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The Rectangular Loop Antenna as a Dipole* 
RONOLD KINGS- 

Summary-An integral  equation  for the  current in a  rectangular 
loop of wire is derived  for a loop that  is driven  by two generators lo- 
cated at  the  centers of one  pair of opposite  sides. The EMF’S are 
equal in magnitude and in phase in the  sense  that  they  maintain 
currents in the  generators  that  are in the  same  direction  relative  to 
the  coordinate  system  and,  therefore, in opposite  directions  from the 
point of view of circulation around  the loop. An approximate  solution 
is  obtained for the distribution of current  around  the loop and for the 
driving-point  impedance. I t  is shown  that  the  solution for the rec- 
tangle of wire  reduces to that of the symmetrically  driven  folded 
dipole  when one  dimension is made electrically  small and to a sec- 

Tion of transmission line  driven  simultaneously at  both ends when 
the  other  dimension is made small. The loop that is electrically small 
in both  directions is also  examined. 

INTRODUCTION 

T H E  circuit  properties of the  rectangular  loop  an- 
tenna  have been  studied  in  the  past  primarily  in 
two  special  cases:  the  electrically  small  loop 

shown  in  Fig. l(a)  and  the folded  dipole  shown in Fig. 
l(b). An  analysis1 of the  former  usually  depends  upon 
the  assumption  that  the  current is essentially  uniform 
in  amplitude  and  phase in a  circulatory  sense  around 
the loop  when  this  is  driven  by a generator  located a t  
the  center of one  side. The  currents at corresponding 
points in opposite  sides  are  then  equal  in  magnitude  and 
instantaneously  opposite  in  direction  with  respect  to  the 
space  coordinates, so that,  by analogy  with  the  balanced 
open-wire  line, they  may be  called currents  in  a frans- 
miss ion-he  mode. Possible currents in opposite  pairs of 
sides that  are  equal  and  instantaneously codirectional at 
corresponding  points,  currents  that  belong  to  what  may 
be called a transverse dipole  mode, are ignored or neg- 
lected  in  such an  analysis.  The  conventional  folded  di- 
pole  shown  in  Fig. l(b) is a  rectangular  loop  that is 
electrically  small  in  one  dimension but  not  in  the  other; 
i t  is  driven  by a generator  at  the  center of one of the 
longer  sides. The folded  dipole has been  analyzed by the 
method of symmetrical  component^^^^ which, in effect, 
divides  the  current  into  two  independent  parts  and  per- 
mits  their  separate  determination  as  currents  in  the 
antisymmetrical  or  transmission-line  mode,  and  cur- 
rents in the  symmetrical  or  dipole  mode.  The  former  are 
excited by  equal  and  opposite  generators,  the  latter by 
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(b) 
Fig. 1-Extreme types of Ioop antennas. (a) Conventional  loop. 

Perimeter is small  compared to  wavelength;  currents  are  equal in 
amplitude  and opposite in direction on opposite  sides. (b)  Folded 
dipole.  Perimeter is near a wavelength;  dipole-mode currents ID 
are  equal  and codirectional.  Transmission-line currents IT are 
equal  and opposite. 

equal  and  codirectional  generators at  the  centers of both 
of the longer  sides. By superposition  the  generator 
EMF’S  add  on  one  side,  subtract  and cancel  on  the 
other. 

When a rectangular  loop of arbitrary  dimensions  is 
driven at the  center of one  side  by a voltage P, currents 
in both the  transmission-line  mode  and  the  dipole  mode 
are  excited.  The  former  are  maintained  by  the  voltages 
+ ITe and -+  V e ,  respectively, at  the  centers of the  two 
longer  sides, the  latter  by  two  equal  voltages + V e  at the 
centers of these sides. an  essential  step  in  the  com- 
plete  analysis of the general  rectangular loop as a trans- 
mitting  and receiving antenna,  and in order  to  deter- 
mine  the  circuit  properties of the  rectangular  loop  as a 
dipole antenna in its own  right  (Fig. 2 )  it is the  purpose 
of the  present  study  to  investigate  the  currents  in,  and 
impedance of a  rectangle of dimensions 2c and 2d con- 
structed of a single turn of wire of radius a and  driven 
at  the  centers of the  sides oi length 2d by generators 
with  equal  and  codirectional EMF’S. The  currents 
maintained  by  these  generators  are  in  the  vertical  dipole 
mode  and  no  others  are  generated.  The loop to  be  an- 
alyzed  is  shown  in  Fig. 3. Note  that  the  method used 
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+TO GENERATOR 

