The Fl oati1 ng Pol nt
Package

For OSS Mac/ 65

by Louis J. Chorich |1

Thi s docunentati on may not be copi ed, photocopi ed, reproduced, translated,
or telecommunicated in any form in whole or in part, w thout the prior
witten consent of Antic Publishing, Inc.

The acconpanyi ng program material may not be duplicated, in whole or in
part, for any purpose. No copies of the floppy disk(s) my be sold or
given to any person or other entity.

Not wi t hst andi ng the above, the docunentation and acconpanyi ng di sk(s) may
be duplicated for the sole use of the original purchaser

Antic is a trademark of Antic Publishing, Inc.
MAC/ 65 and DOS- XL are trademarks of Optimzed Systens Software, Inc.

OVERVI EW

The Floating Point Macro Library is designed to take advantage of the
tremendous nacro capabilities of the MAC/ 65 Macro Assenbl er produced by
Optim zed Systens Software. The Library is a progranmng tool intended to
provide an interface between the programmer and the floating point
routines built into the Atari ROM Though assenbly | anguage provi des only
the capability to operate on integers, the use of the FP library allows a
programer to perform conputations on nunbers in the range of 10"-98 to
10798. All conputations are accurate to nine or ten digits dependi ng upon
t he operation perforned.

Included in the FP Library are the foll ow ng capabilities:

Addi ti on 2 Byte Integer to FP Conversion
Subt racti on FP to 2 Byte Integer Conversion
Mul tiplication ASCI| String to FP Conversion

Di vi si on FP to ASCII String Conversion

Nat ural Logarithm | nput FP nunber from keyboard
Base 10 Logarithm Print FP Nunmber to Screen
Exponenti ati on Conparison of Two FP Nunbers

| nverse Logarithmns FP Array Managenent

Squar e Root Move FP Numbers

Br anchi ng Upon Conpari son of two FP Nunbers

The capabilities of the Trig library are contained in a separate section
at the end of this docunentation.

I ncl uded on the Library disk are eight files:

FP. LI B
FPANNCT. LI B
FPDEMO. Mb5
M5G. M5
FPDEMO. COM
TRIG LI B

TRI GDEMO. M55
TRI GDEMO. COM

The FPANNOT. LIB file contains the fully commented source code while the
FP.LIB file has the conmments renoved. FP.LIB functions identically to
FPANNCT. LI B but occupies | ess disk space. FPDEMO COMis the binary file
produced by FPDEMO M65 and MSG Ms5. MSG Mb5 is a part of the deno
program TRIGLIB is the Trigononetric macros. TRI GDEMO. M65 and

TRI GDEMO. COM are t he source and object code of the program which
denonstrates the use of the Trig macros. The Library disk is unprotected.
You may nake copies for your own use only.

Thi s manual assunmes that you are sonmewhat famliar with 6502 assenbly
| anguage programm ng as well as the use of the MAC/65 Macro Assenbl er.

SYSTEM REQUI REMENTS

48K Atari Conputer
Di sk Drive
MAC/ 65 Macro Assenbl er

GETTI NG STARTED

In order to use the FP Library in your own progranms, you first nust
. I NCLUDE the FP.LIB or FPANNCT. LIB file in your source code. The best way
to acconplish this is illustrated in the foll ow ng exanpl e:

100 *=$4000 ; START OF CODE

110 JMP MYCCDE

120 . I NCLUDE #D:. FP.LIB

130 ; YOU CAN | NCLUDE ANY OTHER MACRO FI LES YOU HAVE RI GHT HERE
140 MYCODE

150 ; YOUR PROGRAM STARTS HERE

Note the JMP MYCODE instruction in line 110. It is necessary that this is
the first line after you indicate the address where assenbly begins. |If
line 110 were not present, the first thing the programwould do when run
is execute code inside the FP library and certainly crash.

It mght be mentioned that floating point nunbers are stored in nenory as
six byte quantities. Every floating nunber requires six bytes of nenory,
no matter how small or large the value of the nunber.

