
The Floating Point
Package
For OSS Mac/65

by Louis J. Chorich III

This documentation may not be copied, photocopied, reproduced, translated,
or telecommunicated in any form, in whole or in part, without the prior
written consent of Antic Publishing, Inc.

The accompanying program material may not be duplicated, in whole or in
part, for any purpose. No copies of the floppy disk(s) may be sold or
given to any person or other entity.

Notwithstanding the above, the documentation and accompanying disk(s) may
be duplicated for the sole use of the original purchaser.

Antic is a trademark of Antic Publishing, Inc.
MAC/65 and DOS-XL are trademarks of Optimized Systems Software, Inc.

OVERVIEW

The Floating Point Macro Library is designed to take advantage of the
tremendous macro capabilities of the MAC/65 Macro Assembler produced by
Optimized Systems Software. The Library is a programming tool intended to
provide an interface between the programmer and the floating point
routines built into the Atari ROM. Though assembly language provides only
the capability to operate on integers, the use of the FP library allows a
programmer to perform computations on numbers in the range of 10^-98 to
10^98. All computations are accurate to nine or ten digits depending upon
the operation performed.

Included in the FP Library are the following capabilities:

Addition 2 Byte Integer to FP Conversion
Subtraction FP to 2 Byte Integer Conversion
Multiplication ASCII String to FP Conversion
Division FP to ASCII String Conversion
Natural Logarithm Input FP number from keyboard
Base 10 Logarithm Print FP Number to Screen
Exponentiation Comparison of Two FP Numbers
Inverse Logarithms FP Array Management
Square Root Move FP Numbers
Branching Upon Comparison of two FP Numbers

The capabilities of the Trig library are contained in a separate section
at the end of this documentation.

Included on the Library disk are eight files:

FP.LIB
FPANNOT.LIB
FPDEMO.M65
MSG.M65
FPDEMO.COM
TRIG.LIB
TRIGDEMO.M65
TRIGDEMO.COM

The FPANNOT.LIB file contains the fully commented source code while the
FP.LIB file has the comments removed. FP.LIB functions identically to
FPANNOT.LIB but occupies less disk space. FPDEMO.COM is the binary file
produced by FPDEMO.M65 and MSG.M65. MSG.M65 is a part of the demo
program. TRIG.LIB is the Trigonometric macros. TRIGDEMO.M65 and
TRIGDEMO.COM are the source and object code of the program which
demonstrates the use of the Trig macros. The Library disk is unprotected.
You may make copies for your own use only.

This manual assumes that you are somewhat familiar with 6502 assembly
language programming as well as the use of the MAC/65 Macro Assembler.

SYSTEM REQUIREMENTS

48K Atari Computer
Disk Drive
MAC/65 Macro Assembler

GETTING STARTED

In order to use the FP Library in your own programs, you first must
.INCLUDE the FP.LIB or FPANNOT.LIB file in your source code. The best way
to accomplish this is illustrated in the following example:

100 *=$4000 ;START OF CODE
110 JMP MYCODE
120 .INCLUDE #D:FP.LIB
130 ;YOU CAN INCLUDE ANY OTHER MACRO FILES YOU HAVE RIGHT HERE
140 MYCODE
150 ;YOUR PROGRAM STARTS HERE

Note the JMP MYCODE instruction in line 110. It is necessary that this is
the first line after you indicate the address where assembly begins. If
line 110 were not present, the first thing the program would do when run
is execute code inside the FP library and certainly crash.

It might be mentioned that floating point numbers are stored in memory as
six byte quantities. Every floating number requires six bytes of memory,
no matter how small or large the value of the number.

THE FLOATING POINT MACRO LIBRARY

There are 25 macros in the FP library. They provide a complete interface
to the Atari FP routines in ROM.

