
**fi.: <

HANDY REFERENCE CARD

vmlFORTH U

Stack inputs and outputs are shown; top of stack on right.
This card follows usage of the Forth Interest Group

(S.F. Bay Area); usage aligned with the Forth 78
International Standard.

For more infon• Forth Interest Group
P.O. Box 1105

x San Carlos, CA 94070.

*Operand Key:>jt»\nl,..
v' d.dl...

16-bit signed numbers
32-bit signed numbers

u 16-bit unsigned number
. addr.v\ address

. „>• v b .vv 8-bit byte

^ :•< ~ 7-bit ascii character value

^ r f V' boolean flag

. \. ^$ floating point number

,>o > • ,••••'$ string

s^iAi rrr1""
Sta'dk Manipulation
DUP
DROP
SWAP

OVER
ROT

<R0T
-DUP

>R

R>
R

(n — n
(n~)
(nl n2 —
(nl n2 -
(nl n2 n3
(nl n2 n3
(n — n ?
(n -)

n)

n)
n)

n2 nl)
nl n2 nl)
- n2 n3 nl)
- n3 nl n2)
)

Number Bases

••)DECIMAL
HEX

BASE

I --
(--
(- addr)

Arithmetic aend) Logical

*C^
+ (nl n2 — sum)
D+ (dl d2 - sum)
- (ni n2 ~ dljff)
* (nl n2 — prod)
/, (nl n2 — quot)
MOD (nl n2 — rem)
/MOD (nl n2 — rem quot)
*/M0D (nl n2 n3 — rem quo

*/ (nl n2 n3 — quot)
MAX (nl n2 ~ max)
MIN (nl n2 — min)
ABS { n — absolute)
DABS (d — absolute).
MINUS (n- -n)
DMINUS (d- -d)
AND (nl n2 — and)
OR (nl n2 — or)
XOR (nl n2 ~ xor)
NOT (n -W)

Comparison

o<
o>
o*
o#

Memory

nl n2—

nl n2 -

nl n2 -

nl n2 —

nl n2 ~
nl n2 -

n- f)
n- f)
n - f)
n- f)

9 (addr ~ n)
t (n addr --)
C@ (addr — b)
C! (b addr —)
? • ,. (addr —)
C? (addr —)
u? (addr -)
+1 (n addr —)

CMOVE (from to u --)
<CM0VE (from to u —)
FILL (addr u b —)

ERASE (addr.u --)

(addr u

Duplicate top of stack.
Throw away top of stack.
Reverse top two stack items.
Make copy of second item on top.
Rotate third item tp top.
Rotate top item to third.
Duplicate only if non-zero.
Move top item to "return stack" for temporary
storage (use caution).
Retrieve item from return stack.
Copy top of return stack onto stack.

Set decimal base.

Set hexadecimal base.
System variable containing number base.

Add.

Add double-precision numbers.
Subtract (nl-n2).
Multiply.
Divide (nl/n2).
Modulo (i.e. remainder from division).
Divide, giving remainder and quotient.
Multiply, then divide (nl*n2/n3), with double-
precision intermediate.
Like */M0D, but give quotient only.
Maximum.

Minimum.
Absolute value.
Absolute value of double-precision number.
Change sign.
Change sign of double-precision number.
Logical AND (bitwise).
Logical OR (bitwise).
Logical exclusive OR (bitwise).
True if top number zero (i.e. reverses
truth value).

True if nl less than n2.
True if nl greater than n2.
True if nl less than or equal to n2.
True if nl greater than or equal to n2.
True if top two numbers are equal.
True if nl does not equal n2.
True if top number negative.
True if top number positive.
True if top number zero (i.e. reverses
truth value.
True if n does not equal zero.

Replace word address by contents.
Store second word at address on top.
Fetch one byte only.
Store one byte only.
Print contents of address.

Print byte at address.
Print unsigned contents of address.
Add second number on stack to contents of address
on top.
Move u bytes in memory from head to head.
Move u bytes in memory from tail to tail.
Fill u bytes in memory with b, beginning at
address.

Fill u bytes in memory with zeroes, beginning at
address.

Fill u bytes in memory with blanks, beginning at
address.

Control Structures

DO...LOOP
I

r

j

LEAVE

?EXIT

DO... +L00P do: (end+1 start
+loop: (n —)

DO... /LOOP do: (end+1 start
/loop: (u --)

IF...(true) if: (f --)
...ENDIF

IF...(true)
...ELSE if: (f —)
...(false)
...ENDIF

BEGIN... until: (f -)
UNTIL

BEGIN... while: (f -)
WHILE

...REPEAT

do: (end+1 start
— index)
— index)
— index)
--)

TermiMiS Input - Outpyf

.R

D-
D.R

CR

SPACE

SPACES

DUMP

TYPE

COUNT

7TERMINAL

KEY

EMIT

EXPECT

WORD

n -)
n fieldwidth —)
d -)
d fieldwidth -)

")
")
n -)

-)
addr u —)
addr u —)
addr — addr+1 u)
- f)
- c)
c -)
addr n --)

(c -)

Input - Output Formating-

NUMBER (addr - d)
(--)
(d-d-)

#S (d - 0 0)

SIGN

#>

HOLD

(n d — d)
(d -- addr u)
(c -)

Disk Handling

LIST screen --)
LOAD screen —)
BLOCK block — addr

B/BUF — n)
BLK — addr)
SCR — addr)
UPDATE __)
FLUSH __)
EMPTY- —)

BUFFERS

Defining Words
: xxx (—)

VARIABLE xxx (n —)
xxx: (-- addr)

CONSTANT xxx (n —)
xxx: (-- n)

CODE xxx (-)

;C0DE (~)

<BUILDS... does: (-
D0ES>

LABEL xxx (— addr)

addr)

Set up loop, given index range.
Place current index value on stack.

Used to retrieve index after a >R.
Place index of outer DO-LOOP on stack.

Terminate loop at next LOOP, +L00P, or /LOOP.
LEAVE if 7TERMINAL is true (i.e. pressed).
Like DO...LOOP, but adds stack value (instead of
always '1') to index.
Like DO... +L00P, but adds unsigned value to
index.

If top of stack true (non-zero), execute. (Note:
Forth 78 uses IF...THEN.)

Same, but if false, execute ELSE clause. (Note:
Forth 78 uses IF...ELSE...THEN.)

Loop back to BEGIN until true at UNTIL. (Note:
Forth 78 uses BEGIN...END.)
Loop while true at WHILE;REPEAT loops uncondition
ally to BEGIN. (Note: Forth 78 uses BEGIN...IF
...AGAIN.)

Print number.
Print number, right-justified in field.
Print double-precision number
Print double-precision number, right-justified in
field.
Do a carriage return.
Type one space.
Type n spaces.
Print message (terminated by ").
Dump u words starting at address.
Type string of u characters starting at address.
Change length-byte string to TYPE form.
True if terminal break request present.
Read key, put ascii value on stack.
Type ascii value from stack.
Read n characters (or until carriage return) from
input to address.
Read one word from input stream, using given
character (usually blank) as delimiter.

Convert string at address to double-precision number.
Start output string.
Convert next digit of double-precision number and
add character to output string.
Convert all significant digits of double-precision
number to output string.
Insert sign of n into output string.
Terminate output string (ready for TYPE).
Insert ascii character into output string.

List a disk screen.

Load disk screen (compile or execute).
Read disk block to memory address.
System constant giving disk block size in bytes.
System variable containing current block number.
System variable containing current screen number.
Mark last buffer accessed as updated.
Write all updated buffers to disk.
Erase all buffers.

Begin colon definition of xxx.
End colon definition.
Create a variable named xxx with initial value n;
returns address when executed.

Create a constant named xxx with value n; returns
value when executed.
Begin definition of assembly-language primitive
operative named xxx.
Used to create a new defining word, with execution-
time "code routine" for this data type in assembly.
Used to create a new defining word, with execution-
time routine for this data type in higher-level Forth.

Creates a header xxx which when executed returns its
PFA.

Software and Documentation
©Copyright 1982

Vaipar (International!

