
__
PREFACE ABOUT THIS REFERENCE
__

This reference describes the AppleTalk application programming interface
(API) specifications jointly developed by AT&T Computer Systems and Apple
Computer, Inc. These API specifications define a standard interface to
AppleTalk network protocols for AT&T's UNIX System V Release 4 operating
system.

Software developers can create AppleTalk network application programs for
UNIX systems that support both these API specifications and AppleTalk. Such
applications are readily portable across various UNIX platforms.

AppleTalk network applications running in a UNIX environment can provide a
standard desktop interface to Macintosh users accessing network services --
such as file sharing, printer sharing, electronic mail, distributed
databases, and other client/server applications. UNIX file servers that
support AppleTalk allow Macintosh and other personal computers to store and
share information on the servers.

APIs implemented according to these specifications provide interfaces to the
AppleTalk family of protocols. AT&T's Transport Interface (TLI) provides the
interface to the AppleTalk Data Stream Protocol (ADSP) and the Datagram
Delivery Protocol (DDP).

AT&T's TLI and the STREAMS input/output system provide developers with the
tools needed to build distributed applications that are both protocol and
media independent. The TLI's library of functions facilitates the development
of network applications that are compatible with most industry-standard
protocols. Such applications can easily provide support for multiple
protocols on a UNIX system, migration to new protocols, and the addition of
new features to existing network applications.

ADSP resides in the session layer of the International Standards
Organization's (ISO) Open System Interconnection (OSI) reference model.
Protocols in the session layer guarantee reliable data delivery. ADSP
provides bidirectional, sequential, duplicate-free byte-stream service
between any two sockets on an AppleTalk internet. ADSP services allow client
processes to establish socket connections, to send and receive data -- either
as a continuous stream or as logical messages intelligible by the receiving
client -- and to close socket connections. ADSP provides a flow-control
mechanism to ensure that transmitted data does not exceed the capacity of the
receiving client's buffer.

DDP corresponds to the network layer of the OSI model and provides best-
effort data delivery service. DDP is an end-to-end data flow protocol that
extends socket-to-socket datagram delivery to an AppleTalk internet
consisting of one or more AppleTalk networks connected by routers. A datagram
is a packet of data that carries its own routing information. DDP defines
logical addresses for sockets on an internet.

The AppleTalk Session Protocol (ASP) resides in the session layer of the OSI
model. ASP provides the transport services needed for higher-level
interactions between workstations and servers. ASP uses the services of the
AppleTalk Transaction Protocol to open, manage, and close sessions; and to
sequence requests and replies. ASP services include sending commands to a
server and returning replies to a workstation, writing blocks of data to a

server, and retrieving status information from a server. During a session --
that is, when a logical connection exists between a workstation and a server
-- ASP guarantees the delivery and execution of a sequence of transactions in
the order sent.

The AppleTalk Transaction Protocol (ATP) resides in the transport layer of
the OSI model. ATP provides loss-free transaction service between sockets on
an internet, using a request/response transaction model and error recovery.
By binding requests to responses, ATP ensures the reliable exchange of
request/response pairs. ATP provides the basis for the session-oriented
services of the AppleTalk Session Protocol and the Printer Access Protocol.

The Name Binding Protocol (NBP) resides in the transport layer of the OSI
model. NBP converts user-defined names for zones and devices, or entities, to
internet socket addresses that AppleTalk protocols can use. Each node
maintains name-to-address mapping for its sockets. NBP uses a names directory
to provide services that include name registration, deletion, lookup, and
confirmation.

The Printer Access Protocol (PAP) resides in the session layer of the OSI
model. PAP manages transactions between workstations and servers -- including
setting up, maintaining, and terminating connections; and transferring data.
PAP allows multiple connections at both the workstation and the server. PAP
uses NBP services to locate addresses and ATP services to transfer data. PAP
can determine a server's status and filter duplicate requests.

The Routing Table Maintenance Protocol (RTMP) resides in the transport layer
of the OSI model. Internet routers use RTMP to establish and maintain routing
tables used in forwarding datagrams from any source socket to any destination
socket on an internet. Each router on an internet periodically broadcasts
RTMP data packets containing updated routing tables, allowing all other
routers on the internet to update their own routing tables.

The Zone Information Protocol (ZIP) resides in the session layer of the OSI
model. Routers use ZIP to maintain network-to-zone-name mapping on an
internet. ZIP allows a node on an extended network to select its zone at
startup. ZIP provides commands that allow nodes on a local area network to
obtain zone information. NBP uses ZIP mapping to determine which networks
contain nodes that belong to a zone.

What this reference contains

This reference consists of three sections, which contain the following
information:

- Section 1, "ADSP TLI Specification," describes the Transport Interface to
the AppleTalk Data Stream Protocol.

- Section 2, "DDP TLI Specification," describes the Transport Interface to
the Datagram Delivery Protocol.

- Section 3, "AppleTalk Manual Pages," contains all AppleTalk Section 3N
(Network Programming) manual pages for UNIX System V Release 4. These manual
pages correspond to the following AppleTalk protocols: AppleTalk Session
Protocol, AppleTalk Transaction Protocol, Routing Table Maintenance Protocol,
Name Binding Protocol, Printer Access Protocol, and Zone Information
Protocol.

Conventions used in this reference

This reference uses the following typographic conventions to distinguish
elements of the text:

- The names of function calls, parameters, and fields in structures appear in
italics in the text of the reference.

- Code samples appear in Courier type -- for example:

This is 10-point Courier type.

- The manual pages in Section 3 appear in the standard UNIX man page format.

For more information

The following documents provide information about either the AppleTalk
network system or the UNIX System V Release 4 operating system:

- Sidhu, Gursharan S., Andrews, Richard F., and Oppenheimer, Alan B. Apple
Computer, Inc. Inside AppleTalk, second edition. Reading, Mass.: Addison-
Wesley, 1990. Explains the AppleTalk protocols in detail.

- AT&T, UNIX System V Release 4 Programmer's Guide: Networking Interfaces.
Englewood Cliffs, N.J.: Prentice-Hall, 1990. Defines the TLI programming
calls and describes programming with TLI.

- AT&T, UNIX System V Release 4 Programmer's Guide: STREAMS. Englewood
Cliffs, N.J.: Prentice-Hall, 1990. Provides detailed information about
STREAMS.

