the kernel can be preempted only when it is executing an
exception handler (in particular a system call) and the kernel preemption has not
been explicitly disabled. Furthermore, as described in the section “Returning from
Interrupts and Exceptions” in Chapter 4, the local CPU must have local interrupts
enabled, otherwise kernel preemption is not performed.

A few simple macros listed in Table 5-1 deal with the preemption counter in the
prempt_count field.

Table 5-1. Macros dealing with the preemption counter subfield

Macro Description
preempt_count() Selects the preempt_count field in the thread _info descriptor
preempt_disable() Increases by one the value of the preemption counter

How the Kernel Services Requests | 191

Table 5-1. Macros dealing with the preemption counter subfield (continued)

Macro Description
preempt_enable no_resched() Decreases by one the value of the preemption counter
preempt_enable() Decreases by one the value of the preemption counter, and invokes

preempt_schedule() ifthe TIF_NEED RESCHEDflagin the
thread_info descriptoris set

get_cpu() Similar to preempt_disable(), butalso returns the number of the
local CPU

put_cpu() Same as preempt_enable()

put_cpu_no_resched() Same as preempt_enable no_resched()

The preempt_enable() macro decreases the preemption counter, then checks whether
the TIF_NEED _RESCHED flag is set (see Table 4-15 in Chapter 4). In this case, a process
switch request is pending, so the macro invokes the preempt_schedule() function,
which essentially executes the following code:
if (lcurrent_thread_ info->preempt_count 8& !irqs_disabled()) {
current_thread info->preempt count = PREEMPT ACTIVE;

schedule();
current_thread info->preempt count = 0;

}

The function checks whether local interrupts are enabled and the preempt_count field
of current is zero; if both conditions are true, it invokes schedule() to select another
process to run. Therefore, kernel preemption may happen either when a kernel con-
trol path (usually, an interrupt handler) is terminated, or when an exception handler
reenables kernel preemption by means of preempt_enable(). As we’ll see in the sec-
tion “Disabling and Enabling Deferrable Functions” later in this chapter, kernel pre-
emption may also happen when deferrable functions are enabled.

We'll conclude this section by noticing that kernel preemption introduces a nonneg-
ligible overhead. For that reason, Linux 2.6 features a kernel configuration option
that allows users to enable or disable kernel preemption when compiling the kernel.

When Synchronization Is Necessary

Chapter 1 introduced the concepts of race condition and critical region for pro-
cesses. The same definitions apply to kernel control paths. In this chapter, a race
condition can occur when the outcome of a computation depends on how two or
more interleaved kernel control paths are nested. A critical region is a section of code
that must be completely executed by the kernel control path that enters it before
another kernel control path can enter it.

Interleaving kernel control paths complicates the life of kernel developers: they must
apply special care in order to identify the critical regions in exception handlers, inter-
rupt handlers, deferrable functions, and kernel threads. Once a critical region has

192 | Chapter5: Kernel Synchronization

been identified, it must be suitably protected to ensure that any time at most one ker-
nel control path is inside that region.

Suppose, for instance, that two different interrupt handlers need to access the same
data structure that contains several related member variables—for instance, a buffer
and an integer indicating its length. All statements affecting the data structure must be
put into a single critical region. If the system includes a single CPU, the critical region
can be implemented by disabling interrupts while accessing the shared data structure,
because nesting of kernel control paths can only occur when interrupts are enabled.

On the other hand, if the same data structure is accessed only by the service routines
of system calls, and if the system includes a single CPU, the critical region can be
implemented quite simply by disabling kernel preemption while accessing the shared
data structure.

As you would expect, things are more complicated in multiprocessor systems. Many
CPUs may execute kernel code at the same time, so kernel developers cannot assume
that a data structure can be safely accessed just because kernel preemption is disabled
and the data structure is never addressed by an interrupt, exception, or softirq handler.

We'll see in the following sections that the kernel offers a wide range of different syn-
chronization techniques. It is up to kernel designers to solve each synchronization
problem by selecting the most efficient technique.

When Synchronization Is Not Necessary

Some design choices already discussed in the previous chapter simplify somewhat
the synchronization of kernel control paths. Let us recall them briefly:

* All interrupt handlers acknowledge the interrupt on the PIC and also disable the
IRQ line. Further occurrences of the same interrupt cannot occur until the han-
dler terminates.

* Interrupt handlers, softirgs, and tasklets are both nonpreemptable and non-
blocking, so they cannot be suspended for a long time interval. In the worst case,
their execution will be slightly delayed, because other interrupts occur during
their execution (nested execution of kernel control paths).

* A kernel control path performing interrupt handling cannot be interrupted by a
kernel control path executing a deferrable function or a system call service routine.

* Softirgs and tasklets cannot be interleaved on a given CPU.

* The same tasklet cannot be executed simultaneously on several CPUs.

Each of the above design choices can be viewed as a constraint that can be
exploited to code some kernel functions more easily. Here are a few examples of
possible simplifications:

* Interrupt handlers and tasklets need not to be coded as reentrant functions.

How the Kernel Services Requests | 193

* Per-CPU variables accessed by softirgs and tasklets only do not require synchro-
nization.

* A data structure accessed by only one kind of tasklet does not require synchroni-
zation.

The rest of this chapter describes what to do when synchronization is necessary—i.e.,
how to prevent data corruption due to unsafe accesses to shared data structures.

Synchronization Primitives

We now examine how kernel control paths can be interleaved while avoiding race
conditions among shared data. Table 5-2 lists the synchronization techniques used by
the Linux kernel. The “Scope” column indicates whether the synchronization tech-
nique applies to all CPUs in the system or to a single CPU. For instance, local inter-
rupt disabling applies to just one CPU (other CPUs in the system are not affected);
conversely, an atomic operation affects all CPUs in the system (atomic operations on
several CPUs cannot interleave while accessing the same data structure).

Table 5-2. Various types of synchronization techniques used by the kernel

Technique Description Scope

Per-CPU variables Duplicate a data structure among the CPUs All CPUs

Atomic operation Atomic read-modify-write instruction to a counter All CPUs

Memory barrier Avoid instruction reordering Local CPU or All CPUs
Spin lock Lock with busy wait Al CPUs

Semaphore Lock with blocking wait (sleep) All CPUs

Seglocks Lock based on an access counter All CPUs

Local interrupt disabling Forbid interrupt handling on a single CPU Local CPU

Local softirq disabling Forbid deferrable function handling on a single CPU Local CPU
Read-copy-update (RCU) Lock-free access to shared data structures through pointers All CPUs

Let’s now briefly discuss each synchronization technique. In the later section “Syn-
chronizing Accesses to Kernel Data Structures,” we show how these synchronization
techniques can be combined to effectively protect kernel data structures.

Per-CPU Variables

The best synchronization technique consists in designing the kernel so as to avoid
the need for synchronization in the first place. As we’ll see, in fact, every explicit syn-
chronization primitive has a significant performance cost.

The simplest and most efficient synchronization technique consists of declaring ker-
nel variables as per-CPU variables. Basically, a per-CPU variable is an array of data
structures, one element per each CPU in the system.

194 | Chapter5: Kernel Synchronization

A CPU should not access the elements of the array corresponding to the other CPUs;
on the other hand, it can freely read and modify its own element without fear of race
conditions, because it is the only CPU entitled to do so. This also means, however,
that the per-CPU variables can be used only in particular cases—basically, when it
makes sense to logically split the data across the CPUs of the system.

The elements of the per-CPU array are aligned in main memory so that each data
structure falls on a different line of the hardware cache (see the section “Hardware
Cache” in Chapter 2). Therefore, concurrent accesses to the per-CPU array do not
result in cache line snooping and invalidation, which are costly operations in terms
of system performance.

While per-CPU variables provide protection against concurrent accesses from sev-
eral CPUs, they do not provide protection against accesses from asynchronous func-
tions (interrupt handlers and deferrable functions). In these cases, additional
synchronization primitives are required.

Furthermore, per-CPU variables are prone to race conditions caused by kernel pre-
emption, both in uniprocessor and multiprocessor systems. As a general rule, a ker-
nel control path should access a per-CPU variable with kernel preemption disabled.
Just consider, for instance, what would happen if a kernel control path gets the
address of its local copy of a per-CPU variable, and then it is preempted and moved
to another CPU: the address still refers to the element of the previous CPU.

Table 5-3 lists the main functions and macros offered by the kernel to use per-CPU
variables.

Table 5-3. Functions and macros for the per-CPU variables

Macro or function name Description

DEFINE_PER _CPU(type, name) Statically allocates a per-CPU array called name of type data structures

per_cpu(name, cpu) Selects the element for CPU cpu of the per-CPU array name

__get_cpu_var(name) Selects the local CPU’s element of the per-CPU array name

get_cpu_var(name) Disables kernel preemption, then selects the local CPU’s element of the
per-CPU array name

put_cpu_var(name) Enables kernel preemption (name is not used)

alloc_percpu(type) Dynamically allocates a per-CPU array of type data structures and returns
its address

free_percpu(pointer) Releases a dynamically allocated per-CPU array at address pointer

per_cpu_ptr(pointer, cpu) Returns the address of the element for CPU cpu of the per-CPU array at

address pointer

Atomic Operations

Several assembly language instructions are of type “read-modify-write”—that is,
they access a memory location twice, the first time to read the old value and the sec-
ond time to write a new value.

Synchronization Primitives | 195

Suppose that two kernel control paths running on two CPUs try to “read-modify-
write” the same memory location at the same time by executing nonatomic opera-
tions. At first, both CPUs try to read the same location, but the memory arbiter (a
hardware circuit that serializes accesses to the RAM chips) steps in to grant access to
one of them and delay the other. However, when the first read operation has com-
pleted, the delayed CPU reads exactly the same (old) value from the memory loca-
tion. Both CPUs then try to write the same (new) value to the memory location;
again, the bus memory access is serialized by the memory arbiter, and eventually
both write operations succeed. However, the global result is incorrect because both
CPUs write the same (new) value. Thus, the two interleaving “read-modify-write”
operations act as a single one.

The easiest way to prevent race conditions due to “read-modify-write” instructions is
by ensuring that such operations are atomic at the chip level. Every such operation
must be executed in a single instruction without being interrupted in the middle and
avoiding accesses to the same memory location by other CPUs. These very small
atomic operations can be found at the base of other, more flexible mechanisms to cre-
ate critical regions.

Let’s review 80 x 86 instructions according to that classification:

* Assembly language instructions that make zero or one aligned memory access
are atomic.”

* Read-modify-write assembly language instructions (such as inc or dec) that read
data from memory, update it, and write the updated value back to memory are
atomic if no other processor has taken the memory bus after the read and before
the write. Memory bus stealing never happens in a uniprocessor system.

* Read-modify-write assembly language instructions whose opcode is prefixed by
the lock byte (0xf0) are atomic even on a multiprocessor system. When the con-
trol unit detects the prefix, it “locks” the memory bus until the instruction is fin-
ished. Therefore, other processors cannot access the memory location while the
locked instruction is being executed.

* Assembly language instructions whose opcode is prefixed by a rep byte (0xf2,
0xf3, which forces the control unit to repeat the same instruction several times)
are not atomic. The control unit checks for pending interrupts before executing a
new iteration.

When you write C code, you cannot guarantee that the compiler will use an atomic
instruction for an operation like a=a+1 or even for a++. Thus, the Linux kernel pro-
vides a special atomic_t type (an atomically accessible counter) and some special

* A data item is aligned in memory when its address is a multiple of its size in bytes. For instance, the address
of an aligned short integer must be a multiple of two, while the address of an aligned integer must be a mul-
tiple of four. Generally speaking, an unaligned memory access is not atomic.

196 | Chapter5: Kernel Synchronization

functions and macros (see Table 5-4) that act on atomic_t variables and are imple-
mented as single, atomic assembly language instructions. On multiprocessor sys-
tems, each such instruction is prefixed by a lock byte.

Table 5-4. Atomic operations in Linux

Function
atomic_read(v)
atomic_set(v,1i)
atomic_add(i,v)
atomic_sub(i,v)
atomic_sub_and_test(i, v)
atomic_inc(v)
atomic_dec(v)
atomic_dec_and_test(v)
atomic_inc_and test(v)
atomic_add negative(i, v)
atomic_inc_return(v)
atomic_dec_return(v)
atomic_add return(i, v)

(

atomic_sub_return(i, v)

Description

Return *v

Set*vtoi

Add i to*v

Subtract i from *v

Subtract i from *v and return 1if the result is zero; 0 otherwise
Add 1to *v

Subtract 1 from *v

Subtract 1from *v and return 1if the result is zero; 0 otherwise
Add 1to *v and return 1if the result is zero; 0 otherwise

Add 1 to *v and return 1if the result is negative; 0 otherwise
Add 1to *v and return the new value of *v

Subtract 1from *v and return the new value of *v

Add i to *v and return the new value of *v

Subtract i from *v and return the new value of *v

Another class of atomic functions operate on bit masks (see Table 5-5).

Table 5-5. Atomic bit handling functions in Linux

Function

test_bit(nr, addr)

set bit(nr, addr)

clear bit(nr, addr)
change_bit(nr, addr)
test_and_set bit(nr, addr)
test_and_clear bit(nr, addr)
test_and_change_bit(nr, addr)
atomic_clear mask(mask, addr)

atomic_set mask(mask, addr)

Description

Return the value of the nxth bit of *addr

Set the nxth bit of *addr

Clear the nxth bit of *addr

Invert the nrthbit of *addr

Set the nxth bit of *addr and return its old value
Clear the nxth bit of *addr and return its old value
Invert the nxth bit of *addr and return its old value
Clear all bits of *addx specified by mask

Set all bits of *addr specified by mask

Optimization and Memory Barriers

When using optimizing compilers, you should never take for granted that instruc-
tions will be performed in the exact order in which they appear in the source code.
For example, a compiler might reorder the assembly language instructions in such a

Synchronization Primitives | 197

way to optimize how registers are used. Moreover, modern CPUs usually execute
several instructions in parallel and might reorder memory accesses. These kinds of
reordering can greatly speed up the program.

When dealing with synchronization, however, reordering instructions must be
avoided. Things would quickly become hairy if an instruction placed after a synchro-
nization primitive is executed before the synchronization primitive itself. Therefore,
all synchronization primitives act as optimization and memory barriers.

An optimization barrier primitive ensures that the assembly language instructions cor-
responding to C statements placed before the primitive are not mixed by the compiler
with assembly language instructions corresponding to C statements placed after the
primitive. In Linux the barrier() macro, which expands into asm volatile("":::
"memory"), acts as an optimization barrier. The asm instruction tells the compiler to
insert an assembly language fragment (empty, in this case). The volatile keyword for-
bids the compiler to reshuffle the asminstruction with the other instructions of the pro-
gram. The memory keyword forces the compiler to assume that all memory locations in
RAM have been changed by the assembly language instruction; therefore, the compiler
cannot optimize the code by using the values of memory locations stored in CPU reg-
isters before the asm instruction. Notice that the optimization barrier does not ensure
that the executions of the assembly language instructions are not mixed by the CPU—
this is a job for a memory barrier.

A memory barrier primitive ensures that the operations placed before the primitive
are finished before starting the operations placed after the primitive. Thus, a mem-
ory barrier is like a firewall that cannot be passed by an assembly language instruc-
tion.

In the 80x86 processors, the following kinds of assembly language instructions are
said to be “serializing” because they act as memory barriers:

* All instructions that operate on I/O ports
* Allinstructions prefixed by the lock byte (see the section “Atomic Operations”)

» All instructions that write into control registers, system registers, or debug regis-
ters (for instance, cli and sti, which change the status of the IF flag in the
eflags register)

* The 1fence, sfence, and mfence assembly language instructions, which have been
introduced in the Pentium 4 microprocessor to efficiently implement read mem-
ory barriers, write memory barriers, and read-write memory barriers, respec-
tively.

* A few special assembly language instructions; among them, the iret instruction
that terminates an interrupt or exception handler

Linux uses a few memory barrier primitives, which are shown in Table 5-6. These
primitives act also as optimization barriers, because we must make sure the compiler
does not move the assembly language instructions around the barrier. “Read memory

198 | Chapter5: Kernel Synchronization

barriers” act only on instructions that read from memory, while “write memory barri-
ers” act only on instructions that write to memory. Memory barriers can be useful in
both multiprocessor and uniprocessor systems. The smp_xxx() primitives are used
whenever the memory barrier should prevent race conditions that might occur only in
multiprocessor systems; in uniprocessor systems, they do nothing. The other mem-
ory barriers are used to prevent race conditions occurring both in uniprocessor and
multiprocessor systems.

Table 5-6. Memory barriers in Linux

Macro Description

mb() Memory barrier for MP and UP
mb() Read memory barrier for MP and UP
wmb () Write memory barrier for MP and UP
smp_mb() Memory barrier for MP only
smp_rmb() Read memory barrier for MP only
smp_wmb () Write memory barrier for MP only

The implementations of the memory barrier primitives depend on the architecture of
the system. On an 80x86 microprocessor, the rmb() macro usually expands into
asm volatile("1fence") if the CPU supports the 1fence assembly language instruction,
or into asm volatile("lock;addl $0,0(%%esp)":::"memory") otherwise. The asm state-
ment inserts an assembly language fragment in the code generated by the compiler and
acts as an optimization barrier. The lock; addl $0,0(%%esp) assembly language
instruction adds zero to the memory location on top of the stack; the instruction is use-
less by itself, but the lock prefix makes the instruction a memory barrier for the CPU.

The wmb() macro is actually simpler because it expands into barrier(). This is
because existing Intel microprocessors never reorder write memory accesses, so there
is no need to insert a serializing assembly language instruction in the code. The
macro, however, forbids the compiler from shuffling the instructions.

Notice that in multiprocessor systems, all atomic operations described in the earlier
section “Atomic Operations” act as memory barriers because they use the lock byte.

Spin Locks

A widely used synchronization technique is locking. When a kernel control path
must access a shared data structure or enter a critical region, it needs to acquire a
“lock” for it. A resource protected by a locking mechanism is quite similar to a
resource confined in a room whose door is locked when someone is inside. If a ker-
nel control path wishes to access the resource, it tries to “open the door” by acquir-
ing the lock. It succeeds only if the resource is free. Then, as long as it wants to use
the resource, the door remains locked. When the kernel control path releases the
lock, the door is unlocked and another kernel control path may enter the room.

Synchronization Primitives | 199

Figure 5-1 illustrates the use of locks. Five kernel control paths (PO, P1, P2, P3, and
P4) are trying to access two critical regions (C1 and C2). Kernel control path PO is
inside C1, while P2 and P4 are waiting to enter it. At the same time, P1 is inside C2,
while P3 is waiting to enter it. Notice that PO and P1 could run concurrently. The
lock for critical region C3 is open because no kernel control path needs to enter it.

@ N
{ c 1 P, - Kemel control path
N J
@ N
| CZ Cn - (ritical region
N J
@ N
f c3
N J

Figure 5-1. Protecting critical regions with several locks

Spin locks are a special kind of lock designed to work in a multiprocessor environ-
ment. If the kernel control path finds the spin lock “open,” it acquires the lock and
continues its execution. Conversely, if the kernel control path finds the lock “closed”
by a kernel control path running on another CPU, it “spins” around, repeatedly exe-
cuting a tight instruction loop, until the lock is released.

The instruction loop of spin locks represents a “busy wait.” The waiting kernel con-
trol path keeps running on the CPU, even if it has nothing to do besides waste time.
Nevertheless, spin locks are usually convenient, because many kernel resources are
locked for a fraction of a millisecond only; therefore, it would be far more time-con-
suming to release the CPU and reacquire it later.

As a general rule, kernel preemption is disabled in every critical region protected by
spin locks. In the case of a uniprocessor system, the locks themselves are useless, and
the spin lock primitives just disable or enable the kernel preemption. Please notice
that kernel preemption is still enabled during the busy wait phase, thus a process
waiting for a spin lock to be released could be replaced by a higher priority process.

In Linux, each spin lock is represented by a spinlock_t structure consisting of two

fields:

slock
Encodes the spin lock state: the value 1 corresponds to the unlocked state, while
every negative value and 0 denote the locked state

200 | Chapter5: Kernel Synchronization

break lock
Flag signaling that a process is busy waiting for the lock (present only if the ker-
nel supports both SMP and kernel preemption)

Six macros shown in Table 5-7 are used to initialize, test, and set spin locks. All these
macros are based on atomic operations; this ensures that the spin lock will be
updated properly even when multiple processes running on different CPUs try to
modify the lock at the same time.”

Table 5-7. Spin lock macros

Macro Description

spin_lock init() Set the spin lock to 1 (unlocked)

spin_lock() Cycle until spin lock becomes 1 (unlocked), then set it to 0 (locked)

spin_unlock() Set the spin lock to 1 (unlocked)

spin_unlock wait() Wait until the spin lock becomes 1 (unlocked)

spin_is locked() Return 0 if the spin lock is set to 1 (unlocked); 1 otherwise

spin_trylock() Set the spin lock to 0 (locked), and return 1 if the previous value of the lock was 1; 0 oth-
erwise

The spin_lock macro with kernel preemption

Let’s discuss in detail the spin_lock macro, which is used to acquire a spin lock. The
following description refers to a preemptive kernel for an SMP system. The macro
takes the address slp of the spin lock as its parameter and executes the following
actions:

1. Invokes preempt_disable() to disable kernel preemption.

2. Invokes the _raw spin_trylock() function, which does an atomic test-and-set
operation on the spin lock’s slock field; this function executes first some instruc-
tions equivalent to the following assembly language fragment:

movb $0, %al

xchgb %al, slp->slock
The xchg assembly language instruction exchanges atomically the content of the
8-bit %al register (storing zero) with the content of the memory location pointed
to by slp->slock. The function then returns the value 1 if the old value stored in
the spin lock (in %al after the xchg instruction) was positive, the value 0 other-
wise.

3. If the old value of the spin lock was positive, the macro terminates: the kernel
control path has acquired the spin lock.

* Spin locks, ironically enough, are global and therefore must themselves be protected against concurrent
accesses.

Synchronization Primitives | 201

4. Otherwise, the kernel control path failed in acquiring the spin lock, thus the
macro must cycle until the spin lock is released by a kernel control path running
on some other CPU. Invokes preempt_enable() to undo the increase of the pre-
emption counter done in step 1. If kernel preemption was enabled before execut-
ing the spin_lock macro, another process can now replace this process while it
waits for the spin lock.

5. If the break_lock field is equal to zero, sets it to one. By checking this field, the
process owning the lock and running on another CPU can learn whether there
are other processes waiting for the lock. If a process holds a spin lock for a long
time, it may decide to release it prematurely to allow another process waiting for
the same spin lock to progress.

6. Executes the wait cycle:
while (spin_is locked(slp) 8& slp->break lock)
cpu_relax();
The cpu_relax() macro reduces to a pause assembly language instruction. This
instruction has been introduced in the Pentium 4 model to optimize the execu-
tion of spin lock loops. By introducing a short delay, it speeds up the execution
of code following the lock and reduces power consumption. The pause instruc-
tion is backward compatible with earlier models of 80x86 microprocessors
because it corresponds to the instruction rep;nop, that is, to a no-operation.

7. Jumps back to step 1 to try once more to get the spin lock.

The spin_lock macro without kernel preemption

If the kernel preemption option has not been selected when the kernel was com-
piled, the spin_lock macro is quite different from the one described above. In this
case, the macro yields a assembly language fragment that is essentially equivalent to
the following tight busy wait:"

1: lock; decb slp->slock
jns 3f

2: pause
cmpb $0,s1p->slock
jle 2b
jmp 1b

3:

The decb assembly language instruction decreases the spin lock value; the instruc-

tion is atomic because it is prefixed by the lock byte. A test is then performed on the
sign flag. If it is clear, it means that the spin lock was set to 1 (unlocked), so normal

* The actual implementation of the tight busy wait loop is slightly more complicated. The code at label 2,
which is executed only if the spin lock is busy, is included in an auxiliary section so that in the most frequent
case (when the spin lock is already free) the hardware cache is not filled with code that won’t be executed.
In our discussion, we omit these optimization details.

202 | Chapter5: Kemel Synchronization

execution continues at label 3 (the f suffix denotes the fact that the label is a “for-
ward” one; it appears in a later line of the program). Otherwise, the tight loop at
label 2 (the b suffix denotes a “backward” label) is executed until the spin lock
assumes a positive value. Then execution restarts from label 1, since it is unsafe to
proceed without checking whether another processor has grabbed the lock.

The spin_unlock macro

The spin_unlock macro releases a previously acquired spin lock; it essentially exe-
cutes the assembly language instruction:

movb $1, slp->slock

and then invokes preempt enable() (if kernel preemption is not supported,
preempt_enable() does nothing). Notice that the lock byte is not used because
write-only accesses in memory are always atomically executed by the current
80x86 microprocessors.

