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The Rectangular Loop Antenna
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as a Dipole*

RONOLD KING}

Summary—An integral equation for the current in a rectangular
loop of wire is derived for a loop that is driven by two generators lo-
cated at the centers of one pair of opposite sides. The EMF's are
equal in magnitude and in phase in the sense that they maintain
currents in the generators that are in the same direction relative to
the coordinate system and, therefore, in opposite directions from the
point of view of circulation around the loop. An approximate solution
is obtained for the distribution of current around the loop and for the
driving-point impedance. It is shown that the solution for the rec-
tangle of wire reduces to that of the symmetrically driven folded
dipole when one dimension is made electrically small and to a sec-

“ion of transmission line driven simultaneously at both ends when
the other dimension is made small. The loop that is electrically small
in both directions is also examined.

INTRODUCTION

HE circuit properties of the rectangular loop an-
Ttenna have been studied in the past primarily in

two special cases: the electrically small loop
shown in Fig. 1(a) and the folded dipole shown in Fig.
1(b). An analysis! of the former usually depends upon
the assumption that the current is essentially uniform
in amplitude and phase in a circulatory sense around
the loop when this is driven by a generator located at
the center of one side. The currents at corresponding
points in opposite sides are then equal in magnitude and
instantaneously opposite in direction with respect to the
space coordinates, so that, by analogy with the balanced
open-wire line, they may be called currents in a frans-
massion-line mode. Possible currents in opposite pairs of
sides that are equal and instantaneously codirectional at
corresponding points, currents that belong to what may
be called a transverse dipole mode, are ignored or neg-
lected in such an analysis. The conventional folded di-
pole shown in Fig. 1(b) is a rectangular loop that is
electrically small in one dimension but not in the other;
it is driven by a generator at the center of one of the
longer sides. The folded dipole has been analyzed by the
method of symmetrical components??® which, in effect,
divides the current into two independent parts and per-
mits their separate determination as currents in the
antisymmetrical or transmission-line mode, and cur-
rents in the symmetrical or dipole mode. The former are
excited by equal and opposite generators, the latter by
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Fig. 1—Extreme types of loop antennas. (a) Conventional loop.
Perimeter is small compared to wavelength; currents are equal in
amplitude and opposite in direction on opposite sides. (b) Folded
dipole. Perimeter is near a wavelength; dipole-mode currents Ip
are equal and codirectional. Transmission-line currents Ir are
equal and opposite.

equal and codirectional generators at the centers of both
of the longer sides. By superposition the generator
EMF's add on one side, subtract and cancel on the
other.

When a rectangular loop of arbitrary dimensions is
driven at the center of one side by a voltage V*, currents
in both the transmission-line mode and the dipole mode
are excited. The former are maintained by the voltages
1Ve and —1V7?, respectively, at the centers of the two
longer sides, the latter by two equal voltages 2 Ve at the
centers of these sides. As an essential step in the com-
plete analysis of the general rectangular loop as a trans-
mitting and receiving antenna, and in order to deter-
mine the circuit properties of the rectangular loop as a
dipole antenna in its own right (Fig. 2) it is the purpose
of the present study to investigate the currents in, and
impedance of a rectangle of dimensions 2¢ and 2d con-
structed of a single turn of wire of radius ¢ and driven
at the centers of the sides of length 2d by generators
with equal and codirectional EMF’s. The currents
maintained by these generators are in the vertical dipole
mode and no others are generated. The loop to be an-
alyzed is shown in Fig. 3. Note that the method used
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lTO GENERATOR

Fig. 2—Horizontal loop as a dipole antenna maintaining a
horizontally polarized electric field.

Je——Cc—>
@, o,
— —_
-~
i L:’j& :

R, . T~ Rz d
Hi{R ——_ ,
gl \ ~ldzg, JL

L
@ N @
n N -
T
MR
o] \e o
\
\
\
\
& de;

Fig. 3—Rectangular loop excited in the vertical dipole mode.

in the previous analysis??® of the symmetrical or dipole
mode specifically in the folded dipole cannot be applied
in general, since it assumes that the pair of sides of
length 2¢ is so short that it contributes negligibly to the
problem. In the proposed analysis the sides of length 2¢
are not so restricted. They may be electrically long or
short, and longer or shorter than the other pair of sides
that contain the generators.

THE INTEGRAL EQUATIONS

The integral equations for the currents in the four
sides of the loop may be obtained from the boundary
conditions obeyed by the tangential component of the
electric field at the highly conducting surfaces of the
rectangle of wire. For sides 1 and 2 they may be ex-
pressed in terms of the scalar and vector potentials ¢
and A as follows:

IR (GQAIZ )
Ep=—— — 24,1 =0 (la
L Grand (1a)

January ‘

ax ﬁo2

—a(;bg 2 'w 62A z
o = @ 7 ( 2
dx?

