L . T R B T N N N I N . S

*x * * % * * * * % * *x * * * * *

EXTENDED DDT

A Program Debuggi ng Tool
by Ji m Dunion

(c) 1985 ANTIC PUBLI SHI NG
THE ATARI RESOURCE

*x * * % * % % *x % * *x * * % * *

EXDDT USERS GUI DE

L . S T . B T N N . I TR . S

EXTENDED DDT
by Jim Dunion

Thi s docunentati on nmay not be copi ed, photocopi ed, reproduced, translated, or
tel econmunicated in any form in whole or in part, without the prior witten
consent of Antic Publishing, Inc.

The acconpanyi ng program material may not be duplicated, in whole or in part,
for any purpose. No copies of the floppy disk(s) may be sold or given to any
person or other entity.

Not wi t hst andi ng t he above, the docunentation and acconpanyi ng di sk(s) may be
duplicated for the sole use of the original purchaser.

Antic is a trademark of Antic Publishing, Inc.

Cont ent s:

I NTRODUCTI ON TO

EXTENDED DUNI ON' S DEBUGA NG TOCOL. ... 3
SECTI ON 1:

EXDDT DESI GN PHI LOSCOPHY. 4
SECTI ON 2:

THE EXDDT SCREEN DI SPLAY............ 5
2-1 REG STER Display............. 5
2-2 DISPLAY Wndow. 6
2-3 STACK Display................ 7
2-4 MN SYMBOL Table............ 7
2-5 BREAKPO NT Table............. 8
2-6 COVMAND Wndow. 8
2-7 TRAP. 9
SECTI ON 3:

BREAKPO NTS. i 10
SECTI ON 4:

PUSH BUTTON CONTROLS. 11
SECTI ON 5:

THE COMMAND | NTERPRETER. 12
5-1 Entering a Value............ 13
5-2 Breakpoint.................. 14
5-3 Deposit..................... 14
5-4 Examine..................... 15
5-5 G0, 15
5-6 Hex/Decimal Converter....... 15
5-7 Interpretive Mdde........... 16
5-8 Monitor............. 16
5-9 Next............ 16
5-10 Register.................... 17
5-11 Search......... 17
5-12 Trap. ... 17
5-13 Variable.................... 17
5-14 Wndow. 18
5-15 Pull Wndow................. 18
5-16 Push Wndow. 18
5-17 Reset Program Counter....... 18
SECTI ON 6:

EXDDT ENTRY PONTS. 19
6-1 Flash Entry................. 19
6-2 VWarmEntry.................. 19
6-3 Breakpoint Entry............ 20
APPENDI X:

Technical Details.................. 21
A-1 Interactions with DOS....... 21
A-2 Keyboard Scanner............ 21
A-3 Use of System Resources..... 21
A-4 Display w ndow novenent..... 22
A-5 Things to watch out for..... 22
A-6 Relocating EXDDT.OBJ........ 23

| NTRCDUCT| ON:

THE EXTENDED VERSI ON OF
DUNI ON' S DEBUGE NG TOOL

The Extended version of Dunion's Debuggi ng Tool (EXDDT) is designed to assist
Atari 400, 800, XL, and XE programmers who are working at the assenbly | anguage
I evel. This programis an outgrowh of the DDT program once marketed by APEX
As such, the power of DDT is intact, but w th nunerous additions and
enhancenents that have been added over the | ast year. The nobst significant of
these are the nini-assenbler and the built in system synbol table with synmbolic
ref erence

EXDDT will work with any of the Atari 6502 based conputers equi pped with a disk
drive and enough nenory to support DCOS. This includes the new 130 XE nodel .

EXDDT wi Il operate invisibly after the systemis turned on and EXDDT is | oaded.
File EXDDT.OBJ should be loaded. It will automically initialize itself and
return to the loading program To actually enter EXDDT, press the CNTL, SHI FT
and the ESC keys at the sane tine. This is known as a "flash" entry to EXDDT

You nmay use EXDDT in any operating node that first allows for a disk access
before running. The executabl e code file, EXDDT.OBJ can be copied to other

di skettes and renaned. Additional code segnents can be witten and EXDDT. OBJ
can be appended to the end of the object code file. For instance, EXDDT.OBJ can
be renaned AUTORUN. SYS to | oad automatically when the systemis rebooted. You
can even rel ocate where the EXDDT code shoul d reside and execute. |'ve spent a
lot of time getting this programto where it is today. | feel sure that EXDDT
can hel p nake progranmm ng and debuggi ng on the Atari conputers easier and even
fun. Enjoy.

LOADI NG EXDDT

EXDDT is | oaded from DOS or ot her operating systens by |oading the program
EXDDT. OBJ. For example, if you have Atari DOCS, use the "L" command and give
the nane EXDDT.OBJ. After |oading and setting up EXDDT, control returns to the
DCS calling program At this point EXDDT is active, and can be called by
pressing CTRL, SH FT and ESC all at once. | suggest you | oad EXDDT and pl ay
with it as you read this docunentation

There is a test programcalled TEST. MAC (the assenbl ed version is called

TEST. OBJ) provided on this diskette to give you an exanple of how to transfer a
synbol table to EXDDT, as well as how to call EXDDT from your own code. There
is also an exanple of howto relocate the EXDDT display screen froma calling
program It will run automatically when | oaded. It doesn't do nuch except
change sone color registers, put a few'l's on the screen and then turn on

pl ayer - m ssl es.