- Jacobson, Van. "Congestion Avoidance and Control." Proceedings of the ACM,
SIGCOM '88, Palo Alto, Calif., August 1988. Describes algorithms developed
for the TCP/IP protocol that improve performance over slow or congested data
links.

__
SECTION 1: ADSP TLI INTERFACE SPECIFICATION
__

Summary of ADSP data structures

This section describes a Transport Interface (TLI) to the AppleTalk Data
Stream Protocol (ADSP) and consists of several subsections:

- "General Concepts" explains STREAMS and TLI concepts relevant to this
document.

- "Implementation Issues" describes several important implementation issues.

- "ADSP TLI Library Calls and Parameters" describes each ADSP function call
and its parameters.

- "A Client/Server Example" presents a sample client/server program.

- "Summary of ADSP Data Structures" presents ADSP constants and data
structures.

Some portions of this document are taken from The External Reference
Specification for ADSP 1.5/2.0, version 0.14.

General concepts

The services of ADSP map closely to the TLI connection-mode calls. TLI's
connection-mode service enables data to be transferred over an established
connection in a reliable, sequenced manner. This service enables the
negotiation of the parameters and options that govern the transfer of data.
The following is a general scenario under TLI:

A connection end is identified by a local file descriptor (fd) returned by
t_open(3N). Then an address is associated with this endpoint using
t_bind(3N). At this point, the process can either listen for an incoming
connect indication, t_listen(3N), or initiate a connection request,
t_connect(3N). The passive user can then accept the connection on a different
fd, t_accept(3N). After the connection has been established, the process can
send data, t_snd(3N), receive data, t_rcv(3N), or close the connection,
t_close(3N).

Error handling

Failures are indicated by a return value of -1. An external integer, t_errno,
holds the specific error numbers. When a function sets t_errno to [TSYSERR]
it indicates an operating system error, the specifics about which can be
accessed through the external variable errno. When a function sets t_errno to
[TLOOK], it indicates that an asynchronous event has happened. The user can
call t_look(3N) to determine what event has occured.

Synchronous and asynchronous modes

In the synchronous mode, the user has to wait for a specific event to happen
before control is returned to the user. The asynchronous mode of operation
provides a mechanism for notifying a user of some event without forcing the
user to wait for the event. Synchronous mode is the default mode of
operation. This mode can be changed through the O_NDELAY or O_NONBLOCK flag,
which may be set during t_open(3N) or fcntl(2). The following is a list of
asynchronous events: T_LISTEN, T_CONNECT, T_DATA, T_EXDATA, and
T_DISCONNECT. In synchronous mode, a function may return -1 with t_errno set
to [TLOOK] to indicate the occurrence of an asynchronous event. The
t_look(3N) function is then invoked to identify the specific event. Another
means to notify a process that an asynchronous event has occured is polling.

TLI functions supported for ADSP

The following TLI functions, which correspond to connection-oriented
services, are supported:

t_accept(3N)

t_bind(3N)

t_close(3N)

t_connect(3N)

t_listen(3N)

t_look(3N)

t_open(3N)

t_rcv(3N)

t_rcvconnect(3N)

t_rcvdis(3N)

t_snd(3N)

t_snddis(3N)

t_unbind(3N)

The following general TLI functions are also supported:

t_alloc(3N)

t_error(3N)

t_free(3N)

t_getinfo(3N)

t_getstate(3N)

t_optmgmt(3N)

t_sync(3N)

The following functions are not supported and upon calling will return -1,
with t_errno set to [TNOTSUPPORT]:

t_rcvrel(3N)

t_rcvudata(3N)

t_rcvuderr(3N)

t_sndrel(3N)

t_sndudata(3N)

Key for parameter arrays

For each function, an array is presented that summarizes the content of the
input and output parameters. The key for the parameter arrays is as follows:

The parameter value is meaningful. (The input parameter must be set before
the call and the output parameter may be read after the call.)

(x) The content of the object to which the x pointer points is
meaningful.

The parameter value is meaningful but the parameter is optional.

-- The parameter value is meaningless.

The parameter keeps the same value after the call as before the call.

Implementation issues

Options and management parameters

There are two user-selectable options: filter_addr, which supports
connection-opening filters, and checksum, which is a boolean variable that
can be set to TRUE or FALSE, indicating the desire to turn on or off DDP
checksum. Other options or parameters are either set by the system
administrator or calculated dynamically.

Connection-opening filters

The ADSP client may need to be selective about establishing connections with
remote clients, because the addresses of some remote clients that make open-
connection requests may not be acceptable to the local client. In order to
establish a selection criterion, the client can provide ADSP with a filter of
valid network addresses with which it is willing to establish connections.
This filter could be as simple as specifying "open a connection only with the
socket to which you are sending the open-connection request" or "open a
connection only with a socket on a particular node." If ADSP receives an
open-connection request from an address that does not match the filter, it
sends back an open-connection denial and ignores the packet. In the case of a
connection-listening socket, the end could conceivably become established
with a different network address than the one to which the original open
request was sent. The original requester can provide ADSP with a filter of
network addresses with which it is willing to establish a connection.

Filter_addr is defined in adsp_opt structure. (See "Summary of ADSP Data
Structures" later in Section 1.) It can be set when calling t_connect(3N) or
before a t_listen(3N) by calling t_optmgmt(3N). A zero in the network number,
node identifier, or socket number of filter_addr means that a connection can
be established with any connection end on any network, node, or socket,
respectively. Setting filter_addr to be the same as remote address means that
a connection will be established only with a connection end on the specified
remote address.

System administration parameters

There are several parameters tunable by the system administrator. These are:

- Max Receive buffer

- open connection request retries

- initial round-trip time

Dynamically set parameters

Many of the ADSP variables are dynamically determined based on algorithms
that have been successful in the TCP/IP community. A researcher at the
Lawrence Berkeley Labs, Van Jacobson, has done significant work to improve
the performance of the TCP/IP protocol over slow or congested data links.
Since ADSP is very similar in design to TCP/IP, several of the techniques
developed can and will be used for ADSP.

One of the techniques used involves dynamically determining round-trip times
between two connection ends, through which ADSP will dynamically determine
the values to use for retry intervals.