+ 6021‘104) =0 (1b)
where 8o =w/vo=27/No and vy =1/ eouo=3 X 108 meters
/sec. The vector and scalar potentials at arbitrary points
on the surface of conductors 1 and 2 have the following
forms. Note that the symmetry relations,

Ay = A,  Ai= — A, 2)
have been invoked.
A = %A1+ 244, 1= b1y + P13
jo 941z Jo 041
o = ) P1) = ; 3a
D102 82w 1() 8¢ 9z (3a)
Ay = £A40, + 2A,., P2 = P25y + P2¢0);
jw aAgx ].CU aAQz
Y = .y = ; 3b
2 B 9z ’ P2 Bo® 93 (3b)
where
d
A = f I1:.(z") K1a(z, 2)dd,
47l'Vo —d
1 ¢ I3 'a 2
P12y = f g2(2") K15(z, x")dw (42)
4:71'50 —c
1 ¢
Ay = f Tou(®) Koa (x, &),
47TVO —c
1 d
b2y = f 1(z") Kop(2, 2')ds’. (4b)
dareg S _a

The notation wo=1/uy is used, where po=4xX10~7
farad/m. The kernels are defined as follows:

Kialz, 2) = Kulz, 5) + Kuls, 2,

Kis(s, &) = Koz, 2') — Kulz, 5, (5a)
Koalx, £) = Kooz, 5") — Kaalz, '),
Kop(x, 2') = Ka(x, 57) + Kas(x, 2'), (5b)
where
, ¢—1BoRs;
K, o) = Ry (5¢)
The several distances are defined as follows:
R11= \/—(?’T)LI"_G5 R13= \/(Z’——Z)—zmz—: (63)

R12=‘\/(d+z)2+(c+x’)2, R14=\/(d-—z)2—|—(c+x’)2, (6b)

R22=\/(x’—x)2—{— (12, R24 = \/(x'—x)2—|-4cg, (6C)
Ru=vF o F @77, Ru=G=2+@+77 (6d)

The solutions of (1a) and (1b) for A4, and A,,, re-
spectively, may be expressed as sums of trigonometric
functions and a particular integral. They may then be

combined with (4a) and (4b) to obtain the following
integral equations in which {y= +/peéo:
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d
4y A1,(2) = IIZ(ZI):K:I-A(Z; z')ds’
—d
— '47|- .
= J [Clz cos Boz + Cs, sin Boz — 01-11(2)]7 (7a)

0

4y A 22(%) =f Tou(2') Kos (e, 2')dx’

bt H

— jdr
= . [C1z cos Box 4 Capsin Box — O24(x)].  (7h)
The particular integrals in (7a) and (7b) are
014(z) = ﬁoﬁzd’ux)(w) cos Bo(z — w)dw
— ¢1((0) sin Boz, (8a)
bua(s) = B0 [ “dr(w) cos (e — w)d
— $2(»(0) sin Box. (8b)

As a consequence of geometrical and electrical sym-
metry and the assumed driving conditions, the following
relations obtain:

A(—2) = A1(3), Ad1s(—2) = — Aw(3)
$1(—2) = — ¢1(2), $1y(0) = 0,
lim,.o [¢1(2) — ¢1(—2)] = 2¢1:(0) = V* (9b)

(92)

Ii(—z) = I(2), gi(—2) = — qu() (%)
Aoa(—2) = — Ao}, Ao(—x) =A%), 42,(0) = 0(9d)
$2(—%x) = do(x) (%e)
Too(—%) = — I2a(x), g2(—%) = g2(w). (99)

The continuity of both current and scalar potential at
the corners demands that

[1(—d) = — In(—¢), ¢1(—d) = ¢s(—0). (10)
1t follows directly from (7b) with (9d) that
Cw=0. 11

Expressions for the scalar potentials corresponding to
(7a) and (7b) for the vector potentials but specialized
to satisfy (9a)—(9f) and (11) are readily obtained. Thus,

$1(z) = — Cr sin oz + Co. cos Bos + 0w (2), 2z = 0, (12)
$1(2) = — Crsin Boz — Cp, cos foz + v (z), z =0, (13)

where
O (a) = Bo f G100 () sin fols — wydw.  (14)
0

Similarly, and for positive and negative values of x,

1 8024(x
¢2(x) = Cop cOS Box — E :::(x)

= Cy, €08 Box + Oy (%),

+ 200 (%)
(15)
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where
0 (2) = Bo f G2 (w) sin Bo(z — w)dw
0
+ ¢2¢y(0) cos Box. (16)

