


CONTENTS 

Commands 
Statements 
Numeric Functions 
String Functions 
Special-Purpose Functions 
Fun Features 

Error Codes 

• @1982 MICROSOFT 
All rights reserved 

3 
5 

10 
11 
12 
13 
15 



PROGRAM COMMANDS 

Command Examples 

AUTO 
AUT010,10 

CLOAD 

CONT 

CSAVE 

DEL 10 
DEL 10-100 
DEL 10-
DEL-10 

DOS 

KILL "D:PROG1.AMB" 

LIST 
LIST10 
LIST 10-100 
LIST 10-
LIST -10 
LIST "P:" 
LIST "C:" 

LOAD "D:EXAMPLE1.AMB" 
LOAD "C:" 

LOCK "D:PROGRAM2.AMB" 

MERGE "D:EXAMPLE2.AMB" 
MERGE "C:" 

Brief Summary 

Numbers program lines automatically. 
If only the command is used, the first line is 
100 and the increment between line numbers 
is 10. In the second example, the first line 
is 10, the second line 20, and so on. 

Loads a tokenized BASIC program into 
memory from cassette tape. 

Continues the program execution after 
BREAK or STOP. 

Stores a program in memory to a cassette 
tape in tokenized format. 

Deletes one or a range of lines from a 
program. Use hyphens (-)to determine 
range. 

Calls the Disk Operating System menu. 
To return to Microsoft BASIC II, use the "B" 
option. 

Deletes a program from the named device. 
In the example, the file "PROG1.AMB" is 
deleted from the diskette in the disk drive. 

Lists one, a range, or all program lines 
to the TV screen. Hyphens(-) are used to 
set the range. Also lists program lines 
on the printer, cassette, or other specified 
device. 

Loads a program into the computer's mem­
ory. Program can be on diskette or cassette. 

Protects the program on diskette from 
accidental erasure. 

Appends a program on diskette or cassette 
to one in memory. All duplicate line numbers 
coming from the device replace those in 
memory. 

3 



PROGRAM COMMANDS 

Command 

4 

Examples 

NAME "D:OLDFILE" TO "NEWFILE" 

NEW 

REN UM 
RENUM 100,50,10 

RUN 
RUN 100 

SAVE "D:TESTFILE.AMB" 

SAVE "D:TESTFILE.AMB" LOCK 

TROFF 

TRON 

TROFF 

TRON 

UNLOCK "D:TESTFILE.AMB" 

VERIFY "D:FILEPROG.AMB" 
VERIFY"C:" 

Brief Summary 

Renames a program on a device. In the 
example, the file named "OLDFILE" is 
renamed "NEWFILE'.' 

Erases a program from memory. 

Renumbers program lines. If no parameters 
are used, the first line of the program is 
changed to 10, and the rest of the lines are 
incremented by 10. In the second example, 
program line 50 is changed to 100 and the 
rest of the lines are incremented by 10. 

Begins execution of a program. In the 
second example, program execution begins 
at line 100. 

Saves a program to a device in tokenized 
format. 

Saves a program to diskette in tokenized 
format and locks it to prevent tampering. 
You cannot list or modify a locked file. 

Turns off the trace mechanism. 

Turns on the trace mechanism. 

Turns off the trace function. 

Turns on the trace function. 

Unlocks a file on diskette so that you can 
write to, delete, or rename it. 

Compares two programs-the one in mem­
ory with one on diskette or cassette. If they 
do not match exactly, a TYPE MISMATCH 
ERROR occurs. 



PROGRAM STATEMENTS 

Statement Examples 

AFTER (3600) 125 

CLEAR 

CLEAR STACK 

CLOSE #1 

COMMON ALL 
COMMON L, L1(2), L$ 

DEF AVG{X,Y)=(X+Y)/2 

DIM A$(35) 
DIM NUM(10,5,2) 

END 

ERROR 2 

FOR X=O T010 

GET #1,X 
GET #1, AT(8,2) 

GOSUB 100 

GOTO 50 

Brief Summary 

Starts a time count using jiffies (1/60 of a 
second). In the example, after 3600 jiffies 
(1 minute), the program continues at line 125. 