THE FLOATI NG PO NT MACRO LI BRARY

There are 25 macros in the FP library. They provide a conplete interface
to the Atari FP routines in ROM

FPADD LN FPI | NPUTFP FPCQOVP

FPSUB LOG | FP PRI NTFP Bl GI

FPMUL EXP AFP GETEL BILT

FPDI V EXP10 FASC PUTEL Bl EQ

FPMOVE EXPON SR XXPUSH XXPULL
FPADD

Syntax: FPADD adrl1, adr2, adr3
Pur pose: To add two FP nunbers.
Paranmeters: adrl - address of an FP nunber
adr2 - another FP nunber
adr3 - the FP result of the sumof the two nunbers
Exanpl e: FPADD REAL1, REAL2, RESULT

The FP number at REAL1 is added to the FP number at REAL2, and the result
is stored at RESULT. REAL1 and REAL2 renmin intact.

FPSUB

Syntax: FPSUB adr 1, adr 2, adr 3
Pur pose: To subtract two FP nunbers.
Paranmeters: adrl - address of an FP nunber
adr2 - address of another FP nunber
adr3 - the FP sumof the two nunbers
Exanpl e: FPSUB REAL1, REAL2, RESULT

The FP number at REAL2 is subtracted fromthe FP nunber at REAL1 and the
result is stored at RESULT. REAL1 and REAL2 renmmin intact.

FPMUL

Syntax: FPMUL adr1, adr2, adr 3
Purpose: To multiply two FP nunbers.
Paraneters: adrl - address of a FP nunber
adr2 - address of another FP nunber
adr3 - address of the FP product
Exanpl e: FPMUL AA BB, XX

The FP nunber at AAw Il be nmultiplied by the FP nunber at BB and the FP
product will be stored at XX. AA and BB remain intact.

FPDI V

Syntax: FPDIV adr1, adr2, adr 3
Pur pose: To divide one FP nunber by another.
Parameters: adrl - address of the FP dividend
adr2 - address of the FP divisor
adr3 - address at which to store the FP result
Exanpl e: FPDIV M LES, GALLONS, M LAGE

The FP nunber at MLES will be divided by the FP nunber at GALLONS and the
result will be stored at M LAGE. M LES and GALLONS remain i ntact.

| NPUTFP

Syntax: | NPUTFP adr
Pur pose: To get a FP nunber as input fromthe keyboard.
Paraneters: adr - address at which to store the six byte
nunber entered at the keyboard
Exanpl e: | NPUTFP REAL

This macro waits for input fromthe keyboard, converts it to floating
point notation, and stores it at address REAL. Menory starting at LBUFF
($580) is used as a buffer for keyboard input. Be careful! Any data in
LBUFF may be overwritten!

PRI NTFP

Synt ax: PRI NTFP adr

Pur pose: To print a floating point nunber on the screen.
Paraneters: adr - address of the FP nunber to print

Exanpl e: PRI NTFP REAL

PRI NTFP i s the conpl enment of |INPUTFP. PRI NTFP takes the FP nunber at
REAL, converts it to an ASCI| string starting at LBUFF, and prints it to
the screen. Like I NPUTFP, PRI NTFP uses LBUFF for workspace. WMke sure
that area of nenory is free.

LN

Syntax: LN adrl, adr?2
Pur pose: To take the natural |ogarithmof a FP nunber.
Paranmeters: adrl - address of the FP nunber whose natural
logarithmw || be conputed
adr2 - address where the result will be stored
Exanpl e: LN REAL1, REAL2

The natural log of the FP nunber at REAL1 w il be conputed and stored as a
FP nunber at REAL2.

LOG

Syntax: LOG adrl, adr?2
Pur pose: To take the base 10 |ogarithm of an FP nunber.
Paranmeters: adrl - address of the FP nunber whose base 10
logarithmw || be conputed
adr2 - address where the result will be stored
Exanpl e: LOG REAL1, REAL2

The base 10 |l og of the FP nunber at REAL1 will be conputed and stored as a
FP nunber at REAL2.

EXP

Syntax: EXP adr1, adr?2
Pur pose: To conpute the inverse natural |ogarithmof a
floati ng point nunber
Paraneters: adrl - address of the FP nunber whose natural
log will be conputed
adr2 - address at which the result wll be stored
Exanpl e: EXP NUMBER, | NVLOG

The inverse natural |og of the FP nunber at address NUMBER is cal cul at ed
and the result is stored starting at address | NVLOG

EXP10

Syntax: EXP10 adrl, adr?2
Pur pose: To calculate the inverse base 10 log of a
floati ng point nunber
Paraneters: adrl - address of the FP nunmber whose inverse
base 10 log will be conputed.
adr2 - address at which to store the result
Exanpl e: EXP10 TI ME, VELOCI TY

This macro cal cul ates the inverse base 10 | og of the FP nunber at TIME and
stores the result at VELCCITY.