HANDY REFERENCE CARD

waiFORTH fJ

valFORTH @S02 Assembler

ASSEMBLER (—)

CODE xxx (—)

C; (—)

END-CODE (—)

SUBROUTINE xxx (—)

;C0DE (—)

Control Structures

IF, l flag — addr 2)

Calls up the assembler vocabulary for subsequent
assembly language programming.
Enters the new word "xxx" into the dictionary
as machine language word and calls up the
assembler vocabulary for subsequent assembly
language programming.
Terminates an assembly language definition by
performing a security check and setting the
CONTEXT vocabulary to the same as the CURRENT
vocabulary.
A commonly used synonym for the word C; above.
The word C; is recommended over END-CODE.
Enters the new word "xxx" into the dictionary
as machine language subroutine and calls up
the assembler vocabulary for subsequent assembly
language programming.
When the assembler is loaded, puts the system
into the assembler vocabulary for subsequent
assembly language programming. See main
glossary for further explanation.

Begins a machine language control structure
based on the 6502 status flag on top of the
stack. Leaves an address and a security check
value for the ELSE, or ENDIF, clauses below,
"flag" can be EQ , NE , CC , CS , VC , VS ,
MI , or PL . Command forms:

...flag..IF,..if-true..ENDIF,...all...

...flag..IF,..if-true..
ELSE,..if-false..ENDIF,..all...

Used in an IF, clause to allow for execution
of code only if IF, clause is false. If the IF,
clause is true, this code is bypassed.
Used to terminate an IF, control structure
clause. Additionally, ENDIF, resolves all
forward references. See IF, above for command
form.

ELSE, (addr 2 — addr 3)

ENDIF, (addr 2/3 —)

BEGIN, (-— addr 1) Begins machine language control structures of
the following forms:
...BEGIN,...AGAIN,...
...BEGIN,...flag..UNTIL,...
...BEGIN,...flag..WHILE,..while-true..REPEAT,...
where "flag" is one of the 6502 statuses: EQ ,
NE , CC , CS , VC , VS , MI , and PL .

UNTIL, (addr 1 flag —) Used to terminate a post-testing BEGIN, clause
thus allowing for conditional looping of a
program segment while "flag" is false.

WHILE, (addr 1 flag — addr 4) Used to begin a pre-testing BEGIN, clause thus
allowing for conditional looping of a program
segment while "flag" is true.

REPEAT, (addr 4 —) Used to terminate a pre-testing BEGIN,..WHILE,
clause. Additionally, REPEAT, resolves all
forward addresses of the current WHILE, clause.

AGAIN, (addr 1 —) Used to terminate an unconditional BEGIN,
clause. Execution cannot exit this loop unless
a JMP, instruction is used.

Parameter Passing (These routines must be jumped to.)

NEXT

PUSH

PUSHOA

PUT

PUTOA

BINARY

POP and
POPTWO

N

Opcodes

(— adtir)

(— addr)

(— addr)

(— addr)

(— addr)

(— addr)

(— addr)

(— addr)

(— addr)

(various — various)

Transfers control to the next FORTH word to be
executed. The parameter stack is left unchanged.
Pushes a 16 bit value to the parameter stack
whose low byte is found on the 6502 return
stack and whose high byte is found in the
accumulator.
Pushes a 16 bit value to the parameter stack
whose low byte is found in the accumulator and
whose high byte is zero.
Replaces the value currently on top of the)
parameter stack with the 16 bit value whose
low byte is found on the 6502 stack and whose
high byte is in the accumulator.
Replaces the value currently on top of the
parameter stack with the 16 bit value whose
low byte is in the accumulator and whose high
byte is set to zero.
Drops the top value of the parameter stack
and then performs a PUT operation described
above.
POP drops one value from the parameter stack.
POPTWO drops two values from the parameter
stack.
Moves one to four values to the N scratch area
in the zero page and drops all values moved
from the parameter stack.
Points to a nine-byte scratch area in the zero
page beginning at N-l and going to N+7.
ADC, AND, ASL, BIT, BRK, CLC, CLD, CLI,

Aliases

CLV, CMP CPX, CPY, DEC, DEX, DEY, EOR,

INC, INX INY, JSR, JMP, LDA, LDX, LDY,

LSR, NOP ORA, PHA, PHP, PLA, PLP, ROL,

ROR, RTI RTS, SBC, SEC, SED, SEI, STA,

STX, TAX TAY, TSX, TXA, TXS, TYA,

NXT,
3

NEXT JMP, P0P2, .

POPTWO JMP,

PSH, 8 PUSH JMP, XL, = XSAVE LDX,
PUT, = PUT JMP, XS, = XSAVE STX,
PSHA, = PUSHOA JMP, THEN, = ENDIF,
PUTA, s PUTOA JMP, END, = UNTIL,
POP, • POP JMP,

Software and Documentation
©Copyright 1982

Vaipar International

V.JP

HANDY REFERENCE CARD

vbIFORTH U
Graphics and Color
SETCOLOR (nl n2 n3 -)

SE. (nl n2 n3 -)
GR. (n -)

POS.

POSIT- '

PLOT

DRAWT0''

DR.

FIT.

GTYPE

LOC.

(G")
POS?

CPUT

CGET

>SC0 :

(x y -)

(xy- j
(xy - j

(xy- j

(x y - j
•.(b -)

(-)

(addr count ~)

(x y - b)

(-)
(- x y)

(b -)

(-- b)

(cl - c2)

SCD> , (cl « c2)

>BSC0 (addrl addr2 count

BSCD> (addrl addr2 count —)

COLOR (b -)
CLRBYT (- addr)

Color register nl (0...3 and 4 for background)
is set to hue n2 (0 to 15) and luminance n3
(0-14, even).
Alias for SETCOLOR.
Identical to GR. in BASIC. Adding 16 will
suppress split display. Adding 32 will suppress
display preclear. In addition, this GR. will
not disturb player/missiles.
Same as BASIC POSITION or POS. Positions the
invisible cursor if in a split display mode,
and the text cursor if in 0 GR. .

Positions and updates the cursor, similar t
PLOT, but without changing display data.
Same as BASIC PLOT. PLOTs point of color
register specified by last COLOR command,
point x y.
Same as BASIC DRAWTO. Draws line from las;
PLOT'ted, DRAWTO'ed or POSIT'ed point to x
using color in register specified by last C _0R
command.

Alias for DRAWTO.
Fills area between last PLOT'ted, DRAWTO'ed or
POSIT1ed point to last position set by POS.,
using the color in register b.
Used in the form G" ccccc". Sends text cccc to
text area in non-0 Graphics mode, starting at
current cursor position, in color of register
specified by last COLOR command prior to cccc
being output.
Starting at addr, output count characters to
text area in non-0 Graphics mode, starting at
current cursor position, in color of register
specified by last COLOR command.
Positions the cursor at x y and fetches the
data from display at that position. Like
BASIC LOCATE and LOC. .
Run-time code compiled in by G".
Leaves the x and y coordinates of the cursor
on the stack.
Outputs the data b to the current cursor
position.
Fetches the data b from the current cursor

position.
Converts cl from ATASCII to its display screen
code, c2. Example: ASCII A >SCD 88 (a C!
will put an "A" into the upper left corner of
the display.
Converts cl from display screen code to ATASCII
c2. See >SCD.
Moves count bytes from addrl to addr2,
translating from ATASCII to display screen
code on the way.
Moves count bytes from addrl to addr2,
translating from display screen code to
ATASCII on the way.
Saves the value b in the variable CLRBYT.

Variable that holds data from last COLOR
command.

GREEN - 12

YLWGRN - 13

ORNGRN -- 14

LTORNG — 15

GREY — 0 PINK - 4 BLUE - 8

GOLD -- 1 LVNDR - 5 LTBLUE -- 9

ORNG — 2 BLPRPL -- 6 TURQ - 10

RDORNG
~"

3 PRPLBL -- 7 GRNBL -

(CONSTANTS)
- 11

(chan freq dist vol

SO. (chan freq dist vol
FILTER! (n -)

AUDCTL (- addr)

XSND (n —)
XSND4 (-)

-)

Sets up the sound channel "chan" as indicated.
Channel: 0-3

Frequence: 0-255, 0 is highest pitch.
Distortion: 0-14, evens only.
Volume: 0-15.
Suggested mnemonic: CatFish Don't Vote
Alias of SOUND.
Stores n in the audio control register and into
the valFORTH shadow register, AUDCTL. Use
AUDCTL when doing bit manipulation, then do
FILTER!.

A variable containing the last value sent to the
audio control register by FILTER!.
Silences channel n.
Silences all channels.