Zeros all variables, nulls all strings, and 
clears all arrays. 

Clears all time counts. May be used to abort 
the AFTER statement. 

Closes a previously opened file. The # sign 
is mandatory with the number to identify the 
input/output control block. 

Keeps program variables intact from one 
program to another. You may retain the 
contents of one, many, or al l variables from 
program to program. 

Allows you to define your own functions. 
Both number and string functions may be 
defined. User-defined string functions are 
only available when the extension diskette 
is used. 

Dimensions arrays. DIM tells the computer 
the number of elements expected in a string 
or numerical array. An array may be multi­
dimensional. 

Terminates a program. It is the last statement 
used in a program. Closes all fi les and 
clears all time counts. 

Forces an error in a program (as a 
debugging measure) to test how a program 
behaves when an error occurs. Forces both 
SYSTEM and BASIC errors. 

Sets up a counter for repeated execution 
of one or a group of statements. Executes 
all statements before the NEXT command, 
until the counter reaches the TO number. 
If STEP is used, the counter increments 
by the STEP amount. 

GET and PUT are opposites. GET reads a 
single byte value and stores it in a variable. 

Causes a program to jump to another line 
and later return to the next statement. Used 
for calling a subroutine. 

Causes a program to iump to another line 
to continue execution. 

5 



PROGRAM STATEMENTS 

Statement 

6 

Examples 

IF X-1 THEN Y=X 

IF X=O THEN Y<>X ELSE Y=X 

INPUTI 
INPUT 1$ 
INPUT "Type a number";I 
INPUT "Your name?";I$ 

INPUT AT (2,4) 1$ 

LET Z=2 

LINE INPUT "Name: "; 1$ 

LINE INPUT AT (4,4) I 
LINE INPUT AT (6,8) "Name: ";1$ 

MOVE 55,222,5 

NEXT 
NEXT I 

NOTE #4, l,J 

Brief Summary 

Tests strings and numbers for true and false 
conditions. If a condition is true, the program 
carries out the command following the 
THEN statement. If the condition is false, 
the program continues execution at the 
next line. 

Is the same as IF ... THEN except that a false 
condition means program execution passes 
to the command following the ELSE 
statement. 

Halts program execution to accept infor­
mation from another device (default is 
keyboard). The INPUT statement accepts 
assignments to string and number variables. 
A"?" is used as a prompt unless the string 
option is used. 

Is the same as INPUT except that the 
program accepts input at a specific location 
(column, row) on the TV screen. 

Is optional for variable assignments. Z=2 
is also acceptable. 

Is the same as INPUT except that a full 
line (including spaces, commas, colons, 
and other delimiters) may be input from the 
keyboard or specified device. A"?" is used 
as a prompt unless the string option is used. 

Is the same as LINE INPUT except program 
accepts input at a specific location (column, 
row) on the TV screen. 

Moves memory from one location to 
another. In the example, five bytes of mem­
ory starting at address 55 (decimal) are 
moved to the address beginning at 222. 
Hexadecimal numbers can also be used. 

Ends a FOR ... TO ... STEP statement block. 
The variable name is optional. (See FOR ... 
TO ... STEP/NEXT.) 

Locates the next byte to be read from a 
diskette file. In the example, NOTE stores 
the position of the current sector number 
in I and the current byte in J. 



PROGRAM STATEMENTS 

Statement Examples 

ON ERROR 550 

ON G GOSUB 100,200,300 

ON G GOTO 100,200,300 

OPEN #3,"P:" OUTPUT 
OPEN #4,"D:PROGSAV.AMB" INPUT 

OPTION BASE 1 

OPTION CHR1 
OPTION CHR2 
OPTION CHRO 

OPTION PLM1 
OPTION PLM2 
OPTION PLMO 

OPTION RESERVE 24 

PRINT"Hello" 
PRINT 25*4 
PRINT "Reply~";R$ 
?Y 

PRINT AT(4,4)RX$ 

Brief Summary 

Forces execution of a program to a speci­
fied line when encountering an error. In the 
example, the program will continue at line 
550 if an error occurs. RESUME is required 
to return execution to the original routine. 

