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research are enormous.  Therefore,  the  limits to professional 
communication  cannot be determined  with  the  same degree  of 
precision that  corresponding limits  in  physics,  chemistry, or 
other  hard sciences can. This situation is likely to remain  for 
many decades (if not  centuries)  to  come. 

It is also likely that  for  many  decades  and  centuries to come, 
poets  and  other  humanists will  “see the  human soul take wing 
in  any  shape,  in  any  mood” to unlimited heights. 

And,  certainly,  there is more  good  than  harm  in  doing so. 
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spacing below half-wavelemg& and for d spacing a constrnint is 
desirable to limit Q, tdemnces, efbclency, ddobe8, etc. . T h i s  is ac- 
complished by expressing constnined directivity as a ratio of two 
Hermitian q&tk fonns, for which a solution exiats. Amy Q varies 
exponentially with directivity so only modest inmasea are practial. 

Sapemdution arrays use maximum entropy processing to impnwe 

to audysis A n u n ~ p e z e d a u t o c o n e l . t i o n  
fundon is extended by hear least aquare pffdiction and aut- 
sion; the  latter contributes filter poles. This extension is with mink 
mum added information, hence maximum  entropy. In contmst to 
suuperditective arraya which are all zero functions, supenesdption 
maximum entropy usea an all pole function. Resrrlts are depedeut 
upon *e sampling subarray size d upon sigiul/h (S/N). Required 
S/N incream exponentially with inveme angular resolution. 

Achievable gain of hi@& reflector antennas is limited by cost of 
the structure. For random surface am maximum pin is proportional 

spatial frequency resdption for Lort sampled (Shd arrays), aualogow 
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to the mechanical tolerance ratio (antenna diameter/lo tolermce) 
squared. Since cost increases rapidly with diameb% and with tderance 
ratio this comprises a gain limitation. Current beat reflecton have max- 
imumgainintherangeofWto100dB. 

T 
I. INTRODUCTION 

HE  ANTENNA field and,  in  fact,  the  parent discipline 
of electromagnetics  has achieved a degree  of maturity 
now  that  the benefits of the  computer have been largely 

assimilated.  Of the  four areas in which fundamental limits 
apply to antennas,  three  are well known  dating  back to  the 
period  around World War 11, while the  fourth,  although rela- 
tively new to antennas,  has  an  older  history  in  other disci- 
plines. Thus  it is likely that new  developments in  antennas 
will not include a new category of fundamental  limitations. 

It is important to carefully  define the  nature of a  funda- 
mental  limitation. All engineering fields  are full of principles 
which relate  performance  indices to generalized cost  parame- 
ters  such as size, weight, complexity,  etc. Many of these per- 
formance  indices have a  comfortable range,  i.e., a  range of 
parameters in which the  performance is robust. When a much 
higher  performance indexis required  some of the cost parame- 
ters  may  increase at a  rate  roughly  exponential. When this 
happens  that  performance  index  has a  “fundamental  limita- 
tion.” In antennas  there do  not  appear  to be any rigid abse  
lute  upper  limits  that  are meaningful. Of course,  any  system 
with  a  finite  number of degrees of freedom, e.g., an N element 
array  with  fixed spacing, has  an  absolute  upper  limit  on direc- 
tivity  and  a  lower  limit  on  bandwidth all at a single operating 
frequency.  But  the  concern here is with  situations  where  there 
is in  principle no limit;  the  interesting  questions  then  are  how 
does the cost function vary,  and  how to choose  an  optimum 
operating  point. 

The  four categories of fundamental  limitations  in  antennas 
are:  electrically small antennas  where  the  bandwidth  or Q 
varies with  size;  superdirective  apertures  and  arrays  where di- 
rectivity  and  robustness vary with  complexity;  superresolution 
arrays  where  angular  resolution  and  robustness vary with  com- 
plexity  and noise including  errors; and finally large antennas 
where  gain and  resolution vary with size and mechanical  struc- 
ture. All these  categories  exhibit  a  steeply rising cost  with 
performance,  and  in all it is often desirable to design for o p  
eration  somewhat  above  the  robust region. 

11. ELECTRICALLY SMALL ANTENNAS 

With the  miniaturization of components  endemic  in  almost 
all parts of electronics today,  it is important to recognize the 
limits upon size reduction of antenna elements.  These  are 
related to  the basic fact  that  the element’s purpose is to cou- 
ple to a  free space  wave, and the free  space wavelength has  not 
yet been miniaturized! A basic approach was taken by Chu [ 11 
and  subsequently by Harrington [ 21.  Since any  radiating field 
can be  written as a  sum of spherical  modes, the  antenna, of 
whatever type it happens to be, is enclosed in a  sphere. The 
radiated  power can  be calculated  from the propagating  modes 
within the sphere. All modes  contribute to the reactive  power. 
When the sphere is sufficiently  large- to support several propa- 
gating  modes,  this  approach is of little value as the  modal coef- 
ficients  are  difficult to calculate. With only  one propagating 
mode,  the  radiated power arises primarily  from that  mode, 
analogous to  the  unit cell analysis developed by Oliner and 
Malech [3]  for an  electronic  scanning  (phased)  array  antenna. 
The utility of the Chu  work  becomes  apparent  when the 
sphere is too small to allow  a  propagating mode; all  modes  are 

then  evanescent  (below cutoff)  and  the Q becomes large, as 
the evanescent modes contribute  little real power.  Note that 
unlike  a closed  waveguide there is a  real  part of each evanes- 
cent  mode. Each mode has  a Q, based on  the  ratio of stored 
energy to radiated  energy,  and  the Q, rises rapidly when kr 
drops below the  mode  number. 

