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PREFACE

Since the appearance of the first edition of this textbook in
1995 the main changes that have occurred in the field of
polymer processing are the use of polymers from renewable
resources and more interest in recycling and reprocessing of
polymers (i.e., green engineering). Furthermore, processing
technology for the most part has not changed significantly
except for a technique referred to as “microinjection mold-
ing,” a process designed to deliver extremely small parts
(∼1.0 mg in mass). Hence, the coverage of material as out-
lined in the original preface can still be followed. We outline
the major changes in the textbook below.

Because the field of polymer processing has not changed
drastically since the appearance of the first edition of this
book nearly 20 years ago, there are no major changes in
the overall thrust and purpose of the book. The goal of the
book remains unchanged and is to teach the basic principles
needed in the design of polymer processing operations for
thermoplastics. The main change in the field has been in
the area of microinjection molding in which objects such
as miniature gears and biomedical devices weighing only
a fraction of a gram are produced. Although the general
features of the process rely on injection molding, there are
still some differences in the design considerations of the
process because of the high shear rates and high temperatures
required during processing. We have added discussion of the
microinjection molding process in Chapter 10.

The major change in the field of polymer processing is
the polymers that are processed, which is driven by the need
to practice “green engineering.” There is a greater interest
in the processing of polymers from renewable resources and
reprocessing (i.e., recycling) of polymers that have already
been subjected to a processing history. For this reason a
new chapter, Chapter 11, has been added to the book, which
is concerned with the recycling of thermoplastics and the

processing of renewable polymers. Because the decision
to recycle a polymer or to use a polymer from renewable
resources cannot be made without the appropriate analysis
guided by the purpose to recycle, we introduce the concept
of life cycle assessment (LCA), which provides a system-
atic method for determining whether recycling and which
form of recycling is the proper environmental choice. Fur-
thermore, we include background, which considers material
and energy flows associated with various types of recycling
streams as it is important that more energy not be used in
recycling plastics than is required in the conversion of raw
materials to virgin resin. Chapter 11 also includes discussion
of the processing of new-to-world renewable polymers (i.e.,
polymers that come from renewable resources, e.g., carbo-
hydrates, and are not identical to today’s petroleum-derived
polymers). Examples of these polymers are poly(lactic acid)
(PLA), thermoplastic starch (TPS), and polyhydroxyalka-
noate (PHA). The other category of renewable polymers is
that of identical renewable polymers (also called bioidenti-
cal polymers), but these polymers require no new knowledge
for processing as these renewable polymers have identical
structure, performance, and processing to petroleum-derived
polymers, with examples being bio-HDPE, bio-PP, and bio-
poly(butylene succinate) (bio-PBS). The teaching of the sub-
ject matter in Chapter 11 can require five or six lectures to
do it completely. However, the very basics such as those in
Sections 11.1 and 11.2 coupled with an overview of the other
sections can be done in two or three lectures. It is recom-
mended that the students at least be exposed to the green
engineering topics in Chapter 11.

The other additions to the book include discussion of the
rheology of polymers containing fibers that serve to reinforce
the solid polymer and the role of sparse long chain branching
on the rheology of polymer melts. These topics are discussed

xi



xii PREFACE

in Chapter 3, and additional problems using the theory are
found there also. Fiber suspensions have always been of
interest and are included in books on processing of fiber
composites. However, because these materials are processed
by means of equipment used for thermoplastics and because
of their importance in the generation of lightweight parts,
we have included the subject matter in this book. Further-
more, the significant changes in the rheology and processing
of polymers containing sparse long chain branching, that
is, chains with less than about 10 long branches per chain
(greater than the critical entanglement molecular weight),
justify the inclusion of a brief coverage of this topic in
Chapter 3.

Finally, in the first edition of this book we included
numerical subroutines (International Mathematics and Sta-
tistical Libraries, IMSL, from Visual Numerics). However,
the use of these subroutines requires knowledge of a higher

level programming language, such as Fortran, which is typi-
cally not taught in the engineering curriculums any more.
Hence, we have removed from the numerical examples
the use of these specific subroutines and report only the
numerical results that may have been obtained by means of
either the IMSL subroutines or Excel or MATLAB. These
solutions are available on the Wiley website (http://
booksupport.wiley.com) and are listed via the exam-
ple number and which numerical method is employed. Many
engineering students have been exposed to MATLAB and
certainly have access to Excel. The discussion of the use of
the IMSL subroutines is also given on the website, but the
subroutines are no longer included with the book.

Donald G. Baird
Dimitris I. Collias

November 2013

http://booksupport.wiley.com
http://booksupport.wiley.com


PREFACE TO THE FIRST EDITION

This book is intended to serve as an introduction to the
design of processes for thermoplastics. It is intended to
meet the needs of senior chemical, mechanical, and mate-
rials engineers who have been exposed to fluid mechanics,
heat transfer, and mass transfer. With the supplementing of
certain parts, the book can also be used by graduate stu-
dents. In particular by supplementing the material in Chap-
ters 2 and 3 with a more sophisticated coverage of nonlinear
constitutive equations and the addition of topics in finite
element methods, the book can be used in more advanced
courses.

A large number of chemical and mechanical engineers
are employed in the polymer industry. They are asked to
improve existing processes or to design new ones with the
intent of providing polymeric materials with a certain level
of properties: for example, mechanical, optical, electrical, or
barrier. Although there has been a belief that when a given
polymer system does not meet the desired requirements that
a new polymer must be used, it is becoming more apparent
that the properties of the given polymer can be altered by
the method of processing or the addition of other materials
such as other polymers, fillers, glass fibers, or plasticizers.
Certainly a large number of these activities are carried out
by trial-and-error (Edisonian research) approaches. The time
to carry out the experiments can be reduced considerably
by quantitative design work aimed at estimating the process-
ing conditions which will provide the desired properties. Yet,
engineers receive little or no training in the design of polymer
processes during their education. Part of the reason is they
have an inappropriate background in transport phenomena,
and the other is the lack of the mathematical tools required to
solve the equations which arise in the design of polymer pro-
cesses. One aim of this book is to strengthen the background
of engineering students in transport phenomena as applied

to polymer processing and the other is to introduce them to
numerical simulation.

As there are several books available concerned with the
processing of polymers with an emphasis on thermoplas-
tics, the question is: How does this book meet the needs as
described in the above paragraph any differently or better
than existing books? First of all we cannot revolutionize the
area of teaching polymer processing as the principles do not
change. What we have done, however, is make the material
more accessible for solving polymer processing design prob-
lems. Many times there may be several theories available to
use in the modeling of a process. Rather than discuss all the
different approaches, we choose what we think is the best
theory (but pointing out its limitations and shortcomings)
and show how to use it in solving design problems. Another
important feature is that we provide the mathematical tools
for solving the equations. Other books leave the student with
the equations and a description of how they were solved.
This does not help someone who has a slightly different set
of equations and needs an answer. In this book as much as
possible we leave the student with several methods for get-
ting a solution. Included with this book are a selection of the
subroutines from the International Mathematics and Statis-
tical Libraries (IMSL) (Visual Numerics Inc., Houston, TX)
for the solution of various types of equations which arise
in the design of polymer processes. The subroutines have
been made relatively “user-friendly,” and by following the
examples and the descriptions of each subroutine given in
Appendix D solutions are readily available to a number of
complex problems. The book is not totally dependent on the
use of the computer, but there are certain problems which just
can’t be solved without resorting to numerical techniques.
Rather than dwell on the numerical techniques we choose
to use them in somewhat of a “black box” form. However,
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xiv PREFACE TO THE FIRST EDITION

sufficient documentation is available in the references if it
becomes necessary to understand the numerical technique.
Although there are many who will criticize this approach,
during the time of their objection the equations will be solved
and an answer will be available. With practice the student will
learn when the “black box” has spit out senseless results.

The book is organized in such a way that the first five chap-
ters are concerned with the background needed to design
polymer processes while the last five chapters are con-
cerned with the specifics of various types of processes. Chap-
ter 1 contains an overview of polymer processing techniques
with the intent of facilitating examples and problems used
throughout the next four chapters. Furthermore, a case study
presented at the end of Chapter 1 shows how the proper-
ties of blown film strongly depend on the processing condi-
tions. Each of the remaining chapters is started with a design
problem which serves to motivate the material presented in
the chapter. Chapters 2 and 3 present the basics of non-
Newtonian fluid mechanics which are crucial to the design
of polymer processes. In Chapter 4 we introduce the topic
of mass transfer as applied to polymeric systems. Finally, in
Chapter 5 the non-isothermal aspects of polymer processing
are discussed. In Chapter 5 the interrelation between pro-
cessing, structure, and properties is emphasized. These first
five chapters contain all the background information includ-
ing examples illustrating the use of the IMSL subroutines.
Mixing is so important to the processing of polymers that
we have devoted a full chapter, Chapter 6, to this topic. The
remaining chapters are devoted to the factors associated with
the design of various processing methods. We have tried to
arrange the subject matter by similarities in the process. In
each chapter we are careful to make it known what aspects
of design the student should be able to execute based on their
educational level. In many books on polymer processing it is
not clear to the student just what part of the design he or she
should be able to carry out.

All but the first chapter contain problem sets. The prob-
lems are grouped into four classes:

Class A: These problems can be solved using equations
or graphs given in the chapter and usually involve arith-
metic manipulations.

Class B: These problems require the development of
equations and serve to reinforce the major subject mat-
ter in the chapter.

Class C: These problems require the use of the computer
and are aimed at making direct use of the IMSL sub-
routines.

Class D: These problems are design problems and as such
have a number of solutions. They require the use of all
the previous subject matter but with an emphasis on
the material presented in the given chapter.

We have attempted to integrate the problems with the sub-
ject matter in an effort to reinforce the material in the
given chapter. Furthermore, most of the problems have
been motivated by situations which might be encountered in
industry.

The coverage of the material in this book requires from
45 to 60 lectures. The number of lectures depends on the
background of the students and the depth to which one cov-
ers the last five chapters of the book. In most cases, it is
recommended to teach the material in Chapter 5 first before
teaching Chapter 4, as the heat transfer topics facilitate the
teaching of mass transfer. If only 30 lectures are available
for teaching the material, then it is recommended to elimi-
nate Chapters 4 and 6. However, this depends on the specific
preference of the instructor.

Finally, the book has evolved out of teaching a senior
level course in polymer processing at Virginia Tech, the
teaching of numerical methods to undergraduate chemical
engineers, and consulting experiences. First, it was appar-
ent that a reinforcement of transport phenomena was needed
before one could begin to teach polymer processing. Second,
it was recognized that B.S. engineers are required to deliver
answers and don’t have time to weigh out all the variations
and perturbations in the various theories. Third, undergrad-
uate engineers are becoming computer literate and have less
fear of using computers than many professors. With these
ideas in mind we tried to write a book on polymer processing
which provides the necessary tools to do design calcula-
tions and at the same time informs the student exactly what
he or she can be expected to do with the level of material
at hand.

Donald G. Baird
Dimitris I. Collias

Blacksburg, Virginia
February 1993
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1
IMPORTANCE OF PROCESS DESIGN

The intention of this chapter is not merely to present the
technology of polymer processing but to initiate the concepts
required in the design of polymer processes. A knowledge
of the types of polymers available today and the methods
by which they are processed is certainly needed, but this is
available in several sources such as Modern Plastics Encyclo-
pedia (Green, 1992) and the Plastics Engineering Handbook
(Frados, 1976). In this chapter we present primarily an
overview of the major processes used in the processing of
thermoplastics. In Section 1.1 we begin by classifying the
various processes and point out where design is important.
In Section 1.2 we present a case study concerned with film
blowing to illustrate how the final physical properties are
related all the way back to the melt flow of a polymer through
the die. Finally, in Section 1.3 we summarize the principles
on which polymer process design and analysis are based.

1.1 CLASSIFICATION OF POLYMER PROCESSES

The major processes for thermoplastics can be categorized as
follows: extrusion, postdie processing, forming, and injection
molding. We describe specific examples of some of the more
common of these processes here.

The largest volume of thermoplastics is probably pro-
cessed by means of extrusion. The extruder is the main device
used to melt and pump thermoplastics through the shaping
device called a die. There are basically two types of extruders:
single and twin screws. The single-screw extruder is shown
in Figure 1.1. The single-screw extruder basically consists of
a screw (Fig. 1.2) that rotates within a metallic barrel. The

length to diameter ratio (L/D) usually falls in the range of 20
to 24 with diameters falling in the range of 1.25 to 50 cm. The
primary design factors are the screw pitch (or helix angle, θ )
and the channel depth profile. The main function of the plas-
ticating extruder is to melt solid polymer and to deliver a
homogeneous melt to the die at the end of the extruder. The
extruder can also be used as a mixing device, a reactor, and
a devolatilization tool (see Chapter 8).

There are an equal number of twin-screw extruders in use
as single-screw extruders today. There are many different
configurations available including corotating and counterro-
tating screws (see Fig. 1.3) and intermeshing and noninter-
meshing screws. These extruders are primarily adapted to
handling difficult to process materials and are used for com-
pounding and mixing operations. The analysis and design of
these devices is quite complicated and somewhat out of the
range of the material level in this text. However, some of the
basic design elements are discussed in Chapter 8.

The extruder feeds a shaping device called a die. The
performance of the single-screw and corotating twin-screw
extruders is affected by resistance to flow offered by the
die. Hence, we cannot separate extruder design from the die
design. Problems in die design include distributing the melt
flow uniformly over the width of a die, obtaining a uniform
thermal history, predicting the die dimensions that lead to the
desired final shape, and the production of a smooth extrudate
free of surface irregularities. Some of these design problems
are accessible at this level of material while others are still
research problems (see Chapter 6).

There are many types of extrusion die geometries includ-
ing those for producing sheet and film, pipe and tubing, rods

Polymer Processing: Principles and Design, Second Edition. Donald G. Baird and Dimitris I. Collias.
C© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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2 IMPORTANCE OF PROCESS DESIGN

FIGURE 1.1 Typical single-screw extruder. (Reprinted by per-
mission of the author from Middleman, 1977.)

FIGURE 1.2 Two different extruder screw geometries along with
the various geometric factors that describe the characteristics of the
screw. (Reprinted by permission of the publisher from Middleman,
1977.)

BARREL

Counterrotating twin screw extruder

Corotating twin screw extruder

BARREL

FIGURE 1.3 Cross-sectional view of corotating and counterro-
tating twin-screw extruders.
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Forming
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tip

FIGURE 1.4 Cross-head wire coating die. (Reprinted by permis-
sion of the publisher from Tadmor and Gogos, 1979.)

and fiber, irregular cross sections (profiles), and coating wire.
As an example, a wire coating die is shown in Figure 1.4.
Here metal wire is pulled through the center of the die with
melt being pumped through the opening to encapsulate the
wire. The design problems encountered here are concerned
with providing melt flowing under laminar flow conditions
at the highest extrusion rate possible and to give a coating
of polymer of specified thickness and uniformity. At some
critical condition polymers undergo a low Reynolds number
flow instability, which is called melt fracture and which leads
to a nonuniform coating. Furthermore, the melt expands on
leaving the die leading to a coating that can be several times
thicker than the die gap itself. (This is associated with the
phenomenon of die swell.) The problems are quite similar
for other types of extrusion processes even though the die
geometry is different. The details associated with die design
are presented in Chapter 7.

We next turn to postdie processing operations. Examples
of these processes include fiber spinning (Fig. 1.5), film blow-
ing (Fig. 1.6), and sheet forming (Fig. 1.7). These processes
have a number of similarities. In particular, they are free
surface processes in which the shape and thickness or diam-
eter of the extrudate are determined by the rheological (flow)
properties of the melt, the die dimensions, cooling conditions,
and take-up speed relative to the extrusion rate. The physi-
cal and, in the case of film blowing and sheet forming, the

Spinnerette
Takeup rolls Cold drawing

Capillary flow Uniaxial fiber stretching
Structuring

Solidification

FIGURE 1.5 Fiber melt spinning process. (Reprinted by permis-
sion of the publisher from Tadmor and Gogos, 1979.)
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FIGURE 1.6 Film blowing process. (Reprinted by permission of
the publisher from Richardson, 1974.)

optical properties are determined by both the conditions of
flow in the die as well as cooling rates and stretching con-
ditions of the melt during the cooling process. Furthermore,
slight changes in the rheological properties of the melt can
have a significant effect on the final film or fiber properties.
Design considerations must include predictions of conditions
which provide not only the desired dimensions but the optical
and physical properties of the film, fiber, or sheet.

The third category of processing of thermoplastics is form-
ing. Three examples of this type of process are blow mold-
ing (Fig. 1.8), thermoforming (Fig. 1.9), and compression
molding (Fig. 1.10). Blow molding is primarily employed
for making containers used to package a wide variety of

Chill rolls

Surface properties: frictional

and triboelectric effects

Film planar extension

Structuring

Solidification

FIGURE 1.7 Flat film and sheet process. (Reprinted by permis-
sion of the publisher from Tadmor and Gogos, 1979.)

Descending

parison

Inflating

Inflating and 
cooling

FIGURE 1.8 Blow molding process. (Reprinted by permission
of the publisher from Holmes-Walker, 1975.)

fluids. Although polyolefins, such as high density polyethy-
lene (HDPE), or polyethyleneterephthalate (PET), both of
which can be considered as commodity resins, are commonly
used, interest is growing in using this technique for the pro-
cessing of higher performance engineering thermoplastics.

iii

viiii

FIGURE 1.9 Plug-assisted vacuum thermoforming. (Reprinted
by permission of the publisher from Greene, 1977.)
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FIGURE 1.10 Compression molding process. (Reprinted by per-
mission of the publisher from Tadmor and Gogos, 1979.)

Essentially a parison, which has been extruded or injection
molded, is inflated by air until it fills the mold cavity. The
inflated parison is held in contact with the cold mold walls
until it is solidified. Considering the process of thermoform-
ing, a sheet of polymer is heated by radiation (and sometimes
cooled intermittently by forced convection) to a temperature
above its glass transition temperature or in some cases above
the crystalline melting temperature and then pressed into the
bottom part of the mold (female part) either using mechan-
ical force, pressure, or by pulling a vacuum. The key flow
property is the extensional flow behavior of the melt, which
controls the uniformity of the part thickness. Sometimes the
deformation is applied at a temperature just below the onset
of melting, in which case the process is referred to as solid
phase forming. At other times the sheet is extruded directly to
the forming unit and is formed before it cools down. (This is
called scrapless or continuous thermoforming.) Some of the
key design considerations are the time required to heat the
sheet, the final thickness of the part especially around sharp
corners, and the cooling rate which controls the amount and
type of crystallinity. In compression molding a slug of poly-
mer is heated and then pressure is applied to squeeze the
material into the remaining part of the mold. Some aspects
of forming are discussed in Chapter 10.

The last general category is that of injection molding,
which is shown in Figure 1.11. Polymer is melted and
pumped forward just as in a screw extruder. The screw is
then advanced forward by a hydraulic system that pushes the
melt into the mold. Because of the high deformation and cool-
ing rates, a considerable degree of structuring and molecular
orientation occurs during mold filling. The physical proper-
ties of injection molded parts can be affected significantly

Reciprocating
screw

FIGURE 1.11 Typical injection molding unit. (Reprinted by per-
mission of the publisher from Tadmor and Gogos, 1979.)

by processing conditions. Design considerations include the
required injection pressure to fill the mold cavity, the location
of weld lines (places where two melt fronts come together),
cooling rates, length of hold time in the mold, and distribution
of molecular orientation. In conventional injection molding,
parts may vary from a few grams to many kilograms (e.g., a
car hood or trunk).

In the last 10 to 15 years one of the major variations in the
injection molding process has been microinjection molding
(μIM), which appears to be one of the most efficient pro-
cesses for the large-scale production of thermoplastic poly-
mer microparts (Giboz et al., 2007). These microparts can be
as small as 0.6 mg and possess dimensions in the micron
range along with dimensional tolerances in the range of
microns. Examples of microparts are microelectromechan-
ical systems, which is the name given to the combination of
miniaturized mechanical and electronic structures in a sys-
tem, and miniature gears and lenses. Biomedical parts for
insertion into the body such as heart stents and sensors are
also produced by this method. Micromolding is still very
much in its infancy as a new branch of injection molding.
As will be discussed in Chapter 10 (Section 10.1.3), it is not
just about scaling everything down, but it is a specialized
technique in its own right, with a different set of challenges.
Some of these factors are out of the realm of the material
that can be covered by this book, but those aspects that are
accessible are presented in Chapter 10.

Although the majority of the material in this book is
concerned with the processing of thermoplastics, the pro-
cessing of thermosetting systems should also be mentioned
for the sake of completeness. We describe three types of
processes involving reactive processing: reaction injection
molding (RIM), compression molding, and pultrusion. RIM
is a process in which two liquid intermediates are metered
separately to a mixing head where they are combined by
high pressure impingement mixing and subsequently flow
into a mold where they are polymerized to form a molded
part (see Fig. 1.12). A typical process consists of the reac-
tion of diisocynate and a polyol to form polyurethane. The
important design factors are the degree of mixing and the
appropriate heat transfer conditions to ensure uniform cur-
ing conditions in the mold. This process is discussed in more
detail elsewhere (Becker, 1979).

Thermosetting composites can be processed by means of
compression molding of uncured resin. Usually fiber rein-
forcement is used to provide additional strength and stiff-
ness. The application of pressure pushes the resin into the
fiber reinforcement and heat crosslinks the resin to form a
solid material. The critical factors are the flow of the uncured
resin into and around the reinforcement and the uniform and
complete cure of the resin throughout the part. This technique
is used primarily in the aerospace and automobile industries.

Pultrusion is a process used for making continuous fila-
ment reinforced composite extruded profiles (see Fig. 1.13).
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FIGURE 1.12 Reaction injection molding (RIM) process.
(Reprinted by permission of the publisher from Becker, 1979.)

Reinforcing filaments, such as glass fiber roving, are satu-
rated with catalyzed resin and then pulled through an orifice
similar to an extrusion die. As the two materials pass through
the die, polymerization of the resin occurs to continuously
form a rigid cured profile corresponding to the die orifice
shape. The materials are pulled through the die rather than
being pumped. Although the primary resins used are of the
thermosetting type such as polyester, vinyl ester, and epoxy,
thermoplastic resins can be utilized in the same process. The
major design considerations for thermosetting systems con-
sist of dispersion of the resin in the reinforcement and the
conditions for complete cure of the resin. The processing

of thermosetting systems is discussed elsewhere (Macosko,
1989).

The intention in Section 1.1 was more than just to review
the technology of polymer processing, but to point out factors
that must be considered in the design of polymer processes.
However, since most students have little knowledge of the
technology of processing of polymers, some general intro-
duction is of value. Furthermore, a physical picture of the
various processes is required to facilitate the discussion of
the material presented in the next four chapters.

1.2 FILM BLOWING: CASE STUDY

The last section was merely concerned with describing the
technology of polymer processing. This section is concerned
with illustrating the role of processing in affecting the prop-
erties of polymeric systems. In particular, the properties of
films of polybutylene (PB1) generated by means of film
blowing are shown to be highly sensitive to processing
conditions.

Most blown film is made from some form of polyethylene
(PE), but polybutylene, PB1, has been considered because
it is slightly cheaper to use in the production of film. How-
ever, it does not lead to the same physical properties with-
out changing the processing conditions. Identification of the
appropriate processing conditions is usually done either by
a trial-and-error approach or through statistically designed
experiments. If a model of film blowing was available, or
if one could apply dimensional analysis concepts, then it
might be possible to find the appropriate processing condi-
tions without carrying out a lengthy set of costly experiments.
The following example illustrates the many factors that affect
the properties of blown PB1 film.

ROOM-TEMPERATURE 

RESIN BATH INLET

PRESSURIZED

RESIN INJECTOR

HEATED 

FORMING DIE

ELECTRICAL

HEATER AND

THERMOCOUPLE

WIRES

GRIPPERS APPLY

PULL FORCE CURED 

PART

TO RESIN

CIRCULATOR

EXCESS RESIN

TRAP

KNIT PREFORMS

FIGURE 1.13 Pultrusion process.
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The film blowing process was shown in Figure 1.6. Poly-
mer pellets are fed to the extruder in which melting, homog-
enization, and pumping occur. The melt then passes through
the die, which is designed such that as it leaves the die, the
melt has been subjected to both a uniform deformation as
well as thermal history. Air is blown through the center of
the die to expand the molten bubble to impart orientation of
the molecules in the hoop direction. At the same time the
bubble is being stretched as a result of the take-up velocity
being greater than the average velocity of the melt leaving
the die. The stretching imparted in the two directions controls
the degree to which the molecules orient and hence affects
the physical properties. Cooling air is blown along the bub-
ble by an air ring, which is placed around the outside of the
die. This serves to cause the film to solidify or crystallize
and lock in the orientation imparted by the biaxial stretching
process. The film is then taken up on a roller and either slit
to make flat film or sealed and cut to make bags.

We now look at some of the factors that affect the physical
properties of the blown film. The recommendations for the
annular die gap opening for a desired film thickness are given
in Table 1.1. It is probably clear as to why the die gap is larger
than the desired film thickness as the film is to be drawn down
to create molecular orientation. What is not clear is why it
is recommended that the die land (the annular portion of the
die) be shortened as the die gap increases. The physical prop-
erties based on the tear strength of the film are found to be
significantly affected by the length of the die land as shown in
Figure 1.14. Here the tear strength is plotted versus the blow
up ratio, BUR, which is the ratio of the final film diameter
to the die diameter (outer diameter). It is observed that there
is on the order of a threefold difference in the tear strength
for a 2.0 × 10−3 in. thick film when the die land is decreased
from 1.5 in. to 1.0 in. One reason for this result is that more
“die swell” (the expansion of a polymer melt on leaving a
die) occurs for the die with the 1.0 in. land length, and hence
a higher stretch ratio is required to draw the film down to
2.0 × 10−3 in. This leads to higher orientation of the
molecules along the draw direction than in the case of the
die with a 1.5 in. land length. Finally, the effect of the die
gap on the tear strength measured both along the film length

TABLE 1.1 Die Recommendations for the Blowing of PB1
with a Blow Up Ratio of 2.4–2.8 at a Melt Temperature of
370–390 ◦F

Film Thickness
( × 103 in.)

Die Gap
(inches)

Land Length
(inches)

0.5–1 0.015 1 1
2 –2

1–2 0.018–0.023 1 1
2

2–7 0.028–0.032 1
8–15 0.040–0.050 1
15–40 0.050–0.060 1
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FIGURE 1.14 Effect of the annular die land length on the film
tear strength of polybutylene extruded at the rate of 10 m/min for
two different film thicknesses.

(this is called the machine direction, MD) and along the
circumference of the film (this is called the transverse direc-
tion, TD) is shown in Figure 1.15. Here we see that the tear
strength in the TD decreases significantly with an increase
in die gap, while in the machine direction the effect is sig-
nificant but nowhere near as large. Again it is not clear as
to what would cause the loss of properties in both directions
as the die gap increases other than the longer time available
for molecular relaxation due to the increase in time required
for cooling of the film. Factors other than orientation must
be involved in controlling the properties. For example, the
amount of crystallinity and the size of the spherulitic regions
may play a significant role.

The melt extrusion temperature is also observed
(Fig. 1.16) to have a significant effect on the physical prop-
erties as the tear strength in both directions increases with
increasing melt temperature. This is probably due to lower
levels of orientation as the result of lower stress levels in the
melt and shorter relaxation times allowing a rapid relaxation
of molecular orientation.
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FIGURE 1.15 Effect of die gap on the film tear strength of poly-
butylene extruded at the rate of 10 m/min. The film thickness is
0.002 in. and the blow up ratio is 2.8.
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FIGURE 1.16 The effect of melt temperature on the film tear
strength of polybutylene film extruded at the rate of 10 m/min. The
film thickness is 0.002 in. and the blow up ratio is 2.8.

The line speed, given in feet per minute (fpm), as shown
in Table 1.2, has a very significant effect on the properties.
For example, as the line speed increases from 14 fpm, the
breaking strength in the MD increases from 4800 g/mil to
6600 g/mil but decreases in the TD from 5000 g/mil to
2300 g/mil (mil here means 0.001 in.). This is mostly asso-
ciated with the degree of molecular orientation. The more
the molecules are oriented along the MD the stronger the
films are, but the poorer the tear strength in this direction.
The other properties given here can be explained by similar
arguments.

The blow up ratio, BUR, can be used to obtain a bet-
ter balance of properties as shown in Figure 1.17. As BUR
increases the tear properties become more uniform in both
directions. Biaxial orientation (i.e., orientation of molecules
in two directions) is generated in the blowing process, which
leads to more uniform properties.

As one can imagine the film blowing process is very dif-
ficult to model and, hence, very little quantitative design
work has been done. Although the complete modeling of this
process is beyond the level of the material in this book (or
even an advanced book for that matter), the example serves
to illustrate that the properties of a polymeric material are
highly dependent on the processing conditions and some of
the problems faced by the engineer. In designing a poly-
mer process one must be concerned with not only how much
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FIGURE 1.17 Effect of blow up ratio on the film tear strength
measured along the machine direction (MD) and transverse direc-
tion (TD).

material per unit time can be produced but with the properties
of the material. In the next section we look at the fundamen-
tal principles on which the design and analysis of polymer
processes is based.

1.3 BASICS OF POLYMER PROCESS DESIGN

In order to design and analyze polymer processes there are
common steps associated with nearly every process. Follow-
ing Tadmor and Gogos (1979), these basic steps are given
below:

1. Handling of particulate solids

2. Melting, cooling, and crystallization

3. Pumping and pressurization

4. Mixing

5. Devolatilization and stripping

6. Flow and molecular orientation

These basic steps are based on the following concepts:

1. Transport phenomena—fluid mechanics, heat transfer,
and mass transfer

2. Polymer rheology

3. Solid mechanics and flow

TABLE 1.2 Line Speed Versus Properties for PB1

Break Strength Yield Strength Ultimate Elongation Tear Strength

Line Speed
(fpm)

MD
(g/mil)

TD
(g/mil)

MD
(g/mil)

TD
(g/mil)

MD
(%)

TD
(%)

Dart Drop
(g/m2·s2)

MD
(g/mil)

TD
(g/mil)

14 4800 5000 2000 2000 220 260 350 1700 550
20 4600 3700 2100 2000 160 230 280 1500 550
30 5500 2800 2500 1900 110 170 190 680 390
40 6600 2300 3000 1900 80 150 90 80 270
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4. Principles of mixing

5. Chemical reactions

In the first five chapters of this book we deal with the fun-
damental principles required in the design of polymer pro-
cesses. The last six chapters are concerned with the details of
specific types of processes and the reprocessing of polymers
and the processing of renewable polymers.
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2
ISOTHERMAL FLOW OF PURELY VISCOUS
NON-NEWTONIAN FLUIDS

DESIGN PROBLEM I
DESIGN OF A BLOW MOLDING DIE

A typical blow molding die is shown in Figure 2.1. The region
of particular interest is shown in Figure 2.2. The die exit is
the region that controls the final dimensions of the parison,
which is a cylindrically shaped tube of polymer. The parison
consisting of HDPE is to have a weight of 90 g with an outside
diameter of 0.127 m and a wall thickness of 3.81 × 10−4 m.
Consider only the conical region in your calculations.
The angles α and θ are taken as 0◦ and 30◦, respectively.
The distance z1 should be 20 times the gap thickness. Deter-
mine the remaining dimensions of the die required to produce
the desired extrudate. At this point neglect die swell (i.e.,
the increase in diameter and thickness due to elastic recov-
ery) in your calculations. Determine the maximum extrusion
rate (m3/s) and pressure drop assuming the limiting factor is
melt fracture. (This occurs when the wall shear stress, τw,
reaches 1.4 × 105 Pa.) Use the rheological parameters given
in Table 2.1. Determine the length of time required to extrude
the parison.

(a) Use the lubrication approximation to determine a
design equation (i.e., Q vs. �P) and then provide the
required information.

(b) Carry out the design calculations by breaking up the
flow region into a series of cones of length �z. Use
the annular flow equations presented in Section 2.2.1
and the computer to get a solution. At 180 ◦C (453 K),
ρ = 965 kg/m3.

The transport properties of polymeric materials which dis-
tinguish them most from other materials are their flow prop-
erties or rheological behavior. There are many differences
between the flow properties of a polymeric fluid and typical
low molecular weight fluids such as water, benzene, sulfu-
ric acid, and other fluids, which we classify as Newtonian.
Newtonian fluids can be characterized by a single flow prop-
erty called viscosity (μ) and their density (ρ). Polymeric
fluids, on the other hand, exhibit a viscosity function that
depends on shear rate or shear stress, time-dependent rheo-
logical properties, viscoelastic behavior such as elastic recoil
(memory), additional normal stresses in shear flow, and an
extensional viscosity that is not simply related to the shear
viscosity, to name a few differences.

Because of these vastly different rheological properties,
polymeric fluids are known to exhibit flow behavior that
cannot be accounted for merely through a single rheologi-
cal parameter such as the viscosity. Some of the differences
in flow behavior include a nonlinear relation between pres-
sure drop and volumetric flow rate for flow through a tube,
swelling of the extrudate on emerging from a tube, the onset
of a low Reynolds number flow instability called melt frac-
ture, gradual relaxation of stresses on cessation of flow, and
the ability of the molecules to orient during flow. These phe-
nomena are discussed in more detail elsewhere (Bird et al.,
1987; Larson, 1999).

The emphasis in this chapter is on the viscous behavior
of polymeric fluids and in particular their pseudoplastic
behavior. The chapter is arranged in the following man-
ner. First, in Section 2.1 we review the definition of a
Newtonian fluid, and then we present empiricisms for
describing the viscosity of polymeric fluids. In Section 2.2

Polymer Processing: Principles and Design, Second Edition. Donald G. Baird and Dimitris I. Collias.
C© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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FIGURE 2.1 Typical blow molding die: A, choke adjusting nut;
B, mandrel adjustment; C, feed throat; D, choke screw; E, die head;
F, plastic melt; G, die barrel; H, heater band; I, choke ring; J,
centering screw; K, clamp ring; L, die heater; M, die; N, mandrel.
(Reprinted by permission of the publisher from Frankland, 1975.)

we use shell force or momentum balances to solve one-
dimensional flow problems commonly found in polymer pro-
cessing. In Section 2.3 we generalize the force or momentum
balances to give the equations of motion, and we generalize
the constitutive equation presented in Section 2.1. In Sec-
tion 2.4 we present two useful approximations for solving

FIGURE 2.2 Detailed drawing of the conical region of the blow
molding die.

TABLE 2.1 Parameters in Various Viscosity Models

Graphically
Obtained

From Nonlinear
Regression Analysis

Power law
m (Pa·sn) 2.374E+04 1.616E+04
n 0.424 0.520

Ellis
η0 (Pa·s) 1.33E+04 1.33E+04
τ 1/2 (Pa) 3.325E+04 1.03E+05
α − 1 1.54 2.24

Carreau
η0 1.33E+04 1.33E+04
n 2.0 1.747
λ (s) 5.0 0.14

Cross
η0 1.33E+04 1.18E+04
n 0.9 0.783
λ (s) 0.5 0.0976

polymeric flow problems. Finally, in Section 2.5 the topics
discussed in the previous sections are used to solve Design
Problem I.

2.1 VISCOUS BEHAVIOR OF POLYMER MELTS

When a Newtonian fluid is placed between the two plates as
shown in Figure 2.3 in which the top plate is moved to the
right with constant velocity, V, the relation between force, F,
divided by the area of the plates, A, and the velocity divided
by the separation distance, H, is given as follows:

F/A = μV/H (2.1)



VISCOUS BEHAVIOR OF POLYMER MELTS 11

V

x

y H v

Upper plate moves with

constant velocity V

x
y

FIGURE 2.3 Steady simple shear flow with shear rate = V/H.

The constant of proportionality, μ, is called the viscosity of
the fluid. The force, F, is the force required to keep the top
plate moving with a constant velocity. The force per unit area
acting in the x direction on a fluid surface at constant y by the
fluid in the region of lesser y is the shear stress, τ yx. Since the
velocity of the fluid particles varies in a linear manner with
respect to the y coordinate, it is clear that V/H = dvx/dy as
shown below:

lim
�y→0

�vx

�y
= dvx

dy
= V − 0

H − 0
= V

H
(2.2)

Equation 2.1 can be rewritten as

τyx = −μ(dvx/dy) (2.3)

This states that the shear force per unit area is proportional
to the negative of the local velocity gradient and is known
as Newton’s law of viscosity. The sign convention used here
follows that of Bird et al. (2007).

τ yx can also be interpreted in another fashion. τ yx may be
considered as the viscous flux of x momentum in the y direc-
tion. The idea here is that the plate located at y = H transmits
its x momentum to the layer below, which in turn transmits
momentum to the next layer. The momentum flux, τ yx, is
negative in this case as the momentum is transferred in the
negative y direction. The sign convention follows the ideas
used for heat flux in that heat flows from hot to cold or in the
direction of a negative temperature gradient. This also makes
the law of viscosity fit with the ideas of diffusion in which
matter flows in the direction of decreasing concentration.

Probably the most frequently used notation, however,
is that found in mechanics in which material at greater y
exerts force in the x direction on a layer of fluid at lesser
y. The shear stress, τ ∗

xy, is then related to that used above as
follows:

τyx = −τ ∗
xy (2.4)

τ ∗
xy is then defined as the force per unit area acting in the x

direction by fluid at y on a surface of lesser y with a unit
outward normal in the + y direction.

τ
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FIGURE 2.4 Viscous response of non-Newtonian fluids.

The flow behavior of most thermoplastics does not follow
Newton’s law of viscosity. To quantitatively describe the vis-
cous behavior of polymeric fluids, Newton’s law of viscosity
is generalized as follows:

τyx = −η dvx/dy (2.5)

where η can be expressed as a function of either dvx/dy or
τ yx. Some typical responses of polymeric fluids are shown in
Figure 2.4, where τ yx is plotted versus the velocity gradient.
For a pseudoplastic fluid the slope of the line decreases with
increasing magnitude of dvx/dy, or in essence the viscosity
decreases. Some polymeric fluids (in some cases polymer
blends and filled polymers) exhibit a yield stress, which is
the stress that must be overcome before flow can occur. When
flow occurs, if the slope of the line is constant, then the fluid is
referred to as a Bingham fluid. In many cases the fluid is still
pseudoplastic once flow begins. Finally, in some cases the
viscosity of the material increases with increasing velocity
gradient. The fluid is then referred to as dilatant.

Many empiricisms have been proposed to describe the
steady-state relation between τ yx and dvx/dy, but we mention
only a few that are most useful for polymeric fluids. The first
is the power law of Ostwald–de Waele:

η = m

∣∣∣∣dvx

dy

∣∣∣∣
n−1

. (2.6)

This is a two-parameter model in which n describes the
degree of deviation from Newtonian behavior. m, which has
the units of Pa·sn, is called the consistency. For n = 1 and
m = μ, this model predicts Newtonian fluid behavior. For
n < 1, the fluid is pseudoplastic while for n > 1 the fluid is
dilatant. The Ellis model is a three-parameter model and is
defined as

η0

η
= 1 +

(
τyx

τ1/2

)α−1

(2.7)
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FIGURE 2.5 Non-Newtonian viscosity of a low density polyethylene (LDPE) melt at several
different temperatures as shown in the figure. (Reprinted by permission of the publisher from
Meissner, 1971.)

Here η0 is the zero shear viscosity and τ 1/2 is the value of
τ yx when η = 1

2 η0. Actually most polymeric fluids exhibit
a constant viscosity at low shear rates and then shear thin at
higher shear rates (see Fig. 2.5). A model that is used often
in numerical calculations, because it fits the full flow curve,
is the Bird–Carreau model:

η − η∞
η0 − η∞

= [1 + (λγ̇ )2
](n−1)/2

(2.8)

When the 2’s in the exponents in Eq. 2.8 are replaced by a’s,
where a is a parameter that controls the width of the transi-
tion from constant viscosity into the shear-thinning region,
then the model is referred to as the Carreau–Yasuda model.
This Bird–Carreau model contains four parameters: η0, η∞,
λ, and n. η0 is the zero shear viscosity just as above. η∞
is the viscosity as the shear rate (γ̇ ) or dvx/dy → ∞, and
for polymer melts this can be taken as zero. λ has units of
seconds and approximately represents the reciprocal of the
shear rate for the onset of shear thinning behavior. n repre-
sents the degree of shear thinning and is nearly the same as
the value in the power-law model. As a number of polymeric
fluids exhibit yield stresses, models that include these are the
Bingham and Hershel–Bulkley models. The Bingham model
is given as

η = μ0 + |τ0|
dvx/dy

if
∣∣τyx

∣∣ ≥ |τ0| (2.9)

η = ∞ if
∣∣τyx

∣∣ < |τ0| (2.10)

Here τ 0 is the yield stress and μ0 is the slope of the line
of τ yx − τ 0 versus dvx/dy. The Hershel–Bulkley model is
given as

η = m ′
∣∣∣∣dvx

dy

∣∣∣∣
n′−1

+ |τ0|
dvx/dy

if
∣∣τyx

∣∣ ≥ τ0 (2.11)

Here m′ and n′ are power-law parameters determined from
τ yx − τ 0 versus dvx/dy. This model describes fluids that are
pseudoplastic once flow starts.

Example 2.1. Power-Law and Ellis Model Parameters
for LLDPE

Determine the power-law (Eq. 2.6) and Ellis (Eq. 2.7) model
parameters for LLDPE (NTA 101) at 170 ◦C using the
rheological data given in the Appendix Tables A.7–A.9.

Solution. To find the parameters m and n in Eq. 2.6 we first
plot ln η versus ln γ̇ as shown in Figure 2.6. The slope of
the line in the linear region is n – 1 and is estimated to be
−0.576. Hence, n is 0.424. m is found by taking the natural
logarithm of both sides of Eq. 2.6:

ln η = ln m + (n − 1) ln γ̇ (2.12)

and then arbitrarily selecting values of η and γ̇ in the
linear region. For example, by substituting γ̇ = 140 s−1

and η = 1.45 × 103 Pa·s into Eq. 2.12, we find m to be
2.374 × 104 Pa·sn.
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FIGURE 2.6 Viscosity versus shear rate (ln–ln plot) for LLDPE
at 170 ◦C. The data were obtained by various types of rheometers
as indicated in the figure. (---) Graphical fit of power law; (—)
fit of power law using regression analysis. Insert shows plot of
(η/η0) − 1 versus shear stress used to obtain Ellis model parameters.

To find the Ellis model parameters we plot ln (η0/η −
1.0) versus ln τ yx as shown in the upper right-hand corner
of Figure 2.6. τ 1/2 is the value of τ yx when η = 1

2 η0 and is
estimated from the graph in Figure 2.6 to be 3.325 × 104 Pa.
α − 1 is estimated from the slope of the line to be 1.54. η0

is read directly from the data and is 1.33 × 104 Pa·s. All the
parameters for both models are summarized in Table 2.1.

Example 2.2. Power-Law, Carreau, Ellis, and
Cross Model Parameters for LLDPE Using
Nonlinear Regression Analysis

(a) Determine the power-law and Ellis model paramaters
for LLDPE using nonlinear regression analysis. In
particular, use the IMSL (International Mathematics
and Statistics Libraries) subroutine RNLIN described
on the accompanying website to find m and n in the
power-law model and η0, τ 1/2, and α in the Ellis model
for LLDPE at 170 ◦C. Also use Excel and the Solve
function (Billo, 2007).

(b) The Cross model (Dealy and Wissbrun, 1999) defined
in Eq. 2.13 below is another empiricism frequently
used to model the viscosity of shear thinning or pseu-
doplastic fluids. Find the parameters in this model
using nonlinear regression analysis and the Solve func-
tion in Excel.

η = η0

[1 + (λγ̇ )n]
(2.13)

λ here is again related to the reciprocal of the shear
rate, γ̇ , for the onset of shear thinning behavior. We

also note that in the limit of high γ̇ Eq. 2.13 reduces
to approximately the power-law model as shown
below:

η ∼= η0(λγ̇ )n (2.14)

Solution. The solution to this problem is given in the accom-
panying website in the folder under “Numerical Examples,
Chapter 2.” The method of nonlinear regression analysis is
used to find the parameters that minimize the sum of the
residual errors between the predicted and experimental val-
ues of viscosity. Details of the procedure using Excel can be
found in the book by Billo (2007). The main item to note is
that the fitting is done based on the natural logarithm of the
viscosity values. A summary of the parameter values is given
in Table 2.1. Graphical estimates are usually used to make
initial guesses of the parameters. The parameters that are
obtained from nonlinear regression analysis will depend on
the choices of the estimates for the parameters. It is advised
to plot the predicted viscosity values along with the mea-
sured values on the same plot in order to observe the quality
of the fit. This is done on sheet 2 in the Excel file “EX2-2-
Excel.doc,” on the accompanying website.

A few comments should be made regarding the selec-
tion of data points used in the regression analysis. In the
case of the power law, only the data in the linear region
are used. Certainly the regression analysis could have been
carried out on all the data, but the coefficients obtained
would not lead to an accurate prediction of η at intermediate
shear rates.

It is also observed that the power-law parameters obtained
graphically differ from those obtained by nonlinear regres-
sion analysis. The function with the two different sets of
parameters is plotted in Figure 2.6. Regression analysis basi-
cally removes the arbitrariness of finding n. It should also be
noted that the Ellis model with the parameters even obtained
graphically fits the data well over the full range.

Shear thinning or pseudoplastic behavior is an important
property that must be taken into account in the design of
polymer processes. However, it is not the only property, and
in Chapter 3 models that describe the viscoelastic response of
polymeric fluids will be discussed. However, first we would
like to solve some basic one-dimensional isothermal flow
problems using the shell momentum balance and the empiri-
cisms for viscosity described in this section.

2.2 ONE-DIMENSIONAL ISOTHERMAL FLOWS

In this section we make use of a shell momentum or force
balance plus the Newtonian fluid model and the general-
ized Newtonian fluid (GNF) model to solve some basic flow
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TABLE 2.2 Parameters for High Density Polyethylene, Alathon, DuPont

Power Law Model Carreau Model Ellis Model

Temperature
(K)

Range
(s−1)

m
(Pa·sn) n

η0

(Pa·s)
Range
(s−1) n

λ

(s) α

τ 1/2

(Pa)

453 100–1000 6.19 × 103 0.56 2.1 × 103 100–1200 0.54 0.07 2.57 7.50 × 104

473 100–1000 4.68 × 103 0.59 1.52 × 103 100–1200 0.50 0.08 2.51 7.49 × 104

493 100–1000 3.73 × 103 0.61 1.17 × 103 186–1400 0.58 0.05 2.49 7.67 × 104

Source: Data from Tadmor and Gogos, 1979, Table A.1.

problems. Although some students have been exposed to
transport phenomena, there are a number who have not.
For this reason the subject matter is started by consider-
ing the use of shell momentum balances rather than the use
of the equations of change, which are presented in Sec-
tion 2.3. The material is arranged in such a way that a number
of useful processing flows can be analyzed without the use
of the three-dimensional equations of change.

2.2.1 Flow Through an Annular Die

The manufacture of pipe and the generation of parisons used
in blow molding involve flow through an annular die. Our first
goal is to design an annular die for extruding a pipe at 180 ◦C
with an O.D. of 0.0762 m (3.0 in.) and an I.D. of 0.0635 m
(2.5 in.) for high density polyethylene (HDPE) at the highest
extrusion rate possible (m/min). Assume that the limiting
factor is the onset of melt fracture, which occurs at a wall
shear stress, τw, of 1.0 × 105 Pa (melt fracture is discussed
in Section 7.1). The rheological data for this polymer (i.e.,
η vs. dvz/dr) have been analyzed, and the parameters for
the various models discussed in Section 2.1 are given in
Table 2.2.

To solve this problem we must obtain relationships
between the wall shear stress, τw, and the pressure drop,
�P, as well as the volumetric flow rate, Q. This is done by
carrying out a momentum or force balance on a differen-
tial element of fluid to obtain a differential equation for the
stress distribution. A constitutive equation is then substituted
into the stress equation to obtain a differential equation for
the velocity field. This is then integrated, and the velocity
field is found when the appropriate boundary conditions are
specified. We make the following assumptions:

1. The flow is steady, laminar, and isothermal.

2. There are no entry or exit effects.

3. Inertia is insignificant (i.e., the Reynolds number is
negligible).

4. The fluid is inelastic, and hence die swell is not con-
sidered.

5. The fluid does not slip on the die surfaces.

A cross section of the annular die required to produce the
pipe is shown in Figure 2.7. The approximate velocity and
stress profiles for this flow are sketched here also. A thin
cylindrical shell is now chosen of length L and thickness �r
as shown in Figure 2.8. The shell is selected so that the surface
is parallel to the flow direction. A force (or momentum)
balance is now performed on the shell. Because the flow is
under steady-state conditions, the forces in the z direction
must sum to zero as shown below:

τrz|r 2πrL − τrz|r+�r 2π(r + �r )L − ρg2πr �r L

+ (po − pL )2πr �r = 0 (2.15)

τ rz is the force per unit area acting in the z direction on a
surface at r by a layer of fluid at lesser r. It is customary to
take the force per unit area acting at r to be positive while
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FIGURE 2.7 Flow through a cylindrical annulus.



ONE-DIMENSIONAL ISOTHERMAL FLOWS 15

R

Momentum out by flow Pressure PL

L

rz
r

rz
r+ r

Shell of 
thickness
over which

momentum 
balance
is made

r

Momentum in by flow Pressure P0

Tube

wall

Momentum

flow in

and out

by viscous 
transfer

FIGURE 2.8 Cylindrical shell of fluid over which the momentum
or force balance is performed.

that at r + �r to be negative. We now divide Eq. 2.15 by
2π �r L and take the limit as �r → 0:

lim
�r→0

(
(rτrz)|r+�r − (rτrz)|r

�r

)
=
(

p0 − pL

L
− ρg

)
r

(2.16)

But this first term is just the derivative, and this gives the
following differential equation:

d

dr
(rτrz) = +

(
P ′

0 − P ′
L

L

)
r (2.17)

where P = p0 and P = pL + ρgL.∗ This gives a differential
equation for which we can solve for τ rz by integration to
give

τrz =
(

P ′
0 − P ′

L

L

)
r

2
+ C1

r
(2.18)

∗The pressure P ′
L represents the combined effect of dynamic pressure and

the pressure due to gravity. In general, P′ may be defined as P′ = p + ρgh,
where h is the distance upward from any chosen plane.

At some distance, βR, the velocity field must pass through a
maximum and τ rz (which is proportional to dvz/dr) must be
zero. Utilizing this information C1 is replaced by −(P ′

0 − P ′
L )

(βR)2/2L , which leads to the following equation in place of
Eq. 2.18:

τrz =
(
P ′

0 − P ′
L

)
R

2L

[
r

R
− β2

(
R

r

)]
(2.19)

Our next goal is to find the velocity field. To do this the
type of fluid and an appropriate constitutive equation must
be specified. In the first case the fluid is considered to be
Newtonian. τ rz is replaced with Newton’s law of viscosity to
obtain a differential equation for vz:

dvz

dr
= − (P ′

0 − P ′
L )R

2μL

[( r

R

)
− β2

(
R

r

)]
(2.20)

The flow is considered to consist of two parts:

κR ≤ r < βR vz = vz< (2.21)

βR < r ≤ R vz = vz> (2.22)

Furthermore, the no-slip boundary conditions are assumed at
the walls:

B.C.1: at r = κR, vz = 0 (2.23)

B.C.2: at r = R, vz = 0 (2.24)

Equation 2.20 is integrated using the boundary conditions
to obtain

vz< = R

[(
P ′

0 − P ′
L

)
R

2μL

]∫ ξ

κ

(
β2

ξ ′ − ξ ′
)

dξ ′, κ ≤ ξ ≤β

(2.25)

vz> = R

[(
P ′

0 − P ′
L

)
R

2μL

]∫ 1

ξ

(
ξ ′ − β2

ξ ′

)
dξ ′, β ≤ ξ ≤ 1

(2.26)

where ξ ′ = r/R is a dummy variable of integration. At
r = βR, vz< = vz> and one can equate Eqs. (2.25) and
(2.26) to find β as follows:

∫ β

κ

(
β2

ξ
− ξ

)
dξ =

∫ 1

β

(
ξ − β2

ξ

)
dξ (2.27)

For a Newtonian fluid these expressions can be integrated to
give β:

2β2 = (1 − κ2
)
/ ln (1/κ) (2.28)
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For a Newtonian fluid it is observed that β is determined
merely by geometric factors. For a Newtonian fluid one can
then write down the solutions for τ rz and vz:

τrz =
(
P ′

0 − P ′
L

)
R

2L

[
r

R
− 1 − κ2

2 ln(1/κ)

(
R

r

)]
(2.29)

vz =
(
P ′

0 − P ′
L

)
R2

4μL

[
1 −

( r

R

)2
+ 1 − κ2

ln(1/κ)
ln
( r

R

)]
(2.30)

We can now integrate Eq. 2.30 over the cross section of the
annulus to find the volumetric flow rate, Q:

Q = πR2
(
1 − κ2

)
<vz>

= π
(
P ′

0 − P ′
L

)
R4

8μL

((
1 − κ4

)−
(
1 − κ2

)2
ln (1/κ)

)
(2.31)

One can now determine Q and the extrusion rate, which
is the average velocity, <vz> = Q/A. With the assumption
that the fluid leaves the die with the same dimensions as
the die, then one can calculate that κR = 0.03175 m and
R = 0.0381 m. However, these values will not quite be cor-
rect as the melt will swell on leaving the die, but shrink as
it cools because of the change in density. These factors will
be considered in Section 7.2.1. Furthermore, we have not
specified the die length, which must be long enough to elim-
inate any effects from the entry but not so long as to create
excessive pressures. For the time being we will take L to be
10 times the die gap [R(1 − κ)], which makes L = 0.0635 m.
One now calculates P ′

0 − P ′
L , Q, and <vz> assuming

τw = 1 × 105 Pa:

P ′
0 − P ′

L = 2.024 × 106 Pa

Q = 7.24 × 10−5 m3/s

<vz> = 3.12 m/min

Next we consider the case in which the fluid is shear thin-
ning, and the viscosity is described by the power-law model.
The derivation leading to Eq. 2.19 is unchanged. Starting
with this equation one now solves for the velocity field using
the power-law model:

τrz = −m|(dvz/dr)|n−1 (dvz/dr) (2.32)

For κR < r < βR, dvz/dr > 0 and we express Eq. 2.32 as

τrz = −m(dv/dr)n (2.33)

For βR < r < R, dvz/dr < 0 and Eq. 2.32 becomes

τrz = m (−dv/dr)n (2.34)

Two different expressions for τ rz are required to ensure that a
negative number is not raised to a fractional exponent, which
will lead to an imaginary number. Analogous to Eqs. 2.25
and 2.26 we solve for vz> and vz<:

− m

(
dvz<

dr

)n

= C

[
r

R
− β2 R

r

]
(2.35)

m

(−dvz>

dr

)n

= C

[
r

R
− β2 R

r

]
(2.36)

where C = (P ′
0 − P ′

L )R2/2L . We now integrate these equa-
tions after taking the 1/n power of both sides:

vz< = R

[
(P ′

0 − P ′
L )R

2mL

]s ∫ ξ

κ

(
β2

ξ ′ − ξ ′
)s

dξ ′, κ ≤ ξ ≤ β

(2.37)

vz> = R

[
(P ′

0 − P ′
L )R

2mL

]s ∫ 1

ξ

(
ξ ′ − β2

ξ ′

)s

dξ ′, β ≤ ξ ≤ 1

(2.38)

When 1/n is a whole number (e.g., 1, 2, 3, etc.), then these
integrals can be integrated to directly obtain expressions for
vz< and vz>. However, n is usually some decimal number
such as 0.52; in which case we must evaluate the integrals
numerically. First we employ the expression for finding β by
equating vz> and vz<:

∫ β

κ

(
β2

ξ
− ξ

)s

dξ =
∫ 1

β

(
ξ − β2

ξ

)s

dξ (2.39)

Equation 2.39 gives β as a function of κ and s, but must be
evaluated numerically unless 1/n is an integer. Q is found
by integrating Eqs. 2.37 and 2.38 over the cross section of
the die:

Q = 2π
∫ R

κR
vzr dr

= πR3

[
(P ′

0 − P ′
L )R

2mL

]s ∫ 1

κ

∣∣β2 − ξ 2
∣∣s+1

ξ−sdξ (2.40)

If we treat each term within the integral as a function of ξ ′,
that is, F(ξ ′), then Eq. 2.40 can be integrated by parts (Note:
Let u = F(ξ ′) and dv = ξ ′dξ ′) to obtain

Q = πR3

(1/n) + 3

(
P ′

0 − P ′
L

2mL

)1/n

×
[(

1 − β2
)1+(1/n) − κ1−(1/n)

(
β2 − κ2

)1+(1/n)
]

(2.41)
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FIGURE 2.9 The function F(s, κ) needed for obtaining the vol-
ume rate of flow through an annulus for a power-law fluid.

Once β is known from Eq. 2.29, then Eq. 2.41 can be evalu-
ated. We express Eq. 2.41 as follows:

Q = πR3

((
P ′

0 − P ′
L

)
R

2mL

)1/n
(1 − κ)1/n+2

s + 2
F(s, κ) (2.42)

where F(1/n, κ) is given for several values of 1/n in Fig-
ure 2.9.

Now referring back to Eq. 2.19 we determine that melt
fracture will occur at the outer wall first, since the shear
stress is higher here than at the inner wall:

τw(κR) =
((

P ′
0 − P ′

L

)
κR

2L

)[
1 − β2

κ2

]
(2.43a)

τw(R) =
((

P ′
0 − P ′

L

)
R

2L

)
(1 − β2) (2.43b)

This follows from the fact that κ < 1. From Eq. 2.39 and
using n = 0.56, we find that β is about 0.91. We can now
calculate P ′

0 − P ′
L , Q, and <vz>:

P ′
0 − P ′

L = 1.91 × 106 Pa

Q = 1.56 × 10−4 m3/s

<vz> = 6.72 m/min

We observe that although the pressure drop is only slightly
lower than for the Newtonian case, the extrusion rate is more
than twice as large.

V

δ

2R

2    R

L

FIGURE 2.10 Simplified view of a wire coating die with no
imposed pressure gradient.

2.2.2 Flow in a Wire Coating Die

To further illustrate the use of the force balance on a differen-
tial element of fluid to obtain an equation for the shear stress
distribution, the design of a wire coating die is considered
next. The problem is to design a wire coating die to coat a
0.655 × 10−2 m diameter wire with a 0.330 × 10−2 m thick
layer of HDPE at 200 ◦C at the highest extrusion rate possi-
ble. (Assume again that the extrusion rate limit is the onset
of melt fracture at τw = 1.4 × 105 Pa.)

A typical wire coating die was shown in Figure 1.4. The
design that is shown there is somewhat beyond our capabili-
ties at this point. For this reason we consider only the annular
flow region as shown in Figure 2.10. We make the following
assumptions:

1. The flow is steady, incompressible and isothermal.

2. The rheological properties of the fluid are described
by the power-law model and elastic effects (i.e., die
swell) can be neglected.

3. The converging part of the die will be neglected.

4. There is no significant pressure drop (�P) across the
die. However, in practice a small �P is used to control
the thickness as shown in Figure 2.11.
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δ
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2   R

L

P

FIGURE 2.11 Wire coating die with an imposed pressure
gradient.
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FIGURE 2.12 Cylindrical element of differential thickness, �r,
on which momentum balance is made.

The shell force or momentum balance is performed on an
element of fluid as shown in Figure 2.12, which is similar
to that shown in Figure 2.8. Here the only terms that have
to be considered are due to the stresses exerted by one layer
of fluid on another as there are no effects due to gravity or
pressure. The force or momentum balance is

τrz|r 2πr − τrz|r+�r 2π(r + �r ) = 0 (2.44)

In the limit as �r → 0, Eq. 2.44 becomes

− d

dr
(rτrz) = 0 (2.45)

This can now be integrated to find τ rz:

τrz = C1/r (2.46)

We use the power-law model to find vz(r):

m(−dvz/dr)n = C1/r (2.47)

Here we have used the fact that dvz/dr < 0. This equation
can be integrated to find vz:

vz ≡ (C1/m)1/n r−1/n+1

(1 − n)/n
− C2 (2.48)

The following boundary conditions are used to find C1

and C2:

B.C.1: at r = R, vz = 0 (2.49)

B.C.2: at r = κR, vz = V (2.50)

Using the above conditions, the velocity profile becomes

vz(r )

V
= ξ 1−s − 1

κ1−s − 1
(2.51)

where ξ = r/R and s = 1/n. τ rz becomes

τrz = mV n(s − 1)n

Rn(κ1−s − 1)n

(
R

r

)
(2.52)

At this point we cannot specify V or R, until we relate
the thickness of the coating to these variables. To do this
we perform a mass balance on the region starting at the exit
of the die and ending where the fluid takes on the same
velocity as the wire (the density, ρ, is assumed not to change,
although the melt and solid would in reality have different
densities):

2π
∫ R

κR
vzr dr = V π

[
(κR + δ)2 − (κR)2

]
(2.53)

where δ is the coating thickness. On substituting Eq. 2.51
into the integral in Eq. 2.53 we obtain the following equation
for the coating thickness, δ:

2πVR2

κ1−s − 1

[
1 − κ3−s

3 − s
− 1 − κ2

2

]
= V π

[
(κR + δ)2 − (κR)2

]
(2.54)

Equations 2.52 and 2.54 represent two nonlinear equations
for R and V. Actually V drops out of Eq. 2.54 allowing us
to solve for R. Once R is found it can be substituted back
into Eq. 2.52 to find V. This is done in Example 2.3, which
follows.

Example 2.3. Die Radius and Wire Speed

Equations 2.52 and 2.54 represent two nonlinear algebraic
equations for finding the wire velocity and radius. Find R and
V for HDPE at 200 ◦C using the IMSL subroutine NEQNF,
which is described in Appendix D.4 on the accompanying
website. Also use Excel and the Solve function or Goal Seek
to find the roots of these two equations.

Solution. Since Eq. 2.54 does not contain V, we can first find
R and then substitute R into Eq. 2.52 to find V. According
to the program description for subroutine NEQNF, we must
write Eq. 2.54 in the following form:

2R2
(
1 − κ3−s

)
(
κ1−s − 1

)
(3 − s)

− R2
(
1 − κ2

)
(
κ1−s − 1

) − 2κRδ − δ2 = 0 (2.55)

Using the following information given in the problem

s = 1.6949, κ = 3.275 × 10−3 R−1, δ= 3.30 × 10−3 m
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Eq. 2.55 becomes

1.032 R2 − 2.608 × 10−3 Rs−1 + 4.323 × 10−5 = 0

(2.56)

Subroutine NEQNF solves a single nonlinear algebraic equa-
tion or a system of nonlinear algebraic equations for the roots.
The calling program listing is given in the accompanying
website in Chapter 2 of the Numerical solutions in the file
called EX2-3-Fortran. To use the subroutine one must pro-
vide an initial guess for R. As there are more than one root,
then obtaining a realistic value of R depends on the initial
guess. If n is a value such as 1

2 , 1
4 , and so on, then s is an inte-

ger. Taking n = 0.5, and hence s = 2 in Eq. 2.42, a quadratic
equation is formed for which the physically realistic solution
is R = 4.33 × 10−3 m. Another approach is to start with the
solution for the Newtonian case (s = 1), but this requires
additional algebraic manipulations. Using the initial guess as
4.33 × 10−3 m, R is calculated to be 4.549 × 10−3 m. We can
now substitute this value back into Eq. 2.52 to find V subject
to the condition that melt fracture will be visible at the outer
surface at τ rz(R) = 1.4 × 105 Pa:

V =
[
τrz(R)Rn

(
1 − κs−1

)
m(s − 1)n

]1/n

= 0.141 m/s (2.57)

As discussed in Chapter 7 line speeds in actual processes can
run in the range of 10 m/s to 40 m/s, which actually leads to
conditions well beyond where melt fracture is initiated.

Excel and Solve or Goal Seek can also be used to find
the real root of Eq. 2.56. The Excel solution is file EX2-3-
Excel in the Chapter 2 of the numerical solutions. The initial
guess is crucial to getting the proper solution. Because κR is
3.275E−03 m, then the guess for R must be chosen slightly
bigger than this value. The value for R obtained using Excel
is 4.55E−3 m.

Several points should be made concerning this solution.
The program was written so that the initial guess, the accu-
racy of the solution, and the maximum number of iterations
could be input through the terminal. This made it easy to
change these variables without having to compile the pro-
gram each time. Furthermore, the program could easily have
been written in a more general form by starting with Eq. 2.55
and then reading in quantities such as s, δ, and κR.

Although we have made a number of simplifications to
get a solution to this problem, it is seen that the situation
is still complicated and that computational techniques must
be used. The addition of a pressure drop (see Problem 2B.5)
and the use of the converging geometry even present more
difficulties. The addition of fluid elasticity (die swell) will be
dealt with later in Section 7.2.

Finally, there are a number of flow geometries for which
the shell balance approach can be used and which are

found frequently in polymer processing. We summarize these
results in Tables 2.3 through 2.5 for future reference. Here
solutions are given for flow between parallel plates, tube
flow, and flow through an annulus. Solutions are given for
Newtonian, power-law, and Ellis models.

The use of the shell balance cannot accommodate all the
flows we find in polymer processing. In the next section we
summarize the isothermal equations of change plus general-
ize the Newtonian and non-Newtonian constitutive equations
to three dimensions.

2.3 EQUATIONS OF CHANGE FOR
ISOTHERMAL SYSTEMS

As the process becomes more complex in terms of flow pat-
terns, then the shell balance approach is inadequate. There-
fore, we introduce the equations of conservation of mass and
momentum, which are suited for handling multidimensional
flows. We do not intend to rederive these equations, as they
are discussed in detail elsewhere (Bird et al., 2007, Chap. 3).
Suffice it to say that the principles of conservation of mass
and momentum applied to a differential cubic element of
fluid lead to the equations of continuity and motion, respec-
tively. We give these without derivation with emphasis on
their use.

The equation of continuity is presented in Table 2.6 for
three coordinate systems. Basically this equation represents
a constraint on the velocity field as a result of the fact that
one cannot generate voids in the material during deforma-
tion. When ρ is constant, then we consider the flow to be
incompressible and for rectangular coordinates the continu-
ity equation becomes

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= 0 (2.58)

The use of the continuity equation is illustrated in Exam-
ple 2.4.

The equation of motion is obtained by generalizing the
momentum or force balance for a three-dimensional element
of fluid. The components of the equation of motion are given
in Table 2.7. The terms on the left side of the equations are
associated with the transport of momentum by bulk flow.
For nearly all polymer processes these terms are negligible
compared to the terms on the right side. This is equivalent
to saying that the Reynolds number, Re, is negligible where
Re = ρD<v>/η. In this expression D is a characteristic
length and <v> is the average velocity.

In order to solve these equations one needs to relate the
stresses to the velocity gradients through a relation called the
constitutive equation. For a Newtonian fluid the components
of the constitutive equation are given by multiplying the
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TABLE 2.3 Parallel Plate Pressure Flow

τyz = −μ
dvz

dy
τyz = −m

∣∣∣∣dvz

dy

∣∣∣∣
n−1 dvz

dy

τyz(y) =
(
�P

L

)
y

τw = τyz

(
H

2

)
= H �P

2L

−γ̇yz(y) =
(
�P

μL

)
y

γ̇w = −γ̇yz

(
H

2

)
= H �P

2μL

vz(y) =
(

H 2�P

8μL

)[
1 −

(
2y

H

)2
]

vz(0) = vmax = H 2�P

8μL

Q = WH3�P

12μL

τyz(y) =
(
�P

L

)
y

τw = τyz

(
H

2

)
= H �P

2L

−γ̇yz(y) =
(
�P

ml
y

)s

y ≥ 0

γ̇w = −γ̇yz

(
H

2

)
=
(

H �P

2mL

)s

vz(y) = H

2(s + 1)

(
H �P

2mL

)s
[

1 −
(

2y

H

)s+1
]

y ≥ 0

vz(0) = vmax = H

2(s + 1)

(
H �P

2mL

)s

Q = WH2

2(s + 2)

(
H �P

2mL

)s

τyz = −η(τ )
dvz

dy
, where η(τ ) = η0

1 + (τ/τ1/2)α−1
τ = |τyz|

τyz(y) =
(
�P

L

)
y

τw = τyz

(
H

2

)
= H �P

2L

−γ̇yz =
(
�P

η0 L

)
y

[
1 +

(
�P y

τ1/2L

)α−1
]

γ̇w = −γ̇yz

(
H

2

)
= H �P

2η0 L

[
1 +

(
H �P

2τ1/2 L

)α−1
]

vz(y) = H 2�P

8η0 L

{[
1 −

(
2y

H

)2
]

+
(

2

1 + α

)(
H �P

2Lτ1/2

)α−1
[

1 −
(

2y

H

)α+1
]}

vz(0) = vmax = H 2�P

8η0 L

[
1 +

(
2

1 + α

)(
H �P

2Lτ1/2

)α−1
]

Q = WH3�P

12η0 L

[
1 +

(
3

2 + α

)(
H �P

2Lτ1/2

)α−1
]

Source: Data from Tadmor and Gogos, 1979.

components of the rate of deformation tensor by the viscosity,
μ. The components of the rate deformation are given in
Table 2.8. In taking the constitutive equation as the product
of the components of the rate of deformation tensor and μ,
expressions are generated for fluids which are incompressible
and in which the bulk viscosity has been neglected (Bird et al.,
2007). In general tensor notation we write Newton’s law of
viscosity for an incompressible isotropic fluid as

τ = −μγ̇ (2.59)

This notation will not be explained in this text, but suffice it
to say that it represents all the components given in Table 2.8
multiplied by μ. If we substitute the components of Eq. 2.59
into the equation of motion, the Navier–Stokes equations
are obtained.

In order to deal with the viscous response of non-
Newtonian fluids it is necessary to generalize Eq. 2.59 to
include a viscosity function, η, which must depend on the
magnitude of the rate of deformation or stress tensors. In
actuality η is a scalar quantity which must be a scalar
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TABLE 2.4 Circular Tube Pressure Flow

τrz = −μ
dvz

dr
τrz = −m

∣∣∣∣dvz

dr

∣∣∣∣
n−1 dvz

dr

τrz(r ) =
(
�P

2L

)
r

τw = τrz(R) = R �P

2L

−γ̇rz(r ) =
(
�P

2μL

)
r

γ̇w = −γ̇rz(R) = R �P

2μL

vz(r ) = R2�P

4μL

[
1 −

( r

R

)2
]

vz(0) = vmax = R2�P

4μL

Q = πR4�P

8μL

τrz(r ) =
(
�P

2L

)
r

τw = τrz(R) = R �P

2L

−γ̇rz(r ) =
(
�P

2mL

)s

γ̇w = −γ̇rz(R) =
(

R �P

2mL

)s

vz(r ) = R

1 + s

(
R �P

2mL

)s [
1 −

( r

R

)s+1
]

vz(0) = vmax = R

1 + s

(
R �P

2mL

)s

Q =
(

πR3

s + 3

)(
R �P

2mL

)s

τrz = −η(τ )
dvz

dr
, where η(τ ) = η0

1 + (τ/τ1/2)α−1
τ = |τrz|

τrz(r ) =
(
�P

2L

)
r

τw = τrz(R) = R �P

2L

−γ̇rz(r ) =
(

�P

2η0 L

)
r

[
1 +

(
�Pr

2Lτ1/2

)α−1
]

γ̇w = −γ̇rz(R) =
(

R �P

2η0L

)[
1 +

(
R �P

2Lτ1/2

)α−1
]

vz(r ) = R2�P

4Lη0

{[
1 −

( r

R

)2
]

+
(

2

1 + α

)(
R �P

2Lτ1/2

)α−1 [
1 −

( r

R

)α+1
]}

vz(0) = vmax = R2�P

4Lη0

[
1 +

(
2

1 + α

)(
R �P

2Lτ1/2

)α−1
]

Q = πR4�P

8η0 L

[
1 +

(
4

3 + α

)(
R �P

2Lτ1/2

)α−1
]

Source: Data from Tadmor and Gogos, 1979.

function of the rate of deformation tensor, γ̇ or the stress
tensor, τ . The scalar quantities associated with any tenso-
rial quantity (i.e., with any second ranked tensor) are the
invariants of the tensor which are given as (Bird et al., 1987,
Chap. 4)

I1 = �γ̇u = 2

[
∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

]
= 0 (2.60)

I2 = �i� j γ̇ijγ̇ji = γ̇ 2
xx + γ̇ 2

xy + γ̇ 2
xz + γ̇ 2

yz + γ̇ 2
yy

+ γ̇ 2
yz + γ̇ 2

zx + γ̇ 2
zy + γ̇ 2

zz (2.61)

and

I3 = det γ̇ (2.62)

where det γ̇ is the determinant of the matrix consisting of
the components of γ̇ . For incompressible flow I1 = 0 and
hence

η = η(I2, I3) (2.63)

For flows dominated by shear flow rather than extensional
flow (see Section 3.1), I3 is not very significant and η is
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TABLE 2.5 Concentric Annular Pressure Flows

τrz = −μ
dvz

dr

τrz(r ) = �P R

2L

[( r

R

)
−
(

1 − κ2

2 ln(1/κ)

)(
R

r

)]

τw1 = τrz(R) = �P R

2L

[
1 −

(
1 − κ2

2 ln(1/κ)

)]

τw2 = τrz(κR) = �P R

2L

[
κ −

(
1 − κ2

2 ln(1/κ)

)(
1

κ

)]

γ̇w1 = −γ̇rz(R) = �P R

2μL

[
1 −

(
1 − κ2

2 ln(1/κ)

)]

γ̇w2 = γ̇rz(κR) = �P R

2μL

[
κ −

(
1 − κ2

2 ln(1/κ)

)(
1

κ

)]

vz(r ) = �P R2

4μL

[
1 −

( r

R

)2
+
(

1 − κ2

ln(1/κ)

)
ln
( r

R

)]

vz(λR) = vmax = �P R2

4μL

{
1 −

(
1 − κ2

2 ln(1/κ)

)[
1 − ln

(
1 − κ2

2 ln(1/κ)

)]}
λ2 = 1 − κ2

2 ln(1/κ)

Q = π�P R4

8μL

[
(1 − κ4) − (1 − κ2)2

ln(1/κ)

]

τrz = −
∣∣∣∣dvz

dr

∣∣∣∣
n−1 (dvz

dr

)
ξ = r

R
s = 1

n
τrz(βR) = 0

v1
z (r ) = R

(
�P R

2mL

)s ∫ ξ

κ

(
β2

ξ ′ − ξ ′
)s

dξ ′ κ ≤ ξ ≤ λ

v11
z = R

(
�P R

2mL

)s ∫ 1

ξ

(
ξ ′ − β2

ξ ′

)s

dξ ′ λ ≤ ξ ≤ 1

λ is evaluated numerically for the equations above using the boundary condition

v1
z (βR) = v11

z (βR)

TABLE 2.6 Equation of Continuity in Several Coordinate Systems

Rectangular coordinates (x, y, z):

∂ρ

∂t
+ ∂

∂x
(ρvx ) + ∂

∂y

(
ρvy

)+ ∂

∂z
(ρvz) = 0 (A)

Cylindrical coordinates (r, 0, z):

∂ρ

∂t
+ 1

r

∂

∂r
(ρrvr ) + 1

r

∂

∂θ
(ρvθ ) + ∂

∂z
(ρvz) = 0 (B)

Spherical coordinates (r, θ , φ):

∂ρ

∂t
+ 1

r 2

∂

∂r

(
ρr 2vr

)+ 1

r sin θ

∂

∂θ
(ρvθ sin θ ) + 1

r sin θ

∂

∂φ

(
ρvφ
) = 0 (C)

Source: Data from Bird et al., 1960.



TABLE 2.7 Equation of Motion in Terms of τ

Rectangular coordinates (x, y, z):

ρ

(
∂vx

∂t
+ vx

∂

∂x
vx + vy

∂

∂y
vx + vz

∂

∂z
vx

)
= −

[
∂

∂x
τxx + ∂

∂y
τyx + ∂

∂z
τzx

]
− ∂p

∂x
+ ρgx (A)

ρ

(
∂vy

∂t
+ vx

∂

∂x
vy + vy

∂

∂y
vy + vz

∂

∂z
vy

)
= −

[
∂

∂x
τxy + ∂

∂y
τyy + ∂

∂z
τzy

]
− ∂p

∂y
+ ρgy (B)

ρ

(
∂vz

∂t
+ vx

∂

∂x
vz + vy

∂

∂y
vz + vz

∂

∂z
vz

)
= −

[
∂

∂x
τxz + ∂

∂y
τyx + ∂

∂z
τzz

]
− ∂p

∂z
+ ρgz (C)

Cylindrical coordinates (r, θ , z):

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
− v2

θ

r
+ vz

∂vr

∂z

)
= −

[
1

r

∂

∂r
(rτrr) + 1

r

∂

∂θ
τθr + ∂

∂z
τzr − τθθ

r

]
− ∂p

∂r
+ ρgr (D)

ρ

(
∂vθ
∂t

+ vr
∂vθ
∂r

+ vθ
r

∂vθ
∂θ

− vr vθ
r

+ vz
∂vθ
∂z

)
= −

[
1

r 2

∂

∂r

(
r2τrθ

)+ 1

r

∂

∂θ
τθθ + ∂

∂z
τzθ + τθr − τrθ

r

]
− 1

r

∂p

∂0
+ ρgθ (E)

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z

)
= −

[
1

r

∂

∂r
(rτrz) + 1

r

∂

∂θ
τθ z + ∂

∂z
τzz

]
− ∂p

∂z
+ ρgz (F)

Spherical coordinates (r, 0, φ):

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
+ vφ

r sin θ

∂vr

∂φ
− v2

θ + v2
φ

r

)

= −
[

1

r 2

∂

∂r

(
r 2τrr

)+ 1

r sin θ

∂

∂θ
(τθr sin θ ) + 1

r sin θ

∂

∂φ
τφr − τθθ + τφφ

r

]
− ∂p

∂r
+ ρgr (G)

ρ

(
∂vθ
∂t

+ vr
∂vθ
∂r

+ vθ
r

∂vθ
∂θ

+ vφ
r sin θ

∂vθ
∂φ

− vr vθ
r

− v2
φ cot θ

r

)

= −
[

1

r 3

∂

∂r

(
r 3τrθ

)+ 1

r sin θ

∂

∂θ
(τθθ sin θ ) + 1

r sin θ

∂

∂φ
τφθ + τθr − τrθ − τφφ cot θ

r

]
− 1

r

∂p

∂θ
+ ρgr (H)

Source: Data from Bird et al., 1987.

TABLE 2.8 Rate-of-Strain Tensor

Rectangular coordinates (x, y, z):

γ̇xx = 2
∂vx

∂x
γ̇xy = γ̇yx = ∂vy

∂x
+ ∂vx

∂y

γ̇yy = 2
∂vy

∂y
γ̇yz = γ̇zy = ∂vz

∂y
+ ∂vy

∂z

γ̇zz = 2
∂vz

∂z
γ̇zx = γ̇xz = ∂vx

∂z
+ ∂vz

∂x

Cylindrical coordinates (r, θ , z):

γ̇rr = 2
∂vr

∂r
γ̇rθ = γ̇θr = r

∂

∂r

( vθ
r

)
+ 1

r

∂vr

∂θ

γ̇θθ = 2

(
1

r

∂vθ
∂θ

+ vr

r

)
γ̇θ z = γ̇zθ = 1

r

∂vz

∂θ
+ ∂vθ

∂z

γ̇zz = 2
∂vz

∂z
γ̇zr = γ̇rz = ∂vr

∂z
+ ∂vz

∂r

Spherical coordinates (r, θ , φ):

γ̇rr = 2
∂vr

∂r
γ̇rθ = γ̇θr = r

∂

∂r

( vθ
r

)
+ 1

r

∂vr

∂θ

γ̇θθ = 2

(
1

r

∂vθ
∂θ

+ vr

r

)
γ̇θφ = γ̇φθ = sin θ

r

∂

∂θ

( vφ
sin θ

)
+ 1

r sin θ

∂vθ
∂φ

γ̇φφ = 2

(
1

r sin θ

∂vφ
∂φ

+ vr

r
+ vθ cot θ

r

)
γ̇φr = γ̇rφ = 1

r sin θ

∂vr

∂φ
+ r

∂

∂r

( vφ
r

)

Source: Data from Bird et al., 1987.
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taken to be a function of I2 only (Bird et al., 1987, p. 171).

Actually we use
√

1
2 I2, which is called the shear rate, γ̇ .

Likewise for models for which η depends on the invari-
ants of τ , η is taken to be a function of � i�jτ ijτ ji, which
can be found by replacing terms such as γ̇xy by τ xy in
Eq. 2.61.

One can generalize the expression for τ as follows:

τ = −η(γ̇ )γ̇ (2.64)

Equation 2.64 is called the generalized Newtonian fluid
(GNF) model. The empiricisms for η(γ̇ ) analogous to those
given in Eqs. 2.6 to 2.9 become, respectively,

η = mγ̇ n−1 (2.65)

η0

η
= 1 +

(
τ

τ1/2

)α−1

(2.66)

η − η∞
η0 − η∞

= [
1 + (λγ̇ )2

](n−1)/2
(2.67a)

η = μ0 + (τ0/γ̇ ) τ ≥ τ0 (2.67b)

η = ∞ τ < τ0 (2.67c)

where τ =
√

1
2 (τ : τ ) and γ̇ =

√
1
2 I2. In one-dimensional

flows such as those considered in Section 2.2 these equa-
tions reduce to the same form with γ̇ becoming dvx/dy or τ
becoming τ yx.

Before considering two examples that illustrate the use of
the equations of motion, it is necessary to discuss the equation
of mechanical energy. For single particles the work done on
a particle is given by taking the dot product of Newton’s
second law of motion with the velocity; that is,

F · v = ma · v = 0.5m

(
dv2

dt

)
= d

dt

(
1
2 mv2

)
(2.68)

This equation tells us that the work done on the particle is
just equal to the change in kinetic energy. For a continuum
most mechanical and chemical engineers have solved the
macroscopic mechanical energy balance, which is shown
below for a fluid of constant ρ:

d

dt
(Ktot + φtot) = −�

[(
1<v3>

2<v>
+ φ̂ + p

ρ

)
w

]
− W − Ev

(2.69)

where Ktot and φtot are the total kinetic energy and potential
energy, respectively, v is the time averaged velocity, w is the
mass flow rate, W is the work input to the system, Ev is the
friction loss, φ̂ is the potential energy per unit mass, and �

represents the change in the quantities (Bird et al., 2007). By

taking the “dot” or scalar product of the equation of motion
with the velocity field one obtains the mechanical energy
equation for a continuum:

∂

∂t
( 1

2ρv2)

rate of increase
in kinetic energy
per unit volume

= −(� · 1
2ρv2v)

net rate of input of
kinetic energy by
virtue of bulk flow

−(� · pv)
rate of work done
by pressure of
surroundings on
volume element

−p(−� · v)
rate of reversible
conversion to
internal energy

−(� · [τ · v])
rate of work done
by viscous forces
on volume element

−(−τ : �v)
rate of irreversible
conversion to
internal energy

+ρ(v · g)
rate of work done
by gravity force on
volume element

(2.70)

The various quantities that make up this equation have been
written using tensor notation. As we do not intend to evaluate
these terms, we have given the physical significance of each
term. By integrating Eq. 2.70 over the volume of a region
one can obtain Eq. 2.69. Equation 2.70 is used to determine
the power requirements for a piece of processing equipment.

Example 2.4. Radial Flow of a Newtonian Fluid
Between Two Parallel Disks

Determine the velocity field and the pressure distribution for
the flow of an incompressible Newtonian fluid between two
disks as shown in Figure 2.13. Flows similar to this occur in
several polymer processes including injection molding in a
center-gated disk mold or compression molding.

Flow in

Flow out

z = +b

z = -b

FIGURE 2.13 Radial flow between two parallel disks.
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Solution. We start with the postulates for the velocity and
pressure fields:

vr = vr (z, r ) p = p(r ) (2.71)

Next one decides on which components of stress arise for a
given constitutive equation. Here the Newtonian fluid model
is selected, and one uses Table 2.8 to determine the compo-
nents of γ̇ . Because τ ij = −μij, then based on Eq. 2.71 one
finds the following components for τ :

τrr = −2μ(∂vr/∂r ) (2.72)

τθθ = −2μvr/r (2.73)

τrz = τzr = −μ(∂vr/∂z) (2.74)

The equation of continuity reduces to

1

r

∂

∂r
(rvr ) = 0 (2.75)

It is indicated by Eq. 2.5 that rvr must be a function of z only,
�(z). Hence, from Eq. 2.75 one finds

vr = �(z)/r (2.76)

This reduces the expressions for the stresses to the following
equations:

τθθ = −2μ
φ(z)

r2
τrr = +2μ

φ(z)

r2
τzr = −μ

r

dφ(z)

dz
(2.77)

The equation of motion, using Table 2.7, becomes (note that
the inertial terms are neglected)

− 1

r

∂

∂r
(rτrr) − ∂

∂z
τzr + τθθ

r
− ∂p

∂r
= 0 (2.78)

Substituting Eq. 2.77 into Eq. 2.78 and making use of
Eq. 2.75, one obtains the following differential equation for
�(z):

0 = −dp

dr
+ μ

r

d2φ

dz2 (2.79)

We can integrate this equation to find φ, since dp/dr is a
function of r, and the constants of integration can be solved
for using the following boundary conditions:

B.C.1: at z = +b, φ(z) = 0 for all r (2.80)

B.C.2: at z = −b, φ(z) = 0 for all r (2.81)

Furthermore, one can find the pressure difference using

B.C.3: at r = r1, p = p1 (2.82)

B.C.4: at r = r2, p = p2 (2.83)

The velocity field is then given as

vr (r, z) = b2�p

2μr ln(r2/r1)

[
1 − (z/b)2

]
(2.84)

The volumetric flow rate, Q, is found by integrating vr over
the cross-sectional area:

Q =
∫ 2π

0

∫ b

−b
vr (r, z)r dθ dz = 4πb2�p

3μ ln (r2/r1)
(2.85)

The key points of this example are that the continuity
equation helps us find the form of vr(r, z) and that there are
normal stresses for this flow. The values of τ rr and τ θθ come
from the extensional deformations generated in this flow. It
is noted because of the sign convention, tensile stresses are
negative.

Example 2.5. Radial Flow of a Power-Law Fluid

Do Example 2.4 for a power-law fluid.

Solution. For a power-law fluid the same postulates and
assumptions that are made for the Newtonian case are used.
In particular, Eq. 2.76 holds as well as those for the stress
components. The difference is that μ must be replaced by η,
which depends on γ̇ . γ̇ for this flow is

γ̇ =
√

2

(
∂v

∂r
r

)2

+ 2
(v

r
r
)2

+
(
∂v

∂z
r

)2

(2.86a)

=
√

2
φ2

r4
+ 2φ2

r4
+ 1

r2

(
dφ

dz

)2

(2.86b)

The stresses are then

τrr = +2m|γ̇ |n−1 φ(z)

r2
(2.87)

τθθ = −2m|γ̇ |n−1 φ(z)

r2
(2.88)

τzr = −m|γ̇ |n−1 dφ(z)

dz

1

r
(2.89)

When these are substituted into Eq. 2.78, one obtains a non-
linear differential equation for �(z). Hence, the use of the
GNF model for the stress components leads to a complex
differential equation.
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2.4 USEFUL APPROXIMATIONS

The radial flow example illustrates how rapidly problems
involving the flow of non-Newtonian fluids become mathe-
matically complicated. There are a number of times when
the analysis can be simplified. There are two useful approx-
imations that simplify the differential equations that arise
out of the equations of motion. These neglect the effect of
curvature and the lubrication approximation. The solutions
of several problems, which have already been dealt with,
are used to illustrate these approximations. First, we exam-
ine how neglecting curvature can lead to a simplification
of the differential equations. This is followed by the han-
dling of geometries in which a variation in the dimension
transverse to the flow direction occurs, such as the case of a
tapered tube.