Determines which subroutine to execute 
next. In the example, the variable G should 
be 1, 2, or 3, causing the program to jump 
to line 100, 200, or 300. (See RETURN.) 

Determines which of a group of lines will 
be executed next. In the example, G should 
be 1, 2, or 3, causing program execution 
to jump to line 100, 200, or 300. 

Opens a file for reading or writing. The 
statement identifies the input/output control 
block used by a specified device, such as 
a printer or disk drive, and declares the type 
of operation to be carried out (UPDATE, 
APPEND, INPUT, or OUTPUT). 

Declares the base number of all arrays and 
variables. Allows the user to set the base 
number used in loops and arrays. The 
default is zero (0). In the example, all pro­
gram arrays will automatically begin at 1. 

Reserves bytes of memory for RAM char­
acter data. OPTION CHR1 sets aside 1024 
bytes, OPTION CHR2 sets aside 512 bytes, 
and OPTION CHRO releases all OPTION 
CHR reservations. (See VARPTR.) 

Reserves bytes of memory for player­
missile graphics. OPTION PLM1 reserves 
1024 bytes, OPTION PLM2 reserves 512 
bytes, and OPTION PLMO releases all 
OPTION PLM reservations. (See VARPTR.) 

Reserves bytes of memory for machine 
language routines. (See VARPTR.) 

Prints number and string constants and 
variables on the TV screen. By itself, PRINT 
causes a blank line to be printed on the TV 
screen. The question mark symbol(?) can 
also be used in place of the full word PRINT. 

Prints number or string constants and vari­
ables at a specific location (column, row) on 
the TV screen, or a specific sector and byte 
of a diskette file. 

7 



PROGRAM STATEMENTS 

Statement 

8 

Examples 

PRINT SPC(5)"Hi!";SPC(5)"Bye" 

PRINT TAB(5)"Hello" 

PRINT USING "#";1 
PRINT USING "##";NUMBER 

PRINT USING "###.##";MONEY 
PRINT USING "###,###.##";AMT# 

PRING USING"** ###.##";CASH 
PRINT USING 

"$###.##";DOLLAR 
PRINT USING 

"$$###.##";CHECK 
PRINT USING 

"**$###.##";FLOAT 
PRINT USING 

"##A A AA";EXPONENT 
PRINT USING "+###";PLUS 
PRINT USING "###-";MINUS 
PRINT USING "!";INITIAL$ 
PRINT USING "% % ";PART$ 

PUT #6, ASC("A"); 

RANDOMIZE 
RANDOMIZE 20 

READA,B,C 
DATA 1,2,3 

REM Ignore this comment 
! Ignore this remark 
' Ignore this remark, also 
X=1:REM Colon is necessary 
X=1 ' No colon is necessary 

Brief Summary 

Prints the number of spaces specified in 
the parentheses, counting from the current 
cursor position. Differs from TAB, which 
always counts spaces from the leftmost 
column. 

Prints the number of spaces specified in 
the parentheses, starting at the leftmost 
column of the text field. 

Lets you format your text 12 ways, including: 
-Aligns numbers in columns signified by 

pound sign 
-Places a decimal point in the result 
-Offsets every three digits (thousands) with 

a comma 
-Pads empty digit spaces with asterisks 
-Prints a dollar sign($) before left digit 

-Prints a floating dollar sign ($) in result 

-Combines floating"$" with filler"*" in 
result 

-Prints result in exponential (E or D) 
format 

-Prints a plus sign(+) before or after result 
-Prints a minus sign(-) before or after result 
-Pulls out the first character in a string 
-Pulls out part of a string 

PUT and GET are opposites. PUT writes a 
single byte value (0-255) to a specified file 
or device. 

Seeds the RND function to assure that a 
different sequence of random numbers 
occurs each time a program is run. The 
second example assures that a random 
sequence is generated repeatedly. 

Assigns numbers or strings in the DATA 
statement to variable names in the READ 
statement. 

Allows explanations in your program. REM 
(short for "remark") statements are ignored 
during program execution. You can use an 
exclamation mark (!) or an apostrophe (') 
in place of the word REM. 