The driving voltage as defined in (9b) now may be intro-

duced. With (12) and (13) it follows that
Cy, = 1V, an

The simultaneous integral equations for the currents
I; and I, are:

d
Ilz(z,)xla(z) z’)dz’
—d

— 74 1
- TI:CIZ cos Boz + ) Ve sin/30| z| — 01_4(z):| (18a)
0
¢ —j4m .
f Too(2) Koa(z, a')dx' = [Cazsin Box — B2a(x)] (18D)
—e 0

where Cp; and Cs, may be evaluated by requiring con-
tinuity of current and scalar potential at the corners, as
specified in (10). Note that with the equations of
continuity,

6I1z 612.1:
+jwg =0
d3 Jen ’ dx

+ jwga = 0, (19)
8:4(2) is a function of I;4(x), and 834 (x) is a function of
Ilz.

APPROXIMATE SOLUTIONS OF THE
InTEGRAL EQUATIONS

The simultaneous integral equations (18a) and (18b)
may be solved approximately for the currents
I,(2) = I3(2z) and Iy(x) = — I4(x) by a method of iteration
resembling that used in the analysis of coupled parallel
antennas.* The present problem is complicated by the
presence of two equations rather than one. In devising a
suitable iteration procedure two points are noteworthy.
First, the mutual terms interrelating the two equations
are limited to the particular integrals which take ac-
count of capacitive coupling between adjacent, mutually
perpendicular sides. Since this effect is significant
primarily near the corners, it may be assumed that it is
not of primary significance in determining the distribu-
tions of current and may be included in the first correc-
tion term. The second point to be noted is that the oscil-
lation of charges and currents in the rectangle when ex-
cited in the dipole mode as shown in Fig. 3 must cor-
respond roughly to that in two parallel center-driven
antennas each of length 2(c+d). This follows from the
fact that the currents are continuous at the corners and
vanish at_the centers x=0, 2= +d, of the two sides
without generators. This suggests that (18a) and (18b)
may be expressed as follows:

4 Ibid., p. 264 ff.
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d+c d
f 1.z %u(s, 2)ds" + I.(2")Kus(z, 27)d7
—(d+¢)

—d

—d d+¢
— (f f )Ilz(z') Koz, 2)ds’
—{(d+-¢) d

—Jjim 1 . !
= : [Clz cos Boz + —2~ Ve sin Bul zj — 01,;(2)] 4+ 91(2)
0

(20a)

d+c ¢
[ n@watn )i = [ 1)t a0
—(d+c) —¢

—¢ d+e
_<f + [ L) Rasler, )
—(d+e) v ¢
—Jjdr .
= ; [Coz sin Box — B2a(x)] + 92(x)
[1]

(20b)

—d dtc
9:(z) = (f—(d+c) + j; )Ilz(z YKoa(z, 2')dz" (21a)

dals) = (f__:a) +fd+c) Loo(x") Ka(x, x)dx’. (21b)

{d 3

Note that Kaei(z, 2'), H1a(x, '), Resin (20a), and Ryzin
(20b) are obtained {rom (5) and (6) with x substituted
for 3 and vice versa.

In the integral on the left in (20a), 7:.(z’) is the actual
current in side 1 of the rectangle in the range —d =2’
<d. In the ranges —(c+d)£z= —d and d£22 (¢+d),
the current is the fictitious extension in the z direction
of currents actually existing in the top and bottom of
the loop as Z5.(x") and I(x’). Similarly, in the integral
on the left in (20b), 73.(x’) actually exists only in the
range —¢<x =c. Outside this range the currents are the
fictitious extension in the x direction of actual currents
in the vertical sides in the gz direction. This is shown
schematically in Fig. 4 for sides 1 and 2. The addition
of the integrals 9:(z}) and 4.(x), respectively, to both
sides of (21a) and (21b) modifies the left sides (which
are proportional to the tangential components of the
vector potential) in a manner to improve the constancy
of the ratio of vector potential to current especially near
the corners where large deviations occur. Note that
whereas the change in the direction of the current at a
corner, for example at 3= —d, x= —¢, can involve no
great modification in its amplitude or distribution as
compared with the current at the corresponding point
2= —d in two parallel antennas of length 2(¢+d) when
driven by equal generators in phase, this is not true of
the component of the vector potential tangent to the
conductor. The currents in the conductor on the two
sides of the right-angle bend do not contribute to the
same component of the vector potential as they do when
there is no bend and the conductor is straight.
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Fig. 4—Actual and fictitious conductors and currents used in estab-
lishing the integral equation in a form suitable for iteration.