FPADD LN FPI INPUTFP FPCOMP
FPSUB LOG IFP PRINTFP BIGT
FPMUL EXP AFP GETEL BILT
FPDIV EXP10 FASC PUTEL BIEQ
FPMOVE EXPON SQR XXPUSH XXPULL

FPADD

Syntax: FPADD adr1, adr2, adr3
Purpose: To add two FP numbers.

Parameters: adr1 - address of an FP number
adr2 - another FP number
adr3 - the FP result of the sum of the two numbers

Example: FPADD REAL1,REAL2,RESULT

The FP number at REAL1 is added to the FP number at REAL2, and the result
is stored at RESULT. REAL1 and REAL2 remain intact.

FPSUB

Syntax: FPSUB adr1,adr2,adr3
Purpose: To subtract two FP numbers.

Parameters: adr1 - address of an FP number
adr2 - address of another FP number
adr3 - the FP sum of the two numbers

Example: FPSUB REAL1,REAL2,RESULT

The FP number at REAL2 is subtracted from the FP number at REAL1 and the
result is stored at RESULT. REAL1 and REAL2 remain intact.

FPMUL

Syntax: FPMUL adr1,adr2,adr3
Purpose: To multiply two FP numbers.

Parameters: adr1 - address of a FP number
adr2 - address of another FP number
adr3 - address of the FP product

Example: FPMUL AA,BB,XX

The FP number at AA will be multiplied by the FP number at BB and the FP
product will be stored at XX. AA and BB remain intact.

FPDIV

Syntax: FPDIV adr1,adr2,adr3
Purpose: To divide one FP number by another.

Parameters: adr1 - address of the FP dividend
adr2 - address of the FP divisor
adr3 - address at which to store the FP result

Example: FPDIV MILES,GALLONS,MILAGE

The FP number at MILES will be divided by the FP number at GALLONS and the
result will be stored at MILAGE. MILES and GALLONS remain intact.

INPUTFP

Syntax: INPUTFP adr
Purpose: To get a FP number as input from the keyboard.

Parameters: adr - address at which to store the six byte
number entered at the keyboard

Example: INPUTFP REAL

This macro waits for input from the keyboard, converts it to floating
point notation, and stores it at address REAL. Memory starting at LBUFF
($580) is used as a buffer for keyboard input. Be careful! Any data in
LBUFF may be overwritten!

PRINTFP

Syntax: PRINTFP adr
Purpose: To print a floating point number on the screen.

Parameters: adr - address of the FP number to print
Example: PRINTFP REAL

PRINTFP is the complement of INPUTFP. PRINTFP takes the FP number at
REAL, converts it to an ASCII string starting at LBUFF, and prints it to
the screen. Like INPUTFP, PRINTFP uses LBUFF for workspace. Make sure
that area of memory is free.

LN

Syntax: LN adr1,adr2
Purpose: To take the natural logarithm of a FP number.

Parameters: adr1 - address of the FP number whose natural
logarithm will be computed

adr2 - address where the result will be stored
Example: LN REAL1,REAL2

The natural log of the FP number at REAL1 will be computed and stored as a
FP number at REAL2.

LOG

Syntax: LOG adr1,adr2
Purpose: To take the base 10 logarithm of an FP number.

Parameters: adr1 - address of the FP number whose base 10
logarithm will be computed

adr2 - address where the result will be stored
Example: LOG REAL1,REAL2

The base 10 log of the FP number at REAL1 will be computed and stored as a
FP number at REAL2.

EXP

Syntax: EXP adr1,adr2
Purpose: To compute the inverse natural logarithm of a

floating point number.
Parameters: adr1 - address of the FP number whose natural

log will be computed
adr2 - address at which the result will be stored

Example: EXP NUMBER,INVLOG

The inverse natural log of the FP number at address NUMBER is calculated
and the result is stored starting at address INVLOG.

EXP10

Syntax: EXP10 adr1,adr2
Purpose: To calculate the inverse base 10 log of a

floating point number.
Parameters: adr1 - address of the FP number whose inverse

base 10 log will be computed.
adr2 - address at which to store the result

Example: EXP10 TIME,VELOCITY

This macro calculates the inverse base 10 log of the FP number at TIME and
stores the result at VELOCITY.