The extrusion of a polymer melt for film blowing is usually
carried out using an annular die with a thin gap such that
κ > 0.90. For example, a film blowing die may have an outer
diameter of 0.045 m and an inner diameter of 0.0449 m.
Hence, κ is about 0.998. The equation of motion for this
flow is

d

dr
(rτrz) = (P ′

0 − P ′
L )r/L (2.90)

For a power-law fluid, τ rz is given by Eq. 2.32. One now
expands the derivative in Eq. 2.90 and compares the order of
each term:

dτrz

dr
+ τrz

r
= P ′

0 − P ′
L

L
(2.91)

where τ rz is given by the following expression:

τrz = −m(dvz/dr)n (2.92)

in the region κR < r < βR. We now approximate the deriva-
tives as follows:

dvz

dr
≈ vmax − 0

βR − κR
= vmax

(β − κ)R
(2.93)

τrz ≈ −m

(
vmax

(β − κ)R

)n

(2.94)

dτrz

dr
≈ −mn

(
vmax

(β − κ)R

)n−1 vmax

R2(β − κ)2
(2.95)

One can compare the order of each term on the left side of
Eq. 2.91 to determine if one or the other is dominant. Given
the conditions in the example, βR will be about 0.5R(1 − κ)
or β = 0.999. Hence,

τrz

r
≈ −m

(
vmax

(β − κ)R

)n 1

R
(2.96)

dτrz

dr
≈ −mn

(
vmax

(β − κ)R

)n 1

R(0.001)
(2.97)

Therefore, dτ rz/dr is about 1000 times greater than τ rz/r and
one neglects the second term in Eq. 2.91. Now we integrate
Eq. 2.91 to find the stress field:

τrz = [(P ′
0 − P ′

L

)
/L
]

r + C1 (2.98)

At r = βR, τ rz = 0 and C1 = −(P ′
0 − P ′

L )/L(βR/L). Before
continuing it is noted that Eq. 2.98 is exactly that which is
solved for flow between flat plates. One now substitutes the
expression for τ rz based on the power-law fluid into Eq. 2.98
to find vz(r):

for

κR < r < βR, − m

(
dvz <

dr

)n

=
(

P ′
0 − P ′

L

L

)
[r − βR]

(2.99)

and for

βR < r < R, + m

(
dvz <

dr

)n

=
(

P ′
0 − P ′

L

L

)
[r − βR]

(2.100)

These equations are integrated using the no-slip boundary
conditions as before to give vz(r):

v<
z (ξ ) =

((
P ′

0 − P ′
L

)
R

mL

)1/n
Rn

n + 1

[
(β − κ)1/n+1

− (β − ξ )1/n+1
]

(2.101)

v>
z (ξ ) =

((
P ′

0 − P ′
L

)
R

mL

)1/n
Rn

n + 1

[
(1 − β)1/n+1

− (ξ − β)1/n+1
]

(2.102)

With the condition that v<
z = v>z at r = βR, one finds that

β = (1 + κ)/2 or that for small gaps β is at the center of the
gap. Hence, for small gaps one finds an analytical solution
for vz(r). This solution is expected to apply for values of κ
down to about 0.8. Obviously the expressions in Eqs. 2.101
and 2.102 can be integrated to find Q:

Q =
(

πR3

s + 2

)(
R �P

2mL

)s

(1 − κ)s+2 (1 + κ)

2
(2.103)

where s = 1/n and �P = P ′
0 − P ′

L .
This same expression could be found by using the expres-

sion for slit flow in Table 2.5 and replacing the width, W,
by πR(1 + κ) and the height, H, by R(1 − κ) (see Prob-
lem 2B.4). In essence, the annular region is opened up and
treated as plane slit flow. One will find this a useful approach
throughout the design of polymer processes.

There are many geometries in polymer processing where
the dimensions change along the flow direction: for exam-
ple, in extrusion through a tapered die, in calendaring, and the
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FIGURE 2.14 Flow through a tapered tube.

channel of an extrusion screw. Solving the differential equa-
tions associated with these geometries would lead to non-
linear partial differential equations. However, by introducing
an approximation known as the lubrication approximation,
one can simplify the differential equation. To illustrate this
method, flow through a tapered tube, as shown in Figure 2.14,
is considered. Based on this geometry one would postulate
velocity and pressure fields as follows:

vz = vz(r, z) p = p(z) (2.104)

This would lead to the following form of the equation of
motion:

− 1

r

∂

∂r
(rτrz) − ∂

∂z
τzz − ∂p

∂z
= 0 (2.105)

If one evaluated ∂τzz/∂z relative to the other term, we would
find that for small amounts of taper this term would be small
compared to the other term. One would follow the same
analysis as in the previous example to show the derivative is
small. Hence, one neglects ∂τzz/∂z and solves the following
equation:

1

r

∂

∂r
(rτrz) − ∂p

∂z
= 0 (2.106)

This is just the equation that would be solved for a straight
tube. Hence, the solution to this equation is

vz(r ) = R

1 + s

(
R �P

2mL

)1/n [
1 −

( r

R

) 1
n +1
]

(2.107)

However, the solution is applied at each distance z down the
tube. One replaces R by R(z), which is obtained from the
geometry of the tube as follows:

R(z) = −[(R0 − RL )L]z + R0 (2.108)

At any z position, one can integrate Eq. 2.107 over the cross
section of the tube to find Q:

Q =
(

πR3

s + 3

)(
R �P

2mL

)s

(2.109)

�P/L is replaced by −dp/dz and R by Eq. 2.108. This gives
a first order differential equation for finding p:

2m

(
Q(s + 3)

π

)n

R−3n−1 = −dp

dz
(2.110)

Equation 2.110 can be integrated uisng the conditions that at
z = 0, p = P0 and at z = L, p = PL to give

P0 − PL = 2mL

3n

[
Q

π

(
1

n + 3

)]n
(

R−3n
L − R−3n

0

R0 − RL

)
(2.111)

This approximation is probably adequate for tapers of less
than 30◦, but for more abrupt contractions the viscoelas-
tic nature of polymeric fluids may make the pressure drop
higher (see Section 7.2). However, for the most part the lubri-
cation approximation will be extremely useful in the design
of extrusion processes (i.e., the design of extrusion dies and
screw design).

2.5 SOLUTION TO DESIGN PROBLEM I

The solution to Design Problem I is presented in this
section. The lubrication approximation is used first to obtain
a solution. This is followed by a numerical approach in which
the die is broken into a series of annuli.

2.5.1 Lubrication Approximation Solution

The solution will proceed as follows: (1) the dimensions of
the die will be determined; (2) an expression for �P versus
Q will be determined using the lubrication approximation;
(3) from this relation one can calculate Q for the given �P
and the average velocity <vz>; and (4) the time required to
extrude the parison is calculated.

The following information is given in the problem state-
ment:

Parison weight: 90 g

Parison thickness (tp): 3.81 × 10−4 m

Parison diameter (Dp): 0.127 m

Parison density (ρp): 965 kg/m3

From this information and the equation for the mass of the
parison (mp),

mp = ρpLpπ
(

R2
0,p − R2

i,p

)
(2.112)

one can calculate the desired length of the parison (Lp), which
is 0.615 m. Since the phenomenon of die swell (see Sec-
tion 3.2) is neglected, the final thickness and diameter of
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FIGURE 2.15 Conical region of the blow molding die showing
the dimensions required to produce the parison as requested in
Design Problem I.

the die are assumed to be the same as those of the parison.
The dimensions of the die geometry are then as shown in
Figure 2.15.

The next goal is to determine an expression that will allow
one to calculate Q and the average velocity, <vz>, for the
maximum allowable pressure drop. To do this the lubrication
approximation is used. The flow region of interest is shown
in Figure 2.16. With the assumption that the gap is small
relative to the radius (which is acceptable over most of the
length of the die), the annular region can be opened up to the
planar region shown in Figure 2.16. For a Newtonian fluid
the expression for Q for flat plates (see Table 2.3) is

Q = WH3�P

12μL
(2.113)

�P/L is replaced by −dp/dz. H is the gap which is constant
and is R0(1 − κ0) or RL(1 − κL), where R0 and RL are the outer
radii of the tapered annulus at z = 0 and z = L, respectively.
It is also noted that although the gap is constant, the ratio of
the inner to outer radii, κ , varies slightly with the distance

z (e.g., the value of κ at z = L is defined as κL). W varies
linearly with z as given below:

W = W0 + WL − W0

L
z (2.114)

where W0 = πR0(1 + κ0) and WL = πRL (1 + κL). On
substituting the expression for W into Eq. 2.113 and replacing
�P/L by −dp/dz, Eq. 2.113 becomes

Q =
(

W0 + WL − W0

L
z

)
H3

12μ

(−dp

dz

)
(2.115)

Separating variables and integrating, Eq. 2.115 becomes

∫ PL

P0

(−dp) =
∫ L

0

12μQ

H 3[W0 + (WL − W0)z/L]
dz (2.116)

Carrying out the integration one obtains the following expres-
sion:

PL − P0 = 12μQL

H 3(WL − W0)
ln

(
WL

W0

)
(2.117)

Equation 2.117 is now rearranged to give the following
expression for Q:

Q = (PL − P0)H3(WL − W0)

12μL ln(WL/W0)
(2.118)

Before using Eq. 2.118 to answer the questions associated
with Design Problem I, a similar expression will be obtained
for a fluid whose viscosity function is described by the power
law. Again, using Table 2.3, the expression for pressure-
driven flow of a power-law fluid through parallel plates is

Q = WH2

2(s + 2)

(
H �P

2mL

)s

(2.119)

where s = 1/n. Following the same approach as for the
Newtonian fluid, one obtains

(
−dp

dz

)s

= 2Q(s + 2)

(W0 + (WL − W0)z/L) H 2

(
2m

H

)s

(2.120)
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FIGURE 2.16 Three-dimensional view of a conical die unfolded into a planar die.
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The nth power is taken of both sides of Eq. 2.120 to obtain

− dp

dz
=
(

2Q(s + 2)

(W0 + (WL − W0)z/L) H 2

)1/s (2m

H

)
(2.121)

Equation 2.121 is integrated to find P0 − PL:

P0 − PL =
(

2Q(s + 2)

H 2

)n (2mL

H

)(
1

1 − n

)

×
(

W 1−n
L − W 1−n

0

WL − W0

)
(2.122)

Equation 2.122 is rearranged to give the following expression
for Q:

Q = (P0 − PL )s H2[
2(s + 2)(H/2mL)s

(
1

1 − n

)s
(

W 1−n
L − W 1−n

0

WL − W0

)s]

(2.123)

Equations 2.118 and 2.123 are now used to make the deci-
sions required to solve Design Problem I. The pressure drop
at the onset of melt fracture is obtained from the expression
for the wall shear stress in Table 2.3:

P0 − PL = τw L

cos θ

2

H
=
(
1.4 × 105 Pa

) (
3.81 × 10−4 m

)
40

0.866
(
3.81 × 10−4 m

)
= 6.467 × 106 Pa (2.124)

The value of P0 − PL is the same whether the fluid is
assumed to be described by a Newtonian or power-law model.
Equation 2.118 is used to find Q and <vz> = Q/A for the
Newtonian case:

Q =

(
6.467 × 106 Pa

) (
3.81 × 10−4

)3(
3.978 × 10−1 m − 3.632 × 10−1 m

)
12
(
2.108 × 105 Pa·s) 20

(
3.81 × 10−4

)
(0.091)

= 7.08 × 10−7 m3/s

Q/A = 7.08 × 10−3 m3/s

(3.805 × 10−1 m)(3.81 × 10−4 m)

= 4.8 × 10−3 m/s (2.125)

For the power law Eq. 2.123 is used to find Q and <vz>:

Q = 2.47 × 10−6 m3/s

Q/A = 2.47 × 10−6

1.45 × 10−4
m/s = 1.704 × 10−2 m/s (2.126)

Hence, one can see that there is a significant difference in the
values for the Newtonian and power-law cases.

Finally, the length of time to “hang the parison” is deter-
mined. Based on the parison weight, the required parison

length is calculated to be 0.615 m. If it is assumed that the
parison does not sag under its own weight, then the hang
time, tH, is

Newtonian: tH = L

<vz>
= 0.615 m

4.88 × 10−3 m/s
= 126.0 s

Power law: tH = 0.615 m

1.704 × 10−2 m/s
= 36.1 s (2.127)

Again there is a significant difference between the hang times
for the Newtonian and power-law cases.

In practice, the polymer swells as it leaves the die, giving
a wall thickness and parison diameter greater than would be
expected. Furthermore, the weight of the parison causes the
extruded material to sag under its own weight. This reduces
the wall thickness. If the sag is too great, the parison may fail
when blown or the wall thickness will vary considerably over
the length of the parison. These factors will be dealt with in
the next chapter.

2.5.2 Computer Solution

In the second part of Design Problem I, a computer solution
is requested. This solution is outlined here, and the program
listing is given in the accompanying website under “Numeri-
cal Solutions, Chapter 2.” The computer solution allows one
to deal with dies having a variable gap (in Fig. 2.2, this cor-
responds to angle α = 0). Although one could extend the
parallel plate solution to annular dies of variable gap, the
computer solution outlined here uses the solution for annular
die flow (Table 2.5) applied to segments of length �z.

The solution proceeds as described below. �P/�z is cal-
culated using Eq. 2.41 for a segment of length �z:

�P

�z′ =
(

Q(s + 3)

πR3(z′)

)n 2m

[(1 −β2)1+s − κ1−s(β2 − κ2)1+s]n

(2.128)

where�z′ =�z/cos θ and z′ = z/cos θ . Ro is the outer radius
of the annular segment and is given by the following:

Ro = Ro
0 + tan θ z (2.129)

while κ is ratio of the inner radius to outer radius at each
segment given by

κ = Ri(z)

Ro(z)
= Ri

0 + z tan θ

Ro
0 + z tan θ

(2.130)

Here R is Ro at z = 0. β must also be determined for each step
and this is done for each segment using Eq. 2.39. Because
neither P0 − PL nor Q is known, one must use the equation for
τ rz(R) in Table 2.5 to determine�P/�z′ over the last segment
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TABLE 2.9 Comparison of Predictions for Different Methods of Computation

Flat Platea

(Variable Width and Separation) Series of Annulib

Approximation Fluid Newtonian Power Law Power Law Power Law

20 sections: 100 sections:
Q [m3/s] 5.608 × 10−6 6.638 × 10−5 1.174 × 10−4 1.1652 × 10−4

dP

dz
|EXIT [Pa/m] −8.630 × 109 −5.397 × 109 −4.8504 × 109 −5.7050 × 109

τwEXIT [Pa] 1.490 × 105 9.318 × 105 10.217 × 105 11.091 × 105

Melt fracture? Yes Yes Yes Yes

<vz> [m/s] 4.083 × 10−2 4.832 × 10−1 1.589 × 10−1 1.553 × 10−1

t, time required to extrude parison [s] 15.11 1.277 3.884 3.974

aResults obtained from Computer Code DIEFPA. for (flat plate approximation).
bResults obtained from Computer Code SERADA (series annular dies approximation).

of the annulus. One can then guess at Q and calculate �P
over each segment using Eq. 2.118. If �P does not match
the value at the end segment based on the limit due to melt
fracture, then Q is changed and the iteration procedure is
started all over. When α = 0 and the gap is small, one would
expect that this improved method of computation would not
be necessary.

The computer solution is compared against the plate solu-
tion for the case when α = 10o (note in Section 2.5.1 α was
taken as zero) in Table 2.9. First we observe that <vz> or
Q is about 10 times greater for the power-law case than for
the Newtonian case. The computer solution based on break-
ing the die up into annular segments (100 sections) leads
to values of <vz> that are only about one-third of those
calculated using the flat plate. Hence, at the beginning of
the conical region there must be a large error in neglecting
the curvature in the geometry. We also observe that the taper
(α = 10o) has a significant effect on the flow rate. The parison
hang times vary significantly from the flat plate to annular
segment approach. Hence, more accurate solutions may only
be obtained by use of a numerical solution and the computer.

PROBLEMS

A. Applications

2A.1 Power-Law Parameters from the Ellis Model. Ellis
model parameters for a polypropylene sample
at 200 ◦C are η0 = 1.24E+04 Pa·s, τ 1/2 =
6.90E+03 Pa, and α = 2.82. Estimate m and n
in the power-law model using these values of the
parameters in the Ellis model.

2A.2 Flow of HDPE Through Parallel Plates

(a) Compare the predictions at τw = 1.0E+05 Pa
for the volumetric flow rate for HDPE at 180 ◦C

for flow through parallel plates (Table 2.3)
for Newtonian, power-law, and Ellis models.
Use the parameters given in Table 2.2. The
plate dimensions are H = 2.54E−03 m, W =
2.54E−02 m, and L = 5.08E−02 m.

(b) Determine the pressure drop in each case.

(c) Determine the wall shear rate, γ̇ w, for each
model.

2A.3 Pressure Transducer Selection. It is desired to
select pressure transducers to be mounted on the
upper wall of the plates described in Problem 2A.2.
The accuracy of the transducers depends on the range
of pressure that must be measured. For the conditions
described in Problem 2A.2, what is the maximum
pressure that would have to be measured for pres-
sure transducers mounted at the entrance, halfway
down the channel, and at a distance of H from the
exit?

2A.4 Change in Wire Coating Conditions. For the wire
coating problem described in Section 2.2.2 it is
found that one can actually pass through melt frac-
ture by increasing the wire speed to the point where
the wall shear stress (τw) = 2.2E+05 Pa (on increas-
ing to higher values of τw another form of melt frac-
ture occurs). Using the same die radius as calculated
in Example 2.3, find the wire coating thickness, δ,
and the wire speed, V, for τw = 2.2E+05 Pa. Use the
rheological parameters given for HDPE at 200 ◦C in
Table 2.2.

2A.5 Flow Through a Tubing Die. A polypropylene is
extruded through an annular die at 210 ◦C to make
tubing for various biomedical applications. The die
dimensions are D = 3.175E−03 m, κ = 0.7, and
L = 3.175E−02 m. The extruder can feed a
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maximum of 22 kg/h to the die. With the fol-
lowing rheological parameters given calculate �P
and determine the maximum wall shear stress:
m = 3.21E+04 Pa·sn, n = 0.25, η0 = 3.5E+04 Pa·s,
τ 1/2 = 3.35E+04 Pa, and α = 4.19. Density values
can be determined using Table 5.6.

2A.6 Pressure Drop Across a Pelletizing Die.
Polypropylene is mixed with pigments (1.0 wt%) in
a single-screw extruder and then pumped through
a pelletizing die consisting of ten capillaries (D =
3.175E−03 m and L = 3.175E−02 m). The ten
strands are quenched in a water bath and then cut
into pellets 6.35E−03 m in length. Given that the
polymer has the same properties as described in
Problem 2A.5 and that the extruder is capable of
delivering 50 kg/h, determine the pressure drop,
�P, across the die (neglect the pressure drop across
the distribution system) and the wall shear stress at
the maximum mass flow rate.

B. Principles

2B.1 Flow Between Parallel Plates of a Newtonian
Fluid. The solution to the flow between parallel
plates as shown in Figure 2.17 is frequently used in
the analysis of polymer processes.

(a) Make a differential force (or momentum) bal-
ance and obtain expressions for the distributions
of shear stress (or momentum flux) and velocity
for a Newtonian fluid. (Note: These expressions
are given in Table 2.3.)

(b) Start with the equations of motion (see Tables 2.7
and 2.8) and obtain the velocity distribution.

(c) Obtain an expression for the volumetric flow
rate, Q.

Fluid in

x

y

z

H

L

W

Fluid out

FIGURE 2.17 Flow through a set of parallel plates.

2B.2 Flow Between Parallel Plates of a Non-Newtonian
Fluid

(a) Use the equations of motion (Table 2.7) and the
power-law empiricism for viscosity to find the
shear stress and velocity distributions for the
flow of a non-Newtonian fluid through parallel
plates (see Fig. 2.17). Also determine expres-
sions for γ̇ and Q.

(b) Do the same as in part (a), but use the Ellis
model. (Note: Both solutions are given in
Table 2.3.)

(c) Formulate the problem using the Cross model,
Eq. 2.13, and specify whether it is possible to
get an analytical solution.

2B.3 Flow of a Non-Newtonian Fluid Through a Tube

(a) Obtain an expression for Q for the flow of
a power-law fluid through a tube of radius
R. (Confirm your expression with that in
Table 2.4.)

(b) Derive an express for Q for the Ellis model (see
Table 2.4.)

(c) Show that in the limit as s goes to one and
m = μ, one obtains the Newtonian solution.

(d) Formulate the solution using the Carreau model,
Eq. 2.67a, and specify whether it is possible to
obtain an analytical solution.

2B.4 Adapting the Parallel Plate Solution to Annular
Flow. For small annular gaps (e.g., κ = 0.9)
the expression for Q for flow through a slit of
a power-law fluid (Problem 2B.3) can be used to
obtain an expression for Q for annular flow. Adapt
the parallel plate flow solution for the power-law
model to that for flow through an annulus with
a small gap (you should obtain the expression in
Eq. 2.103).

2B.5 Wire Coating with an Imposed Pressure. In prac-
tice there is always a pressure drop across a wire
coating die as the result of polymer melt being
pumped by an extruder. By imposing a pressure
drop the coating thickness can be controlled inde-
pendently of the wire speed.

(a) For the situation shown in Figure 2.11 obtain
the following expression for the volumetric flow
rate for a Newtonian fluid:

Q = πR2V

2

(
1 − κ2

ln(1/κ)
− 2κ2

)
+ π�P R4

8μL

×
[

1 − κ4 −
(
1 − κ2

)2
ln(1/κ)

]
(2.131)
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(b) Show that the coating thickness for a Newtonian
fluid is given by

δ′ = δ

Ri
= (1 + fd + f p

)1/2 − 1 (2.132)

where

fd = ρ ′

ρ

(
1 − κ2

2κ2 ln(1/κ)
− 1

)

f p = ρ ′

ρ
φ

1

8κ2

[
1 − κ4 − (1 − κ2)2

ln(1/κ)

]
(2.133)

and where

φ = �P R2

μvL

ρ′ is the density of the polymer at 25 ◦C.

(c) Solve the problem for the power-law model.
(Can one obtain an analytical expression for Q
in this case?)

(d) Obtain a solution for the power-law model for
the case of small gaps.

2B.6 Tangential Annular Flow

(a) Determine the stress and velocity field for tan-
gential annular flow (see Fig. 2.18) of a power-
law fluid.

(b) Determine the torque required to turn the inner
cylinder and the power required.

(c) Obtain the velocity field for the case of small
gaps.

FIGURE 2.18 Flow between two coaxial cylinders with the inner
cylinder rotating.

FIGURE 2.19 Creeping flow between two stationary concentric
spheres.

2B.7 Flow Through an Annulus with a Rotating
Mandrel. In some processes involving pressure-
driven flow of polymer melts through an annulus the
outer or inner cylinder (mandrel) is rotated as shown
in Figure 2.19.

(a) Show that for a Newtonian fluid the velocity
field consists of two independent components
vz(r) and vθ (r).

(b) Show that the expression for Q for a Newto-
nian fluid is identical to that for flow through an
annulus given in Eq. 2.31.

(c) Show that for a power-law fluid vz(r) and vθ (r)
are coupled and can’t be obtained analytically.

(d) Find vz(r) and vθ (r) for a power-law fluid for
the case of a small gap (i.e., when κ approaches
1.0), when the inner cylinder is rotated.

2B.8 Force for Pulling a Wire Through a Coating Die. In
Section 2.2.2 an approximation to flow in a wire
coating die was discussed. Use the velocity field
given in Eq. 2.51 to determine the force required
to pull a wire through a die such as that shown in
Figure 2.10.

(a) Obtain the expression for τ rz given in Eq. 2.52
from the velocity field.

(b) Obtain an expression for the force, Fz, required
to pull the wire through the die by integrating
the shear stress over the area of the wire.

(c) For HDPE at 180 ◦C (use power-law parame-
ters in Table 2.2) calculate Fz for the follow-
ing conditions: V = 0.5 m/s, R = 5.0E−03 m,
L = 0.1 m, and κ = 0.8.
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FIGURE 2.20

2B.9 Stress Components for Flow Between Two Con-
centric Spheres. (Bird et al., 1960, p. 117). An
idealized flow of a Newtonian fluid between two
concentric spheres is shown in Figure 2.20. The pres-
sure drop and the velocity field for this flow are given
below:

�p = B ln

(
1 − cos ε

1 + cos ε

)
= −BE(ε)

vθ sin θ = u = R �P

2μE(ε)

[(
1 − r

R

)
+ κ

(
1 − R

r

)]

(a) From the velocity field determine expressions
for the stress components and specify those
acting in tension and those in compression.

(b) Obtain an expression for the net z force acting
on the inner sphere.

2B.10 Flow Between Tapered Plates. Obtain an expres-
sion for the volumetric flow rate for tapered plates
similar to that for a tapered tube (Eq. 2.111) using
the lubrication approximation. The plates have an
initial height H0 and a final height of HL as shown
in Figure 2.21.

2B.11 Power Input for Annular Flow with a Rotating
Mandrel. The integration of the mechanical energy
equation (Eq. 2.70) over a fixed volume with an inlet
and an outlet stream gives Eq. 2.69.

FIGURE 2.21 Pressure-driven flow through tapered plates.

(a) Show for flow through an annulus of length
L with a rotating inner mandrel that Eq. 2.70
reduces to

Q �P − W − Ev = 0

where �P = P0 − PL, W is the energy
input into the system through the mandrel, and
Ev is the viscous dissipation. (Hint: Integrate
Eq. 2.70 over the volume and use the divergence
theorem.)

(b) Determine an expression for W for a New-
tonian fluid. (Hint: W = ∫ ∫ (τ · n) · vdA =∫ 2π

0

∫ L
0 τrθ (κR)vθ (κR)κR dθ dz.)

(c) Determine an expression for W for a power-law
fluid for a small gap. (Note: Evaluation of the
expression will require numerical integration.)

C. Numerical Problems

2C.1 Carreau–Yasuda Model Parameters from Regres-
sion Analysis. Use either Solve in Excel or the
IMSL subroutine RNLIN (Example 2.1) to find the
Carreau–Yasuda model parameters [Eq. 2.8 with
(n − 1)/2 replaced with (n − 1)/a] for LLDPE at
170 ◦C (viscosity data are given in Appendix A.3)
and compare the results with those given in
Table 2.1.

2C.2 Best Fit of Viscosity Data for a Glass Filled Nylon
6,6. Use either Solve in Excel or the IMSL sub-
routine RNLIN (Example 2.1) to determine whether
the Bingham or power-law model gives the best fit
to the viscosity data given in Appendix A.4 for a
mineral filled nylon 6,6 melt at 285 ◦C.

2C.3 Velocity Maximum in Annular Flow for Integer Val-
ues of the Power-Law Index. The velocity passes
through a maximum in annular flow atβR.β is found
using Eq. 2.39 for specified values of κ . When s is
an integer, Eq. 2.39 can be integrated analytically
giving a nonlinear algebraic equation for determin-
ing β. For s = 2 (i.e., n = 0.5) and κ = 0.5, find a
polynomial expression for determining β and then
use either Solve in Excel or the IMSL subroutine
NEQNF to find β.
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2C.4 Velocity Maximum in Annular Flow for Noninte-
ger Values of the Power-Law Index. Equation 2.39
is used to find the position of the maximum in
the velocity field for flow through an annulus. For
n = 0.59 and κ = 0.5 and 0.8, determine β using
the IMSL numerical integration subroutine QDAGs
described in Appendix D.5 or quad in MATLAB.

2C.5 Velocity Profile for Flow in a Capillary. Although
the Carreau model describes the viscosity behavior
of polymer melts accurately, it is not possible to
obtain analytical expressions for the velocity field for
one-dimensional flows such as occur in a capillary.
Obtain the velocity field for HDPE at 180 ◦C. (Use
the Carreau model parameters in Table 2.2 by using
the IMSL subroutine BVPFD, which is described in
Appendix D.9 or BVP4C in MATLAB.)

(a) Show that the following nonlinear ordinary dif-
ferential equation is obtained on substituting the
GNF model with the Carreau empiricism for
viscosity into the momentum balance:

(
dvz

dr

)2/(n−1)

+ λ2

(
dvz

dr

)2n/(n−1)

=
(−�P

2η0 L

)2/(n−1)

r2/(n−1)

(b) At τw = 1.0E+05 Pa and for a capillary of
D = 3.175E−03 m and L = 3.175E−01 m, use
the IMSL subroutine BVPFD or the MATLAB
function BVP4C to solve the differential equa-
tion shown above.

(c) Compare the velocity profile to that obtained for
the power-law case.

2C.6 Flow Through a Rectangular Channel

(a) Show for the flow of a Newtonian fluid through
a rectangular channel (see Fig. 2.22) that the
equations of motion along with the use of the

FIGURE 2.22 Pressure-driven flow through a rectangular chan-
nel having an aspect ratio W/B < 10.

constitutive equation for a Newtonian fluid lead
to the following differential equation:

∂2vz

∂x2
+ ∂2vz

∂y2
= − 1

μ

�P

L

(b) For the rectangular channel shown in Fig-
ure 2.22 use the IMSL subroutine FPS2H
(Appendix D.10) or to find the velocity pro-
file for �P/L = 1.0E+03 Pa/m. W/H = 5 and
H = 0.2 cm.

(c) Calculate the volumetric flow rate by using
the IMSL subroutine TWODQ (Appendix D.6)
to numerically integrate the velocity profile
obtained in part (b).

(d) Compare the results to the series solution for
flow in a rectangular channel.

2C.7 Numerical Solution of Problem 2B.7. For the case
of a thin gap the components of the velocity field are
given by the following two integrals:

v y =
∫ x

0
C1
[
C2

1 + (C2 − ax)2
](1−n)/2n

dx

(2.134)

vz =
∫ x

0
(C2 − ax)

[
C2

1 + (C2 − ax)2](1−n)/2n
dx

(2.135)

where x = x/b, vi = vi/V, and a = (�P/mL)
(bn+1/vn). From the boundary condition that
dElz/dx = 0 at x = 1/2 it is found that C2 = a/2.
V = KRW.

(a) Use the IMSL subroutine QDAGS or quad in
MATLAB to numerically integrate Eqs. 2.134
and 2.135 above to find v y and vz . Assume
n = 0.59 and take arbitrary values of C1 from
0.01 to 10 and a from 0.5 to 30.

(b) Numerically integrate the results above to find
Q. (Note: Q = 2πW bR2

∫ 1
0 vzdx .
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3
VISCOELASTIC RESPONSE OF POLYMERIC FLUIDS
AND FIBER SUSPENSIONS

DESIGN PROBLEM II
DESIGN OF A PARISON DIE FOR A
VISCOELASTIC FLUID

In extrusion blow molding a cylindrical tube of polymer is
formed by extrusion of polymer melt through an annular die
as shown in Figure 3.1. As discussed in Chapter 1, the tube
of polymer is expanded by gas pressure into a mold to form
a shaped object such as a bottle. Design a die that will allow
one to extrude at the highest rate possible a parison of low
density polyethylene, LDPE (NPE 953), at 170 ◦C having
a diameter, Dp, of 6.13 cm and a thickness, Hp, of 0.565
cm. In particular, specify the diameter, Do, and the gap, Ho.
Take the length to be 10 Ho. The extruder feeding melt to
the die is capable of delivering a maximum of 300 lb/h. As
a result of a flow instability, called melt fracture (discussed
in Chapter 7), the maximum wall shear stress that can be
reached is 1.13 × 105 Pa. In your calculations consider the
swell of the extrudate as shown in Figure 3.1 (i.e., consider the
increase in the diameter and thickness of the parison relative
to the die dimensions as a result of the viscoelastic nature of
the melt). Rheological data for the polymer are given in the
tables in Appendix A.1. ρ is 772 kg/m3 at 170 ◦C.

In Chapter 2 the pseudoplastic behavior of polymeric fluids
was emphasized. In this chapter the viscoelastic behavior of
polymer melts is discussed. It is this property that not only
allows one to process these materials by a number of differ-
ent ways such as blow molding and film blowing but also

causes many problems in the design of polymer processes.
By viscoelastic behavior it is meant that polymeric fluids
can exhibit a response resembling that of an elastic solid
under some circumstances, while under others they can act
as viscous liquids. The macromolecular nature of polymeric
molecules along with physical interactions called entangle-
ments leads to the elastic behavior. Deformed molecules are
driven by thermal motions to return to their undeformed
states, giving the bulk fluid elastic recovery. Phenomena
associated with the viscoelastic nature of polymers such
as “die swell” or “extrudate swell,” rod-climbing, and elas-
tic recoil won’t be discussed here. A qualitative descrip-
tion of the flow of polymeric fluids can be found elsewhere
(Bird et al., 1987a).

In Section 3.1 we define two basic flows used in the char-
acterization of polymeric fluids along with the appropriate
material functions. These basic flows are also found in poly-
mer processes. In Section 3.2 several constitutive equations
capable of describing the viscoelastic behavior of polymer
melts are presented. The emphasis in this section is on manip-
ulating these equations for flows in which the deformation
history is known. In this section we have added discussion of
fiber suspensions as they are commonly processed to yield
materials with increased stiffness and strength. In Section
3.3 an introduction into the methods for measuring rheo-
logical properties is presented. In Section 3.4 several use-
ful relationships between material functions are presented.
These relationships (or correlations) are important as they
allow one to obtain estimates, for example, of steady shear
material functions from linear viscoelastic data. Because
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FIGURE 3.1 Quantities used to define annular extrudate swell.

quantitative design work requiring the use of nonlinear vis-
coelastic constitutive equations is mathematically very diffi-
cult, in Section 3.5 the value of making qualitative decisions
about the processability of polymers through the measure-
ment of the nonlinear rheological properties is discussed.
Finally, in Section 3.6 a solution to Design Problem II
is presented.

3.1 MATERIAL FUNCTIONS FOR
VISCOELASTIC FLUIDS

3.1.1 Kinematics

There are two basic flows used to characterize polymers:
shear and shear-free flows. (It so happens that processes are
usually a combination of these flows or sometimes are dom-
inated by one type or the other.) The velocity field for recti-
linear shear flow is given below:

vx = γ̇ (t)y vy = vz = 0 (3.1)

where γ̇ (t) may be constant or a function of time. The velocity
field for shear-free flows can be given in a general form as

vx = − 1
2 ε̇(1 + b)x vy = − 1

2 ε̇(1 − b)y vz = +ε̇z (3.2)

where ε̇ is the extension rate and b is a constant which is
either 0 or 1. When b = 0 and ε̇ > 0, the flow is uniaxial
extensional flow. When b = 0, but ε̇ < 0, the flow is equib-
iaxial extensional flow. When b = 1 and ε̇> 0, the flow is
called planar extensional flow.

The deformational types are shown for a unit cube of
incompressible material in Figure 3.2. In shear flow, the unit
cube is merely skewed with the degree of strain given by the
angle, γ̇ (t2 − t1), the edge makes with the y axis. γ̇ (t2 − t1)

1
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1
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z
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z
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FIGURE 3.2 The deformation of (a) a unit cube of material from time t1 to t2 (t2 > t1) in (b) steady
simple shear flow and (c) three kinds of shear-free flow. The volume of material is preserved in all of
these flows. (Reprinted by permission of the publisher from Bird et al., 1987a.)
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is the shear strain. There are three types of shear-free flow
described in Figure 3.2. In uniaxial extensional flow the unit
cube is stretched along the z axis while it contracts uniformly
along the x and y axes in such a manner that mass is conserved.
The elongational strain is given by ε̇(t2 − t1). In biaxial
elongational flow, the unit cube is stretched equally along
the x and y directions but must contract in the z direction in
such a way that mass is conserved. In planar extensional flow,
the unit cube is stretched along the z axis but is constrained
so that it contracts only in the x direction.

There are significant differences in the behavior of poly-
meric fluids in these two types of deformation, and each
type of deformation has a different effect on the orientation
of macromolecules. For example, uniaxial and planar exten-
sional flows impart significant molecular orientation in poly-
mers during flow compared to shear flows. On the other hand,
biaxial extensional flow is a weak flow and does not lead to a
strong degree of molecular orientation. Furthermore, the rhe-
ological response can be significantly different for a polymer
in extensional flow versus shear flow. We demonstrate these
differences later in this chapter.

For these two types of flows, the components of the rate
deformation tensor (Table 2.8) take on a distinct form. For
shear flow the components of the rate of deformation ten-
sor are

γ̇ ij = γ̇ (t)

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ (3.3)

It is noted that only the off-diagonal components of this tensor
exist. For shear-free flow the rate of deformation tensor also
takes on a distinct form. In particular, the components are

γ̇ ij =
⎛
⎝−ε̇(1 + b)

0
0

0
−ε̇(1 − b)

0

0
0
2ε̇

⎞
⎠ (3.4)

Here it is seen that only diagonal components exist. The
physical significance of these matrices is that in shear flow
the velocity gradient is transverse to the flow direction while
in shear-free flow it is in the same direction as flow.

3.1.2 Stress Tensor Components

In general, the state of stress in a flowing material in rectan-
gular Cartesian coordinates is

⎛
⎝ τxx +p

τyx

τzx

τxy

τyy +p
τzy

τxz

τyz

τzz +p

⎞
⎠ (3.5)

where p is the isotropic pressure. The components such as
τ xx + p, τ yy + p, and τ zz + p are the normal stresses, and
when the fluid is incompressible, p is unknown. Furthermore,

τ xx, τ xy, and so on are referred to as the extra or molecular
stresses, while

πxx = τxx + p, πxy = τxy, πxz = τxy, etc. (3.6)

are called the total stress components. If one lets x, y, and z
correspond to 1, 2, and 3, respectively, then we can also write
out the stress components in terms of the following notation:

πij = τij + pδij for i, j = 1, 2, or 3 (3.7)

πij is interpreted as the ijth component of the total stress
tensor while τ ij is the ijth component of the extra stress tensor.
δij is the Kronecker delta and is defined as

δij = 1 if i = j
= 0 if i = j

(3.8)

The number of components in the matrix in Eq. 3.5 is
reduced for an incompressible Newtonian fluid in shear flow.
Referring to Table 2.8, the definition of a Newtonian fluid,
and Eq. 3.1 (the kinematics for shear flow) one can show that
the stress components are

⎛
⎝ p τxy 0
τyx p 0
0 0 p

⎞
⎠ (3.9)

where τ xy = τ yx = −μγ̇ (t).
On the contrary, we have not yet discussed a constitutive

equation for viscoelastic fluids, and we must resort to another
method to find the stress components. Without proof it can
be shown using symmetry arguments that, in general, for a
viscoelastic fluid in shear flow the stress tensor must be of
the form ⎛

⎝ τxx +p
τyx

0

τxy

τyy +p
0

0
0

τzz +p

⎞
⎠ (3.10)

We note that in shear flow additional normal stresses are
generated which don’t appear for a Newtonian fluid. Because
polymeric fluids are considered to be incompressible, the
components τ ii + p have no direct rheological significance.
Therefore, we define three independent quantities of stress
of rheological significance:

τyx = τxy, πxx − πyy = τxx − τyy = N1

πyy − πzz = τyy − τzz = N2
(3.11)

where N1 and N2 are called the primary and secondary normal
stress differences, respectively. These additional stresses are
thought to be related to phenomena such as die swell, elastic
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FIGURE 3.3 Shear flow experiments.

recoil, and rod climbing (the climbing of polymer fluid up
a mixing blade) and hence are associated with the ideas of
elasticity.

For shear-free flows it can be shown using symmetry argu-
ments again that the extra stress tensor is of the form

⎛
⎝ τxx +p

0
0

0
τyy +p

0

0
0

τzz +p

⎞
⎠ (3.12)

For incompressible polymeric fluids there are two normal
stress differences of rheological interest:

τzz − τxx and τyy − τxx (3.13)

When b = 0 in Eq. 3.2, then there is only one quantity of
rheological significance,

τzz − τxx (3.14)

It is important to realize that these normal stress differences
are not N1 or N2 as they are generated under different flow
conditions.

3.1.3 Material Functions for Shear Flow

Various types of shear flow experiments are used in the char-
acterization of polymeric fluids, and some of the more com-
monly used ones are shown in Figure 3.3. When γ̇ (t) is a
constant, that is, γ̇yx = γ̇0, then we can define three material
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functions in steady shear flow:

τxy = −η(γ̇ ) γ̇ 0 (3.15)

τxx − τyy = −�1(γ̇ ) γ̇ 2
0 (3.16)

τyy − τzz = −�2(γ̇ ) γ̇ 2
0 (3.17)

where η is the viscosity, �1 is the primary normal stress
difference coefficient, and �2 is the secondary normal stress
difference coefficient. Some representative values for η and
�1 are presented in Figure 3.4. We observe that �1 is more
shear rate sensitive than is η. Furthermore, it is reported that
−�2/�1 is in the range of 0.1 to 0.2. Because there is no
concrete evidence that �2 plays a direct role in processing,
we don’t include �2 in any further discussions in this book.

There are numerous transient shear flows in which γ̇ (t)
varies in a specific way with time. One of the most frequently
used experiments is when γ̇ (t) varies sinusoidally with time:

γ̇ yx = γ̇ 0 cosωt (3.18)

where γ̇ 0 is the amplitude and ω is the angular frequency.
Because polymeric fluids are viscoelastic, the stress lags
behind the input frequency. One component of the stress
is in phase with the rate of deformation given by Eq. 3.18
and one is out of phase. Mathematically we represent the
shear stress as

τyx = −B(ω) γ̇ 0 cos(ωt − φ) (0 ≤ φ ≤ π/2) (3.19)

By expanding Eq. 3.19 using a trignometric identify (i.e.,
cos (A − B) = cos A cos B + sin A sin B), we find that

τyx = −B(ω) γ̇ 0 cos φ cos ωt − B(ω) γ̇ 0 sin φ sin ωt (3.20)

This allows us to define a complex viscosity, η∗, as follows:

η∗ = η′ − iη′′ (3.21)

where η′ = B(ω)γ̇0 cos φ is the dynamic viscosity (viscous
contribution) and η′′ = B(ω)γ̇0 sin φ is the elastic contribu-
tion associated with energy storage per cycle of deformation.
Hence, we see that η′ is in-phase with γ̇yx(t) while −η′′ is out
of phase. Representative values for η∗ are given in Figure
3.4. We note here the close correlation between η∗ and η,
which will be discussed in Section 3.4.

Some prefer to treat polymeric fluids as viscoelastic solids
and thereby represent τ yx as

τyx = −A(ω)γ0 sin(ωt + δ) (3.22)

where γ 0 is the strain amplitude given as

γ = γ̇0/ω (3.23)

Again using trigonometric identities and defining the com-
plex shear modulus as

G∗ = iωη∗ = G′ + iG′′ (3.24)

we find G′ = A(ω)γ 0 sin δ and G′′ = A(ω)γ 0 cos δ, where G′

is the storage modulus and G′′ is the loss modulus. Represen-
tative values of G′ and G′′ for polyphenylenesulfide (PPS) are
given in Figure 3.5. Part of the value of the G′ measurements
rests on the fact there is a good correlation between 2G′ and
N1 as shown in Figure 3.6 and discussed in Section 3.4. It
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should also be pointed out that η′ and G′′ and η′′ and G′ are
interrelated: that is, η′ω = G′′ and η′′ω = G′.

The stress growth experiment (Fig. 3.3c) is also used to
characterize polymeric fluids. In this experiment the fluid
that is at rest is suddenly set in motion and the stresses are
measured as a function of time. γ̇yx(t) is given mathematically
as

γ̇yx = γ̇0H(t) (3.25)

where H(t) is the unit step function, which is defined as

H(t) = 0, t < 0
H(t) = 1, t ≥ 0

(3.26)

The following material functions are defined for this flow:

τyx = − η+(t, γ̇ 0) γ̇ 0 (3.27)

τxx − τyy = −ψ+
1 (t, γ̇ 0) γ̇ 2

0 (3.28)

τyy − τzz = −ψ+
2 (t, γ̇ 0) γ̇ 2

0 (3.29)

Representative data are presented in Figure 3.7 for a PPS
melt. We note that τ yx and N1 overshoot their equilibrium
values and that the maximum in N1 usually occurs later than
that in τ yx at the same value of γ̇0. Because many processes
take place in short time intervals, it may be that the transient
properties are more important than the steady shear ones.
More will be discussed about the importance of the transient
behavior in Section 3.2, when we define a dimensionless
group called the Deborah number.

Another important experiment is that of stress relax-
ation following steady shear flow. This experiment is shown
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FIGURE 3.7 Transient shear behavior of PPS at 330 ◦C. The
shear and primary normal stress difference are recorded at the
startup of shear flow and on cessation of flow. After 10 s the stress
growth experiment is repeated.

schematically in Figure 3.3d, and the deformation history is
given mathematically as follows:

γ̇yx(t) = γ̇0[1 − H(t)] (3.30)

In this experiment, on cessation of steady shear flow the
stresses are monitored with time. The material functions are
defined as

τyx = − η−(γ̇ 0, t) γ̇ 0 (3.31)

τxx − τyy = −�
−
1 (γ̇ 0, t) γ̇ 2

0 (3.32)

τyy − τzz = −�
−
2 (γ̇ 0, t) γ̇ 2

0 (3.33)

Representative behavior is also presented in Figure 3.7. It is
observed that τ yx relaxes faster than τ xx − τ yy. Furthermore,
it is known that as γ̇0 increases the time for τ yx and N1 to
relax to zero is shorter. After relaxation is complete, the stress
growth and relaxation experiment are repeated as shown in
Figure 3.7, and it is observed that the behavior is repeatable.
Although the stresses relax within 2.0 s, higher molecular
weight polymers may take 10 to 20 s before the stresses
completely relax. Residual stresses in an injection-molded
part can lead to the warpage of parts.

The fact that the normal stresses are relatively large com-
pared to τ yx is shown in Figure 3.8, where the ratio of τ xx

− τ yy /2τ yx and G′/G′′ are plotted versus shear rate and ω,
respectively, for PPS. Here we see that τ xx − τ yy increases
monotonically with γ̇ , and that it reaches values where τ xx −
τ yy is about twice as large as τ yx. Hence, τ yy − τ xx can exceed
the magnitude of τ yx. This dimensionless ratio divided by a
factor of two is equivalent to a quantity called the Weis-
senberg number, We, and is a measure of fluid elasticity. For
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most polymers it has been observed that We reaches a plateau
at higher values of γ̇ , leveling off in a range of from 1.0 to
2.0 (Bird et al., 1987a).

3.1.4 Shear-Free Flow Material Functions

Similar flow histories for shear-free flows as described for
shear flows in Figure 3.3 can also be used. Here we discuss
only steady and stress growth shear-free flows. For steady
simple (i.e., homogeneous deformation) shear-free flows two
viscosity functions, η1 and η2, are defined based on the two
normal stress differences given in Eq. 3.13:

τzz − τxx = − η1(ε̇, b)ε̇ (3.34)

τyy − τxx = − η2(ε̇, b)ε̇ (3.35)

For uniaxial extensional flow where b = 0 and ε̇ > 0,
η2 = 0, and η1 is called the elongational viscosity, η:

η(
•
ε) = η1(

•
ε, 0) (3.36)

For stress growth the two viscosity functions are defined
as

τzz − τxx = − η+
1 ε̇ (3.37)

τyy − τxx = − η+
2 ε̇ (3.38)

Likewise for uniaxial extensional flow η+
2 = 0 and η+

1 =
η+.

Representative data for η and η+ are shown in Fig-
ures 3.9 and 3.10, respectively. In Figure 3.9, η versus tensile
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melts:

Mw Mw/Mn

PS I 7.4 × 104 1.2
PS II 3.9 × 104 1.1
PS III 2.53 × 105 1.9
PS IV 2.19 × 105 2.3

(Reprinted by permission of the publisher from Münstedt, 1980.)

stress and η versus shear stress values are compared for a
polystyrene melt (see Münstedt, 1980, for detailed molec-
ular weight (MW) features of the polymers). At low stress
values,η = 3η0. However, when η shear thins, η tends to
increase slightly with stress and then decrease. At higher
values of stress, η is several decades lower than η. Linear
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ity at the startup of simple elongational flow for two polystyrene
samples (PS III and PS IV). (Reprinted by permission of the pub-
lisher from Mündstedt, 1980.)
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FIGURE 3.11 Time dependence of the elongational viscosity at
the startup of simple elongational flow for two polystyrene samples
(PS I and PS II). (Reprinted by permission of the publisher from
Mündstedt, 1980.)

polymers tend to reach an equilibrium stress in the stress
growth experiment as shown in Figure 3.10 for PS III. How-
ever, if there is branching or small amounts of high molecular
weight tail in the polymer, then the stresses tend not to reach
a steady state (at least for the strains experimentally accessi-
ble). As shown in Figure 3.10 for PS IV and Figure 3.11 for
PS II, η+ tends to increase without bound (especially for PS
II). In this case the cause of the “strain hardening” (i.e., the
increase in η+ with time or strain, ε̇t) is due to the presence
of a small amount of high molecular weight PS in the MW
distribution.

3.2 NONLINEAR CONSTITUTIVE EQUATIONS

In the last section it was learned that viscosity is not ade-
quate to characterize polymeric fluids, but that many dif-
ferent material functions must be used. Furthermore, the
generalized Newtonian fluid (GNF) model is not adequate
to describe the rheological properties of polymer melts as
it can only describe their shear-thinning viscosity behav-
ior. In this section several constitutive equations capable
of describing some of the nonlinear behavior of polymer
melts are described. There is no intention to cover com-
pletely the topic of constitutive equations as this is done else-
where (Bird et al., 1987a,b; Larson, 1988, 1999). The only
intention is to present several realistic possibilities, show
how to manipulate them algebraically, and then illustrate
their use. Because of the importance of the processing of
polymer melts containing fibers, we introduce the topic in
this section. In particular, we are interested in the relation
of fiber orientation to rheological behavior and flow during
processing.
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1 2
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(F+
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G  dt
= - μ
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)

FIGURE 3.12 Spring and dashpot analogs for rheological equa-
tions: top, spring element; middle, dashpot element; bottom, spring
and dashpot element in series.

3.2.1 Description of Several Models

The deformational behavior of polymeric fluids is qualita-
tively described by the spring and dashpot model shown
in Figure 3.12. The ratio of the dashpot resistance, μ,
to the spring modulus, G, has the units of time. Hence,
μ/G is equivalent to a relaxation time, λ. If the deforma-
tion rate,γ̇ , is a lot less than 1/λ, then the dashpot dom-
inates and the material flows like a Newtonian fluid. On
the other hand, if γ̇ � 1/λ, then the spring dominates, and
the material behaves like an elastic solid. In one dimen-
sion the relation between force (per unit area) and rate
of deformation is (F/A) + λd(F/A)/dt = −μγ̇ . This one-
dimensional model can be generalized to give the linear vis-
coelastic model for the spring–dashpot element shown in
Figure 3.12:

τij + λ
∂τi j

∂t
= −μ γ̇ ij (3.39)

Note this is again a shorthand notation for representing the
six components of the stress tensor. For steady shear flow
this model predicts no normal stresses and a constant vis-
cosity. The material functions predicted by this model are
summarized in Table 3.1. Obviously this model as it stands
is wholly inadequate to describe the behavior of polymeric
melts under processing conditions.

By replacing the partial time derivative with a nonlinear
time derivative, which is based on a codeforming and trans-
lating coordinate system, the constitutive equation given in
Eq. 3.1 now becomes (Bird et al., 1987a):

τij + λτ̂ij = −μγ̇ij (3.40)



NONLINEAR CONSTITUTIVE EQUATIONS 45

TABLE 3.1 Predictions of Viscoelastic Models for Steady Shear and Elongational Flow

Model Steady Shear Flow Steady Extensional Flow

Maxwell η = μ, ψ1 = ψ2 = 0 η = 3 μ

Upper convected
Maxwell

η = μ, ψ1 = 2μλ ψ2 = 0 η = 3μ

(1 + λε̇)(1 − 2λε̇)

White–Metzner η = η(γ̇ )
ψ1 = 2η(γ̇ )λ(γ̇ )
ψ2 = 0, λ = η(γ̇ )/G

η = 3η

(1 + λε̇)(1 − 2λε̇)

Phan-Thien–Tanner
(single relaxation
time)

η = η0

1 + ξ (2 − ξ )(λγ̇ )2

ψ1 = 2ηλ

1 + ξ (2 − ξ )(λγ̇ )2

ψ2 = − ξ

2
ψ1

—a

aNo analytical solution is available. The following nonlinear algebraic equations must be solved to find η:

exp

[−ελ

η0
(τ11 +2 τ22)

]
τ11 −2λε̇(1 − ξ ) τ11 = −2 η0 ε̇

exp

[−ελ

η0
(τ11 +2 τ22)

]
τ22 +λε̇(1 − ξ ) τ22 = + η0 ε̇

τ̂ij is given as follows:

τ̂ij = ∂ τij

∂t
+ (v · ∇τ )ij −

[
(∇v )jk τki + τik(∇v )kj

]
(3.41)

This constitutive equation is referred to as the upper con-
vected Maxwell (UCM) model. In Example 3.1 this time
derivative will be written out for simple shear and shear-
free flows. The predictions of this model for steady shear
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FIGURE 3.13 Comparison of the predictions for viscosity for
the White–Metzner, upper convected Maxwell, and Phan-Thien–
Tanner models with experimental data for polystyrene (Styron 678,
Dow Chemical Company) at 190 ◦C. (Data from Gotsis, 1987.)

and shear-free flows are summarized in Table 3.1, and the
predicted material functions are fit to shear flow data in Fig-
ures 3.13 and 3.14. The most important points to be made
are that the small amplitude dynamic mechanical properties
are the same as those predicted by the linear viscoelastic
model (Eq. 3.39). However, for shear flow one now sees that
the model predicts normal stresses, but that both η and ψ1

are constant rather than functions of γ̇ . Furthermore, η is
observed to be equal to 3η0 at low ε̇, but when λε̇ = 1

2 , then η
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FIGURE 3.14 Comparison of the predictions for N1 for three
different constitutive equations (WM, PTT, and UCM) with exper-
imental data for polystyrene (Styron 678) at 190 ◦C. (Data from
Gotsis, 1987.)
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experimental data for polystyrene (Styron 678) at 190 ◦C. (Data
from Gotsis, 1987.)

rises in an unbounded manner (see Fig. 3.15). Yet, we see that
this model is not adequate either, as it fails to predict even
the most basic property of polymeric fluids, shear-thinning
viscosity.

One way to at least make the UCM model predict realistic
steady shear flow properties is to replace the material proper-

ties μ and λ= μ/G by functions that depend on γ̇ =
√

1
2�γ̇ .

If one replacesμ by any of the empiricisms for η discussed in
Section 2.1, then the constitutive equation, which is known
as the White–Metzner (WM) model, can be written as

τij + λτij = −η γ̇ ij (3.42)

The material properties predicted by this model are summa-
rized in Table 3.1. In particular, in shear flow it is observed
that the following stresses are predicted:

τyx = −η γ̇ yx (3.43)

τxx − τyy = −2λη γ̇ 2
yx (3.44)

For this model λ = η/G, and G is a constant shear modu-
lus. This model predicts a value of �1 which is proportional
to η2. However, �1 usually shear-thins more rapidly than
this. For numerical calculations it is best to fit the �1 data
exactly and then obtain λ as a function of γ̇ . In the case
of extensional flow, η is predicted to rise in an unbounded
manner, but the critical extension rate is postponed to
higher values of ε̇ relative to that for the UCM model (see
Fig. 3.15).

The choice of constitutive equation cannot be determined
solely by whether it predicts the appropriate steady shear

flow behavior. The only way that one can really assess the
value of a constitutive relation is to use it in conjunction with
the equations of motion to predict stress and velocity fields.
Then these results must be confirmed by experiments using
flow visualization and birefringence techniques to obtain the
velocity fields or streamlines and the stress fields, respec-
tively. This has been done by White and Baird (1988) for
flow of two polymer melts through a planar contraction.
They found that the observed behavior could be predicted if
the constitutive equation used in the computations predicted
accurately both the shear and extensional flow properties of
the melt.

For this reason the Phan-Thien–Tanner (PTT) model is
discussed next. This model allows one to describe the various
types of behavior observed while still describing the shear-
thinning viscosity. The Phan-Thien–Tanner (PTT) model
(Phan-Thien and Tanner, 1977) is given below:

Z (tr τ )τ + λτ + ξ

2
λ(γ̇ · τ + τ · γ̇ ) = − η0 γ̇ (3.45)

The function Z(tr τ ), where tr τ is the trace of the stress
tensor, is given by one of the following functions:

Z =
⎧⎨
⎩

1 − ελ tr τ/ η0

or
exp(−ελ tr τ/ η0)

(3.46)

Here λ, η0, and ξ are found from steady shear and dynamic
data. The parameter ε is obtained from extensional viscosity
data and has little effect on the prediction of the shear flow
properties. Actually, η0 can be replaced by η(γ̇ ) or a set of
values for ηi and λi. Predictions of the model for steady shear
and uniaxial extensional flows are summarized in Table 3.1.
The choice of the exponential function allows one to predict
values of η which increase with ε̇ and then pass through a
maximum.

A few additional comments should be made pertaining to
this model. The model as it stands has a problem in that the
shear stress passes through a maximum at critical value of γ̇
(this leads to instabilities in any numerical calculation). This
problem is overcome by several different methods. One is to
use a spectrum of relaxation times and viscosities, λi and ηi,
respectively. (This is referred to as a multimode approach.)
Another is to add a Newtonian viscosity term (i.e., τ p =
τ s + τ p, where τ p is given by Eq. 3.45 and τ s = −μsγ̇ ).
Furthermore, one can replace η by one of the empiricisms
for viscosity discussed in Section 2.4. Finally, there are no
problems that can be solved analytically using this model (or
with the others for that matter), and numerical methods are
usually required.

The predictions of these models and their fit to rheological
data for a polystyrene melt are summarized in Figures 3.13,
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3.14, and 3.15. Here it can be seen how well each model
fits experimental data. Certainly if a spectrum of relaxation
times were used, the PTT model would fit the steady shear
data even better. In Figure 3.15 the predictions of η are pre-
sented. In fact, for the PTT model the predictions for η versus
ε̇ can be changed by the values chosen for ε. With ε = 0.01,
η strain rate hardens, passes through a maximum, and then
decreases with increasing ε̇. If ε > 0.1,η starts at 3η0 and
then decreases with increasing ε̇. It is believed that these two
different types of behavior for η are related to differences
in the processability of polymers, especially in cases where
extensional deformations are important. Over the range for
which N1 data is available, all the models predict reasonable
values of N1 (see Fig. 3.14). However, it is observed that the
PTT model predicts values of N1 which become indepen-
dent of shear rate (when a Newtonian limiting viscosity is
included), which may be a more realistic predition at high
shear rates. (Note: Values of N1 at values of γ̇ > 100 are not
readily available.)

It should be noted that the constitutive equations that are
discussed here represent only a few of the plethora of equa-
tions from which to choose. The choice of the PTT model
has been justified because of its ability to fit the extensional
flow behavior of polymeric fluids in a manner nearly inde-
pendent of the shear flow behavior. There are several other
possibilities for constitutive equations which might behave in
a similar manner to the PTT model. In particular, we note the
Giesekus model (see Problem 3B.5) and a couple of integral
models (Bird et al., 1987a). In Problem 3B.8, the “pom-pom-
model” of McLeish and Larson (1998) is evaluated and we
note that it behaves in a manner similar to that of the PTT
model but the parameter that leads to strain hardening is asso-
ciated with the degree of long chain branching. As there is no
intention in this book to include the additional mathematical
complexities associated with integral models, they will not
be discussed.

As there is no intention in this book to use the nonlinear
constitutive equations in conjunction with the equations of
motion to solve polymer processing problems, we at least
show in the next several examples how one determines the
predictions of a nonlinear model for flows in which the kine-
matics are known. In particular, we consider shear and shear-
free flows. Furthermore, we show how one goes about finding
the material parameters in a constitutive equation from rhe-
ological data for a polymer melt.

Example 3.1. Shear Flow Predictions for the
White–Metzner Model

Calculate the material functions for the White–Metzner
model in simple shear flow (i.e., vx = γ̇xy(t)y, vy = vz =
0) including the startup of simple shear flow (SF), steady
simple SF, and stress relaxation following steady SF.

Solution. For an unsteady simple shear flow the terms in Eq.
3.42 are given below:

τij =
⎛
⎝ τxx τyx 0
τyx τyy 0
0 0 τzz

⎞
⎠ (3.47)

τ = ∂

∂t

⎛
⎝ τxx τyx 0
τyx τyy 0
0 0 τzz

⎞
⎠+ vx

∂

∂x

⎛
⎝ τxx τyx 0
τyx τyy 0
0 0 τzz

⎞
⎠

—————————

−
⎛
⎝0 γ̇ yx 0

0 0 0
0 0 0

⎞
⎠
⎛
⎝τxx τyx 0
τyx τyy 0
0 0 τzz

⎞
⎠−

⎛
⎝τxx τyx 0
τyx τyy 0
0 0 τzz

⎞
⎠
⎛
⎝ 0 0 0
γ̇ yx 0 0

0 0 0

⎞
⎠

= ∂

∂t

⎛
⎝ τxx τyx 0
τyx τyy 0
0 0 τzz

⎞
⎠− γ̇ yx

⎛
⎝2 τyx τyy 0

τyy 0 0
0 0 0

⎞
⎠ (3.48)

γ̇ ij =
⎛
⎝ 0 γ̇ yx 0
γ̇ yx 0 0

0 0 0

⎞
⎠ (3.49)

Note the underlined term in Eq. 3.48 is zero for a homo-
geneous flow (i.e., a flow in which γ̇xy is not a function of
x, y, or z). This leads to the following matrix equation for
determining τ ij:

⎛
⎝ τxx τyx 0
τyx τyy 0
0 0 τzz

⎞
⎠+ η(γ̇ )

G

⎡
⎣ d

dt

⎛
⎝ τxx τyx 0
τyx τyy 0
0 0 τzz

⎞
⎠

− γ̇ yx

⎛
⎝2 τyx τyy 0

τyy 0 0
0 0 0

⎞
⎠
⎤
⎦ = −η(γ̇ )

⎛
⎝ 0 γ̇ yx 0
γ̇ yx 0 0

0 0 0

⎞
⎠

(3.50)

From this matrix equation one obtains a set of coupled
ordinary differential equations for the stress components:

(
1 + η(γ̇ )

G

d

dt

)
τxx −2η(γ̇ )

G
τyx γ̇ yx = 0 (3.51)(

1 + η(γ̇ )

G

d

dt

)
τyy = 0 (3.52)

(
1 + η(γ̇ )

G

d

dt

)
τyx + γ̇ yx τyy = −η(γ̇ ) γ̇ yx (3.53)

(
1 + η(γ̇ )

G

d

dt

)
τzz = 0 (3.54)

From Eqs. 3.52 and 3.54 one sees that τ yy and τ zz are zero for
all time-dependent simple shear flows. (This follows from
τ zz = τ yy = 0 at t = −∞.) One can now solve for τ xx and τ xy.
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First using Eq. 3.53 one solves for τ yx using an integrating
factor:

d/dt(et/λ τyx) = −G exp(t/λ) γ̇ yx(t) (3.55)

This gives the following expression for τ yx on integration:

τyx(t) = −G
∫ t

−∞
exp[−(t − t ′)/λ] γ̇ yx(t ′) d′t (3.56)

Note that the integration starts at −∞ where the stresses are
assumed to be zero. Likewise one can find an expression for
τ xx(t):

τxx(t) = −2G
∫ t

−∞
e−(t−t ′)/λ τyx(t ′) d′t (3.57)

We now considers the three special cases requested in this
example.

Stress Growth. For startup of shear flow (the stress growth
experiment), γ̇ yx(t) is given by

γ̇ yx(t) = γ̇ 0 H (t) (3.58)

where H(t) is the unit step function. When Eq. 3.58 is sub-
stituted into Eqs. 3.56 and 3.57 one obtains the following
expressions for the stress components:

τyx = −η(γ̇ ) γ̇ 0[1 − e−t/λ] (3.59)

τxx(t) = −2η(γ̇ ) γ̇ 2
0 λ[1 − t/ e−t/λ] (3.60)

It is observed from these equations that the stresses rise
monotonically to their steady-state values.

Steady Shear Flow. For steady shear flow one starts with Eqs.
3.56 and 3.57 and with γ̇ yx(t) = γ̇ 0 one finds

τyx(t) = −G
∫ t

−∞
e−(t−t ′)/λ γ̇ 0 dt′ (3.61)

Next one replaces the integration variable t′ by s = t − t′ to
give

τyx(t) = −G
∫ t

−∞
e−s/λ γ̇ 0 ds (3.62)

which can be further integrated to give

τyx = −η(γ̇ ) γ̇ 0 (3.63)

One can carry out the same procedure to find τ xx:

τxx = −2η(γ̇ )λ γ̇ 2
0 (3.64)

Hence, it is seen by replacing η(γ̇ ) by an appropriate function
one can fit the viscosity data exactly. The normal stress is
predicted to be proportional to η2, if λ is replaced by η/G.
However, this is not quite what is observed experimentally.

Stress Relaxation Following Steady Shear Flow. For this flow
one uses γ̇xy = γ̇ 0(1 − H(t)). Returning to Eqs. 3.56 and 3.57
one obtains the following expressions:

τyx(t) = −G
∫ t

−∞
e−(t−t ′)/λ γ̇ 0

(
1 − H (t ′)

)
dt′ (3.65)

τxx(t) = −2
∫ t

−∞
e−(t−t ′)/λ τyx(t ′) γ̇ 0

(
1 − H (t ′)

)
dt′ (3.66)

Equation 3.65 is integrated by parts to obtain τ yx(t):

τyx(t) = −η(γ̇ ) γ̇ 0 e−t/λ (3.67)

Now one substitutes Eq. 3.67 into Eq. 3.66 to obtain

τxx(t) = −2η(γ̇ )λ γ̇ 2
0 e−t/λ (3.68)

It is indicated by these equations that on cessation of flow
the stresses decay exponentially with time. At higher γ̇ yx,
the stresses relax faster as a result of a decrease in λ. This is
in agreement with experimental observations. However, the
model predicts that τ yx and τ xx relax at the same rate, which
is not what is observed in general.

Example 3.2. Predictions of the PTT Model in Steady
Simple Shear and Steady Shear-Free Flow

(a) Determine the predictions for the material functions
in steady simple shear flow for the PTT model.

(b) Do the same for steady shear-free flow (SSFF) and
then show the results for simple elongational flow.

Solution. (a) The PTT model requires additional manipula-
tions relative to the White–Metzner model. Quantities such
as tr τ and γ̇ · τ must be determined. τ is given in Eq.
3.48. The trace of τ (i.e., tr τ ) is the sum of the diagonal
components of τ , which is

tr τ = τxx + τyy + τzz (3.69)

Hence, the first term in Eq. 3.45 is

Z (tr τ )τ = exp
[−ελ(τxx + τyy + τzz)/ η0

]
τ (3.70)
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The third term in Eq. 3.45 is

(ξλ/2)[γ̇ · τ + τ · γ̇ ]

=
(
ξλ

2

)⎛⎝ 0 γ̇ 0 0
γ̇ 0 0 0
0 0 0

⎞
⎠
⎛
⎝τxx τxy 0
τyx τyy 0
0 0 τzz

⎞
⎠

+
⎛
⎝τxx τxy 0
τyx τyy 0
0 0 τzz

⎞
⎠
⎛
⎝ 0 γ̇ 0 0
γ̇ 0 0 0
0 0 0

⎞
⎠

= ξλ

2
γ̇ 0

⎛
⎝ 2 τyx τyy + τxx 0
τxx + τyy 2 τxy 0

0 0 0

⎞
⎠ (3.71)

Finally, we put all the terms together to obtain the following
matrix equation:

Z (tr τ )

⎛
⎝ τxx τxy 0
τyx τyy 0
0 0 τzz

⎞
⎠+ ξλ γ̇ 0

z

⎛
⎝ 2 τyx τyy + τxx 0
τxx + τyy 2 τxy 0

0 0 0

⎞
⎠

−λ γ̇ 0

⎛
⎝ 2 τyx τyy 0

τyy 0 0
0 0 0

⎞
⎠ = − η0

⎛
⎝ 0 γ̇ 0 0
γ̇ 0 0 0
0 0 0

⎞
⎠ (3.72)

From this matrix equation we obtain a set of coupled alge-
braic equations for the stress tensor components:

τxx : Z (tr τ ) τxx +ξλ γ̇ 0 τyx −2λ γ̇ 0 τyx = 0 (3.73)

τxy : Z (tr τ ) τxy +ξλ

2
γ̇ 0(τyy + τxx) − λ γ̇ 0 τyy = − η0 γ̇ 0

(3.74)

τyy : Z (tr τ ) τyy +ξλγ̇ τxy = 0 (3.75)

τzz : Z (tr τ ) τzz = 0 (3.76)

In the form above the equations are coupled nonlinear
algebraic equations, and one would have to use Newton’s
method to solve these equations. However, they can be sim-
plified by the fact that for shear flow (this is called a weak
flow in the continuum mechanics literature) tr τ is small and
the term ελ tr τ /η0 approaches zero. Hence, Z (tr τ ) ≈ 1.0
(where “≈” means approximately). We also note that τ xy =
τ yx, because the stress tensor is symmetric. Solving the above
equations we find that

τxy = − η0 γ̇ 0

[1 + ξ (2 − ξ )(λ γ̇ 0 )2]
(3.77)

τxx = −λ γ̇ 2
0(2 − ξ ) η0

[1 + ξ (2 − ξ )(λ γ̇ 0 )2]
(3.78)

τyy = +ξλ η0 γ̇
2
0

[1 + ξ (2 − ξ )(λ γ̇ 0 )2]
(3.79)

τzz = 0 (3.80)

Using the definitions in Section 3.1 for η, ψ1, and ψ2, we
obtain the entries which are given in Table 3.1.

(b) For simple shear-free flow the approach is the same.
The matrix equation for the stresses is

Z (tr τ )

(
τxx 0 0
0 τyy 0
0 0 τzz

)
− λ ε̇0

(−(1 + b) τxx 0 0
0 −(1 − b) τyy 0
0 0 2 τzz

)

+ ξλ ε̇0

(−(1 + b)τxx 0 0
0 −(1 − b)τyy 0
0 0 2τzz

)

= − η0 ε̇0

(−(1 + b) 0 0
0 −(1 − b) 0
0 0 2

)
(3.81)

In this case the factor Z(tr τ ) does not reduce to one and
hence must be maintained. The stress components are

exp

[−ελ

η0
(τxx + τyy + τzz)

]
τxx +λ ε̇0(1 + b) τxx

− ξλ ε̇0(1 + b) τxx = + η0 ε̇(1 + b) (3.82)

exp

[−ελ

η0
(τxx + τyy + τzz)

]
τyy +λ ε̇0(1 + b) τyy

− ξλ ε̇0(1 − b) τyy = + η0 ε̇(1 − b) (3.83)

exp

[−ελ

η0
(τxx + τyy + τzz)

]
τzz −2λ ε̇0 τzz

+ 2ξλ ε̇0 τzz = −2 η0 ε̇0 (3.84)

For steady elongational flow, b = 0, ε̇0 > 0, and we see
that τ xx = τ yy. Hence, the equations become

exp

[−ελ

η0
(2 τxx + τzz)

]
τxx +λ ε̇0(1 − ξ ) τxx = − η0 ε̇0

(3.85)

exp

[−ελ

η0
(2 τxx + τzz)

]
τzz +2λ ε̇0(1 − ξ ) τzz = −2 η0 ε̇0

(3.86)

In this case we cannot obtain an analytical expression for
η, but Eqs. 3.85 and 3.86 must be solved numerically for
specified values of ε̇0, ε̇, λ, and η0.

Example 3.3. Material Parameters for the
Phan-Thien–Tanner (PTT) Model

Obtain the material parameters (i.e., η0, λ, ξ , ε) in the PTT
model for LDPE (NPE 953) at 170 ◦C for which rheological
data is given in Appendix A.1.
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(a) First obtain the parameters by any method
desired.

(b) Determine the model parameters using nonlin-
ear regression analysis. In particular, use either
the IMSL (International Mathematics and Statistics
Libraries) subroutine RNLIN (see Appendix E.3) in
the folder, “IMSL Documentation-Appendix E,” on
the accompanying website or Excel and the Solve
function.

(c) Compare the methods in terms of how well they fit the
data and comment on the ability of the PTT model to
fit the data.

Solution. (a) From the stress quantities given in Eqs. 3.77
to 3.79 the viscosity function is

η = η0

1 + ξ (2 − ξ )(λ γ̇ 0 )2 (3.87)

while N1 is given by

N1 = −2 η0 λ γ̇
2
0

1 + ξ (2 − ξ )(λ γ̇ 0 )2 (3.88)

Working with Eq. 3.87, we can obtain η0 directly from the
viscosity data in Appendix A.1. In this case we take η0 to be
23,100 Pa·s (i.e., we used η at the lowest γ̇0). To obtain ξ and
λ we plot η/η0 versus λγ̇0, which is a dimensionless shear
rate, for different values of ξ . The dimensionless viscosity
curves (or “master curves”) for each value of ξ are then super-
imposed on plots of η/η0 versus γ̇0or η∗/η0 versus ω based
on data taken from Appendices A.1 and A.2, respectively.
The curves are then shifted horizontally until the “best fit” is
obtained between the experimental results and the theoretical
curves. The parameter that shifts the experimental data on to
the master curve is λ. Curves for three different values of λ
are shown in Figure 3.16. The best fit seems to be obtained
by selecting a value of λ = 0.5.

In Figure 3.17 we plot predicted values of N1 (Eq. 3.88)
versus γ̇0 and compare them against experimental values of
N1 and 2G′. At low γ̇0 the predicted values of N1 agree
well with the experimental values. The agreement between
N1 and 2G′ is not good, and hence one would not expect
good agreement between the predicted values of N1 and 2G′

at high γ̇0(for an alternate relation between N1 and G′ see
Eq. 3.148).

It is difficult to fit Eq. 3.87 to the viscosity data because
the shape of the curve is not quite what is observed experi-
mentally. In particular, the slope of ln η versus ln γ̇0 is less
than −1.0, which is physically unrealistic (this means that
τ yx passes through a maximum, and for flow through a cap-
illary it would mean there could be more than one flow rate
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FIGURE 3.16 Reduced viscosity versus shear rate or angular
frequency (ω) for LDPE (NPE 953) at 170 ◦C. The curves represent
the PTT model viscosity function for three sets of parameters: (—)
ξ = 0.05, λ = 2.7; (---) ξ = 0.05, λ = 0.5; and (-·-·) ξ = 0.038,
λ = 5.47.

possible for a given pressure drop). However, in an effort to
improve on the fit of Eq. 3.87 to the viscosity data, we use
a nonlinear regression analysis to obtain a set of coefficients
that fit the data in a least-squares sense.

(b) The method used in part (a) to obtain the coefficients is
in essence a least-squares approach, but it is somewhat sub-
jective. The method of nonlinear regression analysis is used
to find the parameters that minimize the sum of the residual
errors between the predicted and experimental values. The
solution to this problem is given on the accompanying web-
site in the folder under “Numerical Examples, Chapter 3.”
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FIGURE 3.17 Comparison of predicted values of N1 (PTT
model) with experimental values of N1 and 2G′ for LDPE (NPE
953) at 170 ◦C: (—) ξ = 0.038, λ = 5.47 s; (---) ξ = 5.00E−02,
λ = 2.70 s; (∇) 2G′; (�) N1.
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In this solution, we use the IMSL subroutine RNLIN (see
EX3-3-Fortran) or the Solve function in Excel (see EX3-3-
Excel.xlsx) to find η0, ξ , and λ. The values for η0, ξ , and λ

obtained in a least-squares sense (called theta (1), theta (2),
and theta (3) in the Fortran code, respectively, but listed as
theta in the solution) are 23,100 Pa·s, 0.038, and 5.475 s,
respectively. It is also observed that it was difficult to fit the
PTT viscosity function to the experimental data. The func-
tion does not fit the data well as the sum of the squares of the
errors (SSE) is very large. By using the values for η0, ξ , and
λ, Eq. 3.87 is evaluated and η/η0 is plotted versus λγ̇0 in Fig-
ure 3.16. Here we see that the fit is very good at low γ̇0,but at
high γ̇0 there is considerable disagreement. Furthermore, this
curve is very close to the “eyeballed” curve for ξ = 0.05 and
λ = 2.7. In the case of the use of Excel, the values obtained
for ξ and λ are 0.035 and 0.44, respectively.

Values of N1 calculated from Eq. 3.88 using the coef-
ficients determined by means of the subroutine RNLIN are
plotted in Figure 3.17 and compared against the experimental
values. Values based on Eq. 3.88 and the eyeballed values of
η0, ξ , and λ are also plotted in Figure 3.17. The statistically
determined values lead to a better prediction of N1 at low γ̇0,
but the values seem to converge at higher γ̇0.

The parameter ε is determined from extensional data
and requires the solution of ordinary differential equations
for various values of ε. This is done in the solution to
Problem 3C.3.

(c) Finally, we recognize that the PTT model in its present
form does not fit the viscosity data well because it predicts
a function for η which is too highly shear rate dependent.
By adding a Newtonian viscosity to the function in Eq. 3.87,
the fit can be made better and η does not shear-thin in an
unrealistic manner.

It is clear that viscoelastic fluids require a constitutive
equation that is capable of describing time-dependent rheo-
logical properties, normal stresses, elastic recovery, and an
extensional viscosity which is independent of the shear vis-
cosity. It is not clear at this point exactly as to how a constitu-
tive equation for a viscoelastic fluid, when coupled with the
equations of motion, leads to the prediction of behavior (i.e.,
velocity and stress fields) which is any different from that cal-
culated for a Newtonian fluid. As the constitutive relations for
polymeric fluids lead to nonlinear differential equations that
cannot easily be solved, it is difficult to show how their use
affects calculations. Furthermore, it is not clear how using
a constitutive equation, which predicts normal stress differ-
ences, leads to predictions of velocity and stress fields which
are significantly different from those predicted by using a
Newtonian fluid model. Finally, there are numerous possi-
bilities of constitutive relations from which to choose. The
question is then: When and how does one use a viscoelas-
tic constitutive relation in design calculations especially
when sophisticated numerical methods such as finite element
methods are not available to the student at this point? For the

time being, it appears that the most important material func-
tions which the model must describe accurately are the shear
and extensional viscosity. The design calculations for which
one must use a viscoelastic constitutive relation are those
involving shear-free flows such as film blowing, expansion
of a parison in blow molding, squeezing flow, film casting,
and fiber spinning. Furthermore, a viscoelastic model can be
useful for estimating extrudate swell, which is the expansion
of a polymeric fluid on leaving a die. It has been suggested
that die swell can be correlated to N1. One commonly used
relation proposed by Tanner (1970) is

Dp

D0
= 0.1 +

[
1.0 + 1

2

(
N1,w

2 τw

)2
]1/6

(3.89)

where Dp is the diameter of the extrudate and D0 is the capil-
lary diameter. (Further discussion of extrudate or “die” swell
is presented in Chapter 7.) Hence, in this book we will primar-
ily use nonlinear viscoelastic models for estimating values of
N1 at high shear rates and when the kinematics are known. It
is beyond the level of this book to solve problems in which
nonlinear constitutive equations are used in conjunction with
the equations of motion.

A few additional comments about when and under what
conditions one must use a nonlinear viscoelastic constitutive
equation are discussed here. At this time it seems that when-
ever the flow is unsteady in either a Lagrangian (Dv/Dt =
0) or a Eulerian (∂v/∂t = 0) sense, then viscoelastic effects
become important. In the former case one finds flows of this
nature whenever inhomogeneous shear-free flows arise (e.g.,
flow through a contraction) and in the latter case in the startup
of flows. However, even in simple flows, such as in capillaries
or slit dies, viscoelastic effects can be important, especially
if the residence time of the fluid in the die is less than the
longest relaxation time of the fluid. Then factors such as
stress overshoot could lead to an apparent viscosity that is
higher than the steady-state viscosity. In line with these ideas
one defines a dimensionless group referred to as the Deborah
number:

De = λ/tav (3.90)

where tav is the process time and λ is the relaxation time. If
De ≥ 1, then transient effects are important. Another place
where viscoelastic effects are important would be in injec-
tion molding where the stresses in the melt may relax slowly
relative to the heat transfer rate, and in which case resid-
ual stresses are frozen into the part. Hence, even when the
flows are steady, the viscoelastic nature of the fluid can be
important. Certainly for the most part to consider viscoelas-
tic effects in design calculations, it will be necessary to use
numerical techniques.



52 VISCOELASTIC RESPONSE OF POLYMERIC FLUIDS AND FIBER SUSPENSIONS

3.2.2 Fiber Suspensions

Polymer melts containing glass and other types of chopped
fibers are commonly processed by means of injection and
compression molding to form parts with enhanced strength
and stiffness. As these materials are commonly processed by
means used for polymer melts, it is necessary to introduce
their flow behavior and to introduce theory for handling their
rheological behavior and predicting evolution of fiber orien-
tation. This chapter is not intended to provide a complete
overview of the topic of fiber suspension rheology, which
can be found elsewhere (Eberle et al., 2008), but to provide a
quantitative approach to predicting fiber orientation for what
are considered as rigid fiber systems.

Before discussing theoretical models for the rheology of
fiber suspensions and its connection to fiber orientation, there
are three topics that must be discussed: Brownian motion,
concentration regimes, and fiber flexibility. Brownian motion
refers to the random movement of any sufficiently small par-
ticle as a result of the momentum transfer from suspending
medium molecules. The relative effect that Brownian motion
may have on orientation of anisotropic particles in a dynamic
system can be estimated using the rotary Peclet number,
Pe ≡ γ̇ /Dro, where γ̇ is the shear rate and Dro is the
rotary diffusivity, which defines the ratio of the thermal
energy in the system to the resistance to rotation. Doi
and Edwards (1988) estimated the rotary diffusivity, Dro,
to be

Dro = 3kBT [ln (ar) − �] /πηs L3 (3.91)

where kB is Boltzmann’s constant, T is absolute temperature,
ar is the fiber aspect ratio (L/d), and � is estimated to be 0.8.
We use the scaling argument that when Pe � 1 Brownian
effects can be neglected, which, in general, is true for particles
whose longest dimension is ≥10 μm. In this section we are
only interested in fiber suspensions, which can be considered
non-Brownian. The reader is referred to the work of Doi and
Edwards (1988) on the dynamics of Brownian rods for the
coverage of such topics.

Fiber suspensions are typically classified into three con-
centration regimes: dilute, semidilute, and concentrated,
which are based on their volume fraction, φ = πnL3/4a2

r ,
where n is the number of fibers per unit volume. The dilute
regime is such that the fibers within the suspension are free
to both rotate and translate without hydrodynamic interac-
tion or direct contact. Theoretically, this occurs when the
average distance between the center of mass of two fibers
is greater than L leading to the constraint of n < 1/L3 or
φ < a−2

r . The transition to the semidilute region occurs just
above the dilute upper limit. Here hydrodynamic interac-
tion is the predominant phenomenon with little fiber contact.
However, the suspension orientation state is not subject to

geometric constraints, which can constrict orientation states.
Interaction between fibers becomes theoretically possible for
homogeneously dispersed fibers when n >1/L3, but when the
mean spacing between fibers, Sm, is on the order of the fiber
diameter (d), physical contact becomes an increasingly sig-
nificant phenomenon. Therefore, the upper limit is subject to
the constraint Sm � d (Doi and Edwards, 1988). The mean
spacing between fibers is a function of the orientation state
of the fibers within the suspension. For a random orientation
state the mean spacing is estimated as Sm

∼= 1/nL2 and for
a suspension whose fibers are completely aligned the mean
spacing is of the order Sm

∼= (nL)−1/2. This leads to two upper
limits: n � 1/dL2 for random and n � 1/d2L for aligned
orientation.

The concentrated regime is where n ≥ 1/dL2 or φ ≥ a−1
r .

In this range the dynamic properties of the fibers can be
severely affected by fiber–fiber interactions and can lead to
solid-like behavior. It is interesting to note that most fiber
composites of industrial interest typically have fiber concen-
trations of φ > 0.1 and fall within the concentrated regime.
In addition to the three regimes defined above, molecular
theories define a critical concentration in which molecules
will preferentially align to form a nematic liquid crystalline
phase, a phase intermediate to a purely crystalline phase and
an isotropic liquid phase. However, it has yet to be proved
that fiber suspensions will also go through this transition
(Larson, 1999).

The final aspect deals with the term “flexibility”, which
will be used to describe how stiff a fiber behaves in the
presence of flow. In this context, a fiber exhibiting a larger
degree of flexibility is easier to bend within a specified flow
field. The flexibility of a fiber commonly leads to two classes
of materials—short and long. Short fiber suspensions are
defined as those that remain rigid within a specified shear
field, while long fiber suspensions consist of fibers that flex
or bend. Switzer and Klingenberg (2003) characterized the
flexibility of a fiber using an effective stiffness dimensionless
number (Seff) defined as

Seff ≡ EYπ
4ηs

.
γ a4

r

(3.92)

where EY is the Young’s modulus, and ηs is the suspending
medium viscosity. From this expression, the flexibility of a
fiber can be seen to increase with aspect ratio for a material
with a given Young’s modulus. In this section we are pri-
marily concerned with stiff fibers, which in the case of glass
involves fibers of length less than 1 mm.

In most theoretical work, fiber orientation has been for-
mulated using the orientation tensors that define an aver-
aged orientational state of the system, often referred to
as structure tensors. The structure tensors of interest with
respect to modeling orientation for fiber suspensions are the
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second- and fourth-order tensors defined as

A (t) = ∫ uuψ (u, t) du (3.93)

A4 (t) = ∫ uuuuψ (u, t) du (3.94)

where u is the unit vector along the fiber and ψ is the orien-
tation distribution function. The trace of A is always equal
to 1 and for a completely random orientation state A = 1

3
I, where I is the unity tensor. In the limit that all the fibers
are perfectly aligned in the x1 direction, the only nonzero
component is A11 = 1. The fourth-order tensor arises in
the theoretical analysis for both the particle motion and in
calculating the contribution of the hydrodynamic interac-
tion of the fibers to the extra stress. For a more complete
description of orientation tensors and their use in represent-
ing fiber suspensions, the reader is referred to Advani and
Tucker (1990).

The origin of an evolution equation in a form contain-
ing A is described elsewhere (Bird et al., 1987a; Advani
and Tucker, 1990) but essentially consists of performing a
balance on configuration or orientation and a momentum
balance to obtain governing equations for ψ and u̇. These
equations are combined to give the following equation for
the orientation tensor A for rigid particles not influenced by
Brownian motion:

DA
Dt

= (W · A − A · W)

+ λ(γ̇ · A + A · γ̇ − γ̇ · A − γ̇ : A4) (3.95)

where W = [(∇v)t −∇v] is the vorticity tensor and λ is a
parameter related to the shape of the rigid particle and dis-
cussed below. To solve this equation a closure approximation
is need to express A4 in terms of A. The fourth-order tensor
A4 has been the subject of much research because in order to
complete the analysis one must use a closure or decoupling
approximation to express the fourth-order tensor in terms of
the second-order tensor. A closure approximation is some
function that approximates a higher order orientation tensor
with lower order orientation tensors and/or the invariants of
lower order orientation tensors. The closure approximation
is vital in establishing an equation of change for the average
orientation state of the system and in calculating the extra
stress contribution as a result of the hydrodynamic drag dis-
cussed later. In addition, the higher order orientation tensors
(tensors greater than second order) arise in any continuum
model that describes the mechanical or rheological properties
of a two-phase system containing particles whose orientation
can be anisotropic. Numerous closure approximations have
been suggested and tested which is beyond the scope of this

text (Advani and Tucker, 1990). For simplicity we will use
the quadratic closure approximation:

A4 = AA (3.96)

In semidilute suspensions the oscillations present in the
dilute suspensions are less common. This is a direct result
of the contributing factors that can dampen the oscillations
being more prevalent as the fiber concentration is increased.
The common approach to predict this behavior relies on
Jeffery’s equation for the fiber orientation with the assump-
tion that the fiber is infinitely long or λ = 1, in which case,

DA
Dt

= (W · A − A · W) + (γ̇ · A + γ̇ · A − γ : A4)

(3.97)

The predictions are no longer periodic but transient in that the
fibers will rotate from their initial orientation state to align
in the flow direction.

In the first attempts at simulating the fiber orientation of
concentrated suspensions in mold filling, Jeffery’s equation
for infinitely long fibers, Eq. 3.97, was used. Comparison
between fiber orientation measurements of injection-molded
parts and simulation results suggested Jeffery’s equation
overpredicts the degree of alignment and the shear strain
needed to align the fibers. As a result, Folgar and Tucker
(1984) modified Jeffery’s theory to include a phenomeno-
logical term that prevents full alignment of fiber orientation,
termed the Folgar–Tucker (FT) model. The Folgar–Tucker
(FT) model can be written in terms of A as follows:

DA
Dt

= (W · A − A · W) + (γ̇ · A + A · γ̇ − γ̇ : A4)

+ CIγ̇ (I − 3A) (3.98)

where CI is a phenomenological parameter. The last term
on the right-hand side of the equation is similar to the
isotropic diffusivity term in theories for Brownian rods (Doi
and Edwards, 1988). The FT model allows for the control
of the steady-state fiber orientation through the magnitude of
CI, but the rate of fiber reorientation is dominated by the flow
field for the case of small CI, which is typically in the range
of 0.016–0.0001. Currently, there is no theoretical approach
to calculate the interaction coefficient, CI, in the FT model,
and it is determined by fitting predictions to experimental
results, which can be time intensive to produce. Bay and
Tucker (1992) developed an empirical expression for con-
centrated suspensions that is a function of the fiber volume
fraction and aspect ratio:

CI = 0.0184 exp (−0.7148φar) (3.99)
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Equation 3.99 predicts that CI decreases for increasing
φar and represents fiber screening. Phan-Thien et al. (2002)
proposed a model in which CI increases with increasing φar

as

CI = m1
[
1.0 − exp (−m2φar)

]
(3.100)

where m1 and m2 are fit parameters, which they found to be
m1 = 0.03 and m2 = 0.224.