The solutions of (21) by iteration may be carried out
much as in the case of two parallel antennas. For this
purpose let

gz, 2) = In() I2(#')
’ Lu(z) ° To(2)

be approximate relative distributions of current. Also
let the following functions be defined:

ga(w, #) = (22)

dte

¥i(z) = ¥, + 'Yl(z> =f

—(d+e)

d
+ f g1(z, ') Ras(2, 2")ds
—d

—d d+c
- ( f + f >gl(2, 3) Koz, 5)ds’  (23a)
—(d4-¢) d

d+¢
ga(x, ") Kaa(x, 2")dx’

21(3, 3") Rulz, 2)ds’

%w=m+w@=f

—(d4-c)

—f gofx, 2 ) Koz, &')ds'

c d+¢
4+ (f -}-f )gQ(x, ¥ ) Kua(x, 2 )dx’  (23b)
—(d+¢) ¢

where ¥, is an appropriately defined magnitude and
v1(z) and 7ya{x) are the necessary and presumably small
functions required to make (23) exact. If g,(z, ") and
g2(x, x’) can be so chosen that they are good approxi-
mations of the actual current distributions, the follow-
ing integrals are small:

die
&@=[ﬂj&@—hmmWﬂ%@ww

~j’upw)—fua&@£nxﬂa£wa

—d

~(flm+ﬁmﬁhw)

— I.(3)gi(z, 8)]5eu(z, 2)dy  (24a)
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- f c[Izz(x') — Too(%)galx, &) JKoala, «")da'

- ( I ¥ f d+°> L)

— Top(x)ga(m, )| K5, &)da’.

With (23) and (24) , the integral equations of (20)
may be rearranged as follows:

(24b)

I——j‘l’r[c + L veing| 1
12 = o 12 €08 Boz 5 sin By | 2 :|
L
:Ifj) (25a)
Iox(x) = T C3, sin Box + Lo (25b)
fO‘I’s \I's
where '
Li(s) = g_— 01A(Z) + Py(2), (26a)
74w
Lo(%) ?— 02,4(1/) + Pz(i\/), (26b)
1]

and

Pl(Z) = 91(2) — 3)1<Z) —_— Ilz(z)'yl(z)
= I.(2)¥, — fdllz(z')ﬂcm(z, z)ds.  (26c)

The functions #14(2) and f24(x) are defined in (8). In
order to assure exact continuity of current at the corners
in the form I;,(—d)= —I..(—¢) even in approximate
expressions, it is advantageous to subtract the quantity
0=1I.(—d)+I.(—c) from (25a). The result is

—jdr
I.(s) = I:C'1s(cos Boz — cos Bod)

0xs

1 .
+ Y Ve(sin 8o z| — sin Bod) + Cassin ﬁoc]

1
+ 7 [L:(z) — Li(—d) — Lx(—0)]. (27)

Note that (25) or (27) and (25b) are still integral equa-
tions for the currents since these occur on the right in
L1(2) and Ls(x) under the signs of integration. However,
the expressions are now so arranged that if a proper
choice is made of the distribution functions g(z, 2’) and
g2(x, ) and of the parameter ¥,, the sum of the terms
on the right in which the currents occur is small com-
pared with the zeroth-order terms. Accordingly, (27)
and (25b) are in forms appropriate for iteration. Sug-
gested zeroth-order currents and charges are:
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il I:Clz(cos Bz — cos Bod)

0Xs

[T(]o =

1
+ Py Ve(sin 60I zl — sin Bod) -+ Cag sin ,Boc:l, (28a)

4 1
[gl(z)]u = WGO[—CB sin Boz + —2— e cos Boz],
¢ 2
0=3z=d, (28b) _
—4-7réo . .
[Ql(z)]o = [Cu sin oz -I— Ve cos ﬁoz]
—d=2=0, (28)
—_ '4 7
[Zas(@)]o = ——= Cay sin Bz, (292)
0X's
[g2(2)]o = Cax cOS Bt (29b)

8

The substitution of these zeroth-order currents and
charges in the several parts of Li(z) and La(x) as defined
in (26), and the use of (23) leads to the following first-
order integrals:
Fu(2) = ¥,(cos Boz — cos fod) — [Cald, 8) + Cacld, 2)]
+ [Eu(d, 2) + Es.(d, 2)] cos Bod (30a)

Gu(z) = T,(sin Bo |z | —sin Bed) — [Sa(d, 2)+S2.(d, 2)]

4 [Eu(d, 5) + E-2.(d, 2)] sin Bod (30b)
Hiu(2) = [¥, — Eu(d, 2) — Es.(d, 3)] sin o (30d)
Gu(®) = ¥, sin Bz — 8ulc, %) + Sa2alc, %) (30c¢)

where the following functions are involved:

13 g~ iBoR1
Ci(h, 2) = f cos z’[ 4+
U, 2) 0 o Ry Ry;

2 g—iBoR1i
Si(h, Z) = f sin ‘602,[ +
0 —Rl-i

g—1BoR2:

:|dz’, (31a)

e—iBoRe;

Ry

:‘dz’, (31b)

Eih, z) = fh[e—jﬂwu -+ E_jBORZi] ds’, (31c)
’ 0 Rli R?i
8:(h, 2) = fhsinﬂoz' [e—iﬁoRu‘ — e—fﬁolfu] ds. (31d)
Y 0 Ry . R
In these expressions
CVETIFE  Ru=VET TR ()

The integral functions in (31) may be expressed in
terms of the tabulated generalized sine and cosine inte-
gral functions.’® Other integrals involved in Li(z) and

5 Ibid., pp. 97, 274.
6 “Tables of Generalized Sine- and Cosine-Integral Functions,”
Harvard University Press, Cambridge, Mass.; 1948,
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Lo(x) are

f11(2) = f zpu(‘ZU) COos [30(2 b W)ﬁod‘w, (333.)

far(x) = f ozP21('w) cos Bo(x — w)Bodw — p21(0) sin Box, (33b)

par(x) = f Iazl(w) cos Bo(x — w)ﬁ.iiw — 021(0) sin Box. (33¢)
0

The quantities pj, p21, and oy, introduced in (33) are
defined as follows. Note that Kip(z, ') and Kez(x, 37)
are defined in (5).

pu(s) = f cos Box' K1z(s, &) (34a)

d
pai() =f cos Boz' [Kon(w, 2°) — Kep(x, —2')]ds’  (34b)

d
oa1(%) =f sin Bog’ Kop(x, 3)d2’. (34¢c)
—d

These integrals can also be expressed in terms of the
tabulated generalized sine and cosine integrals. In terms
of the integrals (31a)—(31c) and (33) the first-order ex-
pressions for Li(z) and L.(x) are

—j4w 1 .
[Ll(z)]l = O\I/s {ChFu(Z) + —é‘ 14 Gu(z)
+ Co[Hulz) — fu(Z)]} (35a)
[Zo()]: = il {CuGzl(x) + Crpa(®)
0x's

! Ve 35b
-~ le(x)}. (35b)

If these values are substituted in (27) and (25b), the
following first-order solutions for the currents are
obtained:

[I1=(Z)]1 =

— 747 1
]\I’ |:C1z {FOZ + ‘—I’: [Fr — le(—C)]}

g-ﬂ s
1 1 [G ]}
-I-?V {Go;“l“\i 1tz + far{—¢)
—I—Cu{sinﬁoc-{*
(36a)

‘I,is.[guz — f11: = Gai(—0¢)] }]

[To:x)]: = —;j%[cu {sin Box 4 G‘;’(x)}

0L $

pa1(x) 1 - far(2)
¥, 2 v,

1z

:l (36b)

J anuaré

where
Fo. = cos Bez — cos B,
Go: = sin fo] 2| — sin Bod, (36¢)
Fu. = Fu(z) — Fu(—d),
Gii: = Gu(z) — Gu(—d), (36d)
Hi. = Hu(z) — Hu(—d),
f1: = fulz) — fu(—d). (36e)

In order to evaluate the constants Ci, and Ca, in terms
of 17* the conditions (10) requiring continuity of scalar
potential and current at the corners must be introduced.
The first-order expressions for the scalar potential are
obtained from (13) and (15) by substituting zeroth-
order values of the charges in (14) and (16). The follow-
ing integrals are involved:

hu(z) = Bof pi1(w) sin B(z — w)dw, (37a)
0
har(x) = Bof poi(w) sin Bolx — w)dw
0
+ p21(0) cos Box, (371)
kai(x) = Bof oor(w) sin Bo(x — w)dw
1]
+ 21(0) cos Box. 37¢)

In terms of these integrals the first-order potentials are:

[61(2)]1 = ~ CuzsinBoz
Cz_-,;]lu(Z)

1
iy VecosBoz + ——: 20, (38a)
[¢2(x)]1 = Cas cos Box
1 1
- E’:[Cukm(x) + 5 Vekn(x)]. (38b)

With (10), (25), (35), and (38) the following pair of
equations is obtained for the two constants Cy, and Co,:

Crair + Cogare = 3V (39a)
Cizaz + Cozaay = V%> (39b)
where, for first-order values,
1
a1 = coSs Bod + I [Fu(—d) + Pﬂ("‘c)], (40a)
212 = — [
1
+ 7 [Gas(—¢) + Hu(—d) — fu(—d)], (40b)
1
b1 = — sin Bgd — :If_ [Gu(—d) _f21(_5)]7 (40(:)
kor(—
asr = sin ﬂod —]— z ( C) b) (413.)