Turning to  the derivation, the electric and magnetic fields 
are written  in  a  spherical  harmonic series with no  azimuthal 
variation, e.g., the radiation is omnidirectional. Each term  in 
such  a series [4] contains  Legendre  functions  and  spherical 
Bessel functions. Chu [ 1 ]  postulated  an  equivalent  circuit  for 
each  spherical  mode,  and  showed that  the modal  impedance 
(ratio of mode voltage to mode  current  in  the equivalent cir- 
cuit) is: 

(krhp))’  

krh?) 
2, = j  

where k = 2n/h, r is the sphere  radius  and h p )  is the spherical 
Hankel  function.  The  prime  indicates  a derivative with respect 
to the argument. Through the use of the Hankel function re- 
currence  relations  a  continued  fraction  expansion of 2, can  be 
made.  From  this the  structure of the equivalent  circuit 
emerges: each  term in  the expansion is a series C, shunt L sec- 
tion, with the circuit being a  ladder  network.  For  the  first 
mode (n = 1) there is only  one  section  in  the  network;  each 
integer  increase  in n adds  an L-C section. In all cases there is 
a  final shunt resistive load.  From  the equivalent  circuit the 
input resistance  and  reactance  are found by  equating  the r e  
sistance,  reactance,  and  frequency derivative of reactance of 
2, to those of the circuit.  Results  are 

1 
FF* ’ R ,  =- F = krh?) (kr)  

F’ 
X ,  = R e  -. 

F 

The Q of the  nth  mode is found  from  the  ratio of stored to 
radiated  energy 

Q n = p n = -  - - -  
2wW, wFF* ( yi ;) 

2 

krFF*  krFF* 
Q,  = 7 [krXL - X,] = 7 (krX,)’. 

L L 

Now define H1 = Re (@* h p i l  ) and H = hp)h?)*.  After 
considerable  manipulation: 

k3r3(H’H1 - HHi) -   2krH1  
H Qn = 

When  several modes  can be supported,  the overall Q is 

UnUXQn 

n-1 c -  ( 2 n + 1 )  
Q =  

anan 
, - 1  (2n + 1) c-  

with un the excitation  coefficient of the  nth mode. Higher 
modes  become  evanescent for roughly kr < 1 ; the Q becomes: 

1 + 3k1r1 
k 3 r q 1  + P ~ Z I  
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Fig. 1. Chu-Harrington fundamental limitations for single-mode 
antenna versus efficiency. 

The  efficiency q will be discussed later. This Q is for  the 
lowest TM mode. When both  a TM mode and  a TE mode are 
excited,  the value of Q is halved.  Note that  for kr << 1 the Q 
varies inversely as the  cube of sphere  radius  in  radian wave- 
lengths. The  importance of the Chu result is that  it  relates  the 
lowest  achievable Q to  the  maximum  dimension of an elec- 
trically  small  antenna,  and  this result is independent of the art 
that is used to  construct  the  antenna  within  the  hypothetical 
sphere,  except  in  determining  whether  a  pure TE or  pure TM 
mode,  or  both, is excited.  Since  the Q grows rapidly  (inverse 
cube) as size decreases, this indeed  represents  a  fundamental 
limit which has only been approached  but never even equaled, 
much less exceeded. 

The foregoing  derivation assumed a lossless antenna,  except 
for  radiation  resistance. If the  antenna is lossy the  effect is 
to  insert a  loss  resistance  in  series  with the  radiation  resistance, 
so its effect  on Q is apparent. Fig. 1  plots single mode Q for 

various  efficiencies.  Bandwidth is derived  from Q by assuming 
that  the  antenna  equivalent is a  resonant  circuit  with  fixed 
values. Then the  fractional  bandwidth which is def ied  as the 
normalized  spread  between the half-power  frequencies is: 

fupper - flower = r 
fmter Q '  

Bandwidth = 

For Q >> 1 this relationship is meaningful as the  fixed res& 
nant  circuit is a  good  approximation to  the antenna. But for 
Q < 2, the  respresentation is no longer  accurate. However, 
the curves  are stiU useful  for  low Q even though  imprecise. 
An octave  bandwidth  for  example  requires Q = fi and  with 
no losses this requires  a  minimum  antenna  length of 0.365h. 
Since most  small  antennas  are  loops  or  dipoles, which do  not 
use the  spherical volume  efficiently,  an  actual  octave  antenna 
is significantly  larger, often larger than X/2. From this it  is 
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clear that improving  bandwidth for  an electrically  small an- 
tenna is only possible by  fully  utilizing the volume in establish- 
ing  a TM and  TE  mode,  or  by  reducing  efficiency.  The  latter 
is typified  by  the  ELF SQUID which  can be extremely small in 
wavelengths yet possess a  sizeable  bandwidth [ 51.  However, 
the efficiency is also extremely  low. 