Read/Write Spin Locks

Read/write spin locks have been introduced to increase the amount of concurrency
inside the kernel. They allow several kernel control paths to simultaneously read the
same data structure, as long as no kernel control path modifies it. If a kernel control
path wishes to write to the structure, it must acquire the write version of the read/write
lock, which grants exclusive access to the resource. Of course, allowing concurrent
reads on data structures improves system performance.

Figure 5-2 illustrates two critical regions (C1 and C2) protected by read/write locks.
Kernel control paths RO and R1 are reading the data structures in C1 at the same
time, while WO is waiting to acquire the lock for writing. Kernel control path W1 is
writing the data structures in C2, while both R2 and W2 are waiting to acquire the
lock for reading and writing, respectively.

-
R ¢
Rn - Reader kernel control path
(G

J
W_ - Writer kernel control path
™\ n

-
(n - (ritical region
(R) W ¢
(G

Figure 5-2. Read/write spin locks

Synchronization Primitives | 203

Each read/write spin lock is a rwlock t structure; its lock field is a 32-bit field that
encodes two distinct pieces of information:

* A 24-bit counter denoting the number of kernel control paths currently reading
the protected data structure. The two’s complement value of this counter is
stored in bits 0-23 of the field.

* An unlock flag that is set when no kernel control path is reading or writing, and
clear otherwise. This unlock flag is stored in bit 24 of the field.

Notice that the lock field stores the number 0x01000000 if the spin lock is idle (unlock
flag set and no readers), the number 0x00000000 if it has been acquired for writing
(unlock flag clear and no readers), and any number in the sequence oxooffffff,
ox00fffffe, and so on, if it has been acquired for reading by one, two, or more pro-
cesses (unlock flag clear and the two’s complement on 24 bits of the number of
readers). As the spinlock t structure, the rwlock t structure also includes a break
lock field.

The rwlock init macro initializes the lock field of a read/write spin lock to
0x01000000 (unlocked) and the break lock field to zero.

Getting and releasing a lock for reading

The read_lock macro, applied to the address rwlp of a read/write spin lock, is similar
to the spin_lock macro described in the previous section. If the kernel preemption
option has been selected when the kernel was compiled, the macro performs the very
same actions as those of spin_lock(), with just one exception: to effectively acquire
the read/write spin lock in step 2, the macro executes the raw_read trylock() func-
tion:

int raw_read trylock(rwlock t *lock)
{
atomic_t *count = (atomic_t *)lock->lock;
atomic_dec(count);
if (atomic_read(count) >= 0)
return 1;
atomic_inc(count);
return 0;

}

The lock field—the read/write lock counter—is accessed by means of atomic opera-
tions. Notice, however, that the whole function does not act atomically on the
counter: for instance, the counter might change after having tested its value with the
if statement and before returning 1. Nevertheless, the function works properly: in
fact, the function returns 1 only if the counter was not zero or negative before the
decrement, because the counter is equal to 0x01000000 for no owner, 0x00ffffff for
one reader, and 0x00000000 for one writer.

If the kernel preemption option has not been selected when the kernel was com-
piled, the read lock macro yields the following assembly language code:

204 | Chapter5: Kemel Synchronization

movl $rwlp->lock,%eax

lock; subl $1, (%eax)

jns 1f

call _ read lock failed
1:

where _read lock failed() is the following assembly language function:

__read_lock_failed:
lock; incl (%eax)
1: pause
cmpl $1, (%eax)
js 1b
lock; decl (%eax)
js __read_lock_failed
ret
The read lock macro atomically decreases the spin lock value by 1, thus increasing
the number of readers. The spin lock is acquired if the decrement operation yields a
nonnegative value; otherwise, the _ read lock failed() function is invoked. The
function atomically increases the lock field to undo the decrement operation per-
formed by the read lock macro, and then loops until the field becomes positive
(greater than or equal to 1). Next, read lock failed() tries to get the spin lock
again (another kernel control path could acquire the spin lock for writing right after
the cmpl instruction).

Releasing the read lock is quite simple, because the read_unlock macro must simply
increase the counter in the lock field with the assembly language instruction:

lock; incl rwlp->lock

to decrease the number of readers, and then invoke preempt enable() to reenable
kernel preemption.

Getting and releasing a lock for writing

The write lock macro is implemented in the same way as spin_lock() and read_
lock(). For instance, if kernel preemption is supported, the function disables kernel
preemption and tries to grab the lock right away by invoking raw write trylock().
If this function returns 0, the lock was already taken, thus the macro reenables ker-
nel preemption and starts a busy wait loop, as explained in the description of spin_
lock() in the previous section.

The raw write trylock() function is shown below:

int raw write trylock(xwlock t *lock)

{
atomic_t *count = (atomic_t *)lock->lock;
if (atomic_sub_and test(0x01000000, count))
return 1;
atomic_add(0x01000000, count);
return 0;
}

Synchronization Primitives | 205

The raw write trylock() function subtracts 0x01000000 from the read/write spin
lock value, thus clearing the unlock flag (bit 24). If the subtraction operation yields
zero (no readers), the lock is acquired and the function returns 1; otherwise, the
function atomically adds 0x01000000 to the spin lock value to undo the subtraction
operation.

Once again, releasing the write lock is much simpler because the write unlock
macro must simply set the unlock flag in the lock field with the assembly language
Instruction:

lock; addl $0x01000000,1wlp

and then invoke preempt_enable().

Seqlocks

When using read/write spin locks, requests issued by kernel control paths to per-
form a read_lock or awrite lock operation have the same priority: readers must wait
until the writer has finished and, similarly, a writer must wait until all readers have

finished.

Seqlocks introduced in Linux 2.6 are similar to read/write spin locks, except that they
give a much higher priority to writers: in fact a writer is allowed to proceed even
when readers are active. The good part of this strategy is that a writer never waits
(unless another writer is active); the bad part is that a reader may sometimes be
forced to read the same data several times until it gets a valid copy.

Each seqlock is a seqlock t structure consisting of two fields: a lock field of type
spinlock_t and an integer sequence field. This second field plays the role of a
sequence counter. Each reader must read this sequence counter twice, before and
after reading the data, and check whether the two values coincide. In the opposite
case, a new writer has become active and has increased the sequence counter, thus
implicitly telling the reader that the data just read is not valid.

A seqlock_t variable is initialized to “unlocked” either by assigning to it the value
SEQLOCK_UNLOCKED, or by executing the seqlock_init macro. Writers acquire and
release a seqlock by invoking write seqlock() and write_sequnlock(). The first func-
tion acquires the spin lock in the seqlock t data structure, then increases the
sequence counter by one; the second function increases the sequence counter once
more, then releases the spin lock. This ensures that when the writer is in the middle
of writing, the counter is odd, and that when no writer is altering data, the counter is
even. Readers implement a critical region as follows:
unsigned int seq;
do {
seq = read segbegin(&seqlock);
/* ... CRITICAL REGION ... */
} while (read_seqretry(&seqlock, seq));

206 | Chapter5: Kemel Synchronization

read_segbegin() returns the current sequence number of the seqlock; read
seqretry() returns 1 if either the value of the seq local variable is odd (a writer was
updating the data structure when the read segbegin() function has been invoked),
or if the value of seq does not match the current value of the seqlock’s sequence
counter (a writer started working while the reader was still executing the code in the
critical region).

Notice that when a reader enters a critical region, it does not need to disable kernel
preemption; on the other hand, the writer automatically disables kernel preemption
when entering the critical region, because it acquires the spin lock.

Not every kind of data structure can be protected by a seqlock. As a general rule, the
following conditions must hold:

* The data structure to be protected does not include pointers that are modified by
the writers and dereferenced by the readers (otherwise, a writer could change the
pointer under the nose of the readers)

* The code in the critical regions of the readers does not have side effects (other-
wise, multiple reads would have different effects from a single read)

Furthermore, the critical regions of the readers should be short and writers should
seldom acquire the seqlock, otherwise repeated read accesses would cause a severe
overhead. A typical usage of seqlocks in Linux 2.6 consists of protecting some data
structures related to the system time handling (see Chapter 6).

Read-Copy Update (RCU)

Read-copy update (RCU) is yet another synchronization technique designed to protect
data structures that are mostly accessed for reading by several CPUs. RCU allows many
readers and many writers to proceed concurrently (an improvement over seqlocks,
which allow only one writer to proceed). Moreover, RCU is lock-free, that is, it uses no
lock or counter shared by all CPUs; this is a great advantage over read/write spin locks
and seqlocks, which have a high overhead due to cache line-snooping and invalidation.

How does RCU obtain the surprising result of synchronizing several CPUs without
shared data structures? The key idea consists of limiting the scope of RCU as follows:

1. Only data structures that are dynamically allocated and referenced by means of
pointers can be protected by RCU.

2. No kernel control path can sleep inside a critical region protected by RCU.

When a kernel control path wants to read an RCU-protected data structure, it exe-
cutes the rcu_read lock() macro, which is equivalent to preempt disable(). Next,
the reader dereferences the pointer to the data structure and starts reading it. As
stated above, the reader cannot sleep until it finishes reading the data structure; the
end of the critical region is marked by the rcu_read unlock() macro, which is equiva-
lent to preempt_enable().

Synchronization Primitives | 207

Because the reader does very little to prevent race conditions, we could expect that
the writer has to work a bit more. In fact, when a writer wants to update the data
structure, it dereferences the pointer and makes a copy of the whole data structure.
Next, the writer modifies the copy. Once finished, the writer changes the pointer to
the data structure so as to make it point to the updated copy. Because changing the
value of the pointer is an atomic operation, each reader or writer sees either the old
copy or the new one: no corruption in the data structure may occur. However, a
memory barrier is required to ensure that the updated pointer is seen by the other
CPUs only after the data structure has been modified. Such a memory barrier is
implicitly introduced if a spin lock is coupled with RCU to forbid the concurrent
execution of writers.

The real problem with the RCU technique, however, is that the old copy of the data
structure cannot be freed right away when the writer updates the pointer. In fact, the
readers that were accessing the data structure when the writer started its update
could still be reading the old copy. The old copy can be freed only after all (poten-
tial) readers on the CPUs have executed the rcu_read unlock() macro. The kernel
requires every potential reader to execute that macro before:

* The CPU performs a process switch (see restriction 2 earlier).
* The CPU starts executing in User Mode.
* The CPU executes the idle loop (see the section “Kernel Threads” in Chapter 3).

In each of these cases, we say that the CPU has gone through a quiescent state.

The call rcu() function is invoked by the writer to get rid of the old copy of the
data structure. It receives as its parameters the address of an rcu_head descriptor
(usually embedded inside the data structure to be freed) and the address of a call-
back function to be invoked when all CPUs have gone through a quiescent state.
Once executed, the callback function usually frees the old copy of the data structure.

The call rcu() function stores in the rcu_head descriptor the address of the callback
and its parameter, then inserts the descriptor in a per-CPU list of callbacks. Periodi-
cally, once every tick (see the section “Updating Local CPU Statistics” in Chapter 6),
the kernel checks whether the local CPU has gone through a quiescent state. When
all CPUs have gone through a quiescent state, a local tasklet—whose descriptor is
stored in the rcu_tasklet per-CPU variable—executes all callbacks in the list.

RCU is a new addition in Linux 2.6; it is used in the networking layer and in the Vir-
tual Filesystem.

Semaphores

We have already introduced semaphores in the section “Synchronization and Criti-
cal Regions” in Chapter 1. Essentially, they implement a locking primitive that
allows waiters to sleep until the desired resource becomes free.

208 | Chapter5: Kernel Synchronization

Actually, Linux offers two kinds of semaphores:

* Kernel semaphores, which are used by kernel control paths

* System V IPC semaphores, which are used by User Mode processes

In this section, we focus on kernel semaphores, while IPC semaphores are described
in Chapter 19.

A kernel semaphore is similar to a spin lock, in that it doesn’t allow a kernel control
path to proceed unless the lock is open. However, whenever a kernel control path
tries to acquire a busy resource protected by a kernel semaphore, the corresponding
process is suspended. It becomes runnable again when the resource is released.
Therefore, kernel semaphores can be acquired only by functions that are allowed to
sleep; interrupt handlers and deferrable functions cannot use them.

A kernel semaphore is an object of type struct semaphore, containing the fields
shown in the following list.

count
Stores an atomic_t value. If it is greater than 0, the resource is free—that is, it is
currently available. If count is equal to O, the semaphore is busy but no other
process is waiting for the protected resource. Finally, if count is negative, the
resource is unavailable and at least one process is waiting for it.

wait
Stores the address of a wait queue list that includes all sleeping processes that are
currently waiting for the resource. Of course, if count is greater than or equal to
0, the wait queue is empty.

sleepers
Stores a flag that indicates whether some processes are sleeping on the sema-
phore. We'll see this field in operation soon.

The init MUTEX() and init MUTEX_LOCKED() functions may be used to initialize a
semaphore for exclusive access: they set the count field to 1 (free resource with exclu-
sive access) and O (busy resource with exclusive access currently granted to the pro-
cess that initializes the semaphore), respectively. The DECLARE_MUTEX and DECLARE
MUTEX_LOCKED macros do the same, but they also statically allocate the
struct semaphore variable. Note that a semaphore could also be initialized with an
arbitrary positive value n for count. In this case, at most n processes are allowed to
concurrently access the resource.

Getting and releasing semaphores

Let’s start by discussing how to release a semaphore, which is much simpler than get-
ting one. When a process wishes to release a kernel semaphore lock, it invokes the

Synchronization Primitives | 209

up() function. This function is essentially equivalent to the following assembly lan-
guage fragment:

movl $sem->count,%ecx
lock; incl (%ecx)
jg 1f
lea %ecx,%eax
pushl %edx
pushl %ecx
call __up
popl %ecx
popl %edx
1:

where __up() is the following C function:

__attribute ((regparm(3))) void _ up(struct semaphore *sem)

{

wake_up(&sem->wait);

The up() function increases the count field of the *sem semaphore, and then it checks
whether its value is greater than 0. The increment of count and the setting of the flag
tested by the following jump instruction must be atomically executed, or else
another kernel control path could concurrently access the field value, with disas-
trous results. If count is greater than 0, there was no process sleeping in the wait
queue, so nothing has to be done. Otherwise, the __up() function is invoked so that
one sleeping process is woken up. Notice that __up() receives its parameter from the
eax register (see the description of the __switch to() function in the section “Per-
forming the Process Switch” in Chapter 3).

Conversely, when a process wishes to acquire a kernel semaphore lock, it invokes the
down() function. The implementation of down(') is quite involved, but it is essentially
equivalent to the following:

down:
movl $sem->count,%ecx
lock; decl (%ecx);
jns 1f
lea %ecx, %eax
pushl %edx
pushl %ecx
call _ down
popl Z%ecx
popl %edx

1:

where __down() is the following C function:

attribute ((regparm(3))) void __down(struct semaphore * sem)
{

DECLARE_WAITQUEUE(wait, current);

unsigned long flags;

current->state = TASK_UNINTERRUPTIBLE;

210 | Chapter5: Kenel Synchronization

spin_lock_irgsave(&sem->wait.lock, flags);
add_wait_queue_exclusive locked(&sem->wait, &wait);
sem->sleepers++;
for (5;) {
if (latomic_add_negative(sem->sleepers-1, &sem->count)) {
sem->sleepers = 0;
break;
}
sem->sleepers = 1;
spin_unlock_irqrestore(&sem->wait.lock, flags);
schedule();
spin_lock irgsave(&sem->wait.lock, flags);
current->state = TASK_UNINTERRUPTIBLE;
}

remove wait queue locked(8sem->wait, 8wait);

wake _up_locked(&sem->wait);

spin_unlock_irqrestore(8sem->wait.lock, flags);

current->state = TASK_RUNNING;

}

The down() function decreases the count field of the *sem semaphore, and then
checks whether its value is negative. Again, the decrement and the test must be
atomically executed. If count is greater than or equal to 0, the current process
acquires the resource and the execution continues normally. Otherwise, count is neg-
ative, and the current process must be suspended. The contents of some registers are
saved on the stack, and then __down() is invoked.

Essentially, the __down() function changes the state of the current process from
TASK_RUNNING to TASK_UNINTERRUPTIBLE, and it puts the process in the semaphore wait
queue. Before accessing the fields of the semaphore structure, the function also gets
the sem->wait.lock spin lock that protects the semaphore wait queue (see “How Pro-
cesses Are Organized” in Chapter 3) and disables local interrupts. Usually, wait
queue functions get and release the wait queue spin lock as necessary when inserting
and deleting an element. The __down() function, however, uses the wait queue spin
lock also to protect the other fields of the semaphore data structure, so that no pro-
cess running on another CPU is able to read or modify them. To that end, __down()
uses the “ locked” versions of the wait queue functions, which assume that the spin
lock has been already acquired before their invocations.

The main task of the __down() function is to suspend the current process until the
semaphore is released. However, the way in which this is done is quite involved. To
easily understand the code, keep in mind that the sleepers field of the semaphore is
usually set to 0 if no process is sleeping in the wait queue of the semaphore, and it is
set to 1 otherwise. Let’s try to explain the code by considering a few typical cases.

MUTEX semaphore open (count equal to 1, sleepers equal to 0)
The down macro just sets the count field to 0 and jumps to the next instruction of
the main program; therefore, the __down() function is not executed at all.

Synchronization Primitives | 211

MUTEX semaphore closed, no sleeping processes (count equal to 0, sleepers equal to 0)
The down macro decreases count and invokes the _ down() function with the
count field set to —1 and the sleepers field set to 0. In each iteration of the loop,
the function checks whether the count field is negative. (Observe that the count
field is not changed by atomic_add negative() because sleepers is equal to 0
when the function is invoked.)

* If the count field is negative, the function invokes schedule() to suspend the
current process. The count field is still set to —1, and the sleepers field to 1.
The process picks up its run subsequently inside this loop and issues the test
again.

* If the count field is not negative, the function sets sleepers to 0 and exits from
the loop. It tries to wake up another process in the semaphore wait queue
(but in our scenario, the queue is now empty) and terminates holding the
semaphore. On exit, both the count field and the sleepers field are set to 0, as
required when the semaphore is closed but no process is waiting for it.

MUTEX semaphore closed, other sleeping processes (count equal to -1, sleepers equal

to1)
The down macro decreases count and invokes the _ down() function with count
set to —2 and sleepers set to 1. The function temporarily sets sleepers to 2, and
then undoes the decrement performed by the down macro by adding the value
sleepers—1 to count. At the same time, the function checks whether count is still
negative (the semaphore could have been released by the holding process right
before __down() entered the critical region).

* If the count field is negative, the function resets sleepers to 1 and invokes
schedule() to suspend the current process. The count field is still set to —1,
and the sleepers field to 1.

* If the count field is not negative, the function sets sleepers to 0, tries to
wake up another process in the semaphore wait queue, and exits holding the
semaphore. On exit, the count field is set to 0 and the sleepers field to 0.
The values of both fields look wrong, because there are other sleeping pro-
cesses. However, consider that another process in the wait queue has been
woken up. This process does another iteration of the loop; the atomic_add_
negative() function subtracts 1 from count, restoring it to —1; moreover,
before returning to sleep, the woken-up process resets sleepers to 1.

So, the code properly works in all cases. Consider that the wake up() function in __
down () wakes up at most one process, because the sleeping processes in the wait
queue are exclusive (see the section “How Processes Are Organized” in Chapter 3).

Only exception handlers, and particularly system call service routines, can use the
down() function. Interrupt handlers or deferrable functions must not invoke down(),
because this function suspends the process when the semaphore is busy. For this rea-
son, Linux provides the down_trylock() function, which may be safely used by one

212 | Chapter5: Kernel Synchronization

of the previously mentioned asynchronous functions. It is identical to down() except
when the resource is busy. In this case, the function returns immediately instead of
putting the process to sleep.

A slightly different function called down_interruptible() is also defined. It is widely
used by device drivers, because it allows processes that receive a signal while being
blocked on a semaphore to give up the “down” operation. If the sleeping process is
woken up by a signal before getting the needed resource, the function increases the
count field of the semaphore and returns the value -EINTR. On the other hand, if down_
interruptible() runs to normal completion and gets the resource, it returns 0. The
device driver may thus abort the I/O operation when the return value is ~-EINTR.

Finally, because processes usually find semaphores in an open state, the semaphore
functions are optimized for this case. In particular, the up() function does not exe-
cute jump instructions if the semaphore wait queue is empty; similarly, the down()
function does not execute jump instructions if the semaphore is open. Much of the
complexity of the semaphore implementation is precisely due to the effort of avoid-
ing costly instructions in the main branch of the execution flow.

Read/Write Semaphores

Read/write semaphores are similar to the read/write spin locks described earlier in
the section “Read/Write Spin Locks,” except that waiting processes are suspended
instead of spinning until the semaphore becomes open again.

Many kernel control paths may concurrently acquire a read/write semaphore for
reading; however, every writer kernel control path must have exclusive access to the
protected resource. Therefore, the semaphore can be acquired for writing only if no
other kernel control path is holding it for either read or write access. Read/write
semaphores improve the amount of concurrency inside the kernel and improve over-
all system performance.

The kernel handles all processes waiting for a read/write semaphore in strict FIFO
order. Each reader or writer that finds the semaphore closed is inserted in the last
position of a semaphore’s wait queue list. When the semaphore is released, the pro-
cess in the first position of the wait queue list are checked. The first process is always
awoken. If it is a writer, the other processes in the wait queue continue to sleep. If it
is a reader, all readers at the start of the queue, up to the first writer, are also woken
up and get the lock. However, readers that have been queued after a writer continue
to sleep.

Each read/write semaphore is described by a rw_semaphore structure that includes the
following fields:

count
Stores two 16-bit counters. The counter in the most significant word encodes in
two’s complement form the sum of the number of nonwaiting writers (either 0

Synchronization Primitives | 213

or 1) and the number of waiting kernel control paths. The counter in the less sig-
nificant word encodes the total number of nonwaiting readers and writers.

wait list
Points to a list of waiting processes. Each element in this list is a rwsem waiter
structure, including a pointer to the descriptor of the sleeping process and a flag
indicating whether the process wants the semaphore for reading or for writing.

wait lock
A spin lock used to protect the wait queue list and the rw_semaphore structure
itself.

The init_rwsem() function initializes an rw_semaphore structure by setting the count
field to 0, the wait_lock spin lock to unlocked, and wait_list to the empty list.

The down_read() and down write() functions acquire the read/write semaphore for
reading and writing, respectively. Similarly, the up_read() and up write() functions
release a read/write semaphore previously acquired for reading and for writing. The
down_read trylock() and down write trylock() functions are similar to down_read()
and down_write(), respectively, but they do not block the process if the semaphore is
busy. Finally, the downgrade write() function atomically transforms a write lock into
a read lock. The implementation of these five functions is long, but easy to follow
because it resembles the implementation of normal semaphores; therefore, we avoid
describing them.

Completions

Linux 2.6 also makes use of another synchronization primitive similar to sema-
phores: completions. They have been introduced to solve a subtle race condition that
occurs in multiprocessor systems when process A allocates a temporary semaphore
variable, initializes it as closed MUTEX, passes its address to process B, and then
invokes down() on it. Process A plans to destroy the semaphore as soon as it awak-
ens. Later on, process B running on a different CPU invokes up() on the semaphore.
However, in the current implementation up() and down() can execute concurrently
on the same semaphore. Thus, process A can be woken up and destroy the tempo-
rary semaphore while process B is still executing the up() function. As a result, up()
might attempt to access a data structure that no longer exists.

Of course, it is possible to change the implementation of down() and up() to forbid con-
current executions on the same semaphore. However, this change would require addi-
tional instructions, which is a bad thing to do for functions that are so heavily used.

The completion is a synchronization primitive that is specifically designed to solve
this problem. The completion data structure includes a wait queue head and a flag:

struct completion {
unsigned int done;
wait_queue head t wait;

b

214 | Chapter5: Kernel Synchronization

The function corresponding to up() is called complete(). It receives as an argument the
address of a completion data structure, invokes spin_lock irgsave() on the spin lock
of the completion’s wait queue, increases the done field, wakes up the exclusive pro-
cess sleeping in the wait wait queue, and finally invokes spin_unlock_irqrestore().

The function corresponding to down() is called wait_for completion(). It receives as
an argument the address of a completion data structure and checks the value of the
done flag. If it is greater than zero, wait for completion() terminates, because
complete() has already been executed on another CPU. Otherwise, the function adds
current to the tail of the wait queue as an exclusive process and puts current to sleep
in the TASK_UNINTERRUPTIBLE state. Once woken up, the function removes current
from the wait queue. Then, the function checks the value of the done flag: if it is
equal to zero the function terminates, otherwise, the current process is suspended
again. As in the case of the complete() function, wait_for completion() makes use of
the spin lock in the completion’s wait queue.

The real difference between completions and semaphores is how the spin lock
included in the wait queue is used. In completions, the spin lock is used to ensure
that complete() and wait for completion() cannot execute concurrently. In sema-
phores, the spin lock is used to avoid letting concurrent down()’s functions mess up
the semaphore data structure.