B
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hi(—d
m=—mm+”(% (41b)
¥,
haa(—¢
by = cosBed — 1\; ) . {41c)

[t follows directly that

. vV eZ\’T1 VeN 2

= D ’ 2 = 2D ’ (42)
where
Ny = biass — bsa10
= sin Bo(c + d) + N1t/Ts + N1/ ¥2, (43a)
Ns = baoubioss = 1 + Na/¥, + Npo/T2,  (43D)

D = anass — aisan
— [cos Bo(c + @) + D/ ¥, + D:/¥;2].

The following quantities occur in (43):
Ny = — hu(—3d) sin 8od

+ [G1(—d) — far(—¢)] cos Boc — har(—c)sin Boc

— [Gu(—0) + Hu(—d) — fu(—d)] cos od  (44a)
Ni = (= [—Gi(—d) + fu(—0)]

+ k(=) [Ga(—0) + Hu(—d) — fu(—d)] (44b)
No = [Fu(—d) + pu(—0)] cos Bod

+ [Gu(=d) ~ ful(—0) + E21(—c)] sin Bod
Naz = ka(—0)[Gu(—d) — fu(—0)]

— ho(—0)[Fu(—d) + pa(—c) (44d)
Dy = [Fu(—d) + pau(—0)] cos Boc — hu(—d) cos Bod

+ [Gau(—¢) + Hu(—4d) — f11(“d)] sin Bod

—ka1(—¢) sin Boc
Dy = — [Fu(~4d) + pa(~6)hu(—d)

+ [Gar{—¢) + Hi(—d) '—fn(“d)]kn(—c)- (44f)

If the equations of (43) are substituted for (42) and
(36a) and (36b), the following expressions are obtained
for the currents if only terms of order 1/%¥, are retained
in both numerator and denominator:

(43c)

(44c)

(44e)

J27Ve
[7.(2)]: = oo,

me@+d—ld)+B@V%]

. ,  (45a)

cos Bo(c + d) + D1/¥,
727V e sin Box + Mai(x) /Y, ] _
1= ? 4

[£2:(2)] o, [cosﬂo(c + d) + Dy/¥, (23b)
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where

Bi(z) = Mu(z) — Mu(—d) — Myu(—c) (46a)

and
Mi:(2) = Ny cosBoz — Dy sin,@ol zl + F1(2) sin Bo(c + d)
— Gu(s) cos Bo(c + d) + Hu(z) — fu(s),
Mu(x) = Nasin Box + Ga(®) + p21() sin Bo(c + d)
+ fa1(x) cos Bo(c + d). (46b)

Higher-order terms may be obtained by continuing the
iteration.
The first-order driving-point impedance is given by

—J¢o¥s l: cos Bo(¢c + @) + D/ ¥, ] @7

2r  LsinBo(c + @) + B:(0)/¥, | )
The corresponding admittance is [V wm|i=1/[Z1 ]1.
The coefficient D, in (47) is given by (44e). The corre-

sponding value of Bi(0) is obtained from (46a) with
z=0. It is:

B1(0) = F11(0) sin By(c + d) — G11(0) cos Bolc + @)
+ Gu(—d) cos Boc — Ga(~¢) cos Bod
+ Hu(0) — Hu(—4d) cos Bod — f11(0)
+ f1:(—d) cos Bod — k11 (—d) sin Bod
— far(~¢) cos Boc — har(—¢) sin Boc. (48a)

If use is made of (30) in (48a) and (44e) the following
formulas are obtained:

Bi(0) = [¥, — Cu(d, 0) — Cui(d, 0) + E,(d, —d)
+ Esze(d, —d)] sin o(c + d)

+ [Su(d, 0) + S2(d, 0)] cos Bo(c + d)
- [Sa(d; —d) + S2.(d, —d)] €Os Sgc

+ [8.(c, —¢) — Saa(c, ~¢)] cos Bod

— f1:(0) + f11(—4d) cos Bod — h1;(—d) sin Bod
— far(—¢) cos Boc — hai(—c) sin By, (48b)
[E.(d, —d) + E2(d, —d)] cos Bo(c + d)
— [Cu(d, —d) + Cal(d, —d)] cos Byc
— [8a(e, —6) — 82ale, —¢)] sin Bod

— fu(—a) sin Bod — h1(—d) cos Bod
+ p2(—¢) cos Boc — kay(—c) sin Byc.