Fig. 2-Horizontal loop as a dipole antenna  maintaining a 
horizontally  polarized  electric field. 

Fig.  3-Rectangular loop excited  in the vertical  dipole  mode. 

in  the  previous analysis2s3 of the  symmetrical  or  dipole 
mode  specifically  in  the  folded  dipole  cannot  be  applied 
in general,  since  it  assumes  that  the  pair of sides of 
length 2c is so short  that  it  contributes negligibly to  the 
problem. In  the proposed  analysis  the  sides of length 2c 
are  not so restricted.  They  may  be  electrically  long  or 
short,  and  longer  or  shorter  than  the  other  pair of sides 
that  contain  the  generators. 

THE INTEGRAL  EQUATIOKS 
The  integral  equations  for  the  currents  in  the  four 

sides of the loop may  be  obtained  from  the  boundary 
conditions  obeyed by the  tangential  component of the 
electric field at the  highly  conducting  surfaces of the 
rectangle of wire. For  sides 1 and 2 they  may be  ex- 
pressed  in terms of the  scalar  and  vector  potentials $ 
and A as follows: 

where B o  = w/vo = 2 ~ / X o  and w g  = 1/ d G  3 x 108 meters 
/sec. The  vector  and  scalar  potentials at  arbitrary  points 
on the surface of conductors 1 and 2 have  the following 
forms.  Xote  that  the  symmetry  relations, 

AS = AI ,  A4 = - A2, (2) 

have  been  invoked. 

A1 = ?A12 + JA12, 91 = 4l(d + 41w; 

j w  aA1, j w  aA1, 
4lW = - - ’ 

po2 ax 
41(P) = - ~ ; ( 3 4  

~~2 a2 

A2 = 2A2, + iA2,, 42 = 4 2 w  + 42(z); & 

where 
I n d  

1 n c  

where 

The several  distances  are  defined as follows: 

R11=-J(z‘-z)2+u2 R13= d ( ~ ’ - z ) ~ + 4 d ~ ,  (6a) 

Ria= d ( d + ~ ) ~ + ( ~ + x ’ ) ~ ,  R14= ~ ‘ ( d - z ) ~ f ( ~ + ~ ‘ ) ~ ,  (6b) 

R ~ ~ = ~ / ( % ’ - X ) ~ + C L ~ ,  R 2 4  = - J ( x ’ - x ) ~ + ~ ? ,  ( 6 ~ )  

R ~ ~ = . \ / ( c + x ) ~ + ( ~ + z ’ ) ~ ,   R ~ s = ~ ( G - x ) ~ + ( ~ + z ’ ) ~ .  ( 6 4  

The  solutions of (la)  and  (lb)  for AI, and Az,, re- 
spectively,  may  be  expressed as  sums of trigonometric 
functions  and a particular  integral.  They  may  then  be 
combined  with  (4a)  and (4b) to  obtain  the following 

. -  . integral  equations  in  which H o =  f i n :  
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- j 4n  

T O  
=- [C, cos pox + Czz sin pox - OzA(z)]. (7b) 

The  particular  integrals  in  (7a)  and  (7b)  are 

elA(Z) = B O  1 ’d’l(z)(w) cos pO(Z  - w)dW 

- 4 1 ( ~ )  (0) sin BOZ, ( 8 4  

OM(%) = B o ~ 2 4 z ~ z ) ( w )  cos Po(x - w)dw 

- ~ z ( ~ ) ( O )  sin POX. (8b) 