Finally, there is a Basic programcalled RELOCATE. To run this program from
Basic, type RUN "D: RELOCATE". This programw || relocate the EXDDT. OBJ code to
| oad and execute at a different location in nmenory. It creates an output object
code file (which is relocated) called EXDDT. REL.

Section 1:

EXDDT DESI GN PHI LOSOPHY

The heart of EXDDT is its ability to show what is happening inside the conputer
on a special display screen. This is coupled with the ability to easily change
and nonitor the internal state of the nachine so that you can get a nuch
clearer picture of exactly what's going on inside the systemat any instant.

The rest of this docunent is an EXDDT USER s gui de. Each of the features in
EXDDT is described in a separate section. There is also a technical appendix
section with nore informati on on how sone of EXDDT's features are inpl enented.

Secti on 2:

THE EXDDT SCREEN DI SPLAY

The EXDDT Screen Display shows a user the internal state of the machine. The
di splay screen is divided into several display areas which show different
aspects of what is going on inside the conputer.

The di splay areas are called

- REGQ STER DI SPLAY Shows the current contents of 6502 registers
- DI SPLAY W NDOW - A windowinto nenory

- STACK DI SPLAY - Shows the top 15 itens on the system stack

- MN SYMBOL TABLE - Shows nanes and val ues of current symbols

- BREAKPO NT TABLE Shows the settings of breakpoint registers

- COVVAND W NDOW - The keyboard conmmand entry w ndow

The follow ng sections detail each of these display areas.

2-1: REQ STER DI SPLAY

The | owest part of the display screen is used for displaying the current
contents of the 6502 processor registers. \Wienever EXDDT is entered, the
contents of the processor registers are copied into register shadows which are
then displayed. These shadows are used to restore the 6502 registers before
control is released back to the program being tested.

The copywight notice will be replaced by the regi ster names when the first
command is issued. If this is your first time just type "E <RETURN>"

These registers have their contents shown in hexadeci nal notation :

PC = Program counter, a 2 byte val ue
A = Accumul at or

X = X index register

Y = Y index register

S = Stack pointer

The Processor status register (NV BDIZC) is shown in binary form where

Negati ve fl ag
Overflow fl ag

BRK instruction flag
Deci mal node fl ag
Interrupt disable flag
Zero flag

Carry bit

ONTOwWm<Z
L L I T | B V1

2-2: DI SPLAY W NDOW

The di splay wi ndow forns a window into the system nenory address space. This
wi ndow is located in the upper left hand portion of the display screen, and
occupi es nore than a quarter of the full screen. The window is set upon entry
to EXDDT, and may be noved by several conmands.

The wi ndow nay be thought of as having one of two possible filters in front of
it. The first filter, which is set upon entry to EXDDT is a disassenbly filter
A CGREATER THAN sign (>) points to what is called the current position. \Wen
EXDDT is entered, this will correspond to the value in the PC. The current
position is nodified by several commands.

The SECOND filter is a hexadecimal filter. The w ndow shows the hexadeci nma
val ue and ATASCI| representation of up to 48 nenory |locations. Again, the >
sign indicates the current position

The conmand "W toggles between these two Wndow filters.

There are always three bytes shown above the current position. These are shown
i n hexadeci mal form

In the disassenbly display, each line fromthe current position down is shown
inasimlar format. First the hexadeci nal address of a location, its contents
and then a disassenbly readout. Standard 6502 mmenpnics are used, with
conventional address node indications.

Several features have been added to aid debugging. If a mMmenonic is shown in
inverse video, it indicates that a breakpoint has been set at that location. In
fact, if you look at the actual contents of that location, it will be a 0. If
the mmenonic in inverse video is a BRK instruction, this means that particul ar
BRK i nstruction was not placed there by EXDDT. This would occur for instance in
| ooking at nenory that is all zeros.

Secondly, if the instruction is one of the branch instructions, an additiona
portion is added to the disassenbly display. An up or down arrow is used to

i ndicate the direction of the conditional branch. The conputed address of the
condi tional branch location is also shown.

Finally, if the address portion of an instruction contains an address that is
defined as a synbol, the synbol nanme will be shown rather than the hexadeci ma
val ue. Such synbols can either be defined by users in the nini-synbol table, or
may be standard system synbols. EXDDT has around 150 standard internal synbols
that are defined in the operating system These synbols make understanding the

di sassenbly di splay nmuch easier. This is particularly the case if care is taken
to programthe systemin accordance with original design considerations. Care
has been taken to ensure that the standard system synbols defined are ones that
are valid for all nodels of the Atari. There's no real rhyne or reason as to
whi ch system vari abl es are defined, these are nmerely the ones | felt to be nost
i mportant. The mi ni-synbol feature may be used to nonitor a variable, locate
references to a synbol in the code, or sinply as | abels to nake the disassenbly
listing nore readable. One nore little feature is added as a convenience. |f
you define a synbol as a two-byte synbol, then any reference to the variable's
hi gh byte will show up in the disassenbly as SYMBOL+1

If the hexadecimal filter is in place, each line after the current position
line will start on an even 4 byte boundary. This neans the current position
line can have 1-4 values on it. The current position line values will always be
left justified.