EXPON

Syntax: EXPON adr1,adr2,adr3
Purpose: To raise a FP number to a power.

Parameters: adr1 - address of the FP base
adr2 - address of the FP exponent
adr3 - address at which the FP result is stored.

Example: EXPON BASE,EXPONENT,RESULT

This example calculates the value of BASE raised to the power EXPONENT and
stores the floating point result in RESULT. This is the BASIC equivalent
of RESULT = BASE^EXPONENT.

SQR

Syntax: SQR adr1,adr2
Purpose: TO calculate the square root of a FP number.

Parameters: adr1 - The address of a FP number
adr2 - The address at which to store the result

of the square root calculation
Example: SQR PRESSURE,ROOT

This macro determines the square root of the number at PRESSURE and stores
the result at ROOT.

IFP

Syntax: IFP int,adr
Purpose: To convert a 2 byte integer to a 6 byte FP number.

Parameters: int - the address of the 2 byte integer
adr - the address of the 6 byte FP result

Example: IFP COUNT,REAL

The two byte integer at COUNT will be converted to a six byte FP number at
REAL. The result can now be used in FP math calculations.

FPI

Syntax: FPI adr,int
Purpose: To convert a 6 byte FP number to a 2 byte integer.

Parameters: adr - address of the 6 byte FP number
int - address of the 2 byte integer result

Example: FPI REAL,COUNT

This macro is the complement of IFP. The FP number at REAL is converted
into a two byte integer and stored at COUNT. The FP number is rounded up
or down to the nearest whole number.

AFP

Syntax: AFP string,adr
Purpose: To convert an ASCII string of numeric characters.

to FP notation.
Parameters: string - the address of the ASCII string

adr - the address at which to store the FP result
Example: AFP BUFFER,SCORE

Here, the ASCII string at BUFFER is converted to a FP number and stored at
SCORE. The only legal characters in the ASCII string are numeric digits
(0-9), a decimal point (.), a plus or minus sign (+/-), and an "E" when
using scientific notation.
FASC

Syntax: FASC adr1,adr2
Purpose: To convert a floating point number to an

ASCII string terminated by a carriage return.
Parameters: adr1 - The address of the FP number

adr2 - The address at which to store the ASCII
string.

Example: FASC NUM,BUFFER

The macro converts the floating point number stored at NUM to an ASCII
string starting at address BUFFER and terminating with a carriage return.

FPMOVE

Syntax: FPMOVE adr1,adr2
Purpose: To move a six byte floating point number

from one location to another.
Parameters: adr1 - the source address

adr2 - the destination address
Example: FPMOVE SUBTOT,TOTAL

This macro call will move the six byte FP number at SUBTOT into the six
bytes at TOTAL. This effectively replaces TOTAL with SUBTOT. At the end
of the macro call, the same FP number will be at SUBTOT and TOTAL.

FPCOMP

Syntax: FPCOMP adr1,adr2,adr3
Purpose: To compare two floating point numbers and determine

if they are equal or if the first is less than the
second or if the first is greater than the second.

Parameters: adr1 - the address of the first FP number
adr2 - the address of the second FP number
adr3 - the address of the byte at which to store

the result of the comparison
Example: FPCOMP REAL1,REAL2,FLAG

The floating point number at REAL1 is compared to the floating point
number at REAL2 and the one byte result of the comparison is stored in
FLAG as follows:

1 = REAL1 > REAL2
0 = REAL1 = REAL2

255 = REAL1 < REAL2

Notice that if REAL1 is greater than REAL2, the result stored in FLAG is
positive. If REAL1 is equal to REAL2, the result stored in FLAG is zero.
If REAL1 is less than REAL2, the result stored in FLAG is negative (to the
6502, all numbers from 128 to 255 [$7F - $FF] are considered negative.
This makes for easy testing of the result byte and branching accordingly.