The FT model improves the predictions of the steady-state
fiber orientation but has little effect on the strain at which the
steady-state orientation occurs. In an attempt to control the
rate of fiber reorientation, Sepehr et al., (2004) included a
term to reduce the rate of fiber orientation termed the strain
reduction factor or the slip coefficient. The slip coefficient,
α, can be added to the FT model as follows,

DA
Dt

= α[(W · A − A · W) + (γ̇ · A + A · γ − γ̇ : A4)

+ CIγ̇ (I − 3A)] (3.101)

and has a value 0 < α <1 (Eberle et al., 2010). However, the
addition of the slip or strain reduction factor to the equations
governing fiber motion results in a loss of objectivity of
the equation. This becomes important when the coordinate
frame is translated or rotated, but the physical aspects of
the predictions, in the case of simple shear flow, are still
acceptable.

In order to solve the equations above, such as Eq. 3.101,
for fiber orientation, the flow kinematics, which depend on
the rheology of the fiber suspensions, must be known. One
way to solve the equations for fiber orientation has been
to use the bulk rheology of the suspensions (e.g., power-
law model fit to the vsicosity of the suspension). A more
rigorous way is to couple the fiber orientation with the stress
tensor and thereby calculate the rheology as a function of
fiber orientation. A general expression for the total stress in a
dilute suspension of high aspect ratio non-Brownian particles
can be derived from the theories of Hand and Giesekus and
is commonly referred to as the Lipscomb model (Lipscomb
et al., 1988; Sepehr et al., 2004):

� = PI − ηsγ̇ − c1φηsγ̇ − φηs N γ̇ : A4 (3.102)

where � is the total stress, ηs is the suspending medium
viscosity, c1 is a constant, and N is a dimensionless parameter
that represents the coupling between hydrodynamic stress
contribution and the fiber orientation. The third term on the
right side of the equation is the viscosity enhancement as a
result of the fiber. Lipscomb et al. (1988) give c1 to be equal
to 2. The fourth term on the right side of the equation is
the contribution to stress from the hydrodynamic drag of the
fluid over the fiber.

As in the equation for evolution of fiber orientation, a
closure approximation is needed in Eq. 3.102 to express A4

in terms of A. Using Eq. 3.102 it is straightforward to show
that the shear stress growth coefficient, η+ , and the first
normal stress growth function, N+

1 , are

η+ = σ12/γ̇ = ηs [1 + φ (c1 + 2N A1212)] (3.103)

N+
1 = 2φηsγ̇ N (A1112 − A2212) (3.104)

where the fourth-order tensor components are a function of
time. In Example 3.5 below, we will use the closure approx-
imation in Eq. 3.96 to find the predictions of Eq. 3.102 for
simple shear flow.

For dilute suspensions Lipscomb et al. (1988) give N to
be a function of fiber aspect ratio,

N = a2
r

2 ln ar
(3.105)

Other works for dilute suspensions give N to be a function of
the number of fibers per unit volume, n, and/or fiber length,
L, and aspect ratio:

N = a2
r

3 ln (2ar)
f (ε) , f (ε) = 1 + 0.64ε

1 − 1.5ε
+ 1.659ε2,

ε = [ln (2ar)]
−1 (3.106)

Currently, there is no theory for concentrated suspensions
that accounts for fiber contact. However, semidilute theory
has been used to some extent to model their stress behavior,
in which case N is fit to the rheological material functions of
a fluid instead of calculating N from theory. In the majority of
fiber composites of industrial significance, the matrix is poly-
meric and exhibits nontrivial viscoelastic behavior, which
increases the complexity of modeling such suspensions. The
first attempts ignore the fiber and treat the suspension as a
homogeneous viscoelastic fluid.

Example 3.4. Predictions of Fiber Orientation in
Simple Shear Flow

From Eq. 3.101 obtain the system of ordinary differential
equations for determining the components of the orientation
tensor, A, at the start of flow and under steady-state conditions
for steady-state shear flow. In particular, find the equations
for determining A11, A22, A33, A12 = A21, and A13. A is a
symmetric tensor such that Aij = Aji. The initial orientation
of the fibers is taken as random, which means A11 = A22 =
A33 = 1

3 .
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Solution.

d

dt

⎛
⎝ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠

= α

⎡
⎣
⎛
⎝ 0 γ̇ 0

−γ̇ 0 0
0 0 0

⎞
⎠·
⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠

−
⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠·
⎛
⎝ 0 γ̇ 0

−γ̇ 0 0
0 0 0

⎞
⎠+
⎛
⎝0 γ̇ 0
γ̇ 0 0
0 0 0

⎞
⎠·
⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠

+
⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠·
⎛
⎝0 γ̇ 0
γ̇ 0 0
0 0 0

⎞
⎠− (2γ̇ A21)

⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠

+ (CIγ̇ )

⎡
⎣
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠− 3

⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠
⎤
⎦
⎤
⎦ (3.107)

The system of coupled ordinary differential equations for
the various components of A become

d A11

dt
= αγ̇ [4A12 − 2A12 A11 + CI(1 − 3A11)] (3.108)

d A12

dt
= αγ̇ [2A22 − 2A12 A12 − 3CI A12] (3.109)

d A22

dt
= αγ̇ [−2A12 A22 + CI(1 − 3A22)] (3.110)

d A33

dt
= αγ̇ [−2A12 A33 + CI(1 − 3A33)] (3.111)

d A13

dt
= αγ̇ [2A23 − 2A12 A13 − 3CI A13] (3.112)

d A23

dt
= αγ̇ [2A12 A23 − 3CI A23] (3.113)

The solution under steady-state conditions is found by
setting all the time derivatives to zero and solving the system
of algebraic equations for the Aij. For example, to find A11,
A22, and A12 = A21 we solve the following three equations:

4A12 − 2A12 A11 + CI(1 − 3A11) = 0 (3.114)

2A22 − 2A12 A12 − 3CI A12 = 0 (3.115)

−2A12 A22 + CI(1 − 3A22) = 0 (3.116)

This system of algebraic equations is solved in Problem
3C.5.

Example 3.5. Startup of Simple Shear Flow Predictions
for the Lipscomb–Denn Model, Eq. 3.102, and the
Quadratic Closure Approximation

Solution. Equation 3.102 becomes for the startup of shear
flow

�ij = Pδij − ηs

⎛
⎝ 0 γ̇ 0
γ̇ 0 0
0 0 0

⎞
⎠− c1φηs

⎛
⎝ 0 γ̇ 0
γ̇ 0 0
0 0 0

⎞
⎠

− 2φηs N γ̇ A21

⎛
⎝ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠ (3.117)

Remembering that A is a symmetric tensor, then A12 =
A21, and so on. The shear stress and the primary normal stress
difference, which are a function of time, become

�12 = �21 = −ηsγ̇ − c1φηsγ̇ − 2φηs N A2
12 (3.118)

�11 − �22 = −2φηs N γ̇ A12(A11 − A22) (3.119)

One now solves Eqs. 3.108 to 3.110 to find A12(t), A11(t),
and A22(t) and substitutes these into Eqs. 3.118 and 3.119 to
find the stresses as a function of time.

3.3 RHEOMETRY

Of all the transport properties of polymeric materials, the
rheological properties are probably the most important to the
design of polymer processes. While the other transport prop-
erties such as thermal conductivity, heat capacity, and density
remain nearly constant with changes in molecular structure
such as molecular weight and branching, slight changes in
molecular structure can alter the rheological properties and,
hence, processing behavior of a polymer significantly. As one
can imagine, variations in molecular structure from batch to
batch of a polymer are quite common. Hence, one cannot
expect to have available a set of rheological data such as
would be found in a handbook which could be used for design
calculations. It is necessary that the rheological behavior of
polymeric fluids be determined on a regular basis. For this
reason it is necessary to know how rheological properties are
measured.

It is not the intention here to give an in-depth description
of the techniques used in measuring rheological properties of
polymer melts as these details can be found elsewhere (Dealy,
1982; Macosko, 1994; Walters, 1975). The goal is to make
sure that one is aware of at least the most common methods,
how data is manipulated to obtain material functions, and the
limitations of various techniques. Methods for measuring
shear flow properties are discussed first followed by methods
for measuring shear-free flow properties.
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FIGURE 3.18 Cone-and-plate rheometer. The cone turns with an
angular velocity, W. The torque, T, and normal force, F, measure-
ments are used to determine η and ψ1, respectively, as given:

η = 3T

2π R3 γ̇
ψ1 = 2F

π R2 γ̇ 2 γ̇ = W

φ0

In some instances pressure transducers are mounted along the bot-
tom plate to measure the pressure distribution from which ψ2 is
obtained.

3.3.1 Shear Flow Measurements

Measurements of rheological properties at low shear rates
are usually carried out in rotary rheometers such as the cone-
and-plate (C-P) or plate–plate (P-P) systems shown in Fig-
ures 3.18 and 3.19, respectively. In rotary rheometers one of

W(t)
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R

Fluid
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z

r

FIGURE 3.19 Plate–plate rheometer. The torque, T, and normal
force, F, measurements are used to determine η and ψ1 − ψ2:

η = (T/2π R3 γ̇ R)[3 + d ln(T/2π R3)/d ln γ̇ R]

ψ1 −ψ2 = (F/πR2 γ̇ 2
R)[2 + d ln(F/π R2)/d ln γ̇ R]

γ̇ R = WR
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FIGURE 3.20 Capillary rheometer. Polymer is melted by con-
duction in the reservoir and then pushed through the capillary by the
plunger. Viscosity data are obtained from �P and Q measurements.

the members of the system is driven, which transmits forces
through the fluid to the bottom plate. The torque, T, and
the normal force, F, are recorded at the bottom member by
means of transducers. The cone-and-plate has the advantage
that the shear rate, γ̇ , is nearly uniform through the gap, and
hence the material properties of the polymeric fluid can be
measured at each γ̇ directly. The equations for determining
the material functions, η and ψ1, are given in the caption of
Figure 3.18. Because γ̇ is uniform throughout the gap, it is
possible to use the C-P to measure the transient response of
polymeric fluids. For the case of the P-P device (Fig. 3.19),
γ̇ is found to vary with the distance r from the center of the
plates. Hence, one must make a series of measurements at
various shear rates before obtaining values of η and ψ1−ψ2

at specific values of γ̇ . For the C-P device the maximum γ̇

for which measurements are possible (the melt usually frac-
tures and comes out of the gap) is about 10 s−1 while slightly
higher values of γ̇ are possible with the P-P device.

The capillary rheometer (Fig. 3.20) is commonly used to
obtain η at high shear rates. Basically the device consists of a
barrel for melting the polymer and a plunger that pushes the
melt through the capillary. The data obtained from this device
consist of the pressure required to push the melt through the
capillary and the volumetric flow rate (plunger speed and
cross-sectional area). Two corrections are applied to this data.
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FIGURE 3.21 Pressure profile in a capillary rheometer. The var-
ious pressures are defined in the figure including the exit pressure,
Pex, and the entrance pressure, �Pent.

First, the pressure drop must be corrected for the additional
pressure required for the melt to pass through the contraction
between the barrel and the capillary. For any fluid, the wall
shear stress is given by

τR =
(−dp

dz

)
R

2
(3.120)

where dp/dz is the pressure gradient in the capillary. Usually
dp/dz is approximated by −�P/L, where �P is the pressure
drop across the whole capillary including the entrance and
L is the capillary length. For a Newtonian fluid the pressure
gradient is nearly constant over the length of the capillary. For
polymeric fluids the pressure drop is shown schematically in
Figure 3.21. The pressure gradient is nonlinear for polymeric
materials and approximating it as −�P/L would lead to large
errors in the determination of τR. The difference between the
pressure extrapolated from the linear region and the true
pressure is called the entrance pressure, �Pent. There may
be residual pressure at the die exit, called the exit pressure,
�Pex, but it is quite small relative to �Pent and hence is
neglected. If there is additional pressure at the die exit, then
the method used to obtain �Pent actually includes �Pex.
The total pressure correction for exit and entrance regions is
called the end pressure, �Pend, that is,

�Pend = �Pex + �Pent (3.121)

The true wall shear stress, τR, is then obtained by plotting
the total pressure, �Ptot, versus L/D at each value of γ̇ for
several L/D values (see Fig. 3.22). The extrapolation of�Ptot

to L/D = 0 is �Pend. One now obtains τR as follows:

τR =
(
� Ptot −� Pend

L

)
R

2
(3.122)
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FIGURE 3.22 Total pressure drop, �Ptot, versus L/D for various
shear rates for PP at 200 ◦C: (∇) 131; (◦) 235; (�) 289; (�) 569;
(◦) 724 s−1. These plots are sometimes referred to as Bagley plots.

One may also correct for �Pend by calculating the equiva-
lent die length required to produce �Ptot. Referring again to
Figure 3.22, one finds the additional length by extrapolating
�Ptot versus L/D to�Ptot = 0. The additional length required
is given as a factor, Nent, times the radius; that is,

(L/D)c = (L + NentD/2)/D (3.123)

where (L/D)c is the corrected value of L/D. τR is now given
as

τR = 4�Ptot/(L/D)c (3.124)

Because the velocity profile is nonparabolic, one must
correct the apparent wall shear rate, γ̇a , defined as 4Q/πR3.
The correction is obtained by integrating the volumetric flow
rate, Q, by parts:

Q = 2π
∫ R

0
vz(r)r dr (3.125)
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FIGURE 3.23 Slit-die rheometer showing the position of the
pressure transducers (Ti).

and then differentiating with respect to τR using Leibnitz’s
rule to give (see Problem 3B.1)

γ̇ w = γ̇ a

4

(
3 + d ln γ̇ a

d ln τR

)
. (3.126)

Hence, by plotting τR versus γ̇a on a ln–ln plot, one obtains
the reciprocal of the required correction factor. It turns out
that this value is just 1/n, where n is the power-law index.

Slit-die rheometers (see Fig. 3.23) are useful devices for
measuring the viscosity of polymer melts because it is possi-
ble to measure the pressure gradient directly. The geometry
is that of two flat plates with a rectangular cross section. If
the aspect ratio, W/H, is greater than or equal to 10, then
there is no side wall effect. The wall shear stress, τw, is then

τw =
(−dp

dz

)
H

2
= P3 − P1

d31

H

2
(3.127)

where P3 and P1 are the pressures recorded by transducers
T3 and T1, respectively, and d31 is the distance between the
center of the transducers. The wall shear rate, γ̇w, is obtained
from the following relation:

γ̇ w = γ̇ a

3

[
2 + d ln γ̇ a

d ln τw

]
(3.128)

where γ̇a = 6Q/WH2 (this is just the wall shear rate for a
Newtonian fluid) for flow through flat plates.

The slit-die rheometer also offers the possibility of obtain-
ing values of N1 at high shear rates (Baird, 2008). The method
is based on the measurement of a quantity called the hole
pressure, PH, which is the difference of pressures P1 and P2,
where P2 is the pressure measured by transducer T2 mounted

(b)

(a)

L=L e
0

       t

FIGURE 3.24 Two methods for generating uniaxial extensional
flow.

at the bottom of a rectangular slot placed perpendicular to
the flow direction; that is,

PH = P1 − P2 (3.129)

N1 is obtained from the following equation (Baird, 2008):

N1 = 2τw(dPH/dτw) (3.130)

Hence, from data of PH versus τw one can obtain N1

as a function of τw. (Accurate measurements of PH are
quite difficult and great care must be taken to make these
measurements.)

3.3.2 Shear-Free Flow Measurements

Two techniques for measuring uniaxial extensional viscos-
ity of polymer melts are shown in Figure 3.24. In the first
technique (Ballman method) polymer melt is either glued or
clamped at both ends, and then one end is moved in such a
manner as to generate either a uniform extension rate, ε̇, or a
constant tensile stress. In the Meissner method, both ends of
the melt are pulled at a constant velocity either to achieve a
uniform extension rate or to provide a constant stress.

In the Ballman method, to generate a uniform ε̇ through-
out the sample, one end of the sample must be deformed such
that the length of the sample is increased exponentially with
time: that is, L = L0 eε̇t. An apparatus based on the Ballman
method is shown in Figure 3.25. The sample must be sup-
ported in an oil of similar density as shown in Figure 3.25.
The limitations of the technique include (1) the availability
of a suitable adhesive for gluing the sample to metal clips;
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FIGURE 3.25 Extensional rheometer for polymer melts based
on the Ballman method. The length of the sample is increased
exponentially with time to generate a constant extension rate.

(2) the ability of the sample to deform uniformly without
necking; (3) the availability of an oil of similar density as the
polymer melt (unless the sample is deformed in a horizontal
plane); and (4) low strains (ε̇t) of only about 3.9. In spite of
the limitations of the method, valuable data, especially for
polyolefins, can be obtained.

The Meissner method has several advantages and disad-
vantages relative to the Ballman method. First, it is possible
to reach very high strains (on the order of 7.0). Second, the
sample is usually deformed horizontally so that the match-
ing of the oil density with that of the polymer melt is not
as critical. Finally, finding a suitable glue is not necessary.
On the other hand, the construction of the apparatus is more
complicated and expensive. Larger samples are required, and
they must be nearly free of inhomogeneities.

A variation of the Meissner method is the Sentmanat dual-
roller device, which is an attachement for rotational rheome-
ters (Sentmanat, 2004). When η0 of the polymer melt is
greater than about 5000 Pa·s, then the sample can be stretched
without supporting it in an oil bath. Hencky strains on the
order of 4.0 and extension rates of about 30 s−1 can be
reached. A rectangular sample (8–10 mm width, 1.2–1.4 mm
thickness, and 15–20 mm length) is placed on the dual coun-
terrotating windup drums where rotation is resisted by the
stretching material. The resistance to rotation force is mea-
sured by the rheometer torque transducer. Sample sizes of
only 1.0 to 2.0 g are needed for use in this device.

For both methods the technique for obtaining the exten-
sional viscosity, η+ (ε̇, t) is similar. With the assumption that
the surroundings of the sample are at atmospheric pressure,
pa, the total force per unit area exerted by the load cell and

atmospheric pressure on the sample must be balanced by�zz;
that is,

�zz = −(F(t)/A(t)) + pa (3.131)

where A is the instantaneous cross-sectional area of the sam-
ple. A force balance in the radial direction gives the normal
stress difference as a function of time:

τzz − τrr = −F(t)/A(t) (3.132)

η+ is then obtained from

η+ = −τzz − τrr

ε̇
= F(t) eε̇t

A0 ε̇
(3.133)

where A0 is the initial cross-sectional area.
In the event the devices for measuring are not available,

there are two methods for obtaining approximate values of η.
The first method is based on the fiber spinning technique as
shown in Figure 3.26. (The device is known as the Rheotens.)
Without any discussion of the theory the extension rate is
given by

ε̇ = 2πυ Rw

H
ln

[
8πυ Rw

γ̇ a R

]
(3.134)
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FIGURE 3.26 Rheotens apparatus for estimating the uniaxial
extensional viscosity.
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where υ is the angular velocity (radians per second) of the
wheel of radius, Rw, H is the distance of the capillary to
the wheel, γ̇ a is the apparent shear rate in the capillary, and
R is the radius of the capillary. The normal stress difference
is given by

τzz − τrr = −8υ Rw F/R3
a (3.135)

where F is the tensile force determined by the tension trans-
mitted through the melt strand to the take-up wheels. Finally,
the stretch ratio, �, is given as

� = 8πυ Rw/Ra (3.136)

Obviously, η is obtained from the values calculated using
Eqs. 3.134 and 3.135.

The second method for estimating η is based on entrance
pressure data (Cogswell, 1978). The extension rate is given
as

ε̇ = 4 γ̇ 2
a
ηa

3(n + 1)� Pent
(3.137)

where n is the power-law index and ηa is the apparent vis-
cosity (ηa = τw/γ̇a). The normal stress difference is

τzz − τrr = −3(n + 1)�Pent/8 (3.138)

and hence

η = 9(n + 1 )2 �P2
ent /32 γ̇ 2

a
ηa (3.139)

It must be emphasized that these two methods will give
only approximate values for η.

3.4 USEFUL RELATIONS FOR MATERIAL
FUNCTIONS

In this section three topics are discussed: (1) the molec-
ular weight dependence of the rheological properties; (2)
the interrelation between steady shear and dynamic oscilla-
tory shear measurements; and (3) the effect of branching.
The importance of the second topic rests on the fact that
dynamic oscillatory properties are easier to measure and can
be obtained at higher equivalent shear rates than are possible
for the steady shear flow properties obtained by means of
rotary rheometers.

3.4.1 Effect of Molecular Weight

Molecular weight, M, has a significant effect on the magni-
tude of the rheological properties. At low molecular weight,

that is, below some critical molecular weight (Mc), for flex-
ible chain polymers η0 depends on M, and on M to the 3.4
power above Mc:

η0 ∝ M (M < Mc)

η0 ∝ M3.4(M > Mc)
(3.140)

The 3.4 power dependence has been observed experimen-
tally and predicted theoretically. Furthermore, the primary
normal stress difference coefficient in the limit as γ̇ goes to
zero, �1,0, is observed to be proportional to M raised to the
7.0 power; that is,

�1,0 ∝ η2
0 ∝ M7.0 (3.141)

Usually M is replaced by MW which is the weight aver-
age molecular weight (which is the second moment of the
molecular weight distribution). In the case of �1,0 there is
not as much experimental confirmation as there is for η0. For
rod-like molecules there is some evidence that the following
relations hold (Baird and Ballman, 1979):

η0 ∝ M
6.8
w (M > Mc)

�1.0 ∝ M
13.0
w

(3.142)

The change in the linear dependence of η0 on M to the
3.4 power dependence for flexible chain polymers is believed
to be due to the formation of an “entanglement” network or
temporary physical junctions between the polymer chains. In
the case of rod-like molecules, the hindrance of free rotation
of the rod-like molecule by neighboring molecules serves as
the entanglements.

In addition to the dependence of the magnitude of η0 and
�1,0 on M, the onset of shear-thinning behavior is affected by
M. In particular, as M increases, the shear rate at which shear-
thinning behavior starts, γ̇0, decreases. The relation between
γ̇0 at M1 and M2 where M2 > M1 is

γ̇0(M1) = aM γ̇0 (M2) (3.143)

where

aM = η0(M2)
η0(M1)

(3.144)

Temperature leads to a similar effect and in Section 4.1
the temperature dependence of aT will be discussed. Hence,
within a given series of the same polymer, it is possible to
generate the flow curves at all other molecular weights given
the relation between η0 and M and the flow curve of a sample
at a given M. (Note: The breadth of the molecular weight
distribution must be the same.)
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3.4.2 Relations Between Linear Viscoelastic
Properties and Viscometric Functions

It has been observed experimentally for many polymers that
the magnitude of the complex viscosity, |η∗(ω)|, and the shear
viscosity, η(γ̇ ), evaluated at the same values of ω and γ̇ ,
respectively, are identical; that is,

η(γ̇ ) = |η∗(ω)|ω=γ̇ (3.145)

This relation is known as the Cox–Merz rule (Cox and
Merz, 1958). When η(γ̇ ) is not available, the Cox–Merz
rule serves as a useful way to obtain η(γ̇ ), especially for
linear polymers (i.e., those without branching). When deal-
ing with filled polymers, polymer blends, fiber suspensions,
or highly branched polymers, the Cox–Merz rule may not
hold.

An alternative to the Cox–Merz rule is Gleissele’s mirror
relation (Gleissele, 1980):

η(γ̇ ) = η+(t)|t=1/γ̇ (3.146)

where η+ (t) is the limiting curve of η+ (γ̇ , t) as γ̇ → 0.
This relation has been tested for a wide variety of polymers
including PE, polyisobutylene (PIB), and silicone oils.

It is desirable to be able to estimate N1, as measurements
of this quantity at high γ̇ are also difficult. At low values of
γ̇ and ω it is observed for a number of polymers that

(N1/2)|γ̇=ω = G′ (3.147)

At higher shear rates it is observed that this relation fails for
some polymers. Laun (1986) suggested another empiricism
for N1 which seems to fit data over a wider range of shear
rates:

N1 = 2ωη′′ (ω)

[
1 +

(
η′′

η′

)2
]0.7
∣∣∣∣∣∣
ω=γ̇

(3.148)

where η′ is the dynamic viscosity and η′′ is associated with
the elastic energy stored per cycle of deformation (it is noted
that G′, G′′, η′, and η′′ are interrelated with G′ = ωη′′).
The empiricism in Eq. 3.148 has been tested for PS, LDPE,
HDPE, and PP and the agreement between N1 values and
those estimated from linear viscoelastic data was found to be
excellent (Laun, 1986).

3.4.3 Branching

Branching is known to have a significant effect on the rheol-
ogy of polymeric fluids especially on the extensional behav-
ior. Polyethylene is known to have various degrees of branch-

HDPE

LDPE

LLDPE

FIGURE 3.27 Branching characteristics exhibited by various
types of polyolefins.

ing depending on the method of polymerization as shown in
Figure 3.27. LDPE is believed to have very long branches
while LLDPE is believed to have numerous short branches.
On the other hand, HDPE has only a few short branches.
Values of η+ are shown for LDPE and HDPE in Figure 3.28.
Here we see that η+ for LDPE deviates drastically from the
linear viscoelastic limit while that for HDPE shows only a
slight deviation. LLDPE tends to approach equilibrium with
very little deviation from the linear viscoelastic behavior,
much in the same manner reported for PS in Figure 3.28.

When the MW of the branch arm, Ma, is greater than Mc,
which is referred to as long chain branching, LCB, then LCB
can have a significant effect on the shear rheology of polymer
melts. For example, it has been observed that for a MW of
100,000 g/gmol that η0 will pass through a maximum (which
is two orders of magnitude higher than that of the linear poly-
mer) at approximately one-half branch per molecule (i.e., one
in two chains containing a branch) and then decrease as the
branching level increases. At three branches per chain, η0

can be suppressed by about two orders of magnitude. Sig-
nificant effects on N1 and the onset of shear thinning have
also been observed (Doerpinghaus and Baird, 2003). Janzen
and Colby (1999) proposed a phenomenological expression
for η0 and its relation to molecular weight and levels of
branching:

η0 = AMb

[
1 +

(
Mb

Mc

)2.4
](

Mw

Mb

)s/γ

for Mc ≤ Mb ≤ Mw

(3.149)

Here, A is a numerical prefactor having units of (Pa·s·mol)/g
and is specific to molecular composition and temperature,
Mb is the molecular weight (MW) between branch points,
Mc is the critical MW for entanglements, Mw is the weight
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FIGURE 3.28 Extensional growth viscosity versus time for
polystyrene (top), LDPE, and HDPE. (Reprinted by permission
of the publisher from Khan et al., 1987.)

average MW, and s/γ is an exponent that depends on Mb as
shown in Eq. 3.150 below:

s

γ
= max

[
1,

3

2
+ 9B

8
ln

(
Mb

90MKuhn

)]
(3.150)

where B is a material specific constant and MKuhn is the
MW of a statistical Kuhn segment. For polyethylene, the
values of the coefficients taken from Janzen and Colby
(1999) are A(150 ◦C) = 5.22 × 10−6 (Pa·s·mol/g), B = 6.0,
M0(repeat unit MW) = 14.027 g/mol, Mc = 2100 g/mol, and
MKuhn 145.9 g/mol. For a branching architecture referred
to as a Cayley tree (which is used to approximate random

branching), α, the fraction of the total carbons that are long-
branch vertexes is given by (Colby and Janzen, 1999)

α = M0

2
[M−1

b − M−1
w ] (3.151)

In summary, with the relations given in this section it is
possible to obtain steady shear rheological data from linear
viscoelastic data over a wide range of shear rates using Eqs.
3.146 and 3.148. Furthermore, within a given series of poly-
mers of different molecular weights, it is possible to obtain
η(γ̇ ) and N1(γ̇ ) data at any M using Eq. 3.144 and data at
two values of M. Branching has a significant effect on the
extensional rheology of polymer melts, but its effect on shear
properties seems even more significant especially in the case
of sparse LCB. Equations 3.149, 3.150, and 3.151 allow us
to estimate how we can substantially increase or decrease the
viscosity by incorporating a few long chain branches.

3.5 RHEOLOGICAL MEASUREMENTS
AND POLYMER PROCESSABILITY

The emphasis so far in this chapter has been on quantitative
relations between stress and deformation rate or constitutive
equations and methods for measuring rheological properties.
It is clear that any attempts to carry out quantitative design
work using nonlinear constitutive equations is met quite often
with mathematical difficulties. However, certain rheological
measurements of a polymeric fluid may provide a tool for
assessing differences in processability when most standard
methods fail. To illustrate this idea a case study (Meissner,
1979) is considered, which is concerned with the effect of
branching on the processing performance of LDPE.

The following case study is concerned with the process-
ing of LDPE using the technique of film blowing (Meissner,
1979). As shown in Table 3.2 two of the resins (identified
as B and C) could be drawn down at the same critical rate
of 23 m/min leading to a film thickness at break of 10 μm.
Resin A, on the other hand, could not be drawn down as
much (critical draw down rate of 13 to 18 m/min depending
on which group made the measurements). Once a processing
difference was detected the next goal was to characterize the
three resins using standard techniques to determine if any
differences could be detected. As far as the molecular weight
distribution was concerned (Fig. 3.29) the samples were iden-
tical. The standard rheological measurements usually made
in industry as shown in Table 3.3 provided no clue as to the
differences in the samples. For example, it was indicated by
the melt flow index (now referred to as the melt index, MI∗)

∗The melt index(MI) is a characterization parameter provided by companies
and is the amount of polymer in grams that passes through a capillary of
specified radius in 10 minutes when subjected to a fixed pressure drop. More
details are found regarding this topic in Pr. 3A.1.
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TABLE 3.2 Critical Film Draw Down Speed and Thickness for LDPE

Participant Melt Temperature. A B C

IV 180 ◦C Critical film draw down (m/min)
film thickness at break (μm)

18
15

23
10

23
10

IV 150 ◦C Critical film draw down (m/min)
film thickness at break (μm)

13
20

23
10

23
10

Source: Data from Meissner, 1979.
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FIGURE 3.29 Molecular weight distribution of three LDPE sam-
ples as determined by means of gel permeation chromatography.
(Reprinted by permission of the publisher from Meissner, 1979.)

that A and B are similar. It was suggested by the melt mem-
ory index, which is a measure of die swell measured under
specified conditions, that A and C were similar polymers. It
was indicated by the zero shear viscosity that A and B were
identical but that C was slightly different. Hence, as far as
the more standard measurements were concerned, there was
no way to differentiate between the three samples.

The measurement of the full flow curve is less commonly
made in industry, but it might provide more information as to
differences in polymer systems. However, as shown in Fig-
ure 3.30, the flow curves for the three samples are, for all
practical purposes, identical. One difference in the samples
is noted and that is the onset of melt fracture. (Melt frac-
ture is associated with flow instabilities and is discussed in
Chapter 7.) It appears that B and C undergo melt fracture at
a higher shear rate than does sample A. It is not clear as to
the significance of this observation at this point, but it may

TABLE 3.3 Melt Flow Characteristics for Three
LDPE Samples

Characteristic A B C

Melt flow index (g/10 min) 1.37 1.41 1.59
Melt memory index (% die swell) 54 59 53
Zero shear viscosity (150 ◦C)( × 105 poise) 4.7 4.7 4.9

Source: Data from Meissner, 1979.
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FIGURE 3.30 Viscosity versus shear rate data for three LDPE
samples obtained by various investigators. The letters “MF” indicate
the onset of melt fracture: symbols are the same as in Figure 3.32.
(Reprinted by permission of the publisher from Meissner, 1979.)

be due to differences in the flow behavior of these resins in
the die entry (see Section 7.1).

Whereas the standard measurements provided no clue as
to the differences in the samples, the nonlinear measurements
provided some insight into the differences in the samples. In
Figure 3.31 is shown the stress growth behavior of the three
polymers. The shear stress growth curves of the three samples
at the same shear rate are essentially the same. However,
N1(γ̇ , t) for sample A apparently rises to a higher value than
it does for either sample B or C. This is the first material
property which indicated there was a difference in the three
samples.
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FIGURE 3.31 Stress growth behavior of three LDPE samples at
150 ◦C: (---) A; (—) B; (-·-·) C. (Reprinted by permission of the
publisher from Meissner, 1975.)
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FIGURE 3.32 Extensional stress growth versus strain at two
extension rates (ε̇0 = 0.001 s−1 and 0.01 s−1) for the three LDPE
samples: (◦) A; (�) B; (�) C. (Reprinted by permission of the
publisher from Meissner, 1979.)

The most enlightening difference occurred in the exten-
sional viscosity and �Pent data. In Figure 3.32 values of the
tensile stress (i.e., τ zz − τ rr) are plotted versus strain for two
values of ε̇. Sample A was observed to exhibit higher values
of stress than did either sample B or C especially at lower
extension rates. Furthermore, entrance pressure behavior in
the form of end correction (Nent) data (Fig. 3.33) reflected
the same tendency as the extensional data; that is, Nent of
sample A was higher than Nent of samples B and C. This is
reasonable in light of the discussion in Section 3.4 in which
η can be estimated from �Pent data. Hence, the quantities
related to extensional viscosity seem to be the most sensitive
in distinguishing differences in these polymers.
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FIGURE 3.33 End correction versus apparent shear rate for three
LDPE samples at 150 ◦C. The arrow indicates the onset of melt
fracture. (Reprinted by permission of the publisher from Meissner,
1979.)

At a later date it was revealed what the difference was
in the three samples. The difference was that the degree
of long chain branching was varied, with sample A having
more branches than polymers B and C. Hence, extensional
viscosity is apparently sensitive to changes in the degree of
chain branching.

3.6 SOLUTION TO DESIGN PROBLEM II

Design Problem II at the beginning of this chapter requires
you to design an annular die for LDPE at 170 ◦C consid-
ering the fact that the extrudate increases in both thick-
ness and diameter on leaving the die. The die dimensions
must therefore be less than those of the extrudate. The con-
straints are the output from the extruder or the onset of melt
fracture.

The basic idea is to determine the dimensions of the annu-
lar die, which will yield the extrudate with the desired dimen-
sions at the highest extrusion rate possible. The extrudate
leaves the die with dimensions (i.e., diameter and thickness)
greater than those of the die. This increase in dimensions is
due to a phenomenon called extrudate swell, which is asso-
ciated with elastic recovery. For flow through a capillary,
Eq. 3.89 has been proposed for predicting extrudate swell.
The questions we are faced with in carrying out this design
are: (1) Can one extend Eq. 3.89 to other geometries? (2)
What is the relation between extrudate swell and diameter
and thickness swell for an annular geometry? (3) How can
one obtain the appropriate rheological data at high shear
rates?

The starting point is Eq. 3.89, which gives the increase
in diameter of an extrudate emerging from a capillary as a
function of N1(τw) and τw. It is assumed that Eq. 3.89 applies
to both the increase in diameter and thickness of the annular
extrudate. Based on the dimensions of the desired extrudate
we can expect the ratio of the inner radius, κRo, to outer
radius, Ro, to be in the range of 0.8 (2.5 cm/3.065 cm), and
hence we can treat the annulus to a first approximation as
a slit of width W0 = π(Ro + κR), and height Ho = Ro −
κRo. If an appropriate constitutive equation was available,
one could in principle substitute expressions for N1 and τw

(e.g., see entries in Table 3.5) into Eq. 3.89 and thereby
obtain values for the thickness swell, Hp/H0, as a function
of the wall shear rate, γ̇w, or the wall shear stress. The PTT
model in its present form (see Table 3.1 for the predictions
in shear and shear-free flows) cannot be used because τ xy

passes through a maximum and then decreases, which leads
to abnormally high values of extrudate swell. The viscosity
can be described by the following expression (Crochet and
Bezy, 1979):

η = η1

1 + ξ (2 − ξ )(λγ̇ )2 + η2 (3.152)
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TABLE 3.4 Predicted Values of N1, N1/2τ yx, and Extrudate Swell (Hp/H0) for LDPE (NPE 953)
at 170 ◦C Using the Phan-Thien–Tanner Model

γ̇ (s−1) τ yx (Pa) N1 (Pa) N1/2τ yx Hp/Ha
0

0.1 1.74E + 03 1.90E + 03 0.55 1.12
1.0 7.50E + 03 2.09E + 03 1.40 1.22

10.0 2.77E + 04 8.69E + 04 1.57 1.24
100.0 1.90E + 05 8.73E + 04 0.23 1.10
553.0 1.98E + 05 8.73E + 04 0.22 1.10

η = 17,753 Pa·s, η2 = 1975 Pa·s, λ = 5.475, and ξ = 0.0379.
aNote: Calculated using Eq. 3.89.

where η2 is a high shear rate limit viscosity. The addition
of η2 makes τ xy increase monotonically with γ̇ . By using
nonlinear regression (Example 3.3) the following parameters
were obtained:

η1 = 17,753 Pa · s, η2 = 1975 Pa · s, ξ = 0.0379, λ = 5.47 s

Values of N1/2τ yx and Hp/Ho are calculated and listed in
Table 3.4, but they are unreasonably low at high shear rates.
This is due to the predictions of the PTT model at high shear
rates when only a single relaxation time is used. Hence, the
PTT model does not allow us to properly estimate thickness
swell.

One would like to go directly to experimental data, but val-
ues of N1 are usually not available at values of γ̇ greater than
10 s−1. Hence, we use the approximation given in Eq. 3.118
along with dynamic mechanical data given in Appendix A.1,
Table A.2. Estimated values of N1 presented in Table 3.5 are
used to calculate values of N1/2τ yx and Hp/Ho. These values
seem to be more realistic and in-line with present knowledge.
However, values of Hp/Ho at shear rates higher than 100 s−1

are not available. To obtain these values, one can only extrap-
olate values of N1/2τ yx versus γ̇ to higher shear rates. In fact,
values of N1 versus τ xy are plotted in Figure 3.34, and it is
observed that on a plot of ln N1 versus ln τ xy the relation is
linear. Hence, we fit a function of the form N1 = Aτ b

xy to the
data.

Finally, one other approach is to use the White–Metzner
model (see Table 3.1), as at least the viscosity function can be
fit to the viscosity data (parameters for the Carreau viscosity
model are found using nonlinear regression and are η0 =
23,000 Pa·s, n = 0.587, and λ = 19.7 s). Values of N1 cannot

TABLE 3.5 Experimental Values of N1 and N1/2τ yx for
LDPE and Calculated Values of Hp/H0 (Eq. 3.51)

γ̇ (s−1) τ yx (Pa) N1 (Pa) N1 (Pa) N1/2τ yx Hp/Ho

0.1 6.9E + 02 1.48E + 03 1.32E + 03 1.07 1.18
1.0 6.35E + 03 1.32E + 04 1.084E + 04 0.85 1.15

10.0 2.11E + 04 8.66E + 04 5.40E + 04 1.28 1.20
100.0 5.65E + 04 1.875E + 05 1.66 1.26
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FIGURE 3.34 N1 versus τ xy for LDPE (NPE 953) at 170 ◦C: (◦)
measured values of N1; (�) estimated values of N1 from Eq. 3.118
and values of G′ and G′′.

be predicted directly from η but the modulus, G, is required.
G is determined usually at each γ̇ by fitting the predictions
for N1 ( = 2 η2/G) to data. For γ̇ greater than 100 s−1 this
data is not available, and hence we use G determined at
100 s−1 for predicting values of N1 at higher shear rates. As
shown in Table 3.6, the values of N1/2τ yx increase at least

TABLE 3.6 Predicted Values of N1, N1/2τ yx, and
Thickness Swell (Hp/Ho) for LDPE (NPE 953) Using the
White–Metzner Model

(s−1) τ xy (Pa) N1 (Pa)∗ N1/2τ yx Hp/Ho

0.1 1.66E + 03 1.45E + 03 0.44 1.12
1.0 6.71E + 03 1.08E + 04 0.80 1.15

10.0 2.59E + 04 5.40E + 04 1.04 1.18
100.0 1.00E + 05 1.88E + 05 0.94 1.16
553.0 2.74E + 05 1.40E + 06 2.6 1.37

∗N1 calculated from Eq. 3.148 and dynamic oscillatory shear data.
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monotonically with increasing τ xy, but they are lower than
values based on experimental results.

We are now in position to estimate the diameter and gap
of the die. First we observe that Ho and Do are a function
of shear rate and hence the die dimensions will change with
changes in the mass throughput. Based on the information
given in the problem, our limits are the extruder output or the
onset of melt fracture, which occurs at a wall shear stress of
1.13 × 105 Pa for LDPE. Based on the results in Table 3.6
(note that we arbitrarily choose the experimental data over
the estimated values given in Table 3.6), then we predict the
following dimensions:

Ho = Hp/1.317 = 0.429 cm

Do = Dp/1.317 = 4.655 cm

Using these dimensions and the wall shear stress of
1.13 × 105 Pa, the mass flow rate is found using the appro-
priate expression for the power-law case in Table 2.5:

ρQ = ρ W0 H 2
0

2(s + 2)

(τw

m

)s
= 772(4.29 × 10−3 )2(0.1327)

2(3.704)

×
(

1.13 × 105

5.17 × 103

)1.704

= 4.88 × 10−2 kg/s

= 3.87 × 102 lb/ hr (3.153)

Here we have used m = 5.17 × 103 Pa·sn and n = 0.587,
which were obtained by fitting the power-law expressions
to viscosity data using nonlinear regression. The value of
ρQ exceeds that which is possible with the given extruder.
Hence, it is necessary to recalculate the die dimensions using
the maximum flow rate of 300 lb/h. From the expression for
ρQ (Eq. 3.120 above or Table 2.4), τw at ρQ = 300 lb/h is
calculated:

τw = m

[
2ρQ(s + 2)

ρ W0 H 2
0

]n

= (5.17 × 103)

[
(2)(3.78 × 10−2)(3.704)

(772)(0.1327)(4.29 × 10−3 )2

]0.587

= 9.735 × 104 Pa (3.154)

Using the relation N1 = Aτ b
xy with A = 0.119 and b = 1.304

(these values were obtained by regression analysis of data
plotted in Fig. 3.34), we calculate N1 to be 3.8 × 105 Pa.
Using Eq. 3.89 we calculate the thickness and diameter swell
to be

Hp/Ho = 1.294 Dp/Do = 1.294

Using the required extrudate dimensions Ho = 0.436 cm
and Do = 4.737 cm and the expression for ρQ (Eq. 3.153),
we calculate ρQ to be 315.9 lb/h. This still exceeds the max-
imum flow rate possible, and hence we repeat the above
process. τw is recalculated and found to be 9.45 × 104 Pa.
N1 is estimated to be 3.66 × 105 Pa. The new dimensions
based on an extrudate swell of 1.292 are Ho = 0.437 cm and
Do = 4.743 cm. The mass flow rate for these conditions is
302 lb/h. Another iteration of this process would be required
to determine the exact dimensions. However, one is now
close enough, for all practical considerations, to the final die
dimensions.

Before leaving Design Problem II a few additional com-
ments are required. The die design typically used is more
similar to that shown in Design Problem I. For this type of
die the flow is more complex than just shear flow and hence
extrudate swell will be different from what is expected. Extru-
date swell, which is described in Chapter 7, is a complex
function of several variables and not just N1/2τ yx. Further-
more, there is not always a simple relation between capillary
swell, thickness swell, and diameter swell. The approach we
have used in solving Design Problem II is at best a crude
approximation.

PROBLEMS

A. Applications

3A.1 Viscosity from the Melt Flow Index for LDPE. The
melt flow index (MFI) is in essence a single point
viscosity used by industry to characterize a polymer
within a family of resins. Most resins are bought and
sold based on the MFI. The device used to measure
the MFI, which is shown in Figure 3.35, is basically a
capillary rheometer in which a known force is applied
to the polymer melt and the mass of polymer leaving
the capillary of known dimensions is measured over a
10 min period. Determine the viscosity and wall shear
rate corresponding to a 2.0 MFI LDPE (NPE 953) at
190 ◦C. The following information is given:

2.0 MFI = 2.0 g/10 min; D = 2.095 mm; L =
8.00 mm

weight = 2.16 kg; reservoir diameter = 9.53 mm;
ρ = 820 kg/m3

Hint: The data in Appendix A.1.2 could be useful.

3A.2 Increase in Wire Coating Thickness Due to Extrudate
Swell. LDPE (NPE 953) melt at 170 ◦C is used to
coat a wire as shown in Figure 2.10. Given that R =
5.0E−03 m, κ = 0.85, and the wire speed V, = 15
m/min, calculate the thickness of the coating at the
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FIGURE 3.35 Melt index (MI) device.

die exit taking into account extrudate swell. List any
assumptions you make.

3A.3 Viscosity from Capillary Rheometer Data for LLDPE.
From values of the apparent wall shear stress, τ a, and
the apparent wall shear rate, γ̇ a, given in Appendix
A.3.3 calculate the viscosity as a function of shear
rate and compare your results to those which can be
obtained directly from the data in Appendix A.3.3
(i.e., τ c and γ̇ c where τ c and γ c are the corrected wall
shear stress and rates, respectively). In particular, use
the values of τ a at each L/D to obtain �Pent at each
shear rate. Correct the values of �Ptot to obtain τw.
Determine γ̇ w by correcting γ̇ a for the nonparabolic
velocity profile using Eq. 3.3-7.

3A.4 Estimate the Primary Normal Stress Difference from
Dynamic Data. Use Eq. 3.148 and the dynamic oscil-
latory data given in Appendix A.3, Table A.8 to esti-
mate N1 for LLDPE at 170 ◦C. Compare your values
with those given in Appendix A.3, Table A.7.

3A.5 Estimate Extensional Viscosity from Capillary
Rheometer Data

(a) Use Eq. 3.138 and capillary rheometer data given
in Appendix A.1, Table A.3 for LDPE and in
Appendix A.3, Table A.9 for LLDPE to calculate

the extensional viscosity as a function of exten-
sion rate.

(b) Normalize the values of γ̇ by dividing them by
η0 and compare the normalized values for the
two polymers. Is there any significant difference
between the values for the two polymers?

B. Principles

3B.1 Corrected Wall Shear Rate in a Capillary (No-Slip
Case). The wall shear rate for a Newtonian fluid is
given by 4Q/πR3, which is called the apparent shear
rate, γ̇ a, for a polymeric fluid. Because of the shear-
thinning viscosity exhibited by a polymeric fluid,γ̇ a

does not represent the wall shear rate,γ̇ w, for a poly-
meric fluid. A correction procedure is needed which
allows one to determine γ̇ w without any knowledge
of the viscosity of the fluid.

(a) Show that if there is no slip of the fluid at the
capillary walls then the integral for the volume
rate of flow may be integrated by parts to give

Q = −π
∫ R

0

dvz

dr
r2 dr (3.155)

(b) Introduce the change of variable r/R = τ rz/τR

(where τR = (P0 - PL)R/R2L is the wall shear
stress) and rewrite the integral in part (a) in terms
of the integration variable τ rz.

(c) Differentiate the integral obtained in part (b) with
respect to τR to obtain the following equation:

(
−dvz

dr

)
r=R

= 1

π R3 τ 2
R

d

dτR
(τ 3

R Q) (3.156)

(d) Show how to obtain Eq. 3.128 in the text from
Eq. 3.155.

3B.2 Wall Shear Rate in a Capillary with Slip. Very vis-
cous polymeric materials such as rubber, highly filled
polymers, and polymers containing processing aids
do not readily adhere to the walls of a capillary, lead-
ing to slip.

(a) Assuming the slip velocity is vs (and is indepen-
dent of τR) show that the integral for the vol-
ume rate of flow may be integrated by parts to
give:

Q = πR2vs − π
∫ R

0

dvz

dr
r2dr
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FIGURE 3.36 Lubricated squeezing flow between two parallel disks. The figure at the left shows
the initial configuration while the figure at the right shows the material at some other time t > t0.
(Reprinted by permission of the publisher from Soskey and Winter, 1985.)

(b) Introduce a change of variable as in part (b) of
Problem 3B.1 and rewrite the integral in part (a)
in terms of the variable τ rz.

(c) Differentiate the integral in part (b) with respect
to τR to obtain the following equation:

− γ̇ w = (γ̇ a /4)[3 + d ln γ̇ a /d ln τR] − 3 vs /R

(3.157)

(d) Explain how you would use Eq. 3.157 to obtain vs.

3B.3 Squeezing Flow Between Lubricated Disks. Biaxial
stretching flow can be generated in lubricated squeez-
ing flow which is shown in Figure 3.36. A thin layer
of lubricant applied to the upper and lower disks pre-
vents the fluid from sticking to the plates.

(a) Assuming that the squeezing rate, ε̇, is constant
throughout the gap, use the equation of continuity
to show that the velocity field is

vz = −ε̇z vr = 1
2 ε̇r

(b) How must the gap, H(t), change with time to make
ε̇ constant?

(c) Determine the components of the rate of defor-
mation tensor for this flow.

(d) Which components of stress exist for any fluid?

(e) Find η1 and η2 for a Newtonian fluid. In particu-
lar, show that η1 = 6 η0 (η1 is called the biaxial
extensional viscosity in this case).

(f) Show that the normal stress difference is related
to the force F by the following expression:

τzz − τrr = F(t)

π[R(t) ]2

3B.4 Tangential Annular Flow for a Polymeric Liquid.
Tangential annular flow was analyzed in Problem
2B.6 for a power-law fluid. Carry out a similar anal-
ysis for a viscoelastic fluid.

(a) Show that the components of the equation of
motion are

∂

∂r
(r2 τrθ ) = 0 (3.158)

−ρ v2
θ

r
= −∂p

∂r
− 1

r

∂

∂r
(r τrr) + τθθ

r
(3.159)

(b) What is the relation between torque, T, and τ rθ?

(c) Use Eq. 3.159 to show how one can obtain the
primary normal stress difference.

3B.5 Steady Shear Material Functions for the Giesekus
Model. The Giesekus model (Giesekus, 1982) is a
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nonlinear constitutive equation with a quasimolecular
basis, which is written as

τ + λ�1τ −a
λ1

η0
{τ · τ } − a λ2 {γ̇ · τ + τ · γ̇ }

= − η0

[
γ̇ + λ�γ − a

λ2
2

λ1
{γ̇ · γ̇ }

]
(3.160)

The model contains four parameters: α, λ1, λ2, and
η0 and a = α/(1 − λ2/λ1). The model is capable of
describing many of the observed rheological proper-
ties of polymeric fluids. Show that the steady shear
material functions are

η

η0
= λ2

λ1
+
(

1 − λ2

λ1

)
(1 − f )2

1 + (1 − 2α) f
(3.161)

�1

2 η0(λ1 − λ2)
= f (1 − α f )

(λ1 γ̇ )2 α(1 − f )
(3.162)

�2

η0(λ1 − λ2)
= − f

(λ1 γ̇ )2 (3.163)

where

f = 1 − χ

1 + (1 − 2x )χ
;

χ2 = (1 + 16α(1 − α)(λ1 γ̇ )2 )1/2 −1

8α(1 − α)(λ1 γ̇ )2

3B.6 Steady Elongational Flow for the Giesekus Model.
Show that in steady elongational flow the extensional
viscosity for the Giesekus model is given by

η

3 η0
= λ2

λ1

+
(

1 − λ2

λ1

)
1

6α

[
3 + 1

λ1 ε̇
{[1 − 4(1 − 2α) λ1 ε̇

+ 4 λ2
1 ε̇

2 ]1/2 −[1 + 2(1 − 2α) λ1 ε̇ + λ
2
1 ε̇

2 ]1/2}
]

(3.164)

3B.7 Predictions of Fiber Orientation in the Startup of
Shear-Free Flow. From Eq. 3.101 obtain the sys-
tem of ordinary differential equations for determin-
ing the components of the orientation tensor, A, at
the start of shear-free flow and under steady state
conditions. In particular, find the equations for deter-
mining A11, A22, and A33. The initial orientation of the
fibers is taken as random which means A11 = A22 =
A33 = 1/3.

TABLE 3.7 Pom-Pom Constitutive Equation for Branched
Polymers

Stress σ =∑
i
σi = 3

∑
i

giλ
2
i Si (1)

Orientation Si = Ai

tr Ai
(2a)

D

Dt
Ai = K · Ai + Ai · KT − 1

τbi
(Ai − I) (2b)

Stretch
D

Dt
λi = λi (K : Si ) − 1

τsi
(λi − 1)ev∗

i (λi −1) (3)

Source:McLeish and Larson, 1998.

3B.8 Predictions of the McLeish–Larson Constitutive
Equation for Branched Polymers (McLeish and
Larson, 1998). The stress tensor for a branched poly-
mer, which is given in Table 3.7, is a function of
the dynamic variable S, which describes the aver-
age backbone orientation, and λ, which describes the
average backbone stretch. The model described in
the table is written for multiple relaxation modes and
represents the simplest model for a branched polymer.
Dynamic expressions for S and λ for each relaxation
mode are given in Eqs. 2 and 3 in Table 3.7. τ bi is the
ith mode of the backbone relaxation time and τ si is
the backbone stretch orientation time. ν∗ is taken as
2/q, where q is the number of branch arms associated
with a given τ s.

(a) For small strain oscillatory shear flow write out
the expression for G′ and G′′.

(b) Write out the expressions for η+ and N+
1 at the

startup of shear flow.

(c) Write out the expression for extensional viscosity
for the startup of uniaxial extensional flow.

C. Numerical Problems

3C.1 Steady Extensional Viscosity for the Phan-Thien–
Tanner Model. Two nonlinear algebraic equations
must be solved as shown in Table 3.1 to determine
η for the PTT model. Using the values of η0 = 17,753
Pa·s and λ = 5.47 s for LDPE at 170 ◦C, determine η
at ε̇ = 0.01, 0.1, 1, 10, and 100 s−1 for values of ε =
0.001, 0.01, and 1.0.

3C.2 Transient Extensional Stress Growth for the PTT
Model. For the startup of uniaxial extensional flow
two coupled ordinary differential equations are
obtained as shown below for the PTT model:

λ
dτ11

dt
+ exp

[
−ελ

η0
(τ11 +2 τ22)

]
τ11 −2λε̇(1 − ξ ) τ11

= −2 η0 ε̇ (3.165)
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λ
dτ22

dt
+ exp

[
−ελ

η0
(τ11 +2 τ22)

]
τ22 +λε̇(1 − ε̇) τ22

= η0 ε̇ (3.166)

Using either the IMSL subroutine IVPAG or an
ordinary differential equation solver in MATLAB,
solve these equations for τ11 and τ22 as a function
of time and calculate η as a function of time. Take
ε̇ = 0.2, ε = 0.01, and the rest of the parameters as
given in Problem 3C.1. Compare the predicted val-
ues with the experimental ones for LDPE given in
Appendix A.1, Table A.4.

3C.3 Fit of Giesekus Model to Rheological Data. The
steady shear material functions for the Giesekus
model are given in Problem 3B.5. Find the parame-
ters in this model which give the best fit of the steady
shear and dynamic oscillatory data at 170 ◦C given
for LDPE in Appendix A.1, Tables A.1 and A.2.

3C.4 Regression Analysis of Capillary Rheometer Mea-
surements. Capillary rheometer data are given for
LDPE in Appendix A.1, Table A.1. Using the appar-
ent values of wall shear stress, τ a, and shear rate, γ̇ a,
for three different L/D capillaries determine �Pent.
Use these values to find the corrected values of the
wall shear stress. Correct the apparent wall shear
rate values. Compare your values with those given
in Appendix A.1, Table A.3. Use the linear regression
analysis subroutine, RCURV (in SSTAT2B.LIB), or
MATLAB to determine values of �Pent.

3C.5 Numerical Solution of Example 3.4. Solve the system
of equations given in Example 3.4 using either one of
the ordinary differential equation solvers in MATLAB
or IVPAG in the IMSL subroutines. Assume initially
that the rods are randomly oriented.

3C.6 Fiber Orientation at the Startup of Shear-Free Flow.
Solve the system of ordinary differential equations
developed in Problem 3B.7 for the case of equibiaxial
extensional flow (i.e., b = 0 and ε̇ = −1.0) Take α =
0.3 and CI = 0.002. Use either one of the ordinary
differential equation solvers in MATLAB or IVPAG
in the IMSL subroutines.

3C.7 Branching Frequency of Two Sparsely Branched
LLDPEs

(a) Two commercial LLDPEs are believed to contain
sparse long chain branching, LCB. Their Mw and
η0 values are given, respectively, below:

Dow Affinity PL 1840: 87,900 g/gmol and
46,800 Pa·s (at 150 ◦C)

Dow Affinity PL 1880: 116,400 g/gmol and
45,370 Pa·s (at 150 ◦C)

Using Eqs. 3.149, 3.150, and 3.151 and the param-
eters A(150 ◦C) = 5.22 × 10−6 (Pa·s mol/g), B =
6.0, M0(repeat unit MW) = 14.027 g/mol, Mc =
2100 g/mol, and MKuhn 145.9 g/mol, find α, the
branching frequency (i.e., the fraction of carbon
atoms containing LCBs.

(b) Determine α for making η0 a maximum and con-
vert this to the number of branches per molecule
for PL 1840.

D. Design Problems

3D.1 Slit-Die Rheometer Design for a Viscoelastic Fluid.
Design a slit-die rheometer for measuring the viscos-
ity and N1 for HDPE (rheological data are given in
Appendix A.2, Tables A.5 and A.6) for shear rates
from 1.0 to 100 s−1 at 170 ◦C. Pressure transducers
having full pressure ranges of 500, 1000, and 3000
psi are available. If the pressure transducers are cali-
brated in the die, then pressures can be measured as
accurately as 1.0% of the reading. The extruder and
gear pump system used to feed the die can provide up
to 25.0 kg/h. In your design specify the placement of
the transducers and the dimensions of the die.

3D.2 Design of a Parison Stretching Process. A parison
of LDPE (NPE 953 at 170 ◦C) having an outside
diameter of 0.127 m, thickness of 3.81 × 10−4 m,
and length of 0.615 m is stretched to twice its original
length before being blown. The end of the parison is
stretched to its final length in 1.0 s by pulling on the
end of the parison at a constant velocity. Determine the
maximum force required to stretch the parison under
the conditions given and the minimum clamping force
required to hold the parison if the friction coefficient
between the grips and the polymer is 0.3.
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4
DIFFUSION AND MASS TRANSFER

DESIGN PROBLEM III
DESIGN OF A DRY-SPINNING SYSTEM

One of the production methods for fiber formation includes
the evaporation of a solvent from the spinning line and the
resulting solidification of the fiber. This method is called
dry spinning (Ohzawa et al., 1969; Ziabicki, 1976), and it
finds application to polymers that do not form thermally sta-
ble and viscous melts. These polymers are dissolved in low-
molecular-weight volatile solvents (ether, acetone, dimethyl-
formamide, alcohols, etc.). The method consists of extruding
the polymer solution into a vertical cell of jets. These jets
after leaving the spinneret come into contact with hot air,
Figure 4.21 (p. 100), in which the solvent evaporates; and
thus the concentration of the polymer increases and the spin-
ning line solidifies.

Consider the system of polyacrylonitrile (PAN) and
dimethylformamide (DMF). This solution is fed into the dry-
spinning apparatus (Fig. 4.21), and the solvent DMF evapo-
rates into the hot air. Three mechanisms account for the mass
transfer of the solvent to the air: flash vaporization, diffusion
within the spinning line, and convective mass transfer from
the spinning line surface to the air. It is expected that the first
and third mechanisms are important in the region close to
the spinneret. Analyze the region where the diffusion within
the spinning line is the controlling mass transfer mechanism,
and calculate the axial distance the fiber travels before all the
solvent is removed. For the system of PAN–DMF the follow-
ing data are given (Ohzawa and Nagano, 1970): dope output
ṁP = 2.0 × 10−2 g/s; dope solvent mass fractionωAd = 0.74;

dope temperature Td = 100 ◦C; air temperature T∞ = 200 ◦C;
velocity of cross air flow VC∞ = 2 m/s; velocity of parallel air
flow VP∞ = 50 cm/s; solvent mole fraction in the air xA∞ =
0; diffusivity of DMF in PAN in cm2/s, –DAP = 9.03 × 10−4

exp[−2360/T]; dope cross-sectional area = 0.001 cm2; and
final cross-sectional area = 1.56 × 10−5 cm2.

The mass transfer coefficients for parallel and cross air
flow, respectively, are given below:

kc,P = 0.26

[
–DAair

(
μ

ρ

)−1/3
](

Sc

Pr

)1/2

R(z)−2/3V 1/3
P∞

kc,C = 0.52

[
–DAair

(
μ

ρ

)−1/3
](

Sc

Pr

)1/2

R(z)−2/3V 1/3
C∞

where Sc and Pr are the Schmidt and Prandtl numbers, respec-
tively, and R(z) is the radius of the spinning line at every z
distance. For DMF in air and for the conditions previously
described, Sc = 1.81 and Pr = 0.69.

Chapters 2 and 3 dealt with momentum transfer and rheo-
logical equations of state and their applications to polymer
processing. In this chapter and the next one we are concerned
with the other two transfers: mass and heat. A substantial
number of polymer processes involve changes of composi-
tion of the component materials through mass diffusion and
convection methods. In many cases these changes of com-
position do not necessarily involve chemical reactions. We
describe some of these polymer processes below.
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Mass transfer operations can be found in a number of
polymer processing operations. For example, in the dry spin-
ning of polymer solutions to form fibers we find operations,
such as diffusion of the solvent within the filaments and con-
vective mass transfer from the filament surfaces to a flowing
gas. In the wet spinning of polymer solutions, the viscous
polymer solution is extruded through a spinneret submerged
in a bath of a nonsolvent. As the filament passes through
the bath of liquid, the nonsolvent diffuses into the filament,
while the solvent diffuses out. As a result, the fiber is solid-
ified. Foaming of polymer materials in an extruder involves
the diffusion of the physical blowing agent to the nucleation
sites and subsequent growth of gas bubbles. The formation of
a microfoam, that is, a foam with a final bubble size of about
10 μm and less, is controlled by the diffusional aspects of
the blowing agent (usually nitrogen or carbon dioxide gas).
Drying of polymer pellets before processing is an exam-
ple of the use of mass transfer in preprocessing stages. The
presence of extensive moisture in the pellets can render the
final product unacceptable. The size of the dispersed phase
in a polymer blend and consequently its mechanical proper-
ties are controlled by the mutual diffusivity and time of the
mixing step. Finally, mass transfer occurs in the removal of
volatiles from polymers inside an extruder (this process is
called devolatilization), where residual monomers or volatile
fluids diffuse out of the polymer.

In addition to polymer processing operations, mass trans-
fer is involved in many applications of polymers. For exam-
ple, successful packaging of food and beverages is made
possible through the use of barrier polymers, which impede
the diffusion of gases, such as oxygen and carbon dioxide,
as well as flavors, aroma, and odors. Plastic fuel tanks are
made possible by exploiting the barrier properties of some
polymers to hydrocarbons. Similarly, drug packages contain
layers of various polymers that can provide a controlled drug
release. Welding and crack healing of polymers can be mod-
eled as a diffusional process.

We do not intend in this chapter to present an extensive
analysis of mass transfer concepts but, rather, to summarize
the basics of mass transfer as required in the design and
analysis of polymer processing operations. In this regard,
we give only an extensive overview of the estimation tech-
niques for the diffusivity, solubility, and permeability of sol-
vents in polymers. The laws of diffusional mass transfer, as
well as the relationships for convective mass transfer, remain
the same as applied to any material. The books by Perry
and Chilton (1973), Reid et al. (1977), and Brandrup and
Immergut (1989) provide an extensive overview of experi-
mental data and formulas for the calculation of diffusivity,
solubility, and permeability of various polymer systems.

This chapter is organized as follows. In Section 4.1 we
describe the fundamentals of mass transfer, such as the vari-
ous definitions for concentrations and velocities, Fick’s first
law of diffusion, and the microscopic mass balance principle.

In this section the analogy between heat and mass transfer is
introduced and used to solve problems. The specific estima-
tion relationships for permeants in polymers are discussed in
Section 4.2 with the emphasis placed on gas–polymer sys-
tems. This section provides the necessary formulas for a first
approximation of the diffusivity, solubility, and permeabil-
ity, and their dependence on temperature. Non-Fickian trans-
port, which is frequently present in high activity permeants
in glassy polymers, is introduced in Section 4.3. Convective
mass transfer coefficients are discussed in Section 4.4, and
the analogies between mass and heat transfer are used to
solve problems involving convective mass transfer. Finally,
in Section 4.5 the solution to Design Problem III is presented.

4.1 MASS TRANSFER FUNDAMENTALS

This section includes the terminology for concentrations,
velocities, and fluxes and their relationships. Although the
discussion of new physical situations is limited, knowledge
of the definitions is necessary for the next sections. Fick’s first
and second laws and the microscopic mass balance principle
are introduced. Finally, simple cases based on the analogy
between heat and mass transfer are analyzed.

4.1.1 Definitions of Concentrations and Velocities

The concentrations of the species in a multicomponent sys-
tem can be expressed in various forms. Four of these forms,
which are the most frequently used, are the following. Mass
concentration, ρi , is the mass of species i per unit volume of
the solution. Similarly, molar concentration, Ci , is the num-
ber of moles of species i per unit volume of the solution. Mass
fraction, ωi , is the mass of species i divided by the total mass
of the solution. Finally, the mole fraction, xi , is the number
of moles of species i divided by the total number of moles of
the solution. The total mass and molar concentrations are ρ

and C , respectively, so that ωi and xi are given as

ωi = ρi

ρ
and xi = Ci

C
(4.1)

Table 4.1 presents the above definitions and some of their
relations for a binary system.

The species in a diffusing mixture move with different
velocities. If vi is the velocity of the ith species with respect
to a fixed coordinate system, then the mass average bulk
velocity, v, is defined as

v ≡
∑n

i=1 ρi vi∑n
i=1 ρi

=
∑n

i=1 ρi vi

ρ
(4.2)
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TABLE 4.1 Definitions for Concentrations in Binary Systems

ρ = ρA + ρB = mass density of solution (g/cm3) (A)

ρA = CA MA = mass concentration of A (g of A/cm3 of
solution)

(B)

ωA = ρA

ρ
= mass fraction of A (C)

C = CA + CB = molar density of solution (g-moles/cm3) (D)

CA = ρA

MA
= molar concentration of A (g-moles of A/cm3

of solution)

(E)

xA = CA

C
= mole fraction of A (F)

M = ρ

C
= number-mean molecular weight of mixture (G)

xA + xB = 1 (H) ωA + ωB = 1 (I)

xA MA + xB MB = M (J)
ωA

MA
+ ωB

MB
= 1

M
(K)

xA =
ωA

MA
ωA

MA
+ ωB

MB

(L) ωA = xA MA

xA MA + xB MB
(M)

Source: Bird et al., 1960.

where n is the total number of species in the system. Simi-
larly, the molar average bulk velocity, v∗, is defined as

v∗ ≡
∑n

i=1 Ci vi∑n
i=1 Ci

=
∑n

i=1 Ci vi

C
(4.3)

Finally, the volume average bulk velocity, v•, is defined as

v• =
n∑

i=1

ρi vi
V i

Mi
(4.4)

where Vi and Mi are the molar volume and molecular weight
of component i, respectively. Note that ρv and Cv∗ represent
the local rates of mass and molar transport through planes
perpendicular to v and v∗, respectively.

The velocity of the ith species, vi , can also be written as

vi = (vi − v) + v (4.5)

This implies that the total mass flux of the ith species relative
to a fixed coordinate system consists of two fluxes: one is due
to the molecular diffusion (diffusion velocity: vi − v) and
the other is due to bulk movement (bulk velocity: v). Similar
arguments hold for the total molar and volume fluxes. This
partitioning is necessary, because interdiffusion of unequal
size molecules of two components causes bulk flow, even in
the absence of an external bulk flow. Table 4.2 summarizes
the definitions of the average velocities and their relations.
The following example (basic features of which are drawn

TABLE 4.2 Definitions for Velocities in Binary Systems

Basic Definitions
vA = velocity of species A relative to fixed coordinates (A)
vA − v = diffusion velocity of species A relative to v (B)
vA − v∗ = diffusion velocity of species A relative to v∗ (C)
vA − v• = diffusion velocity of species A relative to v• (D)
v = mass average velocity =(

1
/
ρ
)

(ρAvA + ρBvB) = ωAvA + ωBvB

(E)

v∗ = molar average velocity =(
1
/

C
)

(CAvA + CBvB) = xAvA + xBvB

(F)

v• = volume average velocity =
ρAvAV A

/
MA + ρBvBV B

/
MB

(G)

Additional Relations
v − v∗ = ωA (vA − v∗) + ωB (vB − v∗) (H)
v∗ − v = xA (vA − v) + xB (vB − v) (I)

Source: Bird et al., 1960.

from Bird et al., 1960) illustrates the meaning of the various
velocities for a binary mixture.

Example 4.1. Velocities and Their Meaning

Consider a long tube that contains liquid A and vapor B
(Fig. 4.1). The liquid starts evaporating, and it moves in the
region initially filled with B. Calculate the velocity vectors
v and vB, for xA = 1/6, v∗ = 12, vA = 15, and MA = 5MB.
How do v and vB change if MA = MB?

Solution. Figure 4.1a shows the schematic of the system. A
and B diffuse along the z axis in the positive and negative
directions, respectively. At the z position where xA = 1/6 the
velocities are found as follows:

vB = v∗ − xAvA

xB
= 57

5
(4.6)

The ratios of the component molecular weight to the
number-mean molecular weight of the mixture are

MA

M
= 3,

MB

M
= 3

5
(4.7)

and, thus, the mass average velocity v is calculated as

v = 3xAvA + 3
5 xBvB = 66

5 (4.8)

The velocity vectors for both components are shown
in Figure 4.1b. For component A, the diffusion velocity
accounts for only 12% of the velocity of that component
with respect to a fixed coordinate system with the remaining
88% being attributed to the bulk flow. The diffusion velocity
for component B is negative (about 14% of v), because it
flows in the negative z direction. v = v∗ when the molecu-
lar weights of the components are equal. In that case, the
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FIGURE 4.1 (a) Long tube for diffusion experiments. (b) Velocity vectors for the case of
MA/MB = 5. (c) Velocity vectors for the case of MA/MB = 1.

diffusion velocity for component A accounts for 20% of vA

(Fig. 4.1.c), and the diffusion velocity for component B is
negative and close to zero (about 5% of v).

4.1.2 Fluxes and Their Relationships

Once the velocities are known, the fluxes, both mass and
molar, can be evaluated. The flux is a vector quantity, and
its magnitude denotes the mass (or moles) passing through a
unit area per unit time. Depending on the velocity we choose,
we can define mass and molar fluxes relative to stationary
coordinates, relative to the mass average velocity, v, and
relative to the molar average velocity,v∗. Thus, the mass and
molar fluxes relative to fixed coordinates are defined as

ni = ρi vi mass

Ni = Ci vi molar
(4.9)

Similarly, the fluxes with respect to the mass average velocity,
v, are defined as

ji = ρi (vi − v) mass

Ji = Ci (vi − v) molar
(4.10)

and the fluxes with respect to the molar average velocity are
defined as

j∗i = ρi (vi − v∗) mass

J∗
i = Ci (vi − v∗) molar

(4.11)

The mass and molar fluxes with respect to the volume
average velocity v• can be formulated similarly, but their uses
are limited, and thus we omit them. Table 4.3 summarizes the
various definitions and relations for the mass and molar fluxes
of a binary system. The most frequently used definitions are
those of molar fluxes Ni and J∗

i , and mass flux ji . Actually,
Ni is used in engineering applications, because it offers the
advantage of a fixed coordinate system, whereas the fluxes
ji and J∗

i are the usual measures of diffusion rates. Both
definitions will be used in the subsequent analysis of mass
transfer.

4.1.3 Fick’s First Law of Diffusion

In analogy with momentum and heat transfer, mass transfer
is governed by a simple law of diffusion, Fick’s first law.
This law states that component A moves relative to the bulk
motion (diffuses) in the direction of decreasing mole fraction
of A:

J∗
A = −–DAB∇CA (4.12)

where –DAB is the mutual diffusion coefficient or mass diffusiv-
ity or interdiffusion coefficient or simply diffusion coefficient
in the binary system of A and B. Note that in a binary system
–DAB = –DBA.

Table 4.4 summarizes some of the different expressions
for Fick’s first law. In principle, any of these expressions can
be used to solve a diffusion problem, but the right choice
of the expression helps in reducing the mathematical com-
plexities involved. The right choice depends on the specific
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TABLE 4.3 Mass and Molar Fluxes in Binary Systems

With Respect to
Quantity Stationary Axes With Respect to v With Respect to v∗

Basic Definitions
Velocity of species A

(cm/s)
vA (A) vA − v (B) vA − v∗ (C)

Mass flux of species A
(g/cm2·s)

nA = ρAvA (D) jA = ρA (vA − v) (E) j∗
A = ρA (vA − v∗) (F)

Molar flux of species A
(g-moles/cm2·s)

NA = CAvA (G) JA = CA (vA − v) (H) J∗
A = CA (vA − v∗) (I)

Relations Among the Fluxes
Sum of mass fluxes

(g/cm2·s)
nA + nB = ρv (J) jA + jB = 0 (K) j∗

A + j∗B = ρ (v − v∗) (L)

Sum of molar fluxes
(g-moles/cm2·s)

NA + NB = Cv∗ (M) JA + JB = C (v∗ − v) (N) J∗
A + J∗

B = 0 (O)

Fluxes in terms of
nA and nB

NA = nA

MA
(P) jA = nA − ωA (nA + nB) (Q) j∗A = nA − xA

(
nA + MA

MB
nB

)
(R)

Fluxes in terms of
NA and NB

nA = NA MA (S) JA = NA − ωA

(
NA + MB

MA
NB

)
(T) J∗

A = NA − xA (NA + NB) (U)

Fluxes in terms of
jA and v

nA = jA + ρAv (V) JA = jA

MA
(W) j∗A = M

MB
jA (X)

Fluxes in terms of
J∗

A and v∗
NA = J∗

A + CAv∗ (Y) JA = MB

M
J∗

A (Z) j∗A = J∗
A MA (AA)

Source: Reprinted by permission of the publisher from Bird et al., 1960.

problem. One of the most frequently used expressions relates
the molar flux to the mole fraction of component A as follows
(see also Problem 4A.1):

NA = xA (NA + NB) − C–DAB∇xA (4.13)

This equation shows that the molar flux of one component is
the sum of two contributions: one from the bulk motion of
the fluid and the other from the molar flux of the component
due to diffusion.

The equations for mass, heat, and momentum transfer,
that is, Eqs. 4.12, 5.18 and 2.3, are analogous. All state that

TABLE 4.4 Forms of Fick’s First Law of Diffusion in
Binary Systems

Flux Gradient Form of Fick’s First Law

nA ∇ωA nA − ωA (nA + nB) = −ρ–DAB∇ωA (A)

NA ∇xA NA − xA (NA + NB) = −C–DAB∇xA (B)

jA ∇ωA jA = −ρ–DAB∇ωA (C)

J∗
A ∇xA J∗

A = −C–DAB∇xA (D)

jA ∇xA jA = −
(

C2

ρ

)
MA MB–DAB∇xA (E)

J∗
A ∇ωA J∗

A = −
(

ρ2

C MA MB

)
–DAB∇ωA (F)

Source: Bird et al., 1960.

mass, energy, and momentum are transferred because of a
gradient in concentration, temperature, and velocity, respec-
tively. Also, the proportionality constants in all these equa-
tions (mass and thermal diffusivity and kinematic viscosity)
have the same dimensions of length2/time. These analogies
break down in two- and three-dimensional problems, because
stress is a tensorial quantity, whereas heat and mass (or molar)
fluxes are vectors.

Example 4.2. Mass Flux in a Polymer
Membrane-Penetrant System

Calculate the mass flux of a penetrant diffusing through a
polymer membrane as a function of the penetrant mass frac-
tion. Start with the definition of the mass flux with respect to
the mass average velocity.

Solution. For the binary system of the polymer membrane
(P) and the diffusing species (A) Eq. 4.10 yields

jA = ρA (vA − v) = ρAvA − ρA

ρ
(ρAvA + ρPvP) (4.14)

The velocity of the membrane with respect to a fixed refer-
ence system, vP, is zero. Hence,

jA = nA − ωAnA = −ρ–DAB∇ωA (4.15)
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FIGURE 4.2 Differential volume element for the microscopic
material balance.

and thus,

nA = −ρ–DAB

1 − ωA
∇ωA (4.16)

In typical polymer membrane–gas systems, the term
1
/

(1 − ωA) is approximately equal to 1, so that Eq. 4.16 is
further simplified. However, in polymer membrane–solvent
systems, ωA can be significant, and it cannot be neglected in
Eq. 4.16.

4.1.4 Microscopic Material Balance

Microscopic material balance is based on the conservation
of mass. The law of conservation of mass for material A
flowing in and out of a differential volume element dx dy dz
(Fig. 4.2) in its rate form states that

(Rate of accumulation in the element) =
(Rate of transport into the element)

− (Rate of transport out of the element)

+ (Rate of generation in the element)

− (Rate of consumption in the element) (4.17)

This mass balance is similar to Eqs. 2.15 and 5.15, which
contain the momentum and energy balances, respectively.

The rate of generation and consumption (net rate of mass
production) of material A in Eq. 4.17 refers to chemical
reactions, and it will be denoted as ṙA (dimensions:
mass/volume-time). If we consider that the volume element

of Figure 4.2 is fixed in space (Eulerian approach) Eq. 4.17
can be written as

dx dy dz
∂ρA

∂t
= (nAx |x − nAx |x+dx

)
dy dz

+ (nAy|y − nAy|y+dy
)

dx dz

+ (nAz|z − nAz|z+dz
)

dx dy + ṙAdx dy dz (4.18)

Dividing this equation by dx dy dz and shrinking the differ-
ential volume to zero, we get the microscopic mass balance
(or continuity) equation as follows:

∂ρA

∂t
+ ∂nAx

∂x
+ ∂nAy

∂y
+ ∂nAz

∂z
− ṙA = 0 (4.19)

or in vector notation,

∂ρA

∂t
+ ∇ · nA − ṙA = 0 (4.20)

Obviously, a similar expression holds for every component
i of a multicomponent system. Table 4.5 summarizes the
continuity equations in terms of mass fluxes for component
A in rectangular, cylindrical, and spherical coordinates. In
terms of molar fluxes, Eq. 4.20 becomes

∂CA

∂t
+ ∇ · NA − ṘA = 0 (4.21)

where ṘA is the net molar production of component A in
mol/volume-time. Table 4.6 summarizes the continuity equa-
tions in terms of molar fluxes for component A in rectangular,
cylindrical, and spherical coordinates.

By summing all the continuity equations for each com-
ponent i and noting that the sum of all net mass productions
due to reaction,

∑
ṙi , is equal to zero, we get

∂ρ

∂t
+ ∇ · (ρv) = 0 (4.22)

where use of Table 4.3 was made. This is the continuity
equation for the mixture. For a fluid mixture with constant
density we note that Eq. 4.22 becomes

∇ · v = 0 (4.23)

which is the familiar continuity equation for incompressible
flow (e.g., Eq. 2.58 or Table 2.8). If we use molar fluxes in
place of mass fluxes, the equivalent continuity equation for
the mixture becomes

∂C

∂t
+ ∇ · (Cv∗)−

n∑
i=1

Ṙi = 0 (4.24)

Note that, in general, the sum of the rates of molar produc-
tions by chemical reactions cannot be set equal to zero unless
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TABLE 4.5 Forms of Continuity Equation of Species A with Mass Fluxes (No Chemical Reactions)

A. Continuity Equation of Species A in Various Coordinate Systems

Rectangular coordinates:
∂ρA

∂t
+
(
∂nAx

∂x
+ ∂nAy

∂y
+ ∂nAz

∂z

)
= 0 (A)

Cylindrical coordinates:
∂ρA

∂t
+
(

1

r

∂(rnAr )

∂r
+ 1

r

∂nAθ

∂θ
+ ∂nAz

∂z

)
= 0 (B)

Spherical coordinates:
∂ρA

∂t
+
(

1

r 2

∂(r2nAr )

∂r
+ 1

r sin θ

∂(nAθ sin θ )

∂θ
+ 1

r sin θ

∂nAφ

∂φ

)
= 0 (C)

B. Continuity Equation of Species A for Constant ρ and –DAB

Rectangular coordinates:

∂ρA

∂t
+
(

vx
∂ρA

∂x
+ vy

∂ρA

∂y
+ vz

∂ρA

∂z

)
= –DAB

(
∂2ρA

∂x2
+ ∂2ρA

∂y2
+ ∂2ρA

∂z2

)
(D)

Cylindrical coordinates:

∂ρA

∂t
+
(

vr
∂ρA

∂r
+ vθ

1

r

∂ρA

∂θ
+ vz

∂ρA

∂z

)
= –DAB

(
1

r

∂

∂r

(
r
∂ρA

∂r

)
+ 1

r 2

∂2ρA

∂θ 2
+ ∂2ρA

∂z2

)
(E)

Spherical coordinates:
∂ρA

∂t
+
(

vr
∂ρA

∂r
+ vθ

1

r

∂ρA

∂θ
+ vφ

1

r sin θ

∂ρA

∂φ

)

= –DAB

(
1

r 2

∂

∂r

(
r 2 ∂ρA

∂r

)
+ 1

r 2 sin θ

∂

∂θ

(
sin θ

∂ρA

∂θ

)
+ 1

r 2sin2θ

∂2ρA

∂φ2

) (F)

TABLE 4.6 Forms of Continuity Equation of Species A with Molar Fluxes (No Chemical Reactions)

A. Molar Flux of Species A in Various Coordinate Systems

Rectangular coordinates:
∂CA

∂t
+
(
∂NAx

∂x
+ ∂NAy

∂y
+ ∂NAz

∂z

)
= 0 (A)

Cylindrical coordinates:
∂CA

∂t
+
(

1

r

∂(r NAr )

∂r
+ 1

r

∂NAθ

∂θ
+ ∂NAz

∂z

)
= 0 (B)

Spherical coordinates:

∂CA

∂t
+
(

1

r 2

∂(r2 NAr )

∂r
+ 1

r sin θ

∂(NAθ sin θ )

∂θ
+ 1

r sin θ

∂NAφ

∂φ

)
= 0 (C)

B. Continuity Equation of Species A for Constant ρ and –DAB

Rectangular coordinates:

∂CA

∂t
+
(

vx
∂CA

∂x
+ vy

∂CA

∂y
+ vz

∂CA

∂z

)
= –DAB

(
∂2CA

∂x2
+ ∂2CA

∂y2
+ ∂2CA

∂z2

)
(D)

Cylindrical coordinates:

∂CA

∂t
+
(

vr
∂CA

∂r
+ vθ

1

r

∂CA

∂θ
+ vz

∂CA

∂z

)
= –DAB

(
1

r

∂

∂r

(
r
∂CA

∂r

)
+ 1

r 2

∂2CA

∂θ2
+ ∂2CA

∂z2

)
(E)

Spherical coordinates:
∂CA

∂t
+
(

vr
∂CA

∂r
+ vθ

1

r

∂CA

∂θ
+ vφ

1

r sin θ

∂CA

∂φ

)

= –DAB

(
1

r 2

∂

∂r

(
r 2 ∂CA

∂r

)
+ 1

r 2 sin θ

∂

∂θ

(
sin θ

∂CA

∂θ

)
+ 1

r 2sin2θ

∂2CA

∂φ2

) (F)
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the reaction is equimolar (i.e., for every mole of component
i consumed one mole of component j is produced, etc.). For
a fluid of constant molar density C, Eq. 4.24 yields

C∇ · v∗ =
n∑

i=1

Ṙi (4.25)

Neither form of the continuity equation for species A, that
is, Eq. 4.20 or 4.21, are very useful as they stand. They can
be written in terms of the mass and molar average velocities
by combining Eqs. 4.10, 4.11, 4.20, and 4.21 as follows:

∂ρA

∂t
+ ∇ · jA + ∇ · (ρAv) − ṙA = 0 (4.26)

and

∂CA

∂t
+ ∇ · J∗

A + ∇ · (CAv∗)− ṘA = 0 (4.27)

Combining these equations and the equations for nA and NA

from Table 4.4 we get

∂ρA

∂t
+ ∇ · (ρAv) − ∇ · (–DAB∇ρA) − ṙA = 0 (4.28)

and

∂CA

∂t
+ ∇ · (CAv∗)− ∇ · (–DAB∇CA) − ṘA = 0 (4.29)

These equations are valid for variable mass or molar den-
sity, ρ or C, and variable diffusion coefficient –DAB. Their
generality can be reduced in certain cases as is shown below.

Constant ρ and –DAB and No Chemical Reaction. For that
case, Eq. 4.28 becomes (using also the continuity Eq. 4.23)

∂ρA

∂t
+ v · ∇ρA = –DAB∇2ρA (4.30)

This equation is typically used for diffusion in dilute solu-
tions, and it is similar to equations used in momentum (Table
2.9 or Eq. 5.58) and heat transfer (Table 5.3 or Eq. 5.59).
Table 4.5 summarizes the expressions for Eq. 4.30 for the
three coordinate systems. Division of all terms of Eq. 4.30
by the molecular weight of A gives the forms of the conti-
nuity equation shown in Table 4.6. Finally, note that the left
side of Eq. 4.30 can be written as D(ρA)

/
Dt , where D

/
Dt

notes the material derivative.

Zero Mass or Molar Average Velocity and No Chemical
Reaction. For this case, Eq. 4.28 (or Eq. 4.29) becomes

∂ρA

∂t
= ∇ · (–DAB∇ρA) (4.31)

which for constant –DAB yields

∂ρA

∂t
= –DAB∇2ρA (4.32)

which is called Fick’s second law of diffusion or simply the
diffusion equation. Note again that this equation is used in
cases where v is zero (i.e., diffusion in solids or station-
ary liquids) or v∗ is zero (i.e., equimolar counterdiffusion in
gases). The similarity between Eq. 4.32 and the heat con-
duction equation is the basis for the similarity of solutions to
these equations.

4.1.5 Similarity with Heat Transfer:
Simple Applications

The majority of diffusion problems can be solved by recog-
nizing their similarity to heat transfer problems. For example,
Eqs. 4.30 and 4.32 are directly analogous to the heat trans-
fer equations, as is illustrated in Table 4.7. Note that for this
analogy to hold one should make the following substitutions:
ρA or CA in place of T and –DAB in place of α (thermal diffu-
sivity). More specifically, Figures 5.10, 5.11, 5.12, and 5.13,
which present the graphical solutions of the unsteady heat
conduction equation (see Table 4.7) for infinite slabs and
cylinders, are equally well applicable to the unsteady diffu-
sion equation (Eq. 4.32) for the same geometries and bound-
ary conditions. For example, Figures 5.10 and 5.11 can also
be considered to show the dimensionless concentration as a
function of time and relative position in a slab and a cylin-
der, respectively, when their surfaces are kept at a constant
concentration.

Furthermore, Figures 5.12 and 5.13 can also be used to
show the dimensionless concentration as a function of dimen-
sionless time and position for the case in which there is resis-
tance to mass transfer at the interface between a solid and
a fluid: −–DAB

(
∂CA

/
∂z
) = kc (CAi − CA∞), where kc is the

convective mass transfer coefficient (Section 4.4), CAi is the
concentration of species A at the interface in the fluid side,
and CA∞ is the concentration of species A in the fluid far
away from the interface. Note that the constant concentra-
tion boundary condition referred to in the previous paragraph
could be considered as a special case of the convective-type
boundary condition for a Sherwood number, Sh (or Nusselt
number for diffusion), equal to ∞. Also, in Figures 5.12 and
5.13, the Biot (or Nusselt) number for heat transfer should be
replaced by

(
kcb
/

–DAB
) (

1
/

K
) = (Sh

/
K
) = Sh′, where K

is the ratio of the equilibrium concentration in the solid to the
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TABLE 4.7 Analogy Between Heat Conduction and Mass Diffusion

Unsteady-State Nonflow Steady-State Flow Steady-State Nonflow

∂T

∂t
= α∇2T (v · ∇T ) = α∇2T ∇2T = 0

Heat conduction in solids Heat conduction in laminar
incompressible flow

Steady heat conduction in solids

1. k = constant 1. k, ρ = constants 1. k = constant
2. v = 0 2. No viscous dissipation 2. v = 0

3. Steady state 3. Steady State

∂CA

∂t
= –DAB∇2CA (v · ∇CA) = –DAB∇2CA ∇2CA = 0

Diffusion of traces of A through B Diffusion in laminar flow (dilute
solutions of A in B)

Steady diffusion in solids

1. –DAB, ρ = constants 1. –DAB, ρ = constants 1. –DAB, ρ = constants
2. v = 0 2. Steady state 2. Steady state
3. No chemical reactions 3. No chemical reactions 3. No chemical reactions

4. v = 0
OR Equimolar counterdiffusion in low-density gases
1. –DAB,C = constants
2. v∗ = 0
3. No chemical reactions

Source: Reprinted by permission of the publisher from Bird et al., 1960.

concentration in the surrounding fluid (also called partition
coefficient or equilibrium distribution coefficient; it is a form
of the Henry’s law constant of Section 4.2.1), and b is the
half-thickness of the slab.