ADSP TLI protocol address

There are two ways to view the TLI protocol address for ADSP. Primitives like
t_bind(3N) and t_connect(3N) accept an NBP entity name (object:type@zone) as
their protocol address. The name registration, in t_bind(3N), or name
resolution, in t_connect(3N), is done by the transport provider, transparent
to the applications. This eliminates the need for NBP primitives in
applications. The elimination of NBP primitives and use of the Name-to-
Address Mapping provided by System V Release 4 are necessary to allow the
development of protocol-independent applications. Since AppleTalk nodes are
not required to have network names, NBP entity names are not available in
some cases. Sometimes all that is available is the internet socket address.
This is the case with t_listen(3N). When a connection request arrives,
t_listen(3N) returns the protocol address of the requesting user. All that is
available for return is the internet socket address. An application is
likely to respond with a t_accept(3N) and use the address returned by
t_listen(3N) as the destination address.

The transport provider must be able to distinguish between NBP entity names
and internet socket addresses, so that it knows how to process the address
field. The convention adopted involves using NULL-terminated strings for NBP
entity names and using a leading NULL in the first character position,
followed by an at_inet_t structure to identify an internet socket address.
The t-bind(3N), t-connect(3N),

t-rcvconnect(3N), and t-listen(3N) calls return an internet socket address.
See "Summary of ADSP Data Structures" later in Section 1.

The object and type fields of the NBP entity names cannot contain wildcards.
The zone name field may be set to an asterik (*). Using an illegal NBP entity
name or a name that cannot be resolved causes t-bind(3N) or t-connect(3N) to
return a -1 and set t-errno to [TBADADDR]

Names that are transparently registered with a t_bind(3N) are transparently
deregistered with t_unbind(3N) or upon the closing of the corresponding file
descriptor.

ADSP features not supported

The following ADSP features are outside the scope of TLI and are not
supported:

- connection opening outside of ADSP

- accepting connections on alternate nodes

Non-TLI calls

In addition to the TLI calls mentioned in "TLI Functions Supported for ADSP"
earlier in Section 1 the following nonstandard call is also supported:

adsp_fwdreset(3)

ADSP TLI library calls and parameters

Several of the ADSP TLI library function calls are described here. For a more
detailed description of these calls refer to the UNIX System V Release 4
Programmer's Guide: Networking Interfaces.

fd = t_open (path, oflag, info)

T_open(3N) is called as the first step in the initialization of a transport
endpoint. This function returns various default characteristics of the
underlying transport protocol by setting fields in the t_info structure.

The following should be the values returned by the call to t_open(3N) and
t_getinfo(3N) with ADSP as the transport provider:

Parameters Before call After call

path ADSP_DEV --

oflag x --

info->addr -- 99

info->options -- 64

info->tsdu -- -1

info->etsdu -- 572

info->connect -- -2

info->discon -- -2

info->servtype -- T_COTS

The argument path points to the ADSP device identifier, such as, /dev/adsp,
normally extracted from /etc/netconfig (see netconfig(4) and getnetpath(3N)).
Oflag may be constructed from O_NDELAY or O_NONBLOCK OR-ed with O_RDWR.
T_open returns a file descriptor that identifies the local ADSP endpoint. The
default characteristics of ADSP are returned in info. The maximum size of the
ADSP address, addr, is 99 bytes. There is no limit to the size of the
Transport Service Data Unit (TSDU). The maximum size of the Expedited
Transport Service Data Unit (ETSDU), the attention packet, is 572 bytes. The
attention packet is composed of 2 bytes of attention code followed by up to
570 bytes of attention data. No data can be sent with connection-request or
disconnect calls. The only service type supported is T_COTS, the connection-
oriented mode.

t_bind (fd, req, ret)

This function associates a protocol address with the transport endpoint
specified by fd and activates that transport endpoint. The transport provider
can then begin accepting or requesting connections. The req and ret arguments
point to a t_bind structure. Qlen is used to indicate the maximum number of
outstanding connection indications.

Parameters Before call After call

req->addr.maxlen -- --

req->addr.len x>=0 --

req->addr.buf x(x) --

req->qlen x>=0 --

ret->addr.maxlen x --

ret->addr.len -- x

ret->addr.buf x (x)

req->qlen -- x>=0

req->addr.buf is a pointer to an NBP name (a NULL-terminated C string). The
transport provider will allocate a dynamic socket and register that name on
this socket.

If req is set to NULL or req->addr.len is zero, the transport provider will
assign a dynamic socket and return the internet address of this socket in
ret->addr.buf in a format described in "ADSP TLI Protocol Address," earlier
in Section 1.

t_unbind (fd)

This function disables the transport endpoint specified by fd, which was
previously bound by t_bind(3N). On completion of this call, no further data
or events destined for this transport endpoint will be accepted by the
transport provider.

Parameters Before call After call

fd x --

The NBP name that was transparently registered by the transport provider
during t_bind(3N) will be deregistered.

t_connect (fd, sndcall, rcvcall)

This function enables a user to request a connection to a specified
destination. Fd identifies the local connection endpoint. Sndcall and rcvcall
point to a t_call structure.

Parameters Before call After call

fd x --

sndcall->addr.maxlen -- --

sndcall->addr.len x>0 --

sndcall->addr.buf x(x) --

sndcall->opt.maxlen -- --

sndcall->opt.len x>0 --

sndcall->opt.buf x(x) --

sndcall->udata.maxlen -- --

sndcall->udata.len 0 --

sndcall->udata.buf -- --

sndcall->sequence -- --

rcvcall->addr.maxlen x --

rcvcall->addr.len -- x

rcvcall->addr.buf x (x)

rcvcall->opt.maxlen x --

rcvcall->opt.len -- x

rcvcall->opt.buf x (x)

rcvcall->udata.maxlen -- --

rcvcall->udata.len -- --

rcvcall->udata.buf -- --

rcvcall->sequence -- --

In sndcall, addr specifies the protocol address of the destination transport
user. The sndcall->addr.buf points to an NBP name. The transport provider
will resolve the name before sending a connection request.

In sndcall, opt points to an adsp_opt structure that is used to set ADSP
address filters or turn on/off DDP checksum. The user can set the filter_addr
field in the adsp_opt to filter connection ends responding to this connection
request. A zero in the network number, node identifier, or socket number of
filter_addr means that a connection can be established with any connection
end on any network, node, or socket, respectively. Setting filter_addr to be
the same as remote address means that a connection will be established only
with a connection end on the specified remote address.