Text Output and Disk Preparation
S:

P:

BEEP

ASCII

EJECT

LISTS

PL1ST

PLISTS

(flag -)

(flag -)

(-)
(c, — n (executing))
(c, ~ (compiling))

(-)

(start count --

(scr -)

(start cnt —)

(-)

If flag is true, enables handler that sends
text to text screen. If false, disables the
handler. (See PFLAG in main glossary.)
If flag is true, enables handler that sends
text to printer. If false, disables the
handler. (See PFLAG in main glossary)
Makes a raucous noise from the keyboard.
Converts next character in input stream to
ATASCII code. If executing, leaves on stack.
If compiling, compiles as literal.
Causes a form feed on smart printers if the
printer handler has been enabled by ON P:.
May need adjustment for dumb or nonstandard
printers.
From start, lists count screens. May be aborted
by CONSOLE button at the end of a screen.
Lists screen scr to the printer, then restores
former printer handler status.
From start, lists cnt screens to printer three
to a page, then restores former printer handler
status. May be aborted by CONSOLE button at
the end of a screen.

With prompts, will format a disk in drive of
your choice.

mtmmm tJtilttss
DECOMP xxx

CDUMP (addr n —)

#DUMP (addr n —)

(FREE) (- n)

FREE (--)

H.

STACK

(n -)
(flag -)

(... -- ...)

B? (")

CFALIT xxx (« cfa (executing))
xxx (— (compiling))

Floating Point
FCONSTANT xxx (fp —)

xxx (— fp)

FVARIABLE xxx (fp —)
xxx: (addr --)

FDUP

FDROP

FOVER

(fpl - fpl fpl)
(fp -)
(fp2 fpl -- fp2 fpl fp2)

FLOATING xxx (— fp)

FP

F(a
xxx (— fp)
(addr — fp)

F! (fp addr --)

F. (fp --)

F?

F-t

(addr -)
(fp2 fpl - fp3)

F- (fp2 fpl - fp3)

F* (fp2 fpl - fp3)

F/ (fp2 fpl - fp3)

FLOAT (n - fp)

FIX

LOG

(fp (non-neg, less
than 32767.5) — n)

(fpl - fp2)

L0G10 (fpl -- fp2)

EXP (fpl - fp2)

EXP10 (fpl -- fp2)

F0= I fp — flag)

F= (fp2 fpl - flag)

F> (fp2 fpl — flag)

F< (fp2 fpl - flag)

FLITERAL (fp --)

Operating System
OPEN (addr nO nl n2 — n3)

CLOSE

PUT

(n -)
(bl n — b2)

GET (n - bl b2)

GETREC (addr nl n2 — n3)

PUTREC (addr nl n2 -- n3)

STATUS
DEVSTAT

(n - b)
(n - bl b2 b3)

SPECIAL (bl b2 b3 b4 b5 b6
b7 b8 — b9)

(")

Does a decompilation of the word xxx if it can
be found in the active vocabularies.
A character dump from addr for at least n
characters. (Will always do a multiple of 16.)
A numerical dump in the current base for at
least n characters. (Will always do a multiple
of 8.)
Leaves number of bytes between bottom of display
list and PAD.
Does (FREE) and then prints the stack and
"bytes".
Prints n in HEX, leaves BASE unchanged.
If flag is true, turns on visible stack.
If flag is false, turns off visible stack.
Does a signed, nondestructive stack printout,
TOS at right. Also sets visible stack to do
signed printout.
Does unsigned, nondestructive stack printout,
TOS at right. Also sets visible stack to do
unsigned printout.
Prints the current base, in decimal. Leaves
BASE undisturbed.

Gets the cfa (code field address) of xxx. If
executing, leaves it on the stack; if compiling,
compiles it as a literal.

The character string is assigned the constant
value fp. When xxx is executed, fp will be
put on the stack.
The character string xxx is assigned the
initial value fp. When xxx is executed, the
addr (two bytes) of the value of xxx will be
put on the stack.
Copies the fp number at top-of-stack.
Discards the fp number at top-of-stack.)
Copies the fp number at 2nd-on-stack to
top-of-stack.
Attempts to convert the following string, xxx,
to a fp number.
Alias for FLOATING.

Fetches the fp number whose address is at
top-of-stack.
Stores fp into addr. Remember that the
operation will take six bytes in memory.
Type out the fp number at top-of-stack.
Ignores the current value in BASE and uses
base 10.

Fetches a fp number from addr and types it out.
Replaces the two top-of-stack fp items, fp2 and
fpl, with their fp sum, fp3.
Replaces the two top-of-stack fp items fp2 and
fpl, with their difference, fp3=fp2-fpl.
Replaces the two top-of-stack fp items fp2 and
fpl, with their product, fp3.
Replaces the two top-of-stack fp items fp2 and
fpl, with their quotient, fp3=fp2/fpl.
Replaces number at top-of-stack with its fp
equivalent.
Replaces fp number at top-of-stack, constrained
as indicated, with its integer equivalent.
Replaces fpl with its base e logarithm, fp2.
Not defined for fpl negative.
Replaces fpl with its base 10 decimal logarithm,
fp2. Not defined for fpl negative.
Replaces fpl with fp2, which equals e to the
power fpl.
Replaces fpl with fp2, which equals 10 to the
power fpl.
If fp is equal to floating-point 0, a true
flag is left. Otherwise, a false flag is left.
If fp2 is equal to fpl, a true flag is left.
Otherwise, a false flag is left.
If fp2 is greater than fpl, a true flag is
left. Otherwise, a false flag is left.
If fp2 is less than fpl, a true flag is left.
Otherwise, a false flag is left.
If compiling, then compile the fp stack value
as a fp literal.

This word opens the device whose name is at
addr. The device is opened on channel nO with
AUX1 and AUX2 as nl and n2 respectively. The
device status byte is returned as n3.
Closes channel n.

Outputs byte bl on channel n, returns status
byte b2.
Gets byte bl from channel n, returns status
byte b2.
Inputs record from channel n2 up to length nl.
Returns status byte n3.
Outputs nl characters starting at addr through
channel n2. Returns status byte n3.
Returns status byte b from channel n.
From channel nl gets device status bytes bl and
b2, and normal status byte b3.
Implements the Operating System "Special"
command. AUX1 through AUX6 are bl through b6
respectively, command byte is b7, channel number
is b8. Returns status byte b9.
Loads the Atari 850 drivers into the dictionary
(approx 1.8K).

Software and Documentation

©Copyright 1982
VaSpar international)

Vocabularies

CONTEXT

CURRENT

FORTH

EDITOR

ASSEMBLER

DEFINITIONS
VOCABULARY (-

xxx

VLIST (-

(~ addr)

(- addr)

(-)

(-
(-

HANDY REFERENCE CARD

watFOmm £1

Returns address of pointer to context vocabulary
(searched first).
Returns address of pointer to current vocabulary
(where new definitions are put).
Main Forth vocabulary (execution of FORTH sets
CONTEXT vocabulary).
Editor vocabulary; sets CONTEXT.
Assembler vocabulary; <tets CONTEXT.
Sets CURRENT vocabulary to CONTEXT.
Create new vocabulary named xxx.

Print names of all words in CONTEXT vocabulary.

Miscellaneous and System

((--)

FORGET xxx (- j
ABORT (-)
'xxx (- addr)

HERE (— addr)

PAD (— addr)

IN (- addr)

SPG (— addr)
ALLOT (n -)
, (n -)

Begin comment, terminated by right paren on same
line; space after (.
Forget all definitions back to and including xxx.
Error termination of operation.
Find the address of xxx in the dictionary; if used
in definition, compile address.
Returns address of next unused byte in the
dictionary.
Returns address of scratch area (usually 128 bytes
beyond HERE).
System variable containing offset into input buffer.
Used, e.g., by WORD.
Returns address of top stack item.
Leave a gap of n bytes in the dictionary.
Compile a number into the dictionary.

wmiFORTH Memory Map

FIRST

$0700-®-

$0600-

$05FF-^

$057E-*-

STANDARD DISPLAY
MEMORY AREA

GENERAL BUFFER

WORD BUFFER

DICTIONARY

DISK BUFFERS
2112 BYTES DECIMAL

(RELOCATABLE)

{TASK)

KERNEL

BOOT CODE

ATARI FLOATING POINT

USER AREA

-PAD

$0080BYTES

-^USE

-*-PREV

— 0 +ORIGIN

$0480

$01FF1RF_e— U|^-
RETURN STACK ,.——"*

RpH -—•"• }
mm- TERMINAL BUFFER

$0

$00FF-*»

$0004 -»«

-UP

-RO

SN

-TIB

Z PAGE

SO-

SP-^

ATARI FLOATING POINT

UP N 8P W

STACK $00BC-$0080

SP IS X REQ18TER

RP 13 STACK POtMTER
OF CPU

Atari is a trademark of Atari. Inc.. a division of Warner Communications.