2-3: STACK DI SPLAY

The m ddl e portion of the upper display screen is used for showing the top

| ocations in the systemstack. If the stack pointer is set at $EO or higher
(i.e. there are less than 15 entries in the stack), then only those val ues that
are currently in the stack will be shown. The display is a top down
representaion. If nore than 15 entries are in the stack, then only the top 15
are shown.

2-4: M N SYMBOL TABLE

The upper right hand portion of the screen is dedicated to a nini synbol table.
There is roomfor 15 variables in this table. This feature is designed to let a
user nmonitor the contents of selected variables w thout having to pay undue
attention to where they physically reside. The display |ayout shows the

vari abl e nane, a V colum and a value colum. The V columm is used to mark

vari abl es (see the V function description). The value colum w |l show either
the current value of a variable, or its location in nenory. Internally, each
synbol in the table is in the following form

NANME LOCATION BYTES to SHOW

synbol synbol 0, 1 or 2
nane addr ess
6 bytes 2 bytes 1 byte

Using the Atari Macro Assenbler (AMAC), an exanple of setting up a mni synbol
table entry would be

DB 'VARL ' ; Exactly 6
; characters please!

DW VARL ; let the assenbler
; figure out what
; value to put here

DB 1 ; either a 0,1 or 2
; to indicate that
; the variable should
;. be shown as no
; bytes, a single
; byte or a double
; byte val ue.

(Users of other assenblers may need to substitute .BYTE for DB and . WORD for DW

The m ni synbol table can be used to keep an eye on standard system vari abl es.

DB ' COLPF2'
DW 710
DB 1

A smal|l area of nenory can be nonitored by setting up several dummy vari abl es
each pointing to one or two successive bytes of nenory.

The m ni synbol table has other uses also, e.g. you can define a program |l abe
as a synbol. By selecting a display size of 0, no value will be displayed, but
the disassenbly listing in the display window will be nore readable.

DB ' LOOP1
DW LOOP1
DB O

I ndeed you can even define a synbol as "------ or some such to separate

di fferent usage areas of the symbol table. Finally, the mni synbol table can
be used to help locate a portion of your code after a reassenbly. See the 'M
function and synbolic references for nore information on this usage.

You need not define any nore synmbols than you want to use. If you set up |ess
than 15 synbols in a synbol table, a value of $FF should ternminate the table.

EXDDT cones with a built in mni-synbol table that contains sonme of the

vari abl es the operating systemuses in controlling the system You nmay nake

i ndi vi dual changes to the standard table with the M conmand, or you may load in
your own table. A synbol table is loaded in a straightforward manner. Create a
synbol table in your object code as described earlier. Near the begi nning of
your code, use a series of instructions |ike

LDA # hi gh SYMIAB

PHA

LDA # | ow SYMIAB

PHA

JSR $6000 ; address of the

; synbol table

; transfer routine

; for this assenbl ed
; version. This is

; always the first

; byte of EXDDT, even
; if it has been

; rel ocat ed.

2-5: BREAKPO NT TABLE

The Breakpoint table is |ocated just above the register display. There are six
user definable breakpoints and two trap breakpoints, each of which will be
shown with its current setting. If a register is not set the value shown wll
be 0000. If a breakpoint register is set, the value in that register will be
the | ocation of where in menory a BRK instruction has been placed. However, in
the case of the TRAP breakpoints, no BRK instruction is used. These val ues are
used in interpretive node to create the equivalent of a break instruction

2-6: COVVAND W NDOW

The extrenme right hand part of the bottom of the screen is devoted to the
command wi ndow. This is the area that shows the comand that a user is typing
in.

2-7: TRAP

The Trap breakpoints are reserved for interpretive node. In this node,
breakpoints in nenory are ignored, since EXDDT already has control of the
system |nstead EXDDT checks the values in the TRAP registers. If either equals
the address of the next instruction to be executed, EXDDT wil halt the
interpretive node. This allows pseudo breakpoints to be placed in ROM

| ocations. Thus it becones nuch easier to reach a certain spot in the ROM code
by setting a trap, and running in interpretive node than by single stepping up
to the desired | ocation.

Section 3:

BREAKPO NTS

One of the nobst common debuggi ng techniques is to make use of a breakpoint.

The breakpoi nt nechanismis the nost comobn way for you to transfer control to
EXDDT. When a programis running, executing a BRK instruction will call EXDDT.
This will cause the EXDDT screen display to activate, and also will turn on the
keyboard and the push button conmand interpreter. The breakpoint will remain
set even after it has been encountered in code execution

After a breakpoint has been encountered, and control has been transferred to
EXDDT, there are several ways to |l eave EXDDT. The 'N command will set a
breakpoint at the next location and then continue code execution. START sinply
continues code execution. 'G can be used to transfer control to another

| ocati on.

Up to six breakpoints can be in place at any one tinme. The location of the
breakpoints is shown in the breakpoint register display. If a breakpoint is
clear (i.e. not set), it will show up as 0000. Setting a breakpoint register to
a new | ocation will automatically restore an existing breakpoint, if one is
already set for that register. Note also that there is an internal system
breakpoint 0 which is used by the 'N command. |f any breakpoint is encountered
and control is transferred to EXDDT, then the internal 'N breakpoint is

cl ear ed.