PROGRAM STATEMENTS 

Statement Examples 

RESTORE 
RESTORE 110 

RESUME 
RESUME 55 
RESUME NEXT 

RETURN 

Brief Summary 

Allows the reuse of DATA statements. If no 
parameter is used, READ re-reads data from 
the first DATA statement. In the second 
example, RESTORE causes the READ state­
ment to begin reading data at line 110. 

Helps program recover from an error or a 
time count. RESUME sends program execu­
tion back to the line in which an error or 
time interrupt occurred. If a line number 
is used, the program resumes at that line. 
If a NEXT statement is used, program 
execution resumes with the statement 
following the error or interrupt (may be on 
the same line). RESUME completes the ON 
ERROR and AFTER statements. 

Completes the GOSUB and ON . .. GOSUB 
statements and returns a program from a 
subroutine. (See GOSUB.) 

PRINT STACK Gives the number of entries available on 
IF STACK=O THEN PRINT "Stack full" the time stack (used to hold jiffies for AFTER 

and SOUND). 

STOP 

WAIT &D40B,AND &FF,110 

Halts execution of the program. Use CONT 
to continue program execution (starting with 
the next line). 

Halts program to wait for certain conditions 
to occur. Advanced animation techniques 
use WAIT to handle VB LANK. In the example, 
the program looks at the contents of 
address &D40B, ANDs it with &FF, and waits 
until it equals 110. 

9 



PROGRAM FUNCTIONS 

Numeric 
Functions 

10 

Examples 

Y-ABS(-7) 

X-ATN(5.3) 

PRINT COS(.95) 

EULER=EXP(3) 

PRINT INT(5.3) 

L=LOG(.5) 

R-RND 
PRINT RND(O) 
NUMBER=RND(100) 

PRINT SGN(R*B) 

PRINT SIN(1) 

ROOT=SOR(25) 

PRINT TAN(.22) 

PRINT INITIAL$+ NAME$ 

PRINT ASC("Sam") 

A$=CHR$(65) 

R$-INKEY$ 

Brief Summary 

Computes the absolute value of a number. 

Computes the arctangent of a number. 

Computes the trigonometric cosine of a 
number. 

Computes the Euler's number (e) raised to 
the power of the number in parentheses. 

Returns the integer of a number, always 
rounding down to the next lower number. 

Computes the natural logarithm of a 
positive, nonzero number. 

Generates random single-precision num­
bers. RND by itself or with a zero in paren­
theses produces a random value between 
0 and 1. Used with a nonzero number in 
parentheses, it produces an integer between 
1 and the number. In the example, RND (100) 
returns a random number between 1 
and 100. 

Returns the sign of a number. If the number 
is positive, the value returned is +1. If the 
number is zero, the value returned is 0. 
If the number is negative, the value returned 
is -1. 

Computes the trigonometric sine of a 
number. 

Returns the square root of a positive number. 

Computes the trigonometric tangent of a 
number. 

Joins two strings together. 

Returns the ATASCll code in decimal for 
the first character contained in parentheses. 
In the example, the first character is "S," 
which is 83 (decimal) in ATASCll code. 

Converts the ATASCll code in parentheses 
to a one-character string. CHR$ is the oppo­
site of the ASC function. 

Returns the last key pressed. 



PROGRAM FUNCTIONS 

String Functions Examples 

HOLD-INSTR(5,A$,"THE") 

PRINT LEFT$("LEFTY",4) 

PRINT LEN(C$) 

PRINT MID$("THEMIDPART",4,3) 

A$=RIGHT$("THERIGHT",5) 

C$=SCRN$(5,5) 
PRINT ASC(C$) 

X=STR$(99.99) 

PRINT STRING$(36,"*") 
PRINT STRING$(36,42) 

PRINT TIME$ 

PRINT VAL(R$) 

EOF(4) 

Brief Summary 

Searches for a small string inside a large 
string. Returns the character position within 
the larger string where the smaller string 
begins. If not found, it returns a zero (0). In 
the example, the search begins at the fifth 
character in A$, looking for "THE." If no 
starting number is given, the search begins 
at the first character in the larger string . 

Returns characters from the left side of a 
string. In the example,"LEFT" will be printed. 

Returns the length (number of characters) 
of a string. 