EXPON

Syntax: EXPON adr1, adr 2, adr 3
Pur pose: To raise a FP nunber to a power.
Paraneters: adrl - address of the FP base
adr2 - address of the FP exponent
adr3 - address at which the FP result is stored.
Exanpl e: EXPON BASE, EXPONENT, RESULT

Thi s exanpl e cal cul ates the val ue of BASE raised to the power EXPONENT and
stores the floating point result in RESULT. This is the BASIC equival ent
of RESULT = BASE"EXPONENT

SR

Synt ax:

Pur pose:
Par anet er s:

Exanpl e:
This macro
the result
| FP

Synt ax:

Pur pose:

Par anet er s:

Exanpl e:

The two byte integer at

REAL. The

FPI

Synt ax:

Pur pose:
Par anet er s:

Exanpl e:
Thi s macro

into a two
or down to

SQR adr 1, adr2

TO cal cul ate the square root of a FP nunber

adrl - The address of a FP nunber

adr2 - The address at which to store the result
of the square root calculation

SQR PRESSURE, ROOT
determ nes the square root of the nunber at PRESSURE and stores
at ROOT.

| FP i nt, adr

To convert a 2 byte integer to a 6 byte FP nunber.

int - the address of the 2 byte integer
adr - the address of the 6 byte FP result
| FP COUNT, REAL

COUNT w Il be converted to a six byte FP nunber at

result can now be used in FP math cal cul ati ons.

FPlI adr, int

To convert a 6 byte FP nunber to a 2 byte integer.

adr - address of the 6 byte FP nunber
int - address of the 2 byte integer result
FPI REAL, COUNT

The FP number at REAL is converted
The FP nunber is rounded up

is the conplement of I|IFP
byte integer and stored at COUNT.
t he nearest whol e nunber.

AFP

Syntax: AFP string, adr
Pur pose: To convert an ASCI| string of numeric characters.
to FP notation
Paraneters: string - the address of the ASCII string
adr - the address at which to store the FP result
Exanpl e: AFP BUFFER, SCORE

Here, the ASCI| string at BUFFER is converted to a FP nunber and stored at
SCORE. The only legal characters in the ASCII string are nuneric digits
(0-9), a decimal point (.), a plus or mnus sign (+/-), and an "E' when
using scientific notation.

FASC

Syntax: FASC adr 1, adr2
Pur pose: To convert a floating point nunber to an
ASCI| string term nated by a carriage return.
Paraneters: adrl - The address of the FP nunber
adr2 - The address at which to store the ASC I
string.
Exanpl e: FASC NUM BUFFER

The macro converts the floating point nunber stored at NUMto an ASCI |
string starting at address BUFFER and term nating with a carriage return.

FPMOVE

Synt ax: FPMOVE adr 1, adr 2
Pur pose: To nove a six byte floating point nunber
fromone | ocation to another.
Parameters: adrl - the source address
adr2 - the destination address
Exanpl e: FPMOVE SUBTOT, TOTAL

This macro call will nove the six byte FP nunber at SUBTOT into the six
bytes at TOTAL. This effectively replaces TOTAL with SUBTOT. At the end
of the macro call, the sane FP nunmber will be at SUBTOT and TOTAL.

FPCOVP

Synt ax: FPCOWP adr 1, adr 2, adr 3
Pur pose: To conpare two floating point nunbers and determ ne
if they are equal or if the first is less than the
second or if the first is greater than the second.
Paraneters: adrl - the address of the first FP nunber
adr2 - the address of the second FP nunber
adr3 - the address of the byte at which to store
the result of the conparison
Exanpl e: FPCOWP REAL1L, REAL2, FLAG

The floating point nunber at REAL1 is conpared to the floating point
nunber at REAL2 and the one byte result of the conparison is stored in
FLAG as foll ows:

1 REAL1 > REAL2
0 = REAL1 = REAL2
255 REAL1 < REAL2

Notice that if REALL is greater than REAL2, the result stored in FLAGis
positive. |If REAL1 is equal to REAL2, the result stored in FLAGis zero.
If REAL1 is less than REAL2, the result stored in FLAGis negative (to the
6502, all nunbers from 128 to 255 [$7F - $FF] are consi dered negati ve.
This makes for easy testing of the result byte and branchi ng accordi ngly.