As a consequence of geometrical  and  electrical  sym- 
metry  and  the  assumed  driving  conditions,  the  following 
relations  obtain : 

Ah(-Z) = A d z ) ,  A12(-z) = - Alz(z)  ( 9 4  

4 d - 2 )  = - 4&), 41(2,(0) = 0, 
1im-O [41(z) - 41(-2)1 = 2 4 1 d O )  = Ve (9b) 

11(-z)  = I l ( Z ) ,  ql(-Z) = - 41(-”) (94  
A z z ( - x )  = - A 2 z ( ~ ) ,  A%(-$ )  = A Z ~ ( X ) ,  A2,(0) = 0 (9d) 

& ( - x )  = &(x) ( 9 4  

1 2 z ( - x )  = - 12z(x), @(-X) = q z ( 2 ) .  (90 

The  continuity of both  current  and  scalar  potential at 
the  corners  demands  that 

I d - - d )  = - 122(-c),  41(-d) = 42(-c).  (10) 

I t  follows  directly  from  (7b)  with  (9d) that  

c1, = 0. (1 1) 

Expressions  for  the  scalar  potentials  corresponding  to 
(7a) and (7h) for t he  vector potentials b u t  specialized 
to  satisfy (9a)-(9f) and (1 1) are  readily  obtained.  Thus, 

41(z) = - C1, sin Poz + C2, cos Box + Om(z), z 2 0, (12) 

&(z)  = - C1, sin POZ - C2, cos BOZ + f ? ~ ( z ) ,  z S 0, (13) 

where 

elv(z) = ~ 0 s ~ ’  41(,)(w) sin p0(z - w)dw. (14) 

Similarly,  and  for  positive  and  negative  values  of x ,  

where 

ezv(z) = P O J ’ O ~ ~ F ~ )  sin pO(x - w)&z 

+ 4 Z ( Z ) ( O )  cos Pox. (16) 

The  driving  voltage  as  defined  in  (9b)  now  may  be  intro- 
duced.  With (12) and (13) i t  follows that  

Czr = 3 V S .  (1 7) 

The  simultaneous  integral  equations  for  the  currents 
11, and 12= are: 

where ClS and C2, may  be  evaluated by requiring  con- 
tinuity of current  and  scalar  potential at the  corners,  as 
specified in  (10).  Note  that  with  the  equations of 
continuity, 

is a function of I z a ( x ) ,  and (x )  is a function of 

APPROXIMATE  SOLUTIONS OF THE 

INTEGIL4L EQUATIONS 
The  simultaneous  integral  equations  (18a)  and  (18b) 

may  be solved  approximately  for the  currents 
I1(z) = 13(z) and 12(x) = - I4(x) by a method of iteration 
resembling that  used  in the  analysis of coupled  parallel 
 antenna^.^ The  present  problem  is  complicated  by  the 
presence of two  equations  rather  than one. In devising a 
suitable  iteration  procedure  two  points  are  noteworthy. 
First,  the  mutual  terms  interrelating  the  two  equations 
are  limited  to  the  particular  integrals which take  ac- 
count of capacitive  coupling  between  adjacent,  mutually 
perpendicular  sides.  Since  this  effect  is  significant 
primarily  near  the  corners, it  may  be  assumed  that  it  is 
not of primary  significance  in  determining  the  distribu- 
tions of current  and  may  be  included  in  the  first  correc- 
tion  term.  The second  point to  be  noted  is that   the oscil- 
lation of charges  and  currents  in  the  rectangle  when ex- 
cited  in  the  dipole  mode  as  shown  in  Fig. 3 must  cor- 
respond  roughly to  that  in  two  parallel  center-driven 
antennas  each of length 2(c+d). This follows from  the 
fact that  the  currents  are  continuous at the  corners  and 
vanish  at.  the  centers x=O,  z= &d,  of the  two  sides 
without  generators.  This  suggests  that  (18a)  and  (18b) 
may  be  expressed as follows: 

