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A Near-OPtimum Matching Section Without Discontinuities

RUDOLF P. HECKEN

Abstract—The optimum tapered matching section requires im-

pedance steps at the taper ends, which exclude in most cases its

application for synthesizing waveguide tapers. A new “near>J-
optimum design is described which avoids theimpedance steps and
yields tapers only a fractional part longer in taper length (or narrower
in bandwidth) than the exactly optimum taper. Atableof values of a
transcendental function has been calculated to simplify the syn-
thesis. An example compares both types of matching sections.

1. INTRODUCTION

T

HE APPLICATION of the optimum design of

transmission-line tapers as given by Klopfenstein

[1] to the synthesis of waveguide matching sec-

tions is often limited. The reason for this lies in im-

pedance discontinuities at the taper ends which are in-

herent in the optimum taper (sometimes referred to as

the Dolph–Chebyshev Taper). Therefore, the use of

such a design is inadvisable if excitation of spurious

modes must be avoided. In addition, the impedance

steps in general also introduce reactance which may

have to be compensated, thus complicating the design.

It is the intention of this paper to demonstrate a

“near’’- optimum taper without steps in the impedance.

As usual, the optimum taper has maximum bandwidth

for a given length (or minimum length for a given band-

width) and for a specified magnitude of the reflection

coefficient in the passband.

A new approach to the solution of the nonlinear dif-

ferential equation for the reflection coefficient yields

more accurate results because the solution is not re-

stricted to the passband or to small ratios of the im-

pedances to be matched as long as the taper remains

gradual. The tapered sections of this design are only a

fractional part longer in taper length (or narrower in

bandwidth) compared with the exactly optimum taper.

Their reflection coefficient can easily be computed using

ordinary trigonometric and hyperbolic functions. The

synthesis may be simplified with the use of a table of

values of a transcendental function. An example will be

given for the case of a simple transmission-line matching

section and will be compared to the optimum taper.

II. REFLECTIONS IN NONUNIFORM WAVEGUIDES

AND TRANSMISSION LINES

In Fig. 1, a section of nonuniform \vaveguide is shown

together ~vith the coordinates used in the following the-

ory. Solymar [2] has shown that the electromagnetic

field inside the waveguide at any cross section can be

represented by forward and backw-ard traveling waves

A and B, respectively, of all normal modes of that cross
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Fig. 1. A nonuniform waveguide section,

section, provided none of the wave impedances become

singular or zero. These waves are then interrelated by

an infinite set of coupled differential equations. We as-

sume that the nonuniform waveguide is primary excited

by only one mode, the main mode, and that it has a

much larger amplitude than all other modes. In this

case, one may neglect all unwanted modes and with the

complex reflection coefficient

R=;

one can derive a nonlinear differential equation in R:

dR
— – 2j&(z)R + (1 – R2)FI(z) = O
dz

(1)

in which (31(z) is the propagation constant of the mode

under consideration. The function Fl(z) represents a

local reflection coefficient per unit length and is related

to the wave impedance 21(z) of the main mode as fol-

lows :

1 d log. Z,(z)
Fl(z) = ;

dz .
(2)

The same equation (1) can be found for the TEM mode

in Iossless two-conductor transmission-line matching

sections if again higher order modes are neglected [4].

In this special case

8,(2) = W“L(Z)C(Z)

and hence

dL(z)
21(2) = 2= = —

c(z)
(3a)

(3b)
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(4)

where L(z) is the distributed series inductance of the line

per unit length and C(z) is the distributed shunt ca-

pacity per unit length.

Equation (1) is a first-order Riccati equation for

which a general closed-form solution is not known. Ap-

proximate solutions can be found if Rz<<l. The optimum

design of transmission-line tapers is based on this as-

sumption [1 ], [3]. In the following, we shall consider a

different approximate solution for which we make first

the coordinate transformation

1
z=z —–

2
(5)

k order to obtain results easy to compare with those

given by Klopfenstein [1]. Next we assume the reflec-

tion coefficient p(x) = R(z) to be of the form

P(X) = t(x) #2*(c) (6)

where r(x) and ~(x) are real functions of x. Using this

transformation in (1) results in two coupled nonlinear

differential equations:

dr
– F(x) Cos 2*(X)(1 – ?“)

z=
(7)