Bl EQ

Syntax: Bl EQ adr 1, adr 2, adr
Pur pose: To test if two FP nunbers are equal
and branch to a given address if the condition
is true.
Parameters: adrl - The first FP nunber
adr2 - The second FP nunber
adr3 - The address at which to branch if the
two FP nunbers are equa
Exanpl e: Bl EQ COUNT, MAX, EXI T

Bl EQ stands for "Branch If Equal."” 1In this case, if the FP nunber at
COUNT is equal to the FP nunber at MAX, then the programw | branch to
EXIT. The assenbly | anguage equivalent of this is "JMP EXIT." O course
you do not have to use a label. Specifying an absol ute address such as
$0600 in the macro call would be perfectly acceptable.

Bl GI'

Syntax: BIGT adrl, adr2, adr3

Pur pose: To test if one FP nunber is greater than
anot her and branch to a given address if the
condition is true.

Paranmeters: adrl - The first FP nunber

adr2 - The second FP nunber
adr3 - The address at which to branch

Exanpl e: Bl GT REAL1, REAL2, GETNEXT

Bl GT stands for "Branch If Geater Than." 1In this case, if the FP nunber
at REAL1 is greater than the FP nunber at REAL2, the programwi |l branch
to the | abel GETNEXT (JMP GETNEXT).

BILT

Syntax: adr1, adr2, adr 3

Pur pose: To test if one floating point nunber is |ess than
anot her and to branch to a given address if the
condition is true.

Paraneters: adrl - The address of the first FP nunber

adr2 - The address of the second FP nunber
adr3 - The address at which to branch

Exanpl e: BILT SCORE, M N, $0680

If the FP nunber at SCORE is |less than the FP nunber at M N, the program
will branch to address $0680 (JMP $0680). O herwi se, the programw ||
conti nue unaffect ed.

PUTEL

Syntax: PUTEL adr1, adr2, adr 3
Purpose: To put a floating point nunber into any el enent
of an array of floating point nunbers.
Paranmeters: adrl - Base address of the array of FP nunbers
adr2 - This paraneter is the nmenory address
whose val ue hol ds the nunber (0-255)
corresponding to the elenment in the FP
array into which the FP nunber at adr3
is to be placed
adr3 - The address of the FP nunber which is to
inserted into the FP array
Exanpl e: PUTEL ARRAY, ELEMENT, REAL

This macro takes the FP nunber at REAL and inserts it into the ELEMENTth
el enent of the FP array starting at address ARRAY. Note that the first
ELEMENT is ELEMENT O, the second is ELEMENT 1, etc. A floating point
array does not have to be specially declared or dinensioned. Al you need
to do is set aside enough roomto hold your array. Each elenment of a
floating point array consunes six bytes. |If you only set aside sixty
bytes for a floating point array, you nust be careful not to access any

el enent outside the range of 0 through 9. The zeroth elenent of the array
is located at ARRAY. Elenent 1 is |ocated at ARRAY+6, and elenent 2 is

| ocated at ARRAY+12, etc.

Take note that this macro reads the value in address ELEMENT to determ ne
into which elenment of the FP array REAL will be placed. Suppose you
wanted to put the FP nunber at REAL into the tenth el enent of the floating
point array starting at ARRAY. First, you nust set aside 66 bytes to hold
the entire 11 elenent (0-10) array. This is acconplished in the follow ng
manner :

ARRAY *=*+66

This line of assenbly code defines the base address of the array as ARRAY
and sets aside 66 bytes of nenory to hold the array.

To put REAL in the tenth elenent of the array, there is a correct and
i ncorrect method:

| ncorrect: PUTEL ARRAY, 10, REAL

Correct: LDA #10
STA ELEMENT
PUTEL ARRAY, ELEMENT, REAL

The first macro call would yield unpredicatable results, but the second
will always place the FP nunber at REAL into the tenth el ement of the
array. The BASI C equi val ent of the above macro is:

ARRAY(ELEMENT) =REAL

Refer to the denp prograns for detail ed exanpl es of inplenenting floating
poi nt arrays.