Since data cannot be sent with a t_connect(3N), sndcall->udata.len must be
set to 0.

t_rcvconnect (fd, call)

This function enables a user to determine the status of a previously sent
connection request and is used in conjunction with t_connect(3N) to establish
a connection in asynchronous mode. The connection will be established on
successful completion of this function. Fd identifies the endpoint and call
contains information associated with the newly established connection.

Parameters Before call After call

fd x --

call->addr.maxlen x --

call->addr.len -- x

call->addr.buf x (x)

call->opt.maxlen x --

call->opt.len -- x

call->opt.buf x (x)

call->udata.maxlen 0 --

call->udata.len -- --

call->udata.buf -- --

call->sequence -- --

Since data cannot be sent with a connection request, call->udata.maxlen must
be set to 0 before calling t_rcvconnect(3N). On return, the call->addr
structure contains the protocol address of the responding endpoint.

t_optmgmt (fd, req, ret)

This function enables a transport user to retrieve, verify, or negotiate
protocol options with the transport provider. The argument fd identifies a
bound transport endpoint. The req and ret arguments point to a t_optmgmt
structure.

Parameters Before call After call

fd x --

req->opt.maxlen -- --

req->opt.len x --

req->opt.buf x(x) --

req->flags x --

ret->opt.maxlen x --

ret->opt.len -- x

ret->opt.buf x (x)

req->flags -- x

The req->opt.buf points to an adsp_opt structure. The user can set the
filter_addr field in the adsp_opt. A zero in the network number, node
identifier, or socket number of filter_addr means that a connection can be
established with any connection end on any network, node, or socket,
respectively. Setting filter_addr to be the same as remote address means that
a connection will be established only with a connection end on the specified
remote address. The user can also change the default value of checksum.

To filter incoming connections, a user can set the desired filter by calling
t_optmgmt(3N) before doing a t_listen(3N).

t_listen (fd, call)

This function listens for a connection request from a calling ADSP user. Fd
identifies the local connection endpoint where the connection indication
arrived, and on return, call contains information describing the connection
indication. Call points to a t_call structure. In call, addr returns the
calling ADSP user's AppleTalk internet address. The value of sequence is
equivalent to the notion of CID, a number that uniquely identifies the
returned connection indication. The value of sequence enables the user to
listen for multiple indications before responding to any of them.

Parameters Before call After call

fd x --

call->addr.maxlen x --

call->addr.len -- x

call->addr.buf x (x)

call->opt.maxlen x --

call->opt.len -- x

call->opt.buf x (x)

call->udata.maxlen 0 --

call->udata.len -- --

call->udata.buf -- --

call->sequence -- x

An address filter can be set using t_optmgmt(3N) before calling t_listen(3N)
to specify the remote addresses with which the connection end is willing to
establish a connection.

Since data cannot be sent with a connection request, call->udata.maxlen must
be set to 0 before the call to t_listen(3N). The call->addr structure
contains the remote calling AppleTalk internet address.

If the user has set qlen to a value greater than 1 (on the call to
t_bind(3N)), the user may queue up several connection indications before
responding to any of them. The user should be warned that ADSP starts a timer
to be sure of obtaining a response to the connection request in a finite
time. If the user queues the connection indications for too long a time
before responding to them, the transport provider initiating the connection
will disconnect it. This time is dynamically calculated based on packet
round-trip time.

t_accept (fd, resfd, call)

This function accepts a connection request. Fd identifies the local

connection endpoint where the connection indication arrived, resfd specifies
the local connection endpoint where the connection is to be established, and
call contains information required by ADSP, the transport provider, to
complete the connection. Call points to a t_call structure. The call->addr is
the address returned by t_listen(3N), opt indicates any protocol-specific
parameters associated with the connection, and sequence is the CID returned
by t_listen(3N) that uniquely associates the response with a previously
received connection indication.

Parameters Before call After call

fd x --

resfd x --

call->addr.maxlen -- --

call->addr.len x --

call->addr.buf x(x) --

call->opt.maxlen -- --

call->opt.len x --

call->opt.buf x(x) --

call->udata.maxlen -- --

call->udata.len 0 --

call->udata.buf -- --

call->sequence x --

Since data cannot be sent with a connection request, call->udata.len must be
set to 0.

t_snd (fd, buf, nbytes, flags)

This function is used to send either normal or expedited (attention) data.

Parameters Before call After call

fd x --

buf x(x) --

nbytes x --

flags x --

The T_EXPEDITED flag maps directly to the attention message concept of ADSP.
Note that the data consists of 2 bytes of attention code followed by up to
570 bytes of attention data.

The T_MORE flag maps directly to the end-of-message (EOM) bit but in reverse
fashion. T_MORE being set indicates more data will follow for the current

TSDU. When the EOM bit is set, it indicates the end of the current logical
data.

t_rcv (fd, buf, nbytes, flags)

This function receives either normal or expedited (attention) data.

Parameters Before call After call

fd x --

buf x (x)

nbytes x --

flags -- x

The T_EXPEDITED flag maps directly to the attention message concept of ADSP.
Note that the data consists of 2 bytes of attention code followed by up to
570 bytes of attention data.

The T_MORE flag maps directly to the EOM bit but in reverse fashion. T_MORE
being set indicates more data will follow for the current TSDU. When the EOM
bit is set, it indicates the end of the current logical data.

t_snddis (fd, call)

This function is used to initiate an abortive release on an already
established connection or to reject a connection request. Fd identifies the
local endpoint. Call points to a t_call structure.

Parameters Before call After call

fd x --

call->addr.maxlen -- --

call->addr.len -- --

call->addr.buf -- --

call->opt.maxlen -- --

call->opt.len -- --

call->opt.buf -- --

call->udata.maxlen -- --

call->udata.len 0 --

call->udata.buf -- --

call->sequence x --

Since data cannot be sent with a disconnect, call may be set to NULL or
call->udata.len must be set to 0.

When rejecting a connection request, call must be non-NULL and contain a
valid value of sequence to uniquely identify the rejected connection
indication.

t_rcvdis (fd, discon)

This function is used to identify the cause of a disconnect. Fd identifies
the local endpoint. discon points to a t_discon structure.

Parameters Before call After call

fd x --

discon->udata.maxlen -- --

discon->udata.len -- 0

discon->udata.buf -- --

discon->reason -- x

discon->sequence -- x

Since data cannot be sent with a disconnect, discon->udata.len will return 0.