BIEQ

Syntax: BIEQ adr1,adr2,adr
Purpose: To test if two FP numbers are equal

and branch to a given address if the condition
is true.

Parameters: adr1 - The first FP number
adr2 - The second FP number
adr3 - The address at which to branch if the

two FP numbers are equal
Example: BIEQ COUNT,MAX,EXIT

BIEQ stands for "Branch If Equal." In this case, if the FP number at
COUNT is equal to the FP number at MAX, then the program will branch to
EXIT. The assembly language equivalent of this is "JMP EXIT." Of course
you do not have to use a label. Specifying an absolute address such as
$0600 in the macro call would be perfectly acceptable.

BIGT

Syntax: BIGT adr1,adr2,adr3
Purpose: To test if one FP number is greater than

another and branch to a given address if the
condition is true.

Parameters: adr1 - The first FP number
adr2 - The second FP number
adr3 - The address at which to branch

Example: BIGT REAL1,REAL2,GETNEXT

BIGT stands for "Branch If Greater Than." In this case, if the FP number
at REAL1 is greater than the FP number at REAL2, the program will branch
to the label GETNEXT (JMP GETNEXT).

BILT

Syntax: adr1,adr2,adr3
Purpose: To test if one floating point number is less than

another and to branch to a given address if the
condition is true.

Parameters: adr1 - The address of the first FP number
adr2 - The address of the second FP number
adr3 - The address at which to branch

Example: BILT SCORE,MIN,$0680

If the FP number at SCORE is less than the FP number at MIN, the program
will branch to address $0680 (JMP $0680). Otherwise, the program will
continue unaffected.

PUTEL

Syntax: PUTEL adr1,adr2,adr3
Purpose: To put a floating point number into any element

of an array of floating point numbers.
Parameters: adr1 - Base address of the array of FP numbers

adr2 - This parameter is the memory address
whose value holds the number (0-255)
corresponding to the element in the FP
array into which the FP number at adr3
is to be placed

adr3 - The address of the FP number which is to
inserted into the FP array

Example: PUTEL ARRAY,ELEMENT,REAL

This macro takes the FP number at REAL and inserts it into the ELEMENTth
element of the FP array starting at address ARRAY. Note that the first
ELEMENT is ELEMENT 0, the second is ELEMENT 1, etc. A floating point
array does not have to be specially declared or dimensioned. All you need
to do is set aside enough room to hold your array. Each element of a
floating point array consumes six bytes. If you only set aside sixty
bytes for a floating point array, you must be careful not to access any
element outside the range of 0 through 9. The zeroth element of the array
is located at ARRAY. Element 1 is located at ARRAY+6, and element 2 is
located at ARRAY+12, etc.

Take note that this macro reads the value in address ELEMENT to determine
into which element of the FP array REAL will be placed. Suppose you
wanted to put the FP number at REAL into the tenth element of the floating
point array starting at ARRAY. First, you must set aside 66 bytes to hold
the entire 11 element (0-10) array. This is accomplished in the following
manner:

ARRAY *=*+66

This line of assembly code defines the base address of the array as ARRAY
and sets aside 66 bytes of memory to hold the array.

To put REAL in the tenth element of the array, there is a correct and
incorrect method:

Incorrect: PUTEL ARRAY,10,REAL

Correct: LDA #10
STA ELEMENT
PUTEL ARRAY,ELEMENT,REAL

The first macro call would yield unpredicatable results, but the second
will always place the FP number at REAL into the tenth element of the
array. The BASIC equivalent of the above macro is:

ARRAY(ELEMENT)=REAL

Refer to the demo programs for detailed examples of implementing floating
point arrays.