Local Interrupt Disabling

Interrupt disabling is one of the key mechanisms used to ensure that a sequence of
kernel statements is treated as a critical section. It allows a kernel control path to
continue executing even when hardware devices issue IRQ signals, thus providing an
effective way to protect data structures that are also accessed by interrupt handlers.
By itself, however, local interrupt disabling does not protect against concurrent
accesses to data structures by interrupt handlers running on other CPUs, so in multi-
processor systems, local interrupt disabling is often coupled with spin locks (see the
later section “Synchronizing Accesses to Kernel Data Structures”).

The local irq disable() macro, which makes use of the cli assembly language
instruction, disables interrupts on the local CPU. The local irq enable() macro,
which makes use of the of the sti assembly language instruction, enables them. As
stated in the section “IRQs and Interrupts” in Chapter 4, the cli and sti assembly
language instructions, respectively, clear and set the IF flag of the eflags control reg-
ister. The irgs_disabled() macro yields the value one if the IF flag of the eflags reg-
ister is clear, the value one if the flag is set.

When the kernel enters a critical section, it disables interrupts by clearing the IF flag
of the eflags register. But at the end of the critical section, often the kernel can’t sim-
ply set the flag again. Interrupts can execute in nested fashion, so the kernel does not
necessarily know what the IF flag was before the current control path executed. In
these cases, the control path must save the old setting of the flag and restore that set-
ting at the end.

Synchronization Primitives | 215

Saving and restoring the eflags content is achieved by means of the local irq_save
and local irq restore macros, respectively. The local irq_save macro copies the
content of the eflags register into a local variable; the IF flag is then cleared by a cli
assembly language instruction. At the end of the critical region, the macro local
irq_restore restores the original content of eflags; therefore, interrupts are enabled
only if they were enabled before this control path issued the cli assembly language
instruction.

Disabling and Enabling Deferrable Functions

In the section “Softirgs” in Chapter 4, we explained that deferrable functions can be
executed at unpredictable times (essentially, on termination of hardware interrupt
handlers). Therefore, data structures accessed by deferrable functions must be pro-
tected against race conditions.

A trivial way to forbid deferrable functions execution on a CPU is to disable inter-
rupts on that CPU. Because no interrupt handler can be activated, softirq actions
cannot be started asynchronously.

As we’ll see in the next section, however, the kernel sometimes needs to disable
deferrable functions without disabling interrupts. Local deferrable functions can be
enabled or disabled on the local CPU by acting on the softirq counter stored in the
preempt_count field of the current’s thread info descriptor.

Recall that the do_softirq() function never executes the softirgs if the softirq
counter is positive. Moreover, tasklets are implemented on top of softirgs, so setting
this counter to a positive value disables the execution of all deferrable functions on a
given CPU, not just softirgs.

The local bh disable macro adds one to the softirq counter of the local CPU, while
the local bh enable() function subtracts one from it. The kernel can thus use sev-
eral nested invocations of local bh disable; deferrable functions will be enabled
again only by the local bh_enable macro matching the first local bh_disable invoca-
tion.

After having decreased the softirq counter, local bh enable() performs two impor-
tant operations that help to ensure timely execution of long-waiting threads:

1. Checks the hardirq counter and the softirq counter in the preempt_count field of
the local CPU; if both of them are zero and there are pending softirgs to be exe-
cuted, invokes do_softirq() to activate them (see the section “Softirgs” in
Chapter 4).

2. Checks whether the TIF_NEED RESCHED flag of the local CPU is set; if so, a pro-
cess switch request is pending, thus invokes the preempt schedule() function
(see the section “Kernel Preemption” earlier in this chapter).

216 | Chapter5: Kemel Synchronization

Synchronizing Accesses to Kernel Data Structures

A shared data structure can be protected against race conditions by using some of
the synchronization primitives shown in the previous section. Of course, system per-
formance may vary considerably, depending on the kind of synchronization primi-
tive selected. Usually, the following rule of thumb is adopted by kernel developers:
always keep the concurrency level as high as possible in the system.

In turn, the concurrency level in the system depends on two main factors:

* The number of I/O devices that operate concurrently

* The number of CPUs that do productive work

To maximize I/O throughput, interrupts should be disabled for very short periods of
time. As described in the section “IRQs and Interrupts” in Chapter 4, when inter-
rupts are disabled, IRQs issued by I/O devices are temporarily ignored by the PIC,
and no new activity can start on such devices.

To use CPUs efficiently, synchronization primitives based on spin locks should be
avoided whenever possible. When a CPU is executing a tight instruction loop wait-
ing for the spin lock to open, it is wasting precious machine cycles. Even worse, as
we have already said, spin locks have negative effects on the overall performance of
the system because of their impact on the hardware caches.

Let’s illustrate a couple of cases in which synchronization can be achieved while still
maintaining a high concurrency level:

* A shared data structure consisting of a single integer value can be updated by
declaring it as an atomic_t type and by using atomic operations. An atomic oper-
ation is faster than spin locks and interrupt disabling, and it slows down only
kernel control paths that concurrently access the data structure.

* Inserting an element into a shared linked list is never atomic, because it consists
of at least two pointer assignments. Nevertheless, the kernel can sometimes per-
form this insertion operation without using locks or disabling interrupts. As an
example of why this works, we’ll consider the case where a system call service
routine (see “System Call Handler and Service Routines” in Chapter 10) inserts
new elements in a singly linked list, while an interrupt handler or deferrable
function asynchronously looks up the list.

In the C language, insertion is implemented by means of the following pointer
assignments:

new->next = list element->next;

list element->next = new;
In assembly language, insertion reduces to two consecutive atomic instructions.
The first instruction sets up the next pointer of the new element, but it does not
modify the list. Thus, if the interrupt handler sees the list between the execution
of the first and second instructions, it sees the list without the new element. If

Synchronizing Accesses to Kernel Data Structures | 217

the handler sees the list after the execution of the second instruction, it sees the
list with the new element. The important point is that in either case, the list is
consistent and in an uncorrupted state. However, this integrity is assured only if
the interrupt handler does not modify the list. If it does, the next pointer that
was just set within the new element might become invalid.

However, developers must ensure that the order of the two assignment opera-
tions cannot be subverted by the compiler or the CPU’s control unit; otherwise,
if the system call service routine is interrupted by the interrupt handler between
the two assignments, the handler finds a corrupted list. Therefore, a write mem-
ory barrier primitive is required:

new->next = list element->next;

wmb () ;
list_element->next = new;

Choosing Among Spin Locks, Semaphores, and Interrupt Disabling

Unfortunately, access patterns to most kernel data structures are a lot more complex
than the simple examples just shown, and kernel developers are forced to use sema-
phores, spin locks, interrupts, and softirq disabling. Generally speaking, choosing
the synchronization primitives depends on what kinds of kernel control paths access
the data structure, as shown in Table 5-8. Remember that whenever a kernel control
path acquires a spin lock (as well as a read/write lock, a seqlock, or a RCU “read
lock”), disables the local interrupts, or disables the local softirgs, kernel preemption
is automatically disabled.

Table 5-8. Protection required by data structures accessed by kernel control paths

Kernel control paths accessing the data structure UP protection MP further protection
Exceptions Semaphore None

Interrupts Local interrupt disabling Spin lock

Deferrable functions None None or spin lock (see Table 5-9)
Exceptions + Interrupts Local interrupt disabling Spin lock

Exceptions + Deferrable functions Local softirq disabling Spin lock

Interrupts + Deferrable functions Local interrupt disabling Spin lock

Exceptions + Interrupts + Deferrable functions Local interrupt disabling Spin lock

Protecting a data structure accessed by exceptions

When a data structure is accessed only by exception handlers, race conditions are
usually easy to understand and prevent. The most common exceptions that give rise
to synchronization problems are the system call service routines (see the section “Sys-
tem Call Handler and Service Routines” in Chapter 10) in which the CPU operates in
Kernel Mode to offer a service to a User Mode program. Thus, a data structure

218 | Chapter5: Kemel Synchronization

accessed only by an exception usually represents a resource that can be assigned to
one or more processes.

Race conditions are avoided through semaphores, because these primitives allow the
process to sleep until the resource becomes available. Notice that semaphores work
equally well both in uniprocessor and multiprocessor systems.

Kernel preemption does not create problems either. If a process that owns a sema-
phore is preempted, a new process running on the same CPU could try to get the
semaphore. When this occurs, the new process is put to sleep, and eventually the old
process will release the semaphore. The only case in which kernel preemption must
be explicitly disabled is when accessing per-CPU variables, as explained in the sec-
tion “Per-CPU Variables” earlier in this chapter.

Protecting a data structure accessed by interrupts

Suppose that a data structure is accessed by only the “top half” of an interrupt han-
dler. We learned in the section “Interrupt Handling” in Chapter 4 that each inter-
rupt handler is serialized with respect to itself—that is, it cannot execute more than
once concurrently. Thus, accessing the data structure does not require synchroniza-
tion primitives.

Things are different, however, if the data structure is accessed by several interrupt
handlers. A handler may interrupt another handler, and different interrupt handlers
may run concurrently in multiprocessor systems. Without synchronization, the
shared data structure might easily become corrupted.

In uniprocessor systems, race conditions must be avoided by disabling interrupts in
all critical regions of the interrupt handler. Nothing less will do because no other
synchronization primitives accomplish the job. A semaphore can block the process,
so it cannot be used in an interrupt handler. A spin lock, on the other hand, can
freeze the system: if the handler accessing the data structure is interrupted, it cannot
release the lock; therefore, the new interrupt handler keeps waiting on the tight loop
of the spin lock.

Multiprocessor systems, as usual, are even more demanding. Race conditions cannot
be avoided by simply disabling local interrupts. In fact, even if interrupts are dis-
abled on a CPU, interrupt handlers can still be executed on the other CPUs. The
most convenient method to prevent the race conditions is to disable local interrupts
(so that other interrupt handlers running on the same CPU won’t interfere) and to
acquire a spin lock or a read/write spin lock that protects the data structure. Notice
that these additional spin locks cannot freeze the system because even if an interrupt
handler finds the lock closed, eventually the interrupt handler on the other CPU that
owns the lock will release it.

Synchronizing Accesses to Kernel Data Structures | 219

The Linux kernel uses several macros that couple the enabling and disabling of local
interrupts with spin lock handling. Table 5-9 describes all of them. In uniprocessor
systems, these macros just enable or disable local interrupts and kernel preemption.

Table 5-9. Interrupt-aware spin lock macros

Macro

spin_lock_irq(1)
spin_unlock_irq(l)

spin_lock bh(1)
spin_unlock_bh(1)

spin_lock irgsave(l,f)
spin_unlock irqrestore(1,f)
read_lock_irq(1l)

read_unlock irq(1l)

read_lock bh(1)
read_unlock_bh(1)

write lock_irq(l)

write unlock irq(l)

write lock bh(1)

write unlock bh(1l)

read lock_irgsave(l,f)
read_unlock irqrestore(l,f)
write_lock_irgsave(l,f)
write unlock irqrestore(l,)
read_segbegin_irgsave(l,f)
read_seqretry irqrestore(l,v,f)
write seqlock_irgsave(l,f)
write sequnlock irgrestore(l,f)
write_seqlock_irq(l)

write sequnlock irq(1l)

write seqlock bh(1)
write_sequnlock_bh(1)

Description

local irq disable(); spin_lock(1)
spin_unlock(1l); local irq enable()
local bh disable(); spin_lock(1l)
spin_unlock(1l); local_bh_enable()
local irq save(f); spin_lock(l)
spin_unlock(1l); local irq restore(f)
local irq disable(); read lock(l)
read_unlock(1l); local irq enable()
local bh disable(); read lock(1)
read_unlock(1l); local bh_enable()
local irq disable(); write lock(1l)
write unlock(l); local irq enable()
local bh disable(); write lock(1l)
write unlock(l); local bh_enable()
local irq save(f); read lock(l)
read_unlock(l); local irq restore(f)
local irq save(f); write lock(1l)

write unlock(l); local irq restore(f)
local irq save(f); read_seqbegin(l)
read_seqretry(l,v); local irq restore(f)
local irq save(f); write seqlock(1l)
write sequnlock(l); local irq restore(f)
local irq disable(); write seqlock(l)
write sequnlock(l); local irq_enable()
local bh disable(); write seqlock(l);
write sequnlock(l); local bh enable()

Protecting a data structure accessed by deferrable functions

What kind of protection is required for a data structure accessed only by deferrable
functions? Well, it mostly depends on the kind of deferrable function. In the section
“Softirqs and Tasklets” in Chapter 4, we explained that softirqs and tasklets essen-
tially differ in their degree of concurrency.

220 | Chapter5: Kemel Synchronization

First of all, no race condition may exist in uniprocessor systems. This is because exe-
cution of deferrable functions is always serialized on a CPU—that is, a deferrable
function cannot be interrupted by another deferrable function. Therefore, no syn-
chronization primitive is ever required.

Conversely, in multiprocessor systems, race conditions do exist because several
deferrable functions may run concurrently. Table 5-10 lists all possible cases.

Table 5-10. Protection required by data structures accessed by deferrable functions in SMP

Deferrable functions accessing the data structure Protection
Softirgs Spin lock
One tasklet None
Many tasklets Spin lock

A data structure accessed by a softirq must always be protected, usually by means of
a spin lock, because the same softirq may run concurrently on two or more CPUs.
Conversely, a data structure accessed by just one kind of tasklet need not be pro-
tected, because tasklets of the same kind cannot run concurrently. However, if the
data structure is accessed by several kinds of tasklets, then it must be protected.

Protecting a data structure accessed by exceptions and interrupts

Let’s consider now a data structure that is accessed both by exceptions (for instance,
system call service routines) and interrupt handlers.

On uniprocessor systems, race condition prevention is quite simple, because inter-
rupt handlers are not reentrant and cannot be interrupted by exceptions. As long as
the kernel accesses the data structure with local interrupts disabled, the kernel can-
not be interrupted when accessing the data structure. However, if the data structure
is accessed by just one kind of interrupt handler, the interrupt handler can freely
access the data structure without disabling local interrupts.

On multiprocessor systems, we have to take care of concurrent executions of excep-
tions and interrupts on other CPUs. Local interrupt disabling must be coupled with a
spin lock, which forces the concurrent kernel control paths to wait until the handler
accessing the data structure finishes its work.

Sometimes it might be preferable to replace the spin lock with a semaphore. Because
interrupt handlers cannot be suspended, they must acquire the semaphore using a
tight loop and the down_trylock() function; for them, the semaphore acts essentially
as a spin lock. System call service routines, on the other hand, may suspend the call-
ing processes when the semaphore is busy. For most system calls, this is the expected
behavior. In this case, semaphores are preferable to spin locks, because they lead to a
higher degree of concurrency of the system.

Synchronizing Accesses to Kernel Data Structures | 221

Protecting a data structure accessed by exceptions and deferrable functions

A data structure accessed both by exception handlers and deferrable functions can be
treated like a data structure accessed by exception and interrupt handlers. In fact,
deferrable functions are essentially activated by interrupt occurrences, and no excep-
tion can be raised while a deferrable function is running. Coupling local interrupt
disabling with a spin lock is therefore sufficient.

Actually, this is much more than sufficient: the exception handler can simply disable
deferrable functions instead of local interrupts by using the local bh disable()
macro (see the section “Softirqs” in Chapter 4). Disabling only the deferrable func-
tions is preferable to disabling interrupts, because interrupts continue to be serviced
by the CPU. Execution of deferrable functions on each CPU is serialized, so no race
condition exists.

As usual, in multiprocessor systems, spin locks are required to ensure that the data
structure is accessed at any time by just one kernel control.

Protecting a data structure accessed by interrupts and deferrable functions

This case is similar to that of a data structure accessed by interrupt and exception
handlers. An interrupt might be raised while a deferrable function is running, but no
deferrable function can stop an interrupt handler. Therefore, race conditions must be
avoided by disabling local interrupts during the deferrable function. However, an
interrupt handler can freely touch the data structure accessed by the deferrable func-
tion without disabling interrupts, provided that no other interrupt handler accesses
that data structure.

Again, in multiprocessor systems, a spin lock is always required to forbid concurrent
accesses to the data structure on several CPUs.

Protecting a data structure accessed by exceptions, interrupts,
and deferrable functions

Similarly to previous cases, disabling local interrupts and acquiring a spin lock is
almost always necessary to avoid race conditions. Notice that there is no need to
explicitly disable deferrable functions, because they are essentially activated when
terminating the execution of interrupt handlers; disabling local interrupts is there-
fore sufficient.

Examples of Race Condition Prevention

Kernel developers are expected to identify and solve the synchronization problems
raised by interleaving kernel control paths. However, avoiding race conditions is a
hard task because it requires a clear understanding of how the various components of
the kernel interact. To give a feeling of what’s really inside the kernel code, let’s men-
tion a few typical usages of the synchronization primitives defined in this chapter.

222 | Chapter5: Kernel Synchronization

Reference Counters

Reference counters are widely used inside the kernel to avoid race conditions due to
the concurrent allocation and releasing of a resource. A reference counter is just an
atomic_t counter associated with a specific resource such as a memory page, a mod-
ule, or a file. The counter is atomically increased when a kernel control path starts
using the resource, and it is decreased when a kernel control path finishes using the
resource. When the reference counter becomes zero, the resource is not being used,
and it can be released if necessary.

The Big Kernel Lock

In earlier Linux kernel versions, a big kernel lock (also known as global kernel lock, or
BKL) was widely used. In Linux 2.0, this lock was a relatively crude spin lock, ensur-
ing that only one processor at a time could run in Kernel Mode. The 2.2 and 2.4 ker-
nels were considerably more flexible and no longer relied on a single spin lock;
rather, a large number of kernel data structures were protected by many different
spin locks. In Linux kernel version 2.6, the big kernel lock is used to protect old code
(mostly functions related to the VFS and to several filesystems).

Starting from kernel version 2.6.11, the big kernel lock is implemented by a sema-
phore named kernel sem (in earlier 2.6 versions, the big kernel lock was imple-
mented by means of a spin lock). The big kernel lock is slightly more sophisticated
than a simple semaphore, however.

Every process descriptor includes a lock depth field, which allows the same process
to acquire the big kernel lock several times. Therefore, two consecutive requests for
it will not hang the processor (as for normal locks). If the process has not acquired
the lock, the field has the value —1; otherwise, the field value plus 1 specifies how
many times the lock has been taken. The lock depth field is crucial for allowing
interrupt handlers, exception handlers, and deferrable functions to take the big ker-
nel lock: without it, every asynchronous function that tries to get the big kernel lock
could generate a deadlock if the current process already owns the lock.

The lock_kernel() and unlock kernel(') functions are used to get and release the big
kernel lock. The former function is equivalent to:
depth = current->lock_depth + 1;
if (depth == 0)
down(&kernel sem);
current->lock_depth = depth;
while the latter is equivalent to:

if (--current->lock depth < 0)
up(8kernel sem);

Notice that the if statements of the lock kernel() and unlock kernel() functions
need not be executed atomically because lock_depth is not a global variable—each

Examples of Race Condition Prevention | 223

CPU addresses a field of its own current process descriptor. Local interrupts inside
the if statements do not induce race conditions either. Even if the new kernel con-
trol path invokes lock kernel(), it must release the big kernel lock before
terminating.

Surprisingly enough, a process holding the big kernel lock is allowed to invoke
schedule(), thus relinquishing the CPU. The schedule() function, however, checks
the lock_depth field of the process being replaced and, if its value is zero or positive,
automatically releases the kernel sem semaphore (see the section “The schedule()
Function” in Chapter 7). Thus, no process that explicitly invokes schedule() can
keep the big kernel lock across the process switch. The schedule() function, how-
ever, will reacquire the big kernel lock for the process when it will be selected again
for execution.

Things are different, however, if a process that holds the big kernel lock is pre-
empted by another process. Up to kernel version 2.6.10 this case could not occur,
because acquiring a spin lock automatically disables kernel preemption. The current
implementation of the big kernel lock, however, is based on a semaphore, and
acquiring it does not automatically disable kernel preemption. Actually, allowing
kernel preemption inside critical regions protected by the big kernel lock has been
the main reason for changing its implementation. This, in turn, has beneficial effects
on the response time of the system.

When a process holding the big kernel lock is preempted, schedule() must not
release the semaphore because the process executing the code in the critical region
has not voluntarily triggered a process switch, thus if the big kernel lock would be
released, another process might take it and corrupt the data structures accessed by
the preempted process.

To avoid the preempted process losing the big kernel lock, the preempt_schedule
irq() function temporarily sets the lock_depth field of the process to -1 (see the sec-
tion “Returning from Interrupts and Exceptions” in Chapter 4). Looking at the value
of this field, schedule() assumes that the process being replaced does not hold the
kernel sem semaphore and thus does not release it. As a result, the kernel sem sema-
phore continues to be owned by the preempted process. Once this process is selected
again by the scheduler, the preempt schedule irq() function restores the original
value of the lock depth field and lets the process resume execution in the critical sec-
tion protected by the big kernel lock.

Memory Descriptor Read/Write Semaphore

Each memory descriptor of type mm_struct includes its own semaphore in the mmap_
sem field (see the section “The Memory Descriptor” in Chapter 9). The semaphore
protects the descriptor against race conditions that could arise because a memory
descriptor can be shared among several lightweight processes.

224 | Chapter5: Kernel Synchronization

For instance, let’s suppose that the kernel must create or extend a memory region for
some process; to do this, it invokes the do_mmap() function, which allocates a new
vm_area_struct data structure. In doing so, the current process could be suspended if
no free memory is available, and another process sharing the same memory descrip-
tor could run. Without the semaphore, every operation of the second process that
requires access to the memory descriptor (for instance, a Page Fault due to a Copy on
Write) could lead to severe data corruption.

The semaphore is implemented as a read/write semaphore, because some kernel
functions, such as the Page Fault exception handler (see the section “Page Fault
Exception Handler” in Chapter 9), need only to scan the memory descriptors.

Slab Cache List Semaphore

The list of slab cache descriptors (see the section “Cache Descriptor” in Chapter 8) is
protected by the cache _chain_sem semaphore, which grants an exclusive right to
access and modify the list.

A race condition is possible when kmem_cache_create() adds a new element in the
list, while kmem_cache _shrink() and kmem cache reap() sequentially scan the list.
However, these functions are never invoked while handling an interrupt, and they can
never block while accessing the list. The semaphore plays an active role both in multi-
processor systems and in uniprocessor systems with kernel preemption supported.

Inode Semaphore

As we’ll see in “Inode Objects” in Chapter 12, Linux stores the information on a disk
file in a memory object called an inode. The corresponding data structure includes its
own semaphore in the i_sem field.

A huge number of race conditions can occur during filesystem handling. Indeed,
each file on disk is a resource held in common for all users, because all processes
may (potentially) access the file content, change its name or location, destroy or
duplicate it, and so on. For example, let’s suppose that a process lists the files con-
tained in some directory. Each disk operation is potentially blocking, and therefore
even in uniprocessor systems, other processes could access the same directory and
modify its content while the first process is in the middle of the listing operation. Or,
again, two different processes could modify the same directory at the same time. All
these race conditions are avoided by protecting the directory file with the inode
semaphore.

Whenever a program uses two or more semaphores, the potential for deadlock is
present, because two different paths could end up waiting for each other to release a
semaphore. Generally speaking, Linux has few problems with deadlocks on sema-
phore requests, because each kernel control path usually needs to acquire just one
semaphore at a time. However, in some cases, the kernel must get two or more locks.

Examples of Race Condition Prevention | 225

Inode semaphores are prone to this scenario; for instance, this occurs in the service
routine in the rename() system call. In this case, two different inodes are involved in
the operation, so both semaphores must be taken. To avoid such deadlocks, sema-
phore requests are performed in predefined address order.

226 | Chapter5: Kemel Synchronization

CHAPTER 6
Timing Measurements

Countless computerized activities are driven by timing measurements, often behind
the user’s back. For instance, if the screen is automatically switched off after you have
stopped using the computer’s console, it is due to a timer that allows the kernel to
keep track of how much time has elapsed since you pushed a key or moved the
mouse. If you receive a warning from the system asking you to remove a set of
unused files, it is the outcome of a program that identifies all user files that have not
been accessed for a long time. To do these things, programs must be able to retrieve a
timestamp identifying its last access time from each file. Such a timestamp must be
automatically written by the kernel. More significantly, timing drives process
switches along with even more visible kernel activities such as checking for time-outs.

We can distinguish two main kinds of timing measurement that must be performed
by the Linux kernel:

* Keeping the current time and date so they can be returned to user programs
through the time(), ftime(), and gettimeofday() APIs (see the section “The
time() and gettimeofday() System Calls” later in this chapter) and used by the
kernel itself as timestamps for files and network packets

* Maintaining timers—mechanisms that are able to notify the kernel (see the later
section “Software Timers and Delay Functions”) or a user program (see the later
sections “The setitimer() and alarm() System Calls” and “System Calls for
POSIX Timers”) that a certain interval of time has elapsed

Timing measurements are performed by several hardware circuits based on fixed-
frequency oscillators and counters. This chapter consists of four different parts. The
first two sections describe the hardware devices that underly timing and give an over-
all picture of Linux timekeeping architecture. The following sections describe the
main time-related duties of the kernel: implementing CPU time sharing, updating
system time and resource usage statistics, and maintaining software timers. The last
section discusses the system calls related to timing measurements and the corre-
sponding service routines.