Sequence may identify an outstanding connection indication with which the
disconnect is associated. Sequence is only meaningful when t_rcvdis is issued
by a passive ADSP user that has executed several t_listen(3N) functions and
is processing the resulting connection indications. If a disconnect
indication occurs, sequence can be used to identify which of the outstanding
connect indications is associated with the disconnect. No protocol-specific
reason codes are currently defined.

If a user does not need to know the value of reason or sequence, discon may
be NULL.

t_close (fd)

The t_close function informs the transport provider that the user is finished
with the transport endpoint specified by fd. This function does not check
state information, so it can be called from any state to close a transport
endpoint. This call is abortive and breaks any transport connection that may
be associated with the endpoint.

Parameters Before call After call

fd x --

The NBP name that was transparently registered by the transport provider
during t_bind(3N) will be deregistered.

adsp_fwdreset (fd)

Since the forward-reset feature of ADSP does not map directly to the standard
TLI calls, a separate function is created to emulate that mechanism.

Parameters Before call After call

fd x --

The argument fd identifies a bound transport endpoint.

On the receiving end, the transport provider will generate a SIGUSR1 signal
to notify the user that a forward reset was received and processed.

A client/server example

The following is a simple client/server example to demonstrate the calling
conventions.

The server side

/* adsp_server.c -- this is an ADSP server */

#include <tiuser.h>

#include <stropts.h>

#include <fcntl.h>

#include <stdio.h>

#include <signal.h>

#include <netconfig.h>

#include <netdir.h>

#include "appletalk.h"

#include "adsp.h"

main ()

int s, s2, flags;

struct t_bind *bind;

struct t_call *callptr;

char buf [BUFSIZE];

void *handlep;

struct netconfig *netconfigp;

* Initialize the network selection mechanism.

if ((handlep = setnetpath()) == NULL) {

nc_perror ("adsp server: setnetpath");

exit (1);

* Loop through the transport providers.

while (netconfigp = getnetpath (handlep)) {

if ((netconfigp->nc_semantics == NC_TPI_COTS) &&

(strcmp (netconfigp->nc_protofmly, NC_APPLETALK) == 0) &&

(strcmp (netconfigp->nc_proto, "-") == 0))

break;

if (netconfigp == NULL) {

endnetconfig (handlep);

exit (1);

if ((s = t_open (netconfigp->nc_device, O_RDWR, (struct t_info *)0)) < 0) {

t_error ("adsp server: t_open");

exit (1);

if ((bind = (struct t_bind *)t_alloc (s, T_BIND, T_ADDR)) == NULL) {

t_error ("adsp server: t_alloc");

exit (1);

(void) strcpy (bind->addr.buf, "Receiver:ADSP_Server@Nets_R_Us");

if (t_bind (s, bind, (struct t_bind *)0) < 0) {

t_error ("adsp server: t_bind");

exit (1);

if ((callptr = (struct t_call *)t_alloc (s, T_CALL, T_ALL)) == NULL) {

t_error ("adsp server: t_alloc");

exit (1);

if (t_listen (fd, callptr) < 0) {

t_error ("adsp server: t_listen");

exit (1);

if ((s2 = t_open (netconfigp->nc_device, O_RDWR, (struct t_info *)0)) < 0) {

t_error ("adsp server: t_open");

exit (1);

if (t_bind (s2, (struct t_bind *)0, (struct t_bind *)0) < 0) {

t_error ("adsp server: t_bind");

exit (1);

if (t_accept (s, s2, callptr) < 0) {

if ((t_errno == TLOOK) && (t_look (s) == T_DISCONNECT))

if (t_rcvdis (s, (struct t_discon *)0) < 0) {

t_error ("adsp server: t_rcvdis");

exit (1);

t_error ("adsp server: t_accept");

exit (1);

if (t_rcv (s2, buf, BUFSIZE, &flags) < 0) {

t_error ("adsp server: t_rcv");

exit (1);

printf ("This is what we got:\n%s\n", buf);

endnetconfig (handlep);

t_close (s);

t_close (s2);

The client side

/* adsp_client.c -- this is an ADSP client */

#include <tiuser.h>

#include <stropts.h>

#include <fcntl.h>

#include <stdio.h>

#include <signal.h>

#include <netconfig.h>

#include <netdir.h>

#include "appletalk.h"

#include "adsp.h"

main ()

int s;

struct t_call *callptr;

void *handlep;

struct netconfig *netconfigp;

#define MESSAGE "Gypsy king, play my favorite tune.\n"

* Initialize the network selection mechanism.

if ((handlep = setnetpath()) == NULL) {

nc_perror ("adsp client: setnetpath");

exit (1);

* Loop through the transport providers.

while (netconfigp = getnetpath (handlep)) {

if ((netconfigp->nc_semantics == NC_TPI_COTS) &&

(strcmp (netconfigp->nc_protofmly, NC_APPLETALK) == 0) &&

(strcmp (netconfigp->nc_proto, "-") == 0))

break;

if (netconfigp == NULL) {

endnetconfig (handlep);

exit (1);

if ((s = t_open (netconfigp->nc_device, O_RDWR, (struct t_info *)0)) < 0) {

t_error ("adsp client: t_open");

exit (1);

if (t_bind (s, (struct t_bind *)0, (struct t_bind *)0) < 0) {

t_error ("adsp client: t_bind");

exit (1);

if ((callptr = (struct t_call *)t_alloc (s, T_CALL, T_ADDR)) == NULL) {

t_error ("adsp client: t_alloc");

exit (1);

(void) strcpy (callptr->addr.buf, "Receiver:ADSP_Server@Nets_R_Us");

if (t_connect (s, callptr, (struct t_call *)0) < 0) {

t_error ("adsp client: t_connect");

exit (1);

if (t_snd (s, MESSAGE, sizeof (MESSAGE), 0) < 0) {

t_error ("adsp client: t_snd");

exit (1);

endnetconfig (handlep);

t_close (s);

Summary of ADSP data structures

The following is a summary of the constants and structures used by ADSP.