stant ~1 and the wave impedance Z vary strongly along

the tapered section. Thus near or at cutoff, there is no

further simplification or approximation possible, and

(10) arid (12) have to be solved numerically precluding

a direc:t synthesis. Above cutoff, however, a first ap-

proximation would be to neglect the perturbational term

in (12) if the taper is gradual. In this case (12) becclmes

()+(x) = # – ; + f zf?(d)da!
.-1/2 (12a)

and with

+ :) =*0= –+ (“0=”(-:))
(10) can be written as

with # now to be considered an auxiliary variable. 12ven

this approximation is not particularly suited for the

synthesis of a waveguide taper [5], and one may have

to assume further that B is independent of X. By doing

this the design of a waveguide taper is similar to the

case of the transmission-line taper, which will be (con-

sidered in the next paragraphs.

and The Tapered Transmission-Lime Matching Section

(d. )
The assumption of a TEM mode in a homogeneous

2?’ ‘z – ,6(x) = F(x) sin 2+(x)(1 + v’) (8) medium implies that ~ is independent of x but depen-

dent or, co; thus ~ will go to zero for all x if w goes to zero,

where ~(x) =&(z) and F(x) = Fl(z). i.e., if we are at very low frequencies. A solution of (12)

If I r] #1, we find from (7) after separation of the vari- for ~ is then with to= O

ables and integration
*(X) = o, for o = O.

S.arctanh (r) = — F(x’) COS 2~(x’)dx’ Hence we obtain from (10) the function y(x):

–1/2
P=

‘arctanh[r(-31 ‘9)
Y(Z) = – j Fdx’, for a = O.

–1/2

Let us replace the integral in (9) by a new variable y(x):
From ( 11) with r [+ (1/2) ] = O and observing that the

impedance ZC[— (1/2)] =Zl and 2.[+(1/2)] =22, the in-

y(x) = – f ‘ F(i) COS 2~(#)d#. (lo)
put reflection coefficient at x = – (1/2) is thus found to be

–1/2 1

Then r(x) is given by ()
r—–

2 w=’I “0=‘anho“’eK} ’13)
{ [(- 31} ’11)‘hichisequivalenttOz2_z,

r(x) = tanh y(x) + arctanh Y

It follows further from (8)
r’ = (14)

22+ ZI

()#\z) – # – ; = f ‘ @(x’) d.’
as must be. Thus the transformation according to (11)

–1/2 yields for co= O the correct result. On the other hand,

(12a) becomes now for u> O

+ ~ ~_~,,F(x’) sin 2Y(x’)
(1 :(:;)’)dx’ “2) *(X) =40+ PX+B; ”

for r#O.

The waveguide taper exhibits the particular problem Introducing ~(x) into (10) and since #0= –(5(1/2), we

that, at frequencies close to cutoff, the propagation con- obtain finally as a first approximation for y(x):
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{sc

y(x) == – Re
}

F(x’)e–~2~Z’dx’ .
–1/2

With r [+ (1/2) ] = O, the input reflection coefficient be-

comes, therefore:

1

() {s+1/2

9’–– = tanh Re
)

F(x) e–~@ix .
2 -1/2

It is worthlvhile to note that, if u approaches zero,

(15)

this

approximation still yields the correct value for the re-

flection coefficient as given by (14).

III. THE DESIGN OF A TAPERED NIATCHING SECTION

In many practical cases, the design of a tapered

matching section is based upon the requirement that the

magnitude of the reflection coefficient at the input be

below a specified value. Since the magnitude of the re-

flection coefficient r is a monotonic function of y, one is

interested to find a function F(x) which keeps for

r[+(l/2) ] =0 the function

1() 1

()
yi =–arctanhr –;

{s+1/2

—— – Re F(z) e–~2@dz
}

(16)
–1/2

below a required value determined by the specification

forr[– (1/2)].

By analogy with the theory outlined in [1] and [3],

the integral

j(~) = ~ “’2F(x)e-j2fl.~z

–11~ (17)

will be considered as the Fourier transform of F(x).

Hence F(x) is given by

F(.Y) = :
s

z= _+*j(b)e+’2@’d2~. (18)
.

Once j(~) is specified, F(x) can be calculated from (18)

and loge [Z(x) ] is obtained by integrating F(x).