It is useful to evaluate  simple  electrically small antennas 
against the minimum Q curve. A short dipole  has  imped- 
ance of 

Z 2: 20k2h2 - j 120 (In h/a - 1) 
tan kh 

where  h is the half-length and a is the radius. Q is then: 

6 (In h/a - 1) 
kZh2  tan kh ' 

The  antenna  has minimum Q for  low h/a, but  the approxi- 
mate  formulas  above  are  not  accurate  for  fat dipoles.  Using 
h/a = 50, short dipole  points  are  shown in Fig. 1. To obtain 
performance closer to  the minimum Q curve the spherical vol- 
ume  must be used more  effectively;  a  dipole is essentially  one 
dimensional. A more effective design  using three  dimensions 
is a clover  leaf dipole  with  coupling  loops over a  ground  plane 
(or  double clover  leaf dipole without  ground plane) developed 
by  Goubau [6].  This antenna in  symmetric  form  requires 
ka = 1.04 and gives an  octave  bandwidth, or Q = *. How- 
ever, if the  performance is attributed equally to electric  and 
magnetic  modes, the single mode Q is 2 a. Fig. 1  includes 
the  effect of a  matched resistive load. 

Electrically small antennas  are also superdirective,  although 
their  normal  directivity is 1.5. However,  using the definitions 
in  Section 111, if the electrically small antenna were uniformly 
excited  its directivity would  be 4r/h where r is the radius as 
before.  Since r << h the directivity  has  increased to 1.5. 
Thus  it is not surprising that electrically small antennas also 
suffer  from  the classic superdirective  ailments:  low  radiation 
resistance, sensitive tolerances, and  narrow  bandwidth.  And 
so electrically small antennas  are  superdirective in all respects. 

111. SUPERDIRECTIVITY 
A. Historical Notes 

A useful  operational  definition of antenna superdirectivity 
(formerly called supergain) is directivity'  higher than that ob- 
tained  with  the same antenna  configuration  uniformly  excited 
(constant  amplitude  and  linear phase).  Excessive array  super- 
directivity  inflicts  major  problems in low  radiation  resistance 
(hence  low  efficiency), sensitive excitation  and  position  toler- 
ances, and  narrow  bandwidth.  Superdirectivity  applies  in 
principle to arrays of isotropic  elements  although, of course, 
actual  antenna  arrays  are composed of nonisotropic  elements. 

Probably the earliest work' on  the possibility of superdirec- 
tivity was by Oseen [7]. A limited  endfire  superdirectivity 
using a monotonic phase function was accomplished by 
Hansen and  Woodyard [81.  Another early contributor was 
Franz [ 91.  Schelkunoff [ 101 in  a classic paper  on linear 
arrays discussed, among  other  topics,  array spacings less than 
A/2, showing how  equal  spacing of the array  polynomial  zeros 

Directivity is the  ratio of peak field  intensity at any far field radius 
from  the  antenna to the integral of field  intensity over a sphere of that 
radius. 

'See Bloch e t  al. [ 14) for  a l i t   o f  early references. 

over that  portion of the  unit circle represented  by the spacing 
gives superdirectivity. The field received  wide publicity when 
La  Paz and Miller [ 111 purported to show  that a given aper- 
ture would allow  a  maximum  directivity,  and when Bouwkamp 
and De  Bruijn [ 121 showed that  they  had  made  an  error  and 
that  there was no limit on  theoretical directivity.  Thus the 
i m p o r k t  theorem: a  fixed  aperture size can achieve (in 
theory)  any desired directivity value. This theorem is now 
widely recognized, but  the practical  implications  are less well 
known. Bloch er al. [ 13 I say that  the  theorem has been redis- 
covered  several times;  the  practical  limitations of superdirec- 
tivity  occur as a  surprise to systems engineers and  others  year 
after year!  In  1946,  a  burst of war-time  research  reporting 
occurred. Reid [ 151  generalized the Hansen-Woodyard end- 
fire  superdirectivity to include  an  element  pattern. Uzkov 
[ 161  derived the  endfiie directivity as d + 0. And  Dolph [ 171 
invented the widely used Dolph-Chebyshev array  distribution 
wherein the equal level oscillations of a  Chebyshev  polynomial 
are used to produce  an  array  pattern  with  equal level sidelobes. 
To follow  this  last  development,  Riblet [ 181  developed 
Dolph-Chebyshev  arrays for spacing below h/2, Le., superdi- 
rective. DuHamel [ 191 and  Stegen [ 201  developed  compli- 
mentary advances in  the  computation of Dolph-Chebyshev 
coefficients  and  directivity. Maximum directivity for  an 
array  with  fixed spacings  was derived, for acoustic  arrays, by 
Pritchard [ 2  1  ] . 

Superdirective aperture design thus requires  a  constraint,  and 
will be  discussed later.  Arrays  with  fixed  number of elements 
and spacing due to  the finite  number of variables do  not, as 
clearly there is an  excitation  that provides maximum direc- 
tivity. The Lagrangian process for  determining this maximum 
will  be  discussed, followed  by  a discussion of Chebyshev  array 
design. 

B. Maximum Directivity for  Fixed Spacing 
Consider  an  array  with  a given number N of elements  and  a 

fixed spacing. The array  coefficients that  produce this maxi- 
mum directivity  are found by the Lagrange multiplier method 
[ 221. Since the  set of coefficients  can  be scaled by any com- 
mon  factor, it is convenient to make  the sum unity.  Then  for 
an  array of an even number of elements 

NI2 2 A n = l .  
n = l  

This allows the inverse directivity of a  broadside  array  (which 
will be minimized) to be  expressed as 

where 

fn = sinc  nkd. 