Software and Documentation
©Copyright 19® 2

Valpar (International

r*

IT

HANDY REFERENCE CARD

valFQHTH
T.M.

SOFTWARE SYSTEM

EDITOR 1.1 COMMAND SUMMARY
Below is a quick reference list of all the commands which the video editor

recognizes.

Entering the Edit Mode (executed outside of the edit mode)

* Enter the edit mode and view the specified screen
* Re-view the current screen.

* Enter the edit mode and position the cursor over
the word that caused a compilation error.
Enter the edit mode and position the cursor c
the word "cccc" where it is defined.
When ON, allows all words compiled until the
OFF to be locatable using the LOCATE command <.
Sets the length (in lines) of the storage bufft
The default is five.

V

L

WHERE

(scr# —)
(—)
(—)

LOCATE cccc (...)

LOCATOR (ON/OFF —)

#BUFS (#lines -)

CurSOf Movement (issued within the edit mode)

ctrl . t

Ctrl 4>

Ctrl 4=

Ctrl -*

RETURN

TAB

* Move cursor up one line, wrapping to the bottom line
if moved off the top.

* Move cursor down one line, wrapping to the top line
if moved off the bottom.

* Move cursor left one character, wrapping to the
right edge if moved off the left.

* Move cursor right one character, wrapping to the
left edge if moved off the right.
Position the cursor at the beginning of the next
line.

Advance to next tabular column.

Editing Commands (issued within the edit mode)

Ctrl

shift
DEL

INS

shift
ctrl

DEL

I

BACKS

ctrl H

Insert one blank at cursor location, losing the
last character on the line.

Delete character under cursor, closing the line.
* Insert blank line above current line, losing the

last line on the screen.
* Delete current cursor line, closing the screen.

Toggle insert-mode/replace-mode.
(see full description of ctrl-I).

* Delete last character typed, if on the same line
as the cursor.

Erase to end of line (Hack).

Buffer Management (issued within the edit mode)

Ctrl

>ctrl

ctrl

ctrl

Delete current cursor line sending
it to the edit buffer for later use.
Take the current buffer line and insert it

above the current cursor line.

Copy current cursor line sending it to the
edit buffer for later use.

Take the current* buffer line and copy it
to the current cursor line.

Roll the buffer making the topmost buffer
line current.

Roll the buffer backwards making the fourth
buffer line on the screen current.

Clear the current* buffer line and performs
a ctrl-B.

*Note: The current buffer line is bottommost on the video display.

Changing Screens (issued within the edit mode)

Ctrl

Display the previous screen saving all
changes made to the current screen.
Display the next screen saving all changes
made to the current screen.

'• Save the changes made to the current screen
and end the edit session.

Quit the edit session forgetting all changes
made to the current screen.

Special Keys (issued within the edit mode)

ESC

Ctrl

Ctrl

4* Do not interpret the next key typed as any
of the commands above. Send it directly to
the screen instead.

Put the arrow "-->" ("next screen") in the
lower-right-hand corner of the screen unless
it is already there, in which case remove it.
Split the current line into two lines at the point
where the cursor is.
Corrects any major editing blunders.

Screen M®mm§9nWM (executed outside of the edit mode)

FLUSH

EMPTY-

BUFFERS

COPY

CLEAR

,CLEARS

.,i SMOVE

(—) # Save any updated FORTH screens to disk.
(—) * Forget any changes made to any screens not yet

FLUSHed to disk.

* Copies screen #from to screen #to.
* Blank fills specified screen.

) Blank fills the specified number of screens start
ing with screen scr#.

(from to #screens —) Duplicate the specified number of screens Starting
with screen number "from".

(from to --)
(scr# -)
(scr# #screens

* EDITOR 10 COMMAND

Software and Documentation

©Copyright 1982
Vatpar International

KANDY REFERENCE GABD

waiFORWHM
SOFTWARE SYSTEM

GENERflL IMJTJES

Strings
UMOVE (addrl addr2 n —

(--
(- addr)

SCONSTANT xxx ($ —
xxx: (— S

SVARIABLE xxx (n —)
xxx: (— $)

S. ($ -)

$! ($ addr —)

$+ ($1 $2 « $3)

LEFTS (SI n - $2)

RIGHTS (SI n - $2)

MIDS ($1 n u - $2)

LEN

ASC

($ - len)
($ - c)

SCOMPARE

$•
S<
s>
SAVES

($1 $2 - flag)
($1 $2 - flag)
($1 $2 - flag)
(SI 52 - flag)
(SI - S2)

INSTR (SI S2 - n)

CHRS (c - $)

DSTRS (d - $)

STRS (n - $)

STRINGS (n $1 --

#IN$ (n - S)

$2)

INS

S-TB
SXCHG

(" $)

($1 - $2)
I $1 - $2)

Array Word Glossary
ARRAY xxx (n—)

xxx:(m — addr)

CARRAY

TABLE

xxx (n --)
xxx:(m — addr)

xxx (~)
xxx:(m -- addr)

xxx (—)
xxx:(m -- addr)

xxx (nO
xxx:(

nN count ..
m — addr

UMOVE is a "universal" memory move. It takes
the block of memory n bytes long at addrl and
copies it to memory location addr2. UMOVE
correctly uses either CMOVE or <CM0VE.
(at compile time)
(at run time)
If compiling, the sequence ccc (delimited by
the trailing ") is compiled into the dictionary
as a string:

Men I c I c I c I...I c I
(at compile time)
(at execution time)
Takes the string on top of the stack and
compiles it into the dictionary with the name
xxx. When xxx is later executed, the address
of the string is pushed onto the stack.
Reserves space for a string of length n.
When xxx is later executed, the address of the
string is pushed onto the stack.
Takes the string on top of the stack and sends
it to the current output device.
Takes the string at second on stack and stores
it at the address on top of stack.
Takes $2 and concatenates it with $1, leaving
S3 at PAD.
Returns the leftmost "n" characters of $1 as
$2.
Returns the rightmost "n" characters of SI as
S2.
Returns $2 of length u starting with the nth
character of SI.
Returns the length of the specified string.
Returns the ASCII value of the first character
of the specified string.
Compares $1 with $2 and returns a status flag.
Compares two strings on top of the stack.
Compares two strings on top of the stack.
Compares two strings on top of the stack.
As most string operations leave resultant
strings at PAD, the word SAVES is used to
temporarily move strings to PAD+512.
Searches $1 for first occurrence of $2.
Returns the character position in $1 if a
match is found; otherwise, zero is returned.
Takes the character "c" and makes it into a
string of length one and stores it at PAD.
Takes the double number d and converts it to
its ASCII representation as $ at PAD.
Takes the single length number n and converts
it to its ASCII representation as $ at PAD.
Creates $2 as n copies of the first character
of SI.
#IN$ has three similar but different functions.
If n is positive, it accepts a string of n or
fewer characters from the terminal. If n is
zero, it accepts up to 255 characters from the
terminal. If n is negative, it returns only
after accepting -n characters from the terminal.
The resultant string is stored at PAD.
Accepts a string of up to 255 characters from
the terminal.
Removes trailing blanks from $1 leaving new $2.
Exchanges the contents of $1 with S2.

(compiling)
(executing)
When compiling, creates an array named xxx
with n 16-bit elements numbered 0 thru n-1.
Initial values are undefined. When executing,
takes an argument, m, off the stack and leaves
the address of element m of the array.
(compiling)
(executing)
When compiling, creates a c-array named xxx
with n 8-bit elements numbered 0 thru n-1.
Initial values are undefined. When executing,
takes an argument, m, off the stack and leaves
the address of element m of the c-array.
(compiling)
(executing)
When compiling, creates a table named xxx but
does not allot space. Elements are compiled in
directly with , (comma). When executing, takes
one argument, m off the stack and, assuming
16-bit elements, leaves the address of element
m of the table.
(compiling)
(executing)
When compiling, creates a c-table named xxx
but does not allot space. Elements are compiled
in directly with C, (c-comma). When executing,
takes one argument, m off the stack and, assuming
8~bit elements, leaves the address of element m
of the c-table.