Secti on 4:

PUSH BUTTONS CONTROLS

The three ATAR

START -

SELECT -

OPTI ON -

is used to continue code
execution at the |ocation
i ndi cated by the PC
register. Al 6502
registers are updated with
the current displayed
contents before contro

is transferred.

is used to toggle back and
forth between the EXDDT
screen and what ever screen
dynani cs were active

bef ore EXDDT was call ed.
An attenpt has been nmde
to allow nost alternative
features such as m xed
Display lists, VBLANK
routines, alternative
character sets, display
list interrupts, playfield
si ze changes, and

pl ayer-m ssil es.

is used to single step
the processor. This
causes the disassenbly
filter to be turned on,
but will not automatically
toggl e the display screen
Continuting to press the
Option button will
continue to single step
the processor. See Single
Step section for nore
i nformation.

consol e push buttons are used by EXDDT for specia

11

ef fects.

Secti on b5:

THE COVMAND | NTERPRETER

The conmand interpreter is a code nodule that allows a user to issue keyboard

commands to EXDDT. The conmand wi ndow is shown in the | ower right hand portion
of the display screen. The |eft-hand part of this display is used for show ng

the register state of the machine.

Each command is a single keystroke conmand. However, dependi ng upon the
command, additional arguments mght be required. If the first key typed is not
a valid EXDDT command, it will be ignored.

The EXDDT Keyboard Commands are

B <1-6>, <addr>..- Breakpoint 1-6 at
| ocati on addr

D <hstring, @..- Deposit hex string
or enter mni-assem

E <addr>..... - Exam ne address addr

G <addr>...... - Go to address addr

H <hnum dnun®.. - Hex/ Deci mal con-
verter

I - Interpretive node

M <0- 2>, <addr>. .- Monitor 0, 1 or 2

bytes at addr

N - Next instruction
R <A X Y, S, P> <byte>. .- Register

selected is

| oaded with byte

S <hstring>. - Search for hex string

T <1-2>,<addr>....- Trap at address

addr
Voo - Variable trap function
W... ..., - Wndow filter toggle
down arrow . - Pull display w ndow

down
up arrow ..- Push display w ndow up
* <addr> .- Set the Program counter

These commands are described in the foll ow ng pages.

5-1: ENTERI NG A VALUE

Several of the keyboard commands require that you enter one or two val ues. Al
entries are term nated by pressing the RETURN key. Wen two val ues are needed,
as with the Breakpoint conmand, a COMVA shoul d be used to separate them
Pressing RETURN wi t hout having entered a value will result in the entire
command bei ng i gnor ed.

(Exceptions - see the Breakpoint, the Trap and the Mnitor Commuands)

In the explanations that follow, these abbreviations are used

<addr > = an address val ue, up

to 4 hexadeci ma

digits

either a 1,2,3,4,5

or 6

either A X Y,Sor P

a single byte val ue,

up to 2 hexadeci ma

digits

a hex string up to

12 characters (i.e.

6 hex digits)

<@ = speci al character
used to enter mni-
assenbl er

<>> = speci al character
used to indicate the
current position

<* > = speci al character
used to indicate the
contents of the PC

<> = speci al character
used to signify a
synbolic reference

<l-6>

<A XY, S, P>
<byt e>

<hstring>

<hnun® = a hex nunber, with an
'"H followed by up to
4 hex digits

<dnune = a deci mal nunber,

0<= dnum <= 65535

The command interpreter (Cl) ignores certain characters, such as spaces, '$'s
and even ')'s. Wen val ues such as address val ues are expected, typing
characters that are not hex characters will result in an input error. The C
signifies an input error by flashing the screen. To erase a character, use the
DELETE key.

For input convenience, there are several special characters, "*",">", and "'"
These are used as shorthand ways of entering comands. * neans the current

val ue of the PC and > neans the current position. The ' s used to indicate a
synbolic reference. For instance 'BRKKEY neans the address of the synbo

BRKKEY. Any symnbol in the mni synbol table or any of the predefined system
synbol s can be synbolically referenced. This is a very powerful and usefu
feature, and is equivalent to having a built in partial nmenory map. Anytine an
address is expected in a command (<addr>), these special characters can be
typed. The * by itself is used to change the contents of the PC

- 13 -

5-2: BREAKPA NT B <1-6>, <addr >

The Breakpoint command is used to set one of the six breakpoint registers to a
|l ocation. If a value other than a 1-6 is entered for the breakpoint register
the conmand will be termnated. Note that two val ues (the breakpoint register
nunber, and the breakpoint |location) are required for this command. Thus a
comma nust be typed after the breakpoint nunber and before the address for the
br eakpoi nt .

When a breakpoint is set, that location should show up in the breakpoint

regi ster display. Physically, a '0" for the BRK instruction is stored in menory
at the requested location. If an Exami ne command is issued to | ook at that part
of menory, a '0" will be seen, even though the proper mmenonic is shown in the
di sassenbly. If a breakpoint is set at an exami ned |ocation, the menonic will
be shown in inverse video. If a breakpoint register is already in use when a
new breakpoint is requested, the old breakpoint is first restored.