The Optiwwm Taper

The optimum design of a tapered transition (i.e., a

taper having maximum bandw-idth for a given magni-

tude of the reflection coefficient) is obtained if ~(@) fol-

lows the relation [1]:

Cos <(61)2 — .12
f(B) = Yo“–- Cosh~ (19)

sometimes referred to as the Dolpll–Chebyshcv re-

sponse. Defining the ripple function

cos <(B1)2 — AZ
~= (20)

cosh A

which becomes unity for f?l = O and has equal maxima

and minima ~ (cosh i4–1 for ~1 >~, then ~ specifies the

amount of ripple in the passband beginning at ~1 = ~.

Since j(~) is real and y(l/2) = –~(~), the amplitude of

the reflection coefficient becomes with (15), (17), (19),

and (20):

1()?’–– = tanh (yoe).
2

(21)

The value of yO has to be determined such that (17) is

satisfied for all values of ~, including ~ = O. From (19)

it follows

Yo = )~ {f(~)}

and using (17) one finds

(22)

which again yields the natural value for ro, as given by

(14). Thus this specification (19) of ~(~) and hence ac-

cording to (16) the specification of y will describe also

for low frequencies and large ratios 22/21 the “correct”

reflection coefficient. In fact, the ratio Z.JZI may have

any value provided the taper is sufficiently long such

that log. Z(x) and 6(x) change very little with x.

The physical contour of the transition requires the

knowledge of the Fourier transform F(x) of (19), which

can be found in [3]. Integrating F(x) yields loge Z(x),

~rhich, due to impulse functions in F(x), will contain step

discontinuities at * = t (1/2). These steps in the im-

pedance are particularly inconvenient in tapered sec-

tions of waveguide because they introduce reactance

which degrade the performance of the taper and may

have to be compensated. Apart from this they will ex-

cite undesired spurious modes.

A Near-Optimum Taper without Impedance Steps

There exists, however, a specification which yields an

almost optimum tapered section without discontinu-

ities in the impedance. The penalty for the elimination

of the steps at the taper ends lies in a small but definite

increase in taper length for equal bandwidth if com-

pared with the optimum taper. This design is derived

from a modification of the ideal Dolph–Chebyshev

sponse (19) yielding a new specification for ~(/3):

f(@ = Yo
cos X/(Bi)2 — A2 — COS <(61)2 — B2

cosh A — cosh B

re -

which is a superposition of two different functions as

given by (19). Since ~ve know that each individual term

of the numerator has a Fourier transform, we must ex-

pect that the in-pulse functions cancel out due to the

negative sign of the second term in the numerator.

It is easily seen that ~(~) has again the value yO at

~1 = O and oscillates for increasing @ around f(@)= O

\vith continuously varying extreme values. The largest

extreme value in the passband must be considered as

the most essential parameter of~(~), which should be as

close as possible to the origin ~ = O in order to obtain
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Fig. 2. Magnitudeof ripple function cversus
@ of near-optimum taper.

minimum taper length for a given lowest frequency

limit. The location of the extreme values is found by

differentiating~(j3) with respect to (@l) and checking the

resulting differential for zeros. At ~1 = O we find the first

maximum y. (if y. # O), which will be considered as the

main lobe. For subsequent lobes it can be shown that,

for any fixed value of B where B <A, all extreme values

shift towards the origin if A approaches B. In the limit-

ing case, if A =B, we obtain the modified Dolph–

Chebyshev response]

Inspection of this new specification for j(~)

that the first sidelobe of the ripple function

B sin ~(@)2 — B2
~=—

sinh B <(@)2 – B2

(23)

indicates

(24)

is the largest in magnitude and is solely dependent on

the parameter B. Therefore, B is the new ripple parame-

ter. Once this value and the lower frequency limit are

fixed, the minimum length of the matching section is

known. For illustration the magnitude of e is plotted in

Fig. 2 as function of ~1 for some typical B values. For

arbitrary B, the first maximum of (24) (/31> O) has the

value

B
Gnax “ — (0.21723) (25)

sinh B

which determines the maximum ripple of the reflection

coefficient in the passband:

)r~~x = tanh (yoe~~~ . (26)

The minimum taper length is found by setting (24)

and (25) equal and solving for minimum @ This re-

sults in

@l)~i. = <B2 + 6.523. (27)

In case the value B becomes zero, (23) represents the

1 It turns out that this function is known in antenna theory as
“modified pin x/x response” and was first introduced by Taylor (8].
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Fig. 3. ,9, (@)min and A versus maximum ripple in the passband.

response of the exponential taper [7], and for maximum

allowable reflection coefficients larger than tanh

(0.2172 3yo), this taper may, therefore, be used as a

matching section. Fig. 3 shows B and (Pl)mi. as a fu nc-

tion of Em,., including the case of the exponential taper.