Figures 4.3 and 4.4 show the graphical solutions of the
unsteady diffusion problem for a sphere, which is not covered
in the heat transfer Chapter 5. CA0 and CA∞ in Figure 4.3 cor-
respond to T0 and T1, respectively, in Figures 5.12 and 5.13.
Similarly, T0 in Figures 5.12 and 5.13 should be replaced by
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FIGURE 4.3 Concentration profiles for unsteady mass diffu-
sion in a sphere of radius R. CA(R, t) = CA∞; CA(r, 0) = CA0.
(Reprinted by permission of the publisher from Crank, 1956.)

CA0. Finally, in Figure 4.4, C∗
A∞, which is the concentration

of A in the solid in equilibrium with the concentration of A
in the fluid CA∞ (i.e., C∗

A∞ = K CA∞), is used in place of
CA∞.

One additional feature of mass transfer is the calculation
of the amount absorbed or desorbed at time t, Mt, and
its comparison to the total possible amount absorbed or
desorbed, M∞ (see also Problem 4B.1). Such comparisons
as a function of the diffusivity, time, and length scale of the
geometry are shown in Figure 4.5, for a slab, cylinder, and
sphere. The parameter in this figure is the Sherwood number
(or Sh′). The following examples illustrate the similarity
between heat and mass transfer for the case of unsteady
transfer in simple geometries.

Example 4.3. Diffusion in a Slab

An infinite slab of polypropylene (PP) is exposed to high-
pressure nitrogen at time equal to zero. Calculate the expo-
sure time required for the nitrogen concentration at the slab’s
axis to reach 90% of its equilibrium value. The slab thickness
is 0.318 cm and the diffusivity of nitrogen in PP is 3.87 ×
10−8 cm2/s at room temperature.

Solution. Figure 5.8 shows the PP slab exposed to constant
concentration nitrogen gas. We assume that the slab edges
are kept at this constant nitrogen concentration, which is
also the equilibrium concentration of the whole slab. From
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Figure 5.10, the 90% concentration at the centerline corre-
sponds to –Dt

/
b2 = 1.0. Thus,

t = b2

–D
= (0.318/2)2

3.87 × 10−8
s = 7.56 days (4.33)

One way to reduce this long time is to increase the tempera-
ture of the experiment so that the diffusivity increases.

The graphical solutions in Figures 5.10, 5.11, and 4.3 can
be combined to give solutions to multidimensional problems.
For example, unsteady diffusion into a short cylindrical pellet
is considered to consist of mass transfer in both the radial and
axial directions. Thus, the solution for a short cylinder is[

CA − CA∞
CA0 − CA∞

]
short cylinder

=
[

CA − CA∞
CA0 − CA∞

]
infinite cylinder

×
[

CA − CA∞
CA0 − CA∞

]
flat plate

(4.34)

where CA0 is the concentration in the short cylinder at time
equal to zero and CA∞ is the concentration at equilibrium (or
infinite time) with the surrounding medium (Hines and Mad-
dox, 1985). Note that the ratio (CA − CA∞)

/
(CA0 − CA∞)

determines the difference of the concentration of species A at
a certain point inside the cylinder from the equilibrium value
in a percentage form. Similarly, diffusion in a parallelepiped
consists of mass transfer in all three directions x, y, and z,
and as such the solution is represented by the product of the
flat plate solutions in each direction.

Example 4.4. Unsteady Diffusion in
Multidimensional Objects

PP is extruded and pelletized into small cylindrical pellets.
Pellets can be produced of three different sizes or surface
areas. Pellets I have a diameter of 2R = 3 mm and a length
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of 2b = 3 mm, pellets II have respective dimensions 2 mm
and 6.75 mm, and pellets III have respective dimensions
2 mm and 5.75 mm. Thus, pellets I have the same surface
area and larger volume than pellets III, and pellets I have the
same volume and larger surface area than pellets II. These
PP pellets should be saturated with nitrogen gas and then
processed. Which type pellet will have a concentration closer
to equilibrium saturation after 86,400 s (24 h) exposure to
nitrogen? –D for nitrogen in PP at room temperature is 3.87
× 10−8 cm2/s.

Solution. For type I pellets at 86,400 s

–Dt

R2
= 0.15;

–Dt

b2
= 0.15 (4.35)

and therefore the corresponding concentrations at the center-
line are [

CA − CA∞
CA0 − CA∞

]
infinite cylinder

= 0.34

and [
CA − CA∞
CA0 − CA∞

]
plate

= 0.15

(4.36)

The infinite cylinder value was obtained from Figure 5.11,
while the plate value was obtained from Figure 5.10. Thus,

[
CA − CA∞
CA0 − CA∞

]
pellets I

= (1 − 0.34) × (1 − 0.15) = 0.56

(4.37)

Similarly,

[
CA − CA∞
CA0 − CA∞

]
pellets II

= (1 − 0.7) × (1 − 0) = 0.3 (4.38)

and[
CA − CA∞
CA0 − CA∞

]
pellets III

= (1 − 0.7) × (1 − 0) = 0.3 (4.39)

Type I pellets are the closer to equilibrium saturation, and
then come pellets II and III.

Example 4.5. Diffusion into a Falling Polymer Film

Consider the sorption of a dye, A, into a falling thin polymer
film as shown in Figure 4.6. Assume that the flow of the
film is fully developed and laminar, the process is at steady-
state conditions, the solubility of the dye in the polymer is
low, and no chemical reaction is present. Calculate the dye
concentration profile in the polymer film as a function of
time.
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FIGURE 4.6 Diffusion of dye into a falling polymer film. Dif-
ferential element and the fluxes.

Solution. In this example we will illustrate the use of the
microscopic balances in solving mass transfer problems.
Figure 4.6 shows the falling polymer film, its velocity pro-
file, the concentration of the dye, and a microscopic element
dx dz. It is evident from this figure that dye is transferred in
both the x and z directions, so that a molar balance on the
differential element yields

(NAx |x − NAx |x+dx )W dz + (NAz|z − NAz|z+dz)W dx = 0

(4.40)

where W is the width of the film. Equation 4.40 becomes, on
dividing by the volume of the element and taking the limit as
dx and dz go to zero,

∂NAx

∂x
+ ∂NAz

∂z
= 0 (4.41)

Note that this equation could have been taken directly from
Table 4.6.

The concentration of the dye at the film–dye solution
interface is CAi , and in the main bulk of the film it is equal
to CA0 (in this example CA0 = 0). If the dye is considered
to be slightly soluble in the polymer (low concentrations are
adequate for dyeing), it is logical to consider the thickness,
δ, over which the concentration changes from CAi to CA0, to
be small relative to the film thickness, D. Consequently, the
boundary conditions are

B.C.1 : CA = CA0 at z = 0 for all x (4.42)

B.C.2 : CA = CA0 at x = ∞ for all z (4.43)

B.C.3 : CA = CAi at x = 0 for all z (4.44)
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Equation 4.13 can be written for the x coordinate as

NAx = −–DAP
∂CA

∂x
+ xA (NAx + NPx ) (4.45)

Because the dye is slightly soluble, xA
∼= 0, and hence we

can write

NAx
∼= −–DAP

∂CA

∂x
(4.46)

Similarly, in the z direction

NAz = −–DAP
∂CA

∂z
+ CAv∗

z (4.47)

In this direction we postulate that the convective flow is the
predominant one, so that

NAz
∼= CAv∗

z (4.48)

Also, because the penetration, δ, of the dye into the film is
small, we will be concerned only with the velocity at the
surface, so that

NAz
∼= CAvz,max (4.49)

Equations 4.41, 4.46, and 4.49 can be combined as

–DAP
∂2CA

∂x2
= ∂CA

∂t
(4.50)

where t = z
/

vz,max. Note that this equation represents
unsteady-state diffusion and that we could have obtained
this equation if we had allowed the differential element dx dz
to move with velocity vz,max. Also, note that Eq. 4.42 should
be considered now as an initial condition, because z = 0 is
equivalent to t = 0. The solution to Eq. 4.50 can be obtained
by transforming it to an ordinary differential equation (see
Bird et al., 1960, p. 125). After some algebraic manipulations
this equation gives

CA − CA0

CAi − CA0
= 1 − 2√

π

η∫
0

e−η2
dη = 1 − erf(η) (4.51)

where η = x
/√

4–DAPt and erf(·) is the error function, which
is tabulated in mathematical handbooks. Another type of
problem treated with the same technique is that of diffusion
in a semi-infinite slab (see Problem 4C.3a). Finally, note that
this approach can be applied to the problem of devolatiliza-
tion of a falling polymer film.

4.2 DIFFUSIVITY, SOLUBILITY, AND
PERMEABILITY IN POLYMER SYSTEMS

In this section we analyze diffusive mass transport, as applied
to polymer processing applications. The focus is on the
estimation of the diffusion coefficient and solubility in the
following three systems:gas–polymer, liquid–polymer, and
polymer–polymer. The goal of this section is for the reader to
be able to estimate the parameters of diffusional mass trans-
fer for any polymer system using formulas and tables. Note
that the diffusion coefficient is one of the two primary param-
eters of mass transfer, the other being the convective mass
transfer coefficient discussed in Section 4.4. Typical values
of diffusivity, solubility, and permeability can be found in the
extensive collection by Brandrup and Immergut (1989).

4.2.1 Diffusivity and Solubility of Simple Gases

Simple gases in the following context are the noneasily con-
densable gases (low boiling and critical points) with weak
molecular interactions. Typical examples are nitrogen, oxy-
gen, helium, and so on at relatively low pressures or equiv-
alently low activities. These gases can also be called per-
manent gases. Carbon dioxide (CO2), sulfur dioxide (SO2),
methane (CH4), and other similar gases can also be consid-
ered simple gases at relatively low pressures, although they
are condensable. The model law, which finds direct applica-
tion to the diffusivity and solubility of simple gases, is the
Lennard-Jones equation:

φ (r ) = 4ε

[(σ
r

)12
−
(σ

r

)6
]

(4.52)

where φ (r ) is the intermolecular energy of two molecules
r distance apart, ε is the potential energy constant, and σ

is the potential length constant. Note that ε and σ are also
called the Lennard-Jones scaling factors. Division of ε by the
Boltzmann constant k gives the Lennard-Jones temperature
ε/k in Kelvin units, and σ is also called the collision diameter
of the molecule. Properties of simple gases can be found in
Table 4.8 and an extensive collection appears in Reid et al.
(1977).

Simple gases interact weakly with polymers with a con-
sequence that their diffusion behavior is Fickian. This means
that the diffusion coefficient –D does not depend on concen-
tration and time but only on temperature. The dependence on
temperature is expressed by an Arrhenius type equation as

–D = –D0 exp
(−E–D

/
RgT

)
(4.53)

because diffusion of gases is considered to be a thermally
activated process. –D0 and E–D are constants for the particular
gas–polymer system. E–D is the activation energy of diffusion,
Rg is the universal gas constant, and –D0 is the pre-exponential
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TABLE 4.8 Boiling (T b, K), Critical (T cr, K), and
Lennard-Jones (ε/k, K) Temperatures and
Collision Diameter (σ , nm) of Various Gases

Gas Tb (K) Tcr (K) ε
/

k (K) σ (nm)

He 4.2 5.2 10.22 25.51
Air — — 78.6 37.11
N2 77.4 126.2 71.4 37.98
O2 90.2 154.6 106.7 34.67
H2 20.4 33.2 59.7 28.27
CO2 194.7 304.2 195.2 39.41
CO 81.7 132.9 91.7 36.90
Ar 87.3 150.8 93.3 35.42
CCl4 349.7 556.4 322.7 59.47
CH4 111.7 190.6 148.6 37.58
HCl 188.1 324.6 344.7 33.39
Cl2 238.7 417.0 316.0 42.17
H2O 373.2 647.3 809.1 26.41
NH3 239.7 405.6 558.3 29.00
o-Xylene 417.6 630.2 532.30 60.00
C6H6 353.3 562.1 412.3 53.49
n-C6H14 341.9 507.4 399.3 59.49
n-C4H10 272.7 425.2 531.4 46.87
C3H8 231.1 369.8 237.1 51.18
n-C5H12 309.2 469.6 341.1 57.84
CClF3 (CFC-13) 191.7 302.0 248.24 46.40
CCl2F2 (CFC-12) 243.4 385.0 316.20 49.48
C2Cl2F4 (CFC-114) 276.9 418.9 349.64 54.87
CHClF2 (CFC-22) 232.4 369.2 305.66 45.77

Source: Reid et al., 1977.

factor in the same units as –D. The estimation of these two
parameters follows.

The activation energy of diffusion, E–D , is the most impor-
tant parameter in the diffusion process. It is the energy nec-
essary for the gas molecule to jump into a new position
(“hole”). It is thus obvious that the larger the size of the
diffusant molecule, the higher the activation energy and the
lower the diffusivity are. The size of the gas molecule, x, is
determined by its collision diameter, σ x. If nitrogen gas is
taken as the standard diffusing gas, then the activation energy
is given by the following relations (Van Krevelen, 1990) for
elastomers (and for polymers in the rubbery state):

10−3 E–D
Rg

=
(
σx

σN2

)2 [
7.5 − 2.5 × 10−4(298 − Tg)2

]± 0.6

(4.54)

and for glassy amorphous polymers:

10−3 E–D
Rg

=
(
σx

σN2

)2[
7.5 − 2.5 × 10−4(Tg − 298)3/2

]± 1.0

(4.55)

In the above equations, Rg = 8.314 J/mol·K, and E–D is in
kilojoules (kJ), so that the ratio E–D

/
Rg is in 1000 K. Also,

Tg is in Kelvin units (K).
The other important parameter is the constant –D0. This

was found to correlate with E–D rather well (Van Krevelen,
1990). For elastomers and glassy amorphous materials the
correlations are

log –D0 = E–D × 10−3

Rg
− 4.0 ± 0.4 for elastomers (4.56)

and

log –D0
∼= E–D × 10−3

Rg
− 5.0 ± 0.8

for glassy amorphous polymers

(4.57)

In these equations –D0 is in cm2/s.
Finally, the diffusivity of a semicrystalline material, –Dsc,

can be approximated as follows:

–Dsc
∼= –Da (1 − φc) (4.58)

where φc is the crystallinity of the material, and –Da is the dif-
fusivity of the corresponding completely amorphous mate-
rial. In other words, the crystalline regions are considered
impermeable to the gas. A number of diffusivity data for
common gas–polymer systems at room temperature (25 ◦C)
are compiled in Table 4.9. Brandrup and Immergut (1989),
Duda et al. (1973) and Durrill and Griskey (1966) present
some other data of gas diffusivities in polymers at elevated
temperatures.

Example 4.6. Estimation of –D

Estimate the diffusivity of oxygen in polycarbonate at 298 K.

Solution. The collision diameter of oxygen is 34.67 nm
(from Table 4.8) and the Tg of polycarbonate (PC) is 150 ◦C
= 423 K (glassy amorphous polymer). From Eq. 4.55 we
estimate the activation energy as

10−3 E–D
Rg

=
(

34.67

37.98

)2 [
7.5 − 2.5 × 10−4(423 − 298)3/2

]
±1.0 = 5.96 ± 1.0 (4.59)

which gives E–D = 49.6 ± 8.3 kJ/mol. This value is higher
than the experimentally observed value of 32.2 kJ/mol (Bran-
drup and Immergut, 1989). –D0 (in cm2/s) is calculated from
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TABLE 4.9 Diffusivity (–D, 10−6 cm2/s) and Activation Energy of Diffusion (E–D/Rg, 103 K) for
Various Gas Polymer Systems at 298 K

N2 O2 CO2

Gas/Polymer –D E–D
/

Rg –D E–D
/

Rg –D E–D
/

Rg

Polybutadiene 1.1 3.60 1.5 3.40 1.05 3.65
Polychloroprene (Neoprene rubber) 0.24 5.18 0.38 4.74 0.23 5.40
cis-1,4-Polyisoprene (natural rubber) 1.1 2.60 1.73 4.03 1.25 4.13
Silicone rubber 15 1.35 25 1.10 15 1.35
HDPE 0.10 4.5 0.17 4.40 0.12 4.25
LDPE 0.35 4.95 0.46 4.80 0.37 4.60
PETP 0.0014 5.25 0.0036 5.50 0.0015 5.95
PS 0.06 4.25 0.11 4.15 0.06 4.35
PVC, unplasticized 0.0038 7.45 0.012 6.55 0.0025 7.75
PVAc 0.03 6.15 0.056 7.30 — —
PC 0.015 4.35 0.021 3.85 0.005 4.50
Poly(ethyl methacrylate) 0.17 5.14 0.89 3.82 3.79 3.98
Polytetrafluoroethylene 0.088 2.93 0.152 3.16 0.095 3.44
Teflon (FEP) 0.0948 4.63 0.184 4.17 0.105 4.40

Source: Brandrup and Immergut, 1989.

Eq. 4.57 as: log –D0 = 0.96 ± 0.8. Finally, Eq. 4.53 gives the
diffusivity at 298 K as

–D(298) = 100.96 exp

(−5960

298

)
= 1.8 × 10−8 cm2/s (4.60)

which compares very well with the value given in
Table 4.9.

Solubility, S, is the amount of gas dissolved in a polymer
matrix at equilibrium with a partial pressure, P, and it is
defined as

VA

VP
= S(P)P (4.61)

where VA is the volume of gas (at standard temperature (298
K) and pressure, 0.1013 MPa = 1 atm, conditions; STP)
dissolved into the polymer per unit volume of the solution,
and VP is the volume of polymer per unit volume of the
solution. VA is related to ρA via the expression: ρA = dAVA,
where dA is the density of species A in g/cm3. The units of
S are cm3(STP)/cm3·Pa. Equation 4.61, for S(P) = constant,
is also called Henry’s law, and it is generally followed by
substances at low concentrations. For organic vapors, the
solubility is usually expressed in weight of vapor per weight
of polymer per unit pressure, and the definition is similar to
Eq. 4.61 with the substitution of ρA and ρP in place of VA

and VP, respectively. The solubility, S, follows an Arrhenius
type expression with temperature:

S = S0 exp(−�HS
/

RgT ) (4.62)

where S0 is the pre-exponential factor, and �H S is the molar
heat of sorption. Note that the ratio �H S

/
Rg has the units

of temperature (K).
The diffusivity was described as a function of the glass

transition temperature, Tg, and degree of crystallinity, φc,
of the polymer and the Lennard-Jones temperature, ε/k, of
the gas. Similarly, the solubility can be estimated with good
accuracy from the same variables. The pertinent expressions
are (Van Krevelen, 1990), for elastomers (and for polymers
in the rubbery state):

10−3�H S

Rg
= 1.0 − 0.010

ε

k
± 0.5 (4.63)

log S0 = −5.5 − 0.005
ε

k
± 0.8 (4.64)

and for glassy amorphous polymers:

10−3�H S

Rg
= 0.5 − 0.010

ε

k
± 1.2 (4.65)

log S0 = −6.65 − 0.005
ε

k
± 1.8 (4.66)

Finally, the solubility of semicrystalline polymers, Ssc,
depends on the degree of crystallinity, φc, and the solubil-
ity of the completely amorphous polymers, and it can be
approximated as follows:

Ssc = Sa(1 − φc) (4.67)

In other words, the gas is soluble in the amorphous regions
only.
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TABLE 4.10 Solubility (S, 10−6 cm3(STP)/cm3·Pa) and Heat of Sorption (�H S/Rg, 103 K) for
Various Gas–Polymer Systems at 298 K

N2 O2 CO2

Gas/Polymer S �H S

/
Rg S �HS

/
Rg S �H S

/
Rg

Polybutadiene 0.44 0.51 0.96 0.14 9.87 −1.06
Polychloroprene (Neoprene rubber) 0.36 0.16 0.74 0.25 8.19 −1.15
cis-1,4-Polysisoprene (natural rubber) 0.55 0.25 1.02 −0.51 9.20 −1.50
Silicone rubber 0.81 — 1.26 — 4.30 —
HDPE 0.15 0.24 0.18 −0.20 0.22 −0.66
LDPE 0.23 0.95 0.47 0.30 2.54 0.05
PETP 0.39 −1.37 0.69 −1.56 13.0 −3.78
PS — — 0.55 — 6.5 —
PVC, unplasticized 0.23 0.85 0.29 0.14 4.7 −0.94
PVAc 0.2 — 0.64 −0.55 — —
PC 0.28 — 5.03 −1.55 1.24 −2.62
Poly(ethyl methacrylate) 0.57 −0.25 0.84 0.55 11.3 −0.51
Polytetrafluoroethylene 1.20 −0.66 2.1 −0.87 9.2 −1.76
Teflon (FEP) 1.25 −0.95 2.02 −1.11 9.08 −1.89

Source: Brandrup and Immergut, 1989.

At 298 K, the solubility of gases in elastomers and glassy
amorphous polymers can be expressed as (S in cm3/cm3·Pa)

log S(298) = −7.0 + 0.010
ε

k
± 0.25 (4.68)

for elastomers, and as

log S(298) = −7.4 + 0.010
ε

k
± 0.6 (4.69)

for glassy amorphous polymers. The nature of the polymer
affects the solubility slightly, and the size of the gas molecules
affects the sign of the heat of sorption: dissolution of small
gas molecules is endothermic (positive�H S), whereas larger
gas molecules cause exothermic dissolution (negative�H S).
Table 4.10 summarizes some data on solubility for common
gas–polymer systems. More data can be found in Brandrup
and Immergut (1989), Gorski et al. (1985), Cheng and Bonner
(1978), Stiel and Harnish (1976), Duda et al. (1973), and
Durrill and Griskey (1966) and (1969). As a rule of thumb
with the solubility of nitrogen taken as 1, that of oxygen is
about 2, and that of carbon dioxide is 25.

Example 4.7. Estimation of S

Estimate the solubility of oxygen in polycarbonate and
poly(vinyl acetate) (PVAc) at 298 K.

Solution. From Table 4.8 we get ε/k = 106.7 K for oxygen.
Thus, Eq. 4.69 gives for both polymers (they are in the glassy
amorphous state) the mean value for solubility as

S(298) = 4.64 × 10−7 cm3(STP)/cm3 · Pa (4.70)

with the values at the extremes being 1.9 × 10−6 and 1.2 ×
10−7 cm3/cm3·Pa. Table 4.10 shows that the theoretical and
experimental values for PVAc are very close, and that the
experimental value for PC is a little higher than the upper
limit of the theoretical value.

4.2.2 Permeability of Simple Gases and Permachor

The product of the diffusivity and the solubility is called
permeability, P:

P ≡ –DS (4.71)

It determines the amount of the diffusing species pass-
ing through a polymer film of unit thickness per unit
cross-sectional area, per unit time, and at a unit pressure dif-
ference. Its primary applications are in polymer membrane
separations and polymer film packaging. More specifically,
the ability of certain polymer films to allow only minimal
amounts of gases (e.g., oxygen, carbon dioxide, moisture,
flavors, and odors) to be transported across them makes
these films useful for food and beverage packaging. In this
case the polymers are called barrier polymers.

The physical meaning of permeability is better understood
from the schematic in Figure 4.7. Consider a polymer film
(or membrane) of thickness � = 2b and a diffusing gas A.
This film separates two regions of different pressures (or
concentrations) of species A. The left region contains high
pressure and the right low pressure, so that the diffusion takes
place from left to right. At steady state and in cases of low
mass fractions of A inside the film, Eq. 4.16 simplifies to

nAz = −ρ–DAP
dωA

dz
= ρ–DAP

2b
(ωA0 − ωA�) (4.72)
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By transformingω to V and using Eq. 4.61, Eq. 4.72 becomes

nAz = –DAP
dA

2b
(VA0 − VA�) = –DAP S

dAVP

2b
(PA0 − PA�)

(4.73)

Finally, combining Eqs. 4.71 and 4.72 yields

nAz = P
dAVP

2b
�P ∼= P

dA

2b
�P (4.74)

where �P is the difference in pressures of species A of the
left and the right regions, and the approximate relation holds
for VP

∼= 1.
Equation 4.74 shows clearly that the mass transfer through

the membrane or film depends on the permeability P
of the gas A through the polymer. The units of P are
cm3(STP)·cm2/s·cm3·Pa or cm2/s·Pa. Also, the unit of Bar-
rer is frequently used in the literature:1 Barrer = 10−10

cm3(STP)·cm/cm2·s·cm Hg = 7.5 × 10−14 cm2/s·Pa. Com-
bining Eqs. 4.53, 4.62, and 4.71 we get

P = P0 exp

(−EP

RgT

)
= –D0S0 exp

(
− E–D + �H S

RgT

)
(4.75)

so that the activation energy for permeability is the sum
of the activation energies for diffusion and solubility, that
is, EP = E–D + �H S, and P0 = –D0S0. From available
experimental data the following relations can provide an
approximation for the permeability values (Van Krevelen,
1990): for elastomers,

log P0 = −10.1 + 10−3 EP

Rg
± 0.25 (4.76)

TABLE 4.11 Relative Permeability Parameters for
Various Gases

Gas / Parameter P EP

N2 1 1
CO 1.2 1
CH4 3.4 1
O2 3.8 0.86
He 15 0.62
H2 22.5 0.70
CO2 24 0.70
H2O (550) 0.75

Source: Van Krevelen, 1990.

and for glassy amorphous polymers,

log P0 = −11.25 + 10−3 EP

Rg
± 0.75 (4.77)

Experimental values of permeability of nitrogen at room tem-
perature through various elastomers, semicrystalline, and
amorphous polymers showed great variation depending on
the polymer. Thus, silicone rubber showed the highest perme-
ability of 10−11 cm2/s·Pa, whereas poly(vinylidene chloride)
showed the lowest of 4 × 10−17 cm2/s·Pa. Table 4.11 pro-
vides rules of thumb on relative permeability and activation
energy.

A more accurate way of predicting the barrier properties of
polymers is to correlate polymer structure and morphology
to permeability. Salame (1986) introduced the idea of the
permachor, π, which assigns a value for the polymer chain
based on the specific values for the various structural units
of that chain. Although three gases were studied extensively
(N2, O2, and CO2), the approach can be extended to other
gases as well. The permeability is defined as

P (298) = P
∗
(298) exp(−sπ) (4.78)

where s is a scaling factor and P
∗

is a pre-exponential per-
meability factor. These factors are constant for a specific gas
(Table 4.12). The values reported in Table 4.12 refer to both
elastomers and glassy amorphous materials. The method of

TABLE 4.12 Pre-exponential Permeability Factor, P
∗
, and

Scaling Factor, s

Gas / Factor P
∗

(cm3(STP)·cm/cm2·s·Pa) s (cm3/cal)

N2 1.16 × 10−12 0.121
O2 3.42 × 10−12 0.112
CO2 2.13 × 10−11 0.122

Source: Salame, 1986.
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TABLE 4.13 Group Contributions to the Molar Permachor

Group πi (cal/cm3) Group πi (cal/cm3)

–CH2– 15 –CH(OH)– 255

|
−C−

|
−50 wet 100

–CH(CH3)– 15 –CH(CN)– 205

–CH(C6H5)– 39 –CHF– 85

–CH(i-butyl)– −1 –CF2– 120

–C(CH3)2– −20 –CHCl– 108

–CH=CH– −12 –CCl2– 155

–CH=C(CH3)– −30 –CH(CH2Cl)– 50

–CH=C(Cl)– 33 –Si(CH3)2– −116

–C6H10– (aromatic) −54 –O– 70

–C6H6– (aromatic) 60 –COO– 102

–C6H4(CH3)2– –O–COO– 24

(meta/aromatic) −74 –CO–NH– 309

wet 210

−CH−
| 0

|
−Si−

|
−146

Source: Salame, 1986.

calculating πa, that is, the permachor for completely amor-
phous materials, is simply

πa = 1

n

n∑
i=1

πi (4.79)

where n is the total number of individual groups per struc-
tural unit of the macromolecule, and πi is the individual
group value of the permachor. Typical πi values are shown in
Table 4.13.

For semicrystalline materials, with crystallinity φc, the
permachor πsc should be calculated based on the amorphous
πa as follows:

πsc
∼= πa − 18 ln(1 − φc) (4.80)

and for oriented crystallites the following correction should
be made:

Poriented, sc = Psc

τ0

∼= Psc
(1 − φc)1/2

1.13
(4.81)

where τ0 is the tortuosity of crystallites. Based on these
expressions one can calculate the total permachor values, π,
for various polymers (Table 4.14). Note that the permachor
value scale has a zero value assigned to natural rubber (cis-
1,4- polyisoprene) and a value of 100 assigned to oriented and
crystalline poly(vinylidene chloride). The following example

TABLE 4.14 Values of the Permachor, 𝛑, for
Various Polymers

Polymer π (cal/cm3)

Elastomers
Silicone rubber −23
Butyl rubber (polyisobutylene) −2
Natural rubber (poly-cis-isopropene) 0
Butadiene rubber (polybutadiene) 6
Poly-4-methyl-1-pentene 7
EPR elastomer (unmodified) 15
Neoprene rubber (polychloroprene) 21

Glassy amorphous polymers
Hydropol (hydrogenated polybutadiene) 15
Polystyrene 27
Bisphenol-A polycarbonate 31
Poly(vinyl fluoride) (quenched) 50
Poly(ethylene terephthalate) 59
Poly(vinyl acetate) 61
Poly(vinyl chloride) 61
Poly(vinylidene chloride) 86
Polyacrylonitrile 110

Semicrystalline polymers
Low-density polyethylene (φc = 0.43) 25

Polypropylene (φc = 0.60) 31
High-density polyethylene (φc = 0.74) 39
Poly(vinyl fluoride) (φc = 0.40) 59
Poly(ethylene terephthalate) (φc = 0.30) 65
Nylon 6,6 (φc = 0.40) 73 (dry)

60 (wet)
Nylon 6 (φc = 0.60) 80 (dry)

67 (wet)
Poly(vinylidene chloride) (oriented and crystalline) 100
Poly(vinyl alcohol) (dry, φc = 0.70) 157

Source: Salame, 1986.

illustrates the application of the permachor algorithm to esti-
mate the permeability of gas–polymer systems.

Example 4.8. Permeability of Nylon 6 and
Nylon 6,6 Films to CO2

Calculate the CO2 permeability of Nylon 6 and Nylon 6,6
films with 40% crystallinity at room temperature and com-
pare it with the literature value (Brandrup and Immergut,
1989) of 5.2 × 10−15 cm2/s·Pa. Use the permachor estima-
tion algorithm.

Solution. The structural unit of Nylon 6 is

[−(CH2)5−CONH−]

and that of Nylon 6,6 is

[−NH(CO)−(CH2)4−(CO)NH−(CH2)6−]
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Their permachor is easily proved to be the same, and so we
continue our calculations with Nylon 6,6 only. The perma-
chor is calculated as follows (Table 4.13):

10 –CH2– = 10 × 15 = 150 cal/cm3

2 –NH-–CO– = 2 × 309 = 618 cal/cm3

n = 12 �πi = 768 cal/cm3

Thus, πa = 768/12 = 64 cal/cm3. The value for the 40%
crystalline Nylon 6,6 is calculated from Eq. 4.80 as: πsc =
64 − 18 ln(1 − 0.4) = 73 cal/cm3 (see also Table 4.14). The
permeability of this film to CO2 is calculated with the aid of
Eq. 4.78 and Table 4.12 as

P = 2.48 × 10−11 exp(−0.122 × 73)

= 3.4 × 10−15 cm2/s · Pa (4.82)

That value compares well with the literature value of 5.2 ×
10−15 cm2/s·Pa taking into consideration that the literature
value is not referred to any specific crystallinity.

Finally, there exists one more technique that predicts the
transport properties of polymers by performing summations
over atom and bond contributions defined in terms of con-
nectivity indices. For more about this technique the reader is
referred to Bicerano (1993).

4.2.3 Moisture Sorption and Diffusion

The diffusivity and solubility of water in polymers differs
from that of simple gases to the extent that the water molecule
interacts with the polymer. Based on this interaction, the
polymer molecules are classified as hydrophilic or hydropho-
bic. The solubility of water in hydrophobic polymers, such
as polyolefins and some polyesters, is very low and the diffu-
sivity follows the rules of the other simple gases mentioned
in Section 4.2.1. On the other hand, hydrophilic polymers,
such as cellulose, poly(vinyl alcohol), and proteins, inter-
act strongly with water, and water diffusivity increases with
its content. A good approximation for this situation is (Van
Krevelen, 1990)

log –Dw = log –Dw=0 + 0.08 w (4.83)

where w is the water content in weight percent. The pre-
exponential factor, –D0w , is taken as

log –D0w
∼= E–D × 10−3

Rg
− 7 (4.84)

where E–D is in J/mol. In between the extremes of hydropho-
bic and hydrophilic polymers are less hydrophilic polymers,

such as polyethers and polymethacrylates. Although the pre-
exponential factor –D0w depends on E–D as in simple gases,
the diffusivity itself decreases with water content as

log –Dw = log –Dw=0 − 0.08w (4.85)

The solubility of water in polymers can be estimated from
contributions from individual groups of the structural unit.
Table 4.15 presents these molar water contributions of vari-
ous groups (Van Krevelen, 1990) in a manner similar to the
permachor. The solubility in g/g or cm3(STP)/g can easily be
calculated from the contributions of Table 4.15. The molar
volume of the structural unit is needed in the case where the
solubility is needed in cm3(STP)/cm3. Finally, the heat of
sorption is about 25 kJ/mol for nonpolar polymers and about
40 kJ/mol for polar polymers.

Example 4.9. Estimation of the Saturation Moisture
Content of Polymers

Estimate the saturation moisture content of poly(methyl acry-
late) (PMA) and polystyrene (PS) at 25 ◦C and relative
humidity of 50%. Compare these values with experimental
values from Crank and Park (1968, p. 263).

Solution. The structural unit of PMA is

[−CH(COOCH3)−CH2−]

and from Table 4.15 the molar moisture content at 50% rela-
tive humidity is (0.05 + 7.5 × 10−5) ∼= 0.05 or equivalently
0.05 × 18/100 = 0.9/100 g of water per g of polymer. This
value compares really well with the experimental value of
0.99/100. Similarly, the weight percent of water in PS is cal-
culated to be 0.032%, which is identical to the experimental
value of 0.032%.

4.2.4 Permeation of Higher-Activity Permeants

We considered the ideal cases in terms of diffusion and
solubility, that is, Fickian diffusion and constant solubil-
ity (Henry’s law), in Sections 4.2.1, 4.2.2, and 4.2.3. How-
ever, complexities might arise at higher penetrant activities,
because the high solubility in these cases can cause swelling
of the polymer and nonlinearities of the coefficients of diffu-
sion and solubility. In this section, we restrict ourselves to the
outline of the nonlinear behavior of some systems without
going into the details.

A typical example for amorphous rubbery polymers is
given in Figure 4.8 with the sorption isotherms of ethylene,
carbon dioxide, methane, and nitrogen in silicone rubber
at 35 ◦C (Koros and Hellums, 1990). Methane and nitro-
gen obey Henry’s law at all pressures, whereas ethylene and
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TABLE 4.15 Molar Water Content per Structural Group at Various Relative Humidities at 25 ◦C

Relative Humidity

Group 0.3 0.5 0.7 0.9 1.0

–CH3 (1.5 × 10−5) (2.5 × 10−5) (3.3 × 10−5) (4.5 × 10−5) (5 × 10−5)
–CH2– (1.5 × 10−5) (2.5 × 10−5) (3.3 × 10−5) (4.5 × 10−5) (5 × 10−5)

H
|

−C−
|

(1.5 × 10−5) (2.5 × 10−5) (3.3 × 10−5) (4.5 × 10−5) (5 × 10−5)

–C6H6– (aromatic) 0.001 0.002 0.003 0.004 0.005
–CO– 0.025 0.055 (0.11) (0.20) (0.3)
–COO– 0.025 0.05 0.075 0.14 0.2
–O– 0.006 0.01 0.02 0.06 0.1
–OH 0.35 0.5 0.75 1.5 2
–NH2– 0.35 0.5 0.75 (1.5) (2)
–NH3

+ — — 2.8 5.3 —
–COOH 0.2 0.3 0.6 1.0 1.3
–COO– 1.1 2.1 4.2 — —
–CONH– 0.35 0.5 0.75 1.5 2
–Cl 0.003 0.006 0.015 0.06 (0.1)
–CN 0.015 0.02 0.065 0.22 (0.3)

Source: Reprinted by permission of the publisher from Van Krevelen, 1990.

carbon dioxide obey it at low pressures and deviate positively
(from the initial slope) at high pressures. This positive devi-
ation is called the Flory–Huggins swelling behavior. This
behavior is mathematically expressed as

ln
P

P0
= lnφA + (1 − φA) + χ (1 − φA)2 (4.86)

where P is the solvent partial pressure, P0 is the pure solvent
vapor pressure, φA is the solvent volume fraction, and χ
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FIGURE 4.8 Sorption isotherms of various gases in silicone rub-
ber at 35 ◦C. � sorption; � desorption. (Reprinted by permission
of the publisher from Koros and Hellums, 1989.)

is the interaction parameter of the solvent–polymer system.
Equation 4.86 is valid in the absence of crosslinking and for a
high degree of polymerization of the polymer. Furthermore,
the permeability of silicone rubber to carbon dioxide and
ethylene (Fig. 4.9) increases with pressure, while for helium
and nitrogen it decreases with increasing pressure, and the
pressure has no effect on the permeability to methane. Note
that the critical temperature of the first two gases is high, of
the next two is low, and that of methane is intermediate.
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The strong dependence of the diffusivity on the mass frac-
tion of the diffusant, for intermediate size molecules, such
as organic solvents in rubbery materials, is shown in Fig-
ure 4.10. The sorption isotherms of various gases in PC are
shown in Figure 4.11. The solubility of helium and nitro-
gen in PC varies linearly with pressure even at relatively
high pressures, whereas the solubility of carbon dioxide and
methane varies linearly with pressure only at relatively low
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and high pressures. Argon shows intermediate behavior. Note
that the shape of the CO2 isotherm in PC is different from
the shape of the CO2 isotherm in silicone rubber (Fig. 4.8),
that is, it shows negative deviation from the initial slope in
PC and positive deviation in silicone rubber. The sorption
isotherm of CO2 in PC is called the Langmuir isotherm (see
also Problem 4C.6b or Vieth, 1991). Finally, the permeability
of PC to carbon dioxide is shown in Figure 4.12.

Diagrammatically, the effect of the penetrant activity on
the transport properties is shown in Figure 4.13 (Hopfenberg
and Frisch, 1969), which is valid for amorphous polymers.
Concentration-independent diffusion takes place at any
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the publisher from Hopfenberg and Frisch, 1969.)
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temperature and low penetrant activities or at low temper-
atures and high activities. At high penetrant activities and
temperatures lower than Tg, the transport of the penetrant
causes high stresses and thus crazing and failure of the
polymer. The so-called Case II (or relaxation-controlled;
see also Section 4.3) transport takes place at medium to
high activities and temperatures below Tg. Finally, at lower
temperatures, both relaxation and diffusion mechanisms are
present causing anomalous behavior.

In conclusion, permeation at relatively high pressures of
higher activity permeants, such as condensable gases, inter-
mediate size vapors, and liquids, presents deviations from the
simple Henry’s law. The Flory–Huggins and the Langmuir
isotherms are two such deviations observed in rubbery and
glassy materials, respectively. In terms of the permeability
as a function of pressure, a single gas can exhibit all pos-
sible behaviors, such as increasing, decreasing, and being
constant, in a single graph. Finally, as a rule of thumb, the
diffusivity of liquids in polymers is inversely proportional to
the viscosity of the liquid.

4.2.5 Polymer–Polymer Diffusion

Diffusion in polymer–polymer systems is important in many
practical applications, such as crack healing, polymer blend-
ing, welding, adhesion, elastomer tack, polymer fusion, and
many others. However, diffusion coefficient data is lacking
due to the complexity of the polymer diffusion process. Typ-
ical techniques employed are infrared spectroscopy, spectro-
scopic ellipsometry, and optical schlieren. Only a few studies
of interdiffusion in polymer pairs are reported. Depending
on the temperature and other physical parameters of the sys-
tem, Fickian and Case II diffusions (see Section 4.3) can
be observed with varying relative importance (Jabbari and
Peppas, 1993).

In polymer melts it is customary to measure the self-
diffusion, –Ds, and the tracer diffusion, –D∗, coefficients
(Kausch and Tirell, 1989). The self-diffusion refers to the
diffusion of a macromolecule in a background of identical
macromolecules. On the other hand, tracer diffusion refers to
the diffusion of a small number of identical macromolecules
(i.e., at the tracer level; usually in a tagged state) in a back-
ground which consists of macromolecules, all of which are
not identical to the diffusing macromolecules. Note that in a
binary system of species A and B, which approaches infinite
dilution of species A, the diffusion coefficient of A and B
becomes equal to the tracer diffusion coefficient of A, that
is, –DAB = –D∗

A. Finally, the self-diffusion coefficients can be
combined to yield the mutual diffusion coefficient of species
A and B.

Typical diffusivity values are in the range from 10−16 to
10−6 cm2/s. Figures 4.14 and 4.15 present the self-diffusion
data for the two polymers studied extensively in the litera-
ture, PE and PS, respectively. The correlations in these two
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figures show that the self-diffusion coefficient depends on
the molecular weight of the diffusing species as follows (see
also Problem 4B.6):

–Ds ∝ (MW)2 (4.87)

The activation energy for self-diffusion of PE is about 23
kJ/mol, whereas that of PS varies widely, from 62.2 to
167 kJ/mol (Tirrell, 1984). There are no more extensive data
in the literature for any other polymer system.
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Equation 4.87 agrees with the predictions of the reptation
theory applied to entangled polymer systems. According to
this theory, each polymer chain is confined to a tube sur-
rounding its own contour, whose walls are made up by the
neighboring chains. The diffusion of the polymer chain is
assumed to proceed primarily by reptation, which is similar
to the motion of snakes as they move through a fixed set of
obstacles. This diffusion path is the one that offers the least
resistance, because the tube walls impede the lateral motions
of the polymer chain. Finally, the molecular weight depen-
dence of the self-diffusion coefficient is calculated from the
molecular weight dependencies of the radius of gyration, RG,
and the longest relaxation time, τ , and by recognizing that
the center of mass of the polymer chain will move a distance
approximately equal to RG in time equal to τ (Tirrell, 1984,
and Problem 4B.6).

4.2.6 Measurement Techniques and Their
Mathematics

This section is concerned with measurement techniques of
the diffusivity and solubility from which the permeabil-
ity can easily be calculated. In the following analysis we
restrict ourselves to the measurement of constant values of
–D. Concentration- and position-dependent diffusivities are
analyzed in Crank and Park (1968) and Crank (1975). Gen-
erally, the techniques are: for permeability, steady-state and
time lag techniques; and for diffusivity, sorption and des-
orption kinetics and concentration–distance curves. For self-
diffusivity in polymer melts the techniques are (Tirrell, 1984)
nuclear magnetic resonance, neutron scattering, radioactive
tracer, and infrared spectroscopy.

In the steady-state permeation method, the surfaces of a
polymer film of thickness � = 2b are kept at constant gas
pressures PA0 and PA�. At steady state Eq. 4.75 applies, and
the permeability P is found from this equation. If the solubil-
ity is known, then the diffusivity can be found from Eq. 4.71.
For hollow cylinders and spheres, expressions similar to Eq.
4.74 hold. On the other hand, in the time lag method we deal
with the unsteady-state permeation of a diffusant through a
slab of thickness 2b. The surfaces of the slab are kept at con-
centrations CA0 and at zero. The accumulated amount of gas
which has passed through the slab in time t,

Qt = −–D

t∫
0

(
∂CA

∂z

)
z=0

dt

is given by

Qt

2bCA0
= –Dt

(2b)2
− 1

6
− 2

π2

∞∑
n=1

(−1)n

n2
exp

(−–Dn2π2t

4b2

)

(4.88)

At long times (i.e., when steady state is achieved) the expo-
nential term becomes negligible, so that

Qt = –DCA0

2b

(
t − 4

b2

6–D

)
(4.89)

The intercept of the above equation with the time axis gives
the so-called time lag as

tlag = 4b2

6–D
(4.90)

Similar relations hold for cylinders and spheres.
In the sorption kinetics techniques, the mass uptake of a

slab of thickness 2b at time t,

Mt = 2

b∫
0

(CA − CA0) dz

relative to the maximum mass uptake, M∞ =
2b (CA∞ − CA0), is given by

Mt

M∞
= 4

(
–Dt

(2b)2

)1/2
(

1√
π

+ 2
∞∑

n=0

(−1)nierfc

(
2nb√
4–Dt

))

(4.91)

where CA0 is the initial concentration in the slab, CA∞ is
the final concentration in the slab, and the function ierfc(·) is
given by

ierfc(x) =
∞∫

x

erfc(x ′)dx′ (4.92)

where erfc(·) is the complementary error function, which is
equal to 1 – erf(·). Equation 4.91 is more accurate at short
times (i.e., for Mt

/
M∞ ≤ 0.6, even if the infinite summation

term is neglected), whereas the expression given in Problem
4B.1 is more accurate for Mt

/
M∞ > 0.6, even if only the

first term in the summation is used. Figure 4.16 shows a typi-
cal graph of mass uptake in a slab. At t → 0 Eq. 4.91 yields

–D = π(2b)2

16t

(
Mt

M∞

)2

(4.93)

Thus, –D can be estimated from the slope of Figure 4.16 at
t = 0. Another way to determine –D using the data from the
same figure is to evaluate it at Mt

/
M∞ = 1

2 as follows

–D = 0.04919
(2b)2

t1/2
(4.94)

A desorption experiment is similar to the sorption experi-
ment just described. Experimentally, the mass gain or loss is
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plotted as a function of time, and the diffusivity is calculated
from that plot.

Finally, the diffusion coefficient can also be deduced
from the concentration–distance curves in the case of two
semi-infinite media brought together and interdiffusing. For
example, a polymer sheet and a solvent or even two polymer
sheets are brought in contact, and the concentration–distance
curves are calculated by measuring the refractive index
or by analyzing the radioactivity of a tracer (Crank and
Park, 1968). Problem 4C.3 presents an example of the
concentration–distance curve, which is shown in Figure 4.17
and mathematically given by

CA = 1
2 CA0erfc

(
x

2
√

–Dt

)
(4.95)

C

x

FIGURE 4.17 Schematic of the concentration–distance curve
used in the calculation of the diffusivity.

where CA0 is the initial concentration of the radioactive tracer
in one of the semi-infinite media.

4.3 NON-FICKIAN TRANSPORT

In some cases, solvents cause swelling of the polymers and
consequently the penetrant transport cannot be described by
Fick’s law even with a concentration-dependent diffusivity.
Generally, this case is most frequently encountered during
sorption in glassy polymers, whereas desorption from glassy
polymers and either desorption or sorption in rubbery poly-
mers exhibit mostly Fickian diffusion. To better understand
the effect of the type of polymer on the diffusion process,
we need to visualize the diffusion process as a sequence
of creation of bulges between two macromolecules, diffu-
sional jumps of the penetrant molecules to these bulges, and
relaxation of the original bulges containing the penetrant
molecules before the jumps. In the rubbery state, both cre-
ation of a new bulge (by activation) and the relaxation of the
original bulge are completed in short time scales (short relax-
ation times), so that they do not cause any diffusion anoma-
lies. However, in the glassy state the relevant time scales
are long and the behavior is time dependent. As temperature
and/or penetrant concentration increase, the relaxation times
of the glassy material shorten, and the diffusional behavior
tends to resemble that of a rubbery material.

A convenient method of predicting whether the transport
of a solvent in an amorphous polymer is Fickian or non-
Fickian is to examine the diffusional Deborah number, De–D .
This number is defined as the ratio of a characteristic relax-
ation time for the polymer–solvent system to the character-
istic time of the diffusion process (Vrentas et al., 1975).
Fickian transport is observed when either De–D < 0.1 or
De–D > 10, whereas non-Fickian transport is observed when
De–D ∼= 1.

Alfrey et al. (1966) proposed the following classification
of the diffusional processes:

1. Case I, or Fickian transport: the diffusion time scale is
much longer than the relaxation time scale. (Rubbery
polymers usually exhibit such behavior.)

2. Case II diffusion: this is the other extreme of Case I,
and it refers to the diffusion time scale being much
shorter than the relaxation time scale.

3. Non-Fickian or anomalous transport: this process
occurs when the diffusion and relaxation time scales
are comparable.

Case II diffusion has been associated with advancing
fronts of the penetrant material, where these fronts also mark
the regions of swollen and glassy polymers. An exponential
dependence of the diffusivity on the concentration for large
values of the exponential constant can produce advancing
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FIGURE 4.18 Case II diffusion in the system PMMA–methanol.
PMMA sheets are submerged into liquid methanol. (a) Mass uptake
per unit area against time at 30 ◦C. (b) Concentration of methanol
in the PMMA sheets as a function of time at 30 ◦C. (c) Mass uptake
per unit area against time at 60 ◦C. (d) Concentration of methanol
in the PMMA sheets as a function of time at 60 ◦C. (Reprinted by
permission of the publisher from Thomas and Windle, 1978.)

fronts. Both Cases I and II are considered simple diffusion
cases, because they are described by a constant, which is
the diffusivity in Case I and the constant velocity of the
advancing front of the penetrant in Case II (see also Problem
4C.8). In terms of the sorption kinetics, the mass uptake of a
semi-infinite slab in Case I was shown (Fig. 4.16) to be pro-
portional to t1/2, in the early stages of the sorption process,
whereas in Case II it is primarily proportional to t (although
at the very beginning it may include a term proportional to
the square root of time). Non-Fickian systems lie between
those two cases with the mass uptake being proportional to
tn , where 1

2 < n ≤ 1, or changing from one case to another.
Also, non-Fickian systems require two or more parameters
for their description.

A typical example of Case II diffusion is observed in the
system PMMA–methanol (Thomas and Windle, 1978, 1982;
Sarti and Doghieri, 1994). At 30 ◦C and below, the system
shows linear mass uptake with time (Fig. 4.18a) and sharp
concentration profiles (Fig. 4.18b), whereas at 60 ◦C (boiling

point of methanol is 65 ◦C) the mass uptake is not linear but
curved, and PMMA continues to sorb methanol after the two
fronts meet (Fig. 4.18c). Also, at 60 ◦C the concentration
profiles are not as sharp as before (Fig. 4.18d). Finally, an
example of combination of Fickian and Case II diffusions,
with relative importance depending on the temperature, is
presented by Jabbari and Peppas (1993) for the interdiffusion
of polystyrene and poly(vinyl methyl ether) at either 85 ◦C
or 105 ◦C.

In conclusion, Case II and non-Fickian transport behav-
iors are frequently present in glassy polymer systems. Case II
transport particularly was found to be associated with sharp
penetrant fronts and linear mass uptake with time, whereas in
the non-Fickian transport the mass uptake is proportional to
tn , where 1

2 < n ≤ 1. Methanol absorbed in PMMA exhibits
Case II diffusion characteristics at relatively low tempera-
tures, whereas at higher temperatures a more peculiar behav-
ior is noticed.

4.4 MASS TRANSFER COEFFICIENTS

In the preceding sections of this chapter we considered mass
transfer inside a medium, and we presented correlations for
the solubility and diffusivity of various penetrants in poly-
mers. This approach is the most general and fundamental.
However, mass transfer can also be described in an empirical
and a simpler way using a mass transfer coefficient. The two
approaches (i.e., the first one based on the diffusivity and
the second one on the mass transfer coefficient) are practi-
cally equivalent and the choice between them depends on the
difficulty of obtaining the respective data. A more thorough
discussion of this topic is given by Bird et al. (1960) and
Hines and Maddox (1985).

4.4.1 Definitions

Consider the steady-state diffusion of solute A through a
polymer membrane and into a stream with concentration
CA∞ as shown in Figure 4.19a. The interface concentration
is CAi. Similar to the definition of the heat transfer coefficient,
Eq. 5.122, the mass transfer coefficient is defined as

k•
c ≡ J ∗

Az

CAi − CA∞
= −–D

(
∂CA

/
∂z
)

z=0

CAi − CA∞
(4.96)

where k•
c is the convective local mass transfer coefficient

(or simply the mass transfer coefficient). This coefficient
depends also on the molar transfer rate of species A and B as
(Table 4.3, Eq. U)

k•
c = NA − xA(NA + NB)

CAi − CA∞
(4.97)
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FIGURE 4.19 (a) Mass transfer across a polymer film–fluid inter-
face. (b) Mass transfer across an interface with two resistances
present: the first in one side of the interface (C ′

A∞ to C ′
Ai ), and the

second in the other side of the interface (CAi to CA∞). Henry’s law
is applicable at the interface, between CAi and C ′
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where we have dropped the z dependence of the molar rate,
for simplicity. A similar expression holds for the convective
local mass transfer coefficient k•

x (based on xAi and xA∞). The
units of k•

c and k•
x are cm/s and mol/cm2·s, respectively.

The dependence of the mass transfer coefficients on the
mass transfer rate distinguishes them from the heat transfer
coefficients. However, in the majority of applications, this
dependence is negligible and the mass transfer coefficients
k•

c and k•
x can be replaced by kc and kx , respectively. In such

cases,

NA = kc (CAi − CA∞) = kx (xAi − xA∞) (4.98)

The units of kc and kx are the same as the respective units of
k•

c and k•
x . Finally, the average mass transfer coefficients, kc

and kx , are defined as

NA − xAi
(
NA + NB

) = kc As (CAi − CA∞) (4.99)

NA − xAi
(
NA + NB

) = kx As (xAi − xA∞) (4.100)

where As is the area across which the mass transfer takes
place, and NA and NB are the molar rates over the entire
interface, in mol/s. The units of kc and kx are cm/s and
mol/cm2·s, respectively.

The definitions for the mass transfer coefficients can be
used to theoretically predict them using the diffusivity, con-
centrations, length scales, and fluid flow characteristics, thus
rendering the two mass transfer approaches equivalent. This
can easily be done in the cases of equimolar counterdiffu-
sion (NAz + NBz = 0) and diffusion of A through a stagnant
film (NBz = 0) (Hines and Maddox, 1985, p. 140). Also, the
theoretical models of film, penetration, surface renewal, and
film penetration have been proposed for the estimation of
the mass transfer coefficients at a fluid–fluid interface (Hines
and Maddox, 1985, pp. 146–151).

Finally, Figure 4.19b shows the concentration profile
across an interface where a concentration difference (C ′

A∞
to C ′

Ai ) is followed by a change in interfacial concentrations
(Henry’s law) and another concentration difference (CAi to
CA∞). Thus, the interface offers two resistances, one on every
side of the interface. A typical example that fits into this
description is the drying of polymer pellets by air flowing
over them. The concentration difference inside the pellet is
due to diffusional resistance, while the same difference in
the air is due to convective mass transfer. The discussion
of Design Problem III (Section 4.5) elaborates on the two
resistances and their relative importance.

4.4.2 Analogies Between Heat and Mass Transfer

Similar to the heat transfer problems, the dimensionless
groups in the mass transfer processes are

Sherwood number: Sh = kc�

–D
;

kx�

C–D
(4.101)

Schmidt number: Sc = μ

ρ–D
(4.102)

Grashof number: Gr–D = �3ρ2gζ (xAi − xA∞)

μ2
(4.103)

Stanton number: St–D = Sh

Re Sc
= kc

υ
;

kx

Cυ
(4.104)

Peclet number: Pe–D = Re Sc = �υ

–D
(4.105)
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TABLE 4.16 Analogies Between Heat and Mass Transfer at Low Mass Transfer Rates (� Is the Length Scale)

Heat Transfer Quantities Binary Mass Transfer Quantities

Profiles T xA

Diffusivity α = k

ρC p

–DAB

Effect of profiles on density β = − 1

ρ

(
∂ρ

∂T

)
p,xA

ζ = − 1

ρ

(
∂ρ

∂xA

)
p,T

Flux q J∗
A = NA − xA (NA + NB)

Transfer rate Q NA − xA (NA + NB)

Transfer coefficient h = Q

As�T
kx = NA − xA

(
NA + NB

)
As (xAi − xA∞)

Dimensionless groups that are the same in both correlations Re = �υρ

μ
Re = �υρ

μ

Fr = υ2

g�
Fr = υ2

g�

Basic dimensionless groups that are different Nu = h�

k
Sh = kx�

C–DAB
;

kc�

–DAB

Pr = C pμ

k
= μ

ρα
Sc = μ

ρ–DAB

GrH = �3ρ2gβ�T

μ2
Gr–D = �3ρ2gζ�xA

μ2

StH = Nu

Re Pr
= h

ρC pυ
St–D = Sh

Re Sc
= kx

Cυ
;

kc

υ

Special combinations of dimensionless groups PeH = Re Pr = �υρC p

k
Pe–D = Re Sc = �υ

–DAB

jH = Nu Re−1 Pr−1/3 j–D = Sh Re−1Sc−1/3

= h

ρC pυ

(
C pμ

k

)2/3

= kx

Cυ

(
μ

ρ–DAB

)2/3

;
kc

υ

(
μ

ρ–DAB

)2/3

Source: Reprinted by permission of the publisher from Bird et al., 1960.

and

j–D = Sh Re−1Sc−1/3 = kc

υ

(
μ

ρ–D

)2/3

;
kx

Cυ

(
μ

ρ–D

)2/3

(4.106)

where Sh in mass transfer corresponds to Nu in heat trans-
fer and j–D is the mass transfer Chilton–Colburn j-factor, �
is the length scale of the system, and ζ is the concentration
coefficient of volumetric expansion (see Table 4.16 for the
definition). Table 4.16 summarizes all the definitions of vari-
ables and dimensionless numbers and their correspondence
to their respective entities in the heat transfer area. Note that
the analogy of Table 4.16 holds for low mass transfer rates.

The analogies between heat and mass transfer in either
form, forced or free convection, can be visualized as follows
(Bird et al., 1960):

Forced convection:

Nu = a function of (Re, Pr, geometry)

Sh = a function of (Re, Sc, geometry)
(4.107)

Free convection around submerged objects:

Nu = a function of (GrH, Pr)

Sh = a function of (Gr–D, Sc)
(4.108)

As examples of the application of these analogies we illus-
trate their use in flow over a flat plate, around a submerged
cylinder, and in free convection problems. Thus, Eq. 5.123
can be used directly for mass transfer problems for flow over
a smooth flat plate as

Sh = 0.332Re1/2Sc1/3 (4.109)

For transverse flow over a long cylinder (e.g., fiber spinning)
the relevant equations (analogous to Eqs. 5.125 and 5.126)
are

Sh = (0.43 + 0.50Re1/2)Sc0.38 for 1 < Re < 103

Sh = 0.25Re0.6Sc0.38 for 103 < Re < 2 × 105

(4.110)
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For free convection problems, Eqs. 5.130, 5.131, and 5.132
can easily be translated to mass transfer applications using
Table 4.16.

Example 4.10. Solution Casting

Figure 4.20 shows the process of production of solution-
cast films. A polymer solution is cast onto a rotating roll
(Middleman, 1977), and the solvent is removed by air flow-
ing in the opposite direction. Then, the dry film is removed
from the roll and goes into the next processing step. Esti-
mate the convective mass transfer coefficient of the solvent
into the air and the time needed for 80% solvent removal.
The air speed, V, is 1 m/s; the radius of the roll, R, is
30 cm, and the thicknesses of the film, L, and the air duct,
L ′, are 2 mm. The polymer solution is in contact with the
roll for one-fifth of its periphery. The average air temper-
ature is 50 ◦C and a typical value for the diffusivity of
the solvent into the air stream is –DAair = 1 × 10−5 cm2/s
and the diffusivity of the solvent in the solution is –DAliq =
1 × 10−6 cm2/s.

Solution. In this problem, two mass transfer operations take
place: diffusion of the solvent in the polymer solution (I) and
into the air stream (II). The importance of these two opera-
tions is evaluated from the value of the Sherwood number,
Sh:

Sh = kc�

–DAair
(4.111)

We first calculate the mass transfer coefficient, and then we
solve the transient diffusion equation for the solvent in the
solution.

Because the thickness of the solution on the roll is very
small compared to the radius of the roll, we assume that the
solution forms a plate over which an air stream flows and
removes the solvent. Then, Eq. 4.109 is directly applicable
to our case. The concentration of the solvent in the air is
assumed small, so that the properties of the air remain unal-
tered. The density and viscosity of the air, at 50 ◦C, are ρ =

W

R

y

zin

Solution
out

Air in

Solution

Air out

L

L'

FIGURE 4.20 Solution-cast film geometry.

0.0011 g/cm3 and μ= 0.019 mPa·s (from Perry and Chilton,
1973). The contact length of the solution onto the roll is l =
2πR/5 = 37.7 cm. The Reynolds number is calculated as

Re = 100 × 37.7 × 100 × 0.0011

0.019
= 21,826 (4.112)

Similarly, the Schmidt number is

Sc = 0.019

100 × 0.0011 × 0.00001
= 17,273 (4.113)

Thus, the Sherwood number for the solvent transfer into the
air, Sh, is calculated from Eq. 4.109 as

Sh = 0.332 × 21,8261/2 × 17,2721/3 = 1268 (4.114)

and from this value the mass transfer coefficient kc is calcu-
lated as

kc = Sh –D

�
= 3.26 × 10−4 cm/s (4.115)

Assuming that the solution is moving in the z direction
with a flat velocity profile of magnitude V, the term for the
convective mass transfer in the z direction in Fick’s second
law, V

(
∂
/
∂z
)
, is equivalent to the unsteady term,

(
∂
/
∂z
)
.

Furthermore, the boundary condition at y = L is of the con-
vective type, with Sh equal to 1268 (Eq. 4.114), which is
equivalent to ∞ in Figure 4.5. From the same figure, for
80% removal

–DAliqt

L2
= 0.62 ⇒ t = 14,400 s (4.116)

Thus, the time is approximately 4 hours and some changes
should be made to shorten this time.

4.5 SOLUTION TO DESIGN PROBLEM III

Figure 4.21 shows the schematic of one jet in dry-spinning
conditions of fiber production. In the following analysis we
solve the problem of one jet and assume that the solution
is valid for all the jets together. We assume that the fiber
at any axial distance is round, and thus we solve the prob-
lem using cylindrical coordinates. As the polymer solution
exits the spinneret, it expands, and at the point of maximum
cross-sectional area (dope) we put the origin of the coordinate
system. As z increases, the cross-sectional area decreases due
to the loss of solvent and the tension from the windup roll.
At zw (i.e., at the windup roll) the solvent should have been
evaporated and the fiber solidified. The complete solution
of the dry-spinning problem should include the momentum,
energy, and mass balance equations along with the appropri-
ate boundary conditions. The resulting system of equations
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FIGURE 4.21 Dry-spinning system.

is very complex and in the present analysis we use some sim-
plifying assumptions. We consider isothermal conditions and
that the flash vaporization takes place at the spinneret exit,
and thus it will not affect our discussion of the later stages.

The solvent diffuses from the spinning line (or filament) to
the spinning line surface with diffusivity –DAP, and it is carried
away by the flowing air in a convective mode. Air is flowing
at a cross direction to the fiber movement, but due to the high
speed of the fiber air is also entrained in the parallel direction.
Consequently, the convective mass transfer is taking place in
the r as well as in the z directions. Because the cross-flow
velocity is four times the parallel-flow velocity, the mass
transfer coefficient of the cross flow is 3.17 (= 0.52 ×
41/3/0.26) times that of the parallel flow. Consequently, the
controlling mass transfer coefficient is that of parallel flow.

To calculate this coefficient we need to estimate the prop-
erties of the air–DMF mixture at 200 ◦C. We further assume
that the properties of the mixture are very close to those of
plain air. From Perry and Chilton (1973) we get that μ =
2.5 × 10−5 Pa·s, and from simple calculations from the law
of ideal gases we get that ρ = 7.47 × 10−4 g/cm3. Based
on these values and the value of Sc we get that –DAair = 0.18
cm2/s. Thus,

kc,P = 0.402R (z)−2/3 cm/s (4.117)

The extreme values of R(z) are 0.0178 cm at the dope and
0.0022 cm at the windup roll, so that the convective mass
transfer coefficient varies from 5.9 to 23.8 cm/s. Therefore,
the resistance to mass transfer in the air flow scales as 0.17
(=1/5.9) to 0.04 (=1/23.8).

The resistance to diffusion inside the spinning line is
scaled as R

/
–DAP. For an average spinning line temperature

of 90 ◦C, the diffusivity of DMF in PAN is calculated as

–DAP = 9.03 × 10−4 exp

( −2360

273 + 90

)
= 1.36 × 10−6 cm2/s (4.118)

Note that due to lack of more data we assume that the poly-
mer fraction of the spinning line has no effect on the dif-
fusivity of the DMF within the spinning line. Therefore,
the diffusive resistance varies from 1620 to 13,130, which
represents from 4 to 6 orders of magnitude higher resis-
tance within the spinning line than in the air flow. It is thus
permissible to neglect the mass transfer in the air and to
solve the diffusion equation within the spinning line with a
boundary condition at the spinning line surface of zero DMF
concentration.

The region where the solution which follows is applicable
is somewhat away from the spinneret and its beginning is
denoted by z0 in Figure 4.21. A fluid element is located at
z0 at time t = 0. Finally, we arbitrarily set the average mass
fraction of solvent at that point equal to 0.25.

As a fluid element in the spinning line moves in the z
direction, it changes its radius due to two reasons: tension
from the windup roll and mass change due to solvent removal.
Assuming that the mass change due to solvent removal is
negligible we can consider the DMF diffusion within the
spinning line as taking place in a stationary liquid (υr = 0
or very small compared to υz). Consequently, the diffusion
equation in cylindrical coordinates for constant ρ becomes
(Table 4.5)

∂ωA

∂t
= 1

r

∂

∂r

(
r–DAP

∂ωA

∂r

)
(4.119)

with initial and boundary conditions:

I.C.: ωA (r, 0) = ωA0

B.C.1: ωA (R, t) = 0

B.C.2:

(
∂ωA

∂r

)
r=0

= 0

(4.120)

The solution to Eq. 4.119 subjected to the boundary and
initial conditions given in Eq. 4.120 is given in many places
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FIGURE 4.22 (a) Average mass fraction of the solvent DMF divided by the initial average mass
fraction (at z0) as a function of the axial distance from the reference point z0, for the system PAN–
DMF. (b) The logarithm of the relative solvent concentration ωA/(1 − ωA) as a function of the axial
distance from the reference point z0, for the system PAN–DMF.

(e.g., Crank, 1975). If we average the solvent mass fraction
over the cross-sectional area we get

ωA

ωA0
= 4

∞∑
k=1

μ−2
k exp

(
−μ−2

k –DAPt

R2

)
(4.121)

where μk are the roots of the Bessel function J0 (μk) = 0. If
the series in Eq. 4.121 converges rapidly, we can keep only
the first term, so that we get

ωA

ωA0
= 4

μ2
1

exp

(
−μ−2

1 –DAPt

R2

)
(4.122)

where μ1 = 2.4048.
Time, t, in Eq. 4.122 can be replaced by

t = z − z0

V
(4.123)

where V is the velocity of the filament, which is considered
to move as in plug flow. The mass flow rate of the polymer,
ṁP, follows the relation

ṁP = πρR2V (1 − ωA) (4.124)

Combining Eqs. 4.122–4.124, we get the following equation:

dωA

dz
= −

(
πρμ2

1–DAP

ṁP

)
(1 − ωA)ωA (4.125)

which is subject to the following boundary condition:

B.C. : ωA (z0) = ωA0 (4.126)

Equation 4.125 subject to the boundary condition in Eq.
4.126 was solved and the results are shown in Figure 4.22. In
Figure 4.22a the ratio of the average solvent mass fraction at
the axial position z relative to that at z0 is plotted against the

axial distance, and in Figure 4.22b the same data are formed
in terms of the logarithm of the ratio of the average solvent
mass fraction to the polymer mass fraction. The straight
line in Figure 4.22b has also been experimentally observed
(Ziabicki, 1976) for the region away from the spinneret.
Figure 4.22a shows that the complete removal of the solvent
is achieved at about 10 m away from the point where ωA0 =
0.25.

PROBLEMS

A. Applications

4A.1 Relationships Between Fluxes. Prove the following:

(a) The sum of the molar fluxes with respect to the
molar average velocity is equal to zero in a mul-
ticomponent system,

(b) The sum of the mass fluxes with respect to the
mass average velocity is equal to zero, and

(c) J∗
i = Ni − xi

n∑
j=1

N j .

4A.2 Saturation of PP with Nitrogen Gas. A very thin disk
(thickness: 0.159 cm) of PP is used for microcellu-
lar foaming experiments. The disk sits at the bottom
of a cylindrical pressure vessel and it is exposed to
high pressure nitrogen gas. Calculate the time nec-
essary for nitrogen gas to diffuse into PP so that its
concentration at the PP surface facing the bottom of
the vessel reaches 90% of its equilibrium value. The
diffusion coefficient of nitrogen in PP is –D = 3.87 ×
10−8 cm2/s. Assume that the high pressure does not
affect the type of the diffusion process (i.e., it is still
Fickian) and the value of the diffusivity.
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4A.3 Diffusion of Gas into Polymer Droplets and Fibers.
Consider a molten polymer blend with the minor com-
ponent in the form of small spheres of radius 5 μm.
Calculate the time it takes for the diffusion of these
spheres from the major component to reach 90% equi-
librium. Repeat the same calculations when the minor
component is in the form of long fibers with the same
radius as the spherical droplets. –D = 10−8 cm2/s.

4A.4 Economics of Barrier Polymers. Four polymers are
being considered for an oxygen barrier application.
The polymers are: (1) Barex (trademark of Vistron
Co.), which is an amorphous copolymer of acryloni-
trile 70% mol/mol [–CH(CN)–CH2–] and methyl
acrylate [–C(CH3)(COOCH3)–CH2–], (2) EVAL-F
(trademark of Kuraray Co.), which is a copoly-
mer of ethylene (23% weight) and vinyl alcohol
[–CH(OH)–CH2–] with 70% crystallinity, (3)
amorphous polyvinylidene chloride (PVDC)
[–C(Cl2)–CH2–] and (4) Nylon 6,6 with 40%
crystallinity. Their density and cost per weight are as
follows:

Barex 1.15 g/cm2 2.76 $/kg
EVAL-F 1.16 g/cm2 4.85 $/kg
PVDC 1.70 g/cm2 2.76 $/kg
Nylon 6,6 1.19 g/cm2 3.75 $/kg

Which is the most advantageous material for that
application?

4A.5 Plastic Automotive Fuel Tanks. The North American
auto industry is converting to plastic automotive fuel
tanks from blow-molded HDPE. The advantages of
HDPE tanks over the usual steel tanks are: no corro-
sion, lighter than steel, easily shaped to fit in the car,
and more puncture resistant than steel. However, the
HDPE tanks suffer from high permeability to liquid
gasoline.

(a) Calculate the average mass loss of gasoline per
day at steady state from an HDPE 60 liter tank
with wall thickness of 1 mm, and compare it with
the EPA standard of 2 g/day. Assume Fickian dif-
fusion of gasoline in the HDPE wall and that the
gasoline uptake by the wall via Langmuir sorption
is zero. Simulate the tank with an equal volume
cubic structure and assume that the tank is emp-
tied with equal gasoline consumption each day.
At 29 ◦C the following data is given (Kathios and
Ziff, 1991):constant diffusivity and solubility of
gasoline in HDPE equal to 7 × 10−8 cm2/s and
0.066 g/cm3·atm, respectively. Assume that the
pressure in the tank is 1 atm and that the density
of gasoline is 1 g/cm3.

(b) The most promising barrier technology to cor-
rect this high permeability is the coextrusion of

HDPE and polyamide to form a laminated struc-
ture. Thus, consider two adjacent layers of HDPE
and polyamide. If the permeability of gasoline
in polyamide is one-tenth of that in HDPE, what
should the thickness of the polyamide layer be for
the tank to conform with the EPA regulation?

4A.6 Unsteady Diffusion in Cubes and Spheres. Consider
the unsteady diffusion of a gas into two polymer pel-
lets:the first is a cube and the other is a sphere. Calcu-
late the time needed for 90% saturation of the pellets
at their centers, for the following cases:(a) same lin-
ear dimension, (b) same surface area, and (c) same
volume of both pellets.

4A.7 Poly(ethylene terephthalate) (PET) Pellet Drying.
PET is a relatively hydrophobic polymer (Myers et al.,
1961), which still needs drying before processing.
Calculate the temperature of the drying oven, so that
the drying of spherical pellets, 3 mm in diameter,
does not take more than 11 hours. Assume that the
pellets were initially in equilibrium with air having
70% relative humidity.

B. Principles

4B.1 Mass Uptake by Slabs and Spheres. Consider a poly-
mer slab at initial solute concentration CA0 and thick-
ness 2b. A solution with solute concentration CA∞
is brought in contact with the slab, so that the slab
surface solute concentration is considered to be equal
to CA∞. Prove that the mass uptake of solute, Mt , at
time t is equal to

[
Mt

M∞

]
slab

= 1 − 8

π2

∞∑
n=0

1

(2n + 1)2

exp

(
− (2n + 1)2 π2–Dt

4b2

)

where M∞ is the maximum uptake, which is
equal to 2b(CA∞ − CA0). Note that the left-hand
side of the above equation is also equal to(
CA − CA0

)/
(CA∞ − CA0), where CA is the aver-

age concentration of A in the slab. Also, prove that a
similar expression holds for a polymer sphere, that is,

[
Mt

M∞

]
sphere

= 1 − 6

π2

∞∑
n=0

1

n2
exp

(
−n2π2–Dt

R2

)
.

4B.2 Saturation of Polyetheretherketone (PEEK) with Car-
bon Dioxide Gas. PEEK (see Table 5.8) is used
in foaming experiments with carbon dioxide as the
foaming agent. The description of the experiment is
the same as in Problem 4A.2. Calculate the diffusion
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FIGURE 4.23 Structures of laminar composites in permeation
experiments: (a) slabs, (b) hollow cylinders, and (c) spherical shells.

coefficient of CO2 in PEEK at room temperature and
then calculate the time needed for 90% saturation of
the bottom surface. At which temperature is the time
span of the experiment one day?Assume φc = 50%.

4B.3 PET Bottles for Carbonated Beverages—Steady-State
Simulation. Amorphous PET is extensively used in
the production of bottles for carbonated beverages.
Consider such a bottle with radius of 6 cm and with
a headspace equal to 6% of the volume of the bev-
erage. Assume that the bottle loses carbon dioxide
through the sides only and that the wall thickness is
much smaller than the bottle radius. The beverage
inside the bottle is considered nonmarketable if the
partial pressure differential between inside and out-
side of the bottle drops to about 90% of the initial
pressure differential in three months. Calculate the
minimum wall thickness to achieve such partial pres-
sure drop at steady state if the bottle is left on the
shelf for three months at 25 ◦C. The structural unit of
PET is [–O–CH2–CH2–O–CO–C6H4–CO–]. Assume
that Henry’s law is applicable, and neglect any car-
bon dioxide uptake by the bottle walls via Langmuir
sorption. The solubility of carbon dioxide into the
beverage obeys Henry’s law with a coefficient of
3.28 × 10−5 mol/cm3·atm.

4B.4 Permeability of Composite Laminates. Consider a
laminar composite structure, in which the laminae,
Li, are normal to the direction of permeation. These
laminae can be either slabs, or hollow cylinders, or
spherical shells (Fig. 4.23). Prove that the composite
permeability, P , is given by the relationship

Iυ (R0, Rn)

P
=

n∑
i=1

Iυ (Ri−1, Ri )

Pi

where n is the total number of laminates and R repre-
sents the linear dimension of the composite structure.
Iυ is given by

Iυ (Ri−1, Ri ) =
Ri∫

Ri−1

1

rυ−1
dr

where υ is the order of the structure, that is, 1 for
slabs, 2 for cylinders, and 3 for spheres.

4B.5 Diffusivity of a Polymer Blend. Model a polymer
blend by a lattice of rectangular parallelepipeds (Bar-
rer and Petropoulos, 1961) suspended in a polymer
matrix, Figure 4.24. Using geometrical arguments
and Fick’s first law, calculate the blend diffusivity,
–Dblend, as a function of the diffusivities of both phases
and geometrical constants. Simplify the expression
for the cases of (a) impermeable dispersed phase, (b)
dispersion of platelets, and (c) extremely permeable
dispersed phase in the form of platelets.

4B.6 Crack Healing of PMMA. Similar to the hot-melt
adhesive bonding of polyethylene (see Problem 4C.4)
is the problem of welding (healing) a crack at elevated
temperatures with the application of a slight pressure
(Jud et al., 1981). The success of the healing process
is judged by comparing the fracture toughness of the
healed sample, K I i , to the original fracture tough-
ness, Figure 4.25. Calculate the penetration depth of
the PMMA macromolecules for successful healing
and compare it to the radius of gyration of PMMA.
According to Graessley (1980) and based on the rep-
tation theory for the diffusion of macromolecules
(“snake-like movements”) the self-diffusion coeffi-
cient is given by

–Ds = G0
N

135

(
ρRgT

G0
N

)2 ( R2

MW

)
Mcr

(MW)2 η0 (Mcr)
,

where the symbols, their names, and their values for
PMMA at 390 K are as follows (Jud et al., 1981):

G0
N Plateau modulus 6.36 × 104

N/m2

ρ Density 1.14 g/cm3

MW Molecular weight 120,000
R2
/

MW Mean square
end-to-end
distance/MW

4.56 × 10−19

m2 · mol/g

Mcr Critical MW for
entanglements

30,000

η0(Mcr) Zero shear
viscosity for Mcr

2.14 × 107 Pa·s
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1–4: healing of broken PMMA immediately after fracture. Curve 5:
surfaces welded after vacuum drying and polishing. Curve 6: heal-
ing at 390 K immediately after fracture of dried PMMA samples.
(Reprinted by permission of the publisher from Jud et al., 1981.)

C. Numerical Problems

4C.1 Dissolution of a Bubble into a Molten Polymer
Matrix. Consider a molten polymer matrix with
dispersed bubbles of radius R0 = 10 μm. Calculate
the dissolution time of the bubble, tdis, using Fick’s
second law of diffusion in spherical coordinates and
moving (shrinking) boundaries. As the gas (species A)
diffuses out the radius of the bubble decreases. Also,

consider that (Epstein and Plesset, 1950) the initial
mass fraction of the gas into the polymer matrix is
equal to zero, and neglect any surface tension effects
as well as the hydrodynamic response of the polymer
melt to the bubble shrinkage. Then,

1. Write Fick’s second law of diffusion.

2. Introduce a new dependent variable u = r (ρA −
ρAs), where ρAs is the gas concentration at the
interface.

3. Solve the resulting equation and calculate the flux
of gas at the surface of the bubble.

4. Relate the change in radius to the flux.

5. Solve the resulting differential equation, using
a simplifying assumption (constant term in the
equation vanishes). Show that the approximate
complete dissolution time is given by

tdis = R2
0

2–DK

where K is the partition coefficient of the gas at
the interface and the gas inside the bubble. Also
show that tdis = 250 s for –D = 10−7 cm2/s and
K = S RgT

/
MW = 0.02, where S is the Henry’s law

constant for the gas–polymer system in g/cm3·atm.

4C.2 Nylon 6 Pellet Drying. Nylon 6 is a relatively
hydrophilic polymer. Asada and Onogi (1963) mea-
sured the diffusion coefficient of water vapor in Nylon
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FIGURE 4.26 Diffusion coefficient of moisture in Nylon 6 as
a function of moisture content. (Reprinted by permission of the
publisher from Asada and Onogi, 1963.)

6 and their data are shown in Figure 4.26. The polymer
pellets are to be dried to 0.15% g/g with dehumidi-
fied air at temperatures less than 80 ◦C. Calculate the
dehumidification time for spherical pellets 3 mm in
diameter. Nylon 6 has 70% crystallinity and in this
particular case was in equilibrium with air at 70%
relative humidity. ρ = 1.13 g/cm3 for Nylon 6.

4C.3 Mutual Diffusion of Polymers in Contact (Adhesion).
Diffusion theory is one of the theories of adhesion.
According to this theory, the molecules of two poly-
mers in mutual contact diffuse across the interface
(Fig. 4.27), so that after some time the interface does
not exist. The strength of the joint will then depend on
the distance the macromolecules have interpenetrated
each other. Crack healing is also based on the theory
of diffusion.

(a) Consider two semi-infinite polymer slabs. One of
the slabs is doped with a diffusant at concentra-
tion CA0, whereas the other one is diffusant free.
At time t = 0, the two slabs are brought into
contact at x = 0. Calculate the diffusant concen-
tration profile as a function of time as shown in
Figure 4.28.

(b) An infrared spectrometer is used to measure
the interdiffusion of poly(vinyl methyl ether)
(PVME) and polystyrene (PS) (Jabbari and Pep-
pas, 1993). The assembly consists of a solution-
cast PS thin film on top of a germanium crys-
tal, and a solution-cast PVME film on top of the
PS film. The thickness of the PS film is 1 μm.
Calculate the time it takes for the PVME molar

FIGURE 4.27 Diffusion across the interface between two poly-
mers in contact. The interface becomes diffuse as the mutual diffu-
sion takes place.
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FIGURE 4.28 Diffusant concentration as a function of distance
for two semi-infinite slabs in contact. Initially only one of them had
nonzero diffusant concentration.
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FIGURE 4.29 Peel strength at 23 ◦C as a function of the bonding
temperature. The symbols represent the various types of thermo-
plastic adhesives (ethylene copolymers) used to adhere two sheets
of polyethylene for 300 s. (Reprinted by permission of the publisher
from Yamakawa, 1976.).

concentration at the crystal–PS interface to reach
80% of its equilibrium value. Assume Fickian
diffusion and diffusivity equal to 1.1 × 10−12

cm2/s.

4C.4 Adhesive Bond Strength and Diffusion. Yamakawa
(1976) studied the effect of bonding temperature on
the peel strength of two polyethylene sheets bonded
with an ethylene copolymer as the bonding agent
(Fig. 4.29). Assume that (1) the thicknesses of the
polyethylene sheets and the adhesive bond are con-
sidered as infinite compared to the penetration depth
of the adhesive; (2) –DAP(140 ◦C) = 5 × 10−11 cm2/s
and E–D = 50 kJ/mol; and (3) the adhesive bonding
is satisfactory (leveled portion of curves in Fig. 4.29)
when the penetration depth of the adhesive (at 10%
concentration change) exceeds a threshold value. Cal-
culate that threshold value and the bonding time for
successful bonding of the two polyethylene sheets at
110 ◦C.

4C.5 Mass Uptake in Slabs, Spheres, and Cylinders. Solve
Problem 4B.1 for slabs, spheres, and cylinders using
numerical methods.

4C.6 Transient Diffusion and Dual-Mode Sorption

(a) Rework Problem 4B.3 in the transient mode,
assuming again that the carbon dioxide uptake
by the PET wall via Langmuir sorption is zero.
Assume –D = 1.10 × 10−9 cm2/s, and wall thick-
ness, b, equal to 0.57 mm.

(b) Sorption and diffusion of gases in glassy polymers
might be described by the dual-mode sorption

model (Vieth, 1991). The basic assumptions of
the model are as follows:

1. Two modes of sorption, Henry’s law sorp-
tion, C–D = S–D P , and Langmuir sorption (or
“microvoid filling” sorption; Section 4.2.4),
CH = C ′

Hb′ P/(1 + b′ P), occur simultane-
ously. S–D is the Henry’s law constant in
mol/cm3·atm, C ′

H is the microvoid saturation
constant in mol/cm3, b′ is the microvoid affin-
ity constant in atm−1, and P is the pressure in
atm.

2. The two modes are in local equilibrium
throughout the glassy polymer.

3. The gas sorbed in the Langmuir mode is com-
pletely immobilized.

4. Henry’s mode is the only diffusion mode.

5. The diffusion coefficient is constant.

Based on these assumptions show that Fick’s second
law is now expressed as

–D
∂2C–D
∂x2

= ∂C–D
∂t

[
1 + C ′

Hb′/S–D
(1 + C–Db′/S–D)2

]

and then rework part (a) of this problem, using the fol-
lowing data (Masi and Paul, 1982): the initial pressure
in the headspace is equal to 4.0 atm, S–D = 1.48 ×
10−5 mol/cm3·atm, C ′

H = 3.235 × 10−4 mol/cm3,
and b′ = 0.351 atm−1.

4C.7 Interdiffusion in a Polymer Blend. A dilute polymer
blend consists of a minor component A, which is dis-
persed in the form of droplets 2 μm in diameter, and a
major component B. The volume fraction of A isφA =
1.56%. Calculate the time it takes for the molar con-
centration of A at the center of a droplet to decrease by
95% of its original concentration, assuming Fickian
interdiffusion and constant –D = 1 × 10−12 cm2/s.

4C.8 Combination of Fickian and Case II Transports. Dur-
ing the sorption of acetone in a poly(vinyl chloride)
(PVC) slab of thickness 2b, submerged into a large
acetone bath at room temperature, the slab is divided
into two regions. The first one is the gel-like region,
which is in direct contact with the acetone bath and
where the transport of acetone can be described by
a combination of a Fickian diffusion, with diffusion
coefficient –D, and a Case II diffusion, with velocity of
the advancing front V. The second region is the glass
region, where the transport is described by a Fickian
diffusion, with diffusion coefficient –Dg. For –D � –Dg

only the transport of acetone in the gel-like region
is considered. According to Kwei et al. (1972) the
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one-dimensional transport equation for the gel-like
region is

–D
∂2C

∂x2
− V

∂C

∂x
= ∂C

∂t

where C is the molar concentration of acetone. The
advancing acetone front is located at θx = Cx/C0 =
0.068, where C0 = 8.62 × 10−3 mol/cm3 is the equi-
librium molar concentration of acetone in the gel-
like region. Calculate the acetone molar concentration
profile and the mass uptake as a function of distance
and time for swelling number Sw = V b/–D equal to
3.87, and compare it with the simple Fickian case
(i.e., where Sw = 0).

D. Design Problems

4D.1 Microcellular Foaming. Microcellular foam is a kind
of plastic foam with bubble size less than 10 μm,
which is much less than the conventional foam. Indi-
cations of improvement of the properties of the poly-
mer matrix by microcellular foaming have given
importance to this relatively new process. One tech-
nique to produce microcellular foam is the gas super-
saturation technique, which for amorphous materials
consists of three steps: gas saturation, supersatura-
tion, and foaming. In the first step the polymer matrix
is saturated with the foaming gas (nitrogen, carbon
dioxide, etc). In the second step the gas pressure is
released creating supersaturation conditions, but the
polymer matrix does not foam because the temper-
ature is low (above room temperature but below the
glass transition temperature of the polymer matrix).
Foaming takes place in the final step, during which
the sample is submerged into an oil bath kept at a
temperature above the glass transition temperature of
the polymer matrix. During this step the bubble can
be initiated either at a heterogeneous nucleation site
or at a microcrack of the matrix created during the
forming process.

(a) Follow the steps outlined in Problem 4C.1 and
calculate the radius of the bubble as a function
of foaming time, for a diffusion-controlled pro-
cess (Fig. 4.30); that is, the hydrodynamic force
which resists bubble growth is considered neg-
ligible compared to the diffusion force. Neglect
the effects of surface tension, and assume that the
bubble is suspended in an infinite sea of polymer
matrix (S(t) → ∞).

(b) As a numerical example consider PS as the poly-
mer matrix at 188 ◦C, and the following gases

r

C

S(t)

Polymer +
dissolved
gas

Csat

C

p
g

R(t)+δ

R(t)

Gas
Bubble

FIGURE 4.30 Gas bubble growing in an infinite sea of polymer
matrix. S(t) presents the radius of the cell assigned to each grow-
ing bubble (∞ in our problem). δ presents the thickness of the
concentration layer, where the gas concentration changes from its
undisturbed value C∞ to Csat.

with their corresponding Henry’s law constants
(Durill and Griskey, 1966) in cm3(STP)/g·atm:

Nitrogen 0.049
Carbon dioxide 0.220
CFC-22 0.388
Argon 0.093
Helium 0.029

The saturation pressure is 1000 psi (6.9 MPa),
and the pressure inside the growing bubble is
the ambient pressure. Neglect the surface ten-
sion forces between the bubble and the polymer.
Which gas is the most promising for microcellular
foaming?