[Zlin] 1=

(48c)

If the real and imaginary parts of D, and B,(0) are
separated and the notation D;=D,!+;jDI, B(0)
=By!+jB.", is introduced, the impedance [Z; ]
=[R: in]1+7[ X1 ;a]1 may be separated into its resistive
and reactive parts as follows:

¢o (D1 sin Bo(c + d) — By cos Bo(c + &) + [DiMBY! — Di'B1|/ ¥,
[Riwml = '_{ . (49a)
2 [sin Bo(c + &) + BiY/¥.]* + [Bi11/,]2
X1} = _f"{[sin Bo(c + d) + Bi/¥][cos Bolc + d) + D1/¥] + BJIID /¥
tidl e T, [sin Bo(c + 4) + Bi'/¥.[?[ B/, ]2 ' (499)

These are the final first-order formulas.
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THE EXPANSION PARAMETER

The selection of an appropriate expansion parameter
¥, depends upon the evaluation of ¥;(z) and ¥.(x) as
defined in (23). As shown for the comparable problem
in the analysis of the linear antenna® very satisfactory
results are obtained with zeroth-order distribution func-
tions. In the case at hand this means that the distribu-
tion functions,

sin Bolc + d — |zi)

3 z, = . ’

&1l #) sin Bo(c + d — |z])
sin Box’

gal, ) = ——— (50)
sin Box

are to be substituted in (23a) and (23b). The result for
¥,(z) with 220 and the definitions (31) is:
y(z) = csc Bolc + & — 2){sin Bo(c + D [Culc + d, 2)
+Ca(d, 2) — Caalc + &, 3) + Caa(d, 5)]
— cos Bo(c + @) [Salc + d, z) + S2.(d, 2)

—Sea(c + 4, 2) + Ca(d, Z)]} (51)
Correspondingly with (31d) the result for Wy(x) is:
Uo(x) = csc Box[8a(c + d, x) — S2alc, x) -

+ 820(6 + d, Y) - S‘-’G(C; ")] (52}

Since both ¥,(z) and ¥,(x) are proportional to the
ratio of zeroth-order vector potential to zeroth-order
current at points along conductors that have the same
radii and similar distributions of current, the magnitude
of ¥;(z) and ¥,(x) should be essentially constant and
equal except as modified by asymmetries. In general, a
good choice of ¥ is the magnitude of ¥(z) at a point 2
where the vector potential and the current both have
maxima. In the presently considered case of the loop
excited in the dipole mode, an even better choice owing
to more complete symmetry is at the centers of the sides
without generators {with fictitious extensions) where
both the vector potential and the current vanish, but
where their ratio has a definite and constant value.
Thus, let ¥,=|lim,.o ¥3(0)|. This function is readily
evaluated directly from the integrals by differentiating
the indeterminate form when expressed as 0/0. An inte-
gration by parts in the numerator leads to the following
formula for the expansion parameter ¥, of the symmet-
rical or dipole mode in the rectangle:

¥, = ¥, = Cg,(C + d; 0) + Cb(c + d: O) - C‘ld(cy 0)

2 e~ e—7B0Rg
— Ci(c,0) — —6— {sin Bolc + d) [ + ]
0

R, R;
e_J'.BORE e_fBOR;
— sin Boc[ s + z ]H

(83)

January
where
b = /4> + a? (54a)
R=vVEFDFE  R-VAFIHT S
Ry=~(c+ d)? + 42+ 2%, R, = +/5¢*+ o2 (54b)

Note that in (54) a? usually is negligible except when ¢
or d becomes very small. The difference functions v:(3)
and ys(x) are given by

v1(z) = ¥i(z) — ¥, vs(x) = To(x) — .. (33)

With the expansion parameter ¥, as defined in (53),
substituted in (45) for the distributions of current, and
in (47) or (49a) and (49b) for the impedance, the first-
order circuit properties of the rectangular loop of arbi-
trary size are determined when it is driven so that only
the vertical dipole mode is excited. Important special
cases must still be considered.

FoLDED DiPOLE AND TRANSMISSION LINE

When the dimension 24 or 2¢ of the rectangle of wire
is kept electrically small (8,d<<1 or Bec<X1) while the
other dimension is unrestricted, the loop becomes on the
one hand a symmetrically driven folded dipole, on the
other hand a section of transmission line driven simul-
taneously at both ends by codirectional generators.
Both of these special cases have been analyzed: the
former (see King®7) by neglecting corner effects and
treating the two sides of the long and narrow rectangle
as two closely spaced symmetrically driven dipoles; the
latter in terms of transmission-line theory for the react-
ance and the Poynting vector theorem for the radiation
resistance.?:?