Ibid., p. 264 %. 
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- (J -’ J’””) I&’) x24(s, 2)dz’ 
- ( d i e )  

- j4a 1 
- - -[ c,, cos poz + - ~e sin P O  I z - 014(s) + g1(z) 

C O  2 1 
(204 

S-::ic) S-1 12t(x)x22(-2;, -2;’)d.T’ - 12E(x’)x?4(x, x’jdx’ 

- (si:; sc““ 12z(x7x13(x, 2’)dx’ 

- j 4 r  

r 0  

- -- [C,, sin pox - O M ( ~ ) ]  + g 2 ( x )  (20b) 

where 

gl(z) = (J -‘ + S,”‘“) 11z(z’jX2d(z, z’)dz‘ (21a) 

gs(z) = (s-‘ + JCd+‘) I ? x ( t ’ ) ~ 1 . 4 ( ~ ,  s’)ds’. (21b) 

Note  that X a a ( z ,  z’j, Xla(x, d j ,  Rzd in (20a), and R13 i n  
(20b) are  obtained  from (5) and (6) with x substituted 
for z and vice versa. 

In  the  integral 011 the  left  in (20a), Ilz(z’)  is the  actual 
current i n  side 1 of the  rectangle in the  range - d s z ’  
I d .  In  the  ranges - ( c + d j s z s - d  and d s z s ( c + d j ,  
the  current is the fictitious  extension in the 2: direction 
of currents  actually  existing  in  the  top  and  bottom of 
the loop as IBr (x ’ )  and 14Jx’). SirnilarlJ-, i n  the  integral 
on the  lelt i n  ( lob),  12z(s’) actuall!, exists onl!- i n  the 
range - G x 5 c. Outside  this  range  the  currents  are  the 
fictitious  extension i n  the x direction of actual  currents 
in the  vertical  sides i n  the z direction.  This is shown 
schematically i n  Fig. 4 for  sides 1 and 2. The  addition 
of the  integrals gl(z) and &(.x), respectivell-, to both 
sides of (21a) and (2  lb )  modifies the left  sides  (which 
are  proportional  to  the  tangential  components of the 
vector  potential) i n  a manner  to  improve  the  constancl- 
of the  ratio of vector  potential  to  current  especially  near 
the  corners  where  large  deviations  occur.  Xote  that 
whereas the  change i n  the  direction of the  current  at a 
corner,  for  example a t  z = -d ,  X = -c ,  can  involve no 
great modification in its  amplitude  or  distribution  as 
compared  with  the  current at the  corresponding  point 
z =  -d  i n  two  parallel  antennas of length 2(c+d) when 
driven  by  equal  generators in phase,  this  is  not  true of 
the  component of the  vector  potential  tangent  to  the 
conductor.  The  currents  in  the  conductor on the  two 
sides of the  right-angle  bend  do  not  contribute to the 
same  component of the  vector  potential as they  do when 
there is no  bend  and  the  conductor  is  straight. 

- ( d + c )  

- ( d i - e )  

Fig. 4-Actual and fictitious  conductors and  currents used in estab- 
lishing the  integral  equation  in a form suitable for iteration. 

The  solutions of (21) by  iteration  may  be  carried  out 
much as in the  case of two  parallel  antenna^.^ For  this 
purpose  let 

be  approximate  relative  distributions of current. Also 
let  the following  functions  be  defined: 

d+c 

\kl(Z) = P, + Yl(2) = J gds, z‘)  X11(z,  z‘)dz’ 
-(dit) 

+ f-:gl(z, 2’) x1&, z’ldz’ 

- (J -‘ -I- Sdd+‘> gl(z, z‘)X24(z,  z’)dz’ (23a) 
- ( d + c )  

S 
d i e  

‘ k 2 ( s )  = ‘k, + ys(n-) = g*(.t, X ’ ) X Z ? ( X ,  z’)dx’ 
- ( d + c )  

- S_lgz(r, x‘)xZ4(x, x’jdx’ 