An odd  number requires  a  change of limits and  introduction of 
the Neumann  number. 

Applying the variational method gives a  set of equations, 
where the Lagrangian multiplier is p 

N12 

n-1 

The set of equations  has N/2 + 1  unknowns  and  N/2 equa- 
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Fig. 2. Maximum directivity for f i e d  spacing (dashed curves for uni- 
form amplitude). 

tions; again the s u m  equation  completes  the  set.  The  mul- 
tiplier can be  eliminated  by  substituting  from  the m = l 
equation 

Nl2 

n-1 

p =  - An[& + f n - 1 1 .  

This gives a set of N / 2  simultaneous  equations  in  the  array 
coefficients.  These were solved by hand  for N = 3, 5, 7 by 
Pritchard [ 21 ]  and  can  readily be solved by computer  for  any 
reasonable N. Writing the set of equations: 

Nl2 
A n = l  

n=l  

Nl2 

n-1 
An[fn+m-1  + f n - m  - f n - 1  - f n l  =Os 

m = 2 , 3 , 4 ; . * , M .  

The  right-hand  side  vector is (1, 0, * .). Although  matrix  in- 
version can be used to solve for  the array.coefficient  vector, it 
is much  faster to use an equation solver such as the  Crout r e  
duction 1231. For small spacing (in wavelengths) multiple 
precision  calculations  may be needed  due to the  subtraction 
of large numbers.  Calculations of maximum  broadside direc- 
tivity were made  with  the results  shown  in Fig. 2. Also shown 
is the directivity for  uniform  excitation. Above d / A  = .5, the 
two are very close. Also some  minor  oscillations  in the direc- 
tivity curves have  been smoothed  out, as they  are  not  impor- 
tant here. The coalescing of pairs of curves at zero spacing 
occurs because arrays of 2N and 2 N -  1  elements have the 
same  number of degrees of freedom.  For  endfiie  beams,  in  the 

directivity  expression, fn is replaced by fzn and this carries 
over t o  the  simultaneous  eqns.  The  element  coefficients will 
now be complex,  due to  the Hansen-Woodyard endfiie  aper- 
ture. For progressive phasing (phasing  matches space wave 
phasing), the directivity is N for spacing of both A/4 and A/2. 
However, at A/4 spacing, the  optimum  excitation in amplitude 
and phase yields a directivity of NZ . 

C.  Dolph-Chebyshev Arrays 
A symmetrically  tapered  (amplitude)  distribution over the 

array  or  aperture is associated  with  a  pattern having lower side- 
lobes  than  those of the  uniform  (amplitude) array.  Lowering 
the  sidelobes  broadens  the  beamwidth  and  lowers  the  excita- 
tion efficiency.  The latter is the  ratio of directivity to direc- 
tivity for  uniform  excitation.  Some  improvement  in  both 
beamwidth  and  efficiency is obtained by raising the  farther 
out sidelobes.  Intuitively  one  might  expect  equal level side- 
lobes to be optimum  for  a given sidelobe level. A method of 
accomplishing  this  for  a half wave spaced  broadside  array was 
invented  by  Dolph [ 171 who recognized that  the Chebyshev 
polynomials were ideally suited: in the range f 1  there are 
oscillations of unit  amplitude, while outside  this range the 
polynomial  becomes  monotorically large. 

However, a direct  correspondence  between this polynomial 
and  the  array  polynomial is not feasible,  became the main 
beam must be symmetric  and have zero  slope  at  its  center. 
The N element  array has N - 1 zeros while the  Nth-order 
Chebyshev  polynomial has N zeros. Thus an N -  1 degree 
Chebyshev is used.  Part of the x > 1 region is mapped onto 
one side of the main beam while the oscillatory portion of the 
Chebyshev is mapped  out  once  onto  the  sidelobes  on  one side 
of the main  beam.  The  transformation  from T N - ~  (z) to 
space factor F ( u ) ,  with u = 3 kd sin 8, is z = zo cos u. Element 

Authorized licensed use limited to: Princeton University. Downloaded on August 16, 2009 at 16:45 from IEEE Xplore.  Restrictions apply. 



HANSEN: LIMITS IN ANTENNAS 175 

spacing is d :  Sidelobe ratio (SLR)' is given by: 

SLR = TN- 1 ( Z O )  

or inversely, 

arc  cosh  SLR 
N -  1 

zo = cash 

Dolph's derivation  and the formulas of Stegen  are  limited to 
d 2 h/2. Riblet [ 181  showed that this restriction  could be 
removed, but  only  for N odd.  For spacing below half  wave, 
the space factor is formed  by  starting  at  a  point  near the end 
of the Chebyshev +1 region: tracing the oscillatory region to 
the  other  end,  then retracing  back to the  start  end  and  up  the 
monotonic  portion to form  the main beam half. Since the 
Mth  order Chebyshev  has M - 1  oscillations,  which  are  traced 
twice,  and since the trace  from 0 to 1  and  back  forms  the 
center  sidelobe  (in  between the  trace  out  and back), the space 
factor always  has  an odd  number of sidelobes  each  side, or  an 
even number of  zeros. Hence  only  an odd  number of elements 
can  be formed  into a  Chebyshev  array for d < h/2.  The 
pattern is given by 