GETEL

Syntax: GETEL adr1, adr2, adr 3
Pur pose: To retrieve any elenment froman array of floating
poi nt numbers.
Paraneters: adrl - The base address of the floating point array
adr2 - The address of the nmenory | ocation which
hol ds the nunber (0-255) which corresponds
to the nunber of the elenent of the array
which is to be extracted and placed in
adr 3
adr3 - The address at which to place the FP
nunber extracted fromthe array
Exanpl e: GETEL ARRAY, ELEMENT, REAL

CETEL is the conplenent of PUTEL. This nacro will take the ELEMENTth
el emrent of the FP array starting at address ARRAY and place it at REAL.
The sane restrictions that apply to PUTEL apply to GETEL. The BASIC
equi val ent of the above macro is:

REAL=ARRAY(ELEMENT)

You may notice the ease with which this nacro can be placed in a | oop
Each pass through the loop, the value in elenent may be increnented to,
for exanple, print an entire array of floating point nunbers.

XXPUSH

Synt ax: XXPUSH
Pur pose: To save the X, Y, and Accunul ator registers on
the stack before calling a macro
Par anmet ers: None
Exanpl e: XXPUSH

This macro is used internally by the Floating Point Library and need not
be used by you when inplenenting any floating point macros. XXPUSH and
its conplement, XXPULL, make sure that your X, Y, and Accunul ator
registers are not altered by any the floating point macros. |If you for
any reason use this macro, nake sure that you use XXPULL to pull the XY,
and A registers off the stack at the appropriate tine, or else havoc wll
surely prevail. Use at your own risk!!

XXPULL

Synt ax: XXPULL
Pur pose: To restore the previously saved X, Y, and
Accunul at or registers.
Par anet ers: None
Exanpl e: XXPULL

XXPULL is the conpl ement of XXPUSH as expl ai ned above. You can see how
XXPUSH and XXPULL are used as the first and last |ines of every macro
definition in the Floating Point Macro Library.

LI M TATI ONS OF THE FP LI BRARY

Rai sing a negative nunber to a power by calling the EXPON macro is likely
to yield unpredicatable results. This is due to the fact that the

cal cul ation involves the use of |ogarithns, and negatives nunbers do not
have | ogarithnms associated with them The Floating Point Library nakes no
attenpt to catch such error. Your programw |l not crash if you try to do
sonet hi ng i npossi bl e, such as take the square root of a negative nunber,
but the results will be unpredicatable.

PROGRAMM NG TECHNI QUES

A major criticismof the use of macros in assenbly |language is the fact
that |arge macros tend to consunme nenory ravenously if used heavily. The
reason for this is that a macro is not |ike a subroutine or sonme type of
function which pulls its paraneters off a software stack. A macro is
expanded, or reproduced, inits entirety each tine it is called.

A sinple solution to this problemis to inplenent heavily used nacros as
assenbly | anguage subroutines. The only disadvantage of this technique is
that the paraneters passed to the nmacro are fixed. For exanple, the
following two Iines of code are all that is necessary to create a
subroutine that prints a floating point nunber.

PRI NT PRI NTFP REAL
RTS

The routine can be called by the follow ng instruction and consunes only
three bytes each tine it is called.

JSR PRI NT

O course, you are limted in that the only floating point nunber this
routine can print is the one at address REAL. But if you specify real as
target address at which to store the result of any FP cal cul ati on you
intend to print, then everything is set up automatically and a JSR to the
PRI NT subroutine is all that is necessary to print the result of your

cal cul ations. Although not appropriate under all circunstances, this

t echni que can save a consi derabl e amount of nmenory when used efficiently.

The Deno Program

I ncl uded on the diskette is a the source and object code for a denp of the
Fl oating Point Library, FPDEMO.COM The source code for the denp program

isintw files, FPDEMO M5 and MSG Ms5. The RUN address for FPDEMO. COM
is $5000

The Trigononetric Library
by Louis J. Chorich 11

OVERVI EW

The Trig Library acconpanies the Floating Point Macro Library. It
contains an additional eight macros which inplenent the basic
trigononetric functions sine, cosine, tangent, cotangent, secant, and
cosecant. Also included are macros for degree/radi an conversions.

The Trig Library is a stand alone |ibrary of nacros and nay be used
i ndependently of the Floating Point Library or in conjunction with it.

Al trig macros operate upon angles neasured in radians. Specifying an
angle in degrees will return incorrect results. Al values nust be in 6
byte Fl oating Point format.