Constants

The following constants are defined:

TRUE = 0

FALSE = 1

The ADSP options have the following default values:

filter_addr = 0

checksum = FALSE

Structures

The following structures are used by the ADSP interface and are defined in
the <adsp.h> header:

typedef struct adsp_opt {

at_inet_t filter_addr;

u_char checksum;

u_char reserved [59];

} adsp_opt_t;

The following structures can be found in the <appletalk.h> header:

typedef struct at_inet {

u_short net;

u_char node;

u_char socket;

} at_inet_t;

The following structures are defined in TLI:

struct netbuf {

unsigned int maxlen;

unsigned int len;

char *buf;

struct t_bind {

struct netbuf addr;

unsigned qlen;

struct t_call {

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

struct t_optmgmt {

struct netbuf opt;

long flags;

__
SECTION 2: DDP TLI INTERFACE SPECIFICATION
__

This section describes a TLI interface to the Datagram Delivery Protocol
(DDP). DDP is one component in the suite of AppleTalk protocols.

The section consists of several subsections:

- "General Concepts" explains STREAMS and TLI concepts relevant to this
document.

- "Implementation Issues" describes several important implementation issues.

- "DDP TLI Library Calls and Parameters" describes each DDP function call and
its parameters.

- "An Example" presents a sample program.

- "Summary of DDP Data Structures" presents DDP constants and data
structures.

General concepts

The services of DDP are implemented with the use of TLI's connectionless-mode
calls.

Receiving data

If data is available, the t_rcvudata(3N) call returns immediately, indicating
the number of bytes received. If data is not immediately available, the
result of the t_rcvudata(3N) call depends on the chosen mode:

- Asynchronous mode:

The call returns immediately, indicating failure. The user must either retry
the call repeatedly, or "poll" for incoming data using t_look(3N).

- Synchronous mode:

The call is blocked until one of the following conditions becomes true:

- a datagram is received

- an error is detected

The t_look(3N) function can be called to avoid blocking in a t_rcvudata(3N)
call.

Sending data

- Synchronous mode:

In order to maintain some flow control, the t_sndudata(3N) function returns
when sending a new datagram again becomes possible. The process that sends
data in synchronous mode may be blocked for some time.

- In asynchronous mode:

The transport provider may refuse to send a new datagram for flow control
restrictions. In this case, the t_sndudata(3N) call fails, returning a
negative value and setting t_errno to [TFLOW]. The user may only retry later.

If t_sndudata(3N) is issued before the destination user has activated its
transport endpoint, the data unit may be discarded.

Error handling

Failures are indicated by return value of -1. An external integer, t_errno,
holds the specific error numbers. When a function sets t_errno to [TSYSERR],
it indicates an operating system error, the specifics about which can be
accessed through the external variable errno. When a function sets t_errno
to [TLOOK], it indicates that an asynchronous event has happened. The user
can call t_look(3N) to determine what event has occurred.

TLI functions supported for DDP

The following TLI functions, which correspond to connectionless services, are
supported:

t_bind(3N)

t_close(3N)

t_look(3N)

t_open(3N)

t_rcvudata(3N)

t_rcvuderr(3N)

t_sndudata(3N)

t_unbind(3N)

The following general TLI functions are also supported:

t_alloc(3N)

t_error(3N)

t_free(3N)

t_getinfo(3N)

t_getstate(3N)

t_optmgmt(3N)

t_sync(3N)

The following functions are not supported and on being called will return -1,
with t_errno set to [TNOTSUPPORT]:

t_accept(3N)

t_connect(3N)

t_listen(3N)

t_rcv(3N)

t_rcvconnect(3N)

t_rcvdis(3N)

t_snd(3N)

t_snddis(3N)

t_rcvrel(3N)

t_sndrel(3N)

Key for parameter arrays

For each function, an array is presented that summarizes the content of the
input and output parameters. The key for the parameter arrays is as follows:

The parameter value is meaningful. (The input parameter must be set before
the call and output parameter can be read after the call.)

(x) The content of the object to which the x pointer points is

meaningful.

The parameter value is meaningful but the parameter is optional.

-- The parameter value is meaningless.

The parameter keeps the same value after the call as before the call.

Implementation issues

DDP TLI protocol address

There are two ways to view the TLI protocol address for DDP. Primitives like
t_bind(3N) and t_sndudata(3N) accept an NBP entity name (object:type@zone) as
their protocol address. The name registration, in t_bind(3N), or name
resolution, in t_sndudata(3N), is done by the transport provider, transparent
to the applications. This eliminates the need for NBP primitives in
applications. The elimination of NBP primitives and use of the Name-to-
Address Mapping provided by System V Release 4 are necessary to allow the
development of protocol-independent applications. Since AppleTalk nodes are
not required to have network names, NBP entity names are not available in
some cases. Sometimes all that is available is the internet socket address.
This is the case with t_rcvudata(3N). When a datagram is received,
t_rcvudata(3N) returns the protocol address of the sending user. All that is
available for return is the internet socket address. An application that has
received a datagram is likely to respond with a datagram by calling
t_sndudata(3N) and is likely to use the address returned by t_rcvudata(3N) as
the destination address for its datagram. Hence, the t_sndudata(3N) primitive
may be passed either an NBP entity name if an application is originating a
datagram, or an internet socket address if an application is responding to
one.

The transport provider must be able to distinguish between NBP entity names
and internet socket addresses, so that it knows how to process the address
field. The convention adopted involves using NULL-terminated strings for NBP
entity names and using a leading NULL in the first character position,
followed by an at_inet_t structure to identify an internet socket address.
The t-bind(3N), t-rcvudata(3N), and t-rcvuderr(3N) calls return an internet
socket address. See "Summary of DDP Data Structures" later in Section 2.

The object and type fields of the NBP entity names cannot contain wildcards.
The zone name field may be set to an asterik (*). Using an illegal NBP entity
name or a name that cannot be resolved causes t-bind(3N) or t-sndudata(3N) to
return a -1 and t-errno to [TBADADDR]. Names that are transparently
registered with a t_bind(3N) are transparently deregistered with t_unbind(3N)
or upon the closing of the corresponding file descriptor.

Options and management parameters

The functions t_sndudata(3N), t_rcvudata(3N), and t_rcvuderr(3N) contain an
opt argument that is of the type struct netbuf. The opt.buf argument of the
netbuf structure should point to a ddp_opt structure that contains the
following fields:

Field Description

checksum Turns on/off DDP checksum

type Specifies the DDP type

Checksum is a boolean variable that can be set to TRUE or FALSE, indicating
the desire to turn on or off DDP checksum. Type identifies the DDP type. If
opt.len is set to zero prior to a call to t_sndudata(3N), the default values
of these options will be used. These default values can be changed by a call
to t_optmgmt(3N). See "Summary of DDP Data Structures" later in Section 2 for
a definition of the data structures described here and the default values of
the options.