) (compiling)
) (executing)

When compiling, creates a vector named xxx
with count 16-bit elements numbered 0-N. nO is
the initial value of element 0, nN is the
initial value of element N, and so on. When
executing, takes one argument, m, off the stack
and leaves the address of element m on the stack.

-) (compiling)
) (executing)
When compiling, creates a c-vector named xxx
with count 8-bit elements numbered 0-N. bO is
the initial value of element 0, bN is the
initial value of element N, and so on. When
executing, takes an argument, m, off the stack
and leaves the address of element m on the stack.

CVECTOR xxx (bO ... bN count -
xxx:(m ~ addr

DouM® Nymber Extensions

DVARIABLE xxx (d —)
xxx:(— addr)

DCONSTANT xxx (d --)
xxx:(— d)

D-

D0=
(dl d2 - d3)
(d - flag)

D= (dl d2 - flag)

D0< (d - flag)

D< (dl d2 - flag)

D> (dl d2 - flag)

DMIN

DMAX

D>R

(dl d2 - d3)
(dl d2 - d3)
(d-)

DR> (- d)

D, (d-)

DU< (udl ud2 — flag

dl n — d2)

At compile time, creates a double number
variable xxx with the initial value d. At
run time, xxx leaves the address of its value
on the stack.

At compile time, creates a double number
constant xxx with the initial value d. At
run time, xxx leaves the value d on the stack.
Leaves dl-d2=d3.
If d is equal to 0. leaves true flag;
otherwise, leaves false flag.
If dl equals d2, leaves true flag; otherwise,
leaves false flag.
If d is negative, leaves true flag; otherwise,
leaves false flag.
If dl is less than d2, leaves true flag; other
wise, leaves false flag.
If dl is greater than d2, leaves true flag;
otherwise, leaves false flag.
Leaves the minimum of dl and d2.
Leaves the maximum of dl and d2.
Sends the double number at top of stack to the
return stack.
Pulls the double number at top of the return
stack to the stack.
Compiles the double number at top of stack
into the dictionary.
If the unsigned double number udl is less
than the unsigned double number ud2, leaves a
true flag; otherwise, leaves a false flag.
Converts n to a double number and then sums
with dl.

High R@soflyf§on Text Oytpu!
GCINIT

GC.

GC.R

GCD.R

GCEMIT

GCLEN

GCR

GCLS

GCSPACE

GCSPACES

GCTYPE

GC" ccc"

GCBKS

GCPOS

GCS.

SUPER

SUB

VMI#
OSTRIKE

GCLFT

GCRGT

.-)

n -)

nl n2 -)

d n -)

c -)

addr n ~ len)

-)

addr n --)

--)

--)

horz vert --

addr —)

--)

- addr)
ON or OFF --)

- addr)

— addr)

— addr)

Initializes the graphic character output
routines. This must be executed prior to using
any other hi-res output words.
Displays the single length number n at the
current hi-res cursor location.
Displays the single length number nl right-
justified in a field n2 graphic characters
wide. See .R .
Displays the double length number d right-
justified in a field n graphic characters
wide. See D.R .
Displays the text character c at the current
hi-res cursor location. Three special
characters are interpreted by GCEMIT.
Scans the first n characters at addr and
returns the number of characters that will
actually be displayed on screen.
Repositions the hi-res cursor to the beginning
of the next hi-res text line. See CR .
Clears the hi-res display and repositions the
cursor in the upper lefthand corner.
Sends a space to the graphic character output
routine. See SPACE .
Sends n spaces to the graphic character output
routine. See SPACES .
Sends the first n characters at addr to the
graphic character output routine. See TYPE .
Sends the character string ccc (delimited by ")
to the graphic character output routine.
Moves the hi-res cursor back one character
position for overstriking or underlining.
Positions the hi-res cursor to the coordinates
specified. Note that the upper lefthand corner
is 0,0.
Sends the string found at addr and preceded by
a count byte to the graphic character output
routine. See S. .
Forces the graphic character output routine
into the superscript mode (or out of the sub
script mode). See VMI below. May be performed
within a string by the * character.
Forces the graphic character output routine
into the subscript mode (or out of the super
script mode). See VMI below. May be performed
within a string by the v character.
The VMI command sets the number of eighths of
characters to scroll up or down when either a
SUPER or SUB command is issued.
A variable set by VMI.
If the OSTRIKE option is ON, characters are
printed over top of the previous characters
giving the impression of overstriking.
A variable which contains the address of the
character set displayed by GCEMIT. To change
character sets, simply store the address of
your new character set into this variable.
A variable which holds the column position of
the left margin.
A variable which holds the column position of
the right margin.

Software and Documentation
©Copyright 1982

Vatpar International

ira#FOJ?F#fM
SOFTWARE SYSTEM

GENERAL UTILITIES

Case Structures

CASE: structure SEL Structure

Format: Format:

CASE: wordname
wordO

wordl

wordN ;

: wordname

SEL
nl -> wordO
n2 -> wordl

CASE Structure

Format:

nN > wordN
(NOSEL wordnone)

SELEND

: wordname

CASE
wordO

wordl

wordN

(NOCASE wordnone)
CASEND

COND Structure

Format:

: wordname

COND
conditionO « wordsO »
conditionl « wordsl »

Miscellaneous Utilities

XR/W (#secs addr blk flag -)

LOADS (start count --)

THRU

SEC

(start finish --
start count

(n -)

MSEC (n -)

H->L (nl - n2)

L->H (nl - n2)

H/L (nl - nl(hi) nl(lo))

BIT (b - n)

?BIT (n b - f)

TBIT

SB IT
RBIT
STICK

(nl b — n2)
(nl b - n2)
(nl b - n2)
(n — horz vert)

PADDLE (nl -- n2)

16TIME (- n)

8RND (-- b)

16RND (- n)

CHOOSE (ul - u2)

CSHUFL (addr n —)

SHUFL (addr n —)

DUMP (addr n —)

BXOR (addr count b --)

BAND (addr count b —)

STRIG

PTRIG

(addr count b -)

(n - flag)
(n « flag)

conditionN « wordsn

NOCOND wordsnone)
CONDEND

"Extended read-write." The same as R/W except
that XR/W accepts a sector count for multiple
sector reads and writes. Starting at address
addr and block blk, read (flag true) or write
(flag false) #secs sectors from or to disk.
Loads count screens starting from screen #
start.

Converts two range numbers to a start-count
) format.
Provides an n second delay. Uses a tuned
do-loop.
Provides an n millisecond delay, (approx)
Uses a tuned do-Joop.
Moves the high byte of nlto the low byte and
zero's the high byte, creating n2. Machine
code.
Moves the low byte of nl to the high byte and
zero's the low byte, creating n2. Machine code.
Split top of stack into two stack items:
New top of stack is low byte of old top of
stack. New second on stack is old top of
stack with low byte zeroed.
Creates a number n that has only its bth bit
set. The bits are numbered 0-15.
Leaves a true flag if the bth bit of n is set.
Otherwise leaves a false flag.
Toggles the bth bit of nl, making n2.
Sets the bth bit of nl, making n2.
Resets the bth bit of nl, making n2.
Reads the nth stick (0-3) and resolves the
setting into horizontal and vertical parts,
with values from -1 to +1. -1-1 means up

and to the left.
Reads the nlth paddle (0-7) and returns its
value n2. Machine code.
Returns a 16 bit timer reading from the system
clock at locations 19 and 20, decimal.
Leaves one random byte from the internal
hardware. Machine code.
Leaves one random word from the internal
hardware. Machine code with 20 cycle extra
delay for rerandomization.
Randomly choose an unsigned number u2 which
is less than ul.
Randomly rearrange n bytes in memory, start
ing at address addr.
Randomly rearrange n words in memory, start
ing at address addr.
Starting at addr, dump at least n bytes (even
multiple of 8) as ASCII and hex. May be
exited early by pressing a CONSOLE button.
Starting at address addr, for count bytes,
perform bit-wise exclusive OR with byte b at
each address.

Starting at address addr, for count bytes,
perform bit-wise AND with byte b at each
address.