(c) Propose changes in the above experimental pro-
cedure that might bring more controllability to
the foaming process.

4D.2 Precipitation Foams. The insulation of a wire is
achieved by a solution coating process, which also
involves a precipitation foaming process. The whole
process consists of the following four steps.

1. Coating (coating of the conductor). A copper con-
ductor is passed through a crosshead die where it
is coated with a solution of about 30% HDPE in
xylene at 130 ◦C.

2. Whitening. The coated conductor passes through
water at about 80 ◦C and thus the HDPE crystal-
lizes, precipitates out, and whitens the solution.

3. Drying. The whitened insulation on the conductor
is dried by passing through an air duct where the
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air temperature and the air speed are controlled at
about 55 ◦C and 4 m/s, respectively.

4. Inversion. The final foamed structure is created by
sintering and fusion of the polyethylene particles.

If the radius of the copper wire is 150 μm and the
radius of the insulation is 350 μm, calculate the time
of the drying step, neglecting any shrinkage of the
insulation during this step.
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5
NONISOTHERMAL ASPECTS OF POLYMER PROCESSING

DESIGN PROBLEM IV
CASTING OF POLYPROPYLENE FILM

Polypropylene is extruded at 200 ◦C from a film die having
lips 76.2 cm wide and 0.1016 cm thick (see Fig. 5.1). The
extruded film is drawn down to a width of 60.96 cm and
a thickness of 0.005 cm. The distance from the die face to
the casting drum is 2.54 cm. The film is in contact with the
drum over a length of 70% of the circumference of the drum.
The air temperature is taken as 25 ◦C and the line speed
is 60 m/min. The radius of the drum is 0.45 m. Determine
the heat transfer coefficient required at the drum surface to
produce a clear film. The requirement for a clear film is based
on keeping the crystallinity at the center to be less than 3%
and the spherulite size less than 5000 μm. Tap water at 12 ◦C
is available for cooling.

Most polymer processes involve heat transfer. Polymers must
usually be heated above their melting points before shaping
and then cooled to maintain the desired shape. It is during
the cooling phase of the process that the physical proper-
ties of the polymer can drastically be altered. Because the
thermodynamic and thermal properties of most polymers are
rather similar to other materials, it is not necessary to develop
any new laws as it was for the flow of polymers. Hence,
this chapter serves mostly as a review of heat transfer with
emphasis on those topics pertinent to polymer processing.
The main aspects that require additional discussion and that
set polymers apart from other materials are their crystalliza-
tion behavior and the ability to control molecular orientation
during processing.

We begin by summarizing how one handles the tempera-
ture dependence of rheological properties of polymer melts
in Section 5.1. In Section 5.2 the shell balance approach
is used to set up one-dimensional nonisothermal problems
encountered in polymer processing. In this same section we
summarize the nonisothermal equations of change and their
use in polymer processing. The thermal transport properties
that occur in these equations include heat capacity, thermal
conductivity, density, and for semicrystalline polymers, heat
of fusion. These topics are addressed in Section 5.3. In Sec-
tion 5.4 the solutions to well-known problems in heat transfer
are presented as well as a summary of charts for heat transfer
coefficients for commonly encountered geometries. As radi-
ation heat transfer is encountered in a number of processes,
this form of heat transfer is also reviewed in Section 5.4.
The mechanical properties of polymers depend on the mor-
phology and orientation that are generated during the cooling
process and in Section 5.5 these topics are discussed. Finally,
in Section 5.6 the solution to Design Problem IV is presented.

5.1 TEMPERATURE EFFECTS ON
RHEOLOGICAL PROPERTIES

The rheological properties of polymer melts and solutions are
highly dependent on temperature. This is clearly illustrated
by the data presented in Figure 2.5 (p. 12), where the zero
shear rate viscosity, η0, drops by two orders of magnitude as
the temperature is raised from 115 ◦C to 240 ◦C. In general,
as illustrated in this same figure, the shape of the curves
remains nearly unchanged at each temperature. Because of
this similarity in the shape of the flow curves, it is possible to
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FIGURE 5.1 Schematic of a film casting process showing the
polymer film being cast onto a rotating drum.

represent the viscosity versus γ̇ data by a single curve, as is
shown in Figure 3.4 (p. 41) by plotting the reduced viscosity,
ηr, versus the reduced shear rate, γ̇r, where

ηr = η(γ̇ , T )
η0(T0)

η0(T )
(5.1)

and

γ̇r = aT γ̇ (5.2)

η0(T0) and η0(T) are the zero shear viscosities measured at
temperatures T0 and T, respectively. The shifting factor, aT,
is given as

aT = η0(T )T0ρ0

η0(T0)Tρ
(5.3)

where ρ0 and ρ are the densities of the melt at T0 and T,
respectively. Actually the ratio T0ρ0/Tρ is about unity so
that

aT = η0(T )

η0(T0)
(5.4)

The value of the reduced variables approach is that given the
flow curve at one temperature, we can find the complete flow
curve at any other temperature, if we know the ratio of the
zero shear viscosities at the two temperatures.

If η0 at T or T0 is not known, then one can use the insen-
sitivity of shear stress to temperature to find aT. From Eqs.
5.2 and 5.3 we define the reduced shear stress, τ r, as

τr(γ̇ , T0) = τyx(γ̇ , T )
T0ρ0

Tρ
(5.5)

Hence, because T0ρ0/Tρ is about unity, this implies that
τ yx is insensitive to temperature. The horizontal shifting of
different τ r(γ̇ ,T0) curves gives a master curve of τ r(γ̇ r,T0)
with the amount of shifting along the shear rate axis at each
temperature being aT.

The temperature dependence of aT is shown in Figure 5.2
for two polymer melts. In this figure ln aT is plotted versus
1/T (note T is in kelvin units, K), which suggests that aT has
the following form:

aT = exp

[
�E

R

(
1

T
− 1

T0

)]
(5.6)

where �E is the activation energy for flow. Most poly-
mer melts seem to follow this behavior. Values of
�E/R are reported to be 4.5 × 103 K, 2.83 × 103 K,
5.14 × 103 K, 6.34 × 103 K, and 4.98 × 103 K for LDPE,
HDPE, polypropylene (PP), polyphenylenesulfide, and
polyetheretherketone, respectively.

Another way to estimate aT is through the WLF equation,
which has been found to hold for a wide variety of polymers
for temperatures between the glasstransition temperature,
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FIGURE 5.2 The shift factor versus reciprocal temperature for
polyphenylene sulfide (PPS) and polyetheretherketone (PEEK).
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Tg, and Tg + 100 (Williams et al., 1955). This equation is
given as

log aT = −C0
1 (T − T0)

C0
2 + (T − T0)

(5.7)

If T0 is taken as the glass transition temperature, Tg, then
C0

1 = 17.44 and C0
2 = 51.6 K for a wide variety of polymers.

When some data are available, then it is recommended to
take C0

1 = 8.86 and C0
2 = 101.6 K and then choose T0 to give

the best fit of the data.
The primary normal stress difference and other quantities

are handled in a manner similar to that used for τ r:

N1,r(γ̇ , T0) = N1(γ̇ , T )
T0ρ0

Tρ
(5.8)

Thus, �1 is reduced as follows:

�1,r(γ̇ , T0) = �1T0/a2
T T (5.9)

where T0ρ0/Tρ ∼ 1. The dynamic oscillatory functions can
be reduced in the same manner:

G ′
r(ω, T0) = G ′(ω, T )

T0ρ0

Tρ
(5.10)

G ′′
r (ω, T0) = G ′′(ω, T )

τ0ρ0

Tρ
(5.11)

with ωr = aTω.
The temperature dependence of viscosity can be incorpo-

rated into the empiricisms for viscosity. For example, the tem-
perature dependence of the power law coefficients is given as

m = m0 exp[−B(T − T0)] (5.12)

n = n0 + C(T − T0) (5.13)

where m0 and n0 are the values of the parameters at the refer-
ence temperature, T0, and B and C are constants. Although m
is a strong function of T, n is not. It is customary to assume
that n is constant for most computations. For the Carreau
model we can replace η0(T) by aTη0(T0) and λ by λ(T0)aT.
Hence, the Carreau model becomes

η(T, γ̇ ) = η0(T0)aT
[
1 + (λ(T0)aT γ̇ )2

](n−1)/2
(5.14)

From Eq. 5.14 one can calculate the flow curve at any other
temperature provided η0 and λ are known at the reference
temperature, T0, and aT is known. Computations must be
done numerically with this model.

5.2 THE ENERGY EQUATION

5.2.1 Shell Energy Balances

In this section we set up shell energy balances for flowing
polymeric fluids. This material should be helpful in concep-
tualizing the nonisothermal equations of change. The basic
principle that is used is the conservation of thermal energy
as applied to a thin shell of fluid, which is stated below:

(
Net rate of gain of

thermal energy

)
=
(

Rate of thermal
energy in

)

−
(

Rate of thermal
energy out

)
+
(

Rate of thermal
energy production

)
(5.15)

Applying this principle to a differential volume element and
taking the limit as the volume element goes to zero leads to
a differential equation for the temperature distribution. The
procedure is described in more detail elsewhere (Bird et al.,
1960, 2007, Chapter 9). We illustrate the use of Eq. 5.15
through the following example.

Example 5.1. Cooling of Polypropylene Film

As shown in the figure associated with Design Problem IV
(Fig. 5.1) a film of polypropylene (PP) 0.1016 cm in thickness
is extruded from a 0.162 m wide film die onto a casting drum
2.54 cm below the die. The temperature of the film drops as a
result of forced convection at the film surface. Determine the
temperature of the film surface when it contacts the casting
drum. The melt temperature as it leaves the die is 200 ◦C. The
heat transfer coefficient is 100 W/m2 · K. Neglect die swell
and use an average film thickness of 2.54 × 10−2 cm. (The
film thickness is not uniform, and this aspect is discussed in
Chapter 9.) In Figure 5.3 is shown a model of the region of
interest.

Solution. The model of the region to be analyzed is shown in
Figure 5.3. The heat is removed primarily by forced convec-
tion at the surfaces due to air at 25 ◦C moving over the sheet.
(But in principle one should consider radiation effects as is
discussed in Section 5.4.) An energy balance is performed
on the element shown in Figure 5.3 to give

V0ρC p(T − TR)|x W �y − V0ρC p(T − TR)|x+�x

W �y + qx |x W �y − qx |x+�x (W �y)

+ (qy |y − qy |y+�y)W �x = 0 (5.16)

where TR is a reference temperature, C p is the constant pres-
sure heat capacity per unit mass, V0 is the film velocity, W is
the film width, and ρ is the density. We divide Eq. 5.16 by
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FIGURE 5.3 Model of region between the film die and cast-
ing drum (top) and expanded element on which energy balance is
performed (bottom).

the volume of the element, W �x �y, and take the limit as
�x and �y go to zero to give

− V0ρC p
∂T

∂x
− ∂qx

∂x
− ∂qy

∂y
= 0 (5.17)

To obtain a differential equation in terms of temperature
rather than the heat fluxes, qx and qy, we use Fourier’s law of
heat conduction (Bird et al., 1960, 2007, Chapter 9):

qx = −k
∂T

∂x
qy = −k

∂T

∂y
(5.18)

where k is the thermal conductivity. Substitution of the
expressions in Eq. 5.18 into Eq. 5.17 gives

V0ρC p
∂T

∂x
− k

∂2T

∂x2
− k

∂2T

∂y2
= 0 (5.19)

where it has been assumed that k is constant. Equation 5.19
must be solved along with the following boundary and initial
conditions:

B.C.1: at y = +b, qy = −k
∂T

∂y
= h(T (b) − Ta)

B.C.2: at y = −b, qy = −k
∂T

∂y
= h(Ta − T (−b))

I.C.: at x = 0, T = T0 = 200 ◦C (5.20)

Here Ta is the air temperature.
We next try to determine whether Eq. 5.19 can be reduced

or simplified. By writing Eq. 5.19 and the boundary and ini-
tial conditions in dimensionless form it is much easier to
determine which terms in the differential equation are most
important. The dependent and independent variables are writ-
ten in dimensionless form by dividing them by an appropriate
characteristic quantity. In particular, we introduce the follow-
ing dimensionless quantities:

ζ = x

b
, ξ = y

b
, θ = T − Ta

T0 − Ta
(5.21)

Equation 5.19 in dimensionless form becomes

bV 0ρC p

k

∂θ

∂ζ
= ∂2θ

∂ζ 2
+ ∂2θ

∂ξ 2
(5.22)

The term multiplying ∂θ /∂ζ is also dimensionless and is
called the Peclet number, Pe, and represents the ratio of the
heat transfer by forced convection to that by conduction. The
boundary and initial conditions given in Eq. 5.20 become

B.C.1: at ξ = 1,
∂θ

∂ξ
= hb

k
θ

∣∣∣∣
ξ=1

B.C.2: at ξ = −1,
∂θ

∂ξ
= −hb

k
θ

∣∣∣∣
ξ=−1

(5.23)

I.C.: at ζ = 0, θ = 1

The combination of terms, hb/k, is called the nusselt number,
Nu, and it is basically a dimensionless temperature gradient
averaged over the heat transfer surface.

We are now in a position to evaluate which terms could
be eliminated from Eq. 5.22. First we compare the order of
∂θ /∂ζ and ∂2θ /∂ζ 2. Evaluating Pe using data in Table 5.4 we
find Pe = 2100. Hence, Pe ∂θ /∂ζ � ∂2θ /∂ζ 2, and we can
eliminate ∂2θ /∂ζ 2 from Eq. 5.22. The equation which is to
be solved is

Pe
∂θ

∂ζ
= ∂2θ

∂ξ 2
(5.24)

Except when dealing with molten metals it is common to
neglect conduction in the flow direction as heat transfer by
this manner is small relative to convection. The solution to
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this equation requires the use of the separation of variables
and the solution is presented in graphical form in Figure 5.12.

We can try to reduce the equation further in order to
obtain an analytical solution. Since Pe � 1, heat transfer
is dominated by forced convection rather than conduction,
and it is possible to assume that the temperature distribution
through the thickness of the sheet is nearly uniform, except
near the outer edges. In order to reduce Eq. 5.24 to an ordi-
nary differential equation (ODE) we first define the mean
temperature, θ :

θ =
∫ 1

−1
θ dξ

/∫ 1

−1
dξ (5.25)

Next, we integrate Eq. 5.24 over the thickness of the sheet
and use Eq. 5.25 to obtain

Pe
∂θ

∂ζ
= 1

2

∫ 1

−1

∂

∂ξ

∂θ

∂ξ
dξ (5.26)

As

∂θ

∂ξ
= −qyb

k(T0 − Ta)
(5.27)

Equation 5.26 becomes

Pe
∂θ

∂ζ
= (−b)

k(T0 − Ta)

∫ qy (+1)

qy (−1)
dq y (5.28)

Using the boundary conditions in Eq. 5.23, we now obtain

Pe
∂θ

∂ζ
= −hb

k
θ (5.29)

The solution to Eq. 5.29 can be found by using either an
integrating factor or separating variables and is

θ = C1e−Cζ (5.30)

where C1 is an integration constant and C = h/ρCp V0. C1 is
obtained from the I.C. (Eq. 5.23) and is 1.0. Using the mate-
rial properties for PP given in Table 5.4 and the conditions
given in the problem, θ = 0.999 or the change in the film
temperature over a distance of 2.54 cm is insignificant.

Example 5.2. Temperature Rise Due to Viscous
Dissipation for HDPE in a Cone-and-Plate Rheometer

Determine the maximum temperature rise for HDPE in a
cone-and-plate rheometer at a shear rate of 10 s−1. The diam-
eter of the plate is 2.54 cm and the cone angle is 0.1 radian.

x

y H=0.125 cm

L

T =200 °Cw

T =200 °Cw

FIGURE 5.4 Approximation of flow in a cone-and-plate
rheometer.

The properties are assumed to be independent of temperature
and are given below:

ρ = 782 kg/m3 k = 0.255 W/m · K

m = 4.68 × 103 Pa · sn n = 0.54 Cp = 2650 J/kg · K

The plate and melt temperatures are taken to be 200 ◦C, and
no heat transfer is assumed to occur at the free surface.

Solution. Based on the description of the cone-and-plate
rheometer in Section 3.3 we can consider the flow to be as
shown in Figure 5.4. Based on the dimensions given, the
height, H, at the edge is 0.125 cm. An energy balance is
performed on the slab of thickness �y and unit width. It is
assumed that heat is generated by viscous dissipation, which
is the conversion of mechanical energy into heat. The viscous
dissipation per unit volume is

Ṡ = −τyx
dvx

dy
(5.31)

and is analogous to the rate of work in moving a single particle
(i.e., W = Fxvx). The heat that is generated is conducted out
of the melt through the metal plates by means of conduction
in the y direction. The energy balance per unit width is

qy |y L − qy|y+�y L + ṠL �y = 0 (5.32)

Next, we divide through by the volume of the element (i.e.,
1 ·�y · L) and take the limit as �y → 0. This gives the
following differential equation:

− dqy

dy
+ Ṡ = 0 (5.33)

We now replace qy with −k dT/dy, which is Fourier’s law,
and S with Eq. 5.31:

k
d2T

dy2 − τyx
dvx

dy
= 0 (5.34)

Substituting in for τ yx, which is

τyx = +m

(
−dvx

dy

)n

= +mγ̇ n (5.35)
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we obtain the following differential equation:

k
d2T

dy2 + mγ̇ n+1 = 0 (5.36)

Equation 5.36 can be integrated to give

T = −m

k
(γ̇ )n+1

(
y2

2

)
+ C1 y + C2 (5.37)

The boundary conditions required for finding C1 and C2 are

B.C.1: at y = 0, T = Tw = 200 ◦C (5.38)

B.C.2: at y = H, T = Tw = 200 ◦C (5.39)

Using Eqs. 5.39 and 5.38, Eq. 5.37 becomes

T = − H2mγ̇ n+1

2k

( y

H

)2
+ H 2mγ̇ n+1

2k

y

H
+ Tw (5.40)

From this equation it is found that the temperature is a max-
imum at H/2 and for γ̇ = 10 s−1, T − Tw is 6.50 ◦C. Hence,
at this shear rate there is a significant rise in the melt tem-
perature and the viscosity measurements would be affected.
Furthermore, this would be enough of a temperature rise to
significantly affect the measurement of N1 because of the
increase in volume, which causes the plates to be pushed
apart.

The next example is more complicated and involves the
flow of HDPE through a pipe die. It is important to minimize
the temperature increase in a melt due to viscous dissipation.
In this case the velocity profile may not be known a priori as
it may be affected by the temperature distribution.

Example 5.3. Nonisothermal Flow of HDPE Through a
Pipe Die

Returning to Section 2.2.1 we now ask whether the melt
temperature will remain at 453 K as HDPE passes through
the pipe die at the upper extrusion limit. We assume that the
melt enters the die at T0 = 453 K and that the wall temperature
at R is 453 K. The inner wall is also maintained at 453 K. The
rheological properties for this melt were given in Table 2.3
(p. 20). The thermal properties are given in Table 5.6 (p. 122).
For this problem we take these properties to be independent
of temperature and use ρ = 782 kg/m3, C p = 2650 J/kg · K,
and k = 0.255 W/m · K.

Solution. For pedagogical purposes we solve this prob-
lem using the forced convection assumption in which it is
assumed that the velocity profile is unaffected by changes
in the viscosity as a result of changes in temperature. With

this assumption, the velocity profile remains unchanged from
that of the isothermal case and the equation of motion can be
used independently of the energy balance. The equation of
motion for this problem was given in Eq. 2.10 and is repeated
below:

d

dr
(rτrz) = −

(
dp

dz

)
r = (P0 − PL )

L
r (5.41)

For a GNF model using the power-law empiricism for viscos-
ity, the velocity, field was given in Eqs. 2.28 and 2.29. Taking
n = 0.5 (actually it is 0.56, but this allows us to obtain an
analytical solution) we find v<z and v>

z to be, respectively:

v<
z = R

[
(P0 − PL )R

2mL

]s [
(ξ − κ)

(
β4

ξ
− 2β2

)

+ 1

3
(ξ 3 − κ3)

]

v>
z = R

[
(P0 − PL )R

2mL

]s [
(1 − ξ )

(
β4

ξ
− 2β2

)

+ 1

3
(1 − ξ 3)

]
(5.42)

We next carry out an energy balance on the differential
(doughnut) element shown in Figure 5.5. The sources of
energy transport consist of heat transfer into and out of the
element by convection due to flow in the z direction, conduc-
tion of heat into and out of the element in both the z and r
directions, and heat generated by viscous dissipation. When
an energy balance is applied to the element shown in Figure
5.5 the following equation is obtained:

ρC p(T − TR)|zvz2πr�r − ρC p(T − TR)|z+�zvz2πr�r

+ (qz |z − qz |z+�z)2πr�r

+ (qrr |r − qrr |r+�r )2πr �z + Ṡ2πr�r�z = 0 (5.43)

convection

conduction

convection

conduction

r

z

FIGURE 5.5 Cylindrical element on which the energy balance
is performed in Example 5.3.
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Here C p is the constant pressure heat capacity per unit mass,
TR is a reference temperature, qz and qr are the heat fluxes due
to conduction in the z and r directions, respectively, and Ṡ is a
source term in units of energy per unit time per unit volume.
In this example there is no chemical reaction, but because
of the high viscosity of the fluid, there may be significant
viscous dissipation. Viscous dissipation is given by

Ṡ = −τr z
dvz

dr
(5.44)

We now divide all the terms in Eq. 5.43 by the volume of
the element, 2πr �r �z, and then take the limit as �r and
�z → 0. This leads to the following differential equation:

ρC pvz
∂T

∂z
= −∂qz

∂z
− 1

r

∂

∂r
(rqr ) + Ṡ (5.45)

In order to put Eq. 5.45 into a form that can be solved
for T, two substitutions are required. We first replace qz and
qr by the following expressions, which come from Fourier’s
law of heat conduction (Bird et al., 1960, 2007):

qz = −k
∂T

∂z
qr = −k

∂T

∂r
(5.46)

Furthermore, we replace S by −τr z(dvz/dr), which for a
power-law fluid becomes

− τr z
dvz

dr
= +m

∣∣∣∣dvz

dr

∣∣∣∣
n−1(dvz

dr

)2

(5.47)

This leads to a partial differential equation for the temperature
distribution,

ρC pvz(r )
∂T

∂z
=k

∂2T

∂z2
+ k

r

∂

∂r

(
r
∂T

∂r

)
+ m

∣∣∣∣dvz

dr

∣∣∣∣
n−1(dvz

dr

)2

(5.48)

Because of the forced convection assumption we can solve
Eq. 5.48 independently of the equation of motion. However,
these two equations would ordinarily be coupled because of
the dependence of vz(r) on η, which is highly temperature
dependent, and hence numerical methods would be required.

In order to estimate whether a significant temperature rise
will occur, we make three further simplifications. Because
κ = 0.83, we can neglect curvature and treat the annular die
as if it is parallel plate geometry of height H = R(1 − κ) and
width W = πR(1 + κ). Equation 5.48 becomes

ρC pvz(y)
∂T

∂z
= k

∂2T

∂y2
+ m

∣∣∣∣dvz

dy

∣∣∣∣
n−1(dvz

dy

)2

(5.49)

where again it is assumed that the conduction term in the
flow direction (z direction) is insignificant relative to the
convection term. The highest possible temperature rise will
occur if there is no heat conducted through the walls of the die
(this is referred to as adiabatic conditions). This is equivalent
to saying that qy = 0 at both walls. Using the velocity profile
for flow through parallel plates given in Table 2.5 (p. 22),
Eq. 5.49 becomes

ρC pvmax

[
1 −

(
y

H/2

)s+1
]
∂T

∂z
= k

∂2T

∂y2

+ m

[
vmax(s + 1)

H/2

]n+1( y

H/2

)1+s

(5.50)

subject to the following boundary and initial conditions:

B.C.1: at y = 0, qy = 0 (5.51)

B.C.2: at y = H/2, qy = 0 (5.52)

I.C.: at z = 0, T = T0 (5.53)

We next average Eq. 5.50 over the cross-sectional area using
the boundary conditions above to yield

ρC p < vz > HW
dT

dz
= WHm

s + 2

[
vmax(s + 1)

H/2

]n+1

(5.54)

This is a first-order ordinary differential equation, which we
can now integrate to find the temperature rise at the exit of
the die:

T − T0 = m

ρC p < vz > (s + 2)

[
vmax(s + 1)

H/2

]n+1

z

(5.55)

Using the results from Section 2.2.2 and the values given in
the problem statement, we find

T − T0 = 6.19E + 03 Pa · sn(3.33E + 03)

(782 kg/m3)(26,503/kg · K)(0.112 m/s)(3.786)
z

= 14.6 z (5.56)

With the length of the die given as 6.35 × 10−3 m, the tem-
perature rise is only 0.92 K. Hence, for the case at hand there
is no significant rise in temperature as a result of viscous
heating. However, if the die length was increased to L =
0.635 m, then there would be a 9.2 K increase in temperature
which could be significant.

5.2.2 Equation of Thermal Energy

As in Chapter 2 for the equation of motion it is more conve-
nient to use the general form of the thermal energy equation
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TABLE 5.1 The Equation of Thermal Energy in Terms of Energy and Momentum Fluxes

Rectangular coordinates:

ρĈv

(
∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z

)
= −

[
∂qx

∂x
+ ∂qy

∂y
+ ∂qz

∂z

]
− T

(
∂p

∂T

)
ρ

(
∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)
−
{
τxx

∂vx

∂x
+ τyy

∂vy

∂y
+ τzz

∂vz

∂z

}

−
{
τxy

(
∂vx

∂y
+ ∂vy

∂x

)
+ τzz

(
∂vx

∂z
+ ∂vz

∂x

)
+ τyz

(
∂vy

∂z
+ ∂vz

∂y

)}
(A)

Cylindrical coordinates:

ρĈv

(
∂T

∂t
+ vr

∂T

∂r
+ vθ

r

∂T

∂θ
+ vz

∂T

∂z

)
= −

[
1

r

∂

∂r
(rqr ) + 1

r

∂qθ

∂θ
+ ∂qz

∂z

]
−T

(
∂p

∂T

)
ρ

(
1

r

∂

∂r
(rvr ) + 1

r

∂vθ
∂θ

+ ∂vz

∂z

)

−
{
τrr

∂vr

∂r
+ τθθ

1

r

(
∂vθ
∂θ

+ vr

)
+ τzz

∂vz

∂z

}
−
{
τrθ

[
r
∂

∂r

( vθ
r

)
+ 1

r

∂vr

∂θ

]

+ τr z

(
∂vz

∂r
+ ∂vr

∂z

)
+ τθ z

(
1

r

∂vz

∂θ
+ ∂vθ

∂z

)}
(B)

Spherical coordinates:

ρĈv

(
∂T

∂t
+ vr

∂T

∂r
+ vθ

r

∂T

∂θ
+ vφ

r sin θ

∂T

∂φ

)
= −

[
1

r 2

∂

∂r
(r2qr ) + 1

r sin θ

∂

∂θ
(qθ sin θ ) + 1

r sin θ

∂qφ

∂φ

]

− T

(
∂p

∂T

)
ρ

(
1

r 2

∂

∂r
(r2vr ) + 1

r sin θ

∂

∂θ
(vθ sin θ ) + 1

r sin θ

∂vφ
∂φ

)

−
{
τrr

∂vr

∂r
+ τθθ

(
1

r

∂vθ
∂θ

+ vr

r

)
+ τφφ

(
1

r sin θ

∂vφ
∂φ

+ vr

r
+ vθ cot θ

r

)}

−
{
τrθ

(
∂vθ
∂r

+ 1

r

∂vr

∂θ
− vθ

r

)
+ τrφ

(
∂vφ
∂r

+ 1

r sin θ

∂vr

∂φ
− vφ

r

)

+ τθφ

(
1

r

∂vφ
∂θ

+ 1

r sin θ

∂vθ
∂φ

− cot θ

r
vφ

)}
(C)

Source: Reprinted by permission of the publisher from Bird et al., 1960.

rather than use the shell energy balance approach. The ther-
mal energy equation is given in terms of energy and momen-
tum fluxes in Table 5.1. When the components of the heat
flux, q, which are given in Table 5.2, and the GNF model are
substituted into the equations given in Table 5.1, we obtain
the energy equation in terms of transport properties. This
form of the equation with the assumption of constant prop-
erties is given in Table 5.3. (In this table we replace μ by η.)
These tables are much more convenient to use than the shell
energy balance approach.

TABLE 5.2 Components of the Energy Flux q

Rectangular Cylindrical Spherical

qx = −k
∂T

∂x
qr = −k

∂T

∂r
qr = −k

∂T

∂r

qv = −k
∂T

∂y
q0 = −k

1

r

∂T

∂θ
qθ = −k

1

r

∂T

∂θ

qz = −k
∂T

∂z
qz = −k

∂T

∂z
qφ = −k

1

r sin θ

∂T

∂φ

We solve the following set of equations written in vector
notation:

Continuity: ∇·ρ v = 0 (5.57)

Motion: ρ
Dv
Dt

= −∇ p + ∇·ηγ̇ + ρg (5.58)

Energy: ρC p
DT

Dt
= (∇·k ∇T ) + 1

2η(γ̇ : γ̇ ) + Ṡ

(5.59)

Here D/Dt is the material time derivative or the time deriva-
tive following the fluid motion. These equations have been
written in a form which demonstrates the temperature depen-
dence of the viscosity and thermal conductivity. Furthermore,
the equations have been written with the assumption that the
rheological properties are described by the GNF model. We
now use the nonisothermal equations of change to resolve
the examples in Section 5.2.1.
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TABLE 5.3 The Equation of Thermal Energy in Terms of the Transport Properties (for Newtonian Fluids of Constant ρ and k)

Rectangular coordinates:

ρĈ p

(
∂T

∂t
+ vz

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z

)
= k

[
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

]
+ 2μ

{(
∂vz

∂x

)2

+
(
∂vy

∂y

)2

+
(
∂vz

∂z

)2
}

+μ

{(
∂vz

∂y
+ ∂vy

∂x

)2

+
(
∂vx

∂z
+ ∂vz

∂x

)2

+
(
∂vy

∂z
+ ∂vz

∂y

)2
}

(A)

Cylindrical coordinates:

ρĈp

(
∂T

∂t
+ vr

∂T

∂r
+ vθ

r

∂T

∂θ
+ vz

∂T

∂z

)
= k

[
1

r

∂

∂r

(
r
∂T

∂r

)
+ 1

r 2

∂2T

∂θ 2
+ ∂2T

∂z2

]
+ 2μ

{(
∂vr

∂r

)2

+
[

1

r

(
∂vθ
∂θ

+ vr

)]2

+
(
∂vz

∂z

)2
}

+μ

{(
∂vθ
∂z

+ 1

r

∂vz

∂θ

)2

+
(
∂vz

∂r
+ ∂vr

∂z

)2

+
[

1

r

∂vr

∂θ
+ r

∂

∂r

( vθ
r

)]2
}

(B)

Spherical coordinates:

ρĈp

(
∂T

∂t
+ vr

∂T

∂r
+ vθ

r

∂T

∂θ
+ vφ

r sin θ

∂T

∂φ

)
= k

[
1

r 2

∂

∂r

(
r 2 ∂T

∂r

)
+ 1

r 2 sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
+ 1

r 2 sin2 θ

∂2T

∂φ2

]

+ 2μ

{(
∂vr

∂r

)2

+
(

1

r

∂vθ
∂θ

+ vr

r

)2

+
(

1

r sin θ

∂vφ
∂φ

+ vr

r
+ vθ cot θ

r

)2
}

+μ

{[
r
∂

∂r

( vθ
r

)
+ 1

r

∂vr

∂θ

]2

+
[

1

r sin θ

∂vr

∂φ
+ r

∂

∂r

( vφ
r

)]2

+
[

sin θ

r

∂

∂θ

( vφ
sin θ

)
+ 1

r sin θ

∂vθ
∂φ

]2
}

(C)

Source: Reprinted by permission of the publisher from Bird et al., 1960.

Example 5.4. Use of the Nonisothermal Equations
of Change

Reformulate Examples 5.1, 5.2, and 5.3 using the nonisother-
mal equations of change.

Solution to Example 5.1. We start by making postulates
pertaining to the velocity and temperature fields:

vx = const. = v0 T = T (x, y) (5.60)

From these postulates and Fourier’s law (Table 5.2) the fol-
lowing fluxes exist:

qx = −k
∂T

∂x
qy = −k

∂T

∂y
(5.61)

The equation of thermal energy becomes

ρC pvx
∂T

∂x
= −∂qx

∂x
− ∂qy

∂y
(5.62)

Similar arguments as presented in Example 5.1 can be used
to reduce Eq. 5.62 to Eq. 5.29.

Solution to Example 5.2. Again postulates pertaining to the
velocity and temperature fields are made:

vx = vx (y) T = T (y) (5.63)

The equation of motion is

− ∂τyx

∂x
= 0 (5.64)

For the GNF model with the power-law empiricism for
viscosity

τyx = −m

(
dvx

dy

)n

(5.65)

Hence, the velocity profile is

vx = V0

H
y (5.66)

and for this flow vx is unaffected by the temperature profile.
The energy equation for constant properties becomes

k
∂2T

∂y2
+ η

(
∂vx

∂y

)2

= 0 (5.67)
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This equation can be solved as in Example 5.2. We again
assume that all the physical properties are constant.

Solution to Example 5.3. The following postulates are made
for vz and T:

vz = vz(r ) T = T (r, z) (5.68)

The equation of motion becomes

− dp

dz
= +1

r

d

dr
(rτr z) (5.69)

or with τ rz = −η(dvz/dr), we obtain

dp

dz
= 1

r

d

dr

(
rη

dvz

dr

)
(5.70)

The energy equation is

ρC pvz
∂T

∂z
= −1

r

∂

∂r
(rqr ) − ∂qz

∂z
− τr z

dvz

dr
(5.71)

With the substitution of Fourier’s law of heat conduction and
the GNF model we obtain

ρC pvz
∂T

∂z
= +1

r

∂

∂r

(
kr

∂T

∂r

)
+ ∂

∂z

(
k
∂T

∂z

)
+ η

(
dvz

dr

)2

(5.72)

With the assumption of constant physical properties, Eq. 5.72
would be the same as that obtained by means of the shell
energy balance (Eq. 5.48).

5.3 THERMAL TRANSPORT PROPERTIES

The material properties that appear in the thermal energy
equation are the density, ρ, the constant pressure heat capac-
ity, C p (note that when ρ is constant C p ≈ Cv ), and the ther-
mal conductivity. In addition, because a number of polymers
are semicrystalline, energy can be absorbed during melting or
given up when crystallization occurs on cooling. The energy
absorbed is referred to as the heat of fusion (�H f) while the
energy released is the heat of crystallization (�H c). In this
section representative values for both common commercial
polymers as well as high performance engineering thermo-
plastics are presented. Later in Chapter 11, because of the
interest in using what are referred to as compostable poly-
mers (i.e., polymers that are biodegradable) and polymers
from renewable resources, values of their thermal properties
are given for a few of the major polymers. Methods for

estimating thermal properties for composite systems
(i.e., filled polymers and polymer blends) are also
discussed.

5.3.1 Homogeneous Polymer Systems

Representative thermal properties for an amorphous poly-
mer, in this case polycarbonate, are shown in Figure 5.6
as a function of temperature. Here it is observed that all
the quantities except C p change continuously with increas-
ing temperature. At about 153 ◦C, there is a discontinuity
in C p which is associated with the glass transition tem-
perature, Tg. Above Tg, the polymer becomes more easily
deformable and is usually processed above Tg. It is observed
that above Tg there is very little change in the properties.
For example, C p changes from 0.46 kcal/g · K at 435 K to
0.5 kcal/g · K at 480 K. The thermal conductivity changes
even less.

Representative values of ρ, k, and C p are shown in
Figure 5.7 for a semicrystalline polymer. Here it is observed
that C p increases rapidly with temperature, passing through
a maximum and then decreasing with temperature. The tem-
perature at the peak value is taken as the melting point, Tm.
The area under the curve is associated with the melting of the
crystalline phase and is referred to as the heat of fusion,�H f .
Above Tm the thermal properties are observed not to change
significantly with temperature. For computational purposes
above Tm, we take ρ, C p, k, and α (= k/ρ C p) to be indepen-
dent of temperature.

Values of ρ, C p, and k are presented for a number of
commercially available polymers at 25 ◦C in Table 5.4 and
at 150 ◦C in Table 5.5. Here it is observed that the values
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mer, polypropylene (Data from Wanger, 1969.)

all lie within a fairly narrow range. For more rigorous com-
putations the temperature dependence of C p, ρ, and k is
presented for three commercial polymers in Table 5.6. Here
all properties are given as polynomial functions of tempera-
ture. Thermal properties can be difficult to obtain, but many
values can be found in the book by Van Krevelen (1990) and
The Polymer Handbook (Brandrup and Immergut, 1981). A
method for estimating C p is given in Appendix C. Data are
presented for three high performance engineering thermo-
plastics in Table 5.7. These polymers typically have higher
Tg and Tm values and densities than those of the commodity
resins, but similar values of C p and k. They are used pri-
marily in applications where high strength and stiffness are
required at elevated temperatures. Furthermore, they are fre-
quently used in combination with carbon or other stiff fibers
to form thermoplastic composites. A more complete list of
engineering thermoplastics is given in Table 5.8. In this table
their chemical structures along with their Tg and Tm val-
ues are given. Additional information on these polymers as
well as others can be found in the book by Van Krevelen
(1990).

TABLE 5.4 Density, Thermal Conductivity, and Heat Capacity of Some Polymers at Room Temperature

Polymer
Density

(kg/m3) × 10−3

Thermal
Conductivity
(J/m · s · K) Tg (◦C) TM (◦C)

Heat Capacity
(kJ/kg · K)

ABS 1.16 0.188–0.335 80 1.25–1.67
Nylon 66 1.13–1.15 0.243 57 240 0.46
Polycarbonate 1.2 0.192 149 1.25
Polyester (PETP) 1.37 0.289 80 249 1.25
LDPE 0.910–0.925 0.335 2.30
HDPE 0.940–0.965 0.460–0.519 −78 141 2.30
PMMA 1.17–1.20 0.167–0.251 1.46
Polyoxymethylene 1.42 0.230 –82 183 1.46
PS 1.04–1.09 0.100–0.138 107 1.34
PTFE 2.0–2.14 0.250 1.05
Polyurethane (thermoplastic) 1.05–1.25 0.070–0.310 −46 to –18 1.67–1.88
PVC (rigid) 1.30–1.45 0.125–0.293 0.84–1.25
PP 0.91 0.172 −10 165 2.14

Source: Data from Van Krevelen, 1990, and H. H. Winter, 1977.

TABLE 5.5 Thermal Conductivity and Heat Capacity of Some Polymers at 150 ◦C

Polymer k (W/m · K) Cp (kJ/kg · K) ρ (10−3kg/m3)

LDPE Low-density polyethylene 0.241 2.57 0.782
HDPE High-density polyethylene 0.255 2.65 0.782
PPa Polypropylene 0.142 2.80 0.867
PVC Polyvinyl chloride 0.166 1.53 1.31
PS Polystyrene 0.167 2.04 0.997
PMMA Polymethylmethacrylate 0.195 1.11

aPP data are at 180 ◦C (Tm = 165 ◦C).
Source: Data from H. H. Winter, 1977.
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TABLE 5.7 Thermal Properties for Three Semicrystalline Engineering Thermoplastics at Room Temperature

Polymer Tg (◦C) T (◦C) Tm (◦C) k (W/m · K) Cp (kJ/kg · K) ρ (10−3 kg/m3)

PEEK (polyetheretherketone) 144 390 334–343 0.251 1.34 1.401 (cry)a

1.263 (amor)a

PPS (polyphenylene sulfide) 88 315 285–290 0.289 1.09 1.34 (amor)
1.44 (cry)

PEKK (poly(aryl ether ketone ketone)) 156 354 330–339 — — —

acry = crystalline; amor = amorphous.

For semicrystalline polymers it is observed that melting
occurs leading to the absorption of energy. The energy
associated with the change from the crystalline phase to
the completely amorphous state is obtained by integrat-
ing the area under the curve of C p versus temperature

TABLE 5.8 Structure of a Number of Engineering
Thermoplastics and Their Glass Transition and Melt
Temperatures

data.∗ The energy associated with this phase transition is
called the heat of fusion, �Hf. Values of �Hf are presented
in Table 5.9 for a number of commercially available
polymers as well as two high performance polymers used in
the formation of thermoplastic composites. It should also be
noted that the melting point is not really distinct, but covers
a broad temperature range. When carrying out calculations
involving melting, it may be more appropriate to use Cp as
a function of temperature rather than treat the polymer as
having a distinct phase change.

The cooling of a semicrystalline polymer from a tem-
perature above Tm to some lower temperature leads to
crystallization. The energy associated with crystallization,
called the heat of crystallization (�Hc), is affected by the
temperature at which crystallization takes place. Represen-
tative data for PPS are presented in Table 5.10. Here it is
observed that the heat of crystallization, �Hc, depends on
Mw and temperature. Furthermore, the values of �Hc are
somewhat lower than those of �Hf. Unless data are avail-
able, it is customary to consider �Hf = �Hc. Values of �Hc

for some common polymers are given in Appendix C and can
be found for other polymers in the books by Van Krevelen
(1990) and Brandrup and Immergut (1989).

5.3.2 Thermal Properties of Composite Systems

By composite systems we mean any combination of a poly-
mer system (called the matrix) with another polymer, fillers
such as glass fibers, nanoclays or carbon black (particulates),
or long continuous fibers used in the formation of thermoplas-
tic prepregs (a prepreg is a sheet of polymer that is reinforced
with fiber and can later be processed by forming techniques).
Blending rules are usually used to weight the contribution
of each component. The rules consider the thermal proper-
ties to be in either a series or a parallel arrangement of the
matrix and second component (Richardson, 1977). The series
arrangement is

1/�b = φ1/�1 + φ2/�2 (5.73)

∗Values of C p versus temperature are most often obtained by means of dif-
ferential scanning calorimetry (DSC). This technique is based on monitoring
the heat flow to or from the polymer sample from a standard, both of which
are increased in temperature at the same rate. The properties of the standard
are rigorously known.
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TABLE 5.9 Heat of Fusion of Some Polymers

Polymer
�Hf

(J/kg) × 10−4 Reference

Polyoxymethylene 24.9 Starkweather and
Boyd, 1960

Polybutene-1 24.7 Nielsen, 1962
HDPE (“Super Dylan”) 24.5 Ke, 1960
PP 23.4 Nielsen, 1962
HDPE (“Marlex 50”) 21.8 Ke, 1960
Nylon 66 20.5 Nielsen, 1962
LDPE 13.8 Nielsen, 1962
PET 13.7 Nielsen, 1962
Natural rubber

(cis-poly- isoprene)
6.4 Nielsen, 1962

PTFE 5.7 Starkweather and
Boyd, 1960

PEEK 13.0 Velisaris and
Saferis, 1988

PPS 10.5 Lopez and Wilkes,
1988

TABLE 5.10 Heats of Crystallization for Polyphenylene
Sulfide as a Function of Mw and Crystallization
Temperature, Tc

Tc (◦C)
�Hc (Mw = 24,000)

(J/kg) × 10−4
�Hc (Mw = 63,000)

(J/kg) × 10−4

225 4.3 3.7
235 4.6 4.2
245 4.7 4.4
255 5.1 4.7

Source: Data from Lopez and Wilkes, 1988.

where

�b = bulk composite property (C p or k)

�1 = matrix property (C p or k)

�2 = second component property (C p or k)

φ1 = volume fraction of the matrix

φ2 = volume fraction of the second component

The parallel arrangement of the matrix and second com-
ponent properties is

�b = φ1�1 + φ2�2 (5.74)

Actually the series arrangement represents the highest limit
for the bulk composite property while the parallel arrange-
ment represents the lowest limit.

For a PEEK and carbon fiber composite, the ther-
mal conductivity was found to be best determined using
Eq. 5.73 while the heat capacity was best determined using
Eq. 5.74 but with mass fractions instead of volume fractions
(Velisaris and Seferis, 1988). Values for ρ, k, and C p are
given in Table 5.11. It is interesting to note that the values
of C p for the matrix and carbon fiber are similar while the
values of k are lower for the matrix. The bulk values of k for
the composite are then increased somewhat over those of the
matrix. Although it is not certain that these rules apply to
polymer blends, filled polymers, or other composite struc-
tures, they at least represent the starting point for estimating
the thermal transport properties of composite systems.

5.4 HEATING AND COOLING OF
NONDEFORMING POLYMERIC MATERIALS

Heat transfer is as important as polymer rheology in the
processing of polymeric materials. Polymers usually start as
solids and then are heated to temperatures above Tg or Tm

before being shaped. During or immediately after the shap-
ing process the cooling process starts, and it is here that
the morphology and structure and associated physical prop-
erties are developed. In this section three methods of heat
transfer are summarized: conduction, convection, and radia-
tion. First, solutions to well-known problems are presented
in graphical form in Section 5.4.1, as many processes can be
modeled as one of these basic heat transfer processes. From
the graphical solutions we proceed directly to numerical solu-
tions of heat transfer problems. In Section 5.4.2 the important
heat transfer coefficients commonly found in polymer pro-
cessing are summarized. Radiation heat transfer is discussed
in Section 5.4.3 as this technique is used frequently to heat
polymers up rapidly before applying shaping operations such
as thermoforming and blow molding.

TABLE 5.11 Thermal Properties of PEEK and PEEK/Carbon Fiber Composites

Material Density (kg/m3)
Mass Fraction
(kg matrix/kg)

Volume Fraction
(m3 matrix/m3) Cp (kJ/kg · K) k (W/m · K)

α× 107

(m2/s)

Matrix 1263 (amor)
1401 (cryst)

1.34 0.251 1.485

Carbon fiber 1790 1.26 0.427 1.899
Composite APC-1 1534 0.40 0.48 1.30 0.318 1.598
Composite APC-2 1579 0.32 0.32 1.30 0.339 1.655

Source: Data from Velisaris and Seferis, 1986.
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x

y

+b

-b

FIGURE 5.8 One-dimensional heat transfer in a slab with the
heat flux in the x direction. Common boundary conditions are (a)
constant wall temperatures at x = + b and −b and (b) heat flux at
x = + b and −b due to thermal resistance between a fluid and the
slab surface.

5.4.1 Transient Heat Conduction in
Nondeforming Systems

When no deformation occurs, the thermal energy equation
reduces to the following form:

ρC p
∂T

∂t
= ∇ · k ∇T + Ṡ (5.75)

Here the source term, Ṡ, could represent the rate of energy
generated per unit volume due to a phase change, absorbed
radiation, or a chemical reaction. For a number of problems
encountered in polymer processing this equation takes on two
relatively simple forms for planar and cylindrical geometries.
For a planar geometry (see Fig. 5.8), Eq. 5.75 becomes

ρC p
∂T

∂t
= k

∂2T

∂x2
+ Ṡ (5.76)

which is the one-dimensional heat conduction equation for a
slab. Examples of processes that are described by this equa-
tion include the cooling of an expanded parison as it contacts
a cold mold wall, the cooling of an injection-molded part,
cooling of a laminated thermoplastic composite prepreg in
a mold, and cooling of a cast film on a metal drum. For
cylindrical geometries (see Fig. 5.9), Eq. 5.75 reduces to

ρC p
∂T

∂t
= k

1

r

∂

∂r

[
r
∂T

∂r

]
+ Ṡ (5.77)

which is the heat conduction equation for a cylinder in which
heat transfer occurs only in the r direction. Examples of
processes that are described by Eq. 5.77 include cooling

r
z

R

FIGURE 5.9 One-dimensional heat transfer in a cylinder in the
r direction. Common boundary conditions are (1) constant wall
temperature at r = R and a zero heat flux in the r direction at the
center (i.e., qr = 0); and (2) heat flux at r = R due to thermal
resistance between a fluid and the cylinder surface.

of a strand of polymer in a pelletizing process, of a polymer
coated metal wire, and an injection-molded part of cylindrical
cross section (e.g., a cylindrical preform that is later blow
molded).

The solutions of Eqs. 5.76 and 5.77 are subject to various
boundary conditions. For a slab of finite thickness (thickness
2b, with the axis at the center of the slab) the boundary
conditions are usually given as constant surface temperatures
or a step change in the surface temperature due to convection
at the free surfaces. Mathematically for the first case the
boundary and initial conditions are given as

B.C.1: at x = +b, T (b, t) = Tw (5.78)

B.C.2: at x = −b, T (−b, t) = Tw (5.79)

I.C.: at t = 0, T (x, 0) = T0 (5.80)

In the second case the boundary and initial conditions are
given as

B.C.1: at x = −b, qx (−b, t) = −k
∂T

∂x

∣∣∣∣
−b

= h[Ta − T (−b)] (5.81)

B.C.2: at x = +b, qx (b, t) = −k
∂T

∂x

∣∣∣∣
+b

= h[T (+b) − Ta] (5.82)

I.C.: at t = 0, T (x, 0) = T0 (5.83)

Ta here is the temperature of the cooling fluid. In the case
of the cylindrical geometry the corresponding boundary and
initial conditions for the constant surface temperature (step
change in temperature) or the step change in surface temper-
ature due to convection are written, respectively, as

B.C.1: T (R, t) = T1 (5.84)

B.C.2:
∂T

∂r
(0, t) = 0 (5.85)

I.C.: T (r, 0) = T0 (5.86)

or

B.C.1: qr (R, t) = −k
∂T

∂r
(R, t) = h(T (R) − Ta) (5.87)

B.C.2: qr (0, t) = −k
∂T

∂r
(0, t) = 0 (5.88)

I.C.: T (r, 0) = T0

The solutions of Eqs. 5.76 and 5.77 are dependent on the
boundary conditions. For constant coefficients (i.e., constant
values of ρ, C p , and k) the solutions are well known and can
be found in many books on heat transfer. We note here, in
particular, the book by Carslaw and Jaeger (1973). Rather
than reproduce the solutions, which are based on the method
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FIGURE 5.10 Dimensionless temperature versus dimensionless
distance for a slab subjected to a step change in surface temperature
(no thermal resistance). The parameter is the dimensionless time,
t∗. T0 is the initial temperature and T1 is the wall temperature.

of separation of variables, we provide graphical solutions of
some of the more commonly encountered cases. For exam-
ple, Figure 5.10 shows the transient temperature profiles for
a slab with constant surface temperatures. The parameter is
the dimensionless time, t∗ = αt/b2. In Figure 5.11 the cor-
responding case is given for the infinite cylinder. For a slab
in which there is resistance to heat transfer at the interface
between a solid and liquid the solution is graphically pre-
sented in Figure 5.12. Graphs are given for two positions,
x/b = 0 and 1.0. The parameter is the reciprocal of the Biot
number, Bi−1 = k/hb. Similar plots are given in Figure 5.13
for an infinite cylinder. These figures can be used to make
estimates for heating and cooling times for polymeric mate-
rials.

For constant coefficients, the temperature profiles for var-
ious geometries such as flat plates, infinite cylinders, and
spheres are given in terms of infinite series. For example,
for flat plates with surface resistance to heat transfer the
equation to be solved is the one-dimensional heat transfer
equation subject to the following boundary conditions:

B.C.1: at x = b, −∂T

∂x
(b, t) = (h/k)[T (b, t) − T1]

(5.89)

B.C.2: at x = −b, −∂T

∂x
(−b, t) = (h/k)[T1 − T (−b, t)]

I.C.: at t = 0, T (x, 0) = T0 (5.90)

10.80.60.40.20
0

0.2

0.4

0.6

0.8

1

r

R

1

T -T

T -T0

0

FIGURE 5.11 Dimensionless temperature profiles versus dimen-
sionless distance for a cylinder subjected to a step change in surface
temperature (no thermal resistance). The parameter is the dimen-
sionless time, t∗. T0 is the initial temperature and T1 is the wall
temperature.

The solution is

T1 − T

T1 − T0
=

∞∑
n=1

2

(
hb

k

)
cos
(
βn

x

b

)
[
β2

n + hb

k
+
(

hb

k

)2
]

cosβn

× exp

(
−β2

nαt

b2

)
(5.92)

where the eigenvalues, βn, are given by

βn tanβn = (hb/k) (5.93)

To use the series solution, numerical techniques are needed
to find βn.

Rather than reproduce the series solutions for the various
cases encountered in polymer processing, we use numeri-
cal techniques. Once we add factors such as temperature-
dependent properties, chemical reactions, viscous dissipa-
tion, or enthalpy changes due to a phase change, then the
series solutions become of little use. We use several dif-
ferent approaches to obtain a numerical solution. First we
use the IMSL subroutine MOLCH (see Appendix E.8 in the
folder entitled “IMSL Documentation-Appendix E” on the
accompanying website for a description of this numerical
subroutine), which solves one-dimensional partial differen-
tial equations of the parabolic type found in heat and mass
transfer. This subroutine is capable of handling the case of a
step change in surface temperature when there is no resistance
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FIGURE 5.13 Dimensionless temperature versus dimensionless time for a cylinder subjected to a
step change in surface temperature with thermal resistance. The parameter is Bi−1 = k/hR. T0 is the
initial temperature, and T1 is the temperature of the cooling fluid.

to heat transfer. The only shortcoming is that the initial con-
dition must satisfy the boundary conditions, which is difficult
for situations in which there is a step change in temperature.
The use of MOLCH is illustrated in the program “EX5-5-
Fortran-MOLCH.doc.” In particular, one should note how
we handle the initial condition so that it satisfies the bound-
ary conditions. For the case of resistance at the surface the
function (or subroutine) PDPDE in MATLAB is also used to
solve partial differential equations of the parabolic type and
its use in solving Example 5.5 is given in “EX5-5-PDEPE-
MATLAB.doc” on the accompanying website. Finally, Excel
is used to solve the parabolic partial differential equation that
arises in Example 5.5 (“EX5-5-Excel.doc”).

Example 5.5. Cooling of an Injection-Molded
Slab of HDPE

HPDE is injection molded into a rectangular cavity having
dimensions of 10 cm by 10 cm by 0.32 cm thick. HDPE
enters the cavity at 200 ◦C and the filling process occurs so

rapidly that the drop in temperature during filling can be
considered to be negligible. Determine the time required to
drop the centerline temperature of the melt to 130 ◦C (neglect
crystallization) if the mold temperature is 25 ◦C and the heat
transfer coefficient between the mold wall and the polymer
is 25 W/m2 · K.

Solution. The temperature variation in the polymeric melt is
described by the one-dimensional heat transfer equation

ρC p
∂T

∂t
= k

∂2T

∂x2
(5.94)

If it is assumed there is perfect thermal contact between the
cooling medium and the melt, then the boundary and initial
conditions are as follows:

B.C.1: at x = b, T (b, t) = 25 ◦C (5.95)

B.C.2: at x = 0,
∂T

∂x

∣∣∣∣
0

= 0 (5.96)

I.C.: at t = 0, T (x, 0) = 200 ◦C (5.97)
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When thermal contact is poor, then there is a flux of thermal
energy at the surface given by

qx (b, t) = −k
∂T

∂x

∣∣∣∣
b

= h[T (b, t) − 25 ◦C] (5.98)

We now introduce the following dimensionless variables:

ξ = x/b θ = T − T1

T0 − T1
(5.99)

where T1 = 25 ◦C and T0 = 200 ◦C. Equation 5.94
becomes

∂θ

∂t
= k

ρC pb2

∂2θ

∂ξ 2
(5.100)

with boundary and initial conditions

B.C.1: at ξ = 1, θ (1, t) = 0 (5.101)

B.C.2: at ξ = 0,
∂θ

∂ξ

∣∣∣∣
0

= 0 (5.102)

I.C.: at t = 0, θ (ξ, 0) = 1 (5.103)

or for a heat flux at the surface

B.C.1: at ξ = 1,
∂θ

∂ξ

∣∣∣∣
1

= hb

k
θ (1, t) (5.104)

B.C.2: at ξ = 0,
∂θ

∂ξ

∣∣∣∣
0

= 0 (5.105)

I.C.: at t = 0, θ (ξ, 0) = 1 (5.106)

Time can be made dimensionless by introducing

t∗ = tρC pb2/k (5.107)

The solutions are given in Figures 5.10 and 5.12 for the two
cases.

For the temperatures given

θ = 130 − 25

200 − 25
= 0.6 (5.108)

At x/b = 0 and θ = 0.6,

αt/b2 = t∗ ≈ 0.44 (5.109)

We note that it was necessary to estimate the value of t∗,
because it falls between the values of 0.4 and 0.6 given on
the graph. Using values of ρ, Cp, and k given in Table 5.5,

which appear to be nearly independent of temperature over
the range of interest, we find

t = b2(0.44)

α
= (2.56 × 10−6)(0.44)

1.2305 × 10−7 = 9.15 s (5.110)

For the case when there is a heat flux at the surface we use
Figure 5.12. In Figure 5.12 the dimensionless temperature is
plotted versus dimensionless time with the parameter being
the reciprocal of the Biot number, Bi−1 = k/hb. With a
dimensionless temperature of θ = 0.6,

t = b2t∗

α
= (2.56 × 10−6)(4.0)

1.2305 × 10−7
= 83.3 s (5.111)

Hence, it takes about 13 times as long to cool the polymer
melt down to 130 ◦C if there is significant resistance at the
surface.

The problem is also solved numerically using the subrou-
tine MOLCH, which is described in the accompanying web-
site under the file “IMSL Subroutines.” The subroutine has
been made as “user friendly” as possible so that one does not
have to really understand the numerical method. However,
because of this, there is one limitation which requires the
initial condition satisfy the boundary condition. For the case
at hand this presents a problem (i.e., the initial condition of
T(x, 0) = T0 satisfies B.C.2 but does not satisfy B.C.1, which
is T(b, t) = T1). For the dimensionless temperature, θ , we
introduce the following function:

θ (ξ, 0) = 1 − ξ20 (5.112)

This function satisfies ∂θ/∂ξ = 0 at ξ = 0 and θ = 0 at
ξ = 1 while being approximately 1.0 over the region 0 ≤ ξ ≤
1. Other exponents can be used without affecting the results
significantly. The calling program is given on the accompa-
nying website in the file “Numerical Solutions, Chapter 5”
in the document “Example 5-5-MOLCH-Fortran” and the
results are given in Table 5.12. The first column corresponds
to the dimensionless temperature at the centerline. At t =
7.0 s, θ = 0.58462, which corresponds to a temperature of
128 ◦C. Actually, t is less than 7.0 s. An identical solution is
obtained by using PDPDE in MATLAB (see the file “EX5-
5-PDPDE-MATLAB.doc” on the accompanying website).

The partial differential equation in Eq. 5.100 is referred
to as a parabolic partial differential equation. When the
boundary conditions involve resistance at the interface (i.e.,
a boundary condition as given in Eq. 5.104), then the tem-
perature at the interface between the slab and gas or fluid
is changing. The IMSL numerical subroutine MOLCH is
not capable of handling this boundary condition. By intro-
ducing a finite difference operator for the spatial derivative
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TABLE 5.12 Numerical Output for a Step Change in Temperature

Time(s) 1 2 3 4 5 6

1.00 0.99618 0.97742 0.91180 0.74588 0.43256 0.00006
2.00 0.94835 0.91236 0.80682 0.61546 0.33646 0.00006
3.00 0.87437 0.83301 0.71885 0.53252 0.28449 0.00006
4.00 0.79491 0.75395 0.64380 0.47096 0.24912 0.00006
5.00 0.71863 0.68009 0.57804 0.42055 0.22150 0.00006
6.00 0.64834 0.61275 0.51967 0.37716 0.19827 0.00006
7.00 0.58462 0.55195 0.46754 0.33892 0.17801 0.00006
8.00 0.52720 0.49728 0.42089 0.30489 0.16007 0.00006
9.00 0.47562 0.44820 0.37909 0.27448 0.14405 0.00006

10.00 0.42935 0.40418 0.34161 0.24723 0.12972 0.00006

(i.e., ∂2T /∂x2) the partial differential equation becomes
a system of ordinary differential equations, which can be
solved using the IMSL subroutines IVPAG or DIVPAG (see
the file “IMSL Subroutines” on the accompanying website).
The procedure for converting Eq. 5.100 to a system of ordi-
nary differential equations is as follows. The region 0 ≤ ξ ≤
1 is divided up into N nodes or spatial points. In the case of
the slab, the node at the center is taken as 0 and the node at
the mold wall is numbered as NEQ + 1 = N. The differen-
tial equation (Eq. 5.100) at the interior nodes becomes, using
a central difference approximation (Riggs, 1988; Matthews
and Fink, 2004),

dθi

dt
= α′

[
θi−1 − 2θi + θi+1

�ξ 2

]
(5.113)

where α′ = k/ρCpb2 and �ξ is the distance between the
nodes and i runs from 2 to NEQ − 1. At node 0 using
Eq. 5.105 and a forward difference approximation; for ∂θ/∂ξ
we find that

∂θ

∂ξ
= 0 = −3θ0 + 4θ1 − θ2

2�ξ
(5.114)

or

θ0 = 1
3 (4θ1 − θ2) (5.115)

At the mold wall Eq. 5.100 can be expressed using a backward
difference approximation; that is,

∂θ

∂ξ
= 3θi − 4θi−1 + θi−2

2�ξ
(5.116)

to give

θNEQ+1 = 4θNEQ − θNEQ−1

3 + (2�ξ hb)/k
(5.117)

The PDE at node 1 becomes

dθ2

dt
=
(

α′

�ξ2

) [− 2
3θ2 + 2

3θ3
]

(5.118)

while that at node NEQ is

dθNEQ

dt
= α′

�ξ2

[
θNEQ−1 − 2θNEQ + 4θNEQ − θNEQ−1

3 + (2�ξ hb)/k

]
(5.119)

Hence, a system of NEQ ordinary differential equations are
solved. The temperature at each boundary node is calculated
at each time step using the algebraic expressions in Eqs.
5.115 and 5.117.

The calling program is given in the file “EX5-5-
Resistance-IMSL-Fortran.doc” on the accompanying web-
site. To solve Eq. 5.100 the region from the centerline of the
slab to the surface of the slab is broken up into 10 segments
(one should try other nodal spacings). The node at the center
is numbered 1 while that at the surface is numbered 11. The
differential equation at node 2 is given by Eq. 5.118 while
that at node 10 is given by

dθ10

dt
= α′

�ξ 2

[
θ9 − 2θ10 + 4θ10 − θ9

3 + (2�ξ hb)/k

]
(5.120)

The differential equations for the remaining nodes (3
through 9) are given by Eq. 5.113. These equations are writ-
ten in subroutine FCN. The values of θ at the boundaries, θ1

and θ11, are calculated after each time step (or call to DIV-
PAG) using Eq. 5.115 for θ1 and the following equation for
θ11 (see Eq. 5.117):

θ11 = 4θ10 − θ9

3 + (2�ξ hb)/k
(5.121)

The output from the numerical solutions (using any of
the three methods: IMSL, Excel, or MATLAB, which are
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TABLE 5.13 Numerical Output for Resistance at the Interface Between the Mold Walls and Melt

Time(s) 1 2 3 4 5 6 7 8 9 10 11

0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10.0 0.953 0.953 0.950 0.947 0.942 0.936 0.928 0.919 0.909 0.897 0.884
20.0 0.888 0.887 0.885 0.887 0.882 0.871 0.864 0.855 0.846 0.835 0.822
30.0 0.826 0.826 0.824 0.821 0.817 0.811 0.804 0.796 0.787 0.777 0.766
40.0 0.769 0.769 0.767 0.764 0.760 0.755 0.749 0.741 0.733 0.723 0.713
50.0 0.716 0.716 0.714 0.711 0.708 0.703 0.697 0.690 0.682 0.673 0.664
60.0 0.667 0.666 0.665 0.662 0.659 0.654 0.649 0.643 0.635 0.627 0.618
70.0 0.621 0.620 0.619 0.617 0.613 0.609 0.604 0.598 0.591 0.584 0.575
80.0 0.578 0.577 0.576 0.574 0.571 0.567 0.562 0.557 0.551 0.543 0.535
90.0 0.538 0.538 0.536 0.534 0.532 0.528 0.524 0.518 0.513 0.506 0.498

described in the accompanying website in “Numerical Solu-
tions, Chapter 5”) is given in Table 5.13. The nodal values
for dimensionless temperature are given at each time step in
the output. A centerline temperature of 130 ◦C corresponds
to θ = 0.6. From Table 5.13 we see that it takes about 75 s to
reach this temperature, which is somewhat different from the
value obtained using Figure 5.12. However, this difference is
due to the inability to accurately extrapolate values from the
graph in Figure 5.12.

5.4.2 Heat Transfer Coefficients

The equation of thermal energy presented in the last section
is usually solved along with prescribed boundary conditions.
We either specify (1) the surface (or boundary) temperature
or (2) the heat flux at the surface. This section is concerned
with empiricisms for heat transfer coefficients which allow
us to deal with the difference in temperature between a fluid
and a solid interface as a result of thermal resistance.

The heat flux is usually given in terms of heat transfer
coefficients, defined by Newton’s law of cooling as

qn|s = −k
∂T

∂n
|s = h[T (s) − Ta] (5.122)

where qn|s is the heat flux in the direction normal to the
surface and evaluated at the surface and h is the heat transfer
coefficient. Ta is the temperature of the ambient fluid (gas
or liquid) and T(s) is the local surface temperature of the
solid or molten polymer. In the case of forced convection,
correlations for h with the Reynolds number, Re, are well
known for certain common geometries.

In particular, we note several cases that occur frequently
in polymer processing. For flow of a fluid over a smooth flat
plate (see Fig. 5.14) the local heat transfer coefficient, hx, is
given in terms of the Prandtl number, Pr, and local Reynolds
number, Rex, as

hx x

k
= 0.332 Pr1/3Re1/2

x (5.123)

where Pr = (μC p/k)f and Rex = (v∞ρx/μ)f . The subscript
f implies to evaluate the properties of the fluid at the film
temperature, Tf, where Tf = 1

2 (T0 + T∞), where T0 is the
surface temperature of the solid and T∞ is the temperature of
the approaching fluid. The relation in Eq. 5.123 is valid for
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FIGURE 5.14 Forced convection heat transfer coefficients for
three commonly encountered geometries.
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Re < 106. The average heat transfer coefficient, h, over the
length of the plate is found by averaging Eq. 5.123 over the
length of the plate, L, and is

h = 2h|x=L (5.124)

In the processing of polymers the relations in Eqs. 5.123 and
5.124 are usually applied for situations where the temperature
along the plate is not constant, but the fluid temperature is.
Hence, with the availability of numerical methods we can
use hx. The correlation in Eq. 5.123 should be applicable to
processes such as film blowing and the extrusion of flat sheet.

Another common geometry encountered in polymer pro-
cessing is the cooling of long cylinders such as might occur
in fiber spinning. The heat transfer coefficient for transverse
flow over a long cylinder (see Fig. 5.14) is given in terms of
Re and Pr as

Nu = hD

kf
= (0.43 + 0.50 Re1/2)Pr0.38

(
Prf

Pr0

)0.25

,

for 1 < Re < 103 (5.125)

Nu = 0.25 Re0.6 Pr0.38

(
Prf

Pr0

)0.25

,

for103 < Re < 2 × 105 (5.126)

where the subscript f implies to evaluate the fluid properties
at the film temperature, Tf = (T0 + T∞)/2. T∞ is the tem-
perature of the approaching fluid and T0 is the surface tem-
perature of the cylinder. For gases the ratio Prf/Pr0, where
Pr0 is Pr evaluated at T0, is dropped and the fluid properties
are evaluated at Tf. For fluids the ratio is retained with the
fluid properties evaluated at T∞. Correlations for tube banks
are also available (Holman, 1981). This situation might more
closely resemble fiber spinning processes in which many
filaments are spun from a spinneret.

Cooling of metal surfaces, such as occurs in the cooling
of injection molding tooling, is usually done by circulat-
ing cooling fluid through channels located just beneath the
metal surface. This requires the knowledge of heat transfer
coefficients for fully developed flow in smooth pipes (see
Fig. 5.14). For highly turbulent flow, for L /D > 10 and Re >
20,000, the logarithmic mean heat transfer coefficient is given
by

hln D

kb
= 0.026

(
DG

μb

)0.9
(

Cpμ

k

)1/2(
μb

μ0

)0.14

(5.127)

For laminar flow hln is given by

hln D

kb
= 1.86 (Reb Prb D/L)1/2(μb/μ0)0.14 (5.128)

where D is the tube diameter and G is <ρvz >. The subscript
b means to evaluate μ at 1

2 (Tbl + Tb2) while the subscript
0 means to evaluate μ at T = 1

2 (T01 + T02). For highly
turbulent flow the results in Eq. 5.127 can be extended to
noncircular cross sections by replacing the diameter with
4RH, where RH is the mean hydraulic radius.

There are situations in which heat transfer by free con-
vection could be important such as the cooling of a slowly
moving strand of polymer in a water bath and the cooling of
a parison as it hangs from a die before being blown. For those
who have studied heat transfer, it is known that the dimen-
sionless heat transfer coefficient, Nu, is given as a function
of the Grashof number, Gr, and the Prandtl number:

Num = Nu(Gr,Pr) (5.129)

where Num is based on the heat transfer coefficient for the
total surface, hm, of the submerged object, Gr = L3ρ2gβ
�T/μ2 and Pr = Cp μ/k. β is the volume coefficient of
expansion of the fluid and �T = T0 − T∞. For a long hori-
zontal cylinder in an infinite fluid,

Num = 0.518(Grf Prf)
0.25 (5.130)

where Grf = D3ρ2fgβf�T/μ2
p and Prf = C pμf/kf. Equa-

tion 5.130 is valid for Gr Pr > 104. An equation similar to
Eq. 5.130 can be applied to horizontal flat plates:

Num = 0.6(Grf Prf)
1/4 (5.131)

with D replaced by L = LnLv/(Ln + Lv), where Ln is the
horizontal length and Lv is the thickness of the plate. For
vertical plates and cylinders suspended in air,

Num = 0.59(Grf Prf)
1/4 (5.132)

for 104 < Gr Pr < 109. For a flat plate D3 is replaced by L3

(length of the plate).
We have attempted to list only a few of the more perti-

nent heat transfer coefficients. Certainly correlations for other
geometries and situations will be used in polymer process-
ing. Furthermore, the use of correlations between Nu and Gr
and Pr have ranges of applicability. There are numerous ref-
erences that should be consulted for more details concerning
the use of heat transfer coefficients and for other correlations
(Bird et al., 1960, 2007; Whitaker, 1977; McAdams, 1954;
Holman, 1981).

Example 5.6. Cooling of a Strand in a Pelletizing Bath

Ten strands of PP having a diameter of 3.175 × 10−3 m are
extruded at 200 ◦C from a pelletizing die into a water bath at
the rate of 3 m/min. In order to determine the length of the
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bath required to drop the temperature of a strand to 75 ◦C, it is
necessary to determine a heat transfer coefficient. Determine
the heat transfer coefficient if the water temperature is 12 ◦C.

Solution. Heat transfer may occur by both free convection
transverse to the filament surface and by forced convection
as the strand moves through the water. We first estimate h for
free convection from a horizontal cylinder using Eq. 5.130.
The properties of water are needed at Tf, but Tf changes along
the length of the strand. We calculate Num at the beginning
and end of the bath. At the beginning

Tf = 200 + 12

2
= 106 ◦C

From Table C.6 (Appendix C)

Pr Gr = 7.40 × 105

Using Eq. 5.130,

Num = 0.518 (7.40 × 105)0.25 = 15.2

h = (15.2)(0.684)

3.175 × 10−3 = 3273 W/m · ◦C

At the end of the bath

Tf = 75 + 12

2
= 43.5 ◦C

Again referring to Table C.6 in Appendix C.6, we find

Pr Gr = 9.86 × 104

and hence Num = 9.18 and hm =1842 W/m2 · ◦C.
For forced convection there are no correlations for flow

along a cylinder, and hence we use the correlation for flow
over a flat plate (Eqs. 5.123 and 5.124). Using the data in
Appendix C.6, we calculate Pr and Re at Tf = 106 ◦C:

Prf = (μC p p/k)f = (2.67 × 10−4)(4216)/0.684 = 1.66

Ref = (v∞ρL/μ)f = (0.05)(955)(1)/(2.67 × 10−4)

= 1.79 × 105

We arbitrarily estimate L to be 1 m in the above calculation.
Using Eq. 5.123 we calculate

h|x=L = (k/l)(0.332)(1.646)1/3(1.788 × 105)1/2

= 113.4 W/m2 · ◦C

h = 2h|x=L = 226.8 W/m2 · ◦C

Hence, it is apparent that the dominant form of heat transfer
for the conditions given is that of free convection.

If one were required to design a pelletizing bath it would
be necessary to solve the equation of energy using a heat
flux boundary condition at the strand surface. h changes sig-
nificantly along the length of the strand as shown in the
calculations. Certainly for the most rigorous calculations we
would attempt to calculate h as a function of temperature. As
a first approximation we could use a simple average value
based on the two extremes.

5.4.3 Radiation Heat Transfer

Thermal radiation is often used to heat up preforms used
in blow molding or plastic sheets used in thermoforming.
Furthermore, in processes such as fiber spinning considerable
cooling of the outer filaments can occur through radiation
heat transfer. We review here the basic ideas of radiation heat
transfer.

The heat flux at a surface associated with radiation heat
transfer when the radiation is completely absorbed at the
surface is given as

qn(t, s) = −k
∂T

∂n

∣∣∣∣
s, t

= −σF
[
T 4

r − T 4(s, t)
]

(5.133)

where Tr is the temperature of the radiation source and F is the
combined configuration emissivity factor (i.e., eF′, where F′

is related to the surface geometry and is called the view factor
and e is the emissivity). σ is the Stefan–Boltzmann radiation
constant given as 5.6697 × 10−8 W/m2 · K4 or 0.1712 × 10−8

Btu/h · ft2 · ◦R4. For most polymers the emissivity, e, is 0.9 <
e < 1.0. If Tr � T(s, t), then we assume a constant heat flux.

The combined shape factors, F, take on various forms
depending on the geometry of the emitting and absorbing
surfaces. Several common situations are listed below while
other geometries can be found in the books by Holman
(1981), Rohsenow and Hartnett (1973), and Siegal and
Howell (1981). For parallel flat plates F is given by

F = (1/e1 + 1/e2 − 1)−1 (5.134)

where e1 and e2 are the emissivities of the sheet and source,
respectively. If one cylindrical surface is enclosed by another
such as for a rod, wire, or pipe exposed to a source (e.g., two
parallel banks of lights), then

F = [1/e1 + (A1/A2)/(1/e2 − 1)]−1 (5.135)

where A1 is the area of the polymer and A2 is the area of the
source. As A1/A2 → 0, then F = e1.

In some cases in which radiation heating is used, convec-
tion may also be employed. This is because in the case of
radiation heating the surface of a polymer may reach tempera-
tures well above the degradation temperature and convection
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can be used intermittently to cool the surface. The total heat
flux at the surface in this case is given as

qn|s = (hc + hr)(T1 − T2) (5.136)

where hc is the convection heat transfer coefficient and hr

is the radiant heat transfer coefficient. The value of hr is
calculated from the following expression:

qn|s = hr(T1 − T2) = Fσ
(
T 4

1 − T 4
2

)
(5.137)

where the subscript “1” pertains to the polymer and the sub-
script “2” to the heating source. From this equation we find

hr = Fσ (T 2
1 + T 2

2 )(T1 + T2) (5.138)

Example 5.7. Radiation Heating of a Sheet
(Thermoforming)

Prior to thermoforming a polymer (PVC) sheet it is heated
on both sides by radiation from an initial temperature, T0,
of 90 ◦F to a final centerline temperature, Tf, of 390 ◦F.
Determine how long it will take for the centerline of the
sheet to reach 390 ◦F for the following set of data.

Polymer sheet: k = 0.14 Btu/h · ft · ◦F, F = 0.9

Thickness (2b) = 0.24 in.; ρCp/k = α = 5 × 10−3 ft2/h

Radiation source: Ts = 1740 ◦F and is a bank of heating
elements which can be considered as a parallel plate
radiation source

Solution. The differential equation to be solved along with
the appropriate boundary conditions are

ρC̃ p
∂T

∂t
= k

∂2T

∂x2

I.C.: at t = 0, T = T0

B.C.1: at x = b, qx |b = −k
∂T

∂x
|x=b = hr(T1 − T2)

B.C.2: at x = −b, qx |b = −k
∂T

∂x
|x=−b = hr(T2 − T1)

or we can also use

B.C.2: at x = 0, qx = 0

The solution to this problem can be obtained numerically
or by separation of variables if the coefficients are constant.

1005020105210.50.20.1

0

0.2

0.4

0.6

0.8

1.0

2

1.0

0.5

0.33

0.2

0.1

0.05
0.033

0.02

2

T -T

T -T0

0

t =   t/L * 2

FIGURE 5.15 Dimensionless temperature versus dimensionless
time for a slab subjected to radiation energy input at the surface
(x/b = 1). The parameter is the radiative Biot number, Bir =
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Since α is given as constant, we can use the separation of
variables solution, which is presented in graphical form in
Figures 5.15 and 5.16 for the case when T0/T2 = 0.25 (based
on absolute temperatures). Solutions for other parameters
are given in the Handbook of Heat Transfer (Rohsenow and
Hartnett, 1973). We assume here T2 � T1, in which case
hr = Fσ T 3

2 . The radiative Biot number, Bir, is then defined
as

Bir = hrb

k
= FσT 3

2 b

k

which comes from the dimensionless temperature gradient.
From the data given in this problem we obtain the following

1005020105210.50.20.1

0

0.2

0.4

0.6

0.8

1.0

2

T -T

T -T0

0

2

1

0.5

0.2

0.1

0.05

0.033

0.33

0.02

t =   t/L * 2

∞

FIGURE 5.16 Dimensionless temperature versus dimensionless
time for a slab subjected to radiation energy input at the centerline
(x/b = 0) as in Figure 5.15.
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quantities:

(T − T0)/(T2 − T0) = (390 ◦F − 90 ◦F)/(1740 ◦F − 90 ◦F)

= 0.182

Bir = (0.172 × 10−8)(0.9)(0.12/12) × (2200)3/0.14

= 1.18

From Figure 5.16, we read the dimensionless time from the
abscissa:

0.3 = αt/L2

From this we solve for t and find that t = 6 × 10−3 h.
The surface temperature of the sheet during the time of

heating will reach (0.7 = (T − T0)/(T2 − T0)) 824.5 ◦F,
which may degrade the sheet surface. In practice we would
use forced convection to cool the surface of the sheet.
We could then use the combined heat transfer coefficient
and resolve the problem. A more accurate solution to this
problem can be obtained numerically, and this is done in
Problem 5C.5.

In Eq. 5.138 it is assumed that all the radiation from
the light source is absorbed at the surface. However, this
is not always the case as some materials transmit portions
of the incident radiation of certain wavelengths rather than
absorb it. In Figure 5.17 is shown the transmittance curve
for a 3.8 mm thick sample of PET, and here we observe
that for wavelengths beyond 2.25 μm no light is transmitted
(i.e., for wavelengths of light greater than 2.25 μm PET
of thickness 3.80 mm is opaque). Assuming that the power

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

Wavelength (microns)

S
p

e
c
tr

a
l 
E

m
is

s
iv

e
 P

o
w

e
r 

(W
/m

²-
m

ic
ro

n
)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

T
ra

n
s
m

it
ta

n
c
e

FIGURE 5.17 Blackbody radiation spectral distributions super-
imposed on the transmittance curve for a 3.8 mm thick PET sample.
(Data from Shelby, 1991.)

output of a typical quartz lamp has a specular distribution
that can be approximated by a blackbody emitter, the spectral
emissive power of a blackbody source can be described by
Planck’s distribution:

P(λ) = BE(λ) = C1λ
−6/[exp(C2/λT ) − 1] (5.139)

where B is a scaling constant relating the fraction of E(λ) that
reaches the sample, λ is the wavelength in μm, and C1 and
C2 are constants having values of 3.742 × 106 W ·μm4/m2

and 1.439 × 104 μm · K, respectively. The spectral emissive
power is superimposed on Figure 5.17 for various lamp tem-
peratures. Here we see that for the two highest lamp tem-
peratures most of the incident energy has wavelengths that
overlap with the region where PET transmits the radiation
rather than absorbs it. Hence, we might expect it difficult
to heat a semitransparent parison such as PET by means of
radiation.

Actually there are advantages in having the polymer par-
tially transparent to the incident radiation. This is because
the radiation is absorbed internally in the polymer sample,
which provides a more uniform heating of the material rela-
tive to that produced when the radiation is absorbed only at
the surface.

Mathematically the absorbing of radiation is treated as a
source term in the equation of energy. The intensity of the
incident radiation as a function of depth, x, for a planar slab
is given by Beer’s law (Holman, 1981):

Ix (λ)

Is(λ)
= e−k(λ)x (5.140)

where Is(λ) is the intensity of the radiation at the surface
for a given wavelength and k(λ) is the absorption coefficient.
Noting that I(λ) has dimensions of energy per unit area per
unit time, we can perform an energy balance to find the
energy generated per unit volume per unit time. For a slab of
area A and thickness �x the energy balance is (note that x =
0 is taken at the surface here)

(Ix |x − Ix |x+�x )A = Ṡ A�x (5.141)

Dividing by �x and taking the limit as �x → 0, we obtain
an expression for the energy generated per unit time and
volume:

− dIx

dx
= Ṡ = Isk(λ)e−k(λ)x (5.142)

For heating cylindrical geometries such as parisons, a similar
approach can be used to find Ṡ:

Ṡ = 1

r

d

dr
(rIr ) (5.143)
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TABLE 5.14 Effective Values of the Absorption
Coefficient for PET as a Function of Lamp
Temperature

Lamp Temperature (◦C) k (m−1)

2200 1300
2040 1460
1900 1610
1750 1790

Source: Shelby, 1991.

In cylindrical coordinates Eq. 5.140 becomes

Ir (λ)

Is(λ)
= exp[−k(λ)(Rs − r )] (5.144)

where Rs is the radius of the outer surface. Substituting
Eq. 5.144 into Eq. 5.143, we find Ṡ for cylindrical coor-
dinates:

Ṡ = Is(k(λ)/r ) exp[−k(λ)(Rs − r )] (5.145)

Provided we know k(λ) and Is we now have the energy gen-
erated per unit volume per unit time as the result of absorbed
radiation.

A few comments need to be made regarding the deter-
mination of k(λ) and Is. k(λ) is related to the transmittance,
τ (λ), and the thickness of the sample, L, by

k(λ) = − ln τ (λ)/L (5.146)

Shelby (1991, p. 1420) obtained an effective value of k(λ),
k, for PET by measuring τ (λ) and then averaging the values
over all wavelengths weighted with the blackbody spectral
emission curve corresponding to the given lamp tempera-
ture. Values of k for PET are given in Table 5.14. This
type of data does not appear to be readily available in
the literature for other polymers but must be measured for
polymers that are semitransparent. Is(λ) for different lamp
temperatures was given for PET and the lamp arrangement
to be

Is(T2) = 12,000 (Ts/2473 K)4 (5.147)

Example 5.8. Radiation Heating of a
Semitransparent Sheet

A sheet of (3.8 mm thick, 10 cm × 12 cm) amorphous PET
is heated on both sides by a bank of quartz lamps (eight
Fostoria T-3 quartz lamps per bank) rated at 500 watts with
a peak filament temperature of 2250 ◦C at 120 volts. For-
mulate the equations and boundary and initial conditions
which must be solved to find the time to heat the sheet up to

120 ◦C at the centerline. The following properties are given
for PET:

ρ = 1350 kg/m k = 0.29 J/m · s · ◦C

C p = 1250 + 2.0 T J/kg · ◦C 20 ≤ T ≤ 60 ◦C

C p = 1370 + (T − 60)2 (0.95) J/kg · ◦C 60 ≤ T ≤ 80 ◦C

C p = 1750 J/kg · ◦C T ≥ 80 ◦C

At 111 volts the lamp temperature is given as 2200 ◦C. Free
convection is assumed to occur at the sheet surfaces with
h taken to be 17 W/m2 · ◦C. The ambient air temperature is
35 ◦C, while the initial temperature of the preform is 25 ◦C.

Solution. Taking the coordinates to be at the center of the
sheet and the thickness to be 2b, the energy equation is

ρC p
∂T

∂t
= k

∂2T

∂x2
+ Isk(λ)e−k(λ)x

The boundary and initial conditions are

B.C.1: at x = b, qx = −k
∂T

∂x
= h(Ta − T (b, t))

B.C.2: at x = −b, qx = −k
∂T

∂x
= h(T (−b, t) − Ta)

I.C.: at t = 0, T = T0 (= 25 ◦C)

Even if the thermal properties are all taken as constant, one
would have to solve the problem numerically because of the
source term.

5.5 CRYSTALLIZATION, MORPHOLOGY,
AND ORIENTATION

The physical properties of a given semicrystalline polymer
depend on the size of the crystallites, morphology of the crys-
talline and amorphous regions, and the molecular orientation
within the crystalline and amorphous regions. The above fac-
tors, which control the physical properties of polymers, are
related to crystallization kinetics, cooling rate (heat trans-
fer), and the deformation history. The physical properties of
polymers are thought to be associated with the ordering and
packing of the molecules, which can be affected by process-
ing conditions as illustrated in Table 5.15. In this table it is
observed that the modulus of HDPE can be increased from
7 to 70 GPa by the processing technique used, but this is
still far from the theoretical limit. Furthermore, the modulus
of some organic materials can reach the level of steel, but
when compared on a weight basis the organic materials are
much stiffer. In this section we first review some qualitative
features of crystallization and then the kinetics of crystalliza-
tion under quiescent conditions. Our goal in this section is to
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TABLE 5.15 Tensile Moduli of Polymers and Other Engineering Materials at 25 ◦C

Material
Modulus, E

(N/m2 × 10−9)
Density, ρ

(kg/m3 × 10−3)

Specific
Modulus, E/ρ

( × 10−6)

Polymers
Commonly processed HDPE (Southern

and Porter, 1970)
1–7 1 1–7

Extrusion drawn HDPE fibers (Southern
and Porter, 1970)

∼70 1 ∼70

Specially cold drawn HDPE fibers
(Capaccio and Ward, 1975)

68 1 68

DuPont Kevlar fibers (rod-like
molecules)

132 1.45 92

Theoretical limit of HDPE and PVA—
fully extended (Sakurada et al., 1966)

240–250 1 240–250

Other materials
Aluminum alloys < 70
“E” glass fiber 63 2.54 35
Steels ∼200 ∼7.0 ∼29
RAE carbon filaments 420 2.0 210

emphasize the fact that the processing conditions can have
a significant effect on the properties of a polymer, which in
turn affect its end uses.

5.5.1 Crystallization in the Quiescent State

Because polymers are only semicrystalline, which means
both crystalline and amorphous phases exist, we must define
the degree of crystallinity, φc. The degree of crystallinity is
the volume fraction of crystallinity and is given by

φc = Na f (5.148)

where N is the number of crystalline units (usually they are
called spherulites) per unit volume, a is the average diameter
of the crystallites, and f is the packing factor. f varies between
0.5 and 1.0 depending on the shape of the crystallites. For
example, if the crystallites are spherical, the closest packing
is that when the spheres are arranged in a face centered cubic
structure. f for this arrangement is π/3

√
2(0.741).

The manner in which individual molecules crystallize
depends on the conformation of the chains. Flexible chain
polymers, as shown schematically in Figure 5.18, fold to
form microlamellar plates. Rigid chain polymers form bun-
dles of rod-like structures. The bulk structure or macrostruc-
ture of the polymer depends on whether crystallization occurs
from dilute solution or from the melt state. When crystal-
lization occurs under quiescent conditions in a dilute solu-
tion, then single crystals consisting of folded chains arise.
When crystallization from the melt occurs under quiescent

conditions, chain folding occurs rapidly in all directions
leading to a spherical structure. These structures are shown
schematically in Figure 5.18. Stress has a significant influ-
ence on the macrostructure or morphology. For both dilute
solutions and melts of flexible chain polymers the “shish-
kebab” structure is observed. Folded chains seem to emanate
from rows of highly extended chains as shown in Figure 5.18.