227

Clock and Timer Circuits

On the 80x86 architecture, the kernel must explicitly interact with several kinds of
clocks and timer circuits. The clock circuits are used both to keep track of the cur-
rent time of day and to make precise time measurements. The timer circuits are pro-
grammed by the kernel, so that they issue interrupts at a fixed, predefined frequency;
such periodic interrupts are crucial for implementing the software timers used by the
kernel and the user programs. We’ll now briefly describe the clock and hardware cir-
cuits that can be found in IBM-compatible PCs.

Real Time Clock (RTC)

All PCs include a clock called Real Time Clock (RTC), which is independent of the
CPU and all other chips.

The RTC continues to tick even when the PC is switched off, because it is energized
by a small battery. The CMOS RAM and RTC are integrated in a single chip (the
Motorola 146818 or an equivalent).

The RTC is capable of issuing periodic interrupts on IRQ8 at frequencies ranging
between 2 Hz and 8,192 Hz. It can also be programmed to activate the IRQ8 line
when the RTC reaches a specific value, thus working as an alarm clock.

Linux uses the RTC only to derive the time and date; however, it allows processes to
program the RTC by acting on the /dev/rtc device file (see Chapter 13). The kernel
accesses the RTC through the 0x70 and 0x71 I/O ports. The system administrator can
read and write the RTC by executing the clock Unix system program that acts
directly on these two I/O ports.

Time Stamp Counter (TSC)

All 80x86 microprocessors include a CLK input pin, which receives the clock signal
of an external oscillator. Starting with the Pentium, 80x86 microprocessors sport a
counter that is increased at each clock signal. The counter is accessible through the
64-bit Time Stamp Counter (TSC) register, which can be read by means of the rdtsc
assembly language instruction. When using this register, the kernel has to take into
consideration the frequency of the clock signal: if, for instance, the clock ticks at
1 GHz, the Time Stamp Counter is increased once every nanosecond.

Linux may take advantage of this register to get much more accurate time measure-
ments than those delivered by the Programmable Interval Timer. To do this, Linux
must determine the clock signal frequency while initializing the system. In fact,
because this frequency is not declared when compiling the kernel, the same kernel
image may run on CPUs whose clocks may tick at any frequency.

228 | Chapter6: Timing Measurements

The task of figuring out the actual frequency of a CPU is accomplished during the
system’s boot. The calibrate tsc() function computes the frequency by counting
the number of clock signals that occur in a time interval of approximately 5 millisec-
onds. This time constant is produced by properly setting up one of the channels of
the Programmable Interval Timer (see the next section).

Programmable Interval Timer (PIT)

Besides the Real Time Clock and the Time Stamp Counter, IBM-compatible PCs
include another type of time-measuring device called Programmable Interval Timer
(PIT). The role of a PIT is similar to the alarm clock of a microwave oven: it makes
the user aware that the cooking time interval has elapsed. Instead of ringing a bell,
this device issues a special interrupt called timer interrupt, which notifies the kernel
that one more time interval has elapsed.t Another difference from the alarm clock is
that the PIT goes on issuing interrupts forever at some fixed frequency established by
the kernel. Each IBM-compatible PC includes at least one PIT, which is usually
implemented by an 8254 CMOS chip using the 0x40—-0x43 1/O ports.

As we’ll see in detail in the next paragraphs, Linux programs the PIT of IBM-compat-
ible PCs to issue timer interrupts on the IRQO at a (roughly) 1000-Hz frequency—
that is, once every 1 millisecond. This time interval is called a tick, and its length in
nanoseconds is stored in the tick nsec variable. On a PC, tick nsec is initialized to
999,848 nanoseconds (yielding a clock signal frequency of about 1000.15 Hz), but its
value may be automatically adjusted by the kernel if the computer is synchronized
with an external clock (see the later section “The adjtimex() System Call”). The ticks
beat time for all activities in the system; in some sense, they are like the ticks
sounded by a metronome while a musician is rehearsing.

Generally speaking, shorter ticks result in higher resolution timers, which help with
smoother multimedia playback and faster response time when performing synchro-
nous I/O multiplexing (pol1() and select() system calls). This is a trade-off how-
ever: shorter ticks require the CPU to spend a larger fraction of its time in Kernel
Mode—rthat is, a smaller fraction of time in User Mode. As a consequence, user pro-
grams run slower.

The frequency of timer interrupts depends on the hardware architecture. The slower
machines have a tick of roughly 10 milliseconds (100 timer interrupts per second),
while the faster ones have a tick of roughly 1 millisecond (1000 or 1024 timer inter-
rupts per second).

* To avoid losing significant digits in the integer divisions, calibrate_tsc() returns the duration, in microsec-
onds, of a clock tick multiplied by 232.

T The PIT is also used to drive an audio amplifier connected to the computer’s internal speaker.

Clock and Timer Circuits | 229

A few macros in the Linux code yield some constants that determine the frequency of
timer interrupts. These are discussed in the following list.

* HZ yields the approximate number of timer interrupts per second—that is, their
frequency. This value is set to 1000 for IBM PCs.

* CLOCK_TICK RATE yields the value 1,193,182, which is the 8254 chip’s internal
oscillator frequency.

* LATCH yields the ratio between CLOCK TICK RATE and HZ, rounded to the nearest
integer. It is used to program the PIT.

The PIT is initialized by setup_pit_timer() as follows:

spin_lock_irgsave(&i8253 lock, flags);

outb_p(0x34,0x43);

udelay(10);

outb p(LATCH & oxff, 0x40);

udelay(10);

outb(LATCH >> 8, 0x40);

spin_unlock irqrestore(&i8253 lock, flags);
The outb() C function is equivalent to the outb assembly language instruction: it copies
the first operand into the I/O port specified as the second operand. The outb_p() func-
tion is similar to outb(), except that it introduces a pause by executing a no-op instruc-
tion to keep the hardware from getting confused. The udelay() macro introduces a
further small delay (see the later section “Delay Functions”). The first outb_p() invoca-
tion is a command to the PIT to issue interrupts at a new rate. The next two outb_p()
and outb() invocations supply the new interrupt rate to the device. The 16-bit LATCH
constant is sent to the 8-bit 0x40 I/O port of the device as two consecutive bytes. As a
result, the PIT issues timer interrupts at a (roughly) 1000-Hz frequency (that is, once
every 1 ms).

CPU Local Timer

The local APIC present in recent 80x 86 microprocessors (see the section “Inter-
rupts and Exceptions” in Chapter 4) provides yet another time-measuring device: the
CPU local timer.

The CPU local timer is a device similar to the Programmable Interval Timer just
described that can issue one-shot or periodic interrupts. There are, however, a few
differences:

* The APIC’s timer counter is 32 bits long, while the PIT’s timer counter is 16 bits
long; therefore, the local timer can be programmed to issue interrupts at very
low frequencies (the counter stores the number of ticks that must elapse before
the interrupt is issued).

* The local APIC timer sends an interrupt only to its processor, while the PIT
raises a global interrupt, which may be handled by any CPU in the system.

230 | Chapter6: Timing Measurements

* The APIC’s timer is based on the bus clock signal (or the APIC bus signal, in
older machines). It can be programmed in such a way to decrease the timer
counter every 1, 2, 4, 8, 16, 32, 64, or 128 bus clock signals. Conversely, the PIT,
which makes use of its own clock signals, can be programmed in a more flexible
way.

High Precision Event Timer (HPET)

The High Precision Event Timer (HPET) is a new timer chip developed jointly by
Intel and Microsoft. Although HPETs are not yet very common in end-user
machines, Linux 2.6 already supports them, so we’ll spend a few words describing
their characteristics.

The HPET provides a number of hardware timers that can be exploited by the ker-
nel. Basically, the chip includes up to eight 32-bit or 64-bit independent counters.
Each counter is driven by its own clock signal, whose frequency must be at least
10 MHz; therefore, the counter is increased at least once in 100 nanoseconds. Any
counter is associated with at most 32 timers, each of which is composed by a com-
parator and a match register. The comparator is a circuit that checks the value in the
counter against the value in the match register, and raises a hardware interrupt if a
match is found. Some of the timers can be enabled to generate a periodic interrupt.

The HPET chip can be programmed through registers mapped into memory space
(much like the I/O APIC). The BIOS establishes the mapping during the bootstrap-
ping phase and reports to the operating system kernel its initial memory address. The
HPET registers allow the kernel to read and write the values of the counters and of
the match registers, to program one-shot interrupts, and to enable or disable peri-
odic interrupts on the timers that support them.

The next generation of motherboards will likely support both the HPET and the
8254 PIT; in some future time, however, the HPET is expected to completely replace
the PIT.

ACPI Power Management Timer

The ACPI Power Management Timer (or ACPI PMT) is yet another clock device
included in almost all ACPI-based motherboards. Its clock signal has a fixed fre-
quency of roughly 3.58 MHz. The device is actually a simple counter increased at
each clock tick; to read the current value of the counter, the kernel accesses an I/O
port whose address is determined by the BIOS during the initialization phase (see
Appendix A).

The ACPI Power Management Timer is preferable to the TSC if the operating sys-
tem or the BIOS may dynamically lower the frequency or voltage of the CPU to save
battery power. When this happens, the frequency of the TSC changes—thus causing
time warps and others unpleasant effects—while the frequency of the ACPI PMT

Clock and Timer Circuits | 231

does not. On the other hand, the high-frequency of the TSC counter is quite handy
for measuring very small time intervals.

However, if an HPET device is present, it should always be preferred to the other cir-
cuits because of its richer architecture. Table 6-2 later in this chapter illustrates how
Linux takes advantage of the available timing circuits.

Now that we understand what the hardware timers are, we may discuss how the
Linux kernel exploits them to conduct all activities of the system.

The Linux Timekeeping Architecture

Linux must carry on several time-related activities. For instance, the kernel
periodically:

* Updates the time elapsed since system startup.
* Updates the time and date.

* Determines, for every CPU, how long the current process has been running, and
preempts it if it has exceeded the time allocated to it. The allocation of time slots
(also called “quanta”) is discussed in Chapter 7.

* Updates resource usage statistics.

e Checks whether the interval of time associated with each software timer (see the
later section “Software Timers and Delay Functions”) has elapsed.

Linux’s timekeeping architecture is the set of kernel data structures and functions
related to the flow of time. Actually, 80X 86-based multiprocessor machines have a
timekeeping architecture that is slightly different from the timekeeping architecture
of uniprocessor machines:

* In a uniprocessor system, all time-keeping activities are triggered by interrupts
raised by the global timer (either the Programmable Interval Timer or the High
Precision Event Timer).

* In a multiprocessor system, all general activities (such as handling of software
timers) are triggered by the interrupts raised by the global timer, while CPU-spe-
cific activities (such as monitoring the execution time of the currently running
process) are triggered by the interrupts raised by the local APIC timer.

Unfortunately, the distinction between the two cases is somewhat blurred. For
instance, some early SMP systems based on Intel 80486 processors didn’t have local
APICs. Even nowadays, there are SMP motherboards so buggy that local timer inter-
rupts are not usable at all. In these cases, the SMP kernel must resort to the UP time-
keeping architecture. On the other hand, recent uniprocessor systems feature one
local APIC, so the UP kernel often makes use of the SMP timekeeping architecture.
However, to simplify our description, we won’t discuss these hybrid cases and will
stick to the two “pure” timekeeping architectures.

232 | Chapter6: Timing Measurements

Linux’s timekeeping architecture depends also on the availability of the Time Stamp
Counter (TSC), of the ACPI Power Management Timer, and of the High Precision
Event Timer (HPET). The kernel uses two basic timekeeping functions: one to keep
the current time up-to-date and another to count the number of nanoseconds that
have elapsed within the current second. There are different ways to get the last value.
Some methods are more precise and are available if the CPU has a Time Stamp
Counter or a HPET; a less-precise method is used in the opposite case (see the later
section “The time() and gettimeofday() System Calls™).

Data Structures of the Timekeeping Architecture

The timekeeping architecture of Linux 2.6 makes use of a large number of data
structures. As usual, we will describe the most important variables by referring to
the 80 % 86 architecture.

The timer object

In order to handle the possible timer sources in a uniform way, the kernel makes use
of a “timer object,” which is a descriptor of type timer opts consisting of the timer
name and of four standard methods shown in Table 6-1.

Table 6-1. The fields of the timer_opts data structure

Field name Description

name A string identifying the timer source

mark_offset Records the exact time of the last tick; it is invoked by the timer interrupt handler
get_offset Returns the time elapsed since the last tick

monotonic_clock Returns the number of nanoseconds since the kernel initialization

delay Waits for a given number of “loops” (see the later section “Delay Functions”)

The most important methods of the timer object are mark_offset and get offset.
The mark_offset method is invoked by the timer interrupt handler, and records in a
suitable data structure the exact time at which the tick occurred. Using the saved
value, the get offset method computes the time in microseconds elapsed since the
last timer interrupt (tick). Thanks to these two methods, Linux timekeeping architec-
ture achieves a sub-tick resolution—that is, the kernel is able to determine the cur-
rent time with a precision much higher than the tick duration. This operation is
called time interpolation.

The cur_timer variable stores the address of the timer object corresponding to the
“best” timer source available in the system. Initially, cur_timer points to timer none,
which is the object corresponding to a dummy timer source used when the kernel is
being initialized. During kernel initialization, the select_timer() function sets cur_
timer to the address of the appropriate timer object. Table 6-2 shows the most com-
mon timer objects used in the 80x86 architecture, in order of preference. As you see,

The Linux Timekeeping Architecture | 233

select timer() selects the HPET, if available; otherwise, it selects the ACPI Power
Management Timer, if available, or the TSC. As the last resort, select timer()
selects the always-present PIT. The “Time interpolation” column lists the timer
sources used by the mark offset and get offset methods of the timer object; the
“Delay” column lists the timer sources used by the delay method.

Table 6-2. Typical timer objects of the 80X86 architecture, in order of preference

Timer object name Description Time interpolation Delay
timer_hpet High Precision Event Timer (HPET) HPET HPET
timer pmtmr ACPI Power Management Timer (ACPI PMT) ACPI PMT TSC
timer tsc Time Stamp Counter (TSC) TSC TSC
timer_pit Programmable Interval Timer (PIT) PIT Tight loop
timer none Generic dummy timer source (none) Tight loop

(used during kernel initialization)

Notice that local APIC timers do not have a corresponding timer object. The reason
is that local APIC timers are used only to generate periodic interrupts and are never
used to achieve sub-tick resolution.

The jiffies variable

The jiffies variable is a counter that stores the number of elapsed ticks since the
system was started. It is increased by one when a timer interrupt occurs—that is, on
every tick. In the 80 % 86 architecture, jiffies is a 32-bit variable, therefore it wraps
around in approximately 50 days—a relatively short time interval for a Linux server.
However, the kernel handles cleanly the overflow of jiffies thanks to the time_
after, time after eq, time before, and time before eq macros: they yield the cor-
rect value even if a wraparound occurred.

You might suppose that jiffies is initialized to zero at system startup. Actually, this
is not the case: jiffies is initialized to 0xfffb6c20, which corresponds to the 32-bit
signed value —300,000; therefore, the counter will overflow five minutes after the sys-
tem boot. This is done on purpose, so that buggy kernel code that does not check for
the overflow of jiffies shows up very soon in the developing phase and does not
pass unnoticed in stable kernels.

In a few cases, however, the kernel needs the real number of system ticks elapsed
since the system boot, regardless of the overflows of jiffies. Therefore, in the 80x 86
architecture the jiffies variable is equated by the linker to the 32 less significant bits
of a 64-bit counter called jiffies 64. With a tick of 1 millisecond, the jiffies 64
variable wraps around in several hundreds of millions of years, thus we can safely
assume that it never overflows.

You might wonder why jiffies has not been directly declared as a 64-bit unsigned
long long integer on the 80x 86 architecture. The answer is that accesses to 64-bit vari-

234 | Chapter6: Timing Measurements

ables in 32-bit architectures cannot be done atomically. Therefore, every read opera-
tion on the whole 64 bits requires some synchronization technique to ensure that the
counter is not updated while the two 32-bit half-counters are read; as a consequence,
every 64-bit read operation is significantly slower than a 32-bit read operation.

The get_jiffies 64() function reads the value of jiffies 64 and returns its value:

unsigned long long get jiffies 64(void)

unsigned long seq;
unsigned long long ret;
do {
seq = read seqbegin(8xtime_lock);
ret = jiffies 64;
} while (read seqretry(&xime lock, seq));
return ret;
}
The 64-bit read operation is protected by the xtime lock seqlock (see the section
“Seqlocks” in Chapter 5): the function keeps reading the jiffies 64 variable until it
knows for sure that it has not been concurrently updated by another kernel control
path.

Conversely, the critical region increasing the jiffies 64 variable must be protected
by means of write seqlock(8xtime lock) and write sequnlock(8xtime lock). Notice
that the ++jiffies 64 instruction also increases the 32-bit jiffies variable, because
the latter corresponds to the lower half of jiffies 64.

The xtime variable

The xtime variable stores the current time and date; it is a structure of type timespec
having two fields:

tv_sec

Stores the number of seconds that have elapsed since midnight of January 1,
1970 (UTC)

tv_nsec
Stores the number of nanoseconds that have elapsed within the last second (its
value ranges between 0 and 999,999,999)

The xtime variable is usually updated once in a tick—that is, roughly 1000 times per
second. As we’ll see in the later section “System Calls Related to Timing Measure-
ments,” user programs get the current time and date from the xtime variable. The
kernel also often refers to it, for instance, when updating inode timestamps (see the
section “File Descriptor and Inode” in Chapter 1).

The xtime_lock seqlock avoids the race conditions that could occur due to concur-
rent accesses to the xtime variable. Remember that xtime lock also protects the
jiffies 64 variable; in general, this seqlock is used to define several critical regions
of the timekeeping architecture.

The Linux Timekeeping Architecture | 235

Timekeeping Architecture in Uniprocessor Systems

In a uniprocessor system, all time-related activities are triggered by the interrupts
raised by the Programmable Interval Timer on IRQ line 0. As usual, in Linux, some
of these activities are executed as soon as possible right after the interrupt is raised,
while the remaining activities are carried on by deferrable functions (see the later sec-
tion “Dynamic Timers”).

Initialization phase

During kernel initialization, the time_init() function is invoked to set up the time-
keeping architecture. It usually” performs the following operations:

1.

Initializes the xtime variable. The number of seconds elapsed since the midnight
of January 1, 1970 is read from the Real Time Clock by means of the get_cmos_
time() function. The tv_nsec field of xtime is set, so that the forthcoming over-
flow of the jiffies variable will coincide with an increment of the tv_sec field—
that is, it will fall on a second boundary.

. Initializes the wall to monotonic variable. This variable is of the same type

timespec as xtime, and it essentially stores the number of seconds and nanosec-
onds to be added to xtime in order to get a monotonic (ever increasing) flow of
time. In fact, both leap seconds and synchronization with external clocks
might suddenly change the tv_sec and tv_nsec fields of xtime so that they are
no longer monotonically increased. As we’ll see in the later section “System
Calls for POSIX Timers,” sometimes the kernel needs a truly monotonic time
source.

. If the kernel supports HPET, it invokes the hpet_enable() function to determine

whether the ACPI firmware has probed the chip and mapped its registers in the
memory address space. In the affirmative case, hpet_enable() programs the first
timer of the HPET chip so that it raises the IRQO interrupt 1000 times per sec-
ond. Otherwise, if the HPET chip is not available, the kernel will use the PIT:
the chip has already been programmed by the init IRQ() function to raise 1000
timer interrupts per second, as described in the earlier section “Programmable
Interval Timer (PIT).”

. Invokes select timer() to select the best timer source available in the system,

and sets the cur_timer variable to the address of the corresponding timer object.

* The time_init() function is executed before mem init(), which initializes the memory data structures.
Unfortunately, the HPET registers are memory mapped, therefore initialization of the HPET chip has to be
done after the execution of mem_init(). Linux 2.6 adopts a cumbersome solution: if the kernel supports the
HPET chip, the time_init() function limits itself to trigger the activation of the hpet_time_init() function.
The latter function is executed after mem_init() and performs the operations described in this section.

236

| Chapter6: Timing Measurements

5. Invokes setup irq(0,&irq0) to set up the interrupt gate corresponding to
IRQO—the line associated with the system timer interrupt source (PIT or
HPET).The irqo variable is statically defined as:

struct irqaction irqo = { timer interrupt, SA INTERRUPT, O,
"timer", NULL, NULL };
From now on, the timer_interrupt() function will be invoked once every tick
with interrupts disabled, because the status field of IRQ0’s main descriptor has
the SA_INTERRUPT flag set.

The timer interrupt handler

The timer_interrupt() function is the interrupt service routine (ISR) of the PIT or of
the HPET; it performs the following steps:

1. Protects the time-related kernel variables by issuing a write seqlock() on the
xtime_lock seqlock (see the section “Seqlocks” in Chapter 5).

2. Executes the mark_offset method of the cur_timer timer object. As explained in
the earlier section “Data Structures of the Timekeeping Architecture,” there are
four possible cases:

a. cur_timer points to the timer_hpet object: in this case, the HPET chip is the
source of timer interrupts. The mark offset method checks that no timer
interrupt has been lost since the last tick; in this unlikely case, it updates
jiffies 64 accordingly. Next, the method records the current value of the
periodic HPET counter.

b. cur_timer points to the timer pmtmr object: in this case, the PIT chip is the
source of timer interrupts, but the kernel uses the APIC Power Management
Timer to measure time with a finer resolution. The mark _offset method
checks that no timer interrupt has been lost since the last tick and updates
jiffies 64 if necessary. Then, it records the current value of the APIC
Power Management Timer counter.

c. cur_timer points to the timer tsc object: in this case, the PIT chip is the
source of timer interrupts, but the kernel uses the Time Stamp Counter to
measure time with a finer resolution. The mark_offset method performs the
same operations as in the previous case: it checks that no timer interrupt has
been lost since the last tick and updates jiffies 64 if necessary. Then, it
records the current value of the TSC counter.

d. cur_timer points to the timer pit object: in this case, the PIT chip is the
source of timer interrupts, and there is no other timer circuit. The mark_
offset method does nothing.

3. Invokes the do_timer interrupt() function, which in turn performs the follow-
ing actions:

a. Increases by one the value of jiffies 64. Notice that this can be done safely,
because the kernel control path still holds the xtime_lock seqlock for writing.

The Linux Timekeeping Architecture | 237

b. Invokes the update times() function to update the system date and time and
to compute the current system load; these activities are discussed later in the
sections “Updating the Time and Date” and “Updating System Statistics.”

c. Invokes the update process_times() function to perform several time-related
accounting operations for the local CPU (see the section “Updating Local
CPU Statistics” later in this chapter).

d. Invokes the profile tick() function (see the section “Profiling the Kernel
Code” later in this chapter).

e. If the system clock is synchronized with an external clock (an adjtimex()
system call has been previously issued), invokes the set rtc_mmss() func-
tion once every 660 seconds (every 11 minutes) to adjust the Real Time
Clock. This feature helps systems on a network synchronize their clocks (see
the later section “The adjtimex() System Call”).

4. Releases the xtime_lock seqlock by invoking write sequnlock().

5. Returns the value 1 to notify that the interrupt has been effectively handled (see
the section “I/O Interrupt Handling” in Chapter 4).

Timekeeping Architecture in Multiprocessor Systems

Multiprocessor systems can rely on two different sources of timer interrupts: those
raised by the Programmable Interval Timer or the High Precision Event Timer, and
those raised by the CPU local timers.

In Linux 2.6, global timer interrupts—raised by the PIT or the HPET—signal activi-
ties not related to a specific CPU, such as handling of software timers and keeping
the system time up-to-date. Conversely, a CPU local timer interrupt signals time-
keeping activities related to the local CPU, such as monitoring how long the current
process has been running and updating the resource usage statistics.

Initialization phase

The global timer interrupt handler is initialized by the time_init() function, which
has already been described in the earlier section “Timekeeping Architecture in Uni-
processor Systems.”

The Linux kernel reserves the interrupt vector 239 (0xef) for local timer interrupts (see
Table 4-2 in Chapter 4). During kernel initialization, the apic_intr_init() function
sets up the IDT’s interrupt gate corresponding to vector 239 with the address of the
low-level interrupt handler apic_timer interrupt(). Moreover, each APIC has to be
told how often to generate a local time interrupt. The calibrate APIC clock() func-
tion computes how many bus clock signals are received by the local APIC of the boot-
ing CPU during a tick (1 ms). This exact value is then used to program the local APICs

238 | Chapter6: Timing Measurements

in such a way to generate one local timer interrupt every tick. This is done by the
setup APIC timer() function, which is executed once for every CPU in the system.