+ (s -(dit) + scd’] g~(z, x’)X13(x, x‘)dx‘ (23b) 

where \k, is an  appropriately defined  magnitude  and 
yl(z) and yZ(x) are  the necessary  and  presumably  small 
functions  required  to  make (23) exact. If gl(z, z ’ )  and 
g?(x, x’) can  be so chosen that  they  are good approxi- 
mations of the  actual  current  distributions,  the follow- 
ing  integrals  are  small: 

d i e  

a ( z )  = J [Il.(Z’) - Ilz(z)gl(z? z‘)Jx11(z, Z’)dZ’ 
- ( d + c )  
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D”x) = [ [I’,(X’) - I*,(s)g2(2, x’)]X22(2, z’)dx’ - ( d l  0 )  

- S-: [I&’) - 12Z(x)g2(2, X’)]X’*(X, 2’)dx’ 

- I ~ ( x ) K ~ ( x ,  x1)1X13(x, 2’)dx‘. (24b) 

\J,’ith (23) and (24) , the  integral  equations  of (20) 
may  be  rearranged as f o l l o ~ s :  

(25b) 

where 

and 

Pl(Z) = Sl(Z) - Dl(Z) - IlZ(Z)Yl(Z) 
d 

= I,,(Z)+~ - J-dr,(s’)X1n(z,  z’)dz’.  (26c) 

The  functions BIA(z )  and B2.4(x) are defined  in (8). In 
order t o  assure exact continuity of current at the  corners 
in  the  form I1,( - d )  = -1ZJ-c)  even  in  approximate 
expressions, i t  is  advantageous  to  subtract  the  quantity 
o=Il,(-d)+12,(-c)  from  (25a). The  result  is 

I&) = --j49 [cl,(cos poz - cos Bod) 
i-O‘ks 

1 

9 s  
+ - [Ll(Z) - L1(-d) - L(--C)]. (27) 

Note  that (25) or (27)  and  (25b)  are  still  integral  equa- 
tions  for  the  currents since  these  occur on the  right in 
Ll(z) and L2(x) under  the  signs of integration.  However, 
the  expressions  are now so arranged  that if a proper 
choice  is  made of the  distribution  functions gl(z, z’) and 
g2(x ,  x’) and of the  parameter 9,, the  sum of the  terms 
on the  right  in  which  the  currents  occur  is  small  com- 
pared  with  the  zeroth-order  terms.  Accordingly, (27) 
and  (25b)  are  in  forms  appropriate  for  iteration.  Sug- 
gested  zeroth-order  currents  and  charges  are: 
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0 6 z 5 d, (28b) 

4REO 
[q2(x)10 = 9, CZx cos pox. 

- d  5 z 6 0, (28~) 

(29a) 

The  substitution of these  zeroth-order  currents  and 
charges  in  the  several  parts of Ll(z)  and Lz(x) as defined 
in  (26), and  the use of (23)  leads  to  the  following  first- 
order  integrals: 

F&) = *S(cospoz - cosPod) - [C,(d, 8 )  + C&, 4 1  
+ [E,@, a) + E&, 211 cos Bod (304 

+ [E& 2 )  + E&, z>1 sin Bod (30b) 

~ ~ ~ ( 2 )  = qs(sin po ! z  1 -sin,60d)-- [ ~ , ( d ,  z ) + ~ d d ,  211 

al1(a) = [qs - Ea(d, Z) - E2,(d, 211 sin POC (304 

Gzl(x) = ‘ k s  sin pox - Sa(c, X) + S d C ,  X) (304 

where  the  following  functions  are  involved: 

e-iBoRli e - j8~R2i  

f -1 R?i da’, (31a) 

In  these  expressions 

Rli = d ( z ’  - z ) ~  + i 2 ;  Rai = 1 / ( ~ ’  Z)‘ f i2. (32) 

The  integral  functions  in (31) may be expressed in 
terms of the  tabulated generalized  sine  and  cosine  inte- 
gral functions.516 Other  integrals  involved  in  LI(z)  and 

6 Ibid., pp. 97, 274. 
6 “Tables of Generalized  Sine- and  Cosine-Integral  Functions,” 

Harvard  University  Press, Cambridge,  Mass. ; 1948. 
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The  quantities pll ,  pzl,  and u21 introduced  in (33) are 
defined as follows. S o t e   t h a t   X l ~ ( z ,  x ’ )  and X ~ B ( X ,  2 ’ )  

are defined  in (5). 