The only theory available for describing the conversion
of polymer melts to crystalline materials deals with flexi-
ble chain polymer melts crystallizing under quiescent (no
deformation) conditions. The rate of crystallization (i.e., the
rate of conversion of the volume of amorphous material into
crystalline material) consists of two processes as shown in
Figure 5.19: nucleation and growth. Nucleation is the initia-
tion of a very small amount of crystalline material emerging
from the melt by fluctuation processes. The number of nucle-
ation sites determines the morphology of the growing crys-
tallites as a large number of nucleation centers would lead
to a large number of small crystallites. Nucleation may be
homogeneous or heterogeneous. Homogeneous nucleation
occurs in the absence of a second phase while heterogeneous
nucleation is due to the presence of a second phase. In prac-
tice heterogeneous nucleation is the rule as most polymer
melts contain heterogeneities such as impurities, residues of
unmelted polymer, and nucleating agents. Growth proceeds
also by a nucleation mechanism. Nucleation in this case is a
surface process. The whole crystallization process is a con-
tinuous interplay between nucleation and diffusive transport
of matter to a surface. The rate of overall crystallization
depends on the number of available nuclei and on the rate of
transport of molecules.
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FIGURE 5.18 Morphology of crystallites in polymers. (Reprinted with permission of the publisher
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FIGURE 5.20 Plot of dimensionless linear growth rate of crys-
tallization versus dimensionless temperature. (Reprinted with per-
mission of the publisher from Gandica and Magill, 1972.)

Free crystallization (i.e., no strain or stress) starts from
a number of point nuclei and progresses in all directions
at equal linear rates (i.e., the rate of increase of the radius
of a spherulite, G, is linear with time). The rate of growth
is very dependent on the temperature of crystallization. In
particular, G = 0 at Tg and Tm and passes through a maximum
at some intermediate temperature, TK. According to Gandica
and Magill (1972) the crystallization process of all the normal
polymers follows a master curve. This master curve is a plot
of G/Gmax versus a dimensionless temperature, θ :

θ = (T − T∞)/(T ′
m − T∞) (5.149)

where

T∞ = Tg − 50 (5.150)

and T ′
m is the thermodynamic equilibrium melting temper-

ature. This master curve is shown in Figure 5.20. G/Gmax

passes through a maximum when θ is 0.635, which corre-
sponds approximately to

TK ≈ 0.5(T ′
m + Tg) (5.151)
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FIGURE 5.21 Model of lamellar growth front assuming regular
chain folding. (Adapted from Bright, 1975.)

The quantitative theory of crystallization starts with the
linear rate of growth, G, which is given by (Lauritzen and
Hoffman, 1964)

G = G0 exp[−ED/RT ] exp[−�F∗
n /kBT ] (5.152)

G0 is the molecular jump frequency and is given by b0kBT/hP

where kB and hP are the Boltzman and Planck constants,
respectively. b0 is a crystal dimension (see Fig. 5.21), values
of which are given in Table 5.16 for PP and in Appendix C
for a number of other polymers. The quantity (−ED/RT)
represents the diffusive transport of the molecules in the melt
while�F∗

n is the free energy of a nucleus with n-dimensional

TABLE 5.16 Thermal–Physical Properties of Polypropylene

Parameter Value Units

T ′
m 447 K

Tg 267 K
�Hc 45 cal/g
ρm 0.867 g/cm3

ρc 0.938 g/cm3

b0 5.40 × 10−8 cm
a0 3.35 × 10−8 cm
σ 9.54 ergs/cm2

σ e 47.7 ergs/cm2

σσ e 455 ergs2/cm4

φ∞ 0.62

Source: Data from Bright, 1975.
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growth. ED is the activation energy, R is the gas law constant,
and T is the absolute temperature.

Near Tg the term (ED/RT) is given by the WLF equation:

ED

RT
= C1

R(C2 + T − Tg)
(5.153)

where C1 = 17.2 kJ/mol and C2 = 51.6 K. Near the maxi-
mum crystallization temperature the following expression is
suggested:

ED

R
= CD

T
′2

m

T ′
m − Tg

(5.154)

where CD ≈ 5.0. The nucleation factor, �F∗
n /kBT, has the

following form:

�F∗
n

kBTx
= C

Tx

(
T ′

m

Tx

)n−1( T ′
m

�T

)n−1

≈ C

Tx

(
T ′

m

�T

)n−1

(5.155)

where
Tx = crystallization temperature (K)
�T = T ′

m − Tx (undercooling)
n = dimensionality of the nucleation process which is

usually taken as 2.0
C = a characteristic constant for every polymer; for a

number of polymers C = 265 K
T ′

m = thermodynamic equilibrium melting point (note
that this value is slightly different from Tm)

C can actually be determined theoretically from the following
expression:

C = 4b0σsσe

kB�H fρc
(5.156)

where the various parameters are shown in Figure 5.21. �Hf

is the heat of fusion and ρc is the density of the crystalline
plane. σ s is the side surface energy and σ e is the end surface
energy associated with lamellar growth as shown in Figure
5.21.

The linear growth rate is now obtained for two temperature
ranges. Using ξ = T ′

m/Tx and δ = Tg/T ′
m, one obtains for

Tx > TK the following expression:

log G = log G0 − 2.3
ξ

1 − δ
− 115

T ′
m

ξ 2

ξ − 1
(5.157)

and for Tx � TK

log G = log G0 − 895ξ

51.63ξ + T ′
m(1 − δξ )

− 115

T ′
m

ξ 2

ξ − 1
(5.158)

G0 is taken as 1012 nm/s. (Note: G0 depends on Mw and
the presence of nucleating agents.) Equation 5.157 follows
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FIGURE 5.22 Universal master curve of the rate of growth of
spherulites as a function of the dimensionless parameters Tx/Tm

and Tg/Tm for Tm = 473 K. (Reprinted with permission of the
publisher from Van Krevelen, 1978.)

by substituting Eq. 5.154 into Eq. 5.152 while Eq. 5.158
follows by substituting Eq. 5.153 into Eq. 5.152. Equations
5.157 and 5.158 are presented in graphical form in Figure
5.22. Here T ′

m was arbitrarily selected as 473 K so that a
two-dimensional plot could be constructed. For every 10 ◦C
change in T ′

m, G will be 0.1 times higher or lower than given
in the graph. Furthermore, it is seen that Tg/T ′

m has a great
influence on the absolute value of G.

For symmetrical polymers such as PE, G is high
(Tg/T ′

m ∼ 0.5), whereas for asymmetrical polymers such
as isotactic polystyrene with δ = 0.75, G is very low. Some
numerical values of G for several polymers are presented in
Table 5.17. Using these values, we can estimate the length
of time for a spherulite to grow to a radius of 10 cm for the
various polymers:

PE 1 hour
Nylon 66 1 day
PETP 1 month
IPS 1 year

TABLE 5.17 Maximum Growth Rates for Some Polymers

Polymer Tg/T ′
m

Maximum Growth
Rate (nm/s)

High-density polyethylene 0.47 3 × 104

Nylon 6 0.6 3 × 103

Polyester (PETP) 0.64 1 × 102

Isotatic polystyrene (IPS) 0.73 3 × 100
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Hence, one can more fully appreciate the relative rates of
spherulitic growth.

The overall rate of crystallization under isothermal condi-
tions is given by the Avrami equation (Avrami, 1939, 1940,
1941):

φc/φ∞ = 1 − exp(−Ktn) (5.159)

Here φc is the volume fraction of crystallinity and is given
by

φc = (ρ − ρa)/(ρc − ρa) (5.160)

where ρ is the density of the sample containing both crys-
talline and amorphous phases, ρa is the density of the amor-
phous phase, and ρc is the density of the spherulitic phase.
φ∞ is the equilibrium volume fraction of crystallinity (this
value is usually less than 1.0). n is a constant that is in the
neighborhood of 3.0 but can be determined using differential
scanning calorimetry, DSC, for each polymer. n = 3.0 for
spherulitic growth, but in practice n may be less than 3.0. For
PPS n falls between 3.1 and 2.6 for different crystallization
temperatures. For PEEK, on the other hand, n is about 2.5 but
changes to 1.5 at high values of φ. K is the overall rate con-
stant of crystallization and is determined by fitting DSC data
or estimated by the number of nuclei and the linear growth
rate as

K = 4
3πNG3 (5.161)

K is related to the half-time for crystallization, t1/2, by t1/2 =
(ln 2/K)1/n.

For nonisothermal crystallization a modified form of
Eq. 5.159 is used:

φc/φ∞ = 1 − exp

[
−
∫ t

0
K (T )ntn−1dt

]
(5.162)

Here it is assumed that the contributions to the crystallization
process are additive (i.e., at each temperature Eq. 5.159 holds
over each temperature interval, �T, as the temperature is
decreased). One approximation for K(T) is (Velisaris and
Seferis, 1988)

K (T ) = C1T exp[−C2/(T − Tg + 51.6)]

× exp[C3/T (T ′
m − T )2] (5.163)

In this equation C1, C2, and C3 are coefficients which are
obtained by fitting the function to crystallization data. (For
example, for PEEK, C1, C2, and C3 are 2.08 × 1010 S−n · K−1,
4050 K, and 1.8 × 107 K3, respectively). The function given
in Eq. 5.163 is based on the assumption that K(T) takes on
the same form as G.

TABLE 5.18 Yield Stress for Nylon 66 as a Function of
Spherulite Size

Spherulite Yield Stress,
Size (μm) P (psi) Pa × 10−6

50 10,250 72
10 11,800 83
5 12,700 89
3 14,000 98

Source: Data from Van Krevelen, 1978.

As K is proportional to the number of nuclei, some esti-
mate of this number is needed. According to Van Krevelen
(1978), N = 3 × 104 cm−3 when a polymer is quenched from
the melt to Tx and N = 3 × 1011 cm−3 when a sample is
heated from the solid state to Tx. In other words, there are
many more nuclei when starting from the solid state. Since
1 cm3 contains about 1018 molecules, the number of nuclei
as a fraction of the molecules is extremely small. Starting
from the melt there are 3 nuclei per 1013 molecules while
in starting from the solid state there are 3 nuclei in 106

molecules.
N determines the maximum size of the spherulites once

the whole sample is converted into crystalline material. Since
φc = 4

3πR3
max N and if φc = 1, then Rmax N1/3 ≈ 0.62. Hence,

the more nuclei the smaller the radius of the spherulites.
The properties of a polymer are dependent on the size of

the crystallites. In particular, polymeric materials are brittle
when they consist of large spherulites. Hence, it might be
better that the spherulites be as small as possible. Although
there is very little quantitative data available in the literature
in which correlations between spherulite size and mechanical
properties are made, some data is presented in Table 5.18 for
nylon 66. Here it is observed that the yield stress increases
as the spherulite size decreases.

Example 5.9. Maximum Crystallization Values
for Polypropylene

Determine the maximum crystallization temperature, TK, and
the maximum rate of crystallization for polypropylene.

Solution. As a first approximation we can use Eq. 5.151,
which gives

TK = 0.5(170 ◦C − 10 ◦C) = 80 ◦C

To obtain a more accurate value we differentiate Eq. 5.157
with respect to ξ (after converting to natural logarithms) and
set the derivative equal to zero:

1

G

∂G

∂ξ
= − 2.3

1 − δ
− 115

T ′
m

[
ξ 2 − 2ξ

(ξ − 1)2

]
= 0
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Rearranging this equation we obtain

−
[

2.3T ′
m

115(1 − δ)
+ 1

]
ξ2 + 2

[
2.3T ′

m

115(1 − δ)

]
ξ

−
[

2.3T ′
m

115(1 − δ)

]
= 0

Using the values in Table 5.16 for Tg and T ′
m, this equation

becomes

−23.184 ξ 2 + 46.386 ξ − 22.184 = 0

The roots of this equation are ξ = 1.207 and 0.792. Because
ξ = Tm/Tx , we use 1.207 to find that TK = 93 ◦C.

Substituting TK back into Eq. 5.157 we can now find
Gmax:

ln G = ln(1 × 1012) − (2.303)(2.3)(1.207)

0.403

− (2.303)(115)(1.207)2

447(0.207)
= 7.645

Gmax = 2.09 × 103 nm/s

Finally, using Eq. 5.161 we estimate Kmax to be

Kmax = 4
3π(3 × 104 cm−3)(2.09 × 10−4 cm/s)3

= 1.15 × 10−6 s−3

In this calculation we have used the values of G0 = 1012 nm/s
and N = 3 × 104 cm−3, which seem to be average values
for a number of polymers. To obtain more accurate values,
experimental values of K and G0 are required (these values
are usually determined from DSC measurements).

Example 5.10. Calculation of the Amount of
Crystallization

Determine the volume fraction of crystallinity in PP crys-
tallized at Tmax = 93 ◦C for 2 minutes and the size of the
spherulites. φ∞ = 0.62 for PP.

Solution. Using Eq. 5.159 with n = 3 for spherulitic growth
we find

φc = φ∞(1 − exp[−1.15 × 10−6(120)3]) = 0.535

The spherulite size is obtained using Eq. 5.161.

G = dR

dt
= [K (3/4π)/N ]1/3 = 2.09 × 10−4 cm/s

R = (2.09 × 10 cm/s) 120 s = 2.51 × 10−2 cm

Example 5.11. Effect of Heat of Crystallization on the
Temperature Profile

A film of PP 0.005 cm thick is cooled from a melt temperature
of 220 ◦C to a temperature of 50 ◦C on a casting drum. Deter-
mine whether the temperature profile in the film is affected
by the heat released during the crystallization process.

Solution. The energy equation for this situation is

ρC p
∂T

∂t
= k

∂2T

∂x2
+ ρc�H̃c

dφc

dt

where the last term in the differential equation is the heat
released per unit time per unit volume as a result of crystal-
lization. This comes from the fact that

Ṡ = �H̃c

v

(
dwc

dt

)

where wc is the mass of crystalline material and dwc/dt is the
rate of conversion of amorphous to crystalline phase. Using
φc = vc/v and ρc = wc/vc, where vc is the volume of the
crystalline phase, it is now clear how the source term was
obtained. Rather than solve the differential equation at this
time, we cast it into dimensionless form and evaluate the
dimensionless groups that arise. Introducing the following
dimensionless groups:

θ = T − T0

Tw − T0
ξ = x

b
t∗ = tK1/3

the differential equation becomes

∂θ

∂t∗ =
(

kK −1/3

ρC pb2

)
∂2θ

∂ξ 2
+
(
ρc�H c

ρC p�T

)
dφc

dt∗

where �T = Tw − T0, 2b is the thickness, and K is the
rate constant of crystallization. The dimensionless groups
in parentheses can now be used to help us decide whether
we should include the source term in the differential equa-
tion. Using the values in Table 5.16 and Kmax calculated in
Example 5.9 we find the following:

(
kK 1/3

ρC pb2

)
= (0.142)(95.4)

(902)(2.8 × 104)(6.25 × 10−10)
= 86.0

(
ρc�H c

ρC p�T

)
= (938)(18.8 × 104)

(902)(2.8 × 104)(150)
= 0.46

Hence, we see that the coefficient multiplying dφc/dt∗ is
about two orders of magnitude smaller than the coefficient
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multiplying d2θ/dξ 2, and thus there should be little contribu-
tion to the temperature profile from the heat of crystallization
for the conditions given in the problem. We can see that K
would have to become extremely large or the polymer sample
quite thick (e.g., b = 0.3 cm) before the coefficients would
be of similar magnitude.

5.5.2 Other Factors Affecting Crystallization

Other factors that affect crystallization processes include
pressure and stress. Increasing the static pressure has the
effect of raising Tm as shown by the Clapeyron equation:

dTm

dP
= T 0

m
�V m

�H m
(5.164)

where T 0
m is the melting point at atmospheric conditions, and

�Vm and �Hm are the volume and enthalpy changes, respec-
tively, of the melting process. For large pressure variations
the change in Tm is given by the Simon equation,

P − P0 = a

[(
Tm

T 0
m

)c

− 1.0

]
(5.165)

where P0 and T 0
m are the pressure and melting temperature

at the reference conditions and a and c are coefficients. For
example, for PE, T = 409 K (136 ◦C), a = 3 kbar, and
c = 4.5. From this equation, it can be determined that Tm

can be raised by 100 ◦C at pressures of 5 kbar. As a result
of the increase in Tm, the fold length of the chains increases.
Unfortunately, the physical properties of polymers crystal-
lized under extreme pressure are poor.

Stress, on the other hand, where deformation is involved,
has a considerable effect on crystallization kinetics and mor-
phology. Polymer molecules become oriented during defor-
mation. If the temperature is reduced enough before the
molecules relax, then they may crystallize in this oriented
state. For polymer melts it is not so easy to create stress-
induced crystallization. However, if the product of the relax-
ation time, λ, and the time, t, for the melt temperature to drop
to Tx is approximately equal to 1.0, then we can expect the
crystallization of oriented molecules.

Extensional flow is known to have more of an effect
on chain extension than shear flow. We illustrate this idea
by data obtained in the spinning of PET. Below spinning
speeds of 3500 m/min there is very little crystallinity, but
above this speed significant crystallinity is observed as
shown in Figure 5.23. The processing time at these spinning
speeds is a few milliseconds whereas t1/2 = 50 s. Hence, the
crystallization rate must be many decades faster than in the
quiescent state.

The stretching of fibers in the neighborhood of Tg is called
cold drawing. An example of results for PET is shown in
Figure 5.24. It is noted that at a draw ratio of about 2.5
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there is a sudden change in the amount of crystallinity and
hence the density. However, whereas ρ and φc become only
slightly dependent, Young’s modulus continues to increase
with increasing draw ratio. We also note that as �N, the
birefringence, increases so does Young’s modulus, E. Crys-
tallinity is not directly correlated with E, but �N is. As �N
is related to molecular orientation as discussed in the next
section, then E is related to orientation.

One way to incorporate the effect of stress on crystalliza-
tion is described here (Katayama and Yoon, 1985). One starts
with the generalized Avrami equation:

φc/φ∞ = 1 − exp

[
−
(∫ t

0
K (T,�N )d ′t

)n]
(5.166)

where K(T, �N) is a crystallization rate constant dependent
on T and �N. From the stress optic law (�N C′ = σ 1 − σ 2),
one can relate orientation to stress. According to the theory
of Hoffman the ratio of the oriented (Gor) to unoriented (Gun)
linear growth rates is

Gor

Gun
= exp

[
−4B0σsσe

K T (K )

(
1

�Gor
− 1

�Gun

)]
(5.167)

�Gun is the free energy difference between the amorphous
and crystalline states under random orientation and �Gor is
the free energy difference in the oriented state. T(K) is the
absolute temperature. The free energy expressions are

�Gun/ρ = �Hun − T (K)�Sun = �H (�T/T (K)
m )

(5.168)

�Gun/ρ = �Hor − T (K)�Sor = �H (�T/T (K)
m )

+ T (K)(�Sor − �Sun) (5.169)

where �Sun is the entropy difference between the amor-
phous and crystalline states under random orientation, �T
is the undercooling, T (K)

m is the melting point in K, �Hor =
�Hun = �H, and �Sor − �Sun is the entropy difference
between the oriented and the unoriented amorphous states.

The next step is to relate �Sor − �Sun to some quantity
such as orientation. This requires a constitutive equation.
Most have used the theory of rubber elasticity, which is not
acceptable for polymer melts, but which gives

�Sor − �Sun ∝ υ2 + 2/υ − 3 (5.170)

where υ is the extension ratio. For υ = 1 (i.e., small defor-
mations), �Sor − �Sun ∝ (�N)2. Using this relation and
Eqs. 5.168 and 5.169, Eq. 5.167 becomes

Gor

Gun
= exp

{
C1

T (K)�T

(
1 − 1

1 + C2(T (K)/�T )(�N )2

)}
(5.171)

where C1 and C2 are constants. Because K is related to G
(see Eq. 5.161), K(T, �N) in Eq. 5.166 is now replaced by
Eq. 5.171. There is, however, no significant verification of
this approach and one must use the equation with crystalliza-
tion data obtained from samples processed under high stress
conditions.

5.5.3 Polymer Molecular Orientation

The physical properties, in particular, the modulus, depend on
the degree to which the polymer chains lie along a particular
direction. In the case of fiber spinning, the degree to which
the chains lie along the fiber axis determines the stiffness
and strength of the fiber. In this section we define molecular
orientation and briefly describe how it is determined.

We first must remember that most polymers are semicrys-
talline (although some are just amorphous), and so we must
define orientation for both the crystalline and amorphous
regions. For the crystalline regions wide angle X-ray scatter-
ing (WAXS) is used to determine orientation. X-rays scatter
off the crystallographic planes and are reflected back to the
photographic film or a detector. Because polymers are poly-
crystalline, and if they are unoriented, the reflections are
cones having the incident beam as their axis. As the sample
is drawn to create orientation, the circles become arcs and
then just dots. This is shown in Figure 5.25.

To quantify the degree of orientation, we define orientation
functions. To do this we need to know what the unit cell is.
For polyethylene (PE), the unit cell is orthorhombic in which
the three crystallographic axes, a, b, and c, are mutually
perpendicular. The orientation functions are

f a = 3cos2φa,z − 1

2
(5.172a)

f b = 3cos2φb,z − 1

2
(5.172b)

f c = 3cos2φc,z − 1

2
(5.173)

The angles φi,z are the angles each crystallographic axis
makes with the z axis (which is the stretch direction). The
values cos2φi,z , where i = a, b, or c, are evaluated as follows:

cos2φi,z =
∫ π/2

0 Ihkl (φi z)cos2φi,z sinφi,zdφi,z∫ π/2
0 Ihkl(φi,z) sinφi,zdφi,z

(5.174)

Ihkl (φi,z) is the intensity diffracted from the (hkl) planes,
which are normal to the i crystallographic axis. For orthogo-
nal unit cells the orientation functions are related as follows:

f a + f b + f c = 0 (5.175)
3∑

i=1

cos2φi,z = 1 (5.176)
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FIGURE 5.25 Effect of isotactic polypropylene film extension on the wide-angle X-ray diffraction
patterns. (Reprinted with permission of the publisher from Samuels, 1974, p. 27.)

When a crystallographic axis (e.g., c) is perpendicular to z,
f c = −0.5; when it is parallel, f c = 1.0, and when it is
randomly oriented with respect to z, f c = 0. The orientation
functions are defined in terms of the cosine squared otherwise
the integral would always be zero.

For the amorphous regions, we can use sonic waves or
birefringence to determine orientation. (Certainly there are
several methods, but our intention is not to review all these
nor to say which is best.) To use birefringence we must know
the intrinsic birefringence,�N0, which is either calculated or
measured on a perfectly oriented sample. The birefringence,
�N, is related to the stress field through the stress/optic law.
In particular, the law reads:

�N = C�σ (5.177)

where C is the stress optic coefficient and �σ = σ 1 − σ 2

is the difference between the principal stresses. (Note that in

shear flow σ1 − σ2 =
√

N 2
1 + 4τ 2

yx.) For uniaxial stretching

flows such as in fiber spinning or drawing then

�N = C �σ = C(τzz − τrr ) (5.178)

Because the melt is amorphous

�N = �N 0
am fam (5.179)

and

fam = (C/�N 0
am)�σ (5.180)
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The quantity (C/�N 0
am) turns out to be a constant for all

polymers. Thus, fam is proportional to �σ , which arises dur-
ing flow. We must remember that stresses relax when the
flow is stopped so that unless the cooling is rapid enough, we
will lose a considerable amount of the orientation. For shear
flows the same stress/optic law holds; that is,

C �σ = C(σ1 − σ2) = �N (5.181)

whereσ 1 andσ 2 are the principal stresses, C is the stress optic
coefficient, and �N is the birefringence. By a transformation
of the coordinates we can relate the stress components in the
laboratory coordinates to those in terms of the principal axes.
For shear flow the relations are

τyx = 1
2�σ sin 2χ (5.182)

τxx − τyy = �σ cos 2χ (5.183)

�σ = σ1 − σ2 (5.184)

With the assumption that the principal directions and the
optical directions coincide—that is,

χopt = χstress = χ (5.185)

and introducing Eq. 5.182 into Eqs. 5.183 and 5.184, we
obtain the following relations:

τyx = 1
2

�N

C
sin 2χ (5.186)

τxx − τyy = (�N/C) cos 2χ (5.187)

Hence, from the stress field generated during flow we can
estimate the degree of molecular orientation. In particular,
we find from Eqs. 5.186 and 5.187 that

tan 2χ = 2τyx

τxx − τyy
(5.188)

In extensional flow it is assumed that χopt = χ stress = χ = 0,
and hence τ xx − τ yy = σ 1 − σ 2 = �N/C. So in extensional
flow, the molecules are oriented in the flow direction. Values
of C for several polymers are listed in Table 5.19.

If we were to measure the birefringence, �N, of a poly-
crystalline material in the solid state, it would not represent
the overall orientation. �N consists of contributions from the
amorphous and crystalline regions:

�N = φc�N 0
cr fcr + (1 − φc)�N 0

am fam (5.189)

where �N 0
cr and �N 0

am are the birefringence values of the
perfectly oriented crystalline and amorphous regions and φc

is the crystalline volume fraction. (It also should be added
that shrinkage measurements upon annealing are a widely

TABLE 5.19 Stress-Optical Coefficients

Materials Temperature (◦C) C (10−9 m2/N)

Polystyrenes
Styron 666 190 −4.1
Styron 678 190 −4.8
BASF 3 178 −4.5

188 −4.6
200 −4.4
214.5 −4.2

Polyethylenes
HD 150 2.4

190 1.8
LD 150 2.0
IUPAC A 150 2.1

Polypropylenes
PP 210 0.9

Source: Data from Janeschitz-Kriegl, 1969, 1983.

used method for determining macromolecular orientation in
processed articles. The idea is that stretched oriented chains
will become randomized on annealing above Tg.)

The reason for the discussion of orientation is because
physical properties are closely tied to orientation. Our goal
is to point out that molecular orientation and morphology are
related to flow and deformation history, and hence physical
properties are related to processing history. Our discussions
of orientation serve only to quantify and define orientation.
Likewise they serve to show that at least for amorphous
polymers and for polymer melts there is a direct correlation
between stress and orientation.

5.6 SOLUTION TO DESIGN PROBLEM IV

The solution to Design Problem IV proceeds as follows.
We first develop the form of the energy equation that must
be solved. We then determine whether heat transfer from
the polymer film to air is important relative to that which
occurs at the drum surface. The temperature profile along the
film (or in essence as a function of time following a fluid
element) is then determined. This can then be substituted
into the equation for nonisothermal crystallization to give
the percent crystallinity for a given heat transfer coefficient
at the drum surface. Assuming spherulitic growth, which is
reasonable for PP, we can estimate the spherulite radius from
the linear growth rate.

We first determine the form of the energy equation. Fol-
lowing Examples 5.1 and 5.11, the energy equation is

Pe
∂θ

∂ζ
= −b

2k
[h1(T (1) − Ta)/(T0 − Ta)

+ h2(T (−1) − T ′
a )/(T0 − Ta)

]
(5.190)
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where h1 and h2 are the heat transfer coefficients at the film–
drum surface and at the film–air interface, respectively, and
T is the temperature of the air.

It is not certain whether h2 is significant at this point. Using
Eqs. 5.123 and 5.124 for forced convection heat transfer
involving flow over a flat plate and the conditions given in
the problem, we estimate h2 = 2.8 W/m2 · K, which is quite
small. For free or natural convection from a vertical flat plate
we use Eq. 5.132 to find h2 = 3.87 W/m2 · K, which again
is small. Hence, we consider only the heat transfer at the
film–drum surface and Eq. 5.190 becomes

Pe
∂θ

∂ζ
= −bh1

2k
θ (5.191)

where we have introduced the average dimensionless tem-
perature,

θ = T − Ta

T0 − Ta
= T (1) − Ta

T0 − Ta
(5.192)

because there is little variation of T over the film thickness.
We next estimate the magnitude of h1 required to keep

the crystallinity below 3.0%. To do this we first estimate
what value of h1 is needed to drop the film temperature from
200 ◦C (we expect an insignificant drop in film temperature
from the die to the drum based on Example 5.1) to 25 ◦C.
This temperature is arbitrary and we may find that we would
like to keep the temperature higher as the film is drawn after
leaving the chill roll. Equation 5.191 becomes

∂θ

∂ζ
= − h1θ

2ρC pV0
(5.193)

If we follow an element of the film, then we can recast
Eq. 5.193 as a transient heat conduction problem. With ζ =
z/b, where b is one-half the film thickness and t = z/V0, we
are now solving the following DEQ (differential equation):

∂θ

∂t
= − h1θ

2bρC p
(5.194)

with I.C. at t = 0, θ = 1.0.
Equation 5.194 can easily be solved if h1, ρ, and C p

are taken to be independent of temperature. Most likely one
would use channels carrying a cooling fluid just below the
surface and hence h1 might change slightly across the drum.
According to Table 5.6 ρ is not expected to change much,
but C p is somewhat temperature dependent. (We could use
Eq. C.2 and Table C.9 in Appendix C if we want to improve
the results.) Taking C p to be 2.80 × 103 kg−1 · K−1 and ρ to
be 867 kg/m3 we can estimate what h1 should be. Given the
line speed and drum diameter we find that the time the film

is in contact with the drum is 1.98 s. With the assumption of
constant coefficients the solution to Eq. 5.194 is

θ = exp

[
− h1t

b2ρC p

]
(5.195)

When T = 25 ◦C, θ = 0.069; then h1 = 164 W/m2 · K.
Although we have an estimate for h1, we don’t know

whether this value will keep the amount of crystallinity below
the level of 3.0%. To find this out we use Eqs. 5.161 and
5.162:

φc/φ∞ = 1 − exp

[
−
∫ t

0

(
4
3

)
πNG3 nt ′(n−1)dt ′

]
(5.196)

where G is given by either Eq. 5.157 or Eq. 5.158. TK has
been calculated in Example 5.9 to be 93 ◦C. In principle we
should use Eq. 5.157 for 93 ≤ T ≤ 200 ◦C and Eq. 5.168 for
25 ≤ T ≤ 93 ◦C, but we will use Eq. 5.157 over the whole
temperature interval. For PP Eq. 5.157 becomes

ln G = ln G0 − (2.303)

[
(2.553 × 103/T ) + 5.141 × 104

T (447 − T )

]
(5.197)

or

G = G0 exp
[−(2.303)

(
(2.553 × 103/T )

+ 5.141 × 104/T (447 − T )
)]

(5.198)

From Eq. 5.195 we know how T changes with time and hence
we can calculate φc by substituting Eq. 5.198 in Eq. 5.196.
Before doing this we make a change of variables in Eq. 5.196
from time to temperature using Eq. 5.195, and we express
Eq. 5.196 as

ln(1 − φc/φ∞) = −
∫ t

0

4
3πNG3 nt ′(n−1)d ′t (5.199)

=
∫ Tf

T0

−C exp
[−(3)(2.303)

(
(2.553 × 103/T )/

+ 5.141 × 104 T (447 − T ))
]

(ln{(T − Ta)/

(T0 − Ta)})2 (1/(T − Ta))dT (5.200)

where Tf = 298 K and T0 = 473 K and C = 4
3 πNG

(3)(2bρCp/h1)3. To integrate the expression on the right-
hand side (R.H.S.) of Eq. 5.200 numerical techniques are
required. This is done by using either the IMSL subroutine
QDAGS as described in the file “DesignPR4-IMSL-Fortran”
or the MATLAB function “Quad” as described in the file
“DesignPR4-MATLAB-Quad” on the accompanying web-
site. Furthermore, we find it necessary to use the double
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precision form of the subroutine because of the magnitude
of the terms in Eq. 5.200. For the conditions given and the
assumed final temperature of 25 ◦C, φc ≈ 0.0 for all practical
purposes (i.e., ln (1 − φc/φ∞) = −0.36 × 10−8). Hence, a
value of h1 = 164 W/m2 · K will keep the crystallinity below
3.0%.

We have only found a desired heat transfer coefficient.
Whether we can achieve these conditions is another matter.
The design of a cooling system to obtain the desired heat
transfer coefficient may be difficult. Two methods that are
used presently are the spraying of water on the inside of the
drum surface and the circulation of water through channels
beneath the drum surface.

The other question of concern in this problem was
spherulite size. Because φc is negligible, there is no need
to calculate the radius of a spherulite. However, if this was
necessary, we would use Eqs. 5.198 and Eq. 5.153 to obtain
a differential equation for determining R. We would then use
the IMSL ordinary differential equation solver, IVPAG, or a
MATLAB solver such as “ode15s” to find the radius, R, as a
function of time.

PROBLEMS

A. Applications

5A.1 Temperature Shifting of Rheological Data. Viscos-
ity versus shear rate data are given in Appendix A,
Table A.12 for PPS at various temperatures. Use
the shift factors given in Appendix A.5 as well as
the rheological data to obtain values of η and N1 at
330 ◦C at higher shear rates than given. Compare the
shifted values to the measured values where overlap
of the shear rates exists.

5A.2 Shift Factor Determined Using the WLF
Equation. Calculate the shift factor for PPS
at 293 ◦C for a reference temperature of 330 ◦C
using the WLF equation (Eq. 5.7) and compare it
with the experimental value of 1.708.

5A.3 Viscous Heating in a Slit Die. Determine the max-
imum temperature rise in the slit die shown in Fig-
ure 3.23 (p. 58) for HDPE at 170 ◦C at a wall shear
rate of 100 s−1. Use the rheological parameters given
in Table 2.3 (p. 20) and Eq. 5.55. Take the die length
to be 100 mm and the height to be 2.5 mm.

5A.4 Pressure Profile in the Presence Viscous
Heating. Determine the effect of viscous
heating on the pressure profile in the slit die in
Problem 5A.3.

5A.5 Heat Transfer Coefficients in High Speed Wire
Coating. A copper wire coated with LDPE leaves

a wire coating die at 165 ◦C. The diameter of the
metal wire and coating is 0.09 cm and the coating
thickness is 0.02 cm. The line speed is 2000 m/min.
The cooling medium is water at 25 ◦C and the final
temperature of the surface of the coating is 25 ◦C.
Determine the heat transfer coefficient as the wire
enters the cooling bath.

5A.6 Heat Transfer Coefficient During the Heating of
PETP Preforms. A 57 g PETP preform is heated
from 25 ◦C to 120 ◦C using a radiant heat source.
The outer diameter of the preform is 2.54 cm and
the wall thickness is 0.32 cm. The air temperature
is 25 ◦C. Determine the convective part of the heat
transfer coefficient at the outside surface of the pre-
form assuming that the source of heat transfer is free
convection.

5A.7 Effect of Carbon Fiber on the Cooling Time of
a Composite. A 0.4064 cm thick laminate (lay-
ers of polymer sheet reinforced with long continu-
ous fibers) consisting of 60 volume % carbon fiber
and 40 volume % PEEK is cooled from 350 ◦C to
100 ◦C in a mold with the wall temperatures set at
75 ◦C. Neglecting crystallization and assuming con-
stant thermal properties, determine how much faster
the composite cools down to the final temperature
relative to the pure matrix of the same thickness.
The properties of the fiber and matrix are given in
Table 5.11.

5A.8 Crystallization of LDPE. Determine the tempera-
ture at which the maximum rate of crystallization
occurs and K(T)max for HDPE. Which crystallizes
faster, PP or HDPE?

5A.9 Orientation of a Polymer Melt in Shear
Flow. LDPE (NPE-953) is extruded through a film
die at 170 ◦C at a wall shear stress of 1.2 × 105 Pa.
The film die consists of parallel plates having a width
of 1.0 m and a height of 0.05 cm. Determine the
amorphous orientation function as a function of dis-
tance from the center to the die wall in the region
where steady shear flow exists.

5A.10 Radiation Heating of Carbon Fiber Tow. Before
impregnating carbon fiber (black in color) with the
matrix it is heated on both sides by means of a
bank of quartz lamps having a filament tempera-
ture of 1492 ◦C. The carbon fiber bundles (called
tows) are spread to a width of 20 cm and a thick-
ness of 0.25 cm. Treating the bank of lights and the
spread carbon fiber as parallel flat plates, determine
the time required to heat the centerline of the carbon
fibers from 100 ◦C to 300 ◦C. What will the sur-
face temperature of the filaments be when the center
is 300 ◦C?
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5A.11 Factors Affecting Spherulitic Crystallization

(a) The overall rate of crystallization, rc = dφc/dt, is
proportional to (t1/2)−1, where t1/2 = (ln 2/K)1/3

for spherulitic crystallization. Show that rc ∝
1.5N1/3, where N is the number of nucleation
sites.

(b) Based on the expression above list four factors
on which rc depends.

(c) Which two of these factors can be altered by
processing conditions?

(d) Which two of these factors are determined by
the polymer structure?

B. Principles

5B.1 Viscous Heating in Tangential Annular
Flow. Determine the temperature distribution
in an incompressible power-law fluid between two
coaxial cylinders (see Problem 2B.6) each assumed
to be at the same temperature, Tw. Assume that the
forced convection assumption holds and that μ, ρ,
and k are constant. (Note: The equations of motion
and energy can be solved independently.)

(a) Show that the equation of energy is

0 = k
1

r

d

dr

(
r

dT

dr

)
+ m

[
r

d

dr

(vθ
r

)]n+1

(5.201)

(b) Using the velocity profile determined in Problem
2B.6, show that Eq. 5.201 becomes

0 = k
1

r

d

dr

(
r

dT

dr

)
+ m

[−2W R2/nk2/n

n(1 − k2/n)

]n+1

r−2(1+s)

(5.202)

(c) Solve Eq. 5.202 for the temperature distribution.

(d) Under what conditions might we expect a signif-
icant temperature rise, say, on the order of 10 ◦C,
if the fluid has the properties of HDPE given in
Table 2.3 (p. 20)?

5B.2 Viscous Heating in a Wire Coating Die. In Exam-
ple 2.3 in Chapter 2 (p. 18) determine whether any
significant rise in temperature will occur for the con-
ditions given. Assume the melt enters the die at
200 ◦C and the wall and wire temperatures are also
200 ◦C. Repeat the calculations for a wire speed of
2000 m/min.

5B.3 Forced Convection Heat Transfer in Tubes–Short
Contact Times. A polymeric fluid whose viscosity
function is described by the Ellis model is flowing
through the tube as shown in Figure 5.26. Determine
the temperature profile and the wall heat flux for the

R

z=0

r z

T=T for z>01
T=T 0 for z>0

FIGURE 5.26 Pipe with sudden change in wall temperature.

case of short contact times in which the heat does
not penetrate very far into the fluid.

(a) Obtain the velocity profile.

(b) Obtain the differential equation for T(r, z) by
carrying out an energy balance and by using the
equation of thermal energy.

(c) Set s = R − r and discard any terms that are not
important in the vicinity of the wall to obtain the
following differential equation:

ρC p

[
(τR/η0) +

(
ταR/τ

α−1
1/2 η0

)]
s
∂T

∂z
= k

∂2T

∂s2

(5.203)

in which τR is the momentum flux at r = R.

(d) Under what conditions is it possible to make the
substitution suggested in part (c)?

(e) Introduce the following dimensionless variables
and rewrite Eq. 5.203:

θ = T − T0

T1 − T0
, ζ = z

R
, σ = s

R
,

N = ρC p R2

k

[
(τR/η0) +

(
ταR/τ

α−1
1/2 η0

)]
(5.204)

(f) Show that if a solution of the following form is
assumed,

θ = f (η), where η =
(

Nσ 3

9ζ

)1/3

(5.205)

the partial differential equation in part (c) is
transformed into the ordinary differential equa-
tion

f ′′ + 3η2 f ′ = 0 (5.206)

in which the prime indicates differentiation with
respect to η.

(g) What boundary conditions are required to solve
Eq. 5.206?
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(h) Solve Eq. 5.206 and get

f = [� (4/3)]−1
∫ ∞

η

e−η3
dη (5.207)

in which�(4/3) is the gamma function evaluated
at 4/3.

(i) From the temperature distribution in part (h),
evaluate the wall heat flux as a function of the
distance down the tube.

(j) Integrate the result in part (i) to obtain the total
heat flow through the pipe surface between z =
0 and z = L: that is, show that

Q = 4πRk(T1 − T0)

(
N

9

)1/3( L

R

)2/3[
�

(
7

3

)]−1

(5.208)

5B.4 Solidification of a Polymer Melt During Injection
Molding. A thin rectangular mold is filled with
a polymer melt having an initial temperature of T0.
The melt is assumed to make perfect thermal contact
with the mold walls, which are set at Tw. Determine
the rate of solidification (i.e., Wa = ρs dXs/dt) and
the time it takes for the centerline to reach the crys-
tallization temperature, Tc. Consider the melt to have
a distinct crystallization temperature, Tc. The heat of
crystallization is taken as �H c. Assume that there
is enough flow into the center of the molten poly-
mer so that the solid polymer always makes contact
with the walls of the mold. Use the notation given in
Figure 5.27 and carry out the following steps:

(a) Assuming that each region is a finite slab, obtain
the differential equations for the temperature
distribution and the corresponding initial and
boundary conditions for the liquid and solid
phases.

(b) To relate the temperature distributions in the two
phases, carry out an energy balance at the inter-
face to obtain

ks
∂Ts

∂xs

∣∣∣∣xs − kl
∂Tl

∂xl

∣∣∣∣
xl

= ρs�H c
d Xs

dt
(5.209)

(c) Substitute the series solutions to the differential
equations in part (a) into Eq. 5.209 and explain
how this equation can be used to find the solidi-
fication rate.

5B.5 Relation of Volume Fraction of Crystallinity to
Density. Show that φc is related to ρ, ρc, and ρa

by the following relation:

φc = (ρ − ρa)/(ρc − ρa)

T

T1

T0

Solid Melt

T(x  )

x x
x

X   (t)

X   (t)

T(x  )s

l

l s

s

l

Interface

FIGURE 5.27 Crystallization of a semi-infinite melt.

where ρ is the density of the semicrystalline mate-
rial, ρa is the density of the amorphous phase, and
ρc is the density of the crystalline phase.

5B.6 Density and Heat Capacity in a Crystallizing
Polymer. During crystallization the density and
heat capacity change as the polymer is converted
from amorphous melt to crystalline solid. Obtain
expressions for ρ and C p of the semicrystalline com-
posite material in terms of φ, φc, φ∞, and the cor-
responding crystalline and amorphous values of ρc,
φa,C p,c, and C p,a .

C. Numerical Problems

5C.1 Numerical Solution of Heat Conduction in a
Slab. Do Example 5.5 for the case in which the
boundary conditions are given in terms of a heat
transfer coefficient and the thermal coefficients are
temperature dependent (see Table 5.6). Compare the
results to those obtained in Example 5.5 in which
constant thermal coefficients were used.

5C.2 Numerical Solution of Heat Conduction in a
Slab. Solve Example 5.5 for the case in which
the boundary conditions are given in terms of a
flux through a heat transfer coefficient. Use the
IMSL subroutine MOLCH or the function “pdpde”
in MATLAB to obtain the time to cool the centerline
to 130 ◦C.

5C.3 Nonisothermal Crystallization of PEEK. The
temperature of a PEEK/carbon fiber composite
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(containing 60% by weight of carbon fiber) is
reduced from 350 ◦C to 75 ◦C at the rate of
20 ◦C/min. The thickness of the composite is 0.3175
cm. Determine φc using Eqs. 5.162 and 5.163.

5C.4 Film Casting of LDPE. It is desired to use the same
film casting equipment as is used for polypropylene
(see Design Problem IV). Using the same conditions
as given in Design Problem IV, except the initial
temperature for LDPE is 175 ◦C, determine whether
φc can be maintained below 3.0%.

5C.5 Radiation Heating of a Sheet. Do Example 5.7
numerically using the approach described in Exam-
ple 5.5. Do the problem for both the cases of constant
and temperature-dependent thermal properties. (The
material is PVC.)

5C.6 Bonding of Polymer to a Metal Sheet. PPS sheets
(0.018 cm thick) are bonded to both sides of a copper
sheet (0.05 cm thick) by heating the materials from
25 ◦C to 310 ◦C in a press as shown in Figure 5.28.
The platens of the press are held at 330 ◦C. Deter-
mine the time required to heat the interface between
PPS and copper to 310 ◦C. The following properties
are given for Cu:

kc = 377 W/m · K, ρc = 8954 kg/m3,

C̄ p,c = 0.381 kJ/m · ◦C

(a) Formulate the differential equation and bound-
ary and initial conditions required to find the
time to heat the interface between PPS and Cu
up to 310 ◦C.

(b) Find an analytical solution to this problem if
possible.

(c) Solve the problem numerically.

Lower platen (heated)

Upper platen (heated)

PPS

Cu
2b

FIGURE 5.28 Lamination of two films of PPS to a copper sheet.

D. Design Problems

5D.1 Design of a Pelletizing Bath. Based on the condi-
tions given in Example 5.6, determine the minimum
bath length required to drop the centerline tempera-
ture of the strand to 75 ◦C. In your calculations deter-
mine the length for three conditions: (1) no thermal
resistance at the polymer–water interface; (2) use a
heat transfer coefficient based on a mean value cal-
culated at the beginning and end of the bath; and (3)
use a variable heat transfer coefficient that depends
on temperature.

5D.2 Cooling of a Blow Molded Gas Tank. A coextruded
parison consisting of HDPE and nylon 6 are blow
molded to form a gasoline tank for an automobile.
The nylon 6 serves as a barrier to gasoline fumes. In
order for the tank to exhibit adequate impact prop-
erties, the spherulite size must be maintained below
10 microns in both resins and φc for both resins
should approach 75% of φ∞. Determine the heat
transfer coefficient required at the mold wall to pro-
vide these conditions. The thickest section of the
parsion as it contacts the wall is 0.50 cm with nylon 6
representing 1/5 of the thickness. Treat the compos-
ite material as a slab and assume that there is no heat
transfer at the inner surface. The mold is to be cooled
by channels with circulating water at 12 ◦C. In your
design you must consider that it is necessary to use
the shortest time possible to cool the part down.
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6
MIXING

DESIGN PROBLEM V DESIGN OF A
MULTILAYERED EXTRUSION DIE

Coextrusion is an important process for manufacturing lay-
ered plastic composites, such as film, sheet, and tubing
(Middleman, 1977; Schrenk and Alfrey, 1983; Schrenk et al.,
1963). A costly alternative would be the fabrication of indi-
vidual layers of plastics followed by conventional lamina-
tion and coating. An additional advantage of the coextrusion
technique is its ability to handle extremely thin films on the
order of 10 μm. One of the most “colorful” applications of
this technique is the iridescent film, which consists of hun-
dreds of very thin layers of alternating low and high refractive
indices. A typical example of this type of film consists of 116
layers of poly(methyl methacrylate) (PMMA) with refractive
index 1.49 and 115 layers of polystyrene (PS) with refractive
index 1.59 and total film thickness of about 20 μm (Radford
et al., 1973).

We seek to produce a multilayered film of two polymers
from a coextrusion blown film apparatus. The die is of the
annular type with the mandrel rotating (see Fig. 6.31a) and
its dimensions are: κR = 4.8 cm, R = 5.0 cm, and L = 15 cm.
The two polymers, which are presented in the schematic by
black and white colors, have the same Newtonian viscosity,
μ = 500 Pa·s, at the extrusion temperature. The pressure
drop in the die is �P = 3.45 MPa (500 psi) and the total
volumetric flow rate is Q = 9.43 cm3/s. The feedport system
consists of 20 equal-size ports in total, 10 for the first poly-
mer (black) and the other 10 for the second polymer (white).
A similar feedport system with 16 ports in total is shown in

Figure 6.31. Calculate the minimum rotational frequency of
the mandrel for the maximum layer thickness not to exceed
5 μm at the end of the die. To solve this problem follow both
the geometrical and the kinematical approaches. Also, cal-
culate the power to rotate the mandrel and introduce changes
necessary for the reduction of the power consumption.

In the preceding four chapters momentum, mass, and heat
transfers were analyzed, as they apply to polymer process-
ing. This is the first chapter among the last five concerned
with the specifics of various types of processes. Primarily,
mixing in polymer processing addresses two tasks: addition
of various ingredients (additives) and production of poly-
mer blends and alloys. The additives are used to alter the
properties of the matrix polymer, such as impact strength,
flexural modulus, modulus of elasticity, foaming ability, and
cost. These additives are called modifying additives. Addi-
tives are also used to prevent polymer degradation, and they
are called protective additives. The other important task of
mixing at present is the blending of other polymers with the
given polymer to obtain a desired improvement in the given
polymer. For example, the blending of polypropylene (PP)
and compatibilizers with Nylon 6 leads to a composition that
is lower in price and has improved energy absorbing charac-
teristics (Van Gheluwe et al., 1988). Similarly, blending of
rubber with polystyrene (PS) produces a very fine dispersion
of rubber particles in the PS matrix, called high-impact PS
(HIPS), with great improvements in the energy absorbing
characteristics (Bucknall, 1977). Although many would like
to think that the properties of a blend are determined by the
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FIGURE 6.1 Mixing in the major routes for melt processing
of polymers to finished products. (Reprinted by permission of the
publisher from Matthews, 1982.)

thermodynamics, it turns out that the method of preparation
is of utmost importance. Figure 6.1 shows the importance of
mixing in polymer processing by laying out the major routes
for melt processing of polymers to finished products.

Clearly, there are differences between the mixing require-
ments for the cases of the additives and the blending of
polymers. Blending of polymers usually involves large con-
centrations (or weight percent) of the additive phase, various
degrees of compatibility between the various phases, small
density differences, and dispersion of one phase into droplets
or fibers with dimensions affected by the physical character-
istics of that phase and the hydrodynamics prevailing in the
mixing environment. These characteristics of the polymer
blending processes are contrasted with the characteristics
of polymer–additive systems: low concentrations, large den-
sity differences, and solid–liquid distribution and dispersion
of agglomerates into particles that cannot be divided any
further.

Generally, in polymer processing we are concerned with
mixing in three types of systems: liquid–liquid, solid–solid,

and liquid–solid, each with different mechanisms and kinet-
ics of mixing. In the liquid–liquid case, mixing is concerned
with either low viscosity monomers or high viscosity poly-
mer melts. Solid–solid mixing involves blending of either
two polymers or resins or an additive and a polymer. In such
cases, the polymer is in granular, pelletized, powdered, or
diced form. Finally, solid–liquid mixing involves blending
of liquid additives and solid polymers (not melted) or solid
additives (below their melting point) and melted polymers.

This chapter is organized as follows. In Section 6.1 we
describe mixing with particular emphasis on polymer pro-
cessing. The characterization of the state of the mixture
together with the statistical analysis and the various experi-
mental techniques are presented in Section 6.2. Laminar mix-
ing is the only viable mixing mechanism for polymer melts
due to their high viscosity, and it is analyzed in Section 6.3
using both the geometrical and kinematical approaches. In
Section 6.4 we emphasize the importance of residence time
and strain distributions of polymer processing equipment in
understanding the degree of mixing achieved in each pro-
cess. Dispersive mixing is analyzed in Section 6.5 with focus
on both solid aggregates and liquid–liquid dispersions. In
Section 6.6 we highlight the importance of thermodynam-
ics in polymer processing, and in Section 6.7 we describe
the fundamentals of chaotic mixing as a way to improve the
degree of mixing. Finally, Section 6.8 provides the solution
to Design Problem V.

6.1 DESCRIPTION OF MIXING

The term mixing refers to operations that have a tendency to
reduce nonuniformities or gradients in concentration, tem-
perature, size of a dispersed phase, or other properties of
materials. Equivalently, a mixing operation increases the con-
figurational entropy of the system, which becomes a maxi-
mum as the configuration becomes random. Mixing is con-
sidered to be one of the most widespread industrial unit oper-
ations, and it is found in the core of many areas in the general
industry. This unit operation might be a process in itself or
might be a part of a more extended sequence of processes.
Typical examples can be taken from the general industry,
polymerization processes, and polymer processing.

Here we restrict ourselves to the study of the mixing of
two-component systems. The two components are defined as
either major or minor components by the level of their total
concentration. The goal of the mixing process is usually to
achieve a homogeneous dispersion of the minor component
into the major one, obtaining the ultimate particle or sub-
division (or volume element) level of the minor component
(McKelvey, 1962). In the mixing area, that term is used in a
restricted sense, because in its general form the ultimate parti-
cle is the molecule and ultimate mixing is molecular mixing.
However, in typical mixing operations the two parameters
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that define the size and form of the ultimate particle are the
form of the component and the level of satisfaction of the
final dispersion. For example, in the mixing of carbon black
agglomerates in polyethylene (PE), the ultimate particle is
one particle of carbon black defined by the form of the ini-
tial agglomerates (many particles together) as well as by the
satisfactory dispersion level of one carbon black particle. In
general, typical ultimate particles are molecules and colloidal
and microscopic particles.

Mixing is accomplished by movement of material from
various parts by the flow field. This movement occurs by a
combination of the following mechanisms, two of which are
hydrodynamic and one is molecular (Brodkey, 1966). The
first is convective transport. It is present in both laminar and
turbulent regimes, and it can also be called bulk diffusion.
Generally, a colored pigment being dispersed in a bucket of
paint is an example of laminar mixing. In this case, layers
of pigment are thinned, lumps are flattened, and threads are
elongated by laminar convective flow. Stirring of cream in a
cup of coffee is an example of turbulent mixing, in which the
mechanism of turbulent bulk flow predominates at the first
stages.

The second mechanism is eddy diffusion, which is pro-
duced by local turbulent mixing. This mechanism prevails
at the later stages in the example of stirring of cream into
a cup of coffee which was mentioned above. The turbulent
eddies in the flow field create small scale mixing, which is
sometimes thought to be analogous to molecular diffusion.
However, eddy diffusivity is much higher than molecular
diffusivity, and it occurs over longer length scales. For gases
and low viscosity liquid systems eddy diffusion becomes the
usual mode of mixing.

Finally, there is molecular diffusion or interpenetration of
molecular species. It is responsible for the ultimate homog-
enization on a molecular scale (the ultimate particles are the
molecules), and it is considered to be true mixing. This form
of diffusion is driven by the chemical potential difference
due to concentration variation, and it is a very slow process,
because its time scale is proportional to the value of the dif-
fusion coefficient. Thus, this mechanism becomes important
in gases and low-molecular-weight, miscible liquid systems,
although there are time scale differences in those two cases.

The major difference between mixing in general and in
polymer processing stems from the fact that the viscosity
of polymer melts is usually higher than 102 Pa·s, and thus
mixing takes place in the laminar regime only (Re < 2000;
to achieve such a number the polymer would have to flow
down a 1 m wide channel at a velocity of 20 cm/s). This
has a severe consequence which is the lack of eddy and
molecular diffusion which greatly enhance the rate of mix-
ing and reduce the scale of homogenization. Thus, all mix-
ing theories and practices should be adjusted to the laminar
regime to find applicability in the polymer processing area.
This remark applies also to solid–solid mixing in polymer

processing, but it does not find application to the addition
of low-molecular-weight substances into polymers, such as
dyes, where molecular diffusion plays a role.

The two basic types of mixing can be identified as exten-
sive and intensive mixing. Distributive, convective, repeti-
tive, simple mixing, and blending are the main names with
which extensive mixing is also associated, whereas com-
pounding, dispersive, and dispersing mixing are the corre-
sponding names associated with intensive mixing. Extensive
mixing refers to processes that reduce the nonuniformity of
the distribution (viewed on a scale larger than the size of the
distributed components) of the minor into the major compo-
nent without disturbing the initial scale of the minor compo-
nent. It can be achieved through two mechanisms: rearrange-
ment and deformation in laminar flow. The rearrangement
mechanism works in plug–type flows (Tadmor and Gogos,
1979) with absence of deformation and it can be subdivided
into random and ordered types as shown schematically in
Figure 6.2. Also, deformation achieved in shear, elongation,
and squeezing flows plays a major role in distributing the
minor component.

The term intensive mixing refers to processes that break
down the liquid dispersed phase or the initial particle agglom-
erates, and they decrease the ultimate particle of the disper-
sion. A typical example is the dispersion of agglomerates of
colloidal carbon black particles in PE. In this case the initial
ultimate particle is the agglomerate, and the final is the parti-
cle itself. Another example is the dispersion of a polymer into
another polymer where the minor component should be dis-
persed into small droplets or elongated fibers (both of them
have a length scale of about 10 μm). The analysis of disper-
sive mixing follows the lines of the analysis of distributive
mixing with the complication that the breakup forces should
now be included.

The geometry of the mixing equipment, physical parame-
ters, such as viscosity, density, interfacial tension, elasticity,
and attractive forces for solids, operating conditions, such
as temperature, speed of rotating parts, flowing velocity, and
residence time are the important factors that determine the
relative strengths of the mixing mechanisms. As a conse-
quence, this relative strength affects the efficiency of mixing
and the quality of the product. In almost all cases, both good
distribution and good dispersion are required. In some cases,
only distributive mixing can be tolerated if the next step
offers dispersive characteristics and, respectively, dispersive
mixing is used when a finely dispersed mixture is required
and when the next step does not offer any dispersion charac-
teristics. The distinction between good and poor dispersion
and distribution is shown in Figure 6.3.

Some of the terms mentioned get a specific connotation
when referred to polymer processing, and thus we give here
some specific definitions (Matthews, 1982). Compounding
refers to the process of softening, melting, and compaction
of the polymer matrix and dispersion of the additive into
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FIGURE 6.2 Distributive mixing: (a) random and (b) ordered
rearrangements. (Reprinted by permission of the publisher from
Tadmor and Gogos, 1979.)

that matrix. Blending refers to all processes in which two
or more components are intermingled without significant
change of their physical state. Finally, kneading refers to
mixing achieved by compression and folding of layers over
one another; milling refers to a combination of smearing,
wiping, and possibly grinding; and mulling refers to wiping
and rolling actions.

6.2 CHARACTERIZATION OF THE STATE
OF MIXTURE

After a certain mixing process is completed, the polymer pro-
cess engineer faces the question about the effectiveness of the
selected process as well as about the uniformity of the prod-
uct. In this section we restrict ourselves to the examination of

FIGURE 6.3 Quality of distributive and dispersive mixing.
(Reprinted by permission of the publisher from Morton-Jones,
1989.)

the product in terms of meeting the preset specifications. In
its strictest sense, this should include a detailed description of
the ultimate particles (aggregates, particles, drops, and fibers)
of the minor component (i.e., their number, length scales,
shape, orientation, and statistical description of their spatial
distribution). For example, suppose we intend to mix 1% car-
bon black in PE. After the mixing is carried out, we fracture
a number of samples of PE in order to determine whether the
initial carbon black aggregates were broken down to either
smaller-size aggregates or even to individual particles and to
assess the size of the existing carbon black entities and their
spatial distribution. Of course, all this information will be
integrated into the task of determining the sample concentra-
tion statistics and its relation to the expected 1% overall con-
centration. This procedure can be somewhat altered in terms
of measuring the ultimate particles, because their number
and size might affect some physical property whose mea-
surement can provide a quick way of assessing the success
of the mixing step.

Usually it is sufficient to characterize any mixture by its
gross uniformity, texture, and local structure. The term gross
uniformity can also be found in the literature as overall unifor-
mity or gross composition uniformity. In the example of car-
bon black mixed into PE, the gross uniformity indicates the
goodness of the concentration distribution of carbon black,
and it can be evaluated by statistical analysis on a number
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of fractured pellets selected randomly from a large batch of
pelletized PE. In the ideal case, all the randomly selected
pellets will contain the same concentration of carbon black,
and thus the mixture will be called perfectly gross uniform. In
practice, the gross uniformity is a measure of the degree of fit
of the concentration distribution to the binomial distribution,
which was found theoretically and proved experimentally to
describe these situations.

The size of the PE pellets determines the scale of examina-
tion (McKelvey, 1962; Tadmor and Gogos, 1979), which can
be expressed by order of magnitude fashion and in terms of
length, area, or volume. When a finished product is examined
for composition gross uniformity, the scale of examination
is determined by the size of the sampling volume. It is obvi-
ous that the maximum scale of examination is identical to
the scale of the finished product itself and that the mini-
mum is the length scale of the ultimate particles. McKelvey
(1962) introduced the ideas of fine- and coarse-grained sam-
ples depending on the ratio of the scales of examination and
ultimate particles. In particular, if this ratio is very large the
sampling volume contains many particles, and its appear-
ance is fine grained, whereas if this ratio is about 10 to 100,
then the sampling volume contains a few particles, and it is
characterized as coarse grained.

At this point, one should not overlook the importance of
the volume fraction of the minor component in commenting
on the relative sizes of scales of examination and ultimate
particles. To be more specific, suppose that we carry out
a statistical evaluation of samples of 1% and 10% carbon
black in PE and that we would like to have in our microscope
eyepiece only about 30 carbon black particles. To meet that
requirement we should increase our magnification in the 10%
sample more than is required for the 1% sample due to its
lower particle concentration.

Is there an ideal scale of examination? Besides the upper
and lower limits mentioned previously, the texture of the
mixture and its granularity pose another lower limit. Tadmor
and Gogos (1979) define texture as nonuniformity in the
forms of patches, stripes, streaks, and so on. Thus, we can
narrow the large range for the scale of examination by raising
the lower limit to the scale of the granularity of the texture.

The presence of texture in the samples is important in
polymer processing, as (1) laminar mixing produces texture;
(2) the mechanical properties of polymer blends depend on
the texture (e.g., skin–core formation, fiber orientation, and
distribution of voids along the thickness in structural foams);
and (3) the lack or the presence of texture is required in
certain products. Samples can exhibit a certain texture, and
at the same time they do or do not exhibit concentration gross
uniformity.

The scale of examination for textures might differ from
that for gross uniformity. However, the upper and lower
limits, in both cases, remain the same. When the scale of
examination is about the same as the scale of the ultimate
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FIGURE 6.4 Mixing mechanisms and their effect on the char-
acteristics of mixtures. (Reprinted by permission of the publisher
from Hold, 1983.)

particles, we can probe the local structure. In conclusion,
gross uniformity, texture, and local structure are the charac-
teristics of the mixture, and their relative importance depends
on the specific application. For instance, if carbon black is
used for coloring purposes for PE, then its composition gross
uniformity and texture are important while local structure is
unimportant. However, if the purpose of mixing carbon black
in PE is for UV protection (obtained by particles themselves
and not aggregates), then the local structure and texture are
important. The effects of the various mixing mechanisms
on the three parameters of the state of mixture are shown
in Figure 6.4.

6.2.1 Statistical Description of Mixing

The gross uniformity of a mixture can be analyzed by sta-
tistical methods that can also be used to define the degree
of mixing or index of mixedness. For example, for a mix-
ture of carbon black and PE we assume that there exist no
agglomerates, that the carbon black particles are uniform in
size (monodisperse sample), and that the PE matrix can be
divided into fictitious “particles” having the size of carbon
black particles. Thus, the mixture will consist of “white” PE
particles and “black” carbon black particles mixed together.
Solid–solid, solid–liquid, and liquid–liquid (when the dis-
persed liquid cannot be dispersed any further) dispersions
can easily be visualized by this example. Just before mixing
starts, the two components are separated inside the mixer.
We assume that the diameter of the particles is very small
compared to the length scale of the mixer and that there is a
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large but finite number of these particles. To test for the kinet-
ics of mixing and the gross uniformity, we need to extract,
on a regular basis, small samples from the mixture. Sample
size should be large enough to contain a sufficient number
of particles for statistical analysis and small enough to leave
the mixture undisturbed.

As mixing progresses, the black and white particles inter-
mingle to a greater extent, and, after sufficient time passes,
the mixture obtains its random mixing status. At this point
the probability of finding a white particle at any point is con-
stant and equal to the overall fraction of the white particles.
If a number of samples of equal size are extracted from the
mixture, the fraction of the white particles will vary from
sample to sample. The mean value over all samples stud-
ied should equal the overall fraction of white particles and
the distribution of values should follow the binomial or an
equivalent distribution.

Consider a sample, randomly extracted from the mixture,
which contains n particles, where n is large enough for statis-
tical treatment and small enough compared to the total num-
ber of particles in the mixture itself. Let p equal the fraction
of black particles in the entire mixture. Then the probabil-
ity P that this randomly selected sample has exactly b black
particles (x = b/n) is given by the binomial (or Bernoulli)
distribution (Spiegel, 1991):

P(b; n, p) = n!

b!(n − b)!
pb(1 − p)n−b (6.1)

The variance of that distribution is given by

σ 2
n = p(1 − p)

n
(6.2)

Similarly, if there are N samples tested, where N is a very
large number, then the variance of the binomial distribution,
for these samples, is given by the formula

s2
N = p(1 − p)

N
(6.3)

This variance is a measure of how much the concentration
differs from the mean value. The procedure to determine
whether or not the mixture is grossly uniform is obvious
from the above discussion: samples are extracted from the
mixture, their average concentration is calculated, and finally
the concentration distribution is checked against the binomial
distribution. If there is a match between these two distribu-
tions, the mixture is considered to be grossly uniform or a
random mixture. In the limit of zero variance the mixture
attains the uniform state.

The binomial distribution is considered to approach
the normal (or Gaussian) distribution if the number of

samples is large. More specifically, if the following con-
ditions are met

Np > 5 and p < 0.5 (6.4)

then the distribution of concentrations is approximated by
the continuous Gaussian form:

P = 1

σ
√

2π
exp

[
− (x − p)2

2σ 2

]
(6.5)

Note that if the entire fraction of white particles, P, is very
small, then a better approximation of the binomial distribu-
tion is the Poisson distribution:

P = e−np(np)b

b!
(6.6)

In practice, a limited number of samples are examined. Let
N be the number of samples. Then, the mean, C , is defined
as

C = 1

N

n∑
i=1

Ci (6.7)

where Ci represents the concentration of the ith sample. The
variance, s2 (or standard deviation s), of the measurements is
defined as

s2 = 1

N − 1

N∑
i=1

(Ci − C)2

= 1

N − 1

N∑
i=1

C2
i − 1

N (N − 1)

[
N∑

i=1

Ci

]2

(6.8)

If the sampling procedure has been properly executed, then
C and p should not be significantly different. The values for
the mean and the variance can be used in two ways. First,
either with the confidence tests of the statistical theory we can
estimate the actual mean and variance of the whole mixture,
or, closely to is, with the significance theory we can answer
the question, “Are the samples taken from the same mixture
or not?” Second, the variance can be used in the evaluation
of the mixedness or in various kinetic calculations of mixing.

Confidence intervals express (in quantitative terms) the
percentage of times that the true (yet unknown) values of
the mean and standard deviation will lie within a range of
specified values. These values are specified based on the
statistics of a limited number of samples. The confidence
intervals for the mean, μ, are the following:

C − z
s√
N

< μ < C + z
s√
N

(6.9)
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for N ≥ 30, where the normal distribution applies (note that
z is the confidence coefficient and is read from the normal
distribution table), or

C − t
s√
N

< σ < C + t
s√
N

(6.10)

for N < 30, where the t distribution with N − 1 degrees of
freedom applies. Tables for the normal and t distributions are
found in standard statistics textbooks (e.g., Spiegel, 1991).
For example, if a confidence level of 95% is chosen, the z
value (z0.475) is 1.96 and the t value (t0.975, for 2.5% of the
area lying in the “tail”) is 2.26 for 9 degrees of freedom.

The confidence intervals for variances are obtained from
the χ2 distribution:

s
√

(N − 1)

χα

< σ <
s
√

(N − 1)

χ1−α

(6.11)

For example, for 95% confidence level and N − 1 degrees
of freedom, the values χ0.975 and χ0.025 are taken from the
relevant tables of Spiegel (1991).

Example 6.1. Confidence Intervals for the Mean
and Variance

Suppose that 2% carbon black is mixed with PE in a melt
extruder and that the product is pelletized and shipped in
25 kg bags. We randomly select 10 bags, extract a number
of pellets, and fracture and analyze them in a microscope for
carbon black particle statistics. The weight fraction of carbon
black is calculated from the number of particles, and their
size and density, and it was found to vary as follows in the
10 bags:

Bag # Weight Fraction of Carbon Black

1 0.0198
2 0.0185
3 0.0202
4 0.0194
5 0.0211
6 0.0200
7 0.0204
8 0.0189
9 0.0197

10 0.0210

Estimate the ranges for the mean and the variance for 95%
and 99% confidence.

Solution. The mean weight fraction of carbon black is
0.0199 and the standard deviation is 0.00083 (i.e., 4.17%

of the mean value). For 95% confidence level and 9 degrees
of freedom, t0.975 = 2.26, χ0.975 = √

19 = 4.36, and χ0.025 =√
2.7 = 1.64. Then Eqs. 6.10 and 6.11 yield

0.01930 < μ < 0.02050; 0.00013 < σ < 0.00093

Thus, 95% of the time mixed PE will contain carbon black
in concentration between 1.93% and 2.05%. Similarly, the
standard deviation will vary in the range from 0.00013 to
0.00093. For 99% of the time the corresponding values are

0.01904 < μ < 0.02076; 0.00011 < σ < 0.00145

The significance tests are interconnected with the concept
of hypothesis testing and Type I and II errors. Type I error
is made when we reject a hypothesis that should have been
accepted, and Type II error is made when we accept a hypoth-
esis that should have been rejected. The level of significance
of testing a given hypothesis is the maximum probability that
a Type I error might occur. In practice a level of significance
of 5% or 1% are customary. Thus, if we accept a 5% level
of significance, we are 95% confident that the right choice
was made or otherwise stated; there are about 5 out of 100
chances that a Type I error was made.

In polymer processing the significance tests are used to
compare the samples with some reference material that might
be a hypothetical material that is perfectly mixed, and thus
it constitutes the goal of the mixing process, might have a
certain desirable composition, or might be a material pro-
duced in a process that is considered for scaleup. In all those
instances, the mean and the variance of the samples are com-
pared with those of the reference material and a parameter
is calculated. That parameter is then compared to tabulated
values for the set level of significance. If the value of that
parameter is within set limits, then the difference in values
of the mean and the variance between the samples and the
reference material is considered statistically nonsignificant.

In the significance tests for means, the mean and the vari-
ance of the samples are calculated using Eqs. 6.7 and 6.8,
and the mean and the variance of the reference material are
denoted by μ and σ 2, respectively. If the number of samples,
N, is less than 30, then the Student’s t distribution is used for
the means:

t = C−μ

σ/
√

N
(6.12)

This value of t is then compared to the tabulated value of t for
N − 1 degrees of freedom and the set level of significance.
The hypothesis that the sample mean is the same as the
population mean μ is not rejected if the calculated t is less
than the tabulated value.
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The significance test for variances is relevant to cases in
which we have to decide whether two samples of sizes N and
M and variances s2

N and s2
M do or do not come from the same

mixture. The hypothesis that the two samples come from the
same mixture will be tested using the F distribution:

F = s2
N

s2
M

(6.13)

For example, to test the hypothesis at the 10% level, the
following relationship should be used:

F0.05 ≤ s2
N

s2
M

≤ F0.95 (6.14)

where the F values can be found in Spiegel (1991) for
N − 1 and M − 1 degrees of freedom. Note that the fol-
lowing relationship holds: F0.05 = 1

/
F0.95, where the first F

value has M − 1 and N − 1 degrees of freedom and the other
one has N − 1 and M − 1 degrees of freedom.

Example 6.2. Test of the Hypothesis

Test the hypothesis with level of significance 10% that the
samples in Example 6.1 truly represent a carbon black/PE
mixture with a mean carbon black weight fraction of 0.02 and
a standard deviation 0.007 (i.e., 3.5% of the mean). Assume
that the standard deviation of the mixture was calculated
using 25 samples.

Solution. To test the hypothesis for the mean we use
Eq. 6.12, and thus the t value is equal to −0.381. The tab-
ulated value for t0.95 and 9 degrees of freedom is 1.83. The
hypothesis, with respect to means, is not rejected because
−1.83 < −0.381 < 1.83. As far as the standard deviation is
concerned, Eq. 6.14 applies. The calculated F value is 1.41.
The tabulated F values are F0.05 = 0.34, for 24 and 9 degrees
of freedom, and F0.95 = 2.30, for 9 and 24 degrees of free-
dom. Thus, the hypothesis with respect to standard deviations
is not rejected either.

These statistics are also useful in the discussion on the
degree of mixing, or mixedness, or admixedness, or goodness
of mixing. It is obvious that the goal of the mixing process
is to produce a mixture where the distribution of the minor
component is statistically random. The term perfect mixing
refers exactly to that state, or, equivalently, to the state in
which the probability of appearance of the minor component
at any point in the mixture is constant. Therefore, the degree
of mixing measures the “distance” between the mixing state
of our sample and that of the statistically random sample,
and it is represented mathematically by the mixing indices.

There are more than 30 different criteria of the degree of
mixedness (Fan et al., 1970), and they are tied to particular

mixing situations. Because the mixing process is a random
process, statistical analysis predominates in the calculations
for the degree of mixing. More frequently the variance of a
spot sample taken from the mixture is compared to that of
the perfectly random sample:

M = σ 2

s2
(6.15)

where σ 2 is the limiting minimum value of the variance of
the perfectly random sample, and M is the degree of mixing.

The index of mixedness can also be expressed as:

M = σ

s
(6.16)

if the variances of Eq. 6.15 are substituted by the respective
square roots, that is, by the standard deviations. Lacey (1954)
introduced the variance of the totally unmixed state, σ 2

0 , in
his definition of the mixing index:

M = σ 2
0 − s2

σ 2
0 − σ 2

(6.17)

The advantage of using this definition as opposed to that of
Eq. 6.15 lies in the range of the index of mixing. Equation
6.15 yields values between 1/n and ∞, whereas Eq. 6.17
attains values between 0 and 1. The same idea that trans-
formed Eq. 6.15 to Eq. 6.16 can also be applied to Eq. 6.17.

The rate of mixing can be monitored by measuring the
index of mixing at various time periods. It is obvious that
as time progresses (or as the number of revolutions for a
rotating mixer increases) mixing is also improving and mov-
ing toward its random state. Reference to the “unmixing” or
“demixing” that might take place during mixing will not be
mentioned. Lacey (1954) developed the idea that all mixing
mechanisms for solids, namely, convective, diffusional (see
Problem 6B.1), and shear, are consistent with a first-order
rate of reaction:

M = 1 − e−kt (6.18)

where k is the rate constant (unit of k is s−1). The constant
k can be calculated from experimental data of the index of
mixing as a function of time and it reflects the quality of the
mixer and the suitability of the chosen conditions of mixing.
It is not unusual for the variance to reach an asymptotic
value different from the corresponding value for the random
mixture, because large density differences cause stratification
inside the mixer. In such cases, the definition of the index of
mixing should be altered to accommodate this difference.

The statistical description of mixing given in this sec-
tion is restricted to a two-component system for simplicity.
Of course, a four-component system can be considered as a
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two-component system if the second, third, and fourth com-
ponents are considered as a single entity. If this is not an
accurate description of the reality, then the use of Markov
chains is inevitable, and the mathematics involved are com-
plex. Such analysis goes beyond the scope of this textbook.

6.2.2 Scale and Intensity of Segregation

The texture of a sample is characterized by two parameters
(Danckwerts, 1952): (1) scale and (2) intensity of segre-
gation. The two parameters can be visualized as shown in
Figure 6.5. We assume that we have mixed two components,
A, which is included in the circles, and B, which is lying in
the interstices. The scale of segregation is the measure of the
distance between clumps of the same component. It can also
be defined as a measure of the size of undistributed parts of
the components (Mohr et al., 1957) or as the length scale
of the distance between similar interfaces. By following the
latter definition we see that the distance between clumps or
circles of component A increases as we move toward the
right in Figure 6.5, that is, the scale of segregation increases.
In general, mechanical energy, through deformation, is nec-
essary for the reduction of the scale of segregation. Typical
mechanisms include shear, kneading, break up, and turbu-
lence.

The intensity of segregation refers to the difference in
concentration of one component between areas of component
A and B. The intensity is reduced as component A diffuses
out of the circles into the area of component B or as the size
of the clumps of A is reduced due to the diffusion of A. If
the two components do not have any difference in color, the
intensity of segregation can be pictured as the difference in
the size of clumps A (Fig. 6.5). If there is a difference in
color between A (black) and B (white), then the minimum
intensity of segregation is achieved when the black has been

spread into the white, producing a grey color for the sample.
Clearly, as Mohr et al. (1957) pointed out, the reduction in
intensity is affected only by diffusion and not by mechanical
mixing. Thus, although diffusion cannot change the shape of
the clumps (deformation can do that), it can produce grey
color when black and white meet. Note that deformation
changes spherical clumps into elongated shapes, breaks them
or changes their patterns, but it never causes any diffusional
process to take place.

Both reduction of scale and intensity produce uniformity,
and so the quality of mixing, as far as texture is concerned,
depends on both quantities. Note that the maximum reduc-
tion of the scale is achieved when the distance between inter-
faces approaches the length scale of the ultimate particles (or
ultimately molecular scales), and the maximum reduction in
intensity is obtained when the minor component is uniformly
mixed throughout the major component.

Scale and intensity have also statistical representations.
The intensity can be defined mathematically as

I = s2

σ 2
0

(6.19)

and expresses the difference of concentration of the minor
component from the average value normalized by the vari-
ance of the completely segregated (totally unmixed; Eq. 6.17)
system. Its values range from 1 for a completely unmixed sys-
tem to 0 for a uniformly mixed system. This definition bears
resemblance to the definition of the indices of mixing. Usu-
ally the intensity for polymer systems, even in the melt state,
is close to 1, because diffusion is extremely slow.

To define the scale of segregation we need to define first
the correlation function, R (r). It is very similar to the vari-
ance in the sense that the variance measures the concentration
difference of a point and the mean value, whereas the correla-
tion function considers the concentration difference between
two points r distance away. Thus, R (r) is given by

R(r) = 1

N

N∑
i=1

[
(Ci (x) − C)(Ci (x + r) − C)

]
(6.20)

where Ci is the concentration of the ith sample, C is the mean
concentration, and N is the total number of samples. When r
equals 0 then the correlation function becomes approximately
(for large N) equal to the variance:

R(0) = N − 1

N
s2 ∼= s2 (6.21)

The correlation coefficient is obtained by the normalization
of the correlation function with the variance:

ρ (r) = R(r)

s2
(6.22)
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so that ρ (0) is equal to unity for sufficiently large N. The
graph of the correlation coefficient is called a correlogram.
In isotropic mixtures, we can neglect the vector form of r and
substitute it with its scalar form. By doing this we presuppose
that ρ(r ) is the average of ρ(r) over all possible orientations
of the vector r.

The values of the correlation coefficient range from −1 to
1. When the origin and the end of the vector r lie in different
components, the correlation coefficient attains a value of −1,
and the correlation is considered to be perfectly negative. The
correlation is considered perfectly positive when both the
origin and the end of the r vector lie in the same component
(either minor or major), and consequently the correlation
coefficient equals unity. Finally, the correlation coefficient
equals zero when the correlation is random or, equivalently,
when knowledge of the composition at the origin provides no
information about the composition at the end of the vector.

The correlation coefficient is calculated by the technique
of dipole or needle throwing. Consider a mixture of carbon
black in PE with C average carbon black concentration. We
fracture one pellet, and we take a photograph of the surface
with the aid of a high resolution scanning electron micro-
scope. We take a needle of length r and drop it onto the
photograph. Four events can take place: (1) both ends could
land in carbon black particles with probability P11; (2) both
ends could land in the PE matrix with probability P22; (3)
the first end lands in carbon black and the second in PE with
probability P12; and (4) the opposite of the previous event
with probability P21. Nadav and Tadmor (1973) calculated
the correlation coefficient as

ρ (r ) = 1 − C

C
P11 + C

1 − C
P22 − P12 − P21 (6.23)

A typical example of the application of that formula is given
in Example 6.3. Other examples and the derivation of Eq. 6.23
are given in Nadav and Tadmor (1973), Tadmor and Gogos
(1979), and Tucker (1981).

Example 6.3. Calculation of the Correlation Coefficient

Consider a mixture of carbon black in PE and assume that the
mixture can be represented as a set of unit cells of radius A.
A carbon black particle of radius α is at the center of the cell,
and it is surrounded by PE matrix. The unit cell is shown in
Figure 6.6a. Approximate the correlation coefficient for this
mixture based on Eq. 6.23 for small r compared to either α
or A (i.e., ignore terms of order r2 and higher).

Solution. Divide the unit cell into four regions: region I is
inside the particle with radius α − r ; region II is a spherical
shell with outside radius α and inside α − r ; region III is
a spherical shell in the PE matrix with inside radius α and
outside α + r ; and finally region IV has inside radius α + r
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FIGURE 6.6 (a) Unit cell of a carbon black particle in a PE
matrix. (b) Correlation coefficient as a function of the dimensionless
radial distance.

and outside radius A. The probabilities of the various ways
that a needle of length r might land on this mixture can be
calculated. Note that although the cell is pictured in its two-
dimensional form in Figure 6.6a, the solution will be based
on the real three-dimensional picture.

The probability that both needle ends will fall in carbon
black depends on the probability that the first end will fall in
regions I and II in combination with the probability that the
second end will fall in carbon black regions. The probability
that the first end will fall in region I is the ratio of the region’s
volume to the total cell volume:

P (I) = VI

Vcell
= (α − r )3

A3
∼= C − 3C

r

α
(6.24)

The probability that its second end will fall in carbon black
is 1. The probability that the first end will fall in region II is
similarly equal to the ratio of volumes:

P (II) = VII

Vcell
= α3 − (α − r )3

A3
∼= 3C

r

α
(6.25)
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Now the conditional probability that the second end falls in
carbon black region is 3/4. This is calculated by drawing a
sphere of radius r centered at a radial distance x from the cell
center. That probability is then calculated as the ratio of the
area of the sphere inside the carbon black to the total area
of the sphere averaged over all possible x (i.e., from r − α

to α).
The probability that both ends fall in carbon black is

P11 = P(I)x1 + P(II)x(3/4) ∼= C − 3

4
C

r

α
(6.26)

The other terms in Eq. 6.23 can be calculated similarly. The
correlation coefficient is thus calculated as:

ρ(r ) ∼= 1 − 3

4

r

α

1

1 − C
(6.27)

The correlogram for various values of C is shown in
Figure 6.6b. It is linear and it intersects the x axis at
4α(1 − C)/3.

The linear scale of segregation can now be defined in
terms of the correlation coefficient:

SL =
∞∫

0

ρ(r )dr (6.28)

and it represents the area under the correlation coefficient
curve. Similarly, the volumetric scale of segregation is
defined as

SV = 2π
∞∫

0

ρ(r )r 2dr (6.29)

In the example of a clumpy mixture, the linear scale repre-
sents the average size, and the volumetric scale represents the
average volume of the clumps. Note that for the same exam-
ple there is no difficulty in evaluating the integral, because
the correlation coefficient becomes zero above some value of
r. Typical values of the ratio of the linear scale of segregation
to the length scale of the structure are: (1) 0.237 for a planar
checkered board pattern; (2) 0.250 for an alternating layered
structure (one dimensional) of equal layer thickness; and (3)
0.380 for a collection of spheres.

An alternative description of the texture is its spectral
description or power spectrum, P(n) (Tucker, 1991):

P(n) =
+∞∫

−∞
R(r )e−2πnrdr (6.30)

The importance of the power spectrum stems from the fact
that it can be calculated directly from the concentration field
and that it can easily be inverted into the correlation function
via the fast Fourier transform (FFT) method.

6.2.3 Mixing Measurement Techniques

The goal of mixing measurement techniques is the acqui-
sition and statistical analysis of data collected from sam-
ples in order to evaluate the quality of the process and the
final product. These techniques are usually time consum-
ing and laborious. One common problem in measurement
techniques that examine a planar section of the product is
that two-dimensional information should be transformed into
three-dimensional information. This is done with the help of
stereology science (Underwood, 1977).

The measurement of the variance indicates the quality of
the mixing. If the mixture is homogeneous, the variance is
small and the average composition is close to C . To mea-
sure the variance we need to withdraw samples from the
mixing device or cut samples from the final product. Extrac-
tion of samples with a hypodermic needle (Rotz and Suh,
1976), sampling by pumping the mixture through a special
sampling device (Tucker and Suh, 1980a), and slicing of the
solidified mixture (Hall and Godfrey, 1965) were reported in
the literature. As far as the measurement technique is con-
cerned, light transmittance (Nadav and Tadmor, 1973), elec-
trical conductivity (Tucker and Suh, 1980b), titration, and
particle counting are the most extensively used techniques.

Lately, computer analysis is used broadly for the evalua-
tion of the state of mixing. Sectioning, acquisition, and analy-
sis are the three steps involved. The acquisition of the digital
image is done with a television camera, a video digitizer,
and a computer. The camera is attached to the microscope,
and its analog picture is translated into a digital one via the
video digitizer. The digital intensity values are now stored
into large arrays in a computer. That large array of numbers
contains the light intensity of each pixel in terms of its red,
green, and blue components. Typical image analysis systems
can digitize the screen into 512 × 512 or 1024 × 1024 pixels.
Howland and Erwin (1983) used the laser line scanning tech-
nique, which consists of illuminating the picture with a laser
light source and measuring the reflectivity of the material
with a photodiode.

The analysis of the image requires the knowledge of the
correspondence between composition and color (if that is
not linear, a calibration curve is required). Furthermore, if
diffusion has not altered the composition at the various points,
then each pixel is made dark (e.g., minor component) or
light (e.g., major component) based on a threshold value.
The power spectrum is now calculated from the composition
data and an FFT algorithm. The correlation function is then
calculated by using the inverse Fourier transform of the power
spectrum and the scale and intensity of segregation are then
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computed using the equations of Section 6.2.2. It should be
mentioned at this point that the information which is collected
with the image analysis system is limited to distances smaller
than the height and the width of the screen and the resolution
is bound by the size of the pixel. However, the great advantage
of these systems is their ability to analyze many images fast
and with minimum labor.

6.3 STRIATION THICKNESS AND
LAMINAR MIXING

Mixing of polymer melts cannot be assisted by either diffu-
sion or turbulence. The absence of diffusion makes the two
components and their interface easily identifiable. Conse-
quently, the interfacial area per unit volume (or intermaterial
area density or specific interfacial area), Av , can be used as
a measurement of the extent of mixing, as was suggested by
Spencer and Wiley (1951), as well as others. A special case
of a polymer mixture is a layered or lamellar mixture shown
in Figure 6.7. This mixture can be produced by either laminar
flow (e.g., in a typical single–screw extruder) or ordered rear-
rangement with plug flow (e.g., motionless mixers, Fig. 6.2).
Using the terminology of Section 6.2.1 the lamellar structure
comprises the texture of the mixture. The scale of segregation
of an equal thickness alternating structure was mentioned to
be one-fourth of the thickness, but the scale is not important
in this context, because it is a statistical measure, and the lay-
ered structure is ordered. Of course, the scale of segregation
is important for polymer systems with a wide distribution of
layer thickness.

The striation thickness concept was first introduced by
Mohr et al. (1957) and analyzed extensively by Ranz (1979)
and Ottino et al. (1979, 1981). The striation thickness, δ, is
defined as one-half (Ottino et al., 1979) of the thickness of
the repeating unit (i.e., one-half of the sum of the thickness
of two adjacent layers of components A and B). Note that in
some references the striation thickness is defined as the sum

A

B
Thickness of Streak A

Thickness of Streak B

2

FIGURE 6.7 Layered structure and definition of striation thick-
ness δ.
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FIGURE 6.8 Interfacial element A0 in a Cartesian coordinate
system at time t = 0.

of the thickness of two adjacent layers and thus their striation
thickness is twice that we use here. The interfacial area per
unit volume, Av, and the striation thickness, δ, are related as
follows for a large number of striations:

Av = 1

δ
(6.31)

As mixing progresses, the interfacial area per unit volume
increases and the striation thickness decreases. If there is a
distribution of striation thickness then not only the mean but
also the variance should be taken into consideration for the
quality of mixing calculations. In Section 6.3.1 the interfacial
area growth, or equivalently the striation thickness reduction,
is calculated from geometrical arguments.

6.3.1 Striation Thickness Reduction from
Geometrical Arguments

The interfacial area per unit volume changes as a function
of the strain applied to the system. Consider an interface A0

as shown in Figure 6.8. This interface is formed by vectors
a and b:

a = xaδx + yaδy + zaδz (6.32)

and

b = xbδx + ybδy + zbδz (6.33)

where δx , δy , and δz are the unit vectors along the x, y, and
z axes, respectively, and xa , ya , za and xb, yb, zb are the
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components of a and b. The vector c is perpendicular to the
plane A0 and equal to

c = a × b (6.34)

The magnitude of c is twice the area of A0:

|c| = 2A0 (6.35)

and it forms αx , αy , and αz angles with the coordinate axes
x, y, and z, respectively.