DDP TLI library calls and parameters

The following section describes several of the DDP TLI library function
calls. For a more detailed description of these calls refer to the UNIX
System V Release 4 Programmer's Guide: Networking Interfaces.

fd = t_open (path, oflag, info)

The t_open(3N) function is called as the first step in the initialization of
a transport endpoint. This function returns various default characteristics
of the underlying transport protocol by setting fields in the t_info
structure.

The following should be the values returned by the call to t_open(3N) and
t_getinfo(3N) with DDP as the transport provider:

Parameters Before call After call

path DDP_DEV --

oflag x --

info->addr -- 99

info->options -- 32

info->tsdu -- 586

info->etsdu -- -2

info->connect -- -2

info->discon -- -2

info->servtype -- T_CLTS

The argument path points to the DDP device identifier, for example, /dev/ddp,
normally extracted from /etc/netconfig (see netconfig(4) and getnetpath(3N)).
Oflag may be constructed from O_NDELAY or O_NONBLOCK OR-ed with O_RDWR.
T_open returns a file descriptor that identifies the local DDP endpoint. The
default characteristics of DDP are returned in info. The maximum size of the
DDP address, addr, is 99 bytes. The maximum size of TSDU is 586 bytes. No
expedited data is allowed. No data can be sent with connection-request or
disconnect calls. The only service type supported is T_CLTS, the
connectionless mode.

t_bind (fd, req, ret)

This function associates a protocol address with the transport endpoint
specified by fd and activates that transport endpoint. The transport provider
can then begin sending or receiving data units. The req and ret arguments
point to a t_bind structure.

Parameters Before call After call

req->addr.maxlen -- --

req->addr.len x>=0 --

req->addr.buf x(x) --

req->qlen -- --

ret->addr.maxlen x --

ret->addr.len -- x

ret->addr.buf x (x)

req->qlen -- --

Req->addr.buf is a pointer to an NBP name (a NULL-terminated C string). The
transport provider will allocate a dynamic socket and register that name on
this socket.

If req is set to NULL or req->addr.len is zero, the transport provider will
assign a dynamic socket and return the internet address of this socket in
ret->addr.buf in the format described in "DDP TLI Protocol Address," earlier
in Section 2.

t_unbind (fd)

This function disables the transport endpoint specified by fd, which was
previously bound by t_bind(3N). On completion of this call, no further data
or events destined for this transport endpoint will be accepted by the
transport provider.

Parameters Before call After call

fd x --

The NBP name that was transparently registered by the transport provider
during t_bind(3N) will be deregistered.

t_sndudata (fd, unitdata)

This function is used to send a data unit to another DDP user. Fd identifies
the local DDP endpoint and unitdata points to a t_unitdata structure.

Parameters Before call After call

fd x --

unitdata->addr.maxlen -- --

unitdata->addr.len x --

unitdata->addr.buf x(x) --

unitdata->opt.maxlen -- --

unitdata->opt.len x --

unitdata->opt.buf x(x) --

unitdata->udata.maxlen -- --

unitdata->udata.len x --

unitdata->udata.buf x(x) --

In unitdata, addr specifies the protocol address of the destination transport
user. The unitdata->addr points to a buffer containing an NBP name or to a
buffer containing the address returned by t_rcvudata. (See "DDP TLI Protocol
Address," earlier in Section 2.) When using a name, the transport provider
will resolve the name before sending the ddp packet.

In unitdata, opt points to a ddp_opt structure, which is used to set the DDP
type and checksum. The default values of the options will be used if opt.len
is set to zero.

T_sndudata will send zero-length data units.

t_rcvudata (fd, unitdata, flags)

This function is used to receive a data unit from another DDP user. Fd
identifies the local DDP endpoint and unitdata point to a t_unitdata
structure.

Parameters Before call After call

fd x --

unitdata->addr.maxlen x --

unitdata->addr.len -- x

unitdata->addr.buf x (x)

unitdata->opt.maxlen x --

unitdata->opt.len -- x

unitdata->opt.buf x (x)

unitdata->udata.maxlen##T##x##T##--

unitdata->udata.len##T##--##T##x

unitdata->udata.buf##T##x##T##(x)

unitdata->flags##T##--##T##x

In unitdata, addr specifies the DDP address of the destination user and opt

points to a ddp_opt structure, which identifies the DDP type and checksum of
the incoming packet.

The maxlen fields of addr, opt, and udata must be set to indicate the maximum
sizes of their buffers before issuing this function.

On return from this call, addr specifies the AppleTalk internet socket
address of the sending user in the format described in "DDP TLI Protocol
Address," earlier in Section 2; opt returns a ddp_opt structure, which
identifies the DDP type and the checksum of the received packet; and udata
specifies the user data that was received.

If the buffer defined in the udata field of unitdata is not large enough to
hold the current data unit, the buffer will be filled and T_MORE will be set
in flags on return to indicate that another t_rcvudata should be issued to
retrieve the rest of the data unit. Subsequent t_rcvudata calls will return
zero for the length of the address and the options until the full data unit
has been received.

t_rcvuderr (fd, uderr)

This function is used to receive information concerning an error on a
previously sent data unit and should only be issued following a unit data
error indication (t_look(3N) returning a T_UDERR).

Parameters##T##Before call##T##After call

fd##T##x##T##--

uderr->addr.maxlen##T##x##T##--

uderr->addr.len##T##--##T##x

uderr->addr.buf##T##x##T##(x)

uderr->opt.maxlen##T##x##T##--

uderr->opt.len##T##--##T##x

uderr->opt.buf##T##x##T##(x)

uderr->error##T##--##T##x

Fd identifies the local DDP endpoint and uderr points to a t_uderr structure.
See "Summary of DDP Data Structures," later in Section 2.

The maxlen fields of addr and opt must be set to indicate the maximum sizes
of their buffers before issuing the function.

On return from this call, the addr structure specifies the destination
address of the erroneous data unit, the opt structure identifies the DDP type
and the checksum fields, and error indicates the specific DDP error code. See
"Summary of DDP Data Structures," later in Section 2. No DDP error codes are
currently defined.