Returns characters from the middle part of 
a string. In the example, the selection of 
three characters in A$, starting with the 
fourth character, result in printing "MID." 

Returns characters from the right side of a 
string. In the example, the A$ is assigned 
"RIGHT." 

Returns the value of the character in text 
modes; in graphics modes, it returns the 
color register number in ATASCll code 
(except in graphics modes 4 and 6) . 

Converts a number into a string. It is the 
opposite of VAL. 

Returns a string of characters. In the first 
example, 36 repetitions of a string (the 
asterisk) are printed. In the second example, 
36 repetitions of the CHR$ function are 
printed (42 is the value of the asterisk in 
ATASCll code). In other words, both result in 
a string of 36 asterisks. 

Returns the contents of the TIME$ string , 
which consists of hours, minutes, and 
seconds (12:01:00). 

Converts a string to a number. It is the 
opposite of STR$. 

Returns a value of true or false to indicate 
the end-of-file condition of the last read from 
an input/output control block. 

11 



PROGRAM FUNCTIONS 

Special 
Purpose 

12 

Examples 

PRINT ERL 

PRINT ERR 

PRINT FRE(O) 

PRINT PEEK(751) 
ADRS=PEEK(PLACE) 

POKE 1034,255 
POKEADRS,J 
POKE PLACE,X * Y /2 

PRINT STATUS (4) 

PRINT TIME 

X=USR(898,0) 

ADRS=VARPTR(A$) 
PRINT VARPTR(A$)+1 
PLAYR1=VARPTR(PLM1) 
PRINT VARPTR(CHR1) 
PRINT VARPTR(RESERVE) 

Brief Summary 

Returns the line number of the last encoun­
tered error. 

Returns the code number of the last 
encountered error. 

Returns the number lo free RAM bytes avail­
able for use. 

Returns the contents of the memory address 
enclosed in parentheses. The address and 
byte can be a number or variable, in decimal 
and hexadecimal. You may look at ROM 
as well as RAM addresses. 

Inserts a byte into an address location in 
RAM (but not in ROM). The address and 
byte can be a number, arithmetic expression, 
or a variable-in decimal or hexadecimal. 

Holds the value of the fourth byte of the 
input/output control block; the value tells the 
error condition (1=error; O=no error). 

Returns the real time clock (RTCLOK) loca­
tion's contents. Unlike TIME$ (which returns 
the elapsed time .in hours, minutes, and 
seconds), TIME gives its value in jiffies 
(1/60 of a second). 

Passes control of the program to a machine 
language subroutine. In the example, the 
USR function passes control to a sub­
routine at 898 decimal. An optional number 
may be passed along with the address, for 
use in the subroutine. 

Returns the memory address of a variable's 
symbol table entry. In the first example, 
VARPTR returns the number of bytes in the 
string. In the second example, the starting 
address of the string is printed. In the other 
examples, VARPTR returns the address 
(MSB,LSB) of the first byte allocated for 
player-missile graphics, a character set, and 
the reserved memory set aside for assembly 
language programs. 



FUN FEATURES 

Graphics Examples 

CLS 
CLS 25 

COLOR 4 

FILL 5,5 TO 5,20 

GRAPHICS 0 
GRAPHICS 2+16 
GRAPHICS 7+32 

PLOT X,Y 
PLOT 5,5 TO 10,5 

SETCOLOR 5,4,10 

PADDLE(O) = 624 
PADDLE(1) = 625 
PADDLE(2) = 626 
PADDLE(3) = 627 
PADDLE(4) = 628 
PADDLE(5) = 629 
PADDLE(6) = 630 
PADDLE(?)= 631 

Brief Summary 

Clears the screen text areas and sets the 
background color register to the indicated 
color value. In full screen modes, the 
optional number after CLS sets the border 
color and luminance. In split screen it deter­
mines the background color and luminance. 

Specifies the color register to be used for 
color graphics. 

Fills an area of the TV screen with the color 
of the specified color register number. 

Selects one of 12 graphics modes (CTIA 
provides 8 graphics modes). Adding +16 
to any graphics mode provides a full screen 
display. Adding +32 prevents the graphics 
command from clearing the screen. 

Draws a point, a line, or several continuous 
lines on the TV screen. 