The area A0 is now subjected to strain with principal
directions in the Cartesian coordinates and with principal
elongation ratios λx , λy , and λz (Erwin, 1978a). The area A0

will become A, and the vectors defining A are a′, b′, and c′,
so that

∣∣a′ × b′∣∣ = ∣∣c′∣∣ = 2A (6.36)

The new vectors a′ and b′ are

a′ = (xαλx )δx + (yαλy)δy + (zαλz)δz

b′ = (xbλx )δx + (ybλy)δy + (zbλz)δz

(6.37)

Substitution of these expressions into Eq. 6.36 yields

A = 1
2

〈[
λyλz (yazb − za yb)

]2 + [λzλx (za xb − xazb)]2

+ [λxλy (xa yb − ya xb)
]2〉1/2

(6.38)

The above expression can be written equivalently as

A = 1
2

√(
λyλz xc

)2 + (λzλx yc)2 + (λxλy zc
)2

(6.39)

Our primary interest is in the calculation of the change of
the interface A0, and thus we form the ratio of the interface
after mixing has started to the initial interface (at time t = 0),
which is also called the “mixing number” frequently in the
literature:

[
A

A0

]2

=
(
λyλz xc

)2 + (λzλx yc)2 + (λxλy zc
)2

|c|2 (6.40)

The angles αx , αy , and αz can be expressed in terms of the
components of the vector c as

cosαx = xc

|c| ; cosαy = yc

|c| ; cosαz = zc

|c| (6.41)

and they follow the relationship of the directional cosines,
that is,

cos2 αx + cos2 αy + cos2 αz = 1 (6.42)

Equations 6.40 and 6.41 can be combined to give

[
A

A0

]2

= (λyλz cosαx
)2 + (λzλx cosαy

)2 + (λxλy cosαz
)2

(6.43)

If the deformation is considered to preserve the volume of
the system (incompressible materials), then

λxλyλz = 1 (6.44)

Substituting this equation into Eq. 6.43 yields

[
A

A0

]2

= cos2 αx

λx
+ cos2 αy

λy
+ cos2 αz

λz
(6.45)

This is similar to the expression developed by Spencer and
Wiley (1951) for unidirectional shear strain. Another form
of this expression can be obtained by using the equation of
directional cosines, Eq. 6.42, and Eq. 6.43:

[
A

A0

]2

= (
λxλy

)2 + λ2
y

(
λ2

z − λ2
x

)
cos2 αx

+ λ2
x

(
λ2

z − λ2
y

)
cos2 αy (6.46)

Next, we apply Eq. 6.46 to simple deformations to show the
effect of various types of deformation on mixing.

Planar Elongation (or Pure Shear). Suppose that we stretch
a material surface in the x direction while we constrain it in
the z direction. The resulting flow is called planar elonga-
tional flow (plane extensional flow; plane strain; see also
Section 3.1.1). The polymer fluid experiences such flow in
the entrance regions to slit dies and nips between rollers. The
elongation ratios are

λx = λ0; λy = 1

λ0
; λz = 1 (6.47)

Equation 6.46 becomes

[
A

A0

]2

= 1 +
(

1

λ2
0

− 1

)
cos2 αx + (λ2

0 − 1
)

cos2 αy

(6.48)

For large elongation (λ0 � 1) and for cosαx = 0,

A

A0
= λ0

∣∣cosαy

∣∣ (6.49)

The maximum value of the interface growth is achieved when
the interface is normal to the minimum principal value; that
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is, c is in the direction of y (cosαy = 1). The maximum
value is

[
A

A0

]
max

= λ0 (6.50)

If the orientation of the material interfaces at the entrance
of the mixer is random, then the effect of planar elongation on
the interfacial area is determined by averaging Eq. 6.49 over
all possible orientations. To obtain that, we should evaluate
the angles αx and αy in terms of spherical coordinates with
angles φ and θ (see Fig. 6.8):

cosαx = sinφ sinαy ; αy = θ (6.51)

The average is now obtained by integration:

[
A

A0

]
avg

= 1

4
π

2π∫
0

π∫
0√

1 + sin2θ sin2 φ

(
1

λ2
0

− 1

)
+ cos2 θ

(
λ2

0 − 1
)

sin θ dθdφ

(6.52)

This expression is evaluated numerically, and for large values
of λ0 it follows that

[
A

A0

]
avg

= λ0

2
(6.53)

This means that a mixer which imposes planar elongation on
initially randomly oriented fluid interfaces increases the ini-
tial interfacial area by a factor of (λ0/2) − 1 or, equivalently,
decreases the striation thickness by a factor of (λ0/2) − 1.
If the initial orientation is normal to the minimum principal
elongation value, the striation thickness decreases by a factor
of λ0 − 1.

The strain, ε (equal to ε̇t , where ε̇ is the strain rate),
imposed on the material is related to the increase of linear
distance in the x direction by

dl

l
= ε (6.54)

which can be integrated to give x = x0 exp(ε). The elongation
ratio in the x direction, λ0, can then be related to strain,
ε, by

λ0 = eε = eε̇t (6.55)

Equation 6.50 can be expressed now in terms of the total
strain ε: [

A

A0

]
max

= eε (6.56)

which shows that the maximum interface growth depends on
the exponential of the total applied elongation strain. Simi-
larly, the average interface growth equals one-half the expo-
nential of the applied strain.

Uniaxial (or Pure) Elongation. Suppose that we stretch an
interface in the x direction without imposing any constraints
on y and z directions. The resulting flow is called uniax-
ial elongational flow (uniaxial extensional flow; a classic
example of a mixer creating pure elongational stretch is a
taffy puller; see also Section 3.1.1). The elongation ratios
are now

λx = λ0; λy = λz = 1√
λ0

(6.57)

Substitution of these ratios into Eq. 6.46 gives

[
A

A0

]2

= λ0 +
(

1

λ2
0

− λ0

)
cos2 αx (6.58)

If the interface is aligned with the y axis, then cosαx = 0,
and thus the maximum value of the interface growth is

[
A

A0

]
max

=
√
λ0 (6.59)

Equation 6.58 can be integrated numerically over all possible
orientations to give, for large λ0[

A

A0

]
avg

∼= 4

5

√
λ0 (6.60)

Because this process is not symmetrical about λ0 = 1, for
deformations λ0 � 1 it is found that

[
A

A0

]
avg

∼= 4

5

1

λ0
(6.61)

In terms of the total applied strain, ε, the arguments are
the same as those developed for planar elongation. Thus,
the maximum and the average interface growth depend on
exp(ε/2) for very large values of λ0.

Simple Shear. The most frequently encountered flow situa-
tion in mixing is that of shear. It can be imparted to the fluid
by Couette or Poiseuille flow. In principle, we can follow the
same ideas developed in the previous two cases, but now the
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FIGURE 6.9 Interfacial element in a shearing experiment. (a) at
t = 0. (b) After a shear strain, γ , has been applied to the interface.

principal axes change as a function of shear, and the analysis
is complicated. To simplify the analysis we define the inter-
face A0 as in Figure 6.9a, so that a lies in the x-y plane and
b lies in the x-z plane (McKelvey, 1962). The shear direction
is along the x axis so that b does not change. A shear strain
γ is applied.

The new vector, a′, which defines the interface A, can be
expressed as (Fig. 6.9b):

a′ = (xa + γ ya)δx + (ya)δy (6.62)

so that

A = 1
2

√
(xc)2 + (yc − γ xc)2 + (zc)2 (6.63)

The interface growth function, f (γ ) = A/A0, becomes

[
A

A0

]2

= (xc)2 + (yc − γ xc)2 + (zc)2

|c|2 (6.64)

Using the expressions of Eq. 6.41 for the directional cosines,
we get

[
A

A0

]2

= 1 − 2γ cosαx cosαy + γ 2 cos2 αx (6.65)

which is exactly the expression proposed by Spencer and
Wiley (1951). Equation 6.65 shows that the interfacial area
growth depends on its initial orientation and the magnitude
of the shear strain imposed by the mixer. When αx = 90◦,
vector c lies in a plane parallel to the y-z plane and shear strain
distorts the interface without changing its area. When αy =
90◦, vector c lies in the x-z plane and shear strain distorts the
interface and changes its area. In the latter case the maximum
change in area occurs when the interface lies in the y-z plane.

For large values of γ , Eq. 6.65 reduces to

f (γ ) =
[

A

A0

]
= γ cosαx (6.66)

This equation indicates that the interfacial area growth func-
tion in a material undergoing large shear proceeds linearly
with shear strain. Numerical integration of the above equation
over all possible orientations following the steps described
for elongational strain yields

f (γ ) = γ

2
(6.67)

Equation 6.65 can be used to estimate the optimal inter-
face orientation for a maximum in the interface growth func-
tion. Differentiation of that expression with respect to γ ,
at γ = 0, yields

dA

dγ
= −A cosαx cosαy (6.68)

where A = A0. The maximum increase of the interfacial area
is achieved at the minimum of the product of the directional
cosines cosαx and cosαy (note the negative sign in Eq. 6.68).
The minimum of the product occurs at αx = 135◦ and αy =
45◦, and it is equal to −1/2, so that

[
A

A0

]
max

= eγ /2 (6.69)

To achieve this maximum interface growth we should orient
the interface so that its normal and the y axis form an angle
of 45◦ and its normal and the x axis form an angle of 135◦.
Then, we shear the interface stepwise with step shear strain
equal to a small fraction of the total shear strain γ and we
reorient the interface before we proceed to the next step. This
procedure is shown in the following example.



168 MIXING

Example 6.4. Interface Growth Function with
Reorientation for Simple Shear Flow

Compare the interface growth function for the following
cases: (a) optimum initial orientation and one step shear
strain, and (b) initial orientation αy = 45◦ and αx = 135◦, N
steps, and reorientation after each step. The total shear strain
is 10. Consider 5 and 20 steps for case (b).

Solution. The optimum initial orientation in case (a) is:
αx = 0◦ and αy = 90◦. Equation 6.65 yields[

A

A0

]
a

=
√

1 + γ 2 (6.70)

For γ = 10, the interface growth function is equal to 10.05
in case (a). For case (b), cosαy = − cosαx = 0.707 and the
total shear strain is subdivided into N steps so that in every
step the applied strain is γ /N . Thus, the interface growth
function at the end of step j is calculated from Eq. 6.65 as[

A j

A0 j−1

]
b

=
√

1 + 2
γ

N
+ 1

2

[ γ
N

]2
(6.71)

At the end of that process the total interface growth function
is [

A

A0

]
b

=
[

1 + 2
γ

N
+ 1

2

[ γ
N

]2
]N/2

(6.72)

For N = 10 and 20 the growth function is equal to 97.66 and
128.39, respectively. Note that its maximum is e10/2 = 148.41,
which is about 14 times larger than case (a). If we increase
the number of steps, the growth function will approach the
maximum value, because at large N the following relationship
(keeping only terms of order y/N and larger) holds:

(
1 + γ

N

)N/2 =
(

1 + γ /2

N/2

)N/2

→ eγ /2 (6.73)

In Table 6.1 we summarize the values of the average (inte-
grated over all possible orientations) and maximum interface
growth function f(γ or ε) for planar and uniaxial elongation,

TABLE 6.1 Interface Growth Function for Various Types
of Strain

Interface Growth Function A/A0

Type of Strain Maximum Average

Planar elongation exp(ε) 1
2 exp(ε)

Uniaxial elongation exp(ε/2) 4
5 exp(ε/2), for λ0 � 1
4
5 exp −(ε), for λ0 � 1

Simple shear γ γ /2

as well as for simple shear cases. It is clear that, in terms of
interface growth (or equivalently striation thickness), elon-
gational flows are much more efficient compared to shear
flows. For example, a reduction in striation thickness of 3
orders of magnitude (from a 3 mm polymer pellet down to
3 μm striations) is achieved by either a total shear strain of
2000 or a total elongation strain of about 8 for random ini-
tial orientation. This reduction in striation thickness can be
obtained in 20 s in a shear field at an average shear rate of
100 s−1 or in 80 ms in an elongational flow field having an
average rate of 100 s−1.

The three strain fields, planar elongation, uniaxial elon-
gation, and simple shear, are compared next to determine the
flow pattern most favorable in terms of power consumption.
High power consumption is unfavorable because of its high
cost and requirements for specific equipment. Integration of
the mechanical energy equation (Section 2.3) over the vol-
ume of the mixer shows that the specific power consumption
(power consumption per unit volume), Pv , is equal to the
viscous dissipation,

Pv = −1

2

∑
i

∑
j

τijγ̇ji (6.74)

where i, j = x, y, and z; τij is the ij component of the extra
stress tensor τ and γ̇ji is the ji component of the rate-of-strain
tensor, γ̇. Combining Eqs. 6.74, 2.59, and the components of
the rate-of-strain tensor from Table 2.10, we get the following
expression for the specific power of a Newtonian fluid:

Pv

μ
= 2

[(
∂vx

∂x

)2

+
(
∂vy

∂y

)2

+
(
∂vz

∂z

)2
]

+
(
∂vx

∂y
+ ∂vy

∂x

)2

+
(
∂vy

∂z
+ ∂vz

∂y

)2

+
(
∂vx

∂z
+ ∂vz

∂x

)2

(6.75)

where μ is the fluid viscosity and vx , vy , and vz are the three
velocity components.

The above expression can be applied to idealized systems
with three types of deformation: planar (plel), uniaxial (unel)
extensional, and simple shear (ss) mixers. For a mixing device
dominated by planar elongational flow, the distances along
the x axis are related to strain or strain rate by

x = x0eε = x0eε̇t (6.76)

This expression, along with the expressions for the distances
along the other axes, upon differentiation yield the following
velocity profile:

vx = dx

dt
= ε̇x ; vy = −ε̇y; vz = 0 (6.77)
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This velocity profile is the same as that of Eq. 3.2 if you
account for the difference in axes. The specific power, Pv ,
is calculated by taking appropriate derivatives of the veloc-
ity field and substituting them into the power expression
(Eq. 6.75):

(Pv )plel = 4με̇2 (6.78)

For uniaxial elongational flow we find that

(Pv )unel = 3με̇2 (6.79)

For simple shear flow we find that

(Pv )unel = μγ̇ 2 (6.80)

We can now make an assessment of the efficiency of the
three types of flows to mix materials. Suppose we need to
prepare a polymer blend with striation thickness of the minor
component in the final product not more than 3 μm. The
pellets of the minor component fed into the flowing major
component have a characteristic length of 3 mm. If we allow
the components to stay in the flow field no more than 10 s,
the ratio of the specific power for simple shear flow to that
of the uniaxial elongational flow and to that of the planar
elongational flow is

(Pv )ss : (Pv )unel : (Pv )plel
∼= 17,309 : 2.64 : 1 (6.81)

Hence, shear flow is significantly less efficient than shear-free
extensional flows in mixing. Similar results for a power-law
fluid can be obtained (see Problem 6A.10).

6.3.2 Striation Thickness Reduction from
Kinematical Arguments

A more systematic approach for the calculation of the stria-
tion thickness and mixing efficiency was presented by Ottino
and co-workers (1979, 1981). They developed the mathe-
matical formulation for the calculation of the lineal and areal
stretch of a material line and area, respectively, subjected to
any deformation gradient field. In this text we use the for-
mulation for the lineal stretch because it is easier to apply
and correlates to the areal stretch by a simple relation. We
should emphasize at this point that the formulation is valid
in the absence of interfacial forces between minor and major
components. This is true for systems with negligible interfa-
cial tension forces, such as, for systems with either negligible
interfacial tension or large length scale or both.

Suppose that a polymer melt is processed in a mixer which
deforms the “particles” of the melt. At time t = 0 we identify
a differential material line at position x0 of length |dx0| and
orientation m0. After a deformation (e.g., shear, elongation)
is applied to the melt by the mixer, we identify the same line
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FIGURE 6.10 (a) Stretch of a material line at position x0 of
length |dx0| and orientation m0 at time t = 0 to a new line at position
x of length |dx| and orientation m at present time, produced by a
deformation gradient field with components Fij. (b) Average mixing
efficiency, eL , of simple shear flow and planar elongational flow, as
a function of strain.

with different position, x, length, |dx|, and orientation, m,
(Fig. 6.10a). The lineal stretch, λ, is then defined as

λ ≡ |dx|
|dx0| (6.82)

The deformation applied is characterized by the deformation-
gradient tensor, F, with components (for a rectangular coor-
dinate system) equal to

Fij =
∑

i

∑
j

∂xi

∂x0 j
(6.83)

The transpose of the deformation gradient tensor, FT, is then
given by the components

(FT)ij =
∑

i

∑
j

∂x j

∂x0i
(6.84)
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In the above two equations, as well as in the rest of the
equations in this section, subscripts 1, 2, and 3 indicate x, y,
and z directions, respectively. The deformation tensor and its
transpose can be combined to yield the right relative Cauchy–
Green strain tensor, C, with components

Cil =
∑

j

(FT)ij Fjl =
∑

j

∂x j

∂x0i

∂x j

∂x0l
(6.85)

The lineal stretch λ is then given by (Ottino et al., 1981)

λ2 =
∑

i

∑
l

⎛
⎝∑

j

∂x j

∂x0i

∂x j

∂x0l

⎞
⎠m0lm0i (6.86)

and the time rate of the lineal stretch per unit of present length
is

λ̇

λ
= 1

2

∑
i

∑
j

γ̇ijm j mi (6.87)

where γ̇ij are the components of the rate-of-strain tensor, γ̇,
and the components of the vector m are given by

mi = 1

λ

∑
j

Fijm0 j (6.88)

The efficiency of mixing, eL , which relates the rate of
lineal stretch and its upper bound, which is proportional to
the viscous dissipation, is given by

eL = 2
λ̇/λ√∑

k

∑
l γ̇klγ̇lk

(6.89)

and the time average efficiency of mixing, eL , is given by

eL = 1

t

t∫
0

eL (t ′)dt′ (6.90)

Finally, for isochoric deformations (with volume conserva-
tion), the product of the areal and lineal stretches is equal
to 1, and the sum of the rates of lineal and areal stretches
per unit of initial length and area (respectively) is equal to
zero, for the same orientation vector of the line and the
area. The following example illustrates the various steps
for the calculation of the striation thickness reduction func-
tion and the time average mixing efficiency for the simple
shear case.

Example 6.5. Striation Thickness Reduction and
Efficiency of Mixing for Simple Shear Flow

Calculate the striation thickness reduction function and the
time average mixing efficiency for simple shear flow, vx =
γ̇ y; vy = vz = 0, for a line with orientation along the y axis,
that is, with initial orientation vector m0 = (0, 1, 0).

Solution. The kinematics of simple shear flow are

vx = dx

dt
= γ̇ y; vy = dy

dt
= 0; vz = dz

dt
= 0 (6.91)

Integration of this equation with respect to time with initial
conditions: x = x0, y = y0, and z = z0, yields

x = x0 + γ y0; y = y0; z = z0 (6.92)

where γ is the shear strain γ̇ t . The only nonzero components
of the deformation gradient tensor are

F11 = F22 = F33 = 1; F12 = γ (6.93)

The nonzero components of the transpose of the deformation-
gradient tensor are

(FT)11 = (FT)22 = (FT)33 = 1; (FT)21 = γ (6.94)

The components of the Cauchy–Green strain tensor, C, are
calculated from Eq. 6.85. The only nonzero components are

C11 = C33 = 1; C12 = C21 = γ ; C22 = γ 2 + 1 (6.95)

The lineal stretch is then calculated from Eq. 6.86 as

λ =
√

1 + γ 2 (6.96)

For long times, the lineal stretch varies linearly with time,
that is, λ ∝ t , and so shear flow is considered a weak flow
in this respect. In extensional flows (see Problem 6B.4) the
lineal stretch grows exponentially with time, that is, λ ∝ et ,
and these flows are considered strong. The striation thickness
reduction function, δ/δ0, which is equal to λ−1, is then equal
to (1 + γ 2)−1/2. With the proper selection of αx and αy ,
note that Eqs. 6.65 and 6.96 are the same, so that the two
approaches are equivalent.

To calculate the time average mixing efficiency of shear
flow we need to calculate the components of the rate-of-strain
tensor and the components of the new orientation vector, m.
The nonzero components of the rate-of-strain tensor are

γ̇12 = γ̇21 = γ (6.97)
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The new orientation vector, m, is calculated from Eq. 6.88
as

m = 1

λ
(γ, 1, 0) (6.98)

The rate of lineal stretch per unit of length is given by
Eq. 6.87 as

λ̇

λ
= γ̇ 2t

1 + γ 2
(6.99)

and the mixing efficiency is given by Eq. 6.89 as

eL =
√

2
γ

1 + γ 2
=

√
2

γ̇ t

1 + γ̇ 2t2
(6.100)

It can easily be proved that the initial and the final value of
eL is 0, its maximum value is

√
2/2 = 0.707 (at γ = 1), and

at long times it decays as 1/t. The time-average value of the
mixing efficiency is calculated from Eq. 6.90 as

eL =
√

2

2

ln(1 + γ 2)

γ
(6.101)

and it is shown graphically in Figure 6.10b. Its maximum is
about 0.57, and it occurs at γ ∼= 2. At long times the average
efficiency decays so that simple shear flows are characterized
by low efficiencies at long times. The time average mixing
efficiency of a planar elongational flow (also called two-
dimensional stagnation flow) is also shown in that figure.

Clearly, simple shear is not an effective mixing mecha-
nism, but it is present in all mixing devices. It is difficult
to maintain elongational (irrotational) flows between rigid
boundaries. Also, the orientation of the interface is very
important in the reduction of the striation thickness. Ng and
Erwin (1981) experimentally demonstrated that an improve-
ment in the interfacial growth function can be obtained by
stepwise application of shear and reorientation of the inter-
faces between steps. In a single-screw extruder, the ineffi-
ciency of shear can be offset by the incorporation of “mixing
sections” in the melt channel. These sections, in the form of
vanes, pins, ducts, and so on, increase the pressure drop in
the extruder and so the shear strain is increased. More signifi-
cantly, they reorient the polymer interfaces, causing a drastic
decrease of the striation thickness in the material coming out
of the extruder (see Problem 6B.6; Erwin and Mokhatarian,
1983; Erwin, 1978b).

In conclusion, mixing of highly viscous liquids, such as
polymer melts, is achieved mainly through laminar mixing.
In this type of mixing, the interfacial area growth (or striation
thickness reduction) function quantifies the degree of mixing.
In simple shear laminar mixing the degree of mixing, for
large strains, is proportional to the applied shear strain and
the orientation of the interface. Consequently, good mixing

is obtained by the application of large strains in favorably
oriented interfaces. But gross uniformity cannot be achieved
through the striation thickness reduction alone. One should
also distribute the interfacial elements throughout the system.

6.3.3 Laminar Mixing in Simple Geometries

In this section we discuss two examples of mixing in sim-
ple geometries: parallel plates and concentric cylinders. The
parallel plate geometry is used as the basis of the analysis of
the single-screw extruder and concentric cylinders are used
as part of the design of rotational dies. The flow kinemat-
ics are calculated and mixing in terms of striation thickness
reduction is evaluated.

Example 6.6. Mixing in Plane Couette Flow
(Parallel Plate Geometry; PCF)

Consider two infinite parallel plates and a polymer blend
(with equal viscosity components) filling the space between
them. The discussion that follows holds for the case of both
Newtonian and non-Newtonian fluids. At time t = 0− the
system is at rest. Then, at time t = 0+ the upper plate starts
moving with velocity Vz in the positive z direction. The move-
ment of the upper plate drags the fluid, which starts moving
in the same direction. Calculate the striation thickness reduc-
tion in this geometry and the effect of reorientation in the case
of initially spherical particles of the dispersed phase.

Solution. Figure 6.11 shows the parallel plate geometry.
Initially, the particles of the minor component can be sim-
ulated by idealized geometries such as cubes, spheres, and
rectangular parallelepipeds (with the long axis along the z or
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FIGURE 6.11 Effect of shear strain on striation thickness of “par-
ticles” of the minor component represented by simple geometries,
in a plane Couette flow (PCF).
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y directions). The shearing planes are parallel to the plates
and the amount of shear strain is

γ = γ̇ t = Vz

H
t (6.102)

where H is the plate separation distance.
After shearing has started, the edges of the geometries

transverse to the shearing planes will rotate through an angle
θ . However, the edges that are parallel to the shearing planes
will remain parallel and of the same length as before shear-
ing. In the case of the sphere, the diameter transverse to the
shearing plane will be transformed into the long axis of an
ellipsoid. In all geometries, the initial striation thickness is
the thickness B (diameter 2R for the sphere). After shear-
ing, the striation thickness becomes B′. The cube and the
two parallelepipeds are treated similarly. The treatment for
the sphere requires one additional argument, and thus it is
treated separately. The rotation angle θ and the shear strain
are related as follows:

tan θ = γ (6.103)

The length L ′, B ′, and the striation thickness, δ, for all the
geometries except the sphere can be calculated from trigono-
metrical arguments as follows:

L ′ = L

cos θ
= L

√
1 + γ 2

B ′ = B

δ = B cos θ = δ0 cos θ = δ0√
1 + γ 2

(6.104)

In the case of a sphere that is elongated into an ellipsoid, the
long axis of the ellipsoid is given by Eq. 6.104, and the short
axis is calculated by equating the volume of the initial sphere
(π(2R)3/6) to the volume of the ellipsoid (π L ′(B ′)3/6) as

δ = B ′ = δ0(1 + γ 2)−1/4 = (2R)(1 + γ 2)−1/4 (6.105)

A comparison of Eqs. 6.104 and 6.105 shows that for the
same shear strain the sphere offers the maximum reduction
in striation thickness.

The generalization of these equations to the case where
there is a mismatch of shear viscosity (p = μd/μc = 1) of
the two Newtonian components is straightforward, where μd

is the viscosity of the minor (or dispersed) component and
μc is the viscosity of the major (or continuous) component.
The stress is the same across the gap separation, and at each
interface the stresses inside the major and minor components
are equal (if interfacial tension is negligible). Thus,

γ̇c = pγ̇d (6.106)
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FIGURE 6.12 Effect of reorientation on the striation thickness
reduction of an initially spherical particle subjected to shear strain
γ . n is the number of reorientations.

where γ̇c and γ̇d are the shear rates in the continuous and
dispersed phases, respectively. It is clear from the above that
the reduction in striation thickness of the minor component
is small if its viscosity is higher than that of the major com-
ponent.

Finally, the effect of reorientation on the striation thick-
ness reduction can be assessed in the example of an initially
spherical particle that is deformed into an ellipsoid. Equation
6.105 gives the reduction in striation thickness as a function
of the shear strain. If the ellipsoid is entering the next step
with its long axis perpendicular to the shearing planes, the
new striation thickness is given by the same equation. Thus,
after n steps the striation thickness, δ, with reorientation is
given by

δ

2R
=

n∏
j=1

(1 + γ 2
j )−1/4 (6.107)

Figure 6.12 shows the effect of reorientation on the striation
thickness of an initially spherical particle subjected to shear
strain γ .

Example 6.7. Striation Thickness in
Rotational Couette Flow (RCF)

Consider a rotational Couette geometry with the inside cylin-
der rotating, as shown in Figure 6.13a, and with the minor
component represented by a black line. The position of the
black line at time t = 0 shows the feedport of the system.
After the inner cylinder starts rotating, the black line trans-
forms into a spiral. Calculate the striation thickness as a func-
tion of the total number of revolutions of the inner cylinder
and the geometry of the system.
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dr

w

dt

(a)

(b)

rdθ

dθ

FIGURE 6.13 (a) Mixing by laminar shear flow in a rotational
Couette geometry. (b) Spiral line in the annulus of a rotational
Couette geometry.

Solution. A typical Couette geometry is shown in Figure
2.18. Figure 6.13b shows the geometry of a spiral line that
results from the rotation of an initially straight line in a Cou-
ette geometry with the inside cylinder rotating with angular
velocity W, in radians per unit time. For a power-law fluid
the tangential velocity vθ is given by (see Problem 2B.6)

vθ = r W
1 − (R/r )2/n

1 − κ−2/n
(6.108)

where R is the radius of the outside cylinder, n is the power-
law index, and κR is the radius of the inside cylinder.

Recalling that vθ = r dθ/dt, that the counterclockwise
direction in the θ coordinate is considered negative, and inte-
grating the previous equation, we get

θ = −W
1 − (R/r )2/n

1 − κ−2/n
t (6.109)

At time t = 2π/W one revolution of the inside cylinder is
completed, and the angular displacement of two points which
initially were apart by a distance dr is

dθ = 4π
n(κ−2/n − 1)

R2/n

r (n+2)/n
dr (6.110)

This equation was derived with the help of the approximate
relation: (r + dr)2/n − r 2/n ∼= (2/n)r (2−n)/ndr.

After N revolutions, the angular displacement will be
N (dθ ). Then, the total spiral length is

lN =
∫

dlN =
∫ [

(dr)2 + r2(N dθ )2
]1/2

(6.111)

Equations 6.110 and 6.111 can be combined to give the fol-
lowing:

lN =
R∫

k R

[
1 + 16π2 N 2 R4/n

n2(κ−2/n − 1)2
r−4/n

]1/2

dr (6.112)

From that, the striation thickness reduction function is cal-
culated as [

δ

δ0

]
= R − κR

lN
(6.113)

For all practical purposes, (dr )2 � (r N dθ )2 so that the
striation thickness reduction function can be calculated from
the formula[

δ

δ0

]
=
[

2 − n

4πN

] [
(1 − κ)(κ−2/n − 1)

κ (n−2)/n − 1

]
(6.114)

Figure 6.14 shows the effect of the total number of revolu-
tions, ratio of inside to outside cylinder radius, and power-
law index on the degree of mixing achieved in the Couette
rotational device. The lines in this figure represent both the
Newtonian (n = 1) and the power-law solution (n = 0.5) for
κ = 0.95, 0.9, and 0.5. It can be seen from Eq. 6.114 that the
power-law index does not play a role in this formula and that
δN is constant depending only on the κ value.
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FIGURE 6.14 Striation thickness reduction function in rotational
Couette flow (RCF) for various ratios of the outside to the inside
radius. Newtonian and power-law fluids do not exhibit any signifi-
cant difference.
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6.4 RESIDENCE TIME AND STRAIN
DISTRIBUTIONS

In Section 6.3 we saw that fluids in simple geometries like
Couette flow in parallel plates or small gap concentric cylin-
ders experience the same shear rate across the gap. Neverthe-
less, the strain history of each fluid element depends not only
on the shear rate but on the time that the element has been
subjected to that shear rate. Consequently, an element at a
point close to the moving upper plate in a parallel plate geom-
etry spends less time inside the apparatus than an element at
a point close to the stationary lower plate, due to the different
velocities at those two points. At the exit of the apparatus, the
fluid collected consists of a set of fluid elements with a distri-
bution of strain histories due to the different residence time
of each element. Also, because mixing is directly related
to strain, at the end of the apparatus the total mixing will
exhibit a distribution. The residence time distribution (RTD)
is important mainly in the areas of: (1) overall mixing effi-
ciency, (2) degradation of temperature-sensitive polymers in
processing, (3) foaming and crosslinking of polymers with
the aid of temperature-sensitive foaming and crosslinking
agents, and (4) backmixing, that is, mixing in the primary
flow direction. A knowledge of the RTD is thus necessary for
the optimization of the operation of processing equipment.

6.4.1 Residence Time Distribution

The RTD was first introduced by Danckwerts (1953), and it is
defined so that f (t)dt measures the fraction of the exit stream
with residence time between t and t + dt. The cumulative
RTD function or the F function, F(t), is then defined as

F(t) =
t∫

t0

f (t ′)dt′ (6.115)

where t0 is the minimum residence time. Clearly, F(t) repre-
sents the fraction of the exit stream with residence time equal
to or less than t. If Q denotes the volumetric flow rate at the
exit and dQ the fraction of the volumetric exit flow rate with
residence time between t and t + dt, then the RTD function
is given by

f (t)dt = dQ

Q
(6.116)

The mean residence time, t , is then equal to

t =
∞∫

t0

tf (t)dt (6.117)

Extreme cases of the RTD are plug flow and perfect mix-
ing. In the plug flow case, all elements of the fluid have

exactly the same residence time and thus “appear” at the exit
at exactly the same time. In diagrams of the F(t) function, the
plug flow mixer is represented by a straight vertical line at
t = t . In reality, fluids with no slip at the walls cannot exhibit
the characteristics of plug flow, but some fluids approach this
behavior. Perfect mixing takes place in a stirred tank, and it
will be discussed later. Example 6.8 and Problem 6A.13 illus-
trate the application of the above ideas to specific pressure
flows.

Example 6.8. Mean Residence Time and
F(t) Function for Capillary Flow

Calculate the mean residence time and the cumulative RTD
function for pressure (Poiseuille) flow of a power-law fluid
through a circular pipe (CPPF).

Solution. The velocity profile is given in Table 2.6. Then
the volumetric flow rate, dQ, with residence time between
t and t + dt is given by the product of the area between the
circles with radii r and r + dr and the velocity as

dQ = 2πr dr vz(r ) (6.118)

and the total volumetric flow rate is given by the integral of
Eq. 6.118 as

Q =
∫

dQ = 2π
R∫

0

vz(r )r dr (6.119)

By substituting vz(r ) into Eq. 6.119, after some calculations,
we get

Q = πnR3

3n + 1

(
R �P

2mL

)1/n

(6.120)

where L is the length of the pipe. Fluid elements at the center
line (r = 0) stay in the pipe mixer for time t0, which is equal
to the minimum residence time:

t0 = L

vz(r = 0)
= (1 + n)L

nR

(
2mL

R �P

)1/n

(6.121)

The ratio of the residence times of fluid elements at radial
distances r and 0 is

t

t0
= 1

1 − (r/R)(1+n)/n (6.122)

The RTD function f(t) is given by combining Eqs. 6.118 and
6.120 as

f (r ) = 2(1 + 3n)

(1 + n)R2
r

[
1 −

( r

R

)(1+n)/n
]

(6.123)
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Equation 6.122 transforms f(r) into f(t):

f (t) = 2n(1 + 3n)

(1 + n)2

t2
0

t3

(
1 − t0

t

)(n−1)/(1+n)

(6.124)

The mean residence time is calculated from Eq. 6.117 as

t = 2n(1 + 3n)

(1 + n)2
t2
0

∞∫
t0

(1 − t0/t)(n−1)/(1+n)

t2
dt (6.125)

After integration by parts the mean residence time is given
by

t = 1 + 3n

1 + n
t0 (6.126)

For Newtonian fluids n = 1 and, consequently, t = 2t0. For
power-law fluids t < 2t0, so that these fluids approach plug
flow.

The cumulative RTD function is given by combining
Eqs. 6.115 and 6.124 to give

F(t) = 2n(1 + 3n)

(1 + n)2
t2
0

t∫
t0

(
1 − t0/t ′)(n−1)/(1+n)

t ′3 dt′ (6.127)

It is not difficult to complete the integration in Eq. 6.127 and
to combine it with Eq. 6.126 to get

F(t) =
[

1 + 2n

1 + 3n

t

t

] [
1 + 1 + n

1 + 3n

t

t

]2n/(1+n)

(6.128)

For Newtonian fluids, F(t) = 1 − (1/4)(t/t)2. Figure 6.15
shows the F function for a plug flow mixer and for Poiseuille
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FIGURE 6.15 Cumulative residence time distribution function
for Poiseuille flow of a power-law fluid in a circular pipe (CPPF).

flow in a long circular pipe for various degrees of pseudo-
plasticity. The more pseudoplastic the fluid is, the more the
flow approaches plug flow. Also, it is evident from the figure
that if we introduce a “tagged” material in a CPPF mixer, we
expect to see the first trace of that material coming out of the
mixer not earlier than 50% of the mean residence time (for
the Newtonian case).

The F function is highly dependent on the flow geometry
for a given fluid. For Poiseuille flow of a power-law fluid in
a parallel plate geometry (PPF) the mean residence time is
given by

t = 1 + 2n

1 + n
t0 (6.129)

and the F function by (see Problem 6A.13)

F(t) =
[

1 + n

1 + 2n

t

t

] [
1 + 1 + n

1 + 2n

t

t

]n/(1+n)

(6.130)

The effect of the flow geometry and flow type (Couette and
Poiseuille) is shown in Figure 6.16. Note that the first trace
of a “tagged” material does not come out of Poiseuille flow
in parallel plate geometry earlier than 67% of the mean resi-
dence time. Finally, Poiseuille flow of Newtonian fluids in a
circular pipe (CPPF) exhibits the same F function as Couette
flow of Newtonian fluids in the parallel plate geometry (PCF;
see Problem 6A.13).

In these two cases, Poiseuille flow in pipe and parallel
plate geometries, the cumulative RTD function was obtained
by calculating the velocity profile and the volumetric flow
rate. However, in cases where the velocity profile is not
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known, other techniques should be used to calculate the dis-
tribution of residence times. One technique is to obtain the
response of the system under examination to a “step change”
in influent concentration of some “tagged” material (tagged
with color, pH, radioactivity, etc.). The technique works as
follows. Suppose that we want to get the cumulative RTD
function of a mixer with an unknown velocity profile. We
connect this system with two influent pipes (one for the reg-
ular fluid and one for the tagged material with concentration
C0) through a three-way valve and we start mixing the regular
fluid coming out of one of the influent pipes. After the system
attains steady state (at t = 0) we change the valve position
to allow only the tagged material to flow through the mixer
and the concentration of the tagged material in the efflu-
ent stream, C(t), is monitored by the appropriate technique
(photometer for color as the tagging characteristic; pH meter
for pH as the tagging characteristic, etc.). For the technique
to work we assume that the “tagged material” flow stream
exhibits the same characteristics as the main flow stream so
that the flow rate is not changed within the system and that
the flow enters the system in a plug flow mode.

At time t the tagged material exiting the mixer has been
in the mixer for a time less than t. The volumetric flow rate
of the tagged material at time t is equal to F(t)C0 Q, where
Q is the total volumetric flow rate of the influent (or effluent)
stream. The tagged material balance yields

QC(t) = F(t)C0 Q (6.131)

and thus the F function is

F(t) = C(t)

C0
(6.132)

In conclusion, the F function for systems with unknown char-
acteristics is obtained through a step change experiment of a
tagged material as the ratio of the tagged material concentra-
tions of the incoming and outgoing streams.

Another technique for measuring the F function includes
the instantaneous injection (δ function; or impulse) of a cer-
tain amount of the tagged material and the monitoring of the
effluent concentration as a function of time. The difference
of the two techniques lies in the way the same information
is presented: the step change technique yields the F(t) func-
tion whereas the “δ function change” technique yields the
f(t) function.

Danckwerts (1953) distinguishes between the internal
RTD function, g(t), and the external RTD function, f(t).
The fraction of the material in the system with residence
time between t and t + dt is g(t)dt, whereas f(t)dt refers to
the fraction of the material leaving the system. The cumula-
tive RTD function corresponding to g(t) is denoted as G(t)
and it is equal to

∫ t
0 g(t ′)dt′. The relationship between g(t)

and F(t) can be obtained from an imaginary step-change
experiment:

Q − QF(t) = d

dt
[VG(t)] (6.133)

where V is the volume of the system occupied by the fluid,
and the first, second, and third terms represent the volumetric
flow rate into the system, out of the system, and change within
the system, respectively. For constant Q and V and for t equal
to V/Q, Eq. 6.133 yields

g(t) = 1 − F(t)

t
(6.134)

The mean residence time of the material inside the mixer is
then given by

t i =
∞∫

0

tg(t)dt (6.135)

More discussion of the internal RTD functions goes beyond
the scope of the present textbook.

The first extreme case, as mentioned before, is plug flow
and the other extreme case is that of a “perfect mixer,” which
is realized in stirred tanks. The latter case corresponds to
complete backmixing, that is, mixing along the primary flow
direction. Suppose that we perform a step change experiment
in a stirred tank system of volume occupied by the fluid V and
volumetric flow rate Q. Also, suppose that C0 is the tagged
material concentration in the influent stream and that the
concentration in the effluent stream is C. Then, the material
balance of the tagged component yields

QC0 = QC + V
dC

dt
(6.136)

and the initial condition is C = 0 at t ≤ 0. Note that the
concentration of the tagged material C in the tank and in
the effluent stream is the same because perfect mixing was
assumed. The solution to the first-order differential Eq. 6.136
along with the initial condition and Eq. 6.132 is

F(t) = 1 − e−t/t (6.137)

where t = V/Q. Figure 6.16 shows the F curve for a per-
fect mixer. Two notes should be made with reference to that
curve: (1) the perfect mixer exhibits a broad cumulative RTD
curve; and (2) there is no finite time lag, that is, the tagged
material exits the mixer immediately after it is introduced
to it, although at low concentrations, in contrast to pipe
Poiseuille flow with time lag of 0.5t and plug flow with
time lag t . Also, note that in the perfect mixer there is no
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distinction between internal and external RTD functions and
consequently f (t) = g (t) and F (t) = G (t).

The broad RTD of the perfect mixer seems to contradict
the idea of perfect mixing. Caution should be exercised in
this respect. The term mixing was used in this section to
signify the time distribution of material inside and outside
the mixer and not the homogeneity of the effluent stream. On
the other hand, a high degree of turbulence in pipe flow pro-
duces a high degree of uniformity in the transverse direction
(transverse mixing; radial mixing) and poor mixing in the
longitudinal direction (primary flow direction; backmixing).
Thus, although the F curves of turbulent and laminar flows
in a pipe are the same, indicating the same degree of back-
mixing, mixing in the radial direction is greatly improved in
the turbulent flow.

Two other qualities characterize the degree of mixing
through the RTD of mixers: holdback, B, and segregation,
S. Holdback is defined as

B = 1

t

t∫
0

F(t)dt (6.138)

and it represents the area under the F curve from 0 to t . B
varies from 0 for plug flow to 1 for a mixer full of dead spots,
and it measures the deviation from plug flow. To understand
the meaning of holdback, we borrow the example given by
Danckwerts (1953). Suppose that the inflow stream changes
color from white to red in a step change experiment. Then, B
is equal to the fraction of the mixer which is still occupied by
white color after a volume of red material equal to the mixer
volume has entered the mixer. The holdback of typical flows
(see Problem 6A.14) are as follows:

Plug flow 0
PPF 0.19
CPPF; PCF 0.25
Perfect mixing 0.37

Segregation, S, can be calculated from the F curves as the
area between the perfect mixing and the mixer curves up to
the point that these curves cross each other. S varies from
+ 1/e = 0.37 for plug flow to −1 for a mixer full of dead
spots. The value for the CPPF is 0.14 (see Problem 6A.14).

Finally, the average striation thickness reduction func-
tion at the exit of a mixer 〈〈λ(t)〉〉 can be calculated using
the idea of the “mixing cup” as follows (Ottino and Chella,
1983):

〈〈λ(t)〉〉 =
〈〈

δ

δ0
(t)

〉〉
=

t∫
t0

λ(t ′) f (t ′)dt′ (6.139)

6.4.2 Strain Distribution

It was shown in Section 6.3 that the degree of mixing is pro-
portional to the total shear strain for shear mixing with large
applied strains. In other mixing situations the state of mixing
is a function (maybe not simple) of the applied strain. How-
ever, in a mixer, the fluid particles experience different strain
histories, so that the exiting fluid stream consists of particles
with different degrees of mixing. The nonuniformity in the
state of mixing is measured by the strain distribution func-
tion (SDF) in direct analogy with the RTD function. Note
that in batch mixers, the SDF depends only on the various
paths that the fluid particles have followed, whereas in con-
tinuous mixers the RTD and the variation of the path trajec-
tories should be accounted for in the strain distribution. One
should keep track of the sign of the strain, because mixing
is enhanced by positive strain (along the flow direction) and
reduced by negative (opposite to the flow direction) strain
(demixing).

Inside continuous mixers or in batch mixers, in analogy
with the RTD discussion (Eq. 6.116), the SDF, g(γ ), is cal-
culated as the fraction of the fluid which experienced strain
from γ to γ + dγ . The cumulative SDF, G(γ ), is then given
by the integral of the SDF as in Eq. 6.115. In the exit stream
of continuous mixers the SDF, f (γ )dγ , is defined as the
fraction of the flow which has experienced strain between γ

and γ + dγ . The cumulative SDF, F(γ ), is then calculated
as

F(γ ) =
γ∫

γ0

f (γ ′)dγ ′ (6.140)

and it denotes the fraction of the exit flow stream with
applied strain less than or equal to γ , where γ0 is the mini-
mum applied strain. The weighted average total strain, WATS
(Pinto and Tadmor, 1970), and the mean total strain, γ , are
calculated by weighting the strain with the RTD function and
SDF, respectively, as follows:

WATS ≡
∞∫

t0

γ (t ′) f (t ′)dt ′; γ ≡
∞∫

γ0

γ ′ f (γ ′)dγ ′ (6.141)

Obviously, the higher the value of the mean strain that is
achieved, the better the mixing is. The SDF is only simply
related to the RTD for the case when γ̇ is constant.

Example 6.9. Cumulative SDF for PCF

Calculate the cumulative SDF for parallel plate Couette flow
(PCF) of a Newtonian fluid, and show its similarity with
the cumulative RTD function for Newtonian flow in PCF or
CPPF configurations.
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Solution. Referring to Figure 6.11 for a parallel plate geom-
etry, we see that

γ̇ = Vz

H
; γ = γ̇ t = Vz

H

L

vz
= L

y
(6.142)

The minimum strain, γ0, corresponds to y = H, so that

γ0 = L

H
(6.143)

The volumetric flow rate across the area W dy is dQ, and it
is equal to

dQ = W dy vz(y) = W
y

H
Vzdy (6.144)

The total flow rate, Q, is calculated to be WHVz/2.
According to the definition of the SDF,

f (γ )dγ = dQ

Q
= 2

H 2
y dy (6.145)

With the aid of Eqs. 6.142 and 6.143, the SDF becomes

f (γ )dγ = 2
γ 2

0

γ 3
dγ (6.146)

which is similar to the RTD function (2t2
0 dt/t3). Note that

to arrive at Eq. 6.146 we need to take into account the fact
that the part of the total flow rate which experiences strain
between γ and γ + dγ flows through the cross-sectional area
between W(y − dy) and Wy. Equivalently, we can use the
absolute value of dQ, because the SDF is always a positive
number. The mean total strain is calculated from Eqs. 6.141
and 6.146 as

γ = 2γ0 = 2
L

H
(6.147)

Finally, the cumulative SDF is calculated with the aid of
Eq. 6.140 as

F(γ ) = 1 − 1

4

(
γ

γ

)2

(6.148)

This is the same function as the cumulative RTD function
of PCF and CPPF with γ0 and γ replaced by t0 and t,
respectively.

In geometries and flow configurations where γ̇ varies
spatially, the calculations for the SDF become complicated.
Example 6.10 illustrates the complexities involved.

Example 6.10. Cumulative SDF in CPPF

Show the algorithm for the calculation of the cumulative SDF
of a power-law fluid flowing in a CPPF configuration. As
special cases, show the final algorithm steps for a Newtonian
fluid and a power-law fluid with power-law index n = 0.5.

Solution. The velocity profile and the shear rate are given
in Table 2.6. The differential flow rate dQ passing through
the “ring” 2πr dr is equal to 2πrvz(r )dr , and the total flow
rate Q is then calculated as

Q =
R∫

0

dQ = nπR3

1 + 3n

(
R �P

2mL

)1/n

(6.149)

The SDF can be calculated as a function of the variable
ξ = r/R from the ratio dQ/Q as

f (ξ )dξ = 2
1 + 3n

1 + n
ξ
(
1 − ξ (n+1)/n

)
dξ (6.150)

and the cumulative SDF is calculated as

F(ξ ) = 1 + 3n

1 + n
ξ 2

(
1 − 2n

1 + 3n
ξ (n+1)/n

)
(6.151)

The mean total strain is calculated using the expressions for
γ̇ , t = L/vz(r ), and the SDF as

γ = 2
L

R

1 + 3n

1 + 2n
(6.152)

It is interesting to note that the mean total strain depends
only on the geometry of the system (through L and R), not
on the flow rate, and also that the smaller the radius or longer
the pipe the higher the strain is. For Newtonian fluids, γ =
8L/3R.

The expressions for γ̇ and γ can be combined into the
following:

γ

γ
= (1 + n)(1 + 2n)

2n(1 + 3n)

ξ 1/n

1 − ξ (n+1)/n
(6.153)

The algorithm now consists of the following steps:

1. Calculation of ξ from Eq. 6.153 for a specified γ /γ

(nth order polynomial; graphically or with the aid of
software package),

2. Substitution of ξ just calculated into F(ξ ), and

3. Plotting of F(γ /γ ) versus γ /γ .
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For Newtonian fluids and for power-law fluids with
n = 0.5, step 1 is simpler because the resulting equations
are quadratic and cubic, respectively. So, for Newtonian flu-
ids, the equations are

F(ξ ) = 2ξ 2
(
1 − 1

2ξ
2
)

; ξ 2 + 3γ

4γ
ξ − 1 = 0 (6.154)

and for a power-law fluid with n = 0.5, the corresponding
equations are

F(ξ ) = 5

3
ξ 2

(
1 − 2

5
ξ 2

)
; ξ 3 + 6γ

5γ
ξ 2 − 1 = 0 (6.155)

The power-law fluid shows a narrower distribution, which is
expected because the velocity profile approaches that of plug
flow.

Similar calculations can be repeated for the case of PPF
for power-law fluids in general (see Problem 6B.9). For
ξ = 2y/H , where H is the plate separation and y = 0 at
the center of the separation, the SDF, cumulative SDF, and
strain are given by

f (ξ )dξ = 1 + 2n

1 + n

(
1 − ξ (n+1)/n

)
dξ (6.156)

F(ξ ) = 1 + 2n

1 + n
ξ

(
1 − n

1 + 2n
ξ (n+1)/n

)
(6.157)

γ

γ
= (1 + n)2

n(1 + 2n)

ξ 1/n

1 − ξ (n+1)/n
(6.158)

The mean total strain is equal to

γ = 2
L

R

1 + 2n

1 + n
(6.159)

Figure 6.17 compares the cumulative SDF for Newtonian
fluids in three flow situations: CPPF, PPF, and PCF.

CPPF and PPF can be compared with each other on the
basis of mean total strain applied and flow rate for the same
pressure drop. The ratio of the mean total strains for H = 2R
is calculated from Eqs. 6.152 and 6.159 as

γ CPPF

γ PPF
= 2

(1 + 3n)(1 + n)

(1 + 2n)2
(6.160)

That ratio for Newtonian fluids is equal to 16/9, and it
approaches 2 for extremely pseudoplastic fluids. Thus, the
long circular pipe provides more strain for mixing, com-
pared to a geometrically similar parallel plate configuration.
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FIGURE 6.17 Comparison of the strain distribution function for
circular pipe (CPPF) and parallel plate (PPF) Poiseuille flow, and
parallel plate Couette flow (PCF) of Newtonian fluids.

In terms of flow rate, for the same �P/L and for H = 2R, the
situation is

QCPPF

QPPF
= R

W

π(1 + 2n)

2(1+n)/n(1 + 3n)
(6.161)

which for Newtonian fluids becomes 0.59R/W. For these
relationships to hold, W should be very large compared to
R, so that for W/R = 20, the ratio of flow rates becomes
0.0295. In conclusion, CPPF incorporates more strain to the
fluid but produces less flow rate than PPF with wide parallel
plates. For plates with W = 2R = H, a shape factor should
be included in the calculation of the flow rate (Middleman,
1977, p. 91), and the ratio of flow rates becomes 4.7 for
Newtonian fluids.

Rotational Couette flow (RCF) is analyzed in the next
example. Because the flow is confined inside the Couette
flow cell and there is no exit stream, we use the nomenclature
G(γ ) and g(γ )dγ instead of F(γ ) and f(γ )dγ .

Example 6.11. SDF in RCF Configuration

Calculate the SDF for RCF, and explain the trends for New-
tonian and non-Newtonian fluids.

Solution. Consider a rotational geometry with outside
radius R, inside radius κR, and angular velocity of the inside
cylinder, W. The velocity profile, vθ , of the fluid in the gap for
isothermal laminar flow with no gravitational and centrifugal
forces and with no slip at the walls is given in Problem 2B.6.
The shear rate is given (Table 2.10) by

γ̇ = γ̇rθ = r
∂

∂r

(vθ
r

)
(6.162)
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as the r component of the velocity is zero. Substituting the
velocity profile into Eq. 6.162, we obtain the strain:

γ = γ̇ t = 2W t

n(1 − κ−2/n)

(
R

r

)2/n

(6.163)

The minimum strain is obtained at the outside cylinder and
is

γ0 = 2W t

n(1 − κ−2/n)
(6.164)

and the maximum at the inside cylinder is

γmax = 2W t

n(1 − κ−2/n)

1

κ2/n
(6.165)

so that the ratio of the maximum to minimum strains is

γmax

γ0
= 1

κ2/n
(6.166)

For Newtonian fluids and for κ equal to 0.9, the maximum
shear strain is 23% higher than the minimum, but for κ equal
to 0.5 the maximum strain is 300% higher than the minimum.
These differences cause a striation thickness difference inside
the rotational mixer. The SDF can be computed from

g(r )dr = 2πr L dr

πL(R2 − (κR)2)
(6.167)

and Eqs. 6.163 and 6.164 as

g(γ )dγ = n

1 − κ2

γ n
0

γ n+1
dγ (6.168)

The mean total strain is calculated as

γ =
γmax∫
γ0

γ g(γ )dγ = γ0
n

1 − n

κ2(n−1)/n

1 − κ2
(6.169)

for power-law fluids, whereas for Newtonian fluids it is given
as

γ = γ0
2ln(1/κ)

1 − κ2
(6.170)

The cumulative SDF, G(γ ), is calculated as

G(γ ) = 1

1 − κ2

[
1 −

(
1 − n

n

1 − κ2

κ2(1−n)/n − 1

)n (
γ

γ

)n
]

(6.171)

for power-law fluids, and it is calculated as

G(γ ) = 1

1 − κ2

[
1 − 1 − κ2

2ln(1/κ)

γ

γ

]
(6.172)

for Newtonian fluids.
A number of interesting points can be revealed from

the SDFs. For Newtonian fluids, only about 52% of the
material is subjected to strain less than the mean strain for
κ = 0.9, whereas for κ = 0.5 the corresponding value
increases to 61%. For comparison with the other mixing
flows the values of the percentage of the material subjected
to strain less than the mean for Newtonian fluids are for CPPF
and PPF 73% and for PCF 75%. The spread of the distribution
depends on the gap ratio and the power-law index. The more
pseudoplastic the material and the smaller the gap ratio are,
the broader the distribution is. A broad distribution suggests
nonuniformity in the product, because the degree of mixing
will vary substantially for material layers in different parts
of the rotational mixer. For power-law fluids with n = 0.5,
53% of the material is subjected to strain less than the mean
for a gap ratio of 0.9 and 67% for a gap ratio of 0.5. Also,
the distribution for power-law fluids is broader compared to
that for Newtonian fluids.

6.5 DISPERSIVE MIXING

Dispersive mixing is the term used to describe mixing asso-
ciated with some fundamental change of the physical char-
acteristics of one or more of the components of the mixture.
Generally, dispersive mixing is divided into two parts: the
incorporation of the additives in terms of agglomerated par-
ticles or the second polymer component into the polymer
matrix, and the dispersion (or deagglomeration) of the sec-
ond phase to yield the final product. The microstructures
of the blends are determined by rheological, hydrodynamic,
and thermodynamic parameters. The rheological parameters
are viscosity, elasticity, and yield stress of all components.
The hydrodynamic parameters determine the flow fields. The
thermodynamic parameters are related to solubility, adhe-
sion, and diffusion of all components. In this section we
address the dispersion of agglomerates (additives) and other
polymers (liquid–liquid dispersion) into a polymer matrix.

6.5.1 Dispersion of Agglomerates

Dispersion of agglomerates has been applied in the poly-
mer processing industry for at least 50 years. It is concerned
with the incorporation and deagglomeration of additives in
the polymer matrix with the ultimate goal being the reduc-
tion of the price or the improvement of the properties of the
final product. Of course, if the additive exists in the form
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of isolated noninteracting particles, then the task of mixing
is only to distribute these particles uniformly throughout the
final product. However, when the additive exists in the form
of clusters of particles (interacting or noninteracting), then
dispersive mixing ensures that the agglomerates break into
isolated particles which then should be distributed by exten-
sive mixing mechanisms.

The size of the particles and their ability to interact with
each other characterize the type of cluster as cohesionless
or cohesive. A cohesionless cluster is formed from nonin-
teracting particles or from large particles (> 1 mm), and its
dispersion is determined only by the total deformation of
the primary phase. In this case, the dispersion is achieved
by “peeling off” particles from the surface of the cluster by
tangential velocity components close to the particles. On the
other hand, a cohesive cluster includes interacting particles
or very small particles or particles dispersed in a medium
other than the polymer matrix, and its dispersion depends
on the applied stresses (or equivalently on the deformation
rates).

Usually, additive particles are of maximum size of about
100 μm and the cohesive forces cannot be neglected. The
significance of the cohesive forces is in the disintegration
of the cluster, which requires that the hydrodynamic forces
exceed the cohesive forces. Assuming the aggregates are
formed by nontouching spherical particles of like material,
the Bradley–Hamaker theory (Elmendorp, 1991) allows one
to calculate the attractive van der Waals force between two
particles as

Fw = 2CR1 R2 A

3

2xy − x2 − y2

x2 y2
(6.173)

where A is the Hamaker constant (∼= 5 × 10−20 to 5 × 10−19 J)
and x = C2 − (R1 + R2)2, y = C2 − (R1 − R2)2, and
C = R1 + R2 + d. R1, R2, and d are the radii of the spheres
and their distance, respectively. When the two spheres are
touching each other, Eq. 6.173 reduces to

Fw = A

6z2

R1 R2

R1 + R2
(6.174)

where z is the physical adsorption separation distance (equal
to about 0.4 nm for adhering spheres). If the adhering spheres
are of the same size, then Fw = (AR)/12z2, and for the mean
value of A we get Fw = 0.1R in μN for R in μm. Rumpf
(1962) showed that the tensile strength of clusters formed by
equally sized randomly packed particles is

σT = 9

32

1 − ε

ε

Fw

R2
(6.175)

where ε is the void volume fraction or porosity of the cluster.
Combining Eqs. 6.173 and 6.175 we get the cohesive force
of the cluster as

Fc = 9

16

1 − ε

ε

A

12z2 R
S (6.176)

where S is the cross-sectional contact area of the rupture
plane.

The hydrodynamic forces acting to rupture the cluster
can be calculated by assuming simple geometrical shapes.
Tadmor and Gogos (1979) assumed that the agglomerate
consisted of a dumbbell (two spheres connected with a hypo-
thetical rod to transmit the forces between them) suspended
in shear and elongational flow fields. The maximum hydro-
dynamic force acting on the rod to rupture the dumbbell (of
equal-size spheres) was shown to be

Fh = 3
2πμγ̇LR (6.177)

for the simple shear case, and

Fh = 3πμε̇LR (6.178)

for elongational flow, where L is the distance between the
center of the spheres. Note that the maximum force in the
shear case is achieved when the dumbbell is oriented 45◦ to
the direction of shear, and in the elongation case when the
dumbbell is oriented along the direction of the flow. Equa-
tions 6.177 and 6.178 show that at the same shear and elonga-
tion rates elongational flow creates twice the force created in
shear flows. The dumbbell is ruptured whenever the hydro-
dynamic force exceeds the cohesive force of Eq. 6.173. The
better efficiency of the elongational field can be overcome
by the shear flow, because shear devices can easily produce
shear rates of 100 s−1 and those rates cannot be achieved by
elongational fields for long times. Thus, in dispersive mixing,
shear is the predominant mechanism.

For a doublet of two touching equal-sized spheres sus-
pended in an incompressible Newtonian fluid in a shear flow
field, Nir and Acrivos (1973) calculated the maximum hydro-
dynamic force to be

Fh = 6.12πμγ̇ R2 (6.179)

Note that if the spheres are unequal in size the numerical
constant of Eq. 6.179 changes. For instance, the hydrody-
namic force in two touching spheres, with the diameter of
one of them twice the diameter of the other, becomes equal
to 2.57πμγ̇ R2, and for spheres with diameter ratio of 10
the force becomes 0.05πμγ̇ R2. By equating the maximum
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hydrodynamic force on a doublet to the cohesive force of
Eq. 6.174 we get the critical shear rate for breakup as

γ̇crit = 0.004
A

z2

1

μR
(6.180)

This equation shows that the smaller the particles and the
lower the viscosity of the suspending medium the harder it
is to break them up. The non-Newtonian character of the
suspending medium can cause complications in terms of the
hydrodynamic force, but this area is still under research.

The maximum hydrodynamic force acting on ellipsoidal,
spherical, and highly ellipsoidal clusters of particles can be
assumed to be the same as the force acting on single parti-
cles of the same shape. For spherical clusters this maximum
hydrodynamic force is given (Elmendorp, 1991) as

Fh = 5

2
πμγ̇ R2

cl (6.181)

where Rcl is the cluster radius. Equating this force to the
cluster cohesive force of Eq. 6.176, we get the critical shear
rate for deagglomeration:

γ̇crit = 3

160

S

πμR2
cl

1 − ε

ε

A

z2 R
(6.182)

which leads us to the conclusions that the more viscous the
matrix and the larger the individual particles are the higher
the critical shear rate is. In addition, if the agglomerate breaks
at an equatorial plane (i.e., S = πR2

cl), then the critical shear
rate does not depend on the initial size of the cluster. The
interfacial tension between the particles and the polymer
matrix can act as a cohesive force of the cluster, especially
when the polymer matrix does not fill completely the voids
of the cluster (see Problem 6A.15).

Equation 6.179 shows the importance of high stresses
(μγ̇ ) in the deagglomeration process. Consequently, it is
common practice in the polymer processing industry to make
masterbatches or superconcentrates of the dispersed to the
continuous phase and thus to increase the applied stresses
by increasing the viscosity. μ in Eq. 6.181 is the viscosity
of the medium, which in highly concentrated batches can be
orders of magnitude higher than the viscosity of the polymer
matrix. For example, the masterbatch of carbon black in PE
contains about 50% carbon black while the final product
contains about 2% to 5% only. The deagglomeration takes
place in the masterbatch where the viscosity is high and it is
followed by dilution steps in extensive type of mixing.

6.5.2 Liquid–Liquid Dispersion

The dispersion of one liquid into another is a very impor-
tant mixing process for polymer blends. As mentioned in

the introduction of this chapter, dispersion of small rubber
particles in PS is vital for the improvement of the impact
properties of PS. Because the blending takes place in the
molten state, understanding of the phenomena in a typical
liquid–liquid dispersion is essential for the polymer blend
business. However, a lack of agreement between the theoret-
ical predictions and the experimental data in polymer blends
should not always be used to discredit the theory, as relax-
ation processes can alter the structure as the blend goes from
the molten to the frozen state.

Liquid–liquid dispersion is characterized by two phases,
the dispersed and the continuous. The physical parameters
of the two phases affecting a liquid–liquid dispersion are
viscosity, elasticity, interfacial tension, solubility, and diffu-
sion rate. For solubility, the system is considered as miscible,
immiscible, or partially miscible. Interfacial tension is lowest
for miscible systems and highest for immiscible systems. As
mentioned in Chapter 4, all high molecular substances have
a diffusion coefficient, —D , of about 10−12 to 10−14 cm2/s.
Consequently, the diffusion rates in molten polymer systems
are extremely small, and the relative penetration depths in
the time scale of the blending process are extremely small.

Both the dispersed and the continuous phases are fed into
the blending or compounding equipment in the form of pel-
lets. The deformation and the dispersion starts after heating
both components to temperatures above their melting point.
Similarly to the dispersion of agglomerates, the hydrody-
namic force is the deforming and disruptive force and the
interfacial tension force is the cohesive force of the dispersed
phase. The ratio of these two forces or stresses is called the
Capillary (or Weber) Number, Ca:

Ca = Fh

Fc
= μcγ̇R

γ
(6.183)

where R is the characteristic length (radius) of the dispersed
phase and μc is the viscosity of the continuous phase, and
γ is the interfacial tension. The initial characteristic length of
the dispersed phase is the pellet radius, which is not large
enough for interfacial forces, γ /R, to play any role at that
stage. For example, a dispersed system with characteristic
length 2 mm, interfacial tension 30 mN/m, continuous phase
viscosity 100 Pa·s, and subjected to a shear rate of 100 s−1

experiences a viscous disruptive stress of 10,000 Pa while
the resisting interfacial tension stress is only 15 Pa.

As blending proceeds, the characteristic length of the dis-
persed phase decreases to the point of equilibrium between
the disruptive hydrodynamic and cohesive interfacial tension
forces. Of course, during the blending process, dispersed
droplets come in contact with each other and may coalesce,
so that coalescence and breakup are two competitive mecha-
nisms in polymer blends. In the final blending stages miscible
and immiscible systems behave differently. On the one hand,
in miscible systems homogenization is achieved on a very
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small scale, possibly the molecular scale, if sufficient time
is allowed. On the other hand, immiscible systems exhibit
a two-phase structure whose characteristics depend on the
physical parameters of both polymer phases.

In summary, miscible and immiscible systems show sim-
ilar behavior in the initial steps of the dispersive mixing
process, where hydrodynamic forces deform and disrupt the
units of the dispersed phase. In the next stages, interfacial
tension forces come into play and induce motion (interfacial
tension driven Rayleigh or capillary disturbances). Then, at
the final stages, miscible systems are expected to be homog-
enized at the molecular level (if sufficient time is allowed)
while immiscible systems retain the coarser structure of a
two-phase system.

Next, we give some fundamental ideas on drop deforma-
tion and breakup in shear and extensional fields, which are
pertinent to the polymer blend area. We consider first sim-
ple shear flow. Figure 6.18a shows the deformation of an
initially spherical droplet in a simple shear field. In a shear
field the droplet assumes an ellipsoidal shape with long axis

L and short axis B, and it is oriented at an angle φ with
respect to the y axis (see also Fig. 6.11). Theoretical analysis
of small deformation, D, was carried out by Taylor (1934)
and Cox (1969), and it applies to a single Newtonian droplet
suspended in a Newtonian medium. The deformation of the
droplet is defined as

D ≡ L − B

L + B
(6.184)

The above definition is appropriate for mildly deformed
droplets. However, for highly deformed droplets (Fig. 6.18b)
the appropriate measure of deformation is D = L/R, where L
is now the half length and R is the radius of the undeformed
droplet. The steady simple shear solution presented by Cox
(1969), which in the limit of small deformation includes the
theory of Taylor (1934), is

D = 5

4

19p + 16

(p + 1)
√

(19p)2 + (20/Ca)2
(6.185)
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2L
D = L/R

D = (L-B)/(L+B)

FIGURE 6.18 (a) Geometry and definition of the deformation D of a mildly deformed droplet
in simple shear. (b) Geometry and definition of the deformation D of a highly extended droplet in
simple shear. (c) Four-roll apparatus generating plane hyperbolic (planar extensional) flow of various
strengths.
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where p is the ratio of the viscosity of the dispersed to the
continuous phase, μd/μc. The limiting situations of p → ∞
and Ca → 0 can easily be determined from Eq. 6.185 as

D = 5

4p
for p → ∞; Ca = O(1) (6.186)

and

D = Ca

(
19p + 16

16p + 16

)
= Ca f (p) for Ca → 0; p = O(1)

(6.187)

where O(1) stands for “on the order of magnitude of 1.” The
orientation of the deformed droplet is

φ = π
4

+ 1

2
arctan

(
19p Ca

20

)
(6.188)

The limitations of this theory are small deformations (much
below the bursting limit), isolated droplets, and Newtonian
fluids. Figure 6.19 shows the deformation, D, as a function
of the parameter γ̇ R for p = 0.0037. For small values of
γ̇ R, the linear region corresponds to Eq. 6.187. At larger and
more realistic values of the shear rate the curve is no longer
linear.

As the deformation of the droplets increases, they
assume elongated shapes and finally, at some value of the
capillary number, called the critical capillary number, Cac,
the disruptive forces exceed the cohesive forces and the
droplets burst. An extensive experimental analysis of large
deformations that lead to droplet breakup was conducted
by Grace (1982) and is presented in Figure 6.20. In this
figure, the critical capillary number times a function of the
viscosity ratio f(p), where f (p) = (19p + 16)/(16p + 16),
is plotted against the viscosity ratio for the two modes of
bursting, that is, tip streaming (for p < 0.1) and regular
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FIGURE 6.19 Deformation D of a droplet as a function of the
velocity gradient across the droplet, γ̇ R. (Reprinted by permission
of the publisher from Grace, 1982.)
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FIGURE 6.20 Critical capillary number versus viscosity ratio p.
(Reprinted by permission of the publisher from Grace, 1982.)

bursting. Tip streaming refers to the situation where droplets
assume a sigmoidal shape with tiny droplets shedding off
the tops. The important feature shown in Figure 6.20 is the
inability of shear flows to cause droplet breakup at viscosity
ratios exceeding 3.5. Note that for this curve to be applicable
to other systems, the increase of the shear rate should be
stepwise with very small steps. If the shear increases in large
steps, the droplets fragment, and the size of the fragments is
not correlated by this curve. The left arm of the shear flow
curve can be represented as

Cac f (p) = Cac
19p + 16

16p + 16
= 0.16p−0.16 (6.189)

which seems to agree with some theoretical predictions.
Another important parameter of the droplet breakup pro-

cess is the time necessary for the interfacial-driven instabil-
ities to cause breakup, tb, when the actual capillary number
exceeds the critical capillary number. Grace (1982) provided
this information in Figure 6.21 for Newtonian fluids. Note
that the dimensionless burst time is denoted as t∗

b , which is
equal to tb/τ , where τ is the time scale of the bursting process
and it is equal to Rμc/γ . For example, for a polymer blend
with p = 0.1, γ = 10 mN/m, R = 10 μm,μc = 1,000 Pa·s, and
Ca/Cac = 10, the dimensionless burst time is 11, and the time
scale is equal to 1 s. Thus, the burst time, tb, is equal to 11 s.

We consider next the planar elongational flow. The exper-
imental setup is a four-roll apparatus (see Fig. 6.18c) used
first by Taylor (1934). Cox (1969) developed a theory similar
to that for simple shear flow:

D(t) = 2Ca

(
19p + 16

16p + 16

)(
1 − exp

(
− 19p

20Ca
t ε̇plel

))
(6.190)

where ε̇plel is the extension rate in this pure shear case,
and the capillary number is defined based on the shear
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FIGURE 6.21 Effect of exceeding the critical capillary number
on time to burst, tb. τ = Rμc/γ is the time scale for burst. (Reprinted
by permission of the publisher from Grace, 1982.)

viscosity and ε̇plel. This equation shows that even a high-
viscosity dispersed phase can be deformed. Data on pure
shear are shown in Figure 6.20 as taken from Grace (1982).
Two differences should be pointed out. One is the ability of
pure shear flow to break droplets even at high viscosity ratios
and the other is the lower value (about 1/3) of the minimum
capillary number for pure shear flow compared to simple
shear flow. Note that for Newtonian fluids the viscosity in
pure shear is twice the simple shear viscosity, and this sub-
stitution in the capillary number in this figure will nearly
bring the two curves together.

Finally, we consider the uniaxial elongational flow. This
flow is more frequently encountered in practice than pure
shear flow. Material flowing in a conical die experiences this
type of flow. Van der Reijden-Stolk and Sara (1986) studied
this flow and found that the deformation grows as

D(t) = 3

2
Ca

(
19p + 16

16p + 16

)(
1 − exp

(
− 19p

20Ca
t ε̇unel

))
(6.191)

where ε̇unel is the extension rate for uniaxial elongational
flow. Comparison of the three flows in terms of the necessary
extension rate to achieve the same deformation at long times,
that is, comparing Eqs. 6.187, 6.190, and 6.191, shows that

γ̇ : ε̇plel : ε̇unel = 6 : 3 : 4 (6.192)

The complete picture is formed only when we compare power
expended to achieve the same deformation, with the aid of
Eqs. 6.78, 6.79, and 6.80:

Punel : Pplel : Pss = 4
3 : 1 : 1 (6.193)

Thus, for Newtonian fluids simple shear and planar elon-
gational flows require the same power to produce the same
deformation while uniaxial elongation requires 33% more
power.

After the droplet has been deformed extensively (actual
capillary number much higher than the critical capillary num-
ber) by one of the mechanisms mentioned above, it will
assume a thread-like shape with long cylindrical midsection
and two bulbous ends, when p> 0.05, and long slender shape
with nearly pointed ends, when p < 0.05 (Stone and Leal,
1989). These shapes are unstable, because they can break
up in the flow field due to interfacial tension driven insta-
bilities (Rayleigh or capillary instabilities; Tomotika, 1935).
Moreover, if the flow stops (or the thread moves to a rel-
atively more quiescent environment) the thread can either
relax or break up, depending on the extension L/R and the
viscosity ratio. Figure 6.22f shows a thread relaxing back
to its original droplet shape for p = 0.01 and L/R = 5.3.
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FIGURE 6.22 Relaxation and breakup of initially extended
droplets in a quiescent fluid. The time scale is τ = Rμc/γ . The
dimensionless time t∗, equal to t/τ , is shown above each schematic.
(Reprinted by permission of the publisher from Stone and Leal,
1989.)
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FIGURE 6.23 Evolution of end-pinching and capillary waves
during the relaxation and breakup of an initially highly extended
droplet suspended in a quiescent fluid. The time scale is τ = Rμc/γ .
The dimensionless time t∗, equal to t/τ , is shown in the side of each
schematic. (Reprinted by permission of the publisher from Stone
and Leal, 1989.)

Figure 6.22a–e show breakup by shedding off small droplets
from the bulbous ends (“end-pinching” mechanism; Stone
and Leal, 1989) for 0.05< p< 10 and L/R = 8.6. Finally, Fig-
ure 6.23 shows the combined action of instabilities and end-
pinching for p = 1 and L/R = 14. Apparently, the time scale
of the end-pinching mechanism is less than the time scale
of the instability mechanism in cases where end-pinching
prevails.

Interfacial driven disturbances on a Newtonian thread
embedded in a Newtonian matrix are briefly discussed next.
An initially long cylindrical thread with midsection radius R0

is sinusoidally disturbed by a wave of interfacial tension ori-
gin as shown in Figure 6.24a. Without going into the details
of the analysis we note that the burst time (Elmendorp, 1991)
is given as

tb = 1

q
ln

(
0.82R0

a0

)
(6.194)

FIGURE 6.24 (a) Capillary waves in an initially uniform midsec-
tion radius thread. λ is the distortion wavelength, a′ is the distortion
amplitude, R0 is the initial thread radius, R is average thread radius,
and z is the axis of the thread. (b) Dominant growth rate �(λmax, p)
as a function of the viscosity ratio p. (Reprinted by permission of
the publisher from Elmendorp, 1991.)

where 1/q is the time constant of the distortion process, and
α0 is the distortion amplitude at time equal to zero. 1/q is
given by the equation

1

q
= 2μc R0

γ

1

�(λ, p)
= 2τ

�(λ, p)
(6.195)

where �(λ, p) is a complicated function of the wavelength
of the distortion, λ, and the viscosity ratio, p. This function is
shown in Figure 6.24b for λ = λmax, which is the wavelength
leading to breakup. Then Eq. 6.194 becomes

t∗
b = tb

τ
= 2

�(λmax, p)
ln

(
0.82R0

α0

)
(6.196)

Although the above equations apply to Newtonian sys-
tems, it was shown experimentally that they also apply to sit-
uations encountered in polymer blending (Elmendop, 1991).
The absence of the effect of viscoelasticity on polymer thread
breakup is attributed to the very low deformation rates of the
final stages of breakup (10−5 to 10−3 s−1). At these rates it can
be assumed that most polymers exhibit Newtonian behavior
with viscosities equal to their zero-shear values. Examples
for the use of the above equations follow.
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Example 6.12. Burst Time of a Cylindrical Thread

Calculate the dimensionless and the actual burst time for
a cylindrical thread of radius 5 μm, viscosity ratio 1, and
interfacial tension 10 mN/m submerged in a Newtonian fluid
of viscosity 100 Pa·s. What is the dimensionless burst time
for p = 0.1?

Solution. The time scale of the bursting process is τ =
R0μc/γ = 0.05 s. � = 0.07 at p = 1 from Figure 6.24b.
The amplitude of the distortion that leads to burst is usually
considered to be 0.3% of the initial radius of the midsection.
Then Eq. 6.196 gives the dimensionless burst time as

t∗
b = 2

0.07
ln

(
0.82

0.003

)
= 160 (6.197)

Thus, the actual burst time is 160 × 0.05 s = 8 s. Similarly,
for viscosity ratio of 0.1, t∗

b = 53.

Figure 6.23 can be used to compare the dimensionless
times for end-pinching and instability growth. It is seen from
this figure that the dimensionless time for end-pinching is
about 64, whereas the dimensionless time for instability
growth is 160 as calculated in Example 6.12. Figure 6.23
shows also that the dimensionless time for complete breakup
is about 240.

In the analysis of drop breakup it is assumed that a sin-
gle drop exists in an infinite sea of the polymer matrix. In
practice, this is not the case. The effect of the volume frac-
tion of the minor component can be double: (1) the presence
of drops alters the hydrodynamics around the other drops,
and (2) coalescence can take place due to increased proba-
bility of collisions. Mathematically, both phenomena can be
grouped into a linear relationship (without rigid foundations;
borrowed from experiments in agitated tanks):

R = RT(1 + kφ) (6.198)

where RT refers to the drop radius according to Taylor’s
theory (Eq. 6.187), k is a constant, and φ is the volume
fraction of the minor component. Typical values of k range
from 5 to 200 (Elmendorp, 1991).

Example 6.13. Blend Morphology

A PP/PS blend is formed in a roll-mill apparatus and the
cooling step to temperatures below the glass transition tem-
perature of PS (∼=100 ◦C) takes about 30 s. Comment on the
possibility that initially in the roll-mill threads were present
that later on burst to smaller droplets due to instabilities.
The final morphological examination showed PP droplets
of 10 μm in size. Assume that γ = 5 mN/m and that the
Newtonian viscosities are μc = μd = 1000 Pa·s.

Solution. We will test the scenario of small droplets (of
radius 10 μm) undergoing end-pinching to form elongated
threads with a thread midsection radius of about 4 μm. Then
the extension ratio is L/R = 6 × (4/3) × (R/R0)2 = 50, if we
assume that each thread produces six droplets. The calcula-
tion of the time to burst due to capillary instabilities follows
exactly Example 6.12, and it is equal to 128 s. But because
the extension ratio is large, both end-pinching and capillary
instabilities play a role. Figure 6.23 shows that end-pinching
precedes burst by capillary instabilities and that the starting
time for end-pinching was one-third of the time for capil-
lary breakup. Thus, if the same analogy holds in our system,
at about 40 s two droplets will be shed off the ends of the
thread. This time is slightly longer than the cooling time. For
R0 = 3 μm, tb = 95 s. The conclusion is that the possibility
of threads breaking up during the cooling step cannot totally
be ruled out.

In the following example the application of ideas from
drop breakup in extruders using a simplified flow theory is
shown.

Example 6.14. Thread Breakup in Extruders

A melt-fed extruder is used for melt blending of two polymers
with equal constant viscosities of 100 Pa·s and interfacial
tension of 5 mN/m. The maximum shear rate in the screw
channel is about 110 s−1. The flight clearance in the extruder,
δf, is 250 μm, the barrel diameter is D = 2.54 cm, the screw
rotational frequency is N = 100 rpm, the flight width is
e = 0.254 cm, the mass flow rate is ṁ = 1.4 g/s, the polymer
density is ρ = 1 g/cm3, and the mean residence time is
t = 138 s. The molten feed into the extruder consists of a
dispersion of 5 μm in radius. Assuming that the melt passes
through the flight clearance once, is it possible that the final
morphology consists of even a finer dispersion? Neglect any
effect of extensional flows that occur as the fluid passes from
the channel through the flight clearance.

Solution. The shear rate experienced by the blend when
it passes through the flight clearance is calculated as (see
Section 8.3.3)

γ̇clearance = πDN

δf

∼= 550 s−1 (6.199)

Using Figure 6.20, the critical capillary number for p = 1
and shear flow is equal to 0.79. The actual capillary number
in the flight clearance is 55, so that the actual value of Ca
exceeds the critical value 69 times. The dimensionless burst
time for that ratio of capillary numbers is calculated using
Figure 6.21 to be at least 2 (in this figure there is no entry for
p = 1, so that the corresponding value for viscosity ratio of
0.107 is used as the lower limit). The time scale of the burst
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process, τ , is equal to Rμc/γ = 0.1 s, and thus the actual
burst time is tb > 4τ = 0.4 s. The residence time in the flight
clearance is

tflight = πρDeδf

ṁ
= 0.03 s (6.200)

Thus, the residence time in the flight clearance is not enough
for burst. However, the droplets during the flow in the flight
clearance can be deformed into threads, because the shear
strain in the clearance is equal to 550 × 0.03 = 16.5. Accord-
ing to Eqs. 6.104 and 6.105, the thread will have half-length
and half-width to initial radius ratios of

L

R
=
√

1 + γ 2 = 16.5;
B

R
= (1 + γ 2

)−1/4 = 0.25

(6.201)

So, the total length of the thread will be 160 μm and its radius
1.25 μm. This thread will be subjected to end-pinching
and capillary instability. The burst time due to the capillary
instability is calculated as in Example 6.12. It is equal to
4 s, while the mean residence time in the extruder is 138 s.
Thus, the final morphology will include finer droplets of the
dispersed phase.

6.6 THERMODYNAMICS OF MIXING

In Section 6.5 polymer–polymer miscibility was considered
to be an important parameter in the dispersion of the two
polymer phases. In this respect a polymer–polymer system
can be considered as miscible, immiscible, or partially misci-
ble depending on the relative solubility of the two polymers.
Total solubility characterizes a miscible system, insolubility
an immiscible system, and partial solubility a partially misci-
ble system. The degree of miscibility has important effects on
the mechanical, physical, rheological, and optical properties
of the resulting blend.

Measuring the glass transition temperature is the most
common technique to detect miscibility. When a polymer
blend is immiscible, the two constituent polymers will keep
their identity and thus exhibit two distinct glass transition
temperatures. However, a miscible blend will consist of one
phase and exhibit a single glass transition temperature (in
between the glass transition temperatures of the constituent
polymers). Finally, a partially miscible system will exhibit
two glass transition temperatures, shifted toward each other
with respect to the original glass transition temperatures of
the two polymers. Figure 6.25 shows schematically the above
behavior in a typical tan δ (δ is the loss angle) versus tem-
perature graph.

Thermodynamically, mixing will take place when it is
favored energetically, that is, when

�Gmix = �Hmix − T �Smix ≤ 0 (6.202)

Temperature

ta
n
( 

 )

T
1g T

2g

FIGURE 6.25 Loss angle, δ, as a function of temperature for
various types of polymer blends: (a) miscible (dashed line), (b)
immiscible (solid line), and (c) partially miscible (dotted line). The
glass transition temperature, Tg, is the temperature at the peak of
the loss angle.

where�Gmix,�Hmix, and�Smix are the changes of the Gibbs
free energy, enthalpy (or heat), and entropy, respectively, of
mixing. The heat of mixing, �Hmix, is usually a positive
quantity (endothermic process). The entropy of mixing is
positive because the randomness of the mixture is higher than
the randomness of the components. It should be noted that the
condition of Eq. 6.202 is necessary, although not sufficient,
for the formation of a stable solution. The heat of mixing
is related to a parameter called the solubility parameter, δ,
through the relationship

�Hmix = V (δ1 − δ2)2 φ1φ2 (6.203)

where V is the volume of the mixture and φ1 and φ2 are the
volume fractions of the solvent and solute, respectively. If
δ1 = δ2, then �Hmix = 0 and �Gmix ≤ 0, and so the compo-
nents will be miscible in all proportions (for equally hydrogen
bonding capable polymers). Table 6.2 includes some typical

TABLE 6.2 Solubility Parameter Values for Various
Polymers

δ (MPa1/2)

Polymer From To

PE 15.8 12.1
PP 16.8 18.8
PS 17.4 19.0
PVC 19.2 22.1
PMMA 18.6 26.2
PAN 25.6 31.5
PB 16.6 17.6

Source: Van Krevelen, 1990.
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TABLE 6.3 Interfacial Tension Values for Typical
Polymer Pairs

Polymer Pairs γ (mN/m) at 140 ◦C −dγ /dT (mN/m·◦C)

PE/PP 1.1 —
PE/PS 5.9 0.020
PE/PMMA 9.7 0.018
PE/PEO 9.7 0.016
PP/PS 5.1 —

Source: Wu, 1982.

values of the solubility parameter for polymers. Finally, the
interfacial tension of polymer systems was shown to be very
important in the area of dispersive mixing as a determining
factor of the final blend morphology. Table 6.3 summarizes
interfacial tensions of polymer pairs.

6.7 CHAOTIC MIXING

A recent advance in the area of mixing is that of chaotic
mixing. Mixing was analyzed in Section 6.3 in terms of inter-
material area generation or reduction of striation thickness.
It was shown that simple shear flows, which are extensively
present in the area of polymer mixing, have time decaying
average mixing efficiencies (see Fig. 6.10). This flow, which
is thus considered a weak mixing flow, owes its mixing inef-
ficiency to the eventual orientation of the intermaterial area
along the streamlines. However, simple flows can exhibit
chaotic mixing, if they become periodic in nature. In that
case, the intermaterial area increases exponentially with time,
thus providing an effective means of mixing.

Aref (1984) indicated that the equations which describe
the particle trajectories in a two-dimensional flow have a
Hamiltonian structure, that is,

vx = dx

dt
= ∂ψ

∂y
; vy = dy

dt
= −∂ψ

∂x
(6.204)

where ψ is the stream function. A Hamiltonian system is a
physical system of particles whose motions are described by
deterministic equations. If ψ in Eq. 6.204 is independent of
time, then the velocity field is steady and the system cannot
be chaotic. However, if ψ is time periodic, that is, depends
on x, y, and t, then there is a good chance that the system
will be chaotic. Aref (1984) applied this idea to the blinking
vortex system, which is a system consisting of two alternating
corotating vortices. These vortices switch on and off for half
the cycle time.

A flow can be termed chaotic if it satisfies any of the
following criteria:

1. Positive Liapunov exponents in a given region of
the flow,

STREAMLINE

TNIOP CITPILLETNIOP CITPILLE HYPERBOLIC 

POINT

FIGURE 6.26 Elliptic and hyperbolic points. A blinking vortex
system with vortex centers at the elliptic points can produce this
streamline pattern.

2. Presence of transverse homoclinic or heteroclinic
points, and

3. Presence of Smale horseshoe maps.

The Liapunov exponent, σ , is related to the long time behav-
ior of the lineal stretch, and it is equal to:

σ = lim
t→∞

ln(λ)

t
(6.205)

where λ is the lineal stretch given by Eq. 6.86. Note that
the Liapunov exponent of a simple steady shear flow is 0,
because as t → ∞ the term ln(γ̇ t)/t goes to zero, and thus
simple steady shear flow cannot produce chaos.

The definition of the homoclinic and heteroclinic points
needs first the introduction of hyperbolic and elliptic points.
A two-dimensional flow always consists of hyperbolic and/or
elliptic points (Fig. 6.26). At the hyperbolic point the fluid
moves toward it in one direction and away from it in another
direction. At an elliptic point the fluid moves in closed path-
lines. A periodic point is defined as the point at which a
particle in a periodic flow returns after a number of periods.
The number of periods defines also the order of the periodic
point, as periodic point of period 1, 2, and so on. Note that
the periodic elliptic points should be avoided should we want
enhanced mixing. A point where the outflow of one hyper-
bolic point intersects the inflow of another hyperbolic flow
is called transverse heteroclinic point. When the inflow and
outflow refer to the same hyperbolic point, the point is called
transverse homoclinic point.

The last identifying feature of chaos is the presence of
Smale horseshoe maps (Fig. 6.27a). A typical map involves
the stretching and folding of a square with itself. Mixing
has been promoted in that sense, because the perimeter of
the initial square has increased or the striation thickness has
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FIGURE 6.27 (a) Representation of typical Smale horseshoe
map. (b) Representation of the baker’s transformation.

decreased. The Smale horseshoe map is similar to the baker’s
transformation, Figure 6.27b, which involves stretching, cut-
ting, and stacking of fluid elements (see also Spencer and
Wiley, 1951), and it is considered to be the best possible
mixing from the mathematical point of view.

The simplest flow that can exhibit chaos is two-
dimensional flow. Ottino and co-workers (Chien et al., 1986;
Khakhar et al., 1986; Leong and Ottino, 1989) produced
chaotic mixing in simple prototypical devices, such as cav-
ity flow, partitioned-pipe mixer (e.g., a Kenics static mixer
as discussed in Section 8.5), and eccentric helical annular
mixer with Newtonian fluids. Of prime interest in the area of
polymer processing, of course, is the work in cavity flows. A
typical cavity was constructed with the ability of movement
of both top and bottom plates. Typical cavity flow, which is
described in Chapter 8, corresponds to the steady movement
of the top plate only. However, corotational (in the oppo-
site direction) movement of both plates in a periodic fashion
induces chaos in the cavity. Leong and Ottino (1989) used
two types of movement: discontinuous and continuous in a
sinusoidal manner (Fig. 6.28). In the discontinuous corota-
tional flow, the top plate first moves for a half period, then it
stops for 5 s, and the cycle ends with the bottom plate moving
for a half period in the opposite direction. In the continuous
type of movement, both plates move sinusoidally at the same
time, but with a phase difference of π/2.