GETEL

Syntax: GETEL adr1,adr2,adr3
Purpose: To retrieve any element from an array of floating

point numbers.
Parameters: adr1 - The base address of the floating point array

adr2 - The address of the memory location which
holds the number (0-255) which corresponds
to the number of the element of the array
which is to be extracted and placed in
adr3

adr3 - The address at which to place the FP
number extracted from the array

Example: GETEL ARRAY,ELEMENT,REAL

GETEL is the complement of PUTEL. This macro will take the ELEMENTth
element of the FP array starting at address ARRAY and place it at REAL.
The same restrictions that apply to PUTEL apply to GETEL. The BASIC
equivalent of the above macro is:

REAL=ARRAY(ELEMENT)

You may notice the ease with which this macro can be placed in a loop.
Each pass through the loop, the value in element may be incremented to,
for example, print an entire array of floating point numbers.

XXPUSH

Syntax: XXPUSH
Purpose: To save the X, Y, and Accumulator registers on

the stack before calling a macro
Parameters: None

Example: XXPUSH

This macro is used internally by the Floating Point Library and need not
be used by you when implementing any floating point macros. XXPUSH and
its complement, XXPULL, make sure that your X, Y, and Accumulator
registers are not altered by any the floating point macros. If you for
any reason use this macro, make sure that you use XXPULL to pull the X,Y,
and A registers off the stack at the appropriate time, or else havoc will
surely prevail. Use at your own risk!!!

XXPULL

Syntax: XXPULL
Purpose: To restore the previously saved X, Y, and

Accumulator registers.
Parameters: None

Example: XXPULL

XXPULL is the complement of XXPUSH as explained above. You can see how
XXPUSH and XXPULL are used as the first and last lines of every macro
definition in the Floating Point Macro Library.

LIMITATIONS OF THE FP LIBRARY

Raising a negative number to a power by calling the EXPON macro is likely
to yield unpredicatable results. This is due to the fact that the
calculation involves the use of logarithms, and negatives numbers do not
have logarithms associated with them. The Floating Point Library makes no
attempt to catch such error. Your program will not crash if you try to do
something impossible, such as take the square root of a negative number,
but the results will be unpredicatable.

PROGRAMMING TECHNIQUES

A major criticism of the use of macros in assembly language is the fact
that large macros tend to consume memory ravenously if used heavily. The
reason for this is that a macro is not like a subroutine or some type of
function which pulls its parameters off a software stack. A macro is
expanded, or reproduced, in its entirety each time it is called.

A simple solution to this problem is to implement heavily used macros as
assembly language subroutines. The only disadvantage of this technique is
that the parameters passed to the macro are fixed. For example, the
following two lines of code are all that is necessary to create a
subroutine that prints a floating point number.

PRINT PRINTFP REAL
RTS

The routine can be called by the following instruction and consumes only
three bytes each time it is called.

JSR PRINT

Of course, you are limited in that the only floating point number this
routine can print is the one at address REAL. But if you specify real as
target address at which to store the result of any FP calculation you
intend to print, then everything is set up automatically and a JSR to the
PRINT subroutine is all that is necessary to print the result of your
calculations. Although not appropriate under all circumstances, this
technique can save a considerable amount of memory when used efficiently.

The Demo Program

Included on the diskette is a the source and object code for a demo of the
Floating Point Library, FPDEMO.COM. The source code for the demo program
is in two files, FPDEMO.M65 and MSG.M65. The RUN address for FPDEMO.COM
is $5000

The Trigonometric Library
by Louis J. Chorich III

OVERVIEW

The Trig Library accompanies the Floating Point Macro Library. It
contains an additional eight macros which implement the basic
trigonometric functions sine, cosine, tangent, cotangent, secant, and
cosecant. Also included are macros for degree/radian conversions.

The Trig Library is a stand alone library of macros and may be used
independently of the Floating Point Library or in conjunction with it.

All trig macros operate upon angles measured in radians. Specifying an
angle in degrees will return incorrect results. All values must be in 6
byte Floating Point format.