TM(a COS $ + b )  

a =  
zo + 1 

1 - COS kd 

b =  
zo COS kd + 1 

COS kd - 1 

where as before $ = kd sin 8.  The value of zo is different: 

zo = cosh 

SLR= T M ( z o ) .  

arc  cosh  SLR 
M 

Formulas have been developed by  DuHamel [ 191, Brown 
[25],  [26] Salzer [27],  and  Drane [28],   [29].  Those of 
Drane will be  used here as they are  suitable for  computer cal- 
culation of superdirective  arrays. The array  amplitudes  are 

[TM(aXn + b )  + (-l), TM(b - ax,)] 

where ci = 1 for i = 0 and  equal to 2 for i > 0; x, = cos nnJM. 
The  integers M I  and Mz are,  respectively, the integer  parts of 
M/2  and (M + 1)/2. This result is valid for d =G h/2. Small 
spacings (highly  superdirective  arrays)  may  require  multiple 
precision  due to the  subtraction of terms. Many arrays  are 
half  wave spaced;  for  these  the a and b reduce to 

a =  - Z O  + 1 
2 

zo - 1 
2 

b =  - 

For half-wave spacing the  two  approaches give identical re- 
sults!  In fact,  due to  the properties of the Chebyshev poly- 

' The exact starting point depends on N and kd. 
Ratio of main beam peak to fmt  sidelobe peak. 

nodal,   the two space  factors, in precursor  form,  are  equal 

N -  1 = 2m 

where the superscripts on zo  indicate  that each  must  be  chosen 
for  the  proper form.  Since  many  computers have no inverse 
hyperbolic  functions, it is convenient to rewrite the zo  as: 

Du Hamel [ 191 extended  the Chebyshev design principle to 
endfire  arrays, but  only  for d < h/2. In fact, to avoid a  back 
lobe spacing is customarily  made < h/4.  To  do this for  any 
scan  angle, $ is modified as usual to 

$ = k d ( s i n 8 -  s indo)  

where 80 is the scan (main  beam) angle, and  the  interelement 
phase shift is kd sin 8 0 .  Coefficients a and b become 

3 + 20 + 2d2(zo + 1) COS kd a = -  
2 sin' kd 

( d x  + fi cos kd)' 
2 sin' kd 

b =  

Returning to  the broadside  array, Q is given by Lo e t  al. [ 241 
as 

N N 
n = l  

1 A n A m  sinc(n- m ) k d  
n = l  m=l  

Q, which is the inverse of fractional  bandwidth, is plotted  for 
Dolph-Chebyshev arrays versus d / h  in Fig. 3. The N = 3  array 
has  a log-log slope of Q versus  spacing of 4 : 1, while the N = 5 
array  has  a  slope of 8 : 1.  The N = 7  and  9  arrays have  even 
higher slopes. For small  values of Q, the curve is not  too 
accurate. 

Bandwidth  appears to  be more restrictive than tolerances; 
the N = 3  array to be  practical  requires  a spacing  of the  order 
of 0.1 h or larger. And the N > 3  arrays  are even less forgiving. 

Directivity is given by 

G =  N N  
AnAm sinc(n - m ) k d  

n = l  m=l  

Note the similarity to the result for Q. Two cases  of Cheby- 
shev superdirective  arrays have  been calculated to illustrate the 
variation of Q with  directivity increase. First is a two wave- 
length  array of isotropic  elements,  which  with half-wave  spac- 
ing has  a  minimum  directivity of 5. This two wavelength aper- 
ture is occupied  by 7,9,  11  or 13  elements.  Table I shows the 
element spacing, directivity  and Q, for  a design  SLR  of 20 dB. 
The Q values are  shown in Fig. 4, where the straight  line has 
been fitted  to  the  data,  and is 

log Q 3.3175 (G  - 5 ) .  

The  form of the  equation, with the  normal directivity (GO = 5) 
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Fig. 3. Q of broadside  arrays. 

l 0 I 4 1  
I 

1 n' 

1o1o . 
Q 

lo8 - 

lo6 - 

,4 L d N=9.  !-.250 

TABLE I 
Two WAWLENGTE ARMY, SLR = 20 dB 

N d l  x G Q 

5 . 500  4 . 6 9   1 . 7  
7 . 3 3 3  5 . 1 8  7 . 0  
9 . 2 5 0  6 . 2 1  1.2 x l o 4  
11 . 2 0 0  7 . 3 6  5 . 8  x lo7 
13 . 1 6 7  8 . 5 4  5 . 5  x 1011 

subtracted, was suggested by calculations of Rhodes. To show 
the  effects of SLR,  Table I1 is a  repeat  for SLR = 10 dB.  And 
Fig. 5  shows  a  straight  line  fit,  with  coefficient  4.1475. Higher 
sidelobes  increase  directivity and e.- -Calculated  points  for 
N = 13  are  inaccurate,  double  precisioa  on  a  32  bit  machine is 
inadequate.  Thus  the Q increases  approximately  exponentially 
with  directivity  above  the  normal value. For  modest increases 
above  normal  directivity,  it may be inferred  from  Rhodes  that 
the Q curve  has  minor  oscillations.  Note the very rapid  in- 
crease of Q with  directivity: even a  10  percent  increase  pro- 
duces  a  bandwidth  limited to  a few percent. However, the 
Chebyshev design may  not give the lowest Q; a  constrained 
synthesis is apparently  necessary to  produce  the lowest Q for  a 
given directivity.  Newman et al. [301 have done this for 
endfiie  arrays,  but  only  for  two cases. 