To clear a breakpoint register and restore the source code, type RETURN after
sel ecting the desired breakpoint register (e.g. typing 'B" then '1" then RETURN
will clear breakpoint 1 and restore the source code). Trying to clear a
breakpoint that is not set will not harm anything. EXDDT checks to see if a
desired breakpoint is actually set, and if not flashes the screen and clears
the breakpoint register. This could happen, for instance, if you try to set a
breakpoint in ROM

You can use the special shorthand characters in this command. For instance, to
set a breakpoint at the current |ocation being exam ned in the display w ndow,
you could type : B 1,> (and press RETURN)

5-3: DEPCSIT D <hstring, @

The Deposit conmmand is used to place a string of bytes in nenory. A string of
hexadeci mal values (up to 12 characters, 6 hex bytes) may be entered. The

val ues entered will be placed in successive |locations starting at the current
position indicated in the display wi ndow, replacing whatever was there. The
input string is decoded two characters per hex byte at a tine. If there is an
odd character left at the end, it will be interpreted as the | ow order nibble
of a hex value. For exanple, entering a string of O1LAABO will result in three
bytes (01, AA, and BO) being placed in nenory. However, entering 01AAB will
result in 01, AA, and OB being deposited. Note that depositing a byte or a
series of bytes will not nove the display wi ndow This nmust be done with the
exam ne or the push and pull w ndow conmands.

EXDDT is able to switch screens by saving 13 |l ocations the operating system
uses in managi ng the system graphics. Thus, before each value is deposited, it
is examined to see if it should be deposited to these graphics |ocations. I|f
so, the value is placed instead in an internal save table. Simlarly, if one of
these saved | ocations are defined as a mni-synbol, then the value shown will
be taken fromthe saved | ocation. Thus, for exanple, you can deposit val ues
directly to the col or shadow regi sters and affect the color of the user screen
and not the EXDDT screen. You night note that this works only if you deposit
directly to these locations using the D command. |If you're single stepping
through a programthat deposits to these |locations, then the new value will be
deposited to the current locations, i.e. to the EXDDT's settings. Toggling the
screen twice will restore EXDDT's nornmal screen

If the character '@ is typed after a D, EXDDT enters a special mnini-assenbler
nmode, as will be indicated in the conmand wi ndow. In this node, assenbly

| anguage conmmands can be deposited directly, e.g. LDX A000. O, STA (%$12,X)
Once this node is entered one instruction at a tinme is deposited. To exit,
nmerely press RETURN with no value entered. Note also that in this node the >
sign for the current position is renmoved. Instead a < sign is shown to indicate
the current deposit position. This position noves after each assenbly | anguage
instruction is deposited, even though the window itself remains fixed. If this
i ndi cator noves off the bottom of the screen, the nini-assenbler deposit node
is automatically exited.

You nmay use the $ or not, EXDDT ignores it. Al values nust be in hex, and
synbolic references aren't allowed within the nini-assenbl er. EXDDT al so

i gnores spaces and even right parentheses. Therefore you can type in sone funny
| ooki ng instructions that EXDDT interprets as being hunky dory.

EXDDT checks to see if the instruction you entered is actually deposited in
menory. |If the result after depositing isn't equal to the desired deposit
val ues, the screen is flashed and the mni-assenbler is exited.

5-4: EXAM NE E <addr>

The Exanine conmand is used to set the display windowto view an area of
menory. The extrene | eft hand edge of the display w ndow has a GREATER THAN
sign (>) inthe 4 th row This points to the current position that was entered
as the address in the 'E command. Note that the 'E command does not change
the state of the display window filter, nor will it affect which instruction
will next be executed by a single step conmand.

Renmenber, you can use synbolic references in this command to exani ne standard
system synbol s or mini-synbol table synbols (e.g. E 'CIOV).

5-5: &O G <addr >

The Go command is used to begin execution at a specific location in nenory.
Before control is transferred to this location, all registers are updated based
upon the current contents of the displayed registers. This is true for al
commands i nvol vi ng code execution

5-6: HEX/ DECI MAL CONVERTER H <hnum dnun®

The H command is used for a hex to decimal / decimal to hex converter. To enter
a hex nunber to be converted, type an 'H followed by up to 4 hex digits and
then press return. This neans you will type 2 Hs, one for the command, and one
to signify a hex nunber. A colon will be displayed, followed by the deci nal

val ue for the hex nunber you entered. The result will remain in the comand

wi ndow until you type any character.

To enter a decinmal nunber, just type the nunmber itself after the H command and
then press return. EXDDT will display a colon, an Hto signify the hex val ue
for the deci mal nunber you entered, and then the hex value. If you enter a
nunber bi gger than 65535, EXDDT will flash indicating an error

5-7: | NTERPRETI VE MODE |

The Interpretive Mode command is used to place the systemin an automatic
single step node. After each instruction is interpreted, the screen display is
updated if the EXDDT screen is turned on. The display wi ndow is automatically
pl aced in the disassenbly node. Pressing the BREAK key halts the interpretive
nmode. It is possible to run ROM prograns such as portions of the O S.
interpretively, but problens with the display and timng can arise. The Trap
register is used for setting up the equival ent of a breakpoint in this node.
Interpretive node will run with either the user screen or the EXDDT screen

bei ng shown, but you pay a severe tine penalty for selecting the EXDDT screen.
Interpretive node runs nuch faster if the user screen is sel ected because EXDDT
does not have to update it's screen if it is not active.