The Trig Library is called TRIG.LIB and is included on the Library
diskette. To access the trig macros, it is necessary to INCLUDE the
library file in your source code in the same way that FP.LIB is INCLUDEed.
If both libraries are needed, it is a good idea to INCLUDE them together
at the beginning of your assembly program. This is explained fully in the
"Getting Started" section the Floating Point Package manual.

Included on the diskette is a demo of the Trig Library, TRIGDEMO.COM. The
source code is TRIGDEMO.M65. The RUN address for TRIGDEMO.COM is $5000.

THE TRIGOMOMETRIC MACROS

SIN

Syntax: SIN adr1,adr2
Purpose: To calculate the sine of an angle.

Parameters: adr1 - address of a FP angle in radians
adr2 - address at which to store the FP result

Example: SIN ANGLE,RESULT

This macro will calculate the sine of the angle represented by the 6 byte
floating point number at ANGLE and store the result of its calculation at
RESULT.

COS

Syntax: COS adr1,adr2
Purpose: To calculate the cosine of an angle.

Parameters: adr1 - address of a FP angle in radians
adr2 - address at which to store the FP result

Example: COS ANGLE,RESULT

The cosine of the floating point number at ANGLE is evaluated and the
result is stored at RESULT.

TAN

Syntax: TAN adr1,adr2
Purpose: To calculate the tangent of an angle.

Parameters: adr1 - address of a FP angle in radians
adr2 - address at which to store the FP result

Example: TAN RADIANS,TANGENT

This macro will compute the tangent of the angle at RADIANS and store the
floating point result at TANGENT.

COT

Syntax: COT adr1,adr2
Purpose: To calculate the cotangent of an angle.

Parameters: adr1 - address of a FP angle in radians
adr2 - address at which to store the FP result

Example: COT RADIANS,COTAN

The cotangent of the angle at RADIANS is evaluated and the floating point
result is stored at COTAN.

SCN

Syntax: SCN adr1,adr2
Purpose: To calculate the secant of an angle.

Parameters: adr1 - address of a FP angle in radians
adr2 - address at which to store the FP result

Example: SCN THETA,SECANT

This macro call will calculate the secant of the radian angle at THETA and
store the result at SECANT.

CSC

Syntax: CSC adr1,adr2
Purpose: To calculate the cosecant of an angle.

Parameters: adr1 - address of a FP angle in radians
adr2 - address at which to store the result

Example: CSC ALPHA,RESULT

This macro will calculate the cosecant of the radian angle at ALPHA and
store the cosecant of ALPHA at RESULT.

TORAD

Syntax: TORAD adr1,adr2
Purpose: To convert a degree angle to radians.

Parameters: adr1 - the address of a FP angle in degrees
adr2 - the address at which to store the FP angle

in degrees
Example: TORAD DEGREES,RADIANS

This macro is used to convert the degree angle at DEGREES to a radian
angle at RADIANS.

TODEG

Syntax: TODEG adr1,adr2
Purpose: To convert a radian angle to degrees.

Parameters: adr1 - the address of a FP angle in radians
adr2 - the address at which to store the FP angle

in radians
Example: TODEG RADIANS,DEGREES

This macro is used to convert the radian angle at RADIANS to a degree
angle at DEGREES.

	The Floating Point Package (cover)
	Copyright
	Overview
	Files on disk
	System Requirements
	Getting Started

	The Floating Point Macro Library
	FPADD
	FPSUB
	FPMUL
	FPDIV
	INPUTFP
	PRINTFP
	LN
	LOG
	EXP
	EXP10
	EXPON
	SQR
	IFP
	FPI
	AFP
	FPMOVE
	FPCOMP
	BIEQ
	BIGT
	BILT
	PUTEL
	GETEL
	XXPUSH
	XXPULL

	Limitations of the FP Library
	Programming Techniques
	The Demo Program
	The Trigonometric Library
	Overview
	The Trigonometric Macros
	SIN
	COS
	TAN
	COT
	SCN
	CSC
	TORAD
	TODEG