The  second case is a  half-wavelength  aperture,  originally 
computed by Yam [ 3 11 which with  two  isotropic  elements 
gives a  maximum  directivity of  2. Into this small aperture is 

Fig. 4. Q versua directivity, 20 dB SLR, array length 2h. placed  3, 5 ,  7,  or 9 elements. Table I11 gives the  pertinent 
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TABLE Il 
Two WAVELENGTH ARRAY,  SLR = 10 dB 

N d/ I G Q 

5 .500 4.89  1.8 
7  .333 5.40 37 
9 .250 6.19 7.6 x lo4 
11 .200 6.99 3.5 x lo8 
13 .167 7.74 3.3 x loL2 

TABLE I11 
HALF-WAVELENGTEI ARRAY, SLR 20 dB 

.125 3.17 

.0833  4.40 5.7 x lo8 

.Ob25  5.66 1.7 x 

1012 - 

1o1o - 
Q 

lo8 - 

LO6 - 

lo4 - 

Fig. 5. Q versus directivity, 10  dB SLR, array length 2h. 

parameters, again for a 20-dB SLR. A straight  line fit of the 
same type, log Q = a (G - 2), was tried  but  the fit is less good. 
It is not known whether  this is due to computing  errors  or to 
the small size of the  aperture  in wavelengths. 

D. Superdirective  Apertures 
Much more difficult than  the  array is the superdirective 

aperture, as a  constraint is always  required. Q was first used 
as a  constraint.  Taylor [32] defixied a  supergain ratio K which 
is the  ratio of total  (radiated plus  stored)  energy in the field of 

177 

the  antenna to radiated  energy. It is related to Q for simple 
sources  by: 

K = 1 + Q .  

Rhodes [33] also related Q and K for various types of strip 
and  line sources. Rhodes [34],  [35] maximized  directivity of 
a  line  source  subject to a  constraint  on K using the eigenfunc- 
tions of the source:  prolate  spheroidal  functions. These are 
particularly  suited to allow  a simple derivation as they  are 
doubly  orthogonal: over infinite  limits, which fits  the  total 
energy  integral over all angles, and over finite  limits,  which fits 
the radiated energy integral over real angles. He found a 
roughly  linear  relationship  between  log Q and  directivity,  with 
a  coefficient of roughly 2. This substantiates  the suspicion 
that  the Chebyshev  design-may  result  in  a  higher Q than neces- 
s a r y  for a given directivity,  since the coefficients  from Tables I 
and I1 are in  the 3-4 range. 

A review  of constrained  synthesis is beyond  the scope of this 
paper so only  a brief mention will be  made.  Except for  the 
work of Rhodes discussed  above, constrained  synthesis applies 
to either  arrays, or  to a  sampled aperture so that a  discrete 
vector of variables is used. The  directivity to be maximized 
and  its  constraint  are  written as the  ratio of two Hermitian 
quadratic  forms.  Then  a  solution  exists  and  can be found  in a 
direct  manner.  The basic framework was  developed  by Gilbert 
and Morgan [36] and Uzsoky and  Solymar [37] and was  ex- 
tended by Lo e t  al. [241. A review paper is by  Cheng (381. 
Directivity  or G/T can be directly  minimized as mentioned 
earlier or maximized,  subject to a  constraint on Q, sidelobe 
structure, tolerances,  or  any  combination of these. 

IV. SUPERRESOLUTION 
Superresolution is the  production of an  array  pattern  with 

one  or  more main beams that  are appreciably  narrower than 
the  nominal Rayleigh resolution 8 = h/L. It differs  from su- 
perdirectivity in  that  the  latter  produces a  space factor with  a 
narrow  beamwidth  (implied by the high directivity)  through 
choice of array  element  coefficients; the spatial  frequency 
function  contains  only  zeros, which are  those of the array 
polynomial. In contrast,  superresolution  in essence  uses a 
filter  function  that is an all pole  model as will  be explained 
briefly  below. 