Starting at address addr, for count bytes,
perform bit-wise OR with byte b at each address.
Reads the button of joystick n (0-3).
Reads the button of paddle n (0-7).

o

O

Software and Documentation .
©Copyright 1982

Valpar international

HANDY REFERENCE CARD

¥®IFORTHm SOFTWARE SYSTEM

» soon raams

.Player/Missile Command Summary
Note: Players andmissiles are numbered 0 thru 3. The fifth player is numbered 4.

(PMINIT)

PMINIT

PMBAS

PLAYERS

5THPLY

(addr res —)

(res —)

(— addr)

(ON/OFF —)

(ON/OFF —)

PlYCLR

MSLCLft
PMCLR
MCaY

(»1# —)
(roll — }

(ON/OFF —)

PRIOR i n —)

PLYWID (width pl# —)

MSLWID (width ml# —)

PMCQL (pT# hue lum —)

BLDPLY (addr len horz vert
plf —)

BLDMSL (addr len horz vert
rail —)

PLYLOC (pl# — horz vert)

MSLLOC (ml# —- horz vert)

PLYMV (horz vert pl# —)

MSLMV

PLYPUT

PLYCHG

PLYSEL

PLYBND

MSLBND

?BND

7PLYSTT

?MSLSTT

?C0L

?MXPF

?PXPF

?MXPL

?WL

HITCLR

horz vert *T# —)

x y p1# —)

addr len pl# •>—)

addr # pl# —)

1 r t b pl# —)

1 r t b ral# --- }

— n)

pl# — n)

•1# -— a }

— f }

mil — n)

plf — n)

mil — n)

pl# — n)

—)

Initializes the player missile routines with
PM memory specified by "addr" with "res"
resolution.

. Initializes the player missile routines with
"res" resolution and with PM memory located
at the first available memory below the
display list.
A variable pointing to player/missile memory
which is set by (PMINIT) or PMINIT. It can
be read from but not written to.
This command enables or disables the player/
missile graphic display.
This command turns (the fifth player mode)
ON or OFF. If OFF, missiles take the colors
of their corresponding players. If ON, all
missiles take on the common color of play-
field 3. The fifth player is numbered as
four (4).
Erases the specified player (0-3,4).
Erases the specified missile (0-3).
Erases all players and all missiles.
This command turns (the multiple color
player mode) ON or OFF. See documentation
for explanation.
Sets the priority of .players and playfields.
See documentation for legal settings.
Sets the width of the specified player.
Legal widths are normal (0 or 2), double (1),
or quadruple (3).
Sets the width of the specified missile.
Legal widths are normal (0or 2), double (1),
or quadruple (3).
Sets the specified player to the color
defined by "hue" and "lum".
Creates a player whose image is at "addr"
with a length "len". The player is originally
placed at the specified horizontal and
vertical coordinates.
Creates a missile whose image is at "addr"
with a length "len". The player is originally
placed at the specified horizontal and
vertical coordinates.
Returns the horizontal and vertical coordi
nates of the specified player.
Returns the horizontal and vertical coordi
nates of the specified missile.
Moves the specified player according to the
horizontal and vertical offsets specified.
A positive horizontal offset moves the player
right, a negative one moves it left. Likewise,
a positive vertical offset moves the player
down and a negative one moves it up.
Moves the specified missile according to the
horizontal and vertical offsets specified.
See PLYMV above.
Positions the specified player and location
(x,y) on the video display.
This changes the image of the specified
player to the image of length "len" at "addr".
This changes the image of the specified
player to image number "#" in a table of
images starting at address "addr".
Specified the left, right, top, and bottom
boundaries of the specified player.
Specified the left, right, top, and bottom
boundaries of the specified missile.
Returns the boundary status of the last
player or missile moved. See documentation
for a description of this value.
Returns the boundary status of the last move
of the specified player. See documentation
for a description of this value.
Returns the boundary status of the last move
of the specified missile. See documentation
for a description of this value.
Returns true (1) if any collisions have
occurred since the last HITCLR command was
issued.
Returns 0 if the specified missile has not
hit any playfields since the last HITCLR
command. If any collisions have occurred,
a status value is returned. See documentation.
Returns 0 if the specified player has not hit
any playfields since the last HITCLR command.
If any collisions have occurred, a status
value is returned. See documentation.
Returns 0 if the specified missile has not
hit any players since the last HITCLR command.
If any collisions have occurred, a status
value is returned. See documentation.
Returns 0 if the specified player has not
hit any other players since the last HITCLR
command. If any collisions have occurred, a
status value is returned.
Clears the collision registers to a no-
colHsion state.

t Audio
AUOED

Character

Editor Command Summary
~) Calls up the audio-palette program.

Editor Command Summary
--) Calls up the character editor.

VtJWlhAHIBaUi BOUNDARY MAP

(Double resolution values are "m parentheses)

48 «. $30-

CLeft)

32 = $20
6)tie)

Video Screen

48—n

223 - $DF
(111 - $6F)

-207

223

Software and Documentation
©Copyright 1982

Valpar International

fy^lSHMSlitl Memory Map
vatFORTHH

SINGLE RESOLUTION

PMBASE + 2048'

PMBASE + 1792

PMBASE + 1536 -*•

PMBASE + 1280-*

PMBASE + 1024™*

PMBASE + 768 -*»

PMBASE
(Must He on a
2K boundary)

8 bits

Player 3

Player 2

Player 1

Player 0

Missiles*
(5th Player)

Unused Memory
Available to User

DOUBLE RESOLUTION

•-PMBASE + 1024

—•PMBASE + 896

*™PMBASE + 768

"•-PMBASE + 640

•-PMBASE + 512

«•- PMBASE + 384

•PMBASE
(Must He on a
1K boundary)

*Note: All missiles occupy the same memory location.
This is possible because unlike players which
are 8 bits wide and fill an entire byte, mis
siles are only two bits wide. Four missiles
can therefore be represented in the same amount
of memory as a single player.

Byte form: l m3 I m2 I ml i mO ^

©VALPAR INTERNATIONAL

(

r

HANDY REFERENCE CARD

waiF&mm
SOFTWARE SYSTEM

DISPLAY FORMATTER

(DBINIT)

DBM

DBMS

DBPTR

opcode —)

#times opcode -—)

block* —)

opcode block* ---)

DBINS

DBDEL

(#times opcode
block# —)

(block # —)

DBDELS (#times block* —)

DBDELL (—)

DBMOD (modifier block* ---)

DBMODL (modifier ---)

DBREM (block# —)

DBREMS

DBREML

(#times block* —)

?DBVAL block* --- value)

This command initializes the display formatter
using "dlist" as the target address for the
display list, and "dmem" as the target address
for display memory.
This command initializes the display formatter
setting the display memory address to top-of-
memory minus $1F00. The display list is
targeted for $100 bytes below the display
memory.

The DBM command adds "opcode" to the end of
the current display list.
The DBMS command Derforms a multiple DBM
command as described above.

This command makes the specified block the
next block to be created with the DBM commar

It essentially makes block#-l the end of the
current list.
The DBIN command inserts the specified opcodt
into the specified block. That block and all
following blocks are pushed back one block.
This command performs a multiple DBIN command
as described above.

The DBDEL command deletes the specified block
from the current display list.
This command performs a multiple DBDEL command
as described above.

The DBDELL command deletes the last block of
the current disDlay list.
This command modifies the specified block.
Legal modifiers are VRTMOD, HRZMOD, and INTMOD.
This command modifies the last block of the
current display list.
The DBREM command removes all modifiers from
the specified block. Note that if a HRZMOD
is stripped, display memory allocation will
change.
This command is a multiple DBREM command.
This command strips modifiers from the last
block of the current display list.
The 7DBVAL command returns all information
about the display block specified, i.e.,
the antic mode and any modifiers. This
information is returned as one value.
This command returns the antic-mode (or opcode)
of the specified block.
The 7DBM0DS command returns the modifiers for
the specified block. This information is
returned as one value. See documentation for
notes on interpretation of this value.
The DBWID command sets the display formatter
up for narrow (1), normal (2), or wide (3)
screen display.
Given a display block number, it returns the
address of the first byte of that display
block.