All local APIC timers are synchronized because they are based on the common bus
clock signal. This means that the value computed by calibrate APIC clock() for the
boot CPU is also good for the other CPUs in the system.

The global timer interrupt handler

The SMP version of the timer interrupt() handler differs from the UP version in a
few points:

* The do_timer_ interrupt() function, invoked by timer interrupt(), writes into a
port of the I/O APIC chip to acknowledge the timer IRQ.

* The update process_times() function is not invoked, because this function per-
forms actions related to a specific CPU.

* The profile tick() function is not invoked, because this function also performs
actions related to a specific CPU.

The local timer interrupt handler

This handler performs the timekeeping activities related to a specific CPU in the sys-
tem, namely profiling the kernel code and checking how long the current process has
been running on a given CPU.

The apic_timer interrupt() assembly language function is equivalent to the follow-
ing code:
apic_timer interrupt:

pushl $(239-256)

SAVE_ALL

movl %esp, %eax

call smp_apic_timer interrupt

jmp ret_from_intr
As you can see, the low-level handler is very similar to the other low-level interrupt
handlers already described in Chapter 4. The high-level interrupt handler called smp_
apic_timer interrupt() executes the following steps:

1. Gets the CPU logical number (say, n).

2. Increases the apic_timer_ irgs field of the nth entry of the irq_stat array (see the
section “Checking the NMI Watchdogs” later in this chapter).

3. Acknowledges the interrupt on the local APIC.

4. Calls the irq enter() function (see the section “The do_IRQ() function” in
Chapter 4).

5. Invokes the smp_local timer interrupt() function.

6. Calls the irq_exit() function.

The Linux Timekeeping Architecture | 239

The smp_local timer interrupt() function executes the per-CPU timekeeping activi-
ties. Actually, it performs the following main steps:

1. Invokes the profile tick() function (see the section “Profiling the Kernel Code”
later in this chapter).

2. Invokes the update_process_times() function to check how long the current pro-
cess has been running and to update some local CPU statistics (see the section
“Updating Local CPU Statistics” later in this chapter).

The system administrator can change the sample frequency of the kernel code pro-
filer by writing into the /proc/profile file.To carry out the change, the kernel modifies
the frequency at which local timer interrupts are generated. However, the smp_local
timer interrupt() function keeps invoking the update process times() function
exactly once every tick.

Updating the Time and Date

User programs get the current time and date from the xtime variable. The kernel
must periodically update this variable, so that its value is always reasonably accurate.

The update_times() function, which is invoked by the global timer interrupt han-
dler, updates the value of the xtime variable as follows:
void update times(void)
{
unsigned long ticks;
ticks = jiffies - wall jiffies;
if (ticks) {
wall jiffies += ticks;
update wall time(ticks);
}
calc load(ticks);

}
We recall from the previous description of the timer interrupt handler that when the
code of this function is executed, the xtime lock seqlock has already been acquired
for writing.

The wall_jiffies variable stores the time of the last update of the xtime variable.
Observe that the value of wall jiffies can be smaller than jiffies-1, since a few
timer interrupts can be lost, for instance when interrupts remain disabled for a long
period of time; in other words, the kernel does not necessarily update the xtime vari-
able at every tick. However, no tick is definitively lost, and in the long run, xtime
stores the correct system time. The check for lost timer interrupts is done in the
mark_offset method of cur_timer; see the earlier section “Timekeeping Architecture
in Uniprocessor Systems.”

240 | Chapter6: Timing Measurements

The update wall time() function invokes the update wall time one tick() function
ticks consecutive times; normally, each invocation adds 1,000,000 to the xtime.tv_
nsec field. If the value of xtime.tv nsec becomes greater than 999,999,999, the
update wall time() function also updates the tv_sec field of xtime. If an adjtimex()
system call has been issued, for reasons explained in the section “The adjtimex() Sys-
tem Call” later in this chapter, the function might tune the value 1,000,000 slightly
so the clock speeds up or slows down a little.

The calc_load() function is described in the section “Keeping Track of System Load”
later in this chapter.

Updating System Statistics

The kernel, among the other time-related duties, must periodically collect various
data used for:

* Checking the CPU resource limit of the running processes
* Updating statistics about the local CPU workload
* Computing the average system load

* Profiling the kernel code

Updating Local CPU Statistics

We have mentioned that the update process times() function is invoked—either by
the global timer interrupt handler on uniprocessor systems or by the local timer
interrupt handler in multiprocessor systems—to update some kernel statistics. This
function performs the following steps:

1. Checks how long the current process has been running. Depending on whether the
current process was running in User Mode or in Kernel Mode when the timer inter-
rupt occurred, invokes either account user time() or account_system time().
Each of these functions performs essentially the following steps:

a. Updates either the utime field (ticks spent in User Mode) or the stime field
(ticks spent in Kernel Mode) of the current process descriptor. Two addi-
tional fields called cutime and cstime are provided in the process descriptor
to count the number of CPU ticks spent by the process children in User
Mode and Kernel Mode, respectively. For reasons of efficiency, these fields
are not updated by update process_times(), but rather when the parent pro-
cess queries the state of one of its children (see the section “Destroying Pro-
cesses” in Chapter 3).

b. Checks whether the total CPU time limit has been reached; if so, sends
SIGXCPU and SIGKILL signals to current. The section “Process Resource Lim-
its” in Chapter 3 describes how the limit is controlled by the signal->
r1im[RLIMIT_CPU].rlim_cur field of each process descriptor.

Updating System Statistics | 241

c. Invokes account_it virt() and account_it prof() to check the process tim-
ers (see the section “The setitimer() and alarm() System Calls” later in this
chapter).

d. Updates some kernel statistics stored in the kstat per-CPU variable.

2. Invokes raise softirq() to activate the TIMER SOFTIRQ tasklet on the local CPU
(see the section “Software Timers and Delay Functions” later in this chapter).

3. If some old version of an RCU-protected data structure has to be reclaimed,
checks whether the local CPU has gone through a quiescent state and invokes
tasklet schedule() to activate the rcu_tasklet tasklet of the local CPU (see the
section “Read-Copy Update (RCU)” in Chapter 5).

4. Invokes the scheduler tick() function, which decreases the time slice counter of
the current process, and checks whether its quantum is exhausted. We’ll discuss
in depth these operations in the section “The scheduler_tick() Function” in
Chapter 7.

Keeping Track of System Load

Every Unix kernel keeps track of how much CPU activity is being carried on by the
system. These statistics are used by various administration utilities such as top. A
user who enters the uptime command sees the statistics as the “load average” relative
to the last minute, the last 5 minutes, and the last 15 minutes. On a uniprocessor sys-
tem, a value of 0 means that there are no active processes (besides the swapper
process 0) to run, while a value of 1 means that the CPU is 100 percent busy with a
single process, and values greater than 1 mean that the CPU is shared among several
active processes.”

At every tick, update_times() invokes the calc_load() function, which counts the
number of processes in the TASK_RUNNING or TASK_UNINTERRUPTIBLE state and uses this
number to update the average system load.

Profiling the Kernel Code

Linux includes a minimalist code profiler called readprofile used by Linux develop-
ers to discover where the kernel spends its time in Kernel Mode. The profiler identi-
fies the hot spots of the kernel—the most frequently executed fragments of kernel
code. Identifying the kernel hot spots is very important, because they may point out
kernel functions that should be further optimized.

* Linux includes in the load average all processes that are in the TASK_RUNNING and TASK_UNINTERRUPTIBLE states.
However, under normal conditions, there are few TASK_UNINTERRUPTIBLE processes, so a high load usually
means that the CPU is busy.

242 | Chapter6: Timing Measurements

The profiler is based on a simple Monte Carlo algorithm: at every timer interrupt
occurrence, the kernel determines whether the interrupt occurred in Kernel Mode; if
so, the kernel fetches the value of the eip register before the interruption from the
stack and uses it to discover what the kernel was doing before the interrupt. In the
long run, the samples accumulate on the hot spots.

The profile tick() function collects the data for the code profiler. It is invoked
either by the do_timer interrupt() function in uniprocessor systems (by the global
timer interrupt handler) or by the smp_local timer interrupt() function in multi-
processor systems (by the local timer interrupt handler).

To enable the code profiler, the Linux kernel must be booted by passing as a parame-
ter the string profile=N, where 2N denotes the size of the code fragments to be pro-
filed. The collected data can be read from the /proc/profile file. The counters are reset
by writing in the same file; in multiprocessor systems, writing into the file can also
change the sample frequency (see the earlier section “Timekeeping Architecture in
Multiprocessor Systems”). However, kernel developers do not usually access /proc/
profile directly; instead, they use the readprofile system command.

The Linux 2.6 kernel includes yet another profiler called oprofile. Besides being more
flexible and customizable than readprofile, oprofile can be used to discover hot spots
in kernel code, User Mode applications, and system libraries. When oprofile is being
used, profile tick() invokes the timer notify() function to collect the data used by
this new profiler.

Checking the NMI Watchdogs

In multiprocessor systems, Linux offers yet another feature to kernel developers: a
watchdog system, which might be quite useful to detect kernel bugs that cause a sys-
tem freeze. To activate such a watchdog, the kernel must be booted with the nmi_
watchdog parameter.

The watchdog is based on a clever hardware feature of local and I/O APICs: they can
generate periodic NMI interrupts on every CPU. Because NMI interrupts are not
masked by the cli assembly language instruction, the watchdog can detect dead-
locks even when interrupts are disabled.

As a consequence, once every tick, all CPUs, regardless of what they are doing, start
executing the NMI interrupt handler; in turn, the handler invokes do_nmi(). This
function gets the logical number n of the CPU, and then checks the apic_timer irgs
field of the nth entry of irq_stat (see Table 4-8 in Chapter 4). If the CPU is working
properly, the value must be different from the value read at the previous NMI inter-
rupt. When the CPU is running properly, the nth entry of the apic_timer irgs field is
increased by the local timer interrupt handler (see the earlier section “The local timer
interrupt handler”); if the counter is not increased, the local timer interrupt handler
has not been executed in a whole tick. Not a good thing, you know.

Updating System Statistics | 243

When the NMI interrupt handler detects a CPU freeze, it rings all the bells: it logs
scary messages in the system logfiles, dumps the contents of the CPU registers and of
the kernel stack (kernel oops), and finally kills the current process. This gives kernel
developers a chance to discover what’s gone wrong.

Software Timers and Delay Functions

A timer is a software facility that allows functions to be invoked at some future
moment, after a given time interval has elapsed; a time-out denotes a moment at
which the time interval associated with a timer has elapsed.

Timers are widely used both by the kernel and by processes. Most device drivers use
timers to detect anomalous conditions—floppy disk drivers, for instance, use timers
to switch off the device motor after the floppy has not been accessed for a while, and
parallel printer drivers use them to detect erroneous printer conditions.

Timers are also used quite often by programmers to force the execution of specific
functions at some future time (see the later section “The setitimer() and alarm() Sys-
tem Calls”).

Implementing a timer is relatively easy. Each timer contains a field that indicates how
far in the future the timer should expire. This field is initially calculated by adding
the right number of ticks to the current value of jiffies. The field does not change.
Every time the kernel checks a timer, it compares the expiration field to the value of
jiffies at the current moment, and the timer expires when jiffies is greater than or
equal to the stored value.

Linux considers two types of timers called dynamic timers and interval timers. The
first type is used by the kernel, while interval timers may be created by processes in
User Mode.

One word of caution about Linux timers: since checking for timer functions is
always done by deferrable functions that may be executed a long time after they have
been activated, the kernel cannot ensure that timer functions will start right at their
expiration times. It can only ensure that they are executed either at the proper time
or after with a delay of up to a few hundreds of milliseconds. For this reason, timers
are not appropriate for real-time applications in which expiration times must be
strictly enforced.

Besides software timers, the kernel also makes use of delay functions, which execute a
tight instruction loop until a given time interval elapses. We will discuss them in the
later section “Delay Functions.”

Dynamic Timers

Dynamic timers may be dynamically created and destroyed. No limit is placed on the
number of currently active dynamic timers.

244 | Chapter6: Timing Measurements

A dynamic timer is stored in the following timer_list structure:

struct timer_list {
struct list head entry;
unsigned long expires;
spinlock_t lock;
unsigned long magic;
void (*function)(unsigned long);
unsigned long data;
tvec_base t *base;
};
The function field contains the address of the function to be executed when the
timer expires. The data field specifies a parameter to be passed to this timer func-
tion. Thanks to the data field, it is possible to define a single general-purpose func-
tion that handles the time-outs of several device drivers; the data field could store the
device ID or other meaningful data that could be used by the function to differenti-
ate the device.

The expires field specifies when the timer expires; the time is expressed as the num-
ber of ticks that have elapsed since the system started up. All timers that have an
expires value smaller than or equal to the value of jiffies are considered to be
expired or decayed.

The entry field is used to insert the software timer into one of the doubly linked cir-
cular lists that group together the timers according to the value of their expires field.
The algorithm that uses these lists is described later in this chapter.

To create and activate a dynamic timer, the kernel must:
1. Create, if necessary, a new timer list object—for example, t. This can be done
in several ways by:
* Defining a static global variable in the code.

* Defining a local variable inside a function; in this case, the object is stored
on the Kernel Mode stack.

* Including the object in a dynamically allocated descriptor.

2. Initialize the object by invoking the init timer(&t) function. This essentially
sets the t.base pointer field to NULL and sets the t.lock spin lock to “open.”

3. Load the function field with the address of the function to be activated when the
timer decays. If required, load the data field with a parameter value to be passed
to the function.

4. If the dynamic timer is not already inserted in a list, assign a proper value to the
expires field and invoke the add_timer(&t) function to insert the t element in the
proper list.

5. Otherwise, if the dynamic timer is already inserted in a list, update the expires
field by invoking the mod_timer() function, which also takes care of moving the
object into the proper list (discussed next).

Software Timers and Delay Functions | 245

Once the timer has decayed, the kernel automatically removes the t element from its
list. Sometimes, however, a process should explicitly remove a timer from its list
using the del timer(), del timer sync(), or del singleshot timer sync() func-
tions. Indeed, a sleeping process may be woken up before the time-out is over; in this
case, the process may choose to destroy the timer. Invoking del timer() on a timer
already removed from a list does no harm, so removing the timer within the timer
function is considered a good practice.

In Linux 2.6, a dynamic timer is bound to the CPU that activated it—that is, the
timer function will always run on the same CPU that first executed the add_timer()
or later the mod_timer() function. The del timer() and companion functions, how-
ever, can deactivate every dynamic timer, even if it is not bound to the local CPU.

Dynamic timers and race conditions

Being asynchronously activated, dynamic timers are prone to race conditions. For
instance, consider a dynamic timer whose function acts on a discardable resource (e.g.,
a kernel module or a file data structure). Releasing the resource without stopping the
timer may lead to data corruption if the timer function got activated when the resource
no longer exists. Thus, a rule of thumb is to stop the timer before releasing the
resource:

del timer(&t);
X _Release Resources();

In multiprocessor systems, however, this code is not safe because the timer function
might already be running on another CPU when del_timer() is invoked. As a result,
resources may be released while the timer function is still acting on them. To avoid
this kind of race condition, the kernel offers the del timer sync() function. It
removes the timer from the list, and then it checks whether the timer function is exe-
cuted on another CPU; in such a case, del _timer sync() waits until the timer func-
tion terminates.

The del timer sync() function is rather complex and slow, because it has to care-
fully take into consideration the case in which the timer function reactivates itself. If
the kernel developer knows that the timer function never reactivates the timer, she
can use the simpler and faster del singleshot_timer sync() function to deactivate a
timer and wait until the timer function terminates.

Other types of race conditions exist, of course. For instance, the right way to modify
the expires field of an already activated timer consists of using mod_timer(), rather
than deleting the timer and re-creating it thereafter. In the latter approach, two kernel
control paths that want to modify the expires field of the same timer may mix each
other up badly. The implementation of the timer functions is made SMP-safe by
means of the lock spin lock included in every timer list object: every time the ker-
nel must access a dynamic timer, it disables the interrupts and acquires this spin lock.

246 | Chapter6: Timing Measurements

Data structures for dynamic timers

Choosing the proper data structure to implement dynamic timers is not easy. String-
ing together all timers in a single list would degrade system performance, because
scanning a long list of timers at every tick is costly. On the other hand, maintaining a
sorted list would not be much more efficient, because the insertion and deletion
operations would also be costly.

The adopted solution is based on a clever data structure that partitions the expires
values into blocks of ticks and allows dynamic timers to percolate efficiently from
lists with larger expires values to lists with smaller ones. Moreover, in multiproces-
sor systems the set of active dynamic timers is split among the various CPUs.

The main data structure for dynamic timers is a per-CPU variable (see the section
“Per-CPU Variables” in Chapter 5) named tvec_bases: it includes NR_CPUS elements,
one for each CPU in the system. Each element is a tvec_base_t structure, which
includes all data needed to handle the dynamic timers bound to the corresponding
CPU:

typedef struct tvec_t base s {
spinlock t lock;
unsigned long timer jiffies;
struct timer_list *running_timer;
tvec_root_t tvi;
tvec_t tvz;
tvec_t tv3;
tvec_t tv4;
tvec_t tvs;
} tvec base t;
The tv1 field is a structure of type tvec_root_t, which includes a vec array of 256
list head elements—that is, lists of dynamic timers. It contains all dynamic timers,

if any, that will decay within the next 255 ticks.

The tv2, tv3, and tv4 fields are structures of type tvec_t consisting of a vec array of
64 list_head elements. These lists contain all dynamic timers that will decay within
the next 214—1, 220—1, and 2261 ticks, respectively.

The tvs field is identical to the previous ones, except that the last entry of the vec
array is a list that includes dynamic timers with extremely large expires fields. It
never needs to be replenished from another array. Figure 6-1 illustrates in a sche-
matic way the five groups of lists.

The timer jiffies field represents the earliest expiration time of the dynamic timers
yet to be checked: if it coincides with the value of jiffies, no backlog of deferrable
functions has accumulated; if it is smaller than jiffies, then lists of dynamic timers
that refer to previous ticks must be dealt with. The field is set to jiffies at system
startup and is increased only by the run_timer softirq() function described in the
next section. Notice that the timer jiffies field might drop a long way behind
jiffies when the deferrable functions that handle dynamic timers are not executed

Software Timers and Delay Functions | 247

tvec_bases
[euo | et | ceua [ceus |

— tvec_hase_t ~

tvec_t

o0 00 O 0

(0-255) (<2™-1) (<221 (<2%-1) (<2221)
Dynamic Timer Lists

Figure 6-1. The groups of lists associated with dynamic timers

for a long time—for instance because these functions have been disabled or because
a large number of interrupt handlers have been executed.

In multiprocessor systems, the running_timer field points to the timer list structure
of the dynamic timer that is currently handled by the local CPU.

Dynamic timer handling

Despite the clever data structures, handling software timers is a time-consuming
activity that should not be performed by the timer interrupt handler. In Linux 2.6
this activity is carried on by a deferrable function, namely the TIMER_SOFTIRQ softirg.

The run_timer softirq() function is the deferrable function associated with the
TIMER SOFTIRQ softirq. It essentially performs the following actions:

1. Stores in the base local variable the address of the tvec base t data structure
associated with the local CPU.
2. Acquires the base->lock spin lock and disables local interrupts.

3. Starts a while loop, which ends when base->timer_jiffies becomes greater than
the value of jiffies. In every single execution of the cycle, performs the follow-
ing substeps:

a. Computes the index of the list in base->tv1 that holds the next timers to be

handled:

index = base->timer_ jiffies & 255;

248 | Chapter6: Timing Measurements

b. If index is zero, all lists in base->tvi have been checked, so they are empty:
the function therefore percolates the dynamic timers by invoking cascade():
if (lindex &&

('cascade(base, 8&base->tv2, (base->timer jiffies>> 8)863)) 8&&

(!cascade(base, 8base->tv3, (base->timer jiffies>>14)863)) &&

(!cascade(base, &base->tv4, (base->timer jiffies>>20)863)))

cascade(base, 8base->tvs, (base->timer jiffies>>26)863);

Consider the first invocation of the cascade() function: it receives as argu-
ments the address in base, the address of base->tv2, and the index of the list
in base->tv2 including the timers that will decay in the next 256 ticks. This
index is determined by looking at the proper bits of the base->timer jiffies
value. cascade() moves all dynamic timers in the base->tv2 list into the
proper lists of base->tv1; then, it returns a positive value, unless all base->
tv2 lists are now empty. If so, cascade() is invoked once more to replenish
base->tv2 with the timers included in a list of base->tv3, and so on.

c. Increases by one base->timer jiffies.

d. For each dynamic timer in the base->tvi.vec[index] list, executes the corre-
sponding timer function. In particular, for each timer list element t in the
list essentially performs the following steps:

1. Removes t from the base->tv1’s list.
. In multiprocessor systems, sets base->running_timer to &t.

. Sets t.base to NULL.

2

3

4. Releases the base->1ock spin lock, and enables local interrupts.

5. Executes the timer function t.function passing as argument t.data.
6

. Acquires the base->1ock spin lock, and disables local interrupts.
7. Continues with the next timer in the list, if any.

e. All timers in the list have been handled. Continues with the next iteration of
the outermost while cycle.

4. The outermost while cycle is terminated, which means that all decayed timers
have been handled. In multiprocessor systems, sets base->running timer to NULL.

5. Releases the base->lock spin lock and enables local interrupts.

Because the values of jiffies and timer jiffies usually coincide, the outermost
while cycle is often executed only once. In general, the outermost loop is executed
jiffies - base->timer_jiffies+1 consecutive times. Moreover, if a timer interrupt
occurs while run_timer softirq() is being executed, dynamic timers that decay at
this tick occurrence are also considered, because the jiffies variable is asynchro-
nously increased by the global timer interrupt handler (see the earlier section “The
timer interrupt handler”).

Notice that run_timer softirq() disables interrupts and acquires the base->lock spin
lock just before entering the outermost loop; interrupts are enabled and the spin lock

Software Timers and Delay Functions | 249

is released right before invoking each dynamic timer function, until its termination.
This ensures that the dynamic timer data structures are not corrupted by interleaved
kernel control paths.

To sum up, this rather complex algorithm ensures excellent performance. To see
why, assume for the sake of simplicity that the TIMER_SOFTIRQ softirq is executed right
after the corresponding timer interrupt occurs. Then, in 255 timer interrupt occur-
rences out of 256 (in 99.6% of the cases), the run_timer softirq() function just runs
the functions of the decayed timers, if any. To replenish base->tvi.vec periodically,
it is sufficient 63 times out of 64 to partition one list of base->tv2 into the 256 lists of
base->tvi. The base->tv2.vec array, in turn, must be replenished in 0.006 percent of
the cases (that is, once every 16.4 seconds). Similarly, base->tv3.vec is replenished
every 17 minutes and 28 seconds, and base->tv4.vec is replenished every 18 hours
and 38 minutes. base->tv5.vec doesn’t need to be replenished.

An Application of Dynamic Timers: the nanosleep() System Call

To show how the outcomes of all the previous activities are actually used in the ker-
nel, we’ll show an example of the creation and use of a process time-out.

Let’s consider the service routine of the nanosleep() system call, that is, sys_
nanosleep(), which receives as its parameter a pointer to a timespec structure and
suspends the invoking process until the specified time interval elapses. The service
routine first invokes copy_from_user() to copy the values contained in the User Mode
timespec structure into the local variable t. Assuming that the timespec structure
defines a non-null delay, the function then executes the following code:

current->state = TASK_INTERRUPTIBLE;

remaining = schedule_timeout(timespec_to_jiffies(&t)+1);
The timespec_to_jiffies() function converts in ticks the time interval stored in the
timespec structure. To be on the safe side, sys_nanosleep() adds one tick to the value
computed by timespec_to_jiffies().

The kernel implements process time-outs by using dynamic timers. They appear in
the schedule timeout() function, which essentially executes the following
statements:

struct timer list timer;

unsigned long expire = timeout + jiffies;
init_timer(&timer);

timer.expires = expire;

timer.data = (unsigned long) current;
timer.function = process_timeout;
add_timer(&timer);

schedule(); /* process suspended until timer expires */
del_singleshot_timer sync(&timer);
timeout = expire - jiffies;

return (timeout < 0 ? 0 : timeout);

250 | Chapter6: Timing Measurements

When schedule() is invoked, another process is selected for execution; when the
former process resumes its execution, the function removes the dynamic timer. In
the last statement, the function either returns 0, if the time-out is expired, or the
number of ticks left to the time-out expiration if the process was awakened for some
other reason.