If you have V marked synbols in the mni-synbol table, EXDDT checks to see if
their values change after an instruction. If so, | nmode is halted. This feature
is active only if EXDDT is displaying its screen.

5-8: MONI TOR M <0- 2>, <addr >

The Monitor conmand is used to nodify the mini synbol table. After typing M a
"0', "1 or '2' should be typed to indicate how many bytes shoul d be displ ayed.
The <addr> is the location you want to nonitor.

After entering this command, the cursor will be positioned in the synbol table.
Typing RETURN wi |l nove the cursor successively to each variable in the table.
This allows you to select where in the table to put the new variable. Wen the
cursor is positioned where you want to start the new entry, typing any

character other than RETURN will begin the definition of the new | abel. Press
RETURN after entering the | abel and the new variable will be entered into the
synmbol table.

There is one special case with the Mfunction. Entered by itself (i.e. pressing
RETURN right after typing M, it is a signal to switch the value display from
vari abl e values to variable locations or vice versa. This display will toggle

back and forth.

5-9: NEXT

The Next conmmand is used to place an internal breakpoint after the next
instruction to be executed. Control is then transferred to the code. In npst
situations, this will act like a single step instruction, with EXDDT being

i medi ately recall ed. However, if the instruction is a JSR a branch
instruction, or any other instruction that can alter programflow, then control
m ght not imediately return. This allows (in nobst instances) a way to single
step over a JSR instruction.

If you try to do an N command when exaning code in ROM the screen will be
flashed and control will not be transferred to the next instruction.

5-10: REA STER R <A X Y, S, P>, <byte>

The Register command is used to nodify the contents of sone of the 6502's
registers. Typing a character other than A X Y,S or P after the Rwill result
in the command being ternminated. Note that this command requires two separate
val ues, so a comm nust be typed after the register designation

5-11: SEARCH S <hstring>

The Search command is used to | ocate a specific sequence of hex characters in
menory. You may enter a hex string of up to 12 characters (6 bytes). Menory
will be searched fromthe current position indicated in the display w ndow up
through nenory. If the search is successful, the display wi ndow will be
repositioned. If it is unsuccessful, the comand wi ndow will sinply be cleared
for the next command.

If no value is entered after the 'S (i.e. just a delimter is typed), the
previous search string will be used. This will allow for easily finding
mul ti pl e occurences of the search string.

If, however, a Deposit command is issued, the area where the Search string was
stored is overwitten. In this case, the old search string is w ped out.

5-12: TRAP T <1-2>, <addr >

The Trap command is used for setting one of the Trap breakpoints to a specific
| ocation. The address entered should show up in the proper Trap register. Note
the trap will only work when in interpretive node. To clear the trap, type 'T',
a'l or "2 for the trap register you want to clear and then press RETURN. A

0000 should show up in the register

5-13: VARI ABLE TRAP V

The Variable trap function is used to activate an interpretive trap on the
alteration of any byte or word variable. Typing V noves the cursor to the V
columm on the mni synbol table area. Typing subsequent RETURNs noves the
cursor circularly thru the list. Typing a minus sign (-) causes a dash to
appear on the screen at the selected variable. Typing the SPACE BAR renpves a
previously placed dash. Typing any other character causes a return to the
command intrepter.

Any tine a displayed variable changes, a vertical bar (|) is placed in the V
colunmm next to the variable entry. If the variable was previously selected with
a dash, a plus sign (dash and vertical together) is displayed. |f EXDDT is
running in the interpretive node (I command), nodification of a dash sel ected
variable will imediately halt interpretive execution. This can be used to
trace where in a programa particular location is nodified for instance.

5-14: WNDOW W

The W ndow command is used to change the '"filter' over the display w ndow. 'W
toggl es between the filters. Two filters are available, a disassenbly filter
and a hexadecinmal filter.

5-15: PULL W NDOW DOWN <down arrow>

The Pull W ndow command is used to pull the display wi ndow down. Dependi ng upon
the display filter in place, this will pull the wi ndow down one byte (hex
filter) or by one full instruction (disassenbly filter). Note that Auto Repeat
on the keyboard is active, so that continuing to press the down arrow key (i.e.
the '='" key) will continue to pull the w ndow down.

If the shift key is held dowmn while typing the down arrow character, the screen
will be pulled down a full screen each tine.
5-16: PUSH W NDOW UP <up arrow>

The Push W ndow comand is used to push the display w ndow up. Dependi ng upon
the display filter in place, this will push the wi ndow up one byte (hex filter)

or by one full instruction (disassenbly filter). Again the Auto Repeat on the
keyboard is active, so that continuing to press the up arrow key (i.e. the '-'
key) will continue to push the wi ndow up

If the shift key is held down while typing the up arrow character, the screen
will be pushed up a full screen. A problem occurs however when you arbitrarily
exam ne an area of nenory with the disassenbly filter in. If you try to push
the wi ndow up, there is not enough information to be able to tell if the
precedi ng instruction was one, two or three bytes |ong. EXDDT keeps track of
how many bytes the window is noved each tine you pull the wi ndow down. Thus you
can push the w ndow back up if you have previously pulled it down past an
instruction or group of instructions. Refer to the technical appendix for
information on this feature.