The DMCLR command clears the display memory
pointed to by the display list currently
being created.
Once a display list has been created, USRDSP
activates the new list.
The MIXED command performs a USRDSP then
instructs the Atari operating system to
re-direct all output to the video display
memory specified by the newly created
display list.
The DMPLST command gives a complete,
informative listing of the display list
currently being created.
A variable which contains a pointer to the
end of the current display list. It is an
offset from 0 DSPLST.
A variable containing the number of the next
display block to be created.
A variable which contains the target address
of the display memory pointed to by the
current display list.
A variable which contains the target address
for the current display list.
An array of addresses used by DBADR.
A c-array containing the display list
currently being created. DSPEND above
points to the end of the list in this array.

k 7ANTM0D (block* — antic-mode)

>. ?DBM0DS (block* — modifiers)

DBWID (width —)

OBAOR (block* — address)

DMCLR (—)

USRDSP (—)

MIXED (—)

DMPLST (—)

DSPEND (— address)

DSPBLK (— address)

DMLOC (— address)

LSTLOC (— address)

DBLST
DSPLST

(block* — address)
(pointer — address)

HANDY REFERENCE CARD

WMFORTH
SOFTWARE SYSTEM

DISPLAY FORMATTER

Th@ Character Modes
There are 6 character modes (opcodes 2 thru 7). All character modes

work in the same way, i.e., the values in display memory are indices to
a large "n" by 8 byte array. In some of these modes, the highest one or
two bits are used to specify a color with only the remaining lower bits
used for indexing. The following table gives information about each of
the modes:

Antic mode 2 3 4 5 6 7

Basic mode 0
— —

1 2

! # color * 1.5 1.5 5 5 5 5

Chars/line
1 narrow wid 32 32 32 32 16 16

Chars/line
normal wid

40 40 40 40 20 20

Chars/line
wide screen

48 48 48 48 24 24

Scan lines/
1 P^el 8 10 8 16 8 16

Bits/pixel 1 1 2 2 1 1

Color clocks
per pixel .5 .5 1 1 1 1

Colors

mode 2:

mode 3:

mode 4:

mode 5:

mode 6:

mode 7:

Takes the color of PF2 with the lum of PF1
(Artifacting/bleed very noticeable)
Same as above
Two bits/pixel in character definitions
00 = BAK 01 = PFO 10 = PF1
11 = PF2 if bit 7 of index = 0, else PF3
Same as 4 above

Most significant two bits of index
0 = PFO 1 = PF1 etc.

Same as 6 above

The Graphic Modes
There are 8 graphic modes. Unlike character modes, the values in

display memory are not indices into an array of character definitions,
but rather are the definitions themselves. Depending on the graphic mode,
these values give different results. The following table gives various
information about each mode.

Antic mode 8 9 A B C D E F*

Basic mode 3 4 5 6 ... 7 ... 8

colors 4 2 4 2 2 4 4 1.5

bytes/line
narrow wid

8 8 16 16 16 32 32 32

bytes/line
normal wid

10 10 20 20 20 40 40 40

bytes/line
wide screen

12 12 24 24 24 48 48 48

Pixels per
normal wid

40 80 80 160 160 160 160 320

Scan lines/pixel 8 4 4 2 1 2 1 1

Bits/pixel 2 1 2 1 1 2 2 1

Color clocks
per pixel

4 2 2 1 1 1 1 .5

*Mode F values differ when in GTIA modes

Colors

mode 8:

mode 9:

mode A

mode B

mode C

mode D

mode E
mode F

Two bits/pixel, 4 pixels/byte
00 = BAK 01 = PFO 10 = PF1

One bit/pixel, 8 pixels/byte
0 = BAK 1 = PFO

Same as mode 8 above

Same as mode 9 above

Same as mode 9 above

Same as mode 8 above

Same as mode 8 above
Take the color of PF2 and lum of PF1

(if not in a GTIA mode)

11 = PF2

Software and Documentation

©Copyright 1982
Vatpar Bnternationai

€

HANDY REFERENCE CARD

waiFmmm
SOFTWARE SYSTEM

veiMJIPIIilll

General Functions
pen (n -- }

PHPEN (n —)

DRAW (n ~)

DRAWTO (x y —)

PHIL (n —)

This command is used to change the color
which the armadillo draws and fills.
This command is used to change the color
which the armadillo fills.
Move the armadillo n units in the directi
in which it is heading. Draw that portior
the line of travel of the armadillo that f .
within the current window.
Move the armadillo to x y and draw that po.
of the line of travel that falls within the
current window.
Move the armadillo n spaces in the directio.
it is heading, and color that portion of the
path of travel with the PEN value. Also
perform a fill to the right during che time
that the armadillo is in the current window.

Move the armadillo to the point x, y. Then
proceed as in PHIL.
GO moves the armadillo n units in the directi n

in which it is facing.
Same as GO, but doesn't destroy stack argument.
Same as GO, but colors last pixel with PEN color.
Same as GO., but doesn't destroy stack argument.
DOT puts a pen-color dot at the present
armadillo position.
GOTO positions the armadillo at x,y.
Same as GOTO but puts dot at x,y.
Positions the armadillo at the point 0,0.
Positions the armadillo at the point 0,0 and
turns it to face up.
Positions the armadillo at the last point
drawn by the system routines. DILLO vocab.
ON ASPECT will cause vertical components of
subsequent graphics commands to be scaled to
account for pixels not being square.
Returns the x coordinate of the armadillo.
Returns the y coordinate of the armadillo.
Changes the direction that the armadillo is
facing by n degrees clockwise.
Turns the armadillo to a heading of n degrees
clockwise from vertical.
Turns the armadillo so that it faces toward

the point x,y.
Returns the direction, in degrees (0-359), in
which the armadillo is facing.

PHILTO

GO

DUPGO

GO.

DUPGO.
DOT

GOTO

GOTO.
CENTER

CENTERO

RELOC

ASPECT

DX1
DY1

TURN

RELWND

WIPE

FRAME

BASWND

(x y -)

(n -)

(n - n)
(n --)
(n -- n)
(--)

(x y -)
(x y -)
(-)
(-)

("--)

(ON or OFF ~)

(
n)
n)

(n-)

TURNTO (n -)

TURNTWD (x y ~)

DAZM (- n)

Windows and Coordinate
WINDOW (left right

top bottom —)

(left right
top bottom —)

(~)

(-)
(-)

THISWND xxx, (—)
xxx: (—)

Systems
Sets a new window whose boundaries, expressed
in the coordinate system of the base window
(not the current window), are taken from the
stack in the order indicated.
Makes current a window whose edges are as
indicated on stack in the coordinate system
of the current window (not the base window).
Colors the entire current window according to
the color register selected by the last PHBAK
command, but uses DRAW and draw options.
Draws a line around the current window.
Makes the base window (usually the full window
first put up by a GR. command) current, centers
the armadillo and turns it to 0 degrees.
Creates a word, xxx, which when executed makes
current the window which was current at the
time xxx was defined.
Advanced users. Used to set up a base window
when not using GR.. The values indicated are
the number of pixels from the left edge of the
display (for left and right) and from the top
edge of the display (for top and bottom). DILLO.
Center the armadillo in the current window.
Center the armadillo in the current window and
turn it to 0 degrees.

(left right
top bottom —)

WCTR (—)
WCTRO (-)

Line-naming/LIn® Manipulation and Point-naming
NAMEPT

THISPT

2PT-LN

MAKLN

NAMELN

THISLN

xxx,

xxx:

xxx,

xxx:

(xl

(

xxx,

xxx:

xxx,

xxx:

(x y -)
(-- x y)
(-—)
(-- x y)
yl x2 y2 — a b c)

a b c)

(a b c -)
(-- a b c)
(-)
(- a b c)

(al bl cl a2 b2 c2
— x y)

Creates a word xxx. When xxx is executed, it
returns x and y to the stack.
Creates a word xxx. xxx returns defining-time
armadillo x,y.
Takes the coordinates of two points and leaves
a, b, and c of the connecting line.
Pushes to stack the a, b, c representation of
the imaginary line along which the armadillo
faces.
Creates the word xxx. When xxx is executed,
it returns the values a b c to the stack.
Creates the word xxx. When xxx is executed,
it returns the a, b, and c values of the line
that the armadillo was sitting on and facing
along when xxx was created.
Given two lines on the stack in a b c form,
2LNX returns the point of intersection of the
two lines.