Since the parameter A in (19) determines the minimum

length of the optimum taper, A has been calculated as

a function of the passband ripple and is also shown in

Fig. 3 as a dashed curve. Comparing A and (~l)~i., we

find that the minimum taper length of the modified

taper at most is about 14 percent longer than the opti-

mum taper. This occurs where the modified taper be-

comes identical with the exponential taper. For smaller

ripples, the relative increase is smaller.

The physical dimensions of the matching section are.
again found with

functio~ ~(f?) (23),

B
F(x) == yo —

sinh B

and

F(x) == o,

the Fourier transform of the new

which becomes [6]

i ‘O{BV%Y}’

forlzl<~

L

where .[O(Z) represents the modified Bessel function of

the first kind. As has been expected, the specifics tion

by (23) avoids the impulse function in F(x) at the ends

of the tapered section.

The next step to obtain ZC(X) will be the integration

of (28) and we find after some algebra

log. zc(~) = * loge (Z*ZJ + * log.
()

; G(B, t) (29)

where 1:= 2x/1. The function G(B, ~) is given by
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TABLE I

VALUES OF THE FUNCTION G(B, .$); g =2x/1

—

20 loglo (l/cm.x) 15 20 25 30 35 40 45 50 55 60

B 1.1177 2.3204 3.2136 4.0091 4.7552 5.4710 6.1663 6.8466 7.5154 8.1752

(~l)~im 2.7875 3.4503 4.1046 4.7533 5.3975 6.0376 6.6741 7.3073 7.9374 8.5648

t’ G(B, $)

o
0.50

0
0.05473
0.10939
0.16390
0.21819
0.27218
0.32580
0.37899

0
0.06607
0.13186
0.19708
0.26146
0.32472
0.38661
0.44687
0.50526
0.56158
0.61560
0.66715
0.71607
0.76220
0.80543
0.84566
0.88282
:; ;:;g

0.97543
1

0
0.07514
0.14979
0.22345
0.29565
0.36593
0.43387
0.49907
0.56117
0.61986
0.67487
0.72597
0.77302
0.81587
0.85449
0.88886
0.91901
0.9450.5
0.96710
0.98534
1

0
0.08279
0.16487
0.24554
0.32412
0.39998
0.47254
0.54129
0.60578
0.66566
0.72063
0.77052
0.81521
0.85469
0.88904
0.91840
0.94298
0.96307
0.97901
0.99119
1

0
0.08950
0.17806
0.26476
0.34874

0
0.09553
0.18989
0.28194
0.37060

0
0.10106
0.20071
0.29757
0,39039

0
0.10620
0.21074
0.31200
0.40854

0 0
0.11558
0.22897
0.33809
0.44105
0.53630
0.62661
0.69917
0.76558
0.82184
0.86832
0.90568
0.93483
():;)::;