5-17: RESET PROGRAM COUNTER * <addr>

The * followed by an address is used to reset the program counter. You can use
the special short hand characters in this command. So, for instance, to set the
PC to where you're exanmining in nmenory, type * > To set the PCto one of your
m ni -synbols, type * 'LOOPL.

Secti on 6:

EXDDT ENTRY PO NTS
There are three ways of entering EXDDT:

FLASH ENTRY
WARM ENTRY
BREAKPO NT ENTRY

6-1: FLASH ENTRY

This entry point is provided to allow i mediate entry to EXDDT regardl ess of
other circunstances. This is a single keyboard special character, and is set up
as [CTRL] [SHIFT] ESC (i.e. pressing the Control, the Shift and the Escape keys
at the sane tine). Wien EXDDT is initialized, the operating system code that

| ooks at the keyboard is nodified so that it |ooks for the special character
first before handling normal keyboard input. If this character is found, EXDDT
is entered i mmrediately through the FLASH ENTRY poi nt.

Pressing START will return control to wherever the processor was when the EXDDT
speci al character was typed. For nore information on the Flash entry nechani sm
see the Keyboard Scanner section in the Technical Details appendi x.

6-2: WARM ENTRY

This entry point is the starting point for the EXDDT code. The first three
bytes of EXDDT are a JMP to the set synbol table routine. The EXDDT code itself
imediately follows this. If this locationis called via a JSR instruction
then the START button exit will return control to the calling point. This

all ows EXDDT to be called at various program | ocations for setting up

br eakpoi nts, changi ng val ues, etc.

Exanpl e
——your.code——
PHA ;this doesn't mean
;anything, only an
; exanpl e
JSR $6003 ;the address of the

;unrel ocated version
--Pressing START will return here--

--your code--

6- 3: BREAKPO NT ENTRY

Br eakpoi nt entries are the nost conmon way of entering EXDDT. The breakpoints
first have to be set up via a FLASH or WARM entry to EXDDT. After they are set,
EXDDT will be called if those specific instructions are executed. Exits from
EXDDT breakpoints return to the code sequence where the breakpoint was | ocated.
Notice that the breakpoints will remain in place unless they are explicitly
cleared, or RESET is pressed. This is true even if a breakpoint has been
tripped.

Recall also that if the trap register is set in interpretive node, then
attenpting to execute the instruction at that address will halt the
interpretive node. Thus to nove past a trap breakpoint in interpretive node,
you have to either clear the trap or single step past the instruction that was
trapped and then enter interpretive node.

APPENDI X (TECHNI CAL DETAILS) :

A-1: | NTERACTI ONS W TH DOS

EXDDT is designed to be conpatible with nost prograns that adhere to Atari O S
desi gn consi derations. EXDDT can either be |oaded first separately or placed as
a header file for the programof interest. EXDDT is set up to return to the
programthat |oaded it after loading and initializing. Nornmallly, the
preparati on sequence would be to | oad whi chever editor you use and then create
the assenbly | anguage source file. Next, |oad your assenbler and create an
object code file. At this point you would | oad EXDDT. OBJ, which woul d | oad,
initialize, and then return to the DOS you're using. Finally, Fromthere you
woul d | oad the actual object code itself.

A-2: KEYBOARD SCANNER

During EXDDT initialization the system keyboard vector is redirected to a
preprocessor which checks for the EXDDT FLASH ENTRY speci al character
([CNTL][SHI FT] ESC). If this character is seen, control transfers to the FLASH
ENTRY point, otherw se control passes to the normal keyboard processing
routine.

Not e that keyboard interrupts MJST be enabled. Pressing RESET will usually
reset the systemvectors, even if they have been changed.

A-3: EXDDTS USE OF SYSTEM RESOURCES

EXDDT itsel f occupies 8K of nenory space. The preassenbled version is ORGed at
$6000, with 600 additional bytes at $5C00. Every attenpt was nade to mnininize
EXDDT' s use of systemresources. Unfortunately, it is not possible to

conpl etely avoid using resources in 3 areas: Page Zero Ram a storage area for
EXDDT vari abl es and sone screen storage, and the major portion of the screen
di spl ay.

Page Zero - After nuch deliberation, | convinced nyself that EXDDT woul d sinply
have to use a large portion of the upper half of Page Zero. One nmain
inplication of this is that if a cartridge is installed that uses the upper
hal f of page zero, then you won't be able to run that cartridge interpretively
using EXDDT. In many instances you will be able to call EXDDT fromthe
cartridge, and then reset to get back to the cartridge.

Al'l of the Page Zero locations that are not normally touched by BASIC or the
Assenbl er/ Editor cartridge are kept open for your usage ($B9 - $DB are unused.
Thus you can wite and debug progranms that use these |l ocations in Page Zero.
The untouched | ocations include the ones Basic uses for error information and
the floating point register that interfaces with USR calls. You can easily
create assenbly | anguage routines that will run when called from Basi c.

EXDDT Variabl e storage - The area from $400 - $584 is used by EXDDT for |oca
vari abl e storage, the synbol table and parts of the screen display. One thing
this means is that you won't be able to debug prograns which use the cassette
buffer, or the floating point scratch area.