Superresolution was invented by  Burg [39],  [40] and  Capon 
[41]  for use in  estimating  frequency  spectra of a  set of mea- 
surements at intervals of time. The Burg technique, known as 
maximum entropy spectral analysis  (ME for  short) is advan- 
tageous  when the  data sample is short  (in  terms of one  cycle of 
the lowest  frequency  component). A related  technique devel- 
oped  by  Capon is called maximum  likelihood (ML for  short) 
and is also superresolution but  somewhat less so. Both of 
these  techniques  can be applied to spatial  frequency  resolution 
using an  array.  Conventional  spectral analysis  uses a  window 
function on the data,  then  applies  an  FFT.  Directly  analogous 
is the  conventional  multiple beam array  where the window 
function is now  the array  excitation  taper,  and  the beam form- 
ing network provides the  FFT.  Indeed  the Butler beam former 
is literally  a microwave layout of the  FFT as has been ob- 
served. ME is a  salient  modification of an  older  spectral esti- 
mation  technique used before  computers  made  direct FFT 
easy:  autocorrelation,  sometimes called  moving  average. In 
this early  technique  the  autocorrelation  function is calculated 
from  the  data  and  then windowed. For  short  data sets, zeros 
are  added  and  then  the FT is taken. This all zero  model is 
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limited to Rayleigh resolution. In the ME method,  the win- 
dowed  autocorrelation  function is extended not by  adding 
zeros but by  adding  information of which a  minimum amount 
is new. As shown  by van den Bos [42],  the Burg technique is 
equivalent to a  combination of least  squares  linear  prediction 
and  autoregression. The  latter is a  statistical  technique of 
fitting an all pole  filter to the  data.  The resulting  prediction 
error  filter is minimum  phase and  the corresponding  autocor- 
relation  matrix is positive  definite  and  Toeplitz. The ML tech- 
nique  does  not  extrapolate  the  autocorrelation  function,  but 
applies  a  window  shape that varies with the wave number so 
as to minimize interfering  spectral  components, i.e., minimum 
variance.  Burg [43] has  shown  that these two are closely  re- 
lated  when  sampling  times  are  equal  and regular. Key to the 
improved  performance of both is that  they  adapt to the char- 
acteristics of the  data. Extensive  reference  sources on super- 
resolution  are  a  reprint  book  Childers [44] and  a  workshop on 
spectrum  estimation RADC [45]. Other  useful  references  are 
Barnard [46],  Griffiths  and PrieteDiaz  [47], and  Landus and 
Lacoss [48]. 

Array  superresolution is in general  analogous to that in- 
volved in  spectral analysis but there  are several minor differ- 
ences. A linear  array  provides  a  two-dimensional data  set,  in 
space  and  time. However, the  time dimension  can  be effec- 
tively eliminated by narrow-band  filtering, leaving spatial fre- 
quency as the analog to frequency. The signal from an array 
is usually of long  duration, as opposed to  the  common case 
of “single snapshot”  time  data, e.g., earthquake  or seismic 
data.  Proceeding  with ME applied to an N element antenna 
array, let v = (d/X) sin 6 where d / A  is the element  spacing in 
wavelengths, and  let w = exp  (j2nv). Linear prediction esti- 
mates N-K values of v based on previous  values: 

Y 

k= 1 

The  error  between  true value and  predicted value is 

h 
K 

E, =V, - V, = -  AkV, -k .  
k=O 

When this  error  vector is minimized  in  a  least  squares sense, its 
spectrum is equivalent to white  noise; the filter is maximum 
entropy. Taking Z transforms 

The  denominator of this  expression is the filter  with K poles. 
No convolution is incurred  in this ME formulation so the fine 
structure is not  smoothed.  The  autocorrelation  matrix has 
elements R i - k  where 

m=-m 

where Pm is a signal at an angle in space. The  matrix is sym- 
metric  Toeplitz. The  equations  are  determinate  and  could  be 
solved simultaneously. However, for large matrices,  an  iterative 
technique is advantageous.  An iterative  set of the excitation 
coefficients A: is calculated,  where the superscript K is for 

the  Kth  iteration. In the Burg algorithm the  set obeys 

with  errors 

The  iterative  equation is 

The previous derivation  can  be viewed as an  adaptive  array 
[49] of the sidelobe  canceller  type. However, when  a  snap- 
shot of discrete  noise  sources is taken,  the  array  samples  are 
coherent  and  the  resulting  autocorrelation  matrix  has  one 
eigenvalue per  discrete noise source  and is not Toeplitz. To 
allow ME techniques to be used  spatial  incoherence  can be 
introduced by a pseudo-Doppler synthetic  movement of the 
K data sample for example. As an  example of the superresolu- 
tion  Gabriel [49] has  calculated the equivalent pattern of an 
eight  element half  wave spaced  array  with  equal  sources of 
30 dB SIN at 18’ and 22’ (see Fig. 6). The beam peaks  are 
shown  sharp because they result  from the inverse of a pole. A 
superdirective  array in  contrast (see Section 111) with half-wave 
spacing has  essentially the Rayleigh beamwidth.  Other  refer- 
ences on array  superresolution  are  Borgiotti  and  Kaplan [ SO], 
McDonough[Sl],Evans[52],White[53],andStrickland[54]. 

The ME method is sensitive to noise and to the  ratio of 
sampling  subarray K to the overall array N. Too small a value 
of K broadens  the  resolution, while too large a value produces 
splitting of peaks  and  extraneous peaks. A value of K = N / 2  is 
roughly  acceptable King [ 551 although  sophisticated methods 
have been developed for  determining  the  optimum value 
Akaike [561. Assuming that an acceptable value of K/N is 
used, the angular resolution that can be  realized is limited  by 
SIN. Gabriel [49] has  recently  shown that  for  two  equal 
incoherent  sources  the  log  resolution varies exponentially  with 
SIN, see Fig. 7. And so the  fundamental superresolution  limit 
has  appeared for  the simplest case  of two  equal sources: 

s ( e3 Rayleigh \3’26 
- 5  - 
N \ 8 3 superresolu tion J 

where S/N is a  power  ratio.  Perhaps it will be  possible to de- 
rive a  general  relationship for ME superresolution for several 
sources of variable relative levels and  spacing.  There is al- 
ready  a basic limitation  for the resolution of two signals in 
noise  using the Cramer-Rao bound; see Manasse [57],  Sklar 
and  Schweppe [58],  and Pollon and Lank [ 591. 