0.98391
0.99123
0.99574
0.99827
0.99952
1

0.11102
0.22012
0.32545
0.42535
0.51838

0.10
0.15
0.20
0,25
0.30

0.42919
0.50539
0.57673
0.64272
0.70298
0.75726

0.45492
0.53405
0.60729
0.67413
0.73421
0.78735

0.47802
0.55953
0.63415
0.70135
0.76085
0.81255

0.49905
0.58249
0.65807
0.72528
0.78390
0.83397

0.60341
0.67961
0.74654
0.80406
0.85237
0.89196
0.92352
0.94794
0.96618

0.35
0.40
0.45
~.:o

0:6:
0.65
0.70
0.75

0.43166
0.48375
0.53519
0.58591
0.63586
0.68495
0.73314
0.78036
0.82655

0.80544
0.84754
0.88369
0.91412
0.93916
0.95924
0.97483
0.98646

0.83355
0.87296
0.90589
0.93276
0.95410
0.97051
0.98265
0.99117

0.85660
0.89333
0.92321
0.94688
0.96504
0.97846
0.98940
0.99419
0.99800
1

0.87580
0.90990
0.93694
0.95774
0.97317
0.98413
0.99152
0.99615
0.99876

0.97928
0.98824
0.99401
0.99743

0.80
0.85
0.90
0.95
1

0.87166
0.91564
0.95844
1

0.99466
1

0.99674
1

0.99923
11

TABLE II

t - 20 LOG (6M*X )
I

1
G(B,<)

.5

.5
t—

Lo

0
0.1
0.2
0.3
0.4

0.0
0.15281
0.30134
0.44160
0.57009

61.237 61.237
63.164 62.960
65.095 64.690
66.973 66.382
68.740 67.996

61.237
59.369
57.608
55.993
54.553

61.237
59.561
57.969
56.491
55.150
53.9630.5

0.6
0.7
0.8
0.9

0.68402
0.78146
0.86140
0.92380
0.96948

70,346
71.750
72.922
73.850
74.537

69.492
70.936
72.006
72.986
73.774

53.308
52.265
51.425
50.778
50.310
50.000

52.939
52.079
51.380
50.831
50.4201.0 . 75.000 74.3761

a Characteristic impedance of Dolph–Chebyshev Taper.

(NEAR OP~MM
~&= .673A

h:70

z(x)
( DOLPH- CHEBYSHEV)

--50

Fig.4. Functicm G(B, .5) according to (30) versus$, $=2x/L

Note that G(B, $)= –G(B, –$).

The transcendental function G(B, ~) is plotted in

Fig. 4 and tabulated in Table I for some practical values

of the parameter B.

-Lo -.5 2x * .5 LO

i

Fig. 5. Characteristic impedance versus length of 50-75-
Q matching sections.

IV. EXAMPLE

As an illustrative example, a section to match a 50-

to 75-Q transmission line will be designed to have a re-

turn loss not lower than 40 dB, that is, ~~,X = 0.01.

With (21), the reflection coefficient at dc (PZ = O) be-

comes rO = 0.2, which corresponds to a return loss of

about 14 dB.

Since with (22) yO = 0.2027, we have to require an addi-

tional return loss of about 26 dB represented in (26) by
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Fig. 6. Return loss versus (Bl) of SO–75-Q matching sections.

~~ax~O.0493. Using Table I, we first obtain by linear

interpolation

B = 3.3727 and (fil)min = 4.2302.

(dl)min determines the minimum length for given lowest

frequency, whereas B determines with G(B, Q the im-

pedarce variation. Table II shows values of the char=

acteristic impedance 2. along the x coordinate of the

near-optimum taper as computed with the aid of Table

I and by linear interpolation. The error made due t:o the

interpolation is less than 0.2 percent.

Fig. 5 depicts the impedance variation along the axis

of the transmission line for the optimum and near-

optimum taper. It is worthwhile to note that the near-

optimum taper needs a minimum length of 0.6733 X,

whereas the value for the optimum taper is 0.5871 h.

This is an increase by only less than 13 percent. In Fig-.

6, the return loss for the near-optimum matching section

has been plotted to be compared with the performance

of

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

the optimum Dolph–Chebyshev Taper.
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Propagation Characteristics of a Rectangular Waveguide

Containing a Cylindrical Rod of Magnetized Ferrite

TOSHIO YOSHIDA, MASAYOSHI UME:NO, AND SHICHIRO MIKI

Abstract—With an axially magnetized cylindrical ferrite rod
inserted into a rectangular waveguide parallel to the E-field of the

dominant (TEIo) mode, the electromagnetic field amplitudes inside
the ferrite rod and the transmission and reflection coefficients are
numerically obtained by means of a digital computer and their
results are shown in figures. At resonance, the distributions of RF
magnetization and electric field have good symmetrical patterns in

the cross section of the rod.
The experimental results of the transmission and reflection co-

efficients agree well with the theoretical values.
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1. INTRODUCTION

T

HE RESONANCE phenomena of ferrite samples

have been investigated by a number of authors.

Among these investigations, the problems con-

cerning propagation characteristics and field distribu-

tions in the waveguide containing a ferrite sample are of

intere:jt in view of both experiments and theories, be-

cause they are important to the studies of the nonre-

ciprocal devices and the conversion from electromag-

netic waves to magnetic waves [1]. However, the field

distribution inside the ferrite sample and the detailed

transmission and reflection coefficients have not beerr

report ed.