If the user does not care to identify the data unit that produced an error,
uderr can be set to NULL, and t_rcvuderr will simply clear the error
indication without reporting any information to the user.

t_optmgmt (fd, req, ret)

This function enables a transport user to retrieve, verify, or negotiate
protocol options with the transport provider. The argument fd identifies a
bound transport endpoint. The req and ret arguments point to a t_optmgmt
structure.

Parameters##T##Before call##T##After call

fd##T##x##T##--

req->opt.maxlen##T##--##T##--

req->opt.len##T##x##T##--

req->opt.buf##T##x(x)##T##--

req->flags##T##x##T##--

ret->opt.maxlen##T##x##T##--

ret->opt.len##T##--##T##x

ret->opt.buf##T##x##T##(x)

req->flags##T##--##T##x

The req->opt.buf points to a ddp_opt structure. The user can set the default
values of checksum and type.

t_close (fd)

The t_close function informs the transport provider that the user is
finished.

Parameters##T##Before call##T##After call

fd##T##x##T##--

The NBP name that was transparently registered by the transport provider
during t_bind(3N) will be deregistered.

An example

The following is a simple example to demonstrate the calling conventions:

The sender side

/* ddp_sender.c -- this is the DDP sender side */

#include <tiuser.h>

#include <stropts.h>

#include <fcntl.h>

#include <stdio.h>

#include <signal.h>

#include <netconfig.h>

#include <netdir.h>

#include "appletalk.h"

#include "ddp.h"

main ()

int##T##s;

struct t_unitdata##T##*datagram;

struct ddp_opt##T##*optbufp;

void##T##*handlep;

struct netconfig##T##*netconfigp;

#define MESSAGE "Gypsy king, play my favorite tune.\n"

* Initialize the network selection mechanism.

if ((handlep = setnetcpath()) == NULL) {

nc_perror ("ddp sender: setnetpath");

exit (1);

* Loop through the transport providers.

while (netconfigp = getnetpath (handlep)) {

if ((netconfigp->nc_semantics == NC_TPI_CLTS) &&

(strcmp (netconfigp->nc_protofmly, NC_APPLETALK) == 0) &&

(strcmp (netconfigp->nc_proto, "-") == 0))

break;

if (netconfigp == NULL) {

endnetconfig (handlep);

exit (1);

if ((s = t_open (netconfigp->nc_device, O_RDWR, (struct t_info *)0)) < 0) {

t_error ("ddp sender: t_open");

exit (1);

if (t_bind (s, (struct t_bind *)0, (struct t_bind *)0) < 0) {

t_error ("ddp sender: t_bind");

exit (1);

if ((datagram = (struct t_unitdata *)t_alloc (s, T_UNITDATA, T_ADDR|T_OPT))
== NULL) {

t_error ("ddp sender: t_alloc");

exit (1);

optbufp = (struct ddp_opt *)datagram->opt.buf;

optbufp->checksum = TRUE;

optbufp->type = 2;

datagram->udata.maxlen = sizeof (MESSAGE);

datagram->udata.len = sizeof (MESSAGE);

datagram->udata.buf = MESSAGE;

(void) strcpy (datagram->addr.buf, "Receiver:DDP_Server@Nets_R_Us");

if (t_sndudata (s, &datagram) < 0) {

t_error ("ddp sender: t_sndudata");

exit (1);

t_close (s);

endnetconfig (handlep);

The receiver side

/* ddp_reciver.c -- this is the DDP receiver side */

#include <tiuser.h>

#include <stropts.h>

#include <fcntl.h>

#include <stdio.h>

#include <signal.h>

#include <netconfig.h>

#include <netdir.h>

#include "appletalk.h"

#include "ddp.h"

main ()

int##T##s, flags;

struct t_bind##T##*bind;

struct t_unitdata##T##*datagram;

void##T##*handlep;

struct netconfig##T##*netconfigp;

* Initialize the network selection mechanism.

if ((handlep = setnetpath()) == NULL) {

nc_perror ("ddp receiver: setnetpath");

exit (1);

* Loop through the transport providers.

while (netconfigp = getnetpath (handlep)) {

if ((netconfigp->nc_semantics == NC_TPI_CLTS) &&

(strcmp (netconfigp->nc_protofmly, NC_APPLETALK) == 0) &&

(strcmp (netconfigp->nc_proto, "-") == 0))

break;

if (netconfigp == NULL) {

endnetconfig (handlep);

exit (1);

if ((s = t_open (netconfigp->nc_device, O_RDWR, (struct t_info *)0)) < 0) {

t_error ("ddp receiver: t_open");

exit (1);

if ((bind = (struct t_bind *)t_alloc (s, T_BIND, T_ADDR)) == NULL) {

t_error ("ddp server: t_alloc");

exit (1);

(void) strcpy (bind->addr.buf, "Receiver:DDP_Server@Nets_R_Us");

if (t_bind (s, bind, (struct t_bind *)0) < 0) {

t_error ("ddp receiver: t_bind");

exit (1);

if ((datagram = (struct t_unitdata *)t_alloc (s, T_UNITDATA, T_ALL)) == NULL)
{

t_error ("ddp receiver: t_alloc");

exit (1);

printf ("Waiting for data...\n");

if (t_rcvudata (s, &datagram, &flags) < 0) {

t_error ("ddp receiver: t_rcvudata");

exit (1);

printf ("This is what we got:\n%s\n", datagram->udata.buf);

t_close (s);

endnetconfig (handlep);

Summary of DDP data structures

The following is a summary of the constants and structures used by DDP.

Constants

The following constants are defined:

TRUE = 0

FALSE = 1

The DDP options have the following default values:

checksum = FALSE

type = 0

Structures

The following structures are used by the DDP interface and are defined in
the <ddp.h> header.

typedef struct ddp_opt {

u_char checksum;

u_char type;

u_char##T##reserved [30];

} ddp_opt_t;

The following structures can be found in the <appletalk.h> header.

typedef struct at_inet {

u_short##T##net;

u_char##T##node;

u_char##T##socket;

} at_inet_t;

The following structures are defined in TLI:

struct netbuf {

unsigned int maxlen;

unsigned int len;

char *buf;

struct t_bind {

struct netbuf addr;

unsigned qlen;

struct t_call {

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

struct t_unitdata {

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

struct t_uderr {

struct netbuf addr;

struct netbuf opt;

long error;