It is readily verified that when ¢ is small (53) becomes

2¢  sin Bod

T, = 2(Ce(d,0) — In— —
a 60d

g0t | (56)
This is essentially equivalent to the expansion parame-
ter ¥, for two closely spaced symmetrically driven an-
tennas or for the folded dipole.®.” Moreover, if the capac-
itive coupling at the corners is neglected when ¢ is suf-
ficiently small by setting the functions f11(2), fa:1(x), and
pa(x) as defined in (33) equal to zero, (46b) and (48c)
for Mu(z) and D; reduce essentially to the correspond-
ing functions characteristic of the symmetrically driven
pair of parallel antennas. Small differences are a conse-
quence of the definition of ¥, in (53) in terms of ¥y(x)
instead of ¥,(2). It follows that (47) reduces to the
formula for the folded dipole.

7 King, “Theory of Linear Antennas,” op. cit., pp. 267-270, 335-
337.
8 ]. E. Storer and R. W. P. King, “Radiation resistance of two-
wire line,” Proc. IRE, vol. 39, pp. 1408-1412; November, 1951,
¢ R. W. P. King, “Transmission-Line Theory,” McGraw-Hill
Book Co., Inc., New York, N. Y.; 1955.
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When the dimension 2d is small compared with the
wavelength and ¢ so that Bd<<1, ¢&>d?, the expansion
parameter ¥, reduces to

24

gbs =2 111'; . (57)

The leading term in the reactance is

Xin = — R. cot B¢ (58a)
where
s 2d
UL P (58b)
27 T a

is the familiar expression for the characteristic imped-
ance of a lossless two-wire line with wire spacing 2d.

The leading term in the resistance has not been evalu-
ated in general when Byd<<1 and By¢ is unrestricted.
However, the special case when both f¢d and Soc are
small is considered below.

THE ELECTRICALLY SMALL LooP As A DIPOLE

An important special case is the electrically small
rectangular loop defined by the inequality

Bo¥(c + @)K 1.

The general formula for the expansion parameter re-
duces to the following approximate form:
+d ct+d

+ sinh— 11—
a V4?4 a?

(59

c
¥, = 2 l:sinh‘1

c
— sinh™! — — sinh™?

Vel
Vie ¥

(+d)(1+ 1)+ (1 : 1)
¢ & R\ R,

where the R’s are defined in (54). It is readily verified
that when d is small compared with ¢, (60) reduces to
(57). Alternatively, when d is large compared with ¢
but small enough to satisfy the inequality 821, (60)
and (56) both give

2d 2¢
Y, = 2|:2 In——In—— 2]

a a

(60)

(61)

in agreement with the value found in the literature!® for
an electrically short two-element cage antenna

Approximate expressions for the resistance and re-
actance may be obtained by simplifying (49a) and (49b).
With (59) it is clear that the small integrals (33) are
predominately real, so that the leading terms in B, and
D are:

10 King, “Theory of Linear Antennas,” 0p. cit., p. 274.
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B 1H

2604d3 (i _I_ C) _|_ i ,304d262'
3 3 ’

d
DI = 43,543 (? + c). (62)

With these values the leading terms in the resistance
and reactance are:

$o (d + 3c)(d + 2¢) — 4¢?

Rusa = >~ By2d? 63
o 2 o] o [
= ﬂ"_ (64)

27Bu(c -+ d)

where ¥, is given by (60) in general, and by (57) or (61)
in special cases.
Note that with ¢«&d,

fo Bo%d?* = 40B%d* ohms

Rijg = —
lin 371'

(65)

in agreement with the approximate formula
$o
Rlin =

~ 6r

Bod? = 2084%d? ohms

for the isolated dipole of hali-length d. The factor 2 is
explained by the fact that the symmetrical impedances
of two parallel dipoles driven in phase by two generators
are in zeroth order, double the value for a single isolated
antenna. Alternatively, when d<c¢ the rectangle be-
comes a transmission line of length 2¢ and with spacing
b=2d. The line is driven at each end so that the currents
vanish at the centers of the long sides. In this case

Rijn = —?;—0602012 = 808¢%d? ohms = 20839262 ohms. (66)
™

This is the resistance seen by each generator. It is equal
to the resistance of a short end-loaded dipole of half-
length d with an essentially uniform current. Contribu-
tions to the radiation from the equal and opposite cur-
rents in the electrically short sections of line is of higher
order than contributions from the short ends.

CONCLUSION

The circuit properties of the rectangular loop antenna
have been determined when the loop is driven in a trans-
verse mode by equal and codirectional generators at the
centers of one pair of parallel sides. First-order expres-
sions for the currents and the identical input impedances
at the two driving points are given in a form that in-
volves only tabulated functions. It is shown that the new
formula for the impedance is consistent with previously
available formulas for the symmetrically driven folded
dipole and for the transmission line.