Pll(Z) = cos P0dX1B(ZJ x‘) S-: 
sod 

(344 

pzl(~)  = COS @~z;’[X~B(X, 2‘) - X ~ B ( X ,  -z’)]~z’ (34b) 

u21(x) = J-: sin poz‘Xm(x, z’)dz’. (344 

These  integrals  can  also  be  expressed  in  terms of the 
tabulated generalized  sine and cosine  integrals. In  terms 
of the  integrals (31a)-(31c) and  (33)  the  first-order  ex- 
pressions  for L(z)   and  L2(x) are 

1 
2 

- - Vyz1(z)) . (35b) 

If these  values  are  substituted  in (27) and (25b), the 
following  first-order  solutions  for  the  currents  are 
obtained : 

where 

Fo. = COS &Z - COS Pod, 

GoZ = sin Po 1 z 1 - sin pod, (364 

F l l P  = F11(z) - F1d-4, 

G11, = Gll(z) - Gu(-d),  (364 

H11, = Hll(2) - B11(-d), 

f 1 l z  = fl l(4 - fn(-4.   (364 

In  order  to  evaluate  the  constants C1, and CZz in  terms 
of I.’” the  conditions (10) requiring  continuity of scalar 
potential  and  current at the  corners  must  be  introduced. 
The  first-order  expressions  for  the  scalar  potential  are 
obtained from (13) and (15) by  substituting  zeroth- 
order  values of the  charges  in (14) and (16). The follow- 
ing  integrals  are  involved: 

~zll(e) = ~oSg‘p1ltu) sin pu(z - w)dw, (37a) 

~ x )  = P O J ~ ~ ~ Z ~ ( V I )  sin bo(x - w1d-a 

+ PZl(0) cos Pox, (37b) 

~zl(s) = poJOzuz1t&) sin Bo(x - w1d-N 

+ u21(0) cosi3ox. (3 7 c) 

In  terms of these  integrals  the  first-order  potentials  are: 

[+1(2)11 = - clZ sin p0.z 

IJTith (lo),  ( 2 5 ) ,  (35),  and (38) the following  pair of 
equations is obtained  for  the  two  constants C1, and CZ2: 

CkUll + C,QlZ = +V%l (394 

C1Za21 + Ckazz = + V e h  (39b) 

where,  for  first-order  values, 
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I t  follows  directly tha t  

These  are  the  final  first-order  formulas. 
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THE EXPANSION PARAMETER 
The selection of an  appropriate  expansion  parameter 

'k, depends  upon  the  evaluation of !Pk,(z) and  qZ(x)  as 
defined  in  (23). -4s shown  for  the  comparable  problem 
in  the  analysis of the linear antenna3  very  satisfactory 
results  are  obtained  with  zeroth-order  distribution  func- 
tions.  In  the  case  at  hand  this  means  that  the  distribu- 
tion  functions, 

sin B0(c + d - I 2: i ) 

sin B O ( C  + d - I z I ) ' gib, 2') = 

are  to  be  substituted in  (23a) and  (23b).  The  result  for 
q l ( z )  with 2 2 0  and  the definitions  (31)  is: 

q l ( z )  = csc Bo(c + d - z){ sin BO(C + d )  [Ca(c + d, z )  

+Cz,(d, Z)  - CM(C + d,  e) + C2d(d7 z)] 
- COS BO(C + d )  [ S ~ ( C  + d7 2) + S?c(d, 2) 

-Sza(c + d, z> + Czdd, 4 1 ) .  ( 5  1) 

Correspondingly  with (31d) the  result  for JEl(x) is: 

q'p(~) = csc POX[S,(C + d ,  X) - S2d(c, X) 