V. HIGHGAIN ANTENNAS 

The  fiial category of fundamental  limitations  concerns large 
antennas which exhibit  high gain not  due to superdirectivity 
but  due  to large  area in square wavelengths. Almost all high 
gain antennas  are  reflectors,  since large arrays  are usually more 
expensive. The discussion here is limited to reflectors  steer- 
able  in  both planes. Cost of a  reflector is affected  by size of 
course since a given  ‘diameter requires  a  volume of structural 
support members. However, the  cost is also a function of the 
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Fig. 6. Equivalent  pattern of 8 element maximum entropy array with 
two sources  (courtesy of W. F.  Gabriel). 

Fig. 7. Resolution limit for two sources with Gaussian noise, from 
simulations  (courtesy of W. F.  Gabriel). 

manufacturing  tolerance  ratio R ,  which is the ratio of the  sidelobes)  requires  roughly E Q h/40. Typical  reflector effi- 
largest dimension to the lo  error E ciency varies from  below 0.5 for large E to 0.8 for  a  shaped 

high efficiency  reflector. For  broad  band  reflectors  a value of 
0.5 is representative  and will be  used here. Gain then is R = D I E .  

Reflector gain is related to R as a high-quality pattern (low G = 7?D2/2h2 
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Fig. 8. Reflector diameter/tolermce ratio versus f / D .  
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Fig. 9. Maximum gain/tolerance ratio squared  versus reflector f / D .  

which for  the E = h/40 value  gives G = s2R2 /3200. This is not  tion  factor A is 
the maximum gain as the  pattern can  suffer  some  degradation 
yet realize higher gain. Assuming the  reflector surface  errors 
are  random gain can be found  from  the  formulas of Ruze [60] 
for high f/D  values. For deep dishes (perhaps  f/D < 1)  an im- 
proved formula  has  been developed  by  Wested [ 6 1 ] : 

1 
(4f/D)2 In (1 + 1/(4f/DI2 1 

A =  -1. 

In terms of D/h and R the gain is: 

A + l  
A +exp  (41rDlRh)~ 

where  aperture  efficiency of 0.5 is included,  and the correc-  which gives maximum gain for fixed f / D  and R,  for  the value 
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TABLE IV 
REPRFSENTATIVE HIGE-GAIN REFLECTOR ANTWNW 

I n s t i t u t i o n  Locat ion D € R n o t e s  

Cal Tech Owens Va l l ey  1 O . h  10um lo6 1980 complet ion 

NRAO C h a r l o t t e s v i l l e  25m  70um 3 . 6  x LO5 

Max Planck Inst .  So.  Spain 

Max P l a n c k   I n s t .   E f f e l s b e r g  

Chalmers Llniv. Gothenburg 

3om 90um 3 . 3  x l o 5  1982 complet ion,  

loom lmm lo5 
8om * .5mm 1.6 X 105 homologous 

homologous 

20. l m  . 2 1 m   9 . 6  x l o4  

Green Bank 140 f t .  .9nrm 4.7 x 10 4 

* u s i n g  inner 80 m on ly  

of 4nD/R A that is the  solution to: 

The  solution D/RA is shown in Fig. 8; for large f/D  the solu- 
tion  approaches  1/4n. Maximum gain, normalized  by RZ is in 
Fig. 9;  for large f/D,  G/R2  approaches  1/32e, which is a factor 
of 3.7 larger than  the E = A/40 value. It is interesting to ex- 
amine R values for  current large reflector  antennas.  Table IV 
gives diameter,  best  estimate of tolerance  and  manufacturing 
tolerance  ratio.5 

These  antennas  manufacturing  tolerance  ratios of io5 to 1 o6 
are to be compared  with  the lom4 resolution  achieved  by  the 
best imaging microphotolithography lenses, which  corresponds 
to R = 4n104.  The  art of telescope  building  has advanced  ap- 
preciably in  the last two decades; the best  reflectors  represent 
maximum gains in the range of 90-100  dB! Technology in 
current use includes  homologous design in which a large reflec- 
tor deforms into a  new  paraboloid  with  elevation angle  change 
so that a  feed  refocus  restores  performance,  and computer 
design of lightweight support  structure. 

Cost of large reflectors is highly variable, and  a  study of 
costs is beyond  the scope of this  paper. Previous studies  in- 
clude  array  cost,  Cantafio [621, Provencher et  al. [631,  and 
reflector  cost, Potter e t  al. [64].  The  latter used two  antennas, 
of 85 and  210 f t  diameter, to determine  cost  variation which 
was as diameter to the 2.8 power.  Both  antennas were orig- 
inally designed for R = lo4 but  it is suspected that  the larger 
antenna  has intrinsically  a larger R value. A determination of 
how  reflector  cost varies with R and  with D is yet to be  made. 
It can be  said that cost  increases  roughly  exponentially  with D 
(and  probably  with R also), just as the cost of any  structure 
increases exponentially  for large values  of R. Thus  the funda- 
mental  limit is the rapidly  increasing  cost of  large gain. 
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