EXDDT Screen Display - Finally, EXDDT needs another 600 bytes for the main
portion of its screen display. In the preassenbled version this is set at

$5C00. However, this is easily relocated, as location $FE contains a pointer to
the intended screen | oacation area. Each time EXDDT sets up its display screen
it looks at loacation $FE to get the |l ocation where the screen should be built.
To put the display wi ndow screen in another place, for exanple $5800, sinply
create a small assenbly | anguage programlike:

ORG $FE
DW $5800

(Users of sone assenblers may need to use *= instead of ORG.

Assenbl e this code fragnent and copy the object code to the EXDDT. OBJ code
usi ng the append option. Thus when EXDDT is activated, it will see your pointer
to the desired screen area.

You can also set this location fromw thin your programunder test. Look at the
program TEST. MAC to see an exanple of this.

A-4: DI SPLAY W NDOW MOVEMENT

EXDDT mai ntains a "pull stack" while the disassenbly filter is in place. This
nmeans that each tinme you pull the display wi ndow down, EXDDT pl aces the nunber
of bytes that the wi ndow was pulled in a stack. Thus when you want to push the
wi ndow up, EXDDT checks to see if there are any values left in the pull stack.
If so, you can push the wi ndow up. |If not, nothing happens. The pull stack is
cl eared whenever EXDDT is entered, or when an Exami ne command is typed. To
conserve nenmory, 4 pull values (which will be a 1, 2 or 3) are packed into each
byte in the stack. A total of 64 bytes are reserved for the stack. Thus you can
pul I the wi ndow down 256 tinmes before the stack runs out. After this occurs the
first values in the stack are | ost and you can't back up as far. |In conputer
terns, the stack is inplenented as a circular buffer

A-5: THINGS TO WATCH OQUT FOR

There are a few areas where you have to be careful in using EXDDT. |In general
these occur when you are single stepping or running interpretively. If the
interpreted code nesses around with the display list, or with ANTIC, or

CTIA GII A, then you mght end up with a scranbled screen. Usually this is non
fatal, just distracting. To restore the nornmal EXDDT screen, press the BREAK
key to halt the interpretive node, then press SELECT twi ce

Trying to do I/O fromdisk or any other real tinme activity in either
interpretive node or single step node will probably not work. You should set up
breakpoints so that this type of I/Ois done in real tine, and then call EXDDT.

A-6: RELOCATI NG EXDDT. OBJ

The version of EXDDT.OBJ that conmes with this diskette is ORGed to |oad and run
at $6000 hex. The display screen is set to default to $5C00. This | oacation was
pi cked to put EXDDT.OBJ up pretty high above areas where you might want to ORG
your code, yet not run into the normal areas for standard O S. display screens.
If for some reason you want to relocate EXDDT, there is a Basic program

provi ded cal | ed RELOCATE whi ch you can run. Listen, if you're |ooking for

el egant relocaters, don't |look at RELOCATE. It is inplenented in the nost
simple fashion | could think of. Nanely RELOCATE has a list of the locations
that need to be changed to have EXDDT run at sonme new |l ocation in nenory. EXDDT
must be set up so that it starts on a Page boundary, so when it asks for a

rel ocation address, only a two character hex val ue need be entered. RELOCATE
assunes that EXDDT.OBJ is located on in drive 1. It also assumes the new file
will be called EXDDT. REL. Naurally, you can renane the new file after it has
been created. RELOCATE then asks where you would |ike the new version of EXDDT
to |l oad and execute. Finally, RELOCATE asks for a new default |ocation for
creating the display screen. Again, this should begin on a page boundary, so
only a single hex byte value should be entered. RELOCATE will work
automatically fromthen on. Mght as well go get sonething to drink now, 'cause
it's gonna take a few mnutes (about eleven) for this pore li'l Basic program
to work. Adios Am gos. Now get out there and get those bugs before they get
you.

	Extended DDT - EXDDT
	Jim Dunion/Antic Publishing, Inc.
	Contents
	Introduction: The Extended Version of Dunion's Debugging Tool
	Section 1: EXDDT Design Philosophy
	Section 2: The EXDDT Screen Display
	2-1: Register Display
	2-2: Display Window
	2-3: Stack Display
	2-4: Mini Symbol Table
	2-5: Breakpoint Table
	2-6: Comman d Window
	2-7: Trap

	Section 3: Breakpoints
	Section 4: Push Button Controls
	Section 5: The Command Interpreter
	5-1: Entering a Value
	5-2: Breakpoint
	5-3: Deposit
	5-4: Examine
	5-5: Go
	5-6: Hex/Decimal Converter
	5-7: Interpretive Mode
	5-8: Monitor
	5-9: Next
	5-10: Register
	5-11: Search
	5-12: Trap
	5-13: Variable Trap
	5-14: Window
	5-15: Pull Window Down
	5-16: Push Window Up
	5-17: Reset Program Counter

	Section 6: EXDDT Entry Points
	6-1: Flash Entry
	6-2: Warm Entry
	6-3: Breakpoint Entry

	Appendix: Technical Details
	A-1: Interaction With DOS
	A-2: Keyword Scanner
	A-3: EXDDTs Use Of System Resources
	A-4: Display Window Movement
	A-5: Things To Watch Out For
	A-6: Relocating EXDDT.OBJ