When the time-out expires, the timer’s function is executed:

void process _timeout(unsigned long _ data)

{
}

The process_timeout() receives as its parameter the process descriptor pointer
stored in the data field of the timer object. As a result, the suspended process is
awakened.

wake_up process((task t *) data);

Once awakened, the process continues the execution of the sys_nanosleep() system
call. If the value returned by schedule timeout() specifies that the process time-out is
expired (value zero), the system call terminates. Otherwise, the system call is auto-
matically restarted, as explained in the section “Reexecution of System Calls” in
Chapter 11.

Delay Functions

Software timers are useless when the kernel must wait for a short time interval—let’s
say, less than a few milliseconds. For instance, often a device driver has to wait for a
predefined number of microseconds until the hardware completes some operation.
Because a dynamic timer has a significant setup overhead and a rather large mini-
mum wait time (1 millisecond), the device driver cannot conveniently use it.

In these cases, the kernel makes use of the udelay() and ndelay() functions: the
former receives as its parameter a time interval in microseconds and returns after the
specified delay has elapsed; the latter is similar, but the argument specifies the delay
in nanoseconds.

Essentially, the two functions are defined as follows:

void udelay(unsigned long usecs)

{
unsigned long loops;
loops = (usecs*HZ*current_cpu_data.loops_per jiffy)/1000000;
cur_timer->delay(loops);

}

void ndelay(unsigned long nsecs)

{
unsigned long loops;
loops = (nsecs*HZ*current cpu_data.loops per jiffy)/1000000000;
cur_timer->delay(loops);

}

Software Timers and Delay Functions | 251

Both functions rely on the delay method of the cur_timer timer object (see the ear-
lier section “Data Structures of the Timekeeping Architecture”), which receives as
its parameter a time interval in “loops.” The exact duration of one “loop,” how-
ever, depends on the timer object referred by cur_timer (see Table 6-2 earlier in this
chapter):

* If cur_timer points to the timer hpet, timer pmtmr, and timer tsc objects, one
“loop” corresponds to one CPU cycle—that is, the time interval between two
consecutive CPU clock signals (see the earlier section “Time Stamp Counter

(TSO)™).

e If cur timer points to the timer none or timer pit objects, one “loop” corre-
sponds to the time duration of a single iteration of a tight instruction loop.

During the initialization phase, after cur_timer has been set up by select timer(),
the kernel executes the calibrate delay() function, which determines how many
“loops” fit in a tick. This value is then saved in the current cpu data.loops per
jiffy variable, so that it can be used by udelay() and ndelay() to convert microsec-
onds and nanoseconds, respectively, to “loops.”

Of course, the cur_timer->delay() method makes use of the HPET or TSC hardware
circuitry, if available, to get an accurate measurement of time. Otherwise, if no HPET
or TSC is available, the method executes loops iterations of a tight instruction loop.

System Calls Related to Timing Measurements

Several system calls allow User Mode processes to read and modify the time and date
and to create timers. Let’s briefly review these and discuss how the kernel handles
them.

The time() and gettimeofday() System Calls

Processes in User Mode can get the current time and date by means of several sys-
tem calls:

time()
Returns the number of elapsed seconds since midnight at the start of January 1,
1970 (UTQ).

gettimeofday()
Returns, in a data structure named timeval, the number of elapsed seconds since
midnight of January 1, 1970 (UTC) and the number of elapsed microseconds in
the last second (a second data structure named timezone is not currently used).

The time() system call is superseded by gettimeofday(), but it is still included in
Linux for backward compatibility. Another widely used function, ftime(), which is
no longer implemented as a system call, returns the number of elapsed seconds since

252 | Chapter6: Timing Measurements

midnight of January 1, 1970 (UTC) and the number of elapsed milliseconds in the
last second.

The gettimeofday() system call is implemented by the sys gettimeofday() function.
To compute the current date and time of the day, this function invokes do_
gettimeofday(), which executes the following actions:

1.
2.

Acquires the xtime_lock seqlock for reading.

Determines the number of microseconds elapsed since the last timer interrupt by
invoking the get_offset method of the cur_timer timer object:

usec = cur_timer->getoffset();

As explained in the earlier section “Data Structures of the Timekeeping Architec-
ture,” there are four possible cases:

a. If cur_timer points to the timer hpet object, the method compares the cur-
rent value of the HPET counter with the value of the same counter saved in
the last execution of the timer interrupt handler.

b. If cur_timer points to the timer pmtmr object, the method compares the cur-
rent value of the ACPI PMT counter with the value of the same counter
saved in the last execution of the timer interrupt handler.

c. If cur_timer points to the timer tsc object, the method compares the cur-
rent value of the Time Stamp Counter with the value of the TSC saved in the
last execution of the timer interrupt handler.

d. If cur_timer points to the timer pit object, the method reads the current
value of the PIT counter to compute the number of microseconds elapsed
since the last PIT’s timer interrupt.

. If some timer interrupt has been lost (see the section “Updating the Time and

Date” earlier in this chapter), the function adds to usec the corresponding delay:

usec += (jiffies - wall jiffies) * 1000;

. Adds to usec the microseconds elapsed in the last second:

usec += (xtime.tv_nsec / 1000);

. Copies the contents of xtime into the user-space buffer specified by the system

call parameter tv, adding to the microseconds field the value of usec:

tv->tv_sec = xtime->tv_sec;
tv->tv_usec = usec;

. Invokes read_seqretry() on the xtime lock seqlock, and jumps back to step 1 if

another kernel control path has concurrently acquired xtime_lock for writing.

. Checks for an overflow in the microseconds field, adjusting both that field and

the second field if necessary:

while (tv->tv_usec >= 1000000) {
tv->tv_usec -= 1000000;
tv->tv_sec++;

System Calls Related to Timing Measurements | 253

Processes in User Mode with root privilege may modify the current date and time by
using either the obsolete stime() or the settimeofday() system call. The sys_
settimeofday() function invokes do_settimeofday(), which executes operations
complementary to those of do_gettimeofday().

Notice that both system calls modify the value of xtime while leaving the RTC regis-
ters unchanged. Therefore, the new time is lost when the system shuts down, unless
the user executes the clock program to change the RTC value.

The adjtimex() System Call

Although clock drift ensures that all systems eventually move away from the correct
time, changing the time abruptly is both an administrative nuisance and risky behav-
ior. Imagine, for instance, programmers trying to build a large program and depend-
ing on file timestamps to make sure that out-of-date object files are recompiled. A
large change in the system’s time could confuse the make program and lead to an
incorrect build. Keeping the clocks tuned is also important when implementing a dis-
tributed filesystem on a network of computers. In this case, it is wise to adjust the
clocks of the interconnected PCs, so that the timestamp values associated with the
inodes of the accessed files are coherent. Thus, systems are often configured to run a
time synchronization protocol such as Network Time Protocol (NTP) on a regular
basis to change the time gradually at each tick. This utility depends on the adjtimex()
system call in Linux.

This system call is present in several Unix variants, although it should not be used in
programs intended to be portable. It receives as its parameter a pointer to a timex
structure, updates kernel parameters from the values in the timex fields, and returns
the same structure with current kernel values. Such kernel values are used by update
wall time one_tick() to slightly adjust the number of microseconds added to xtime.
tv_usec at each tick.

The setitimer() and alarm() System Calls

Linux allows User Mode processes to activate special timers called interval timers.”
The timers cause Unix signals (see Chapter 11) to be sent periodically to the process.
It is also possible to activate an interval timer so that it sends just one signal after a
specified delay. Each interval timer is therefore characterized by:

* The frequency at which the signals must be emitted, or a null value if just one
signal has to be generated

* The time remaining until the next signal is to be generated

* These software constructs have nothing in common with the Programmable Interval Timer chip described
earlier in this chapter.

254 | Chapter6: Timing Measurements

The earlier warning about accuracy applies to these timers. They are guaranteed to
execute after the requested time has elapsed, but it is impossible to predict exactly
when they will be delivered.

Interval timers are activated by means of the POSIX setitimer() system call. The
first parameter specifies which of the following policies should be adopted:

ITIMER REAL
The actual elapsed time; the process receives SIGALRM signals.

ITIMER VIRTUAL
The time spent by the process in User Mode; the process receives SIGVTALRM
signals.

ITIMER PROF
The time spent by the process both in User and in Kernel Mode; the process
receives SIGPROF signals.

The interval timers can be either single-shot or periodic. The second parameter of
setitimer() points to a structure of type itimerval that specifies the initial duration
of the timer (in seconds and nanoseconds) and the duration to be used when the
timer is automatically reactivated (or zero for single-shot timers).The third parame-
ter of setitimer() is an optional pointer to an itimerval structure that is filled by the
system call with the previous timer parameters.

To implement an interval timer for each of the preceding policies, the process
descriptor includes three pairs of fields:

e it real incrand it real value
* it virt incr and it virt value
* it prof_incr and it_prof value

The first field of each pair stores the interval in ticks between two signals; the other
field stores the current value of the timer.

The ITIMER REAL interval timer is implemented by using dynamic timers because the
kernel must send signals to the process even when it is not running on the CPU.
Therefore, each process descriptor includes a dynamic timer object called real
timer. The setitimer() system call initializes the real timer fields and then invokes
add_timer() to insert the dynamic timer in the proper list. When the timer expires,
the kernel executes the it real fn() timer function. In turn, the it real fn() func-
tion sends a SIGALRM signal to the process; then, if it_real_incr is not null, it sets the
expires field again, reactivating the timer.

The ITIMER_VIRTUAL and ITIMER_PROF interval timers do not require dynamic timers,
because they can be updated while the process is running. The account_it_virt()
and account_it prof() functions are invoked by update process times(), which is
called either by the PIT’s timer interrupt handler (UP) or by the local timer interrupt

System Calls Related to Timing Measurements | 255

handlers (SMP). Therefore, the two interval timers are updated once every tick, and
if they are expired, the proper signal is sent to the current process.

The alarm() system call sends a SIGALRM signal to the calling process when a speci-
fied time interval has elapsed. It is very similar to setitimer() when invoked with the
ITIMER REAL parameter, because it uses the real timer dynamic timer included in the
process descriptor. Therefore, alarm() and setitimer() with parameter ITIMER REAL
cannot be used at the same time.

System Calls for POSIX Timers

The POSIX 1003.1b standard introduced a new type of software timers for User
Mode programs—in particular, for multithreaded and real-time applications. These
timers are often referred to as POSIX timers.

Every implementation of the POSIX timers must offer to the User Mode programs a
few POSIX clocks, that is, virtual time sources having predefined resolutions and
properties. Whenever an application wants to make use of a POSIX timer, it creates a
new timer resource specifying one of the existing POSIX clocks as the timing base.
The system calls that allow users to handle POSIX clocks and timers are listed in
Table 6-3.

Table 6-3. System calls for POSIX timers and clocks

System call Description

clock_gettime() Gets the current value of a POSIX clock
clock_settime() Sets the current value of a POSIX clock
clock_getres() Gets the resolution of a POSIX clock

timer create() Creates a new POSIX timer based on a specified POSIX clock
timer gettime() Gets the current value and increment of a POSIX timer
timer_settime() Sets the current value and increment of a POSIX timer
timer_getoverrun() Gets the number of overruns of a decayed POSIX timer
timer delete() Destroys a POSIX timer

clock_nanosleep() Puts the process to sleep using a POSIX clock as time source

The Linux 2.6 kernel offers two types of POSIX clocks:

CLOCK_REALTIME
This virtual clock represents the real-time clock of the system—essentially the
value of the xtime variable (see the earlier section “Updating the Time and
Date”). The resolution returned by the clock getres() system call is 999,848
nanoseconds, which corresponds to roughly 1000 updates of xtime in a second.

CLOCK_MONOTONIC
This virtual clock represents the real-time clock of the system purged of every
time warp due to the synchronization with an external time source. Essentially,

256 | Chapter6: Timing Measurements

this virtual clock is represented by the sum of the two variables xtime and wall
to_monotonic (see the earlier section “Timekeeping Architecture in Uniprocessor
Systems”). The resolution of this POSIX clock, returned by clock getres(), is
999,848 nanoseconds.

The Linux kernel implements the POSIX timers by means of dynamic timers. Thus,
they are similar to the traditional ITIMER REAL interval timers we described in the pre-
vious section. POSIX timers, however, are much more flexible and reliable than tra-
ditional interval timers. A couple of significant differences between them are:

* When a traditional interval timer decays, the kernel always sends a SIGALRM sig-
nal to the process that activated the timer. Instead, when a POSIX timer decays,
the kernel can send every kind of signal, either to the whole multithreaded appli-
cation or to a single specified thread. The kernel can also force the execution of a
notifier function in a thread of the application, or it can even do nothing (it is up
to a User Mode library to handle the event).

* If a traditional interval timer decays many times but the User Mode process can-
not receive the SIGALRM signal (for instance because the signal is blocked or the
process is not running), only the first signal is received: all other occurrences of
SIGALRM are lost. The same holds for POSIX timers, but the process can invoke
the timer_getoverrun() system call to get the number of times the timer decayed
since the generation of the first signal.

System Calls Related to Timing Measurements | 257

CHAPTER 7
Process Scheduling

Like every time sharing system, Linux achieves the magical effect of an apparent
simultaneous execution of multiple processes by switching from one process to
another in a very short time frame. Process switching itself was discussed in
Chapter 3; this chapter deals with scheduling, which is concerned with when to
switch and which process to choose.

The chapter consists of three parts. The section “Scheduling Policy” introduces the
choices made by Linux in the abstract to schedule processes. The section “The
Scheduling Algorithm” discusses the data structures used to implement scheduling
and the corresponding algorithm. Finally, the section “System Calls Related to
Scheduling” describes the system calls that affect process scheduling.

To simplify the description, we refer as usual to the 80x 86 architecture; in particu-
lar, we assume that the system uses the Uniform Memory Access model, and that the
system tick is set to 1 ms.

Scheduling Policy

The scheduling algorithm of traditional Unix operating systems must fulfill several
conflicting objectives: fast process response time, good throughput for background
jobs, avoidance of process starvation, reconciliation of the needs of low- and high-
priority processes, and so on. The set of rules used to determine when and how to
select a new process to run is called scheduling policy.

Linux scheduling is based on the time sharing technique: several processes run in “time
multiplexing” because the CPU time is divided into slices, one for each runnable pro-
cess.” Of course, a single processor can run only one process at any given instant. If a
currently running process is not terminated when its time slice or quantum expires, a

* Recall that stopped and suspended processes cannot be selected by the scheduling algorithm to run on a
CPU.

258

process switch may take place. Time sharing relies on timer interrupts and is thus
transparent to processes. No additional code needs to be inserted in the programs to
ensure CPU time sharing.

The scheduling policy is also based on ranking processes according to their priority.
Complicated algorithms are sometimes used to derive the current priority of a pro-
cess, but the end result is the same: each process is associated with a value that tells
the scheduler how appropriate it is to let the process run on a CPU.

In Linux, process priority is dynamic. The scheduler keeps track of what processes
are doing and adjusts their priorities periodically; in this way, processes that have
been denied the use of a CPU for a long time interval are boosted by dynamically
increasing their priority. Correspondingly, processes running for a long time are
penalized by decreasing their priority.

When speaking about scheduling, processes are traditionally classified as I/O-bound
or CPU-bound. The former make heavy use of I/O devices and spend much time
waiting for I/O operations to complete; the latter carry on number-crunching appli-
cations that require a lot of CPU time.

An alternative classification distinguishes three classes of processes:

Interactive processes

These interact constantly with their users, and therefore spend a lot of time wait-
ing for keypresses and mouse operations. When input is received, the process
must be woken up quickly, or the user will find the system to be unresponsive.
Typically, the average delay must fall between 50 and 150 milliseconds. The
variance of such delay must also be bounded, or the user will find the system to
be erratic. Typical interactive programs are command shells, text editors, and
graphical applications.

Batch processes
These do not need user interaction, and hence they often run in the back-
ground. Because such processes do not need to be very responsive, they are often
penalized by the scheduler. Typical batch programs are programming language
compilers, database search engines, and scientific computations.

Real-time processes
These have very stringent scheduling requirements. Such processes should never
be blocked by lower-priority processes and should have a short guaranteed
response time with a minimum variance. Typical real-time programs are video
and sound applications, robot controllers, and programs that collect data from
physical sensors.

The two classifications we just offered are somewhat independent. For instance, a
batch process can be either I/O-bound (e.g., a database server) or CPU-bound (e.g.,
an image-rendering program). While real-time programs are explicitly recognized as
such by the scheduling algorithm in Linux, there is no easy way to distinguish

Scheduling Policy | 259

between interactive and batch programs. The Linux 2.6 scheduler implements a
sophisticated heuristic algorithm based on the past behavior of the processes to
decide whether a given process should be considered as interactive or batch. Of
course, the scheduler tends to favor interactive processes over batch ones.

Programmers may change the scheduling priorities by means of the system calls illus-
trated in Table 7-1. More details are given in the section “System Calls Related to
Scheduling.”

Table 7-1. System calls related to scheduling

System call Description

nice()) Change the static priority of a conventional process
getpriority() Get the maximum static priority of a group of conventional processes
setpriority() Set the static priority of a group of conventional processes
sched _getscheduler() Get the scheduling policy of a process
sched_setscheduler() Set the scheduling policy and the real-time priority of a process
sched_getparam() Get the real-time priority of a process

sched_setparam() Set the real-time priority of a process

sched yield() Relinquish the processor voluntarily without blocking

sched get priority min() Get the minimum real-time priority value for a policy

sched get priority max() Get the maximum real-time priority value for a policy
sched_rr get interval() Get the time quantum value for the Round Robin policy
sched_setaffinity() Set the CPU affinity mask of a process
sched_getaffinity() Get the CPU affinity mask of a process

Process Preemption

As mentioned in the first chapter, Linux processes are preemptable. When a process
enters the TASK_RUNNING state, the kernel checks whether its dynamic priority is
greater than the priority of the currently running process. If it is, the execution of
current is interrupted and the scheduler is invoked to select another process to run
(usually the process that just became runnable). Of course, a process also may be
preempted when its time quantum expires. When this occurs, the TIF_NEED_RESCHED
flag in the thread info structure of the current process is set, so the scheduler is
invoked when the timer interrupt handler terminates.

For instance, let’s consider a scenario in which only two programs—a text editor and
a compiler—are being executed. The text editor is an interactive program, so it has a
higher dynamic priority than the compiler. Nevertheless, it is often suspended,
because the user alternates between pauses for think time and data entry; moreover,
the average delay between two keypresses is relatively long. However, as soon as the
user presses a key, an interrupt is raised and the kernel wakes up the text editor pro-
cess. The kernel also determines that the dynamic priority of the editor is higher than

260 | Chapter7: ProcessScheduling

the priority of current, the currently running process (the compiler), so it sets the
TIF_NEED RESCHED flag of this process, thus forcing the scheduler to be activated when
the kernel finishes handling the interrupt. The scheduler selects the editor and per-
forms a process switch; as a result, the execution of the editor is resumed very
quickly and the character typed by the user is echoed to the screen. When the char-
acter has been processed, the text editor process suspends itself waiting for another
keypress and the compiler process can resume its execution.

Be aware that a preempted process is not suspended, because it remains in the TASK
RUNNING state; it simply no longer uses the CPU. Moreover, remember that the
Linux 2.6 kernel is preemptive, which means that a process can be preempted either
when executing in Kernel or in User Mode; we discussed in depth this feature in the
section “Kernel Preemption” in Chapter 5.

How Long Must a Quantum Last?

The quantum duration is critical for system performance: it should be neither too
long nor too short.

If the average quantum duration is too short, the system overhead caused by process
switches becomes excessively high. For instance, suppose that a process switch
requires 5 milliseconds; if the quantum is also set to 5 milliseconds, then at least 50
percent of the CPU cycles will be dedicated to process switching.”

If the average quantum duration is too long, processes no longer appear to be exe-
cuted concurrently. For instance, let’s suppose that the quantum is set to five sec-
onds; each runnable process makes progress for about five seconds, but then it stops
for a very long time (typically, five seconds times the number of runnable processes).

It is often believed that a long quantum duration degrades the response time of inter-
active applications. This is usually false. As described in the section “Process Pre-
emption” earlier in this chapter, interactive processes have a relatively high priority,
so they quickly preempt the batch processes, no matter how long the quantum dura-
tion is.

In some cases, however, a very long quantum duration degrades the responsiveness of
the system. For instance, suppose two users concurrently enter two commands at the
respective shell prompts; one command starts a CPU-bound process, while the other
launches an interactive application. Both shells fork a new process and delegate the
execution of the user’s command to it; moreover, suppose such new processes have
the same initial priority (Linux does not know in advance if a program to be executed
is batch or interactive). Now if the scheduler selects the CPU-bound process to run

* Actually, things could be much worse than this; for example, if the time required for the process switch is
counted in the process quantum, all CPU time is devoted to the process switch and no process can progress
toward its termination.

Scheduling Policy | 261

first, the other process could wait for a whole time quantum before starting its execu-
tion. Therefore, if the quantum duration is long, the system could appear to be unre-
sponsive to the user that launched the interactive application.

The choice of the average quantum duration is always a compromise. The rule of
thumb adopted by Linux is choose a duration as long as possible, while keeping
good system response time.

The Scheduling Algorithm

The scheduling algorithm used in earlier versions of Linux was quite simple and
straightforward: at every process switch the kernel scanned the list of runnable pro-
cesses, computed their priorities, and selected the “best” process to run. The main
drawback of that algorithm is that the time spent in choosing the best process
depends on the number of runnable processes; therefore, the algorithm is too
costly—that is, it spends too much time—in high-end systems running thousands of
processes.

The scheduling algorithm of Linux 2.6 is much more sophisticated. By design, it
scales well with the number of runnable processes, because it selects the process to
run in constant time, independently of the number of runnable processes. It also
scales well with the number of processors because each CPU has its own queue of
runnable processes. Furthermore, the new algorithm does a better job of distinguish-
ing interactive processes and batch processes. As a consequence, users of heavily
loaded systems feel that interactive applications are much more responsive in
Linux 2.6 than in earlier versions.

The scheduler always succeeds in finding a process to be executed; in fact, there is
always at least one runnable process: the swapper process, which has PID 0 and exe-
cutes only when the CPU cannot execute other processes. As mentioned in Chapter 3,
every CPU of a multiprocessor system has its own swapper process with PID equal to 0.

Every Linux process is always scheduled according to one of the following schedul-
ing classes:

SCHED_FIFO
A First-In, First-Out real-time process. When the scheduler assigns the CPU to
the process, it leaves the process descriptor in its current position in the run-
queue list. If no other higher-priority real-time process is runnable, the process
continues to use the CPU as long as it wishes, even if other real-time processes
that have the same priority are runnable.

SCHED_RR
A Round Robin real-time process. When the scheduler assigns the CPU to the
process, it puts the process descriptor at the end of the runqueue list. This pol-
icy ensures a fair assignment of CPU time to all SCHED_RR real-time processes that
have the same priority.

262 | Chapter7: ProcessScheduling

SCHED_NORMAL
A conventional, time-shared process.

The scheduling algorithm behaves quite differently depending on whether the pro-
cess is conventional or real-time.

Scheduling of Conventional Processes

Every conventional process has its own static priority, which is a value used by the
scheduler to rate the process with respect to the other conventional processes in the
system. The kernel represents the static priority of a conventional process with a
number ranging from 100 (highest priority) to 139 (lowest priority); notice that static
priority decreases as the values increase.

A new process always inherits the static priority of its parent. However, a user can
change the static priority of the processes that he owns by passing some “nice val-
ues” to the nice() and setpriority() system calls (see the section “System Calls
Related to Scheduling” later in this chapter).

Base time quantum

The static priority essentially determines the base time quantum of a process, that is,
the time quantum duration assigned to the process when it has exhausted its previ-
ous time quantum. Static priority and base time quantum are related by the follow-
ing formula:

base time quantum _ {(140 — static priority) x 20 if static priority < 120 (1)

(in milliseconds) (140 — static priority) x 5 if static priority 2 120

As you see, the higher the static priority (i.e., the lower its numerical value), the
longer the base time quantum. As a consequence, higher priority processes usually
get longer slices of CPU time with respect to lower priority processes. Table 7-2
shows the static priority, the base time quantum values, and the corresponding nice
values for a conventional process having highest static priority, default static prior-
ity, and lowest static priority. (The table also lists the values of the interactive delta
and of the sleep time threshold, which are explained later in this chapter.)

Table 7-2. Typical priority values for a conventional process

Sleep time
Description Staticpriority Nicevalue Base time quantum Interactivedelta threshold
Highest static priority 100 -20 800 ms -3 299 ms
High static priority 10 -10 600 ms -1 499 ms
Default static priority 120 0 100 ms +2 799 ms
Low static priority 130 +10 50 ms +4 999 ms
Lowest static priority 139 +19 5ms +6 1199 ms

The Scheduling Algorithm | 263

Dynamic priority and average sleep time

Besides a static priority, a conventional process also has a dynamic priority, which is
a value ranging from 100 (highest priority) to 139 (lowest priority). The dynamic pri-
ority is the number actually looked up by the scheduler when selecting the new pro-
cess to run. It is related to the static priority by the following empirical formula:

dynamic priority = max (100, min (static priority — bonus + 5, 139)) (2)

The bonus is a value ranging from 0 to 10; a value less than 5 represents a penalty that
lowers the dynamic priority, while a value greater than 5 is a premium that raises the
dynamic priority. The value of the bonus, in turn, depends on the past history of the
process; more precisely, it is related to the average sleep time of the process.