Associates a color and luminance with a 
color register. The first parameter names 
the register used (0-3 is for player-missiles, 
4-7 is for playfield colors, and 8 is always 
the background register). The second 
parameter is the color hue number (0-15), 
while the third parameter is the luminance 
(an even number between 0 and 14-the 
higher the number, the brighter the 
luminance). 

Paddle controller statuses are stored 1n 
locations 624 to 632. There are four paddle 
controller ports, each port handling two 
paddle controllers. The leftmost paddle con­
troller's status is stored in location 624, and 
so on. The status ranges from 1 to 228 as 
the paddle is turned counterclockwise. 

13 



FUN FEATURES 

Game Number PEEK Brief Summary 
Controllers Location 

PTRIG(O) =636 Paddle trigger statuses are in locations 636 
PTRIG(1) -637 to 643. The trigger of the leftmost paddle is 
PTRIG(2) -638 stored in location 636, and so on. If the 
PTRIG(3) -639 trigger has been pressed, a zero (0) is found 
PTRIG(4) =640 at its address by PEEK(PTRIG(n)). If the 
PTRIG(5) =641 trigger has not been pressed, it contains 
PTRIG(6) =642 a one (1). 
PTRIG(7) =643 

STICK(O) =632 The joystick controller statuses are stored 
STICK(1) =633 in locations 632-635. The leftmost joystick 
STICK(2) =634 status is stored in location 632, and so on. 
STICK(3) -635 The status contains a value as shown in 

the figure below. 

STRIG(O) -644 The joystick trigger statuses are stored in 
STRIG(1) =645 locations 644 to 647. The trigger status of 
STRIG(2) =646 the leftmost joystick is stored in location 644, 
STRIG(3) =647 and so on. The status byte contains a zero 

(0) if the trigger has been pressed, and a 
one (1) if not. 

OPTION ..... PEEK(53279)=3 The status of the OPTION.SELECT, and 
SELECT -+ PEEK(53279)=5 START keys is stored in location 53279. 
START ..... PEEK(53279)=6 The status contains a 7 until one of the three 
No Key ..... PEEK(53279)=7 keys is pressed. It then has a value of 3, 5, 

or 6, depending on which key is pressed. 

14 

11 

13 

14 



ERROR CODES 
For a full explanation of the following errors, see Appendix O 
of the ATARI Microsoft BASIC II Reference Manual: 

Error Code # Explanation 

NEXT without FOR 135 
Syntax error 136 
RETURN without GOSUB 137 
Out of data 138 
Function call error 139 
Overflow 140 
Out of memory 141 
Undefined line 142 
Subscript out of range 
Redimension error 143 
Division by zero 
Illegal direct 144 
Type mismatch 145 
File 1/0 error 
Quantity too big 146 
Formula too complex 147 
Can't continue 160 
Undefined user function 161 
No RESUME 162 
RESUME without error 163 
FOR without NEXT 
LOCK error 164 
Time error 165 
BREAK abort 166 
IOCB error 167 
Nonexisent device 168 
IOCB write-only error 169 
Invalid command 170 
Device or file not open 171 
Bad IOCB number 

IOCB read-only error 
EOF 
Truncated record 
Device timeout 
Device NAK 
Serial bus 
Cursor out of range 
Serial bus data frame 
overrun error 
Serial bus data frame 
checksum error 
Device-done error 
Read after write-compare 
error 
Function not implemented 
Insufficient RAM 
Drive number error 
Too many OPEN files 
Disk full 
Unrecoverable system data 
1/0 error 
File number mismatch 
File name error 
POINT data length error 
File locked 
Command invalid 
Directory full 
File not found 
POINT invalid 

15 



© 1982 Atari, Inc. 
All rights reserved 

====~I\-:=======; 
============1tlARl1~® =============== 

A Warner Commun1cat1ons Company Cl 
PRINTED IN U.S.A. 

C061253 REV. A 


	Atari Microsoft BASIC II - Quick Reference (Cover)
	Contents
	Program Commands
	Program Statements
	Program Functions
	Fun Features
	Error Codes
	Atari Microsoft BASIC II - Quick Reference (Back Cover)