Options
(All words below take

Switch Defaul t

RPHIL on Enables right fill
with PHIL, PHILTO

LPHIL off . Enables left fill

with PHIL, PHILTO.
DRX0R off DRAW, DRAWTO will

xor pixels with
line coloro

PHX0R off PHIL, PHILTO will
xor pixels with
fill color,,

DRUNT off Enable draw-until

functions.

PHUNT off Fill to edge of
window or to dest.

pixel.
DRUN0T on With DRUNT on,

DRAW, DRAWTO draw
until hit color set

by DRBAK, PHBAK.
PHUN0T on With PHUNT on,

PHIL, PHILTO fill
until hitting color
set by PHBAK.

PH+DR on PHIL, PHILTO draw
line as filling.

DR1ST on First point of
lines is drawn.

PHCRNR off PHIL, PHILTO perform
corner checking,
armadillo must be

moving vertically.

flag stack argument, and leave none.)

ON OFF

Disables right fill
with PHIL, PHILTO.
Disables left fill
with PHIL, PHILTO.
DRAW, DRAWTO will
replace pxls with
line color.
PHIL, PHILTO will
replace pxls with
fill color.

Disable draw-until
functions.
Fill until encounter

ing halt pixel cond
set by PHBAK, PHUN0T.
With DRUNT on,
DRAW, DRAWTO draw
until hit not color
set by DRBAK, PHBAK.
With PHUNT on,
PHIL, PHILTO fill
until hitting not
color set by PHBAK.
PHIL, PHILTO don't
draw line as filling.
First point of lines
is not drawn.
No corner checking.

DINIT sets all switches to their default values.

Software and Documentation

©Copyright 1982
Vaipar international

HANDY REFERENCE CARD

vaiFQRTH software system

tat Cwpsstai end
Ante tat" '

Basic Commands
*." (-)

*TYPE I addr count —

*CR { -)

*EMIT I c -- }
♦SPACE (-)

♦SPACES (n ~)

♦BACKS (-)

RGTJST (--)
LFTJST I --)
CTROST (-)
FILJST (-)
INVID (f -)

INVBK < f ~)

CAP (-)

CAPS { f--)

COLOR C b~)

TYPEOUT (--)

WINDOUT (--)

INVBK (ON or OFF ~)

Text Compression
W* xxx, { —)

xxx: (—)

xxx, (—
xxx: (—

xxx, (—)
xxx: (—)

Typed Output
PRTWIO -n)

-- n)

« n)

- n)

-- n }

PRTIND

PWID

VIDIND

PRT:

VID:

PRINIT

Windows
WADR

WHGT

WCLR
NAMWND (wadr wid hght b/ch

byt/ln ~)

- .)

--)

!•--'

NAMEBW xxx, [column row wid
hgt --)

xxx: (— }
MAKEBW (col rowwid hgt —)

NAMECW xxx, (col rowwidhgt
xxx: (—)

MAKECW (col rowwid hgt -~)

Sends following string of characters to the
formatter.
Sends count characters starting at addr
to the formater.

*CR formats and flushes the buffer to the
output device, clears the buffer, does CR.
Sends the character c to the formatter.
Sends a single character of value in the
quan BKGND to the formatter, through *EMIT.
Sends n characters of value in the quan BKGND
to the formatter, through *EMIT.
Backs up the formatter buffer pointer, BPTR,
one location and fills new location with
BKGND value.
Sets up formatter for right justification.
Sets up formatter for left justification.
Sets up formatter for center justification.
Sets up formatter for fill justification.
ON INVID means text will be output in inverse
video; OFF INVID means normal video.
ON INVBK means background of text will be
output in inverse video. OFF INVID means
normal video.
Causes capitalization of the next byte
processed by *EMIT or *TYPE.
ON CAPS means text will be capitalized if
lower case. OFF CAPS means text will be
printed as-is.
Color register b will be used for color of
subsequent text output to windows in Graphics
modes 1 and 2.
TYPEOUT directs the formatter to use TYPE
as its actual output routine, allowing output
to the display screen or printer.
WINDOUT directs the formatter to use window
routines for output. A window must be created
before attempting to use window output.
When ON, background character output by
formatter in 0 graphics mode will be inverse
video blank. When OFF, this character will
be normal video blank.

Creates a tc-word-compiling word, named xxx,
and a header!ess te-word which when executed
sends the string xxx through the formatter
followed by *SPACE. xxx when executed, com
piles in the cfa of this tc-word. W* and xxx
are both in transient area and so are disposed
by DISPOSE.
Creates a te-prefix-corapiling word, named xxx,
and a header!ess tc-prefix which when executed
sends the string xxx through the formatter,
xxx,when executed, compiles in the cfa of
this cfa of this tc-prefix. P* and xxx are
both in the transient area and so are disposed
by DISPOSE.
Creates a tc-suffix-compiling word, named
xxx and a header!ess tc-suffix which when
executed sends the string xxx through the
formatter preceded by ♦BACKS and followed
by ♦SPACE, xxx, when executed, compiles in
the cfa of this tc-suffix. S= and xxx are
both in the transient area and so are dis
posed by DISPOSE.

A quan containing the width of the area to
be printed when printer output from the
formatter has been selected by PRT:.
A quan containing the number of spaces the
printer is to indent when outputting. from
the formatter,
A quan containing the number of columns the
printer is actually able to print.
A quan containing the number of spaces the
output routine is to indent when outputting
from the formatter.
A quan containing the width of the area to
be written when video output from the for
matter has been selected by VID:.
Directs TYPEd output to the printer, and
moves appropriate values into WWID and PVINO.
Directs TYPEd output to the video display,
andmoves appropriate values into WWID and
PVIND.
Resets PCTR, the printed line counter.

Address in memory corresponding to character
position in upper lefthand corner of current
window.
Height in lines of currently active window.
Fills the current window with BKGND.
One of many possible window-defining structures.
Accepts window upper lefthand corner address,
its width, height, byte/character, and the
bytes/In of the current graphics mode.
Names a 0 graphics window for later
activation.

Establishes a 0 graphics window immediately
but does not name it for later retrieval.

--} Names a 1 or I graphics window for later
activation.
Establishes a 0 graphics window immediately
but,does not name it for later retrieval.

Virtual (Disk-based) Memory
(A pointer to a byte on disk is implemented by the two system variables, BLK and
IN 1n the fig model. BLK contains the block number pointed to and IN contains the
number of bytes into the block the byte in question is located.)
r

XCOUNT

V$TP

V$f

V$*EMT

V$!

AITINIT

t - blk in)

(-

(adr — adr+2 xcount

xxx, (blk in
xxx: (— J

xxx, { blk in
xxx: { —)

(- XCOWT)

(« X$=PAf) }

(--

(X$ -)

(—xS-PAD)

(scr —)

Leaves the values of BLK and IN on the stack
at the time it is executed and then scans the
virtual memory pointer formed by BLK and IN
forward until the next " character is encountered.
Starting from the location in virtual memory
pointed to by BLK and IN, outputs characters
through *EMIT until a " character is encountered,
which it does not output.
Extracts a two-byte count from an extended
string, and leaves the count on top of the
address + 2.
Generally used after V". Takes a virtual
memory pointer from the stack, and creates
a word xxx which when executed will push the
virtual memory pointer to BLK and IN and then
execute XMTV, thus retrieving a message from
disk.
Creates a word xxx which when executed pushes
the virtual memory pointer which was on stack
at the time of its creation to BLK and IN.
Extracts a two-byte string count fromthe
disk location to which BLK and IN point,
leaves it on stack, and bumps the virtual
memory pointer made up of BLK and IN twice.
Extracts the extended string in virtual
memory pointed to by BLKand IN. The string
is left at PAD.
Sends the extended string pointed to by BLK
and IN through *EMIT.
Stores the extended string on stack to
virtual memory starting at the location
pointed to by BLK and IN. «—
Reads the following characters until the
delimeter " as an extended string and stores
the string at PAD. Operates from screens
only. Crosses block and screen boundaries
without additional code.
Sets up ALTBLK and ALTIN to point to screen
scr. ALTBLK and ALTIN form an auxiliary
virtual memory pointer that is used to keep
track of how far messages have been compiled
onto the destination disk.

Software and Documentation
©Copyright 1882

Vaipar International

	valForth 1.1 - System
	Memory Map

	Editor 1.1
	General Utilities
	PMGs, Character, & Sound
	PMG Memory Map

	Display Formatter
	valGraphics
	Text Compression & Auto Text Formatting