Roughly, the average sleep time is the average number of nanoseconds that the pro-
cess spent while sleeping. Be warned, however, that this is not an average operation
on the elapsed time. For instance, sleeping in TASK_INTERRUPTIBLE state contributes to
the average sleep time in a different way from sleeping in TASK_UNINTERRUPTIBLE state.
Moreover, the average sleep time decreases while a process is running. Finally, the
average sleep time can never become larger than 1 second.

The correspondence between average sleep times and bonus values is shown in
Table 7-3. (The table lists also the corresponding granularity of the time slice, which
will be discussed later.)

Table 7-3. Average sleep times, bonus values, and time slice granularity

Average sleep time Bonus Granularity
Greater than or equal to 0 but smaller than 100 ms 0 5120
Greater than or equal to 100 ms but smaller than 200 ms 1 2560
Greater than or equal to 200 ms but smaller than 300 ms 2 1280
Greater than or equal to 300 ms but smaller than 400 ms 3 640
Greater than or equal to 400 ms but smaller than 500 ms 4 320
Greater than or equal to 500 ms but smaller than 600 ms 5 160
Greater than or equal to 600 ms but smaller than 700 ms 6 80
Greater than or equal to 700 ms but smaller than 800 ms 7 40
Greater than or equal to 800 ms but smaller than 900 ms 8 20
Greater than or equal to 900 ms but smaller than 1000 ms 9 10
1second 10 10

The average sleep time is also used by the scheduler to determine whether a given
process should be considered interactive or batch. More precisely, a process is con-
sidered “interactive” if it satisfies the following formula:

dynamic priority < 3 X static priority / 4 + 28 3)

264 | Chapter7: ProcessScheduling

which is equivalent to the following:
bonus - 5 > static priority / 4 — 28

The expression static priority / 4 — 28 is called the interactive delta; some typical values
of this term are listed in Table 7-2. It should be noted that it is far easier for high pri-
ority than for low priority processes to become interactive. For instance, a process hav-
ing highest static priority (100) is considered interactive when its bonus value exceeds
2, that is, when its average sleep time exceeds 200 ms. Conversely, a process having
lowest static priority (139) is never considered as interactive, because the bonus value
is always smaller than the value 11 required to reach an interactive delta equal to 6. A
process having default static priority (120) becomes interactive as soon as its average
sleep time exceeds 700 ms.

Active and expired processes

Even if conventional processes having higher static priorities get larger slices of the CPU
time, they should not completely lock out the processes having lower static priority. To
avoid process starvation, when a process finishes its time quantum, it can be replaced
by a lower priority process whose time quantum has not yet been exhausted. To imple-
ment this mechanism, the scheduler keeps two disjoint sets of runnable processes:

Active processes
These runnable processes have not yet exhausted their time quantum and are
thus allowed to run.

Expired processes
These runnable processes have exhausted their time quantum and are thus for-
bidden to run until all active processes expire.

However, the general schema is slightly more complicated than this, because the
scheduler tries to boost the performance of interactive processes. An active batch pro-
cess that finishes its time quantum always becomes expired. An active interactive pro-
cess that finishes its time quantum usually remains active: the scheduler refills its time
quantum and leaves it in the set of active processes. However, the scheduler moves an
interactive process that finished its time quantum into the set of expired processes if
the eldest expired process has already waited for a long time, or if an expired process
has higher static priority (lower value) than the interactive process. As a consequence,
the set of active processes will eventually become empty and the expired processes
will have a chance to run.

Scheduling of Real-Time Processes

Every real-time process is associated with a real-time priority, which is a value rang-
ing from 1 (highest priority) to 99 (lowest priority). The scheduler always favors a
higher priority runnable process over a lower priority one; in other words, a real-time

The Scheduling Algorithm | 265

process inhibits the execution of every lower-priority process while it remains runna-
ble. Contrary to conventional processes, real-time processes are always considered
active (see the previous section). The user can change the real-time priority of a pro-
cess by means of the sched _setparam() and sched setscheduler() system calls (see
the section “System Calls Related to Scheduling” later in this chapter).

If several real-time runnable processes have the same highest priority, the scheduler
chooses the process that occurs first in the corresponding list of the local CPU’s run-
queue (see the section “The lists of TASK_RUNNING processes” in Chapter 3).

A real-time process is replaced by another process only when one of the following
events occurs:

* The process is preempted by another process having higher real-time priority.

* The process performs a blocking operation, and it is put to sleep (in state TASK_
INTERRUPTIBLE or TASK_UNINTERRUPTIBLE).

* The process is stopped (in state TASK_STOPPED or TASK_TRACED), or it is killed (in
state EXIT_ZOMBIE or EXIT DEAD).

* The process voluntarily relinquishes the CPU by invoking the sched yield()
system call (see the section “System Calls Related to Scheduling” later in this
chapter).

* The process is Round Robin real-time (SCHED_RR), and it has exhausted its time
quantum.

The nice() and setpriority() system calls, when applied to a Round Robin real-
time process, do not change the real-time priority but rather the duration of the base
time quantum. In fact, the duration of the base time quantum of Round Robin real-
time processes does not depend on the real-time priority, but rather on the static pri-
ority of the process, according to the formula (1) in the earlier section “Scheduling of
Conventional Processes.”

Data Structures Used by the Scheduler

Recall from the section “Identifying a Process” in Chapter 3 that the process list links
all process descriptors, while the runqueue lists link the process descriptors of all
runnable processes—that is, of those in a TASK_RUNNING state—except the swapper
process (idle process).

The runqueue Data Structure

The runqueue data structure is the most important data structure of the Linux 2.6 sched-
uler. Each CPU in the system has its own runqueue; all runqueue structures are stored in
the runqueues per-CPU variable (see the section “Per-CPU Variables” in Chapter 5).
The this_rq() macro yields the address of the runqueue of the local CPU, while the
cpu_rq(n) macro yields the address of the runqueue of the CPU having index n.

266 | Chapter7: ProcessScheduling

Table 7-4 lists the fields included in the runqueue data structure; we will discuss most
of them in the following sections of the chapter.

Table 7-4. The fields of the runqueue structure

Type
spinlock t
unsigned long

unsigned long

unsigned long

unsigned long

unsigned long
unsigned long long
task_t *

task_t *
struct mm_struct *

prio array t *
prio array t *
prio array t [2]

int

atomic_t

struct
sched domain *

int

int

task_t *

struct list head

Name
lock
nr_running

cpu_load

nr_switches

nr_uninterruptible

expired timestamp
timestamp last tick

curr
idle
prev_mm

active
expired
arrays

best_expired prio

nr_iowait

sd
active balance

push_cpu
migration_thread

migration queue

Description
Spin lock protecting the lists of processes
Number of runnable processes in the runqueue lists

(PU load factor based on the average number of processes
in the runqueue

Number of process switches performed by the CPU

Number of processes that were previously in the run-
queue lists and are now sleeping in TASK _
UNINTERRUPTIBLE state (only the sum of these fields
across all runqueues is meaningful)

Insertion time of the eldest process in the expired lists
Timestamp value of the last timer interrupt

Process descriptor pointer of the currently running pro-
cess (same as current for the local CPU)

Process descriptor pointer of the swapper process for this
(PU

Used during a process switch to store the address of the
memory descriptor of the process being replaced

Pointer to the lists of active processes
Pointer to the lists of expired processes
The two sets of active and expired processes

The best static priority (lowest value) among the expired
processes

Number of processes that were previously in the run-
queue lists and are now waiting for a disk 1/0 operation to
complete

Points to the base scheduling domain of this CPU (see the
section “Scheduling Domains” later in this chapter)

Flag set if some process shall be migrated from this run-
queue to another (runqueue balancing)

Not used
Process descriptor pointer of the migration kernel thread

List of processes to be removed from the runqueue

The most important fields of the runqueue data structure are those related to the lists
of runnable processes. Every runnable process in the system belongs to one, and just
one, runqueue. As long as a runnable process remains in the same runqueue, it can

Data Structures Used by the Scheduler | 267

be executed only by the CPU owning that runqueue. However, as we’ll see later, run-
nable processes may migrate from one runqueue to another.

The arrays field of the runqueue is an array consisting of two prio_array t struc-
tures. Each data structure represents a set of runnable processes, and includes 140
doubly linked list heads (one list for each possible process priority), a priority bit-
map, and a counter of the processes included in the set (see Table 3-2 in the section
Chapter 3).

- active

arrays[0] - /'@‘_,@ priori;y139
(P e (7)e>(P) priorty 0
‘\® <_>® prioriéy139

arrays[1]

Figure 7-1. The runqueue structure and the two sets of runnable processes

As shown in Figure 7-1, the active field of the runqueue structure points to one of the
two prio_array t data structures in arrays: the corresponding set of runnable pro-
cesses includes the active processes. Conversely, the expired field points to the other
prio array t data structure in arrays: the corresponding set of runnable processes
includes the expired processes.

Periodically, the role of the two data structures in arrays changes: the active pro-
cesses suddenly become the expired processes, and the expired processes become the
active ones. To achieve this change, the scheduler simply exchanges the contents of
the active and expired fields of the runqueue.

Process Descriptor

Each process descriptor includes several fields related to scheduling; they are listed in
Table 7-5.

Table 7-5. Fields of the process descriptor related to the scheduler

Type Name Description

unsigned long thread_info->flags Stores the TIF_NEED_RESCHED flag, which is set if
the scheduler must be invoked (see the section “Return-
ing from Interrupts and Exceptions” in Chapter 4)

unsigned int thread_info->cpu Logical number of the CPU owning the runqueue to
which the runnable process belongs

268 | Chapter7: ProcessScheduling

Table 7-5. Fields of the process descriptor related to the scheduler (continued)

Type Name Description

unsigned long state The current state of the process (see the section “Pro-
cess State” in Chapter 3)

int prio Dynamic priority of the process

int static_prio Static priority of the process

struct list head run_list Pointers to the next and previous elements in the run-
queue list to which the process belongs

prio_array t * array Pointer to the runqueue’s prio_array_t setthat
includes the process

unsigned long sleep_avg Average sleep time of the process

unsigned long long timestamp Time of last insertion of the process in the runqueue, or
time of last process switch involving the process

unsigned long long last_ran Time of last process switch that replaced the process

int activated Condition code used when the process is awakened

unsigned long policy The scheduling class of the process (SCHED_NORMAL,
SCHED_RR, or SCHED_FIFO)

cpumask_t cpus_allowed Bit mask of the CPUs that can execute the process

unsigned int time_slice Ticks left in the time quantum of the process

unsigned int first time slice Flag set to 1if the process never exhausted its time
quantum

unsigned long rt_priority ‘ Real-time priority of the process

When a new process is created, sched fork(), invoked by copy process(), sets the
time_slice field of both current (the parent) and p (the child) processes in the fol-
lowing way:

p->time slice = (current->time slice + 1) >> 1;

current->time slice »>>= 1;
In other words, the number of ticks left to the parent is split in two halves: one for
the parent and one for the child. This is done to prevent users from getting an unlim-
ited amount of CPU time by using the following method: the parent process creates a
child process that runs the same code and then kills itself; by properly adjusting the
creation rate, the child process would always get a fresh quantum before the quan-
tum of its parent expires. This programming trick does not work because the kernel
does not reward forks. Similarly, a user cannot hog an unfair share of the processor
by starting several background processes in a shell or by opening a lot of windows on
a graphical desktop. More generally speaking, a process cannot hog resources (unless
it has privileges to give itself a real-time policy) by forking multiple descendents.

If the parent had just one tick left in its time slice, the splitting operation forces
current->time_slice to 0, thus exhausting the quantum of the parent. In this case,
copy_process() sets current->time_slice back to 1, then invokes scheduler tick()
to decrease the field (see the following section).

Data Structures Used by the Scheduler | 269

The copy_process() function also initializes a few other fields of the child’s process
descriptor related to scheduling:

p->first_time_slice = 1;

p->timestamp = sched_clock();
The first time slice flag is set to 1, because the child has never exhausted its time
quantum (if a process terminates or executes a new program during its first time
slice, the parent process is rewarded with the remaining time slice of the child). The
timestamp field is initialized with a timestamp value produced by sched clock():
essentially, this function returns the contents of the 64-bit TSC register (see the sec-
tion “Time Stamp Counter (TSC)” in Chapter 6) converted to nanoseconds.

Functions Used by the Scheduler

The scheduler relies on several functions in order to do its work; the most important
are:

scheduler tick()
Keeps the time_slice counter of current up-to-date

try to wake up()
Awakens a sleeping process

recalc_task _prio()
Updates the dynamic priority of a process

schedule()
Selects a new process to be executed

load balance()
Keeps the runqueues of a multiprocessor system balanced

The scheduler_tick() Function

We have already explained in the section “Updating Local CPU Statistics” in
Chapter 6 how scheduler_tick() is invoked once every tick to perform some opera-
tions related to scheduling. It executes the following main steps:

1. Stores in the timestamp last tick field of the local runqueue the current value of
the TSC converted to nanoseconds; this timestamp is obtained from the sched_
clock() function (see the previous section).

2. Checks whether the current process is the swapper process of the local CPU. If
so, it performs the following substeps:

a. If the local runqueue includes another runnable process besides swapper, it
sets the TIF_NEED RESCHED flag of the current process to force rescheduling.
As we’ll see in the section “The schedule() Function” later in this chapter, if
the kernel supports the hyper-threading technology (see the section “Run-
queue Balancing in Multiprocessor Systems” later in this chapter), a logical

270 | Chapter7: ProcessScheduling

CPU might be idle even if there are runnable processes in its runqueue, as
long as those processes have significantly lower priorities than the priority of
a process already executing on another logical CPU associated with the same
physical CPU.

b. Jumps to step 7 (there is no need to update the time slice counter of the
swapper process).

3. Checks whether current->array points to the active list of the local runqueue. If
not, the process has expired its time quantum, but it has not yet been replaced:
sets the TIF_NEED RESCHED flag to force rescheduling, and jumps to step 7.

4. Acquires the this_rq()->lock spin lock.

5. Decreases the time slice counter of the current process, and checks whether the
quantum is exhausted. The operations performed by the function are quite dif-
ferent according to the scheduling class of the process; we will discuss them in a
moment.

6. Releases the this_rq()->lock spin lock.

7. Invokes the rebalance tick() function, which should ensure that the runqueues
of the various CPUs contain approximately the same number of runnable pro-
cesses. We will discuss runqueue balancing in the later section “Runqueue Bal-
ancing in Multiprocessor Systems.”

Updating the time slice of a real-time process

If the current process is a FIFO real-time process, scheduler tick() has nothing to
do. In this case, in fact, current cannot be preempted by lower or equal priority pro-
cesses, thus it does not make sense to keep its time slice counter up-to-date.

If current is a Round Robin real-time process, scheduler tick() decreases its time
slice counter and checks whether the quantum is exhausted:
if (current->policy == SCHED RR &3 !--current->time_slice) {
current->time slice = task timeslice(current);
current->first time slice = 0;
set_tsk need resched(current);
list del(¤t->run list);
list_add_tail(¤t->run_list,
this_rq()->active->queue+current->prio);
}
If the function determines that the time quantum is effectively exhausted, it per-
forms a few operations aimed to ensure that current will be preempted, if necessary,
as soon as possible.

The first operation consists of refilling the time slice counter of the process by invok-
ing task timeslice(). This function considers the static priority of the process and
returns the corresponding base time quantum, according to the formula (1) shown in
the earlier section “Scheduling of Conventional Processes.” Moreover, the first_
time_slice field of current is cleared: this flag is set by copy process() in the service

Functions Used by the Scheduler | 271

routine of the fork() system call, and should be cleared as soon as the first time
quantum of the process elapses.

Next, scheduler tick() invokes the set tsk need resched() function to set the TIF_
NEED_RESCHED flag of the process. As described in the section “Returning from Inter-
rupts and Exceptions” in Chapter 4, this flag forces the invocation of the schedule()
function, so that current can be replaced by another real-time process having equal
(or higher) priority, if any.

The last operation of scheduler tick() consists of moving the process descriptor to
the last position of the runqueue active list corresponding to the priority of current.
Placing current in the last position ensures that it will not be selected again for exe-
cution until every real-time runnable process having the same priority as current will
get a slice of the CPU time. This is the meaning of round-robin scheduling. The
descriptor is moved by first invoking 1ist_del() to remove the process from the run-
queue active list, then by invoking list add_tail() to insert back the process in the
last position of the same list.

Updating the time slice of a conventional process

If the current process is a conventional process, the scheduler tick() function per-
forms the following operations:

1. Decreases the time slice counter (current->time_slice).
2. Checks the time slice counter. If the time quantum is exhausted, the function
performs the following operations:
a. Invokes dequeue_task() to remove current from the this rq()->active set
of runnable processes.
b. Invokes set_tsk need resched() to set the TIF_NEED RESCHED flag.
c. Updates the dynamic priority of current:
current->prio = effective prio(current);
The effective prio() function reads the static prio and sleep avg fields of
current, and computes the dynamic priority of the process according to the
formula (2) shown in the earlier section “Scheduling of Conventional Pro-
cesses.”
d. Refills the time quantum of the process:

current->time_slice = task timeslice(current);
current->first time slice = 0;

e. If the expired_timestamp field of the local runqueue data structure is equal to
zero (that is, the set of expired processes is empty), writes into the field the
value of the current tick:

if (!this_rq()->expired timestamp)
this_rq()->expired timestamp = jiffies;

f. Inserts the current process either in the active set or in the expired set:

272 | Chapter7: Process Scheduling

if (ITASK_INTERACTIVE(current) || EXPIRED STARVING(this rq()) {
enqueue_task(current, this rq()->expired);
if (current->static_prio < this rq()->best expired prio)
this _rq()->best expired prio = current->static prio;
} else
enqueue_task(current, this_rq()->active);
The TASK_INTERACTIVE macro yields the value one if the process is recog-
nized as interactive using the formula (3) shown in the earlier section
“Scheduling of Conventional Processes.” The EXPIRED STARVING macro
checks whether the first expired process in the runqueue had to wait for
more than 1000 ticks times the number of runnable processes in the run-
queue plus one; if so, the macro yields the value one. The EXPIRED STARVING
macro also yields the value one if the static priority value of the current pro-
cess is greater than the static priority value of an already expired process.

3. Otherwise, if the time quantum is not exhausted (current->time slice is not
zero), checks whether the remaining time slice of the current process is too long:
if (TASK_INTERACTIVE(p) &3 !((task timeslice(p) -
p->time slice) % TIMESLICE GRANULARITY(p)) 8&&
(p->time_slice >= TIMESLICE GRANULARITY(p)) &&
(p->array == rq->active)) {
list del(¤t->run_list);
list add tail(¤t->run list,
this rq()->active->queue+current->prio);
set_tsk need resched(p);
}
The TIMESLICE GRANULARITY macro yields the product of the number of CPUs in
the system and a constant proportional to the bonus of the current process (see
Table 7-3 earlier in the chapter). Basically, the time quantum of interactive pro-
cesses with high static priorities is split into several pieces of TIMESLICE
GRANULARITY size, so that they do not monopolize the CPU.

The try_to_wake_up() Function

The try to wake up() function awakes a sleeping or stopped process by setting its
state to TASK_RUNNING and inserting it into the runqueue of the local CPU. For
instance, the function is invoked to wake up processes included in a wait queue (see
the section “How Processes Are Organized” in Chapter 3) or to resume execution of
processes waiting for a signal (see Chapter 11). The function receives as its parame-
ters:

* The descriptor pointer (p) of the process to be awakened
* A mask of the process states (state) that can be awakened

* A flag (sync) that forbids the awakened process to preempt the process currently
running on the local CPU

Functions Used by the Scheduler | 273

The function performs the following operations:

1.

Invokes the task_rq_lock() function to disable local interrupts and to acquire
the lock of the runqueue rq owned by the CPU that was last executing the pro-
cess (it could be different from the local CPU). The logical number of that CPU
is stored in the p->thread_info->cpu field.

. Checks if the state of the process p->state belongs to the mask of states state

passed as argument to the function; if this is not the case, it jumps to step 9 to
terminate the function.

. If the p->array field is not NULL, the process already belongs to a runqueue; there-

fore, it jumps to step 8.

. In multiprocessor systems, it checks whether the process to be awakened should

be migrated from the runqueue of the lastly executing CPU to the runqueue of
another CPU. Essentially, the function selects a target runqueue according to
some heuristic rules. For example:

* If some CPU in the system is idle, it selects its runqueue as the target. Prefer-
ence is given to the previously executing CPU and to the local CPU, in this
order.

* If the workload of the previously executing CPU is significantly lower than
the workload of the local CPU, it selects the old runqueue as the target.

* If the process has been executed recently, it selects the old runqueue as the
target (the hardware cache might still be filled with the data of the process).

* If moving the process to the local CPU reduces the unbalance between the
CPUs, the target is the local runqueue (see the section “Runqueue Balanc-
ing in Multiprocessor Systems” later in this chapter).

After this step has been executed, the function has identified a target CPU that

will execute the awakened process and, correspondingly, a target runqueue rq in
which to insert the process.

. If the process is in the TASK UNINTERRUPTIBLE state, it decreases the nr_

uninterruptible field of the target runqueue, and sets the p->activated field of
the process descriptor to -1. See the later section “The recalc_task_prio() Func-
tion” for an explanation of the activated field.

. Invokes the activate task() function, which in turn performs the following sub-

steps:

a. Invokes sched clock() to get the current timestamp in nanoseconds. If the
target CPU is not the local CPU, it compensates for the drift of the local
timer interrupts by using the timestamps relative to the last occurrences of
the timer interrupts on the local and target CPUs:

now = (sched_clock() - this_rq()->timestamp_last_tick)
+ rg->timestamp_last tick;

274

| Chapter7: Process Scheduling

7.

b. Invokes recalc_task prio(), passing to it the process descriptor pointer and
the timestamp computed in the previous step. The recalc_task prio() func-
tion is described in the next section.

c. Sets the value of the p->activated field according to Table 7-6 later in this
chapter.

d. Sets the p->timestamp field with the timestamp computed in step 6a.

e. Inserts the process descriptor in the active set:

enqueue_task(p, rg->active);

Iq->nr_running++;
If either the target CPU is not the local CPU or if the sync flag is not set, it checks
whether the new runnable process has a dynamic priority higher than that of the
current process of the rq runqueue (p->prio < rg->curr->prio); if so, invokes
resched_task() to preempt rq->curr. In uniprocessor systems the latter function
just executes set_tsk need resched() to set the TIF_NEED RESCHED flag of the rq->
curr process. In multiprocessor systems resched task() also checks whether the
old value of whether TIF_NEED_RESCHED flag was zero, the target CPU is different
from the local CPU, and whether the TIF_POLLING NRFLAG flag of the rg->curr
process is clear (the target CPU is not actively polling the status of the TIF_NEED_
RESCHED flag of the process). If so, resched_task() invokes smp_send_reschedule(
) to raise an IPI and force rescheduling on the target CPU (see the section “Inter-
processor Interrupt Handling” in Chapter 4).

8. Sets the p->state field of the process to TASK_RUNNING.

9. Invokes task_rq unlock() to unlock the rq runqueue and reenable the local

10.

interrupts.

Returns 1 (if the process has been successfully awakened) or 0 (if the process has
not been awakened).

The recalc_task_prio() Function

The recalc_task _prio() function updates the average sleep time and the dynamic
priority of a process. It receives as its parameters a process descriptor pointer p and a
timestamp now computed by the sched_clock() function.

The function executes the following operations:

1.

Stores in the sleep time local variable the result of:
min (now — p->timestamp, 109)

The p->timestamp field contains the timestamp of the process switch that put the
process to sleep; therefore, sleep time stores the number of nanoseconds that
the process spent sleeping since its last execution (or the equivalent of 1 second,
if the process slept more).

Functions Used by the Scheduler | 275

2.

If sleep_time is not greater than zero, it jumps to step 8 so as to skip updating
the average sleep time of the process.

. Checks whether the process is not a kernel thread, whether it is awakening from

the TASK_UNINTERRUPTIBLE state (p->activated field equal to —1; see step 5 in the
previous section), and whether it has been continuously asleep beyond a given
sleep time threshold. If these three conditions are fulfilled, the function sets the
p->sleep_avg field to the equivalent of 900 ticks (an empirical value obtained by
subtracting the duration of the base time quantum of a standard process from
the maximum average sleep time). Then, it jumps to step 8.