+ S2,(c + d, x) - &(c, xj]. (52) 

Since  both \ k , ( z )  and !P2 (x )  are  proportional  to  the 
ratio of zeroth-order  vector  potential to zeroth-order 
current  at  points  along  conductors  that  have  the  same 
radii  and  similar  distributions of current,  the  magnitude 
of JEl(z) and * ? ( x )  should  be  essentiallJ- constant  and 
equal  except as modified by  asymmetries. 111 general, a 
good choice of !P is the  magnitude of q ( z )  a t  a  point z 
\\There the  vector  potential  and  the  current  both  have 
maxima.  In  the  presently considered  case of the loop 
excited in the dipole  mode, an  even  better choice  owing 
t o  more  complete  symmetry is at the  centers of the sides 
without  generators  (with  fictitious  extensions)  where 
both  the  vector  potential  and  the  current  vanish,  but 
1v:here their  ratio  has  a definite and  constant  value. 
Thus,  let \k,= I lim,,o q Z ( O )  I . This  function  is  readily 
evaluated  directl).  from  the  integrals  by  differentiating 
the  indeterminate  form  when  expressed  as 0;O. An  inte- 
gration  by  parts in the  numerator  leads  to  the following 
formula  for  the expansion  parameter \E, of the  symmet- 
rical or dipole  mode  in the  rectangle: 

qs = 9 2  = C,(C + d,  0) + C ~ ( C  + d7 Oj - C O ~ ( C ,  0) 

e-i80R1 e-iSoRs 
- Cb(c ,  0) - - sin Po(c + d) ~ 

P O  ' f  iI R1 +-I R.3 

where 

(544 

Sote   tha t  in (54) az usually  is negligible except  when c 
or d becomes  ver);  small. The difference functions yl(z) 
and y2(x) are given by  

With  the expansion  parameter ' k s  as  defined  in (53), 
substituted in (45) for the  distributions of current,  and 
in (47) or  (49a)  and  (49b)  for  the  impedance,  the  first- 
order  circuit  properties of the  rectangular  loop of arbi- 
trary size are  determined  when i t  is driven so that  only 
the  vertical  dipole  mode  is  excited.  Important  special 
cases  must  still  be  considered. 

FOLDED DIPOLE AND TRANSMISSION LIKE 
\l'hen the dimension 2d or 2c of the  rectangle of wire 

is kept electrically  small (&d<<l or Boc<<l) while the 
other  dimension is unrestricted,  the loop  becomes  on  the 
one  hand a symmetrically  driven folded  dipole,  on the 
other  hand a section of transmission line driven  simul- 
taneously at both  ends  by  codirectional  generators. 
Both of these  special  cases  have  been  analyzed:  the 
former  (see K i n g j ~ ~ )   b y  neglecting  corner effects and 
treating  the  two sides of the  long  and  narrow  rectangle 
as  two closelJ-  spaced  sl;mmetricallq' driven  dipoles;  the 
latter in terms of transmission-line theor]; for  the  react- 
ance  and  the  Poynting  vector  theorem for the  radiation 
r e s i s t a n ~ e . ~ ~ ~  

I t  is readilJ-  verified that  when c is  small (53)  becomes 

This is  essentially  equivalent to  the expansion  parame- 
ter for  two closely  spaced symmetrically  driven  an- 
tennas or for the folded dipok5n7  Moreover, if the  capac- 
itive coupling at  the  corners is  neglected  when c is suf- 
ficiently  small by  setting  the  functionsfll(z), fZl(x), and 
~ Z I ( X )  as  defined  in (33) equal  to  zero,  (46b)  and (4Xc) 
for :l%l(z) and Dl reduce  essentially  to  the  correspond- 
ing  functions  characteristic of the  symmetrically  driven 
pair of parallel antennas.  Small  differences  are a conse- 
quence of the definition of QS in (53) in  terms of \Ez(x) 
instead of ql(z) .  I t  follows that  (47) reduces  to  the 
formula  for  the  folded  dipole. 
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When  the  dimension 2d is  small  compared  with  the 
wavelength  and c so that  Pod<<l, c2>>d2, the  expansion 
parameter #s reduces to  

2d 
$, = 21n- - 

a 

The  leading  term  in  the  reactance  is 

Xi, = - R,  cot DOC (584 

where 

2a ~a 

is  the  familiar  expression  for  the  characteristic  imped- 
ance of a lossless two-wire  line  with  wire  spacing 2d. 