The Trig Library is called TRRG LIB and is included on the Library

di skette. To access the trig macros, it is necessary to | NCLUDE the
library file in your source code in the sane way that FP.LIB i s | NCLUDEed.
If both |[ibraries are needed, it is a good idea to | NCLUDE t hem t oget her
at the beginning of your assenbly program This is explained fully in the
"CGetting Started" section the Floating Point Package manual .

I ncl uded on the diskette is a deno of the Trig Library, TRIGDEMO. COM The
source code is TRI GDEMO. M65. The RUN address for TRI GDEMO. COM i s $5000.

THE TRI GOMOVETRI C MACRGCS

SIN

Syntax: SIN adr1, adr?2
Pur pose: To calculate the sine of an angle.
Paraneters: adrl - address of a FP angle in radians
adr2 - address at which to store the FP result
Exanpl e: SIN ANGLE, RESULT

This macro will calculate the sine of the angle represented by the 6 byte
floati ng point nunber at ANGLE and store the result of its calculation at
RESULT.

Synt ax:

Pur pose:
Par anet er s:

Exanpl e:
The cosi ne
resul t
TAN

Synt ax:

Pur pose:

Par aneters:

Exanpl e:

This macro will
fl oati ng point

Synt ax:

Pur pose:
Par anet er s:

Exanpl e:

The cotangent of the angle at
is stored at COTAN.

resul t

SCN
Synt ax:
Pur pose:

Par anet er s:

Exanpl e:

This macro cal
store the result

is stored at

COS adr 1, adr 2

To cal cul ate the cosine of an angle.

adrl - address of a FP angle in radians

adr2 - address at which to store the FP result
COS ANGLE, RESULT
of the floating point nunber at ANGLE is eval uated and the
RESULT.

TAN adr 1, adr 2

To cal cul ate the tangent
adrl - address of a FP angle in radi ans

adr2 - address at which to store the FP result
TAN RADI ANS, TANGENT

of an angl e.

conput e the tangent of the angle at RADI ANS and store the
result at TANGENT.

COT adr 1, adr2

To cal cul ate the cotangent of an angl e.

adrl - address of a FP angle in radi ans

adr2 - address at which to store the FP result
COT' RADI ANS, COTAN

RADI ANS i s evaluated and the floating point

SCN adr 1, adr 2

To cal cul ate the secant of an angle.

adrl - address of a FP angle in radians

adr2 - address at which to store the FP result
SCN THETA, SECANT

w |
at

cal cul ate the secant of the radian angle at THETA and
SECANT.

CSC

Syntax: CSC adr1, adr?2
Pur pose: To cal cul ate the cosecant of an angle.
Paraneters: adrl - address of a FP angle in radians
adr2 - address at which to store the result
Exanpl e: CSC ALPHA, RESULT

This macro wll calculate the cosecant of the radian angle at ALPHA and
store the cosecant of ALPHA at RESULT.

TORAD

Syntax: TORAD adr 1, adr 2
Pur pose: To convert a degree angle to radians.
Paranmeters: adrl - the address of a FP angle in degrees
adr2 - the address at which to store the FP angle
i n degrees
Exanpl e: TORAD DEGREES, RADI ANS

This macro is used to convert the degree angle at DEGREES to a radi an
angl e at RADI ANS.

TODEG

Synt ax: TODEG adr 1, adr 2
Pur pose: To convert a radian angle to degrees.
Paranmeters: adrl - the address of a FP angle in radi ans
adr2 - the address at which to store the FP angle
in radi ans
Exanpl e: TODEG RADI ANS, DEGREES

This macro is used to convert the radian angle at RADI ANS to a degree
angl e at DEGREES.

	The Floating Point Package (cover)
	Copyright
	Overview
	Files on disk
	System Requirements
	Getting Started

	The Floating Point Macro Library
	FPADD
	FPSUB
	FPMUL
	FPDIV
	INPUTFP
	PRINTFP
	LN
	LOG
	EXP
	EXP10
	EXPON
	SQR
	IFP
	FPI
	AFP
	FPMOVE
	FPCOMP
	BIEQ
	BIGT
	BILT
	PUTEL
	GETEL
	XXPUSH
	XXPULL

	Limitations of the FP Library
	Programming Techniques
	The Demo Program
	The Trigonometric Library
	Overview
	The Trigonometric Macros
	SIN
	COS
	TAN
	COT
	SCN
	CSC
	TORAD
	TODEG