The sleep time threshold depends on the static priority of the process; some typi-
cal values are shown in Table 7-2. In short, the goal of this empirical rule is to
ensure that processes that have been asleep for a long time in uninterruptible
mode—usually waiting for disk I/O operations—get a predefined sleep average
value that is large enough to allow them to be quickly serviced, but it is also not
so large to cause starvation for other processes.

. Executes the CURRENT BONUS macro to compute the bonus value of the previous

average sleep time of the process (see Table 7-3). If (10-bonus) is greater than
zero, the function multiplies sleep time by this value. Since sleep time will be
added to the average sleep time of the process (see step 6 below), the lower the
current average sleep time is, the more rapidly it will rise.

. If the process is in TASK_UNINTERRUPTIBLE mode and it is not a kernel thread, it

performs the following substeps:

a. Checks whether the average sleep time p->sleep_avg is greater than or equal
to its sleep time threshold (see Table 7-2 earlier in this chapter). If so, it
resets the sleep time local variable to zero—thus skipping the adjustment of
the average sleep time—and jumps to step 6.

b. If the sum sleep time+p->sleep avg is greater than or equal to the sleep time
threshold, it sets the p->sleep avg field to the sleep time threshold, and sets
sleep time to zero.

By somewhat limiting the increment of the average sleep time of the process, the
function does not reward too much batch processes that sleep for a long time.

. Adds sleep_time to the average sleep time of the process (p->sleep_avg).

. Checks whether p->sleep avg exceeds 1000 ticks (in nanoseconds); if so, the

function cuts it down to 1000 ticks (in nanoseconds).

. Updates the dynamic priority of the process:

p->prio = effective prio(p);
The effective prio() function has already been discussed in the section “The
scheduler_tick() Function” earlier in this chapter.

276

| Chapter7: Process Scheduling

The schedule() Function

The schedule() function implements the scheduler. Its objective is to find a process
in the runqueue list and then assign the CPU to it. It is invoked, directly or in a lazy
(deferred) way, by several kernel routines.

Direct invocation

The scheduler is invoked directly when the current process must be blocked right
away because the resource it needs is not available. In this case, the kernel routine
that wants to block it proceeds as follows:

1. Inserts current in the proper wait queue.

2. Changes the state of current either to TASK _INTERRUPTIBLE or to TASK_
UNINTERRUPTIBLE.

3. Invokes schedule().
4. Checks whether the resource is available; if not, goes to step 2.

5. Once the resource is available, removes current from the wait queue.

The kernel routine checks repeatedly whether the resource needed by the process is
available; if not, it yields the CPU to some other process by invoking schedule().
Later, when the scheduler once again grants the CPU to the process, the availability
of the resource is rechecked. These steps are similar to those performed by wait_
event() and similar functions described in the section “How Processes Are Orga-
nized” in Chapter 3.

The scheduler is also directly invoked by many device drivers that execute long itera-
tive tasks. At each iteration cycle, the driver checks the value of the TIF_NEED RESCHED
flag and, if necessary, invokes schedule() to voluntarily relinquish the CPU.

Lazy invocation

The scheduler can also be invoked in a lazy way by setting the TIF_NEED_RESCHED flag
of current to 1. Because a check on the value of this flag is always made before
resuming the execution of a User Mode process (see the section “Returning from
Interrupts and Exceptions” in Chapter 4), schedule() will definitely be invoked at
some time in the near future.

Typical examples of lazy invocation of the scheduler are:

* When current has used up its quantum of CPU time; this is done by the
scheduler tick() function.

* When a process is woken up and its priority is higher than that of the current
process; this task is performed by the try to wake up() function.

* When a sched setscheduler() system call is issued (see the section “System
Calls Related to Scheduling” later in this chapter).

Functions Used by the Scheduler | 277

Actions performed by schedule() before a process switch

The goal of the schedule() function consists of replacing the currently executing pro-
cess with another one. Thus, the key outcome of the function is to set a local vari-
able called next, so that it points to the descriptor of the process selected to replace
current. If no runnable process in the system has priority greater than the priority of
current, at the end, next coincides with current and no process switch takes place.

The schedule() function starts by disabling kernel preemption and initializing a few
local variables:

need_resched:

preempt disable();

prev = current;

1q = this_rq();
As you see, the pointer returned by current is saved in prev, and the address of the
runqueue data structure corresponding to the local CPU is saved in rq.

Next, schedule() makes sure that prev doesn’t hold the big kernel lock (see the sec-
tion “The Big Kernel Lock” in Chapter 5):
if (prev->lock depth >= 0)

up(8kernel_sem);
Notice that schedule() doesn’t change the value of the lock depth field; when prev
resumes its execution, it reacquires the kernel flag spin lock if the value of this field
is not negative. Thus, the big kernel lock is automatically released and reacquired
across a process switch.

The sched clock() function is invoked to read the TSC and convert its value to
nanoseconds; the timestamp obtained is saved in the now local variable. Then,
schedule() computes the duration of the CPU time slice used by prev:

now = sched clock();

run_time = now - prev->timestamp;

if (run_time > 1000000000)

run_time = 1000000000;

The usual cut-off at 1 second (converted to nanoseconds) applies. The run_time
value is used to charge the process for the CPU usage. However, a process having a
high average sleep time is favored:

run_time /= (CURRENT BONUS(prev) ? : 1);

Remember that CURRENT _BONUS returns a value between 0 and 10 that is proportional
to the average sleep time of the process.

Before starting to look at the runnable processes, schedule() must disable the local
interrupts and acquire the spin lock that protects the runqueue:

spin_lock irq(&rg->lock);

278 | Chapter7: Process Scheduling

As explained in the section “Process Termination” in Chapter 3, prev might be a pro-
cess that is being terminated. To recognize this case, schedule() looks at the PF_DEAD
flag:
if (prev->flags & PF_DEAD)
prev->state = EXIT DEAD;
Next, schedule() examines the state of prev. If it is not runnable and it has not been
preempted in Kernel Mode (see the section “Returning from Interrupts and Excep-
tions” in Chapter 4), then it should be removed from the runqueue. However, if it
has nonblocked pending signals and its state is TASK_INTERRUPTIBLE, the function sets
the process state to TASK_RUNNING and leaves it into the runqueue. This action is not
the same as assigning the processor to prev; it just gives prev a chance to be selected
for execution:
if (prev->state != TASK _RUNNING 8&
! (preempt_count() & PREEMPT_ACTIVE)) {
if (prev->state == TASK INTERRUPTIBLE && signal pending(prev))
prev->state = TASK_RUNNING;
else {
if (prev->state == TASK UNINTERRUPTIBLE)

rg->nr_uninterruptible++;
deactivate_task(prev, 1q);

}
The deactivate_task() function removes the process from the runqueue:

Ig->Nr_running--;
dequeue_task(p, p->array);
p->array = NULL;
Now, schedule() checks the number of runnable processes left in the runqueue. If
there are some runnable processes, the function invokes the dependent sleeper()
function. In most cases, this function immediately returns zero. If, however, the ker-
nel supports the hyper-threading technology (see the section “Runqueue Balancing
in Multiprocessor Systems” later in this chapter), the function checks whether the
process that is going to be selected for execution has significantly lower priority than
a sibling process already running on a logical CPU of the same physical CPU; in this
particular case, schedule() refuses to select the lower privilege process and executes
the swapper process instead.
if (rgq->nr_running) {
if (dependent_sleeper(smp _processor id(), 1q)) {
next = rg->idle;
goto switch tasks;

}

If no runnable process exists, the function invokes idle balance() to move some run-
nable process from another runqueue to the local runqueue; idle balance() is simi-

Functions Used by the Scheduler | 279

lar to load balance(), which is described in the later section “The load_balance()
Function.”
if (!rg->nr_running) {
idle balance(smp_processor id(), rq);
if (lrq->nr_running) {
next = rgq->idle;
rg->expired_timestamp = 0;
wake_sleeping dependent(smp_processor_id(), rq);
if (!rg->nr_running)
goto switch_tasks;

}

If idle balance() fails in moving some process in the local runqueue, schedule()
invokes wake_sleeping dependent() to reschedule runnable processes in idle CPUs
(that is, in every CPU that runs the swapper process). As explained earlier when dis-
cussing the dependent_sleeper() function, this unusual case might happen when the
kernel supports the hyper-threading technology. However, in uniprocessor systems,
or when all attempts to move a runnable process in the local runqueue have failed,
the function picks the swapper process as next and continues with the next phase.

Let’s suppose that the schedule() function has determined that the runqueue
includes some runnable processes; now it has to check that at least one of these run-
nable processes is active. If not, the function exchanges the contents of the active and
expired fields of the runqueue data structure; thus, all expired processes become
active, while the empty set is ready to receive the processes that will expire in the
future.
array = rqg->active;
if (larray->nr_active) {
rg->active = rq->expired;
rq->expired = array;
array = rg->active;
rq->expired timestamp = 0;
1q->best _expired prio = 140;

}

It is time to look up a runnable process in the active prio_array t data structure (see
the section “Identifying a Process” in Chapter 3). First of all, schedule() searches for
the first nonzero bit in the bitmask of the active set. Remember that a bit in the bit-
mask is set when the corresponding priority list is not empty. Thus, the index of the
first nonzero bit indicates the list containing the best process to run. Then, the first
process descriptor in that list is retrieved:

idx = sched find first bit(array->bitmap);

next = list entry(array->queue[idx].next, task t, run_list);
The sched find first bit() function is based on the bsfl assembly language
instruction, which returns the bit index of the least significant bit set to one in a 32-
bit word.

280 | Chapter7: ProcessScheduling

The next local variable now stores the descriptor pointer of the process that will
replace prev. The schedule() function looks at the next->activated field. This field
encodes the state of the process when it was awakened, as illustrated in Table 7-6.

Table 7-6. The meaning of the activated field in the process descriptor

Value Description
0 The process was in TASK_RUNNING state.

1 The process was in TASK_INTERRUPTIBLE or TASK_STOPPED state, and it is being awakened by a system call
service routine or a kernel thread.

2 The process was in TASK_INTERRUPTIBLE or TASK_STOPPED state, and it is being awakened by an interrupt
handler or a deferrable function.

-1 The process was in TASK_UNINTERRUPTIBLE state and itis being awakened.

If next is a conventional process and it is being awakened from the TASK_
INTERRUPTIBLE or TASK_STOPPED state, the scheduler adds to the average sleep time of
the process the nanoseconds elapsed since the process was inserted into the run-
queue. In other words, the sleep time of the process is increased to cover also the
time spent by the process in the runqueue waiting for the CPU:
if (next->prio »>= 100 8& next->activated > 0) {
unsigned long long delta = now - next->timestamp;
if (next->activated == 1)
delta = (delta * 38) / 128;

array = next->array;

dequeue_task(next, array);

recalc_task prio(next, next->timestamp + delta);

enqueue_task(next, array);

r}1ext—>activated = 0;
Observe that the scheduler makes a distinction between a process awakened by an
interrupt handler or deferrable function, and a process awakened by a system call
service routine or a kernel thread. In the former case, the scheduler adds the whole
runqueue waiting time, while in the latter it adds just a fraction of that time. This is
because interactive processes are more likely to be awakened by asynchronous events
(think of the user pressing keys on the keyboard) rather than by synchronous ones.

Actions performed by schedule() to make the process switch

Now the schedule() function has determined the next process to run. In a moment,
the kernel will access the thread info data structure of next, whose address is stored
close to the top of next’s process descriptor:

switch_tasks:

prefetch(next);

The prefetch macro is a hint to the CPU control unit to bring the contents of the first
fields of next’s process descriptor in the hardware cache. It is here just to improve the

Functions Used by the Scheduler | 281

performance of schedule(), because the data are moved in parallel to the execution
of the following instructions, which do not affect next.

Before replacing prev, the scheduler should do some administrative work:

clear_tsk need_resched(prev);

rcu_gsctr_inc(prev->thread info->cpu);
The clear tsk need resched() function clears the TIF_NEED RESCHED flag of prev, just
in case schedule() has been invoked in the lazy way. Then, the function records that
the CPU is going through a quiescent state (see the section “Read-Copy Update
(RCU)” in Chapter 5).

The schedule() function must also decrease the average sleep time of prev, charging
to it the slice of CPU time used by the process:
prev->sleep avg -= run_time;
if ((long)prev->sleep_avg <= 0)
prev->sleep avg = 0;
prev->timestamp = prev->last ran = now;
The timestamps of the process are then updated.

It is quite possible that prev and next are the same process: this happens if no other
higher or equal priority active process is present in the runqueue. In this case, the
function skips the process switch:
if (prev == next) {
spin_unlock irq(&rg->lock);
goto finish schedule;

}
At this point, prev and next are different processes, and the process switch is for real:

next->timestamp = now;
1q->nr_switches++;
rq->curr = next;
prev = context switch(rq, prev, next);
The context_switch() function sets up the address space of next. As we'll see in
“Memory Descriptor of Kernel Threads” in Chapter 9, the active mm field of the pro-
cess descriptor points to the memory descriptor that is used by the process, while the
mm field points to the memory descriptor owned by the process. For normal pro-
cesses, the two fields hold the same address; however, a kernel thread does not have
its own address space and its mm field is always set to NULL. The context switch()
function ensures that if next is a kernel thread, it uses the address space used by prev:
if (Inext->mm) {
next->active_mm = prev->active mm;
atomic_inc(&prev->active mm->mm_count);
enter lazy tlb(prev->active mm, next);

}

Up to Linux version 2.2, kernel threads had their own address space. That design
choice was suboptimal, because the Page Tables had to be changed whenever the

282 | Chapter7: ProcessScheduling

scheduler selected a new process, even if it was a kernel thread. Because kernel
threads run in Kernel Mode, they use only the fourth gigabyte of the linear address
space, whose mapping is the same for all processes in the system. Even worse, writ-
ing into the cr3 register invalidates all TLB entries (see “Translation Lookaside Buff-
ers (TLB)” in Chapter 2), which leads to a significant performance penalty. Linux is
nowadays much more efficient because Page Tables aren’t touched at all if next is a
kernel thread. As further optimization, if next is a kernel thread, the schedule() func-
tion sets the process into lazy TLB mode (see the section “Translation Lookaside
Buffers (TLB)” in Chapter 2).

Conversely, if next is a regular process, the context_switch() function replaces the
address space of prev with the one of next:
if (next->mm)
switch_mm(prev->active mm, next->mm, next);
If prev is a kernel thread or an exiting process, the context_switch() function saves
the pointer to the memory descriptor used by prev in the runqueue’s prev_mm field,
then resets prev->active_mm:
if (!prev->mm) {
rq->prev_mm = prev->active_mm;
prev->active_mm = NULL;
}
Now context_switch() can finally invoke switch to() to perform the process switch

between prev and next (see the section “Performing the Process Switch” in
Chapter 3):

switch_to(prev, next, prev);
return prev;

Actions performed by schedule() after a process switch

The instructions of the context switch() and schedule() functions following the
switch_to macro invocation will not be performed right away by the next process,
but at a later time by prev when the scheduler selects it again for execution. How-
ever, at that moment, the prev local variable does not point to our original process
that was to be replaced when we started the description of schedule(), but rather to
the process that was replaced by our original prev when it was scheduled again. (If
you are confused, go back and read the section “Performing the Process Switch” in
Chapter 3.) The first instructions after a process switch are:

barrier();

finish_task switch(prev);
Right after the invocation of the context switch() function in schedule(), the
barrier() macro yields an optimization barrier for the code (see the section “Optimi-
zation and Memory Barriers” in Chapter 5). Then, the finish task switch() func-
tion is executed:

mm = this_rq()->prev_mm;

this rq()->prev_mm = NULL;

Functions Used by the Scheduler | 283

prev_task_flags = prev->flags;
spin_unlock irq(&this rq()->lock);
if (mm)
mmdxrop(mm) ;
if (prev_task flags & PF_DEAD)
put_task struct(prev);

If prev is a kernel thread, the prev_mm field of the runqueue stores the address of the
memory descriptor that was lent to prev. As we’ll see in Chapter 9, mmdrop()
decreases the usage counter of the memory descriptor; if the counter reaches 0 (likely
because prev is a zombie process), the function also frees the descriptor together with
the associated Page Tables and virtual memory regions.

The finish_task_switch() function also releases the spin lock of the runqueue and
enables the local interrupts. Then, it checks whether prev is a zombie task that is being
removed from the system (see the section “Process Termination” in Chapter 3); if so, it
invokes put_task_struct() to free the process descriptor reference counter and drop
all remaining references to the process (see the section “Process Removal” in
Chapter 3).

The very last instructions of the schedule() function are:

finish schedule:

prev = current;

if (prev->lock depth >= 0)
__reacquire_kernel lock();

preempt _enable no resched();

if (test bit(TIF_NEED RESCHED, 8current thread info()->flags)
goto need_resched;

return;

As you see, schedule() reacquires the big kernel lock if necessary, reenables kernel
preemption, and checks whether some other process has set the TIF_NEED _RESCHED

flag of the current process. In this case, the whole schedule() function is reexecuted
from the beginning; otherwise, the function terminates.

Runqueue Balancing in Multiprocessor Systems

We have seen in Chapter 4 that Linux sticks to the Symmetric Multiprocessing model
(SMP); this means, essentially, that the kernel should not have any bias toward one
CPU with respect to the others. However, multiprocessor machines come in many
different flavors, and the scheduler behaves differently depending on the hardware
characteristics. In particular, we will consider the following three types of multipro-
cessor machines:

Classic multiprocessor architecture
Until recently, this was the most common architecture for multiprocessor
machines. These machines have a common set of RAM chips shared by all CPUs.

284 | Chapter7: ProcessScheduling

Hyper-threading
A hyper-threaded chip is a microprocessor that executes several threads of exe-
cution at once; it includes several copies of the internal registers and quickly
switches between them. This technology, which was invented by Intel, allows
the processor to exploit the machine cycles to execute another thread while the
current thread is stalled for a memory access. A hyper-threaded physical CPU is
seen by Linux as several different logical CPUs.

NUMA

CPUs and RAM chips are grouped in local “nodes” (usually a node includes one
CPU and a few RAM chips). The memory arbiter (a special circuit that serializes
the accesses to RAM performed by the CPUs in the system, see the section
“Memory Addresses” in Chapter 2) is a bottleneck for the performance of the
classic multiprocessor systems. In a NUMA architecture, when a CPU accesses a
“local” RAM chip inside its own node, there is little or no contention, thus the
access is usually fast; on the other hand, accessing a “remote” RAM chip out-
side of its node is much slower. We’ll mention in the section “Non-Uniform
Memory Access (NUMA)” in Chapter 8 how the Linux kernel memory allocator
supports NUMA architectures.

These basic kinds of multiprocessor systems are often combined. For instance, a
motherboard that includes two different hyper-threaded CPUs is seen by the kernel
as four logical CPUs.

As we have seen in the previous section, the schedule() function picks the new pro-
cess to run from the runqueue of the local CPU. Therefore, a given CPU can execute
only the runnable processes that are contained in the corresponding runqueue. On
the other hand, a runnable process is always stored in exactly one runqueue: no run-
nable process ever appears in two or more runqueues. Therefore, until a process
remains runnable, it is usually bound to one CPU.

This design choice is usually beneficial for system performance, because the hard-
ware cache of every CPU is likely to be filled with data owned by the runnable pro-
cesses in the runqueue. In some cases, however, binding a runnable process to a
given CPU might induce a severe performance penalty. For instance, consider a large
number of batch processes that make heavy use of the CPU: if most of them end up
in the same runqueue, one CPU in the system will be overloaded, while the others
will be nearly idle.

Therefore, the kernel periodically checks whether the workloads of the runqueues are
balanced and, if necessary, moves some process from one runqueue to another. How-
ever, to get the best performance from a multiprocessor system, the load balancing
algorithm should take into consideration the topology of the CPUs in the system.
Starting from kernel version 2.6.7, Linux sports a sophisticated runqueue balancing
algorithm based on the notion of “scheduling domains.” Thanks to the scheduling
domains, the algorithm can be easily tuned for all kinds of existing multiprocessor

Runqueue Balancing in Multiprocessor Systems | 285

architectures (and even for recent architectures such as those based on the “multi-
core” microprocessors).

Scheduling Domains

Essentially, a scheduling domain is a set of CPUs whose workloads should be kept
balanced by the kernel. Generally speaking, scheduling domains are hierarchically
organized: the top-most scheduling domain, which usually spans all CPUs in the sys-
tem, includes children scheduling domains, each of which include a subset of the
CPUs. Thanks to the hierarchy of scheduling domains, workload balancing can be
done in a rather efficient way.

Every scheduling domain is partitioned, in turn, in one or more groups, each of which
represents a subset of the CPUs of the scheduling domain. Workload balancing is
always done between groups of a scheduling domain. In other words, a process is
moved from one CPU to another only if the total workload of some group in some
scheduling domain is significantly lower than the workload of another group in the
same scheduling domain.

Figure 7-2 illustrates three examples of scheduling domain hierarchies, correspond-
ing to the three main architectures of multiprocessor machines.

domain of lev. 1:

2 groups,
1 physical CPU per group domain of lev. 1: base domains (lev.0)
. . base domains (lev.0): 2 groups, ase domains {lev. 0):
base domain (lev.0):
2 groups, 2 groups, 1 node per group ‘11' glr’(ilusz} group
1CPU per group 1logical CPU per group
pl e ¢ ® Ve o)
CPUO PUO CPU1 PUO PUT (PU4 (PU5
CPU1 (PU2 (PU3 (PU2 (PU3 (PU6 PU7
(a) 2-CPU SMP (b) 2-CPU SMP with HyperThreading (c) 8-CPUNUMA

Figure 7-2. Three examples of scheduling domain hierarchies

Figure 7-2 (a) represents a hierarchy composed by a single scheduling domain for a
2-CPU classic multiprocessor architecture. The scheduling domain includes only two
groups, each of which includes one CPU.

Figure 7-2 (b) represents a two-level hierarchy for a 2-CPU multiprocessor box with
hyper-threading technology. The top-level scheduling domain spans all four logical
CPUs in the system, and it is composed by two groups. Each group of the top-level

286 | Chapter7: ProcessScheduling

domain corresponds to a child scheduling domain and spans a physical CPU. The
bottom-level scheduling domains (also called base scheduling domains) include two
groups, one for each logical CPU.

Finally, Figure 7-2 (c) represents a two-level hierarchy for an 8-CPU NUMA architec-
ture with two nodes and four CPUs per node. The top-level domain is organized in
two groups, each of which corresponds to a different node. Every base scheduling
domain spans the CPUs inside a single node and has four groups, each of which
spans a single CPU.

Every scheduling domain is represented by a sched domain descriptor, while every
group inside a scheduling domain is represented by a sched_group descriptor. Each
sched_domain descriptor includes a field groups, which points to the first element in a
list of group descriptors. Moreover, the parent field of the sched_domain structure
points to the descriptor of the parent scheduling domain, if any.

The sched_domain descriptors of all physical CPUs in the system are stored in the per-
CPU variable phys domains. If the kernel does not support the hyper-threading tech-
nology, these domains are at the bottom level of the domain hierarchy, and the sd
fields of the runqueue descriptors point to them—that is, they are the base schedul-
ing domains. Conversely, if the kernel supports the hyper-threading technology, the
bottom-level scheduling domains are stored in the per-CPU variable cpu_domains.

The rebalance_tick() Function

To keep the runqueues in the system balanced, the rebalance tick() function is
invoked by scheduler tick() once every tick. It receives as its parameters the index
this cpu of the local CPU, the address this_rq of the local runqueue, and a flag,
idle, which can assume the following values:

SCHED IDLE
The CPU is currently idle, that is, current is the swapper process.

NOT IDLE
The CPU is not currently idle, that is, current is not the swapper process.

The rebalance_tick() function determines first the number of processes in the run-
queue and updates the runqueue’s average workload; to do this, the function
accesses the nr_running and cpu_load fields of the runqueue descriptor.

Then, rebalance_tick() starts a loop over all scheduling domains in the path from the
base domain (referenced by the sd field of the local runqueue descriptor) to the top-
level domain. In each iteration the function determines whether the time has come to
invoke the load balance() function, thus executing a rebalancing operation on the
scheduling domain. The value of idle and some parameters stored in the sched
domain descriptor determine the frequency of the invocations of load balance(). If
idle is equal to SCHED IDLE, then the runqueue is empty, and rebalance_tick()

Runqueue Balancing in Multiprocessor Systems | 287

invokes load balance() quite often (roughly once every one or two ticks for schedul-
ing domains corresponding to logical and physical CPUs). Conversely, if idle is equal
to NOT_IDLE, rebalance_tick() invokes load balance() sparingly (roughly once every
10 milliseconds for scheduling domains corresponding to logical CPUs, and once
every 100 milliseconds for scheduling domains corresponding to physical CPUs).

The load__balance() Function

The load balance() function checks whether a scheduling domain is significantly
unbalanced; more precisely, it checks whether unbalancing can be reduced by mov-
ing some processes from the busiest group to the runqueue of the local CPU. If so,
the function attempts this migration. It receives four parameters:

this cpu
The index of the local CPU
this rq
The add