The leading  term  in  the  resistance  has  not  been  evalu- 
ated  in  general  when Pod<<l and f loc is unrestricted. 
However,  the  special  case  when  both Pod and floc are 
small  is  considered  below. 

THE ELECTRICALLY SMALL LOOP AS A DIPOLE 

An important  special  case  is  the  electrically  small 
rectangular  loop  defined by  the  inequality 

Po'(c + d)' << 1. (59) 

The general  formula  for  the  expansion  parameter  re- 
duces  to  the following  approximate  form: 

c + d  + sinh-l ~ 

1/4c2 + a2 

where  the R's  are defined  in  (54). I t  is  readily  verified 
that  when d is  small  compared  with c, (60) reduces  to 
(57). Alternatively,  when d is large  compared  with c 
but small  enough to  satisfy  the  inequality Po2d2<<1, (60) 
and (56) both  give 

in  agreement  with  the  value  found  in  the  literaturelo  for 
an  electrically  short  two-element  cage  antenna 

&Approximate  expressions  for the  resistance  and  re- 
actance  may  be  obtained  by  simplifying  (49a)  and  (49b). 
With (59) i t  is  clear that   the small  integrals ( 3 3 )  are 
predominately  real, so that  the  leading  terms  in BlI1 and 
Dln are: 

10 King,  "Theory of Linear  Antennas," op.  cit., p. 274. 

lt7ith  these  values  the  leading  terms  in  the  resistance 
and  reactance  are: 

5 0  (d + 3 ~ ) ( d  + 2 ~ )  - 4c2 
3T (d + R1in A - po2d2 [ 

where XPs is  given  by (60) in  general,  and  by (57) or (61) 
in  special cases. 

Note  that  with c<<d, 

R1in A - = 4OPo2dd" ohms 5 0  

3a 

in  agreement  with  the  approximate  formula 

for  the  isolated  dipole of half-length d. The  factor 2 is 
explained  by  the  fact  that  the  symmetrical  impedances 
of two  parallel  dipoles  driven  in  phase  by  two  generators 
are  in  zeroth  order,  double  the  value  for a single  isolated 
antenna.  Alternatively,  when d<<c the  rectangle  be- 
comes a transmission  line of length 2c and  with  spacing 
b = 2d. The line  is  driven a t  each  end so that  the  currents 
vanish at the  centers of the  long  sides.  In  this  case 

210 
3T 

Rli, = - po2d2 = 80p02d2 ohms = 20/302b2 ohms. (66) 

This  is  the  resistance  seen  by  each  generator. I t  is  equal 
to  the resistance of a short  end-loaded  dipole of half- 
length d with  an  essentially  uniform  current.  Contribu- 
tions  to  the  radiation  from  the  equal  and  opposite  cur- 
rents  in  the  electrically  short  sections of line  is of higher 
order  than  contributions  from  the  short  ends. 

CONCLUSION 

The  circuit  properties of the  rectangular  loop  antenna 
have  been  determined  when  the  loop is driven in a trans- 
verse  mode by  equal  and  codirectional  generators at the 
centers of one  pair of parallel  sides.  First-order  expres- 
sions  for  the  currents  and  the  identical  input  impedances 
at  the  two  driving  points  are  given  in a form  that  in- 
volves  only  tabulated  functions. I t  is  shown that  the new 
formula  for  the  impedance is consistent  with  previously 
available  formulas  for  the  symmetrically  driven  folded 
dipole  and  for  the  transmission  line. 