In terms of stretching and dispersion, mixing achieved
in the discontinuous corotational periodic type of flow is
superior compared to the steady flow as shown in Figure
6.29. This figure shows the streamlines of a fluorescent dye
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FIGURE 6.28 (a) Typical cavity used for corotational movement
of both plates. (b) Top and bottom plate motion in discontinuous
form. The solid line represents motion of the top plate, whereas
dashed line represents motion of the bottom plate. Pause is for 5 s.
(c) Top and bottom plate motion in continuous and sinusoidal form.
(Reprinted by permission of the publisher from Leong and Ottino,
1989.)

injected below the top plate at the center of the cavity at time
t = 0. The perimeter of the dye regions is indicative of the
degree of mixing. Figure 6.30 shows the exponential growth
of the degree of mixing for both the discontinuous and the
continuous type of periodic flow and the linear growth for
steady flow. Furthermore, the efficiency of the periodic flows
is higher for the discontinuous case than the continuous and
the form of the exponential increase is

P = P0eβt (6.206)

where P is the perimeter and β can be considered to be the
average Liapunov exponent for the process.

A relevant question at this point is: Can we take advan-
tage of chaos in typical polymer processing conditions? The
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FIGURE 6.29 Comparison of the degree of mixing for steady and periodic cavity flows. Dimension-
less total plate displacement per period, Nd = D P , where D is the dimensionless plate displacement
per period and P is the total number of periods. (a) Steady flow; Re = 1.0; total mixing time is 300
s; Nd = 55. (b) Steady flow; both plates moving in the same direction; total mixing time is 300 s;
Nd = 110. (c) Steady flow; plates moving in the opposite direction; total mixing time is 300 s; Nd =
110. (d) Periodic discontinuous flow; total mixing time is 280 s (4 periods); Nd = 51.4. (Reprinted
by permission of the publisher from Leong and Ottino, 1989.)
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FIGURE 6.30 Perimeter growth of dye regions for steady, coro-
tational discontinuous and continuous cavity flows, as a function of
the dimensionless displacement, Nd. (a) Steady flow. (b) Discon-
tinuous. (c) Continuous. (Reprinted by permission of the publisher
from Leong and Ottino, 1989.)

answer is that we need more understanding of the chaotic
processes before we can design better mixers for polymers.
This design, when accomplished, will be considered as a
major step forward in mixing.

6.8 SOLUTION TO DESIGN PROBLEM V

We finally return to the solution of Design Problem V
(Fig. 6.31). The flow in the die is helical in nature; that is, it
consists of an axial Poiseuille flow and a drag Couette rota-
tional flow due to the rotation of the mandrel. The analysis of
the striation thickness of each layer will be based on simple
geometrical and kinematical arguments, and it will be shown
that the two approaches give the same results. For Newtonian
fluids, the axial and angular flow fields are independent and
given in Tables 2.7 and Example 6.7, respectively.

The volumetric flow rate is calculated (Table 2.7) as

Q =
R∫

k R

vz(r )2πr dr = π�P R4

8μL

[
1 − κ4 − (1 − κ2)2

ln(1/κ)

]

(6.207)
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FIGURE 6.31 (a) Geometry of the continuous annular mixer die.
(b) Feed distribution entering the annular die. (c) Mixing pattern
generated in the die for a single feedport.

The axial velocity can now be written as

vz = 2Q

πR2

1 −
( r

R

)2
+ 1 − κ2

ln(1/κ)
ln
( r

R

)

1 − κ4 − (1 − κ2)2

ln(1/κ)

(6.208)

The deformation of a material element as it rotates in a rθ
plane is shown in Figure 6.32a, and as it translates down the
z axis in Figure 6.32b. After time t the material has experi-
enced both deformations. For simplicity we assume that the
axial deformation is negligible compared to the rotational
deformation:

dvθ
dr

� dvz

dr
(6.209)

Thus, the deformation in Figure 6.32b is considered neg-
ligible. From purely geometrical considerations the stria-
tion thickness, δ, and the initial striation thickness, δ0, are
related:

δ

δ0
= sinβ (6.210)

Mandrel

d

dr

r
dr

rdß

0
0

Outside cylinder

dr

Outside cylinder

Mandrel

R

R

d

(a)

(b)

θ θ

FIGURE 6.32 (a) Geometry of the material element deforma-
tion at a constant z plane. (b) Geometry of the material element
deformation at a constant θ plane.

where the angle β is related to dθ through the relation

tanβ = 1

r
dθ

dr

(6.211)

But sinβ ∼= tanβ for small β angles, and Eq. 6.210 with
the aid of Eq. 6.110 becomes

δ

δ0
= 1

r
dθ

dr

= 1 − κ2

2κ2W t

( r

R

)2
(6.212)

The residence time t is related to the axial velocity as

t(r ) = L

vz(r )
(6.213)
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and the combination of Eqs. 6.213 and 6.212 yields

δ

δ0
= Q

πW L R2

1 − κ2

κ2

( r

R

)2
1 −

( r

R

)2
+ 1 − κ2

ln(1/κ)
ln
( r

R

)

1 − κ4 − (1 − κ2)2

ln(1/κ)
(6.214)

By noting that

t = πLR2(1 − κ2)

Q
(6.215)

Eq. 6.214 reduces to

δ

δ0
= 1

W t

1 − κ2

κ2

( r

R

)2
1 −

( r

R

)2
+ 1 − κ2

ln(1/κ)
ln
( r

R

)

1 − κ4 − (1 − κ2)2

ln(1/κ)

= f (κ, r/R)

W t
(6.216)

The radial dependence of the striation thickness reduc-
tion function is shown in Figure 6.33a for various values
of the parameters κ and W t . As is expected, the maximum
reduction takes place at the center part of the gap, and the
minimum reduction takes place at the cylinders. Also at the
gap the higher the parameter W t , the smaller the striation
thickness is. Differentiation of Eq. 6.216 yields the radial
position where the maximum reduction in striation thickness
takes place, rmax. The resulting equation is nonlinear

1 − 2
(rmax

R

)2
+ 1 − κ2

ln(1/κ)

[
ln
(rmax

R

)
+ 1

2

]
= 0 (6.217)

and it can be solved as

rmax = φ(κ)R (6.218)

so that the maximum striation thickness reduction of
Eq. 6.216 becomes

(
δ

δ0

)
max

= f (κ, φ(κ))

W t
(6.219)

Figure 6.33b shows the maximum striation thickness as a
function of the total angular displacement in radians, Wt , for
various values of the parameter κ . For specifications that the
maximum striation thickness should not exceed a specified
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FIGURE 6.33 (a) Radial distribution of the striation thickness
reduction function, for various values of the total angular displace-
ment in radians, Wt . κ is the ratio of radii of the mandrel and the
outside cylinder. (b) Maximum reduction of striation thickness as a
function of the total angular displacement in radians, W t .

value the minimum rotational frequency, Nmin, is calculated
from Eq. 6.219 as

Nmin = Q

2π2 R2 L(1 − κ2)
f (κ, φ(κ))

(
δ

δ0

)−1

max

(6.220)

Using the data of Design Problem V, for δ0 = (πR)/10, and
φ(0.96) = 0.98034, we get

Nmin = 188 rev/min (6.221)

The validity of the above analysis was based on the
assumption of Eq. 6.209 that now can be checked to be true
(|dvθ /dr | ∼= 16|dvz/dr |, at r = R(κ + 1)/2). The power to
rotate the mandrel is calculated as

Pmandrel = (2πκRL)τrθ (κR)vθ (κR) (6.222)
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which for Design Problem V becomes Pmandrel = 3.6 kW.
The pumping power is calculated to be Ppumping = Q�P =
32.5 kW. Suggestions for lowering the power consumptions
would be to increase the gap, the temperature, and the rota-
tional frequency. To evaluate the new conditions one should
repeat the steps.

Calculations of the striation thickness based on the kine-
matics developed in Section 6.3.2 and outlined in Example
6.5 require the use of scale factors (Bird et al., 1977). These
scale factors are necessary for the calculation of the compo-
nents of the deformation-gradient tensor in curvilinear coor-
dinates. Note that Eq. 6.83 applies to rectangular coordinates
only. Integration of the velocity profiles with respect to time
yields:

r = r0; θ = θ0 + κ2W t

κ2 − 1

[
1 −

(
R

2

)2
]

z = z0 + Q′
[

1 −
( r

R

)2
+ 1 − κ2

ln(1/κ)
ln
( r

R

)]
t (6.223)

where Q′ is given by

Q ′ = 2Q

πR2

1

1 − κ4 − (1 − κ2)2

ln(1/κ)

(6.224)

The only nonzero components of the deformation-
gradient tensor are

F11 = F22 = F33 = 1 (6.225)

and

F21 = −2κ2W t R2

1 − κ2

1

r2
0

; F31 = Q′
(

−2
r0

R2
+ 1 − κ2

ln(1/κ)

1

r0

)
t

(6.226)

Note that the only time the scale factor was used was in the
calculation of F21:

F21 = r0
∂θ

∂r0
(6.227)

Then, the nonzero components of the Cauchy–Green strain
tensor are

C22 = C33 = 1; C12 = C21 = F21; C13 = C31 = F31

(6.228)

and

C11 = 1 + F2
21 + F2

31 (6.229)

For a line initially oriented along the r axis, the lineal stretch,
λ, is then given from Eq. 6.86 as

λ2 = 1 +
[−2κ2W R2t

1 − κ2

1

r2
0

]2

+
[
Q′t
(
−2

r0

R2
+ 1 − κ2

ln(1/κ)

1

r0

)]2

(6.230)

The following two simplifying assumptions will be made.
First, the second term on the RHS of Eq. 6.230 is much
greater than 1, which is equivalent to angle β being small
in the geometrical analysis. Second, the second term on the
RHS of Eq. 6.230 is much greater than the third term of the
same equation, which is equivalent to Eq. 6.209. Then, the
analysis based on striation thickness calculations becomes

δ

δ0
= 1

λ
∼= 1 − κ2

2κ2W t

( r

R

)2
(6.231)

which is the same as Eq. 6.212.

PROBLEMS

A. Applications

6A.1 Probing of Local Structure. Consider a 3% carbon
black dispersion in PE. Light is transmitted through
a 25 μm thick sample, and the transmittance is used
to characterize the local structure. Determine the
required diameter of the light beam to achieve this
goal, if the carbon black particle diameter is 1 μm
and the density ratio of carbon black to PE mixture
is 1.5.

6A.2 Confidence Intervals for Mixtures. A masterbatch
of PE/carbon black is used for product formulation.
The carbon black weight fraction in the masterbatch
is determined by sampling a certain number of pel-
lets from 10 bags. The weight fraction in each of
these 10 bags is: 26.7, 28.0, 33.5, 27.8, 29.3, 31.9,
31.5, 33.6, 30.9, and 34.0. The masterbatch will be
mixed with virgin PE to produce a blend with the fol-
lowing specifications: 97.5% of the blended samples
should have a carbon black weight fraction of at least
10%. Calculate the additional masterbatch weight
fraction that should be blended with the virgin PE
due to the variation of the carbon black contained in
the masterbatch.

6A.3 Statistical Description of Mixtures. Glass fibers
are mixed in conventional thermoplastics (e.g., PPS)
to enhance the properties of the matrices. Suppose
that a requirement for the improvement of the prop-
erties is that the number density of the glass fibers
is very uniform in a cross section of the final part.



PROBLEMS 195

Design a statistical analysis which could lead you
to assure your client that the properties meet the
specifications with a certain level of confidence.

6A.4 Mixing Indices

(a) Prove that the values of the mixing index of
Eq. 6.15 lie between 1/n and ∞, where n is the
size of the sample.

(b) Calculate the mixing index for a completely uni-
form sample, based on Eq. 6.17, as a function of
the sample size.

6A.5 Correlation Coefficient. Complete all the steps in
Example 6.3.

6A.6 Scale of Segregation. Prove that the ratio of the
cube of the linear scale to the volumetric scale of
segregation is equal to 3/4π for the system examined
in Example 6.3.

6A.7 Power Spectrum of Spherical Clumps. Calculate
the power spectrum for the clumps shown in Fig-
ure 6.6.a and show that P(0) = 2s2SL . Comment on
the relative values of the power spectra.

6A.8 Efficiencies of Mixers and Striation Thickness
Reduction. Calculate the shear and extension rates
required to reduce the striation thickness 1000 times
in 10 s in the three mixers—pure shear, uniax-
ial extensional, and simple shear—and then prove
Eq. 6.81 assuming Newtonian fluid behavior.

6A.9 Interfacial Growth in Simple Shear. A minor com-
ponent, of volume fraction φ, in the form of cubic
pellets is mixed with the major component. Calcu-
late the interface growth function for large shear
strains. Furthermore, extend the calculations to the
case of different shear viscosities of the minor and
major components and of negligible interfacial ten-
sion between the components.

6A.10 Efficiencies of Mixers for Power-Law Fluids. Cal-
culate the specific power ratios, as in Eq. 6.81, for a
power-law fluid with a power-law index of 0.8.

6A.11 Effect of Viscosity Ratio on Deformation. Consider
a rectangular element of the major component and
a smaller rectangular element of the minor com-
ponent imbedded into the first element. Show dia-
grammatically the shape of both elements after a cer-
tain value of shear strain has been imposed, for all
possible combinations of the viscosities of the two
components.

6A.12 Rotational Couette Flow for a Power-Law
Fluid. Prove that, for a rotational Couette geom-
etry with the inside cylinder rotating, the striation
thickness scales inversely proportional to the shear

strain, and calculate the proportionality constant for
a power-law fluid rotating in a small-gap Couette
geometry.

6A.13 RTD in Poiseuille Flows. Prove that the ratio of the
mean residence times in Poiseuille flow in parallel
plates to circular pipe is equal to

tPPF

tCPPF
= 1 + 2n

1 + 3n

(
1

2

)1/n

,

where n is the power-law index. Assume that the
pressure drop per unit length is the same in both
cases. Calculate also the F function for the Poiseuille
flow of a power-law fluid in a parallel plate geometry.

6A.14 Holdback and Segregation in PCF, PPF, and CPPF

(a) Prove that the holdback, B, for the Couette flow
in the parallel plate geometry is 1/4.

(b) Prove that the holdback, B, for pressure-driven
flow of a Newtonian fluid between parallel plates
geometry is 0.19.

(c) Prove that the segregation, S, for the Poiseuille
flow in circular pipe geometry is 0.14.

6A.15 Interfacial Tension-Driven Deagglomeration.
Determine the critical cluster radius for the attrac-
tive van der Waals forces to become less important
than the interfacial tension forces between the
cluster and the polymer matrix. Assume that the
voids of the cluster are not filled completely with
the polymer material and the equal-sized particles
are randomly packed. The physical parameters of
the system are: γ = 30 mN/m, ε = 0.9, Hamaker
constant A = 2 × 10−19 J, and particle radius
R = 20 nm.

B. Principles

6B.1 “Diffusion” of Particles in Mixers. Consider the
geometry of the horizontal cylinder-mixer (or single-
barrel mixer) of Figure 6.34. Simulate the random
movement of the particles while the cylinder is rotat-
ing around its axis by the molecular diffusion in the
axial direction (note that diffusion along the radius,
due to the rotation of the cylinder, should be much
larger than the axial diffusion). The length of the
cylinder is L = 50 cm and the black particle concen-
tration is 5%. Initially the black particles are con-
centrated in the y axis and finally their concentration
is uniformly distributed inside the mixer. If the dif-
fusion coefficient, –D, is equal to 10−2 cm2/s.

(a) Calculate the concentration profile C(x, t) at x =
1.25, 5, 25, and 40 cm.

(b) Calculate the variance s2(t) and the mixing index
(M = 1 − s2/σ 2

0 ).
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FIGURE 6.34 Geometry of a horizontal cylinder–mixer. Initially
(t = 0) all carbon black particles are at the bottom of the cylinder
that then is tumbled horizontally and starts rotating.

Also show that for long times

(c) C(L/4, t) − C = s(t).

(d) The graph of log(s2(t)) versus t has a slope of
2π2–D2/L2.

6B.2 Diffusion in Layered Structures and Intensity of
Segregation. Consider a polymeric alternating lay-
ered structure. Calculate the time dependence of the
concentration variance of the minor component and
evaluate the intensity of segregation after 100 s if
the diffusion time constant (square root of the ratio
of diffusion coefficient to layer thickness) is equal
to 400 s.

6B.3 Striation Thickness from Kinematical
Arguments. Rework Example 6.5 for a line
oriented at an angle φ with respect to axis x. Also,
rework the same example for a two-dimensional
point vortex flow with vr = 0 and vθ = ω/r .

6B.4 Lineal Stretch Efficiency of Planar Elongational
Flow. Prove that the time average lineal stretch
efficiency, eL , of a two-dimensional stagnation flow
(planar elongational flow; Fig. 6.35) is

eL =
√

2

4γ

[
ln

(
e4γ + 1

2e2γ

)]

The velocity field for that type of flow is given by

vx = γ̇ y; vy = γ̇ x ; vz = 0

6B.5 Lineal Stretch Efficiency of Uniaxial Elongational
Flow. Prove that the long time lineal stretch effi-
ciency of uniaxial elongational flow is equal to√

2/3.

Streamlines

Velocity Profile

FIGURE 6.35 Streamlines and velocity profile of a two-
dimensional stagnation (plane hyperbolic; planar extensional) flow.

6B.6 Improvement of Mixing by Mixing Sections. Con-
sider a single-screw extruder and two types of mix-
ing sections which function as follows: (a) random-
ize the orientation of the interfaces entering the
section, and (b) orient the incoming interfaces per-
pendicular to the shearing planes. In both cases the
total shear strain imparted to the fluid is equal to
γ . Show that the ratio of the maximum interfacial
area growth functions for type (a) and (b) mixing
sections, λ, is equal to

λ = 1
2 exp [γ /2e]

Assume that the mixing sections do not add any
shearing to the fluid and that the shear strain between
mixing sections is large enough for Eq. 6.66 to apply.

6B.7 Striation Thickness in RCF with Both Cylinders
Rotating. A power-law fluid is sheared in a rota-
tional Couette geometry with both cylinders rotat-
ing. Prove that the ratio of the striation thickness
reduction of this case to the case described in Exam-
ple 6.7 (only inside cylinder rotating) is equal to
(λ + 1)−1, where λ is the ratio of the angular veloc-
ities of the inside cylinder to the outside cylinder.

6B.8 Striation Thickness in Axial Annular Couette
Geometry. Calculate the striation thickness reduc-
tion function for flow in axial annular Couette geom-
etry and for a power-law fluid.



PROBLEMS 197

R

H

h

P P1 2

L

l

P

P

P

P

1

2
2

L l

y

y

V

z z

0

)b()a(

(c)

FIGURE 6.36 (a) Typical Banbury high-intensity internal mixer.
(b) Idealized chamber of a Banbury mixer with a short low clear-
ance section, consisting of two infinitely long cylinders. The inner
cylinder rotates. (c) Idealization of the flow in the clearance by the
flow between parallel plates with a step change in channel depth.
Pressure distribution as a function of distance.

6B.9 SDF in PPF. Calculate the algorithm for deter-
mining the cumulative SDF versus γ /γ graph for
a Newtonian fluid for pressure-driven flow through
parallel plates. Repeat the exercise for a power-law
fluid with power-law index equal to 0.5.

6B.10 Internal Banbury Mixer. Consider the high-
intensity internal Banbury mixer of Figure 6.36a.
It consists of a chamber shaped like a figure eight
turned 90◦, with two rotors counterrotating. The
mixture is fed into the chamber through the verti-
cal chute, in which the ram is located. The disper-
sive mixing takes place in the clearances between
the rotors and the chamber walls. Simplify the flow
in the chambers by the flow in the clearance of a
concentric system of two infinitely long cylinders
with a short low clearance section, Figure 6.36b.
Furthermore, for low clearances, H/R � 1, assume

y

x

z

L
A

cL

FIGURE 6.37 Cubic element of a minor component with simul-
taneous shear and diffusion.

that the flow is similar to the flow between paral-
lel plates with a step change in the channel depth,
Figure 6.36c. The pressure profile is given in Fig-
ure 6.36c. Calculate the shear rate and the maximum
shear stress in the lower clearance section. Assume
laminar isothermal flow of a Newtonian fluid, no slip
at walls, and neglibigle entrance and exit effects.

C. Numerical Problems

6C.1 “Diffusion” of Particles in Mixers. Solve Problem
6B.1 using numerical techniques.

6C.2 Diffusion in Layered Structures and Intensity of
Segregation. Solve Problem 4B.2 using numerical
techniques.

D. Design Problem

6D.1 Simultaneous Laminar Mixing and
Diffusion. Consider the case of a cubic ele-
ment of the minor component (10% by volume)
which is simultaneously subjected to laminar mix-
ing and diffusion (Fig. 6.37). The minor component
diffuses into the major and the thickness of the
cubic element is reduced as the interface in the yz
plane increases. Calculate the time necessary for
the minor component to diffuse into the major com-
ponent so that the concentration standard deviation
is 0.11. —D = 10−10 cm2/s, L0 = 3 mm, and γ̇ = 50
s−1. Compare this time to the corresponding time
without shearing.
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7
EXTRUSION DIES

DESIGN PROBLEM VI
COEXTRUSION BLOW MOLDING DIE

The blow molding of gasoline tanks for automobiles from
thermoplastics offers the possibility of making more intri-
cate shapes required to fit existing space than is possible
with metals. Manufacturers would like to use HDPE, but it
has poor barrier properties for gasoline vapors. However, by
adding a layer of nylon 6, that is about 0.1 times the thickness
of the tank wall, the material can meet the barrier require-
ments. The final cross-sectional shape of the gasoline tanks
is to be basically as shown in Figure 7.1. Design a die having
a shape similar to that of the gasoline tank as shown in Figure
7.2 for coextruding a parison consisting of 2 lb of nylon 6 and
18 lb of HDPE in the time of 5 seconds. Based on previous
experience it is known that, for cylindrically shaped parisons,
the maximum expansion of the tube should be no more than
2.0 (i.e., the maximum increase in the radius should be no
more than a factor of 2.0). Assume that the density change on
cooling and the weight of the parison are enough to offset the
increase of the thickness due to extrudate swell. The extrud-
ers are horizontal, but the die must be mounted vertically. The
only rheological data available are the viscosity data given in
Table 2.3 for HDPE and in Table 7.3 for nylon 6. Determine
the extrusion conditions required to deliver the amount of
material and whether one can expect any interfacial stability
problems.

Extrusion processes involve the use of extruders that melt
and pump polymers and shaping devices called dies that are
placed at the end of the extruder. This chapter is concerned
with the design of extrusion dies while Chapter 8 deals with
single- and twin-screw extruders.

Extrusion dies are metal channels that impart a specific
cross-sectional shape to a polymer stream. The design diffi-
culty centers on achieving the desired shape within set limits
of dimensional uniformity at the highest production rate pos-
sible. Because of the viscoelastic nature of polymers and the
associated flow behavior, it is no simple matter to design a
die that will produce a smooth extrudate with the desired
dimensions.

In Section 7.1 we describe briefly the origin of the nonuni-
formities and the factors that lead to extrudate shapes other
than what is desired. In Section 7.2 we present flow phe-
nomena associated with the viscoelastic behavior of poly-
mers which affect the design of dies. In Section 7.3 we con-
sider the design of sheet and flat film dies, especially with
an emphasis on providing a uniform extrudate. The design
of tubular dies presents somewhat different problems, and
they are considered in Section 7.4. There are numerous other
shapes of extrudates besides flat, round, or tubular. Extru-
sion of irregular shaped extrudates is referred to as profile
extrusion, and this is discussed in Section 7.5. Finally, it is
now common practice to extrude multiple layers of differ-
ent polymers through the same die. As this presents even
more complications in die design, we introduce the topic in
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FIGURE 7.1 Cross section of an elliptically shaped parison consisting of HDPE and nylon 6 in a
9:1 ratio by weight.

FIGURE 7.2 Exit face of the die used to produce the parison in Figure 7.1. The die opening is an
elliptically shaped annulus of major axis a and minor axis b. The thickness, a, and b are determined
in the solution to Design Problem VI.

Section 7.6. Finally, in Section 7.7, the solution to Design
Problem VI is presented.

7.1 EXTRUDATE NONUNIFORMITIES

There are basically two types of nonuniformities. Those that
occur along the machine direction (MD), or along the extru-
sion direction, and those that occur in the transverse direction
(TD). These nonuniformities are shown in Figure 7.3 for a
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FIGURE 7.3 Irregularities in the extrusion of a sheet with those
along the machine direction shown on the left and those along the
transverse direction shown on the right. The extrusion direction is
in the z direction.

planar geometry. The nonuniformities that arise along the
MD are usually due to pressure and temperature variations,
which affect the flow rate, the rheological properties of the
melt, and to some degree the die design. The irregularities
that occur in the TD are due nearly totally to the die design,
but in some cases the rheological properties enter in.

In the case of the MD, variations in the flow rate due
to pressure or temperature variations in the pumping device
are the main cause of the irregularities. However, flow insta-
bilities associated with the phenomena of melt fracture and
draw resonance can lead to variations in the dimensions of
the extrudate. These variations are closely connected to the
rheological properties of the melt, but die design can at least
alleviate the severity of the irregularities.

The TD variations are nearly totally due to die design. The
first problem is to design a feed system that will distribute
the melt uniformly to the shaping portion of the die. (See
Fig. 7.4 for definition of parts of a die.) In the event this is
not possible, then it must be possible to adjust the die lips in
such a way that the fluid will leave the die with a uniform
thickness. Part of the thickness variation in the TD is due
to the inability to feed the die uniformly from the extruder,
while the rest is due to the phenomenon of die swell. Since
the degree of swell may vary nonuniformly over the cross
section due to variations in the shear rate, the die lips (main
shaping section) may have to be designed to compensate
for this.

Before continuing we should note that a lot of the prob-
lems concerned with die design are handled empirically. Part
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FIGURE 7.4 Schematic of a typical extrusion die showing the
various parts of the die (side view). The manifold distributes
the melt from the extruder uniformly over the width of the die while
the restrictor can be used to compensate for variations in flow rate
across the width of the die. The lips give the melt stream the desired
dimensions and shape. (Note: Because of die swell the dimensions
of the extrudate may be considerably different from those of the die
lips.)

of this is due to the lack of the appropriate mathematical
tools to simulate the flow of viscoelastic materials through
dies. The lack of mathematical tools is due to both inap-
propriate constitutive equations to describe the rheology of
polymer melts and the lack of numerical techniques for han-
dling the nonlinear system of differential equations that must
be solved. Although progress is being made to develop finite
element techniques for handling die design, these codes are
not fully developed or tested at this time. Even once they
are developed, they may not be available for every design
engineer. For this reason we present in this chapter design
considerations that can be handled at this level of the educa-
tional process and at the same time present material that can
be used in a qualitative fashion to improve the design of extru-
sion dies. It is important to recognize that most die design to
date neglects the viscoelastic nature of polymeric fluids.

7.2 VISCOELASTIC PHENOMENA

There are three phenomena associated with the flow behavior
of polymeric fluids which must be considered in the design
of extrusion dies: pressure drops in contractions (or expan-
sions), die swell, and melt fracture. The latter two bear a
direct relation to extrudate uniformity, while the flow behav-
ior in contractions may be related only indirectly to extru-
date uniformity. In this section, for illustrative purposes, we
present results based primarily on studies in the capillary
geometry. One must recognize that the extension of results

from a capillary to other geometries may be difficult to make
quantitatively.

7.2.1 Flow Behavior in Contractions

As discussed in Chapter 3 (Section 3.3) the pressure drop
across a contraction for a polymeric fluid can be quite large
relative to the pressure drop across the die land or lips. The
origin of �Pent is thought to be due to the entry flow behav-
ior of the polymer. In some cases, such as for LDPE, the
streamlines form natural entry angles as shown in Figure
7.5. The flow into the die is restricted well into the upstream
region, which serves to effectively act as an extension to the
capillary length and thereby increase �P. It is also observed
that large vortices arise in the corners. For polymers such as
polystyrene (see Fig. 7.6) and HDPE the streamlines only
become curved a short distance from the contraction, and
the vortices are quite small, as shown in Figure 7.7. In this
case there is very little addition of length to the capillary and
�Pent is smaller. This explanation is in line with the results
in Figure 7.7, which shows values of �Pent normalized to
the wall shear stress versus γ̇a for various fluids. The nor-
malization with respect to τw removes the difference due to
differences in the magnitude of viscosity. LDPE has the high-
est values of �Pent/τw, which is to be expected, as it forms
large entry vortices. The oil, which is basically Newtonian,
exhibits the lowest values. In general, linear polymers exhibit
small regions of flow rearrangement and very small regions
with vortices and hence lower values of �Pent/τw.

The magnitude of �Pent is a function of the rheological
properties of the polymer, the contraction ratio, the cross-
sectional geometry, and the degree of taper into the entry.
Unfortunately, there is no known simple way to translate
results from the capillary to other flow geometries, and there
have been few attempts to do so. Until more information is
available, we use entrance pressure measurements from cap-
illary geometries to estimate values of �Pent in other geome-
tries provided we maintain at least geometric similarity.

As far as expansions are concerned, there is even less
information. We assume that the pressure rise in an abrupt
expansion is the same as the drop in an abrupt contraction.
Certainly this will not be the same because of the viscoelastic
nature of polymeric fluids.

7.2.2 Extrusion Instabilities

The limiting factor in the extrusion rate of polymeric fluids
is the onset of a low Reynolds number instability called
melt fracture. The onset of melt fracture leads to varying
degrees of imperfections which may only affect the clarity of
a material on one hand, while on the other may be so severe
as to reduce significantly the physical properties. We first
discuss the nature and origin of melt fracture and then what
can be done to alleviate or at least mitigate the problem.
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FIGURE 7.5 Streamline patterns obtained by means of streak photography for LDPE at 150 ◦C
in a 4:1 planar contraction: (a) = 20 s−1, We = 1.29; (b) = 40 s−1, We = 1.35; (c) = 60 s−1, We =
1.38; (d) = 80 s−1, We = 1.38. (From White, 1987.)

There are basically five types of melt fracture: sharkskin,
ripple, bamboo, wavy, and severe. These types of melt frac-
ture are shown in Figures 7.8, 7.9, and 7.10. Sharkskin is
shown in Figure 7.8 for a LLDPE. At the lowest apparent
shear rate the extrudate is smooth but at γ̇a = 112 s−1, the

extrudate exhibits a mild roughness, called sharkskin, which
affects the appearance of the surface. This type of fracture is
extremely detrimental to the manufacture of packaging films,
which must meet certain requirements for clarity. As γ̇a is
increased, another form of fracture arises. At γ̇a = 750 s−1,
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FIGURE 7.6 Streamline patterns obtained by means of streak photography for polystyrene at
190 ◦C in a 4:1 contraction: (a) = 5 s−1, We = 0.82; (b) = 20 s−1, We = 1.19; (c) = 40 s−1,
We = 1.39; (d) = 80 s−1, We = 1.62. (From White, 1987.)

the fracture present is called bamboo. Finally, at γ̇a of 2250
s−1 the fracture is severe. LLDPE does not seem to exhibit
wavy fracture.

HDPE exhibits both sharkskin and bamboo (sometimes
referred to as “spurt”) fracture at lower shear rates as shown
in Figure 7.9. As γ̇a is increased, HDPE is observed to exhibit
the wavy form of fracture. LDPE, on the other hand, as shown

in Figure 7.10, does not exhibit sharkskin, but only wavy and
severe fracture.

In order to reduce the detrimental effect of melt fracture
through die design or polymer modification, it is important
to know the origin of melt fracture. The major sources for
melt fracture are the die entry region, the die land, and the
die exit. For a polymer such as LDPE fracture originates at
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FIGURE 7.7 The ratio of entrance pressure drop to wall shear
stress versus apparent shear rate, γ̇a: (�) PP; (�) PS; (◦) LDPE;
( + ) HDPE; (•) 2.5% PIB in mineral oil; (X) 10% PIB in decalin;
(�) NBS-OB oil. (Reprinted with permission of the publisher from
White, 1973.)

FIGURE 7.8 LLDPE extrudates obtained from a capillary at dif-
ferent apparent shear rates, γ̇a: from left to right the values of γ̇a are
37, 112, 750, and 2250 s−1. (Data from Moynihan, 1990.)

FIGURE 7.9 HDPE extrudates obtained from a capillary at dif-
ferent apparent shear rates, γ̇a: from left to right the values of γ̇a

are 75, 75, 2250 s−1 while the corresponding values of τ a are 0.20,
0.27, 0.33 MPa. (Data from Moynihan, 1990.)

FIGURE 7.10 LDPE extrudates obtained from a capillary at dif-
ferent apparent shear rates, γ̇a: from left to right the values of γ̇a

are 75, 750, 2250 s−1 while the corresponding values of τ a are 0.1,
0.21, 0.32 MPa. (Data from Moynihan, 1990.)

the die entry. As the extrusion rate is increased, the vortices
no longer grow in size or intensity. Instead, the flow takes
on a spiral motion in the die entry sending sections of the
nearly stagnant fluid into the die at regular intervals. This
leads to regions of various flow histories passing through
the die and leaving the die exit. When this type of fracture
occurs, there is no indication of the flow problems in the
pressure measured along the die, and hence the wall shear
stress is as shown in Figure 7.11. By streamlining the die
entry or increasing the length of the die land it is possible to
reduce the amplitude of the distortion, but the critical shear
stress for fracture is unchanged. The critical wall shear stress
for the onset of fracture for LDPE is on the order of 105 Pa.
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FIGURE 7.11 Shear stress versus shear rate for LDPE (lower
curve) and LLDPE (upper curve). The arrows indicate the onset of
various types of melt fracture. (Data from Moynihan, 1990.)
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A statistical fit of the data for LDPE leads to the following
empirical expression for the critical wall shear stress for
fracture (Middleman, 1977):

τcr/Tabs = 131.7 + 1.0 × 107/Mw branched PE (7.1)

where τ cr is in units of Pa and Tabs is in K.
On the other hand, polymers such as HDPE and LLDPE

seem to slip in the die land leading to a “slip–stick” instability.
There is a distinct flattening of the flow curve indicating a
region where multiple flow rates are possible for the same
wall shear stress. This is shown by the data presented in
Figure 7.11. Eventually the flow curve appears to become
normal again at high shear rates. When slip–stick fracture
occurs (which results in the ripple and then bamboo types of
fracture), increasing the die length just makes the degree of
distortion worse.

It has been proposed that polymers such as HDPE, which
is considered a linear polymer, as well as other linear poly-
mers such as PP and PS have a similar mechanism for frac-
ture. In fact, the molecular weight dependence of the critical
shear stress (τ cr) for fracture was found to be similar for lin-
ear polymers (Middleman, 1977). A statistical fit of the data
for fracture gave the following relation for the critical shear
stress for the onset of slip–stick melt fracture, τ cr, for linear
polymers:

τcr/Tabs = 171.7 + 2.7 × 107/Mw (7.2)

It is true that linear polymers do not show large vortices in
planar entry flow, although they may occur in axisymmetric
flow (White et al., 1987). However, it is known that the
origin of fracture for PS is the die entry. In fact, HDPE and
LLDPE are the only polymers of the group presented here that
readily show any indication of slip–stick in the flow curve.
The rest show no indication of fracture in the flow curve,
and apparently the origin of fracture is in the die entry. In
spite of this, it is interesting to note that τ cr for the branched
polymer, LDPE, falls on a curve separate from that for the
linear polymers.

The relations given in Eqs. 7.1 and 7.2 are useful for
estimating the onset of gross fracture for a capillary geometry.
It does not tell us, however, what will happen in an annular die
or some other geometry. However, the equations are at least
useful in making an estimate of limiting conditions. There
are still many mysteries surrounding the origin of sharkskin
melt fracture and the methods proposed to eliminate it. For
example, it has been proposed that the metal used in die
construction can allow one to alter τ cr, while the rounding of
the corners at the die exit is important. Still others recommend
processing aids to increase τ cr for the onset of melt fracture.
(The addition of fluoroelastomers to LLDPE does eliminate
both sharkskin and slip–stick fracture.) Once gross distortion

occurs, which originates in the die entry, there is very little
that can be done to eliminate the problem.

7.2.3 Die Swell

The phenomenon associated with the increase of the diameter
of an extrudate as a polymer leaves a capillary, known as die
swell or extrudate swell, has been introduced briefly back in
Section 3.2. The implication at this point is that die swell
is related to unconstrained elastic recovery (S∞) following
shear flow. S∞ is related to the ratio of the primary normal
stress difference to the shear stress through the equation

S∞ = N1/2τyx (7.3)

Tanner’s theory for die swell (see Section 3.2) for flow
through a capillary leads to

Dp/D0 = 0.1 + [1 + 1
2 (S∞)2]1/6 (7.4)

In this section we show that die swell is more complicated
than indicated by Eq. 7.4 and depends on a number of factors.
We then discuss how to deal with die swell in die design.

The first fact we show is that Tanner’s theory does not
accurately predict die swell in general. This is illustrated in
Figure 7.12, where values of die swell for four different poly-
mer melts are plotted versus 1

2 S∞. The solid line represents
Eq. 7.4 and is generated for arbitrary values of S∞. There is
as much as a 50% difference between the measured and pre-
dicted values of Dp/D0. Furthermore, the values of Dp/D0

vary from polymer to polymer. Hence, it does not appear that
die swell can be correlated simply to S∞.

On what else does die swell depend? It first depends on
the method used to measure it. This is shown in Figure 7.13
in which values of Dp/D0 are plotted versus shear rate for
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FIGURE 7.12 Capillary extrudate swell versus 1
2 S∞, the ultimate

elastic recovery. (�, �) two HDPEs; (•) PS; (◦) LDPE; (�) PP.
(Data from White and Roman, 1976.)
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FIGURE 7.13 Effect of the method of measurement on the mag-
nitude of die swell for HDPE extruded from a capillary at 180 ◦C at
various wall shear rates, γ̇R: curve 1, isothermal; curve 2, annealed;
curve 3, ambient air. (Data from White and Roman, 1976.)

three different methods of measurement. The highest values
are obtained for polymers that are extruded isothermally into
an oil bath. The lowest values are for the extrudate that is
extruded into ambient air. In this case the sample is cooled
down before die swell is completed. Annealing, as shown by
curve 2 in Figure 7.13, allows the sample to almost reach the
values obtained under isothermal conditions.

Die swell depends on the capillary L/D as shown in Fig-
ure 7.14. In this figure we see that Dp/D0 is a function of L/D
with the greatest swell being for the shortest capillary. This
behavior has been attributed to the large amount of elastic
energy stored during the extensional flow in the entry region.

It is also observed that die swell depends on time after
the extrudate leaves the die. This is shown in Figure 7.15
in which Dp/D0 is plotted versus time for a HDPE melt.
Here we observe that a large portion of the swell occurs
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FIGURE 7.14 Extrudate swell versus capillary L/D ratio for PP
extruded at 219 ◦C at γ̇R = 700 s−1. (Data from Mori and Funatsu,
1973.)
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FIGURE 7.15 Capillary extrudate swell versus time for four
shear rates, γ̇R, for HDPE (resin No. 27). (Data from Garcia-Rejon
et al., 1982.)

instantaneously, while the remainder of the diameter increase
can occur over a period of several minutes.

Finally, Dp/D0 (equilibrium swell) is a function of the
wall shear stress, τR. Data for a commercial polystyrene at
three different temperatures when plotted versus shear rate
fall on three separate curves. However, when plotted versus
τR, the data all fall on a single curve as shown in Figure
7.16. Hence, for a given polymer the equilibrium swell can
be correlated with τR.

In summary, capillary die swell, B = Dp/D0, is a function
of the following variables:

B = f (L/D0, τR, EG, E, t, tp/λ) (7.5)
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FIGURE 7.16 Capillary extrudate swell versus wall shear stress
for a commercial polystyrene at three temperatures: (◦) 160 ◦C, (�)
180 ◦C, (�) 200 ◦C. (Data from Graessley et al., 1970.)
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TABLE 7.1 Description of Resins Studied in Annular Swell

McGill University Density Melt Index
Stock Number Trade Name/Number Manufacturer (kg/m3) (dg/min)

22 Sclair (HDPE) 59C DuPont of Canada 960 0.42
26 40054 (HDPE) Dow Canada 954 0.40
27 DMDJ (HDPE) 5140 Union Carbide Canada 962 0.72
28 PRO-FAX 7723 (PP) Hercules Canada 899 0.8

Source: Data from Garcia-Rejon et al., 1982.

TABLE 7.2 Molecular Weight Parameters for Three High Density Polyethylenes

Resin Number Mn × 10−4 Mw × 10−4 Mz × 10−4 Mw/Mn Mz/Mw

22 1.8 18 140 10.7 7.9
26 1.7 12 88 7.6 7.5
27 2.1 12 74 5.8 7.0

Source: Data from Garcia-Rejon et al., 1982.

where EG is the entrance geometry, E is the exit geometry, t
is the time after a fluid element leaves the die, tp is the time
required for the melt to pass through the die, and λ is the
longest relaxation time for the fluid. The last quantity, λ/tp,
is referred to as the Deborah number. Certainly the ideas of
elastic recovery are involved, but stresses other than those
generated in shear flow (e.g., extensional flow at the die exit)
must be considered.

The phenomenon of die swell is complex, and the method
for incorporating it into die design calculations is unclear.
In most cases the processing die geometry is considerably
different from that used to make die swell measurements. For
example, in the extrusion of a parison used in blow molding
there is swell of both the thickness and outer diameter of the
parison. How to translate die swell from a capillary to that of
a parison is certainly not straightforward.

To illustrate one possible way of translating capillary die
swell measurements to some other die geometry we consider
the swell of extrudate leaving an annular die. In the swell
of polymer extruded from an annular die as shown back in
Figure 3.1 (this figure is associated with Design Problem
II), there is swell of the diameter as well as the thickness of
the extrudate. The two most common swell parameters are
the diameter swell, B1, and the thickness swell, B2, defined,
respectively, as

B1 = Dp/D0 (7.6)

B2 = Hp/H0 (7.7)

The thickness swell can be related to the inner (subscript 1)
and outer (subscript 2) diameters as follows:

B2 = (Dp2 − Dp1)/(D02 − D01) (7.8)

Sometimes the weight swell is defined, especially in the
case of extruding a parison for blow molding. The weight
swell, Sw, is

Sw =
(

D2
p2 − D2

p1

)
ρp/
(
D2

o2 − D2
o1

)
ρ0 (7.9)

where ρp is the density of the polymer extrudate and ρ0 is
the density of the melt in the die.

The questions of interest are: What are the relations
between B1 and B2 and between B1 and B? To answer these
questions and to illustrate the complexity of the answer, we
consider the following example. Three HDPE samples of dif-
ferent molecular weight characteristics and a polypropylene
were used in the study by Garcia-Rejon et al. (1982) (see
Table 7.1 and 7.2). The steady shear and dynamic mechan-
ical rheological properties are presented in Figures 7.17
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FIGURE 7.17 Steady shear viscosity and primary normal stress
data for three HDPE and one PP samples described in Tables 7.1
and 7.2. (Data from Garcia-Rejon et al., 1981.)
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FIGURE 7.18 Dynamic viscosity and storage modulus versus
angular frequency for the resins described in Tables 7.1 and 7.2.
(Data from Garcia-Rejon et al., 1981.)

and 7.18, and it is seen here that η for resins 22, 26, and
28 are similar, while N1 values are different for the three
HDPEs and PP. (Note: PP is processed at 190 ◦C whereas
the HDPE samples are processed at 170 ◦C.) We would
expect resin 28 to have the highest values of B based
on the values of η and �1, and Eq. 7.4. Die swell data
obtained from a capillary rheometer are presented in Fig-
ure 7.19, but we see this is not the case. Resin 28 exhibits
the highest values of B while the other resins exhibit similar
values.

We next consider how to translate the capillary swell data
into values for B1 and B2. To make the comparison we have to
make it at either the same wall shear stress or wall shear rate.
Because the ratio of D01/D02(= 0.816 in this case, Fig. 3.1)
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FIGURE 7.19 Capillary extrudate swell versus shear rate for the
resins described in Tables 7.1 and 7.2. (Data from Garcia-Rejon
et al., 1982.)
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FIGURE 7.20 Annular diameter swell versus time for HDPE-22
at 170 ◦C and wall shear rates of (◦) 20, ( ) 121, and (�) 270 s−1.
(Data from Garcia-Rejon et al., 1982.)

approaches 1.0, we can treat the annulus as a thin slit and
hence

γ̇w = 2(2 + b)Q/π(R01 + R02)(R02 − R01)2 (7.10)

where

b = d ln Q/d ln τw (7.11)

and

τw = (R02 − R01)�P/2L (7.12)

In Figures 7.20 and 7.21 values of B1(t) and B2(t) are
presented for sample HDPE-22. Here we observe that the
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FIGURE 7.21 Annular thickness swell versus time for HDPE-22
for the same conditions as in Figure 7.20. (Data from Garcia-Rejon
et al., 1982.)
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FIGURE 7.22 Annular diameter swell versus time for PP-28 at
190 ◦C and wall shear rates of (◦) 19, ( ) 109, and (�) 231 s−1.
(Data from Garcia-Rejon et al., 1982.)

instantaneous swell represents about 85% of the equilibrium
swell. For PP (resin #28) values of B1(t) and B2(t) are pre-
sented in Figures 7.22 and 7.23. For PP, however, the instan-
taneous swell is only about 75–80% of the equilibrium swell,
and it takes much longer to reach the equilibrium swell. This
difference cannot be accounted for merely by differences
in the longest relaxation times, as they are similar for both
polymers based on the viscosity data.

The first relation of interest is that between B1 and B2.
These results are shown in Figure 7.24 in which equilibrium
values of B2 are plotted versus B1 for all four polymers. There
are several proposed relations between B1 and B2:

B2 = B1 (7.13)

B2 = B2
1 (7.14)

B2 = B2
1 (7.15)
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FIGURE 7.23 Annular thickness swell versus time for PP-28 for
the same conditions as in Figure 7.22.
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FIGURE 7.24 Equilibrium thickness swell versus equilibrium
diameter swell for HDPE resins (◦) 22, ( ) 26, (�) 27, and (�)
PP-28. (Data from Garcia-Rejon et al., 1982.)

The data are compared with the first two of these relations,
and we see that HDPE samples follow Eq. 7.13 more closely,
whereas the PP data falls in between Eqs. 7.13 and 7.14.
Hence, there is apparently no universal relation between B1

and B2 for all polymers, and it will depend on polymer type.
Of greater interest is the relation between B1 and B2 and

capillary extrudate swell, B. This is shown in Figures 7.25
and 7.26. In the case of diameter swell, all the data fall below
the line B1 = B. In the case of thickness swell, most of the
data fall below the line B2 = B, except for the PP data which
falls more closely to the line. Again there is no general way
to relate the swells.
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FIGURE 7.25 Annular diameter swell versus capillary swell at
the same wall shear rate for resins HDPE (◦) 22, ( ) 26, (�) 27,
and (�) PP-28. (Data from Garcia-Rejon et al., 1982.)
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FIGURE 7.26 Annular thickness swell versus capillary swell at
the same wall shear rate for HDPE resins (◦) 22, ( ) 26, (�) 27,
and (�) PP-28. The line is B2 = B. (Data from Garcia-Rejon et al.,
1982.)

Finally, Cogswell and Lamb (1970) proposed a relation
for the area swell, B1B2, of an annular extrudate and the area
swell of the extrudate from a capillary:

B1 B2 = BA = 0.25 + 0.73 B2 (7.16)

This equation is compared with data in Figure 7.27, and
we see here that the agreement is good for the HDPEs but
not for PP. The cause of the discrepancy is not clear.

The results presented here illustrate the complexity in
trying to extend die swell measurements from a capillary to
other die geometries. As an initial approximation one can
use the relations between B1, B2, and B given in Eqs. 7.13,
7.14, and 7.15. However, one must be aware of the fact that
when significant strain hardening arises in the extensional
behavior, the data will deviate more dramatically from these
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FIGURE 7.27 Annular area swell versus capillary area swell at
the same wall shear rate for the same resins as in Figure 7.26. The
line is Eq. 7.16. (Data from Garcia-Rejon et al., 1982.)

relations. As we proceed into more complex geometries, we
will find even more problems in trying to make correlations
with capillary data.

Before leaving this topic we would like to further point
out the complexity of the phenomenon of extrudate swell.
In Figure 7.28 are shown four different die geometries, and
the corresponding extrudate swell values are given in the
figure caption. Die geometry I converges to the exit while die
geometry II has a capillary of constant radius at the end of the
converging section. The final radius in both cases is the same,
and hence, γ̇W is the same. (Note: γ̇W = (s + 3)<vz>/R and
<vz> is 7.2 mm/s for all four geometries.) However, Dp/D0

for case I is 2.52 while it is 2.02 for case II. In die geometry
III a diverging section has been added to the end of the die,
while in case IV the die is straight but of the same diameter.
Dp/D0 for die geometry IV is 1.34. For die geometries III
and IV, <vz> is the same as in cases I and II, but γ̇W is
somewhat lower. In case I the additional stresses due to the
converging flow lead to an increase in die swell relative to
that for the straight tube. In case III the diverging section
leads to a relaxation of stresses and a reduction in die swell.
Hence, one can see that die design has a significant effect on
extrudate swell, but there is no way at present to accurately
predict this effect.

7.3 SHEET AND FILM DIES

In this section a few basic ideas behind the design of dies
used in the extrusion of flat film and sheet are introduced.
First some general statements about the design of these types
of dies are made, and then some specific aspects are dealt
with. More details about the design of sheet and film dies
can be found in the book by Michaeli (1984). The distinc-
tion between sheet and flat film rests in the thickness of
the extruded product. Flat film is usually less than 0.7 mm
thick. Die design considerations are somewhat similar in
each case, although different requirements for the proper-
ties of film and sheet exist. The main problem is that the
die is fed by an extruder with a circular opening. Some-
how the melt must be uniformly distributed over the width
of the die so that the extrudate, which may be as wide as
400 cm, leaves the die lips being thermally homogeneous and
having a uniform stress distribution. A nonuniform flow his-
tory can lead to variations in the stress distribution and extru-
date thickness.

The salient features of a film (or sheet) die are shown
in Figure 7.29. A film die consists of four major parts: the
manifold, choker bar, the land, and the lips. The purpose
of the manifold is to distribute the melt uniformly over the
width of the die. The land tends to act as a resistance to flow
and also promotes better flow uniformity. In the event that
the manifold doesn’t quite provide the required uniformity
in flow rate across the die width, the choker bar can be used
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FIGURE 7.28 Influence of the die geometry on extrudate swell, Dp/D0, for a LDPE melt:
I, Dp/D0 = 2.52; II, Dp/D0 = 2.02; III, Dp/D0 = 1.2; IV, Dp/D0 = 1.34, <vz> = 7.2 mm/s.
(Data from Laun, 1989.)

to adjust the flow rate locally. The die lips provide the final
film thickness and can also be adjusted locally to account for
a nonuniform flow rate or nonuniform die swell.

The design of the manifold is now considered. The most
widely used design is that of the coathanger type, which is
shown in Figure 7.30 along with some other designs. As
stated earlier the purpose of the manifold is to distribute the

melt over the width of the die in such a manner that the
flow rate is the same everywhere across the width of the exit.
The coathanger design is essentially a bent tube of variable
radius with a slit in the side wall. A sketch of this design is
shown in Figure 7.31 along with an indication of the pressure
variation in the manifold and the land. The basic idea behind
the design of a system like this is that in order to maintain
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Lip

Choker bar

Extruder

Manifold

Land

Manifold

Section A-A

Body of die

Land

Choker bar

(locally adjustable)
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FIGURE 7.29 Slit die for sheet or film extrusion. (Data from Michaeli, 1984.)
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FIGURE 7.30 Commonly used manifold designs for film and sheet dies. (Data from Michaeli,
1984.)

a uniform flow rate across the width of the die the pressure
gradient must be the same across the width of the die. To
accomplish this the pressure gradient along any length of the
manifold must equal the pressure gradient in the land. Since
the pressure decreases along the manifold, it must be bent so

FIGURE 7.31 Geometric relationships and pressure variation in
the manifold and land sections of a sheet/film die.

that the distance from the edge of the manifold decreases in
such a way that the pressure gradient is constant.

To carry out the details of the design of a coathanger die,
we refer to Figure 7.32. In order to maintain a uniform flow
rate per unit width, q, at each distance x across the land then

dp/dy = G = constant (7.17)

Next, this equation is integrated from y = 0 to y = L(x):

∫ P(L)

P(0)
dp =

∫ L(x)

L(0)
G dy (7.18)

to give

P(L) − P(0) = G[L(x) − L(0)] (7.19)
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FIGURE 7.32 Geometric model of a manifold.
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At L(x), the pressure in the manifold at position l, P(l),
is assumed to equal P(L). Substituting P(l) = P(L) into
Eq. 7.18 and differentiating with respect to l gives

dP(l)/dl = G dL(x)/dl (7.20)

This is the general design equation for a coathanger manifold,
which provides a uniform flow across the slit width. In this
analysis, the pressure drop across the contraction has been
neglected.

To complete the equation, we must specify G and dL/
dl. G is determined by assuming that developed flow occurs
in the land and dL/dl, which is a geometric variable, is then
determined. We first solve for G assuming that the rheological
properties are described by the power-law model. For slit
flow the volumetric flow rate per unit width, q, is given as
(see Table 2.5)

q = H 2

2(s + 2)

(
H

2m

)s (dp

dy

)s

(7.21)

With G = dp/dy, we obtain

G = (2n+1(2 + s)n mqn)/H 2n+1 (7.22)

Next, flow inside the manifold is solved for. Although we
will assume that the cross section is circular, in practice
many times it is drop-shaped. The goal is to determine how
R varies with l. To do this it is customary to use the lubrica-
tion approximation. Starting with the equation for flow of a
power-law fluid through a tube, we obtain

− dP(l)

dl
=
(

3 + s

π

)n

2m Q(l)n/R(x)3n+1 (7.23)

Employing a mass balance we know that the volumetric flow
rate in the manifold at any position l, Q(l), must equal the
volumetric flow rate in the slit from that point on until the
end of the manifold:

Q(l) = q(W − x) (7.24)

Combining Eqs. 7.23 and 7.24, the following expression is
obtained:

− dP(l)

dl
=
[(

3 + s

π

)n

2mqn(W − x)n

]/
R(x)3n+1 (7.25)

Finally, we replace dP(l)/dl using Eqs. 7.20 and 7.22 to
give

(2n(2 + s)n/H 2n+1) (dL/dl)

+ ((3 + s)/π)n (W − x)n/R(x)3n+1 = 0 (7.26)

For a given fluid and a slit of width of 2W and height H, there
are two geometric variables: dL/dl and R(x). For example,
for a given manifold with curvature dL/dl, there exists a man-
ifold radius profile, R(x), that yields a uniform pressure at
any line of constant y. On the other hand, one could specify
R(x) and then determine L(l) or L(x) such that the pressure
would be constant along any line of constant y. For instruc-
tional purposes one would take dL/dl as constant. However,
it is possible to apply the solution to finite segments of width
�W and then find values of dL/dl over the segment.

Example 7.1. Design of a Coathanger Manifold

For HDPE (rheological data are given in Table 2.3) design
a coathanger manifold to feed a film die having a width
2W = 1.0 m and height of 0.0508 cm. Assume constant
curvature of the manifold.

Solution. There are two unknowns in Eq. 7.26, and we must
specify one and then solve for the other. We specify dL/dl
and then solve for R(x). Taking dL/dl = − tan α = −0.087
(i.e., α = 5◦), rearranging Eq. 7.26, and using the value for n
of 0.56, we find

R(x) = 0.169(W − x)0.209

This equation gives the manifold radius (in units of cm) as a
function of x.

Before leaving this topic a few additional comments
should be made about the limitations of Eq. 7.26. First, the
degree of taper (i.e., R(x)) and the curvature of the manifold
(i.e., dL/dl) must be small enough that the lubrication approx-
imation is not violated. Furthermore, the solution does not
consider viscoelastic effects such as entrance pressure losses
or the time dependence of the stresses, which might lead to
higher values of viscosity than the steady-state values. We
also note that the design of a coathanger manifold die is
dependent on the rheological properties of the fluid. Hence,
in changing from one polymer to another, or changing the
melt temperature, the effectiveness of the die design will
change. Thus, the choker bar and die lip opening may have
to be adjusted to compensate for these changes. Finally, there
may be nonuniform die swell across the width of the die as
the effective land length changes with position across the die.
As has been seen, die swell is strongly dependent on capil-
lary length. Furthermore, the land length is relatively short
and fully developed flow may barely be achieved. Again,
the adjustable die lips can be used to compensate for the
nonuniformities associated with the variations in die swell.
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7.4 ANNULAR DIES

Dies with annular cross sections are used to extrude pipes,
tubes, tubular films, and parisons for blow molding. Center-
fed dies are commonly used for extruding pipes and tubes,
while side-fed dies are used for tubular films and parisons.
The four basic annular die designs in use at the present time
are shown in Figure 7.33. These include (1) center-fed spider-
supported mandrel dies, (2) center-fed screen pack dies, (3)
side-fed mandrel dies, and (4) spiral mandrel dies. At the die
exit there is usually an outer die ring which forms the die land.
Only this part of the die can be analyzed simply as annular
flow, while the remaining portions must be dealt with through
the use of the lubrication approximation. In Section 7.4.1 we
discuss the center-fed die and consider in Section 7.4.2 the
side-fed and spiral mandrel die designs. Finally, wire coating
dies are discussed in Section 7.4.3. Further details on die
design as well as “rules of thumb” are given by Michaeli
(1984).

7.4.1 Center-Fed Annular Dies

Pipes are primarily extruded using center-fed dies of the type
shown in Figure 7.34. The melt stream from the extruder
passes from the circular opening to the annular die by means
of the mandrel support tip. The melt then passes over the
“spider legs,” which support the mandrel, and through a con-
verging annular region which for pipes is usually 10◦ to 15◦.
The converging region is followed by an annular region with
parallel walls which imparts the final dimensions to the pipe.
The outer diameter of the pipe can range from a few millime-
ters to approximately 1.6 meters. The ratio of the mandrel
radius to outer wall radius usually falls in the range of 0.8 to

Mandrel support die

Mandrel

support

Mandrel

Spider

legs

Or screen
plate

Mandrel

Side-fed 
die

Screen pack die

Screen 
pack

Spiral mandrel 
die

Spiral mandrel distributor

FIGURE 7.33 Four common annular die designs. (Data from
Michaeli, 1984.)

0.925. This ratio is important as it implies that we can neglect
curvature in the analysis of most parts of the die.

The spider legs usually lead to problems in that not only
are flow markings visible, but mechanically weak regions

FIGURE 7.34 Typical pipe extrusion die. (Reprinted with permission of the publisher from
Michaeli, 1984.)
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are generated. These flow lines are also referred to as weld
lines and are due to a higher degree of molecular orienta-
tion caused by the high stresses imparted to the melt and
the inability of the molecules to reentangle during the time
the melt spends in the die. The strength of the weld line is
most likely related to the degree of reentanglement of the
molecules which occurs as the melt passes through the die at
the melt temperature. The reentanglement time appears to be
much longer than the longest relaxation time. It has been esti-
mated from interrupted shear experiments for polystyrene,
for example, to be on the order of 300 seconds (Pissipati,
1983). It is related to self-diffusion of polymer molecules as
discussed in Chapter 4.

One way of reducing the effect of the flow lines is through
the design of the support system. Some spider leg systems
presently used are shown in Figure 7.35. Instead of arranging
the spider legs radially as shown in Figure 7.35a, a tangential
arrangement as shown in Figure 7.35b will displace the defect
circumferentially over the extrudate. A better way for reduc-
ing the flow marks is the use of offset spider legs as shown
in Figure 7.35d. Here the flow marks do not extend all the
way through the wall of the extrudate, which offers at least
mechanical improvements. Finally, another way to reduce
flow marks is the use of a screen plate, which is shown in

Tangential spider legsRadial spider legs

Screen plate Offset spider legs

Supporting ring

(b)(a)

(c) (d)

FIGURE 7.35 Typical mandrel support systems. (Data from
Michaeli, 1984.)

Figure 7.35c. In this design the melt passes into the annu-
lar region by first passing through a plate with many small
holes bored in it. In effect the annular die is fed by multiple
capillaries.

Design considerations for the center-fed dies consist of
the force exerted by the melt on the mandrel support tips, the
residence time in the die, the total pressure drop, the extru-
sion rate, die swell, and the onset of flow instabilities. The
significance of the pressure exerted on the mandrel support
tip rests in making sure the spider legs are strong enough.
Residence time considerations are required in order to deter-
mine if sufficient time has been allowed for partial healing
of the weld lines imparted by the spider legs. The relation
between the shear stress and extrusion rate in the land section
is also needed, as the onset of melt flow instabilities is the
limiting factor in the rate of extrusion. Finally, the diameter
of the extrudate as well as thickness as the result of die swell
must be taken into consideration. The complete design of a
center-fed die using a viscoelastic constitutive equation is not
possible without the use of three-dimensional finite element
methods, which is beyond the scope of this book. We can,
however, estimate parts of the flow behavior needed in design
work by making use of the lubrication approximation.

7.4.2 Side-Fed and Spiral Mandrel Dies

The side-fed mandrel die is used in both blown film and pipe
extrusion. The main consideration is to provide a uniform
flow rate at the die land. This is done in much the same way
as for flat film extrusion by the use of a manifold as shown
in Figure 7.36. The main difficulty is in the design of the
curved manifold, but one approach is to neglect curvature
and consider the manifold to be like that of the flat film die
but wrapped around the curved mandrel.

The spiral mandrel die seems to offer the best possibility
for providing a uniform flow rate circumferentially at the
annular die exit. Two specific designs of this type are shown
in Figure 7.37. The die is usually fed from the extruder by
means of either a star-shaped or ring-shaped distributing sys-
tem. The melt then passes into spiral-shaped channels which
are machined into the mandrel. The depth of the channels
decreases with spiral distance which ensures that there will
be mixing of the melt from channel to channel as the result of
leakage. The spiral channels perform in much the same way
as the single-screw extruder. Because of the design of this
system there are no mandrel support elements, and hence,
flow lines are eliminated completely.

7.4.3 Wire Coating Dies

Wire coating dies also involve annular cross sections. The
basic sections of a wire coating die are shown in Figure 7.38.
The melt usually enters from the side and so resembles the
side-fed annular dies discussed in Section 7.4.1. The goal
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FIGURE 7.36 Distribution system for a side-fed mandrel die.

in the design of wire coating dies is to provide a coating
that is of the desired thickness, free of imperfections, and
with the wire centered in the insulation. Again the even dis-
tribution of the melt from the die entry is the key design
element.

There are two basic types of coating dies used at present:
pressure coating and tube coating dies. These are shown in
Figure 7.39. In the pressure coating die the wire is coated
under pressure in the die. This technique is used usually for
the application of the primary coating where good adhesion

is important. In the case of the tube coating die, the polymer
coating is applied outside the die and is used for applying a
secondary coating.

The main problem in the design of wire coating dies is to
provide the same velocity at each point of the circumference
at the die exit. Several widely used ways include the “heart-
shaped curve” (see Fig. 7.40) and the circular coathanger
designs. The heart-shaped curve is shown in Figure 7.41. The
melt stream from the extruder is divided up into two separate
melt streams by the bezel, which runs parallel to the axis

FIGURE 7.37 Two spiral mandrel die designs. (Reprinted with permission of the publisher from
Michaeli, 1984.)
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FIGURE 7.38 Basic features of a wire coating die. (Data from Michaeli, 1984.)
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FIGURE 7.39 Two mandrel designs commonly used in wire coat-
ing dies. In the upper figure the wire is coated under pressure inside
the die while in the lower figure the wire is coated outside the die.
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FIGURE 7.40 Wire coating die with a distribution system having
heart-shaped distribution system. (Data from Michaeli, 1984.)
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FIGURE 7.41 Deflecting distributing system with a heart-shaped
piece. (Data from Michaeli, 1984.)

of the mandrel. The flow channels become wider, and their
depth decreases. A heart-shaped piece, which is mounted
below the bezel and elongates the flow path on the inner
arc, functions as a compensating element. The length the
flow edge of this heart-shaped piece is dimensioned such
that the total path of the melt on the inner arc approximately
corresponds to the flow path on the outer arc.

After the melt passes through the distribution system, the
die housing narrows down to the wire in order to match the
average velocity,<vz>, with the wire velocity. If high coating
speeds are to be achieved, it is advisable to have the angle
between the mandrel and the housing become constantly
smaller up to the coating region. The reason for this is to
suppress vortices.

Further quantitative features of the design of wire coating
dies are discussed in the problems at the end of the chapter.
The lubrication approximation is widely used in the design
of wire coating dies.

7.5 PROFILE EXTRUSION DIES

Profile extrusion refers to the extrusion of polymer melts
through dies of cross sections that are neither round, annular,
nor rectangular with an aspect ratio, W/H, greater than 10.0.
Because the geometries are quite complex, it is not possible
to obtain analytical solutions when the generalized Newto-
nian fluid (GNF) or viscoelastic models are used. The use of
finite element methods offers promise in solving problems
associated with the design of profile dies, but the subject mat-
ter required to understand these methods is beyond the level
of this text. At present, design is carried out by trial-and-error

methods. However, there are some aspects of design which
can be dealt with, and these are discussed in this section.

We first consider some general aspects of profile die
design. Three factors determine the dimensions of a profile
die to produce an extrudate of desired dimensions. The first
is the degree of die swell, which as discussed earlier (Sec-
tion 7.2.3) is a function of the flow history in the die as well
as the cooling conditions at the die exit. The second factor
involves the shrinkage that occurs as the polymer melt solid-
ifies. Finally, there is the shape change associated with draw-
ing which occurs in the sizing device. Just determining the
pressure drop/flow rate relation is complex enough because
of the irregular boundaries. Only the pressure drop/flow rate
relation for some geometries can quantitatively be dealt with
at this level.

At present there are three types of profile dies used: orifice
dies, multistage dies, and tapered profile dies. An example of
an orifice die is shown in Figure 7.42. Basically the orifice
die consists of a die base and a die plate in which the profile
is formed. These dies are used for the extrusion of inexpen-
sive profiles where dimensional accuracy is not necessary.
Because of the abrupt change in cross-sectional area, there
is usually a buildup of stagnant material behind the die plate
and high extrusion rates are not possible. These dies are not
commonly used for most thermoplastics but are restricted
primarily to PVC and rubber.

An example of a multistage die is shown in Figure 7.43.
Multistage dies exhibit step changes in the cross-sectional
area of the flow channel. They consist of a series of die plates
of similar geometry but of a decreasing cross-sectional area.
Certainly, these represent an improvement over the orifice
dies, but they still suffer from some of the same deficiencies.

Whenever profiles of high dimensional accuracy are to be
produced at high extrusion rates, profile dies with a gradual
change of cross-sectional area are required. An example of
a profile die for producing highly accurate cross sections is
shown in Figure 7.44. The design of these dies is carried out
nearly on an empirical basis at present.

Die plate

FIGURE 7.42 Profile die of the orifice type. The die plate is
shown at the left. The extrudate emerges as a tube with two S-
shaped flanges. (Data from Michaeli, 1984.)
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FIGURE 7.43 An example of a profile die of the multistage type.
The die plate is shown in the upper right-hand figure (the extrudate
is used as a window sash). In the lower right the segments making
up the various stages of the die are shown. (Data from Michaeli,
1984.)

However, if one carries out empirical design work to gen-
erate profile dies on the laboratory scale, then one could
use dimensional analysis for scaleup. In particular, geo-
metric similarity would require that the following ratios be
identical:

Ae/AL and L/RH (7.27)

where AL is the cross-sectional area of the land and Ae is the
cross-sectional area of the entry (this actually represents a
contraction ratio) and RH is the mean hydraulic radius. For
dynamic similarity the Deborah (De) numbers would also
have to be identical, where De is defined as

De = λ/tp (7.28)

λ is again the longest relaxation time of the melt and tp is the
process time, which for extrusion is L/<vz>, where <vz> is
the average velocity in the flow direction. However, because
the rheological properties are for the same melt, dynamic
similarity requires that

(<vz > /L)1 = (<vz > /L)2 (7.29)

where the subscript “1” refers to the laboratory system and
“2” the scaled-up system.

As one can imagine, it is nearly impossible at this time
to carry out quantitative design work for dies such as shown
in Figure 7.44. There are, however, a few considerations
that can help in doing at least semiquantitative work. Some
ideas concerned with die swell are considered first and then
shrinkage and sizing are discussed.

The complexities associated with die swell are illustrated
by the results presented in Figure 7.45. Here the extrudate
shape is presented for two polymers, PVC and LDPE, as
a function of the entry channel design and length to mean
hydraulic radius, RH, ratio. The mean hydraulic radius, RH,
is defined as A/P, where A is the cross-sectional area and
P is the wetted perimeter. Although the die cross section is
square, the extrudate shape barely reflects this. In fact, for
low L/RH ratios, the extrudate reflects the shape of the entry
geometry. As the L/RH ratio increases the extrudate reflects
more closely the shape of the land section. It is also observed
that the amount of swell decreases as the ratio increases.
Furthermore, it is illustrated by the results in Figure 7.45
that PVC has considerably less swell than that exhibited
by LDPE.

For some shapes it may be possible to carry out estimates
of Q, �P, and extrudate swell by breaking the geometry up
into a collection of simple geometries for which the flow can
be analyzed. Some examples of profile geometries that can be
dealt with by use of the equations derived for thin rectangular
slits (Table 2.5) are presented in Figure 7.46. For example,
Q for flow of a power-law fluid through a rectangular slit is
given by

Q = WH2

2(s + 2)

(
H�P

2 mL

)s

(7.30)

We can apply Eq. 7.30 to geometry No. 3 by opening up the
die to a die having a width of 2(Ro + Ri) and slit height, H =
Ro − Ri. Likewise we can estimate die swell from results
from a slit-die or capillary. Other geometries for which the
slit formula can be used are shown in Figure 7.46 as well as
replacements for W and H in Eq. 7.30.

The extruded product shrinks as it cools as a result of
density changes. The amount of shrinkage can be estimated
by the changes in density from the melt to the solid state.
One must also assume that shrinkage occurs uniformly in all
directions.

The extrudate is stretched slightly on leaving the die as it
is pulled into the sizing device. In the book by Michaeli
(1984) there are some suggested amounts by which the
die cross-sectional area should be increased to account
for the reduction in extrudate cross-sectional area gener-
ated by drawing. For example, for LDPE it is recom-
mended that the die cross-sectional area be increased by 15–
20%. However, these empirical rules-of-thumb are not very
dependable.
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FIGURE 7.44 An example of a profile die with a gradual change of cross-sectional area for
producing highly accurate shapes. (Reprinted with permission of the publisher from Michaeli, 1984.)

131211109876543210

L/RH

Polyethylene

Rigid PVC

FIGURE 7.45 The effect of entrance geometry and land length
(here the length is normalized by the mean hydraulic radius) on
extrudate swell for LDPE (upper data) and PVC. The broken line
represents the shape of the entry while the land is square. (Data
from Röthemeyer, 1970.)

7.6 MULTIPLE LAYER EXTRUSION

It is becoming more common to combine multiple layers of
different polymers to form products with properties which
take advantage of the best properties of each component. For
example, packaging film might be composed of several dif-
ferent types of polyethylene along with a layer of adhesive
and a barrier polymer. We first discuss some general aspects
of extrusion processes used for generating multiple layered
products. Some quantitative aspects of die design are consid-
ered along with qualitative considerations for die design.

7.6.1 General Considerations

There are basically three types of multiple layer extrusion
techniques: (1) melt streams flow separately; (2) melt streams
flow separately and then together; (3) melt streams that flow
together. Examples of type 1 are shown in Figure 7.47. In
this process polymers A and B are extruded through sepa-
rate flow channels and then joined together outside the die.
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FIGURE 7.46 Profile cross-sectional shapes which can be treated as a combination of thin slits.
The slit width in Eq. 7.30 is replaced by the following values in each case: 1: W = π/2 (Ro + Ri);
2: W = W1 + W2; 3: W = 4 (Ro + Ri); 4: W = 3.46 (Ro + Ri); 5: W = W1 + W2 + W3; 6: W =
πRo + (2 + π)R; 7: W = π (Ro + Ri) + W; 8: W = (Ro + Ri)(θ + sin θ ); cos θ = 2Rs/(R0 + Ri);
9: W = (π/2)R0 + (2 + π/2)Ri + W1 + W2. (Data from Carley, 1963.)

The advantage in this type of multilayer extrusion is that
polymers with widely different processing temperatures and
rheological properties can be used. The major problem is that
of generating satisfactory adhesion between the components.
Usually the technique is only used for two polymers.

The second technique is shown in Figure 7.48. Here the
streams are brought together inside the die, and then they
pass through a common land region. Because the streams are

A B

Heat 

separation

Pressure roll

Slit die

B B
A

Gas

Blown film die

FIGURE 7.47 Coextrusion dies in which the two streams of poly-
mer are joined outside the die.

brought together under pressure, adhesion is improved. How-
ever, it is not possible to have the streams at widely different
temperatures. Likewise the rheological properties cannot be
too widely different or flow instabilities will arise. Further-
more, at the point where the streams converge, interfacial
instability problems may arise.

The third method is not too dissimilar from the second
method as shown in Figure 7.49. Here the polymer streams

B

A

C

Slit die

(3 layers)

A B

Blown film die

(2 layers with spiral

mandrel melt distributor)

FIGURE 7.48 Coextrusion dies in which the streams are com-
bined in the die and then pass through a common land.
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FIGURE 7.49 Coextrusion dies in which the streams are brought
together in an adapter and then pass through a common die.

are brought together in an adapter, and then they pass through
a common die. In this case the same die as used for single
component extrusion can be used. Again the melt rheologi-
cal properties cannot be too dissimilar or an instability will
arise which will disrupt the laminar nature of each stream.
However, this is one of the most inexpensive and simplest
methods for generating multiple layer films and sheets.

7.6.2 Design Equations

The most often used die geometries in multiple layer extru-
sion are slits and tubular film dies. However, there are also
cases in which profile dies are used. Some quantitative design
work can be carried out in the case of flow through flat film
and tubular dies. The factors that can be dealt with are flow
rates and pressure drops required to provide a given thickness
in a multilayer extrudate. The major problem in multilayer
extrusion is the instability in the flow. This will be discussed
in a qualitative fashion in Section 7.6.3. However, the design
equations can at least be used to estimate whether the flow
will be unstable.

Flow of two polymers through a slit die as shown in Fig-
ure 7.50 is considered first. It is assumed that (1) the rheolog-
ical properties of the fluids are described by the power-law
model; (2) the flow is stable and at steady state; and (3) the
flow is isothermal. With these assumptions in hand, the goal
is to determine a relation between the desired layer thickness
and flow rate and pressure drop. The superscript (1) refers
to the polymer in phase 1, while the superscript (2) refers to
that in phase 2. The equations of motion are then written for
each phase:

−∂p(1)

∂z
− ∂τ (1)

yz

∂y
= 0 (7.31)

−∂p(2)

∂z
− ∂τ (2)

yz

∂y
= 0 (7.32)

Velocity
profile

The direction
of flow

Interface
Phase 1

(less viscous)

Phase 2 (more viscous)

y
x

z

w

h

0

?

ß

FIGURE 7.50 Flow of two polymer melts through a slit die. α is
the position of the maximum in the velocity profile while β is the
position of the interface between the two melts.

The pressure gradient in each phase must be identical, or
there would be flow in the y direction. Equations 7.31 and
7.32 can be integrated to find τ (1)

yz and τ (2)
yz :

τ (1)
yz = G(y − C1) (7.33)

τ (2)
yz = G(y − C2) (7.34)

where G = −∂p/∂z. At some unknown position, α, τ (1)
yz = 0,

which implies that C1 =α. Furthermore, from the assumption
that τ (1)

yz = τ (2)
yz at y = β, it can be shown that C2 = α also.

Therefore, Eqs. 7.33 and 7.34 become

τ (1)
yz = G(y − α) (7.35)

τ (2)
yz = G(y − α) (7.36)

We need four boundary conditions in order to find
v (1)

z and v (2)
z :

B.C.1: at y = 0, v (1)
z = 0 (7.37)

B.C.2: at y = β, v (1)
z = v (2)

z (7.38)

B.C.3: at y = h, v (2)
z = 0 (7.39)

B.C.4: at y = β τ (1)
yz = τ (2)

yz (7.40)

Here boundary conditions 2 and 4 (B.C.4 was used already
to obtain Eq. 7.36) are based on the continuity of stresses and
the velocity field at the interface between the two polymer
streams. Eventually, as discussed later, the cohesion between
the two polymers at the interface may break down, leading
to an instability.

We next need expressions for τ (1)
yz and τ (2)

yz in terms of
velocity gradients. Because of the changes in sign of the



MULTIPLE LAYER EXTRUSION 225

velocity gradient, we must break up the flow region into
three parts:

Region (1a): 0 < y < α, dv (1a)
z /dy > 0 (7.41)

Region (1b): α < y < β, dv (1b)
z /dy > 0 (7.42)

Region (2): β < y < h, dv (2)
z /dy < 0 (7.43)

Substituting the power-law expression for τ yz into Eqs.
7.35 and 7.36 leads to the following differential equations
for v (1)

z and v (2)
z :

−m1(dv (1a)
z /dy)n1 = G(y − α) (7.44)

m1(−dv (1b)
z /dy)n1 = G(y − α) (7.45)

m2(−dv (2)
z /dy)n2 = G(y − α) (7.46)

We can now integrate these equations to obtain the velocity
field:

v (1a)
z =

(
G

m1

)s1
∫ y

0
(α − y′)s1 dy′ (7.47)

v (1b)
z (α) − v (1b)

z = −
(

G

m1

)s1
∫ y

α

(y′ − α)s1 dy′ (7.48)

v (2)
z = −

(
G

m2

)s2
∫ h

y
(y′ − α)s2 dy′ (7.49)

The prime on y indicates that it is a dummy variable of
integration. Carrying out the integration and using the con-
dition that v (1a)

z (α) = v (1b)
z (α) at y = α, we find the following

expressions:

v (1a)
z =

(
G

m1

)s1
(

n1

n1 + 1

) [
α(n1+1)/n1 − (α − y)(n1+1)/n1

]
(7.50)

v (1b)
z =

(
G

m1

)s1
(

n1

n1 + 1

) [
αn1+1/n1 − (y − α)(n1+1)/n1

]
(7.51)

We can write Eqs. 7.50 and 7.51 more succinctly as

v (1)
z =

(
G

m1

)s1
(

n1

n1 + 1

) [
α(n1+1)/n1 − |y − α|(n1+1)/n1

]
(7.52)

For layer 2 we can complete the integration in Eq. 7.49 to
obtain

v (2)
z =

(
G

m2

)s2
(

n2

n2 + 1

) [
(h − α)(n2+1)/n2

− (y − α)(n2+1)/n2
]

(7.53)

The goal of this derivation is to obtain an expression for
the volumetric flow rate in each layer and pressure drop to
produce a desired thickness for each layer. The volumetric
flow rate in each layer, Q1 and Q2, is obtained by integrating
Eqs. 7.52 and 7.53 over the cross-sectional area:

Q(1) = W

(
G

m1

)s1
(

n1

n1 + 1

)

×
{∫ α

0
[α(n1+1)/n1 − (α−y)(n1+1)/n1 ]dy

+
∫ β

α

[α(n1+1)/n1 − (y − α)(n1+1)n1 ]dy

}
(7.54)

= W

(
G

m1

)s1 ( n1

n1 + 1

)[(
n1 + 1

2n1 + 1

)
α(2n1 +1)/n1

+ α(n1+1)/n1 (β − α) − n1(β − α)(2n1 +1)/n1

2n1 + 1

]
(7.55)

and

Q(2) = W

(
G

m2

)s2
(

n2

n2 + 1

)∫ h

β

[
(h − α)(n2+1)/n2

− (y − α)(n2+1)/n2
]

dy (7.56)

= W

(
G

m2

)s2
(

n2

n2 + 1

)[
(h − α)(n2+1)/n2 (H − β)

− n2

2n2 + 1
(h − α)(2n2+1)/n2 − (β − α)(2n2+1)/n2

]
(7.57)

The total volumetric flow rate, Q, is then Q(1) + Q(2).
To solve these equations, one more equation is needed as

there are three unknowns, Q, α, and β (for a given G). The
final equation is obtained from the condition

v (1)
z (β) = v (2)

z (β) (7.58)

and is(
G

m1

)s1
(

n1

n1 + 1

)
[α1+s1 − (β − α)1+s1 ]

=
(

G

m2

)s2
(

n2

n2 + 1

)
[(h − α)1+s2 − (β − α)1+s2 ] (7.59)

Hence, for a given layer thickness (i.e., given β) one can
use Eq. 7.59 to find α. (Note: One must guess at G.) Then
one can calculate Q(1) and Q(2) from the values of α, β, and
G. We illustrate the manipulation of these equations in the
following example.

Example 7.2. Coextrusion of Two Polymers
Through a Film Die

HDPE (rheological properties are given in Table 2.3) and
nylon 6 (rheological properties are given in Table 7.3) are
extruded through a film die both at a temperature of 220 ◦C.
Determine the pressure gradient, G, required to produce an



226 EXTRUSION DIES

TABLE 7.3 Parameters for Nylon 6, CapronTM 8200, Allied Chemical

Power Law Carreau Model Ellis Model

Temperature (K) Range s−1 m Pa · sn n η0 (Pa · s) Range (s−1) n γ (s) α τ 1/2 (Pa)

498 100–2500 2.62 × 103 0.63 1.6 × 103 100–2000 0.63 0.27 1.64 1.06 × 104

503 100–2000 1.95 × 103 0.66 1.3 × 103 100–2000 0.65 0.32 1.70 1.3 × 104

508 100–2300 1.81 × 103 0.66 1.1 × 103 100–2000 0.68 0.36 1.61 1.04 × 104

Source: Data from Tadmor and Gogos, (1979)

extrudate whose thickness is 1/5 nylon 6 (i.e., β = 0.2 h).
Determine the shear rate at the interface for each component.
The dimensions of the land of the die are W = 76.2 cm and
h = 0.1016 cm. The line speed (i.e., linear velocity of the
sheet) is 60 m/min.

Solution. The procedure for solving this problem is as
follows:

1. Solve the nonlinear algebraic equation, Eq. 7.59, for α
using a guess for G and the given value of β.

2. Calculate Q(2) using Eqs. 7.56 and the values for G, α,
and β.

3. Compare Q(2) against the given value based on the line
speed and the thickness, β.

4. If the difference in values is greater than a speci-
fied tolerance, ε, then return to step 1 and repeat the
procedure.

An “intelligent guess” for G will accelerate the rate of con-
vergence to the solution. Because the major component of
the flow is HDPE, we use Table 2.5 and estimate G for just
flow of HDPE:

G = −�P

L
=
[

2Q(s + 2)

WH2

]n 2m

H
= 1.653 × 109 Pa/m−1

We then solve the nonlinear algebraic equation, Eq. 7.59,
for α, which is the position of the maximum in the velocity
profile (see Fig. 7.50) using either the IMSL subroutine,
NEQNF, or the Solver in Excel for which the calling
programs are given on the accompanying website (see
“Numerical Solutions, Chapter 7”). A summary of the
guesses for G and the calculated values of α and Q(2) is given

TABLE 7.4 Calculated Values of the Parameter α and the
Flow Rate for HDPE for Various Guesses of G

G (Pa/m) α Q(2) (m3/s)

1.653 × 109 6.095 × 10−4 3.022 × 10−4

1.800 × 109 6.095 × 10−4 3.475 × 10−4

2.200 × 109 6.095 × 10−4 4.83 × 10−4

2.550 × 109 6.095 × 10−4 6.194 × 10−4

in Table 7.4. What we observe is that after the initial guess
there is no change in the predicted value of α. In other words,
α is somewhat insensitive to the magnitude of G. Knowing
this and Q(2) = 6.194 × 10−4 m3/s, we can calculate G from
Eq. 7.57, which we find to be 2.55 × 109 Pa/m.

There are several other cases which are commonly
encountered. For thin annular dies Eqs. 7.54 through 7.59
can be adopted directly by making appropriate replacements
for W and h. For multilayer extrusion through an annulus in
which the gap is too thick to apply the thin slit approximation,
the appropriate equations are derived in Problem 7B.8. For
more than two layers the equations for flow through parallel
plates can be generalized as follows (Schrenk and Alfrey,
1976). Referring to Figure 7.51 we can obtain expressions

h0 y
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Q Q Q QQ Q

mmmmmm

nnnnnn

POWER LAW

VALUES

aaaaa
5645342312

321 4 65

654321

654321

FIGURE 7.51 The velocity profile of a non-Newtonian multi-
layer flow through a wide narrow slit. The parameters mi and ni are
the power-law parameters for each layer.
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for the volumetric flow rate in each layer. The shear stress in
each layer is

τ (i)
yz = G(y − c) (7.60)

where c is the position where τ yz = 0. Expressions for the
power-law model for each layer can now be substituted into
Eq. 7.60 and integrated to obtain the velocity field in each
layer:

vM (y) = −sign (G)

⎧⎨
⎩

M−1∑
j=1

m j |G|s j

s j + 1

[|a j−1, j − α|s j +1

− |a j, j+1 − c|n j +1
]+ mM |G|sM

sM + 1

× [|aM−1,M − α|sM +1 − |y − α|sm+1
]⎫⎬⎭ (7.61)

where aj−1,j is the interfacial position of layer j and M j =
m

−s j

j . Details of the derivation required to obtain Eq. 7.61
are considered in Problem 7B.9. The volumetric flow rate in
any layer is given as

|QM | =
M−1∑
j=1

m j |G|s j

s j + 1

{|α− a j−1, j |s j +1 − |α− a j, j+1|s j +1
}

× (aM,M+1 − aM−1,M )

+ m M
|G|sM

sM + 1
{|α − aM−1,M |sM+1}

× (aM,M+1 − aM−1,M )

+ m M |G|sM

(sM + 1)(sM + 2)

{
sign(α − aM,M+1)

× |α − aM,M+1|sM+2 − sign(α − aM−1,M )

× |α − aM−1,M |sM +2
}

(7.62)

These equations are used typically to find α and aij for a
given QM. By selecting trial values for β and α, Eq. 7.61 can
be solved sequentially for aij. If aM,M + 1 does not match the
location h and the calculated values of vM do not match at the
interfaces, then new trial values for aij and α are tried until
the correct values are obtained. The values of QM can then be
calculated. This process is discussed further in Problem 7C.3.

7.6.3 Flow Instabilities in Multiple Layer Flow

There are basically two problems in trying to extrude mul-
tiple layers of different fluids through the same die. First,
if there are distinct viscosity differences between the fluids,
then the lower viscosity component will try to encapsulate
the higher viscosity component. Second, there are situations
when the viscosities of two polymers are closely matched,
but the interface still becomes wavy and distorted. (This type
of problem is shown in Fig. 7.52.) Some general comments
about each type of instability are made first followed by some
attempt to estimate if an instability is imminent.

(a)

Extrusion

direction

(b)

(c)

FIGURE 7.52 The appearance of two layers of sheet under (a)
stable flow conditions, (b) incipient interfacial flow instability, and
(c) severe instability.

The encapsulation of the high viscosity component by
the low viscosity component is illustrated in Figure 7.53.
Viscosity data for the two nylon 6 polymers is shown in
Figure 7.54. The polymers were extruded in a side-by-side
configuration through a capillary. The exit angle as well as
the interface shape are shown as a function of the capillary
L/D. Here it is seen that complete encapsulation does not
occur until a L/D of 100 is reached. In many cases the L/D is
short enough that not much rearrangement occurs. However,
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FIGURE 7.53 Extrudate interface shape and exit angle variation
with tube length for two nylon 6 melts. (Data from Everage, 1975.)
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FIGURE 7.54 Apparent viscosity versus shear rate for two nylon
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the flow may be on the verge of an instability, and obtaining
an extrudate with a straight interface may not be possible.

Although, as mentioned above, we are not in a position
to determine the interface shape or the distance required for
encapsulation, it is at least possible to estimate the conditions
when problems are imminent. Following the procedure in
Section 7.6.2 it is possible to calculate the velocity profile in
tube flow in each layer for various viscosity differences. In
Figure 7.55 are shown velocity profiles for two cases. First
we consider the case when the viscosity of layer 2, η02, is
less than that of layer 1, η01 (Note: This is for tube flow.)
When the flow is stable, the velocity profile of layer 1 is flat,
whereas in layer 2 there is a large dependence of the velocity
profile on the radius of the capillary. However, when η02 >

η01 the flow is in an unstable condition, and the velocity
profile varies more strongly with r in layer 1 than in layer 2.
The variation of γ̇ with r is shown in Figure 7.56. When the
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FIGURE 7.55 Velocity profiles in two component flow through
a capillary for stable and unstable conditions: stable (——) η02/η01
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FIGURE 7.56 Shear rate versus radial position for the three con-
ditions given in Figure 7.55.

flow is in an unstable condition, γ̇ (r) is larger at the interface
than at the wall. Hence, the equations presented in the last
section at least can tell us if it is feasible to stably extrude a
given set of polymers.

The equations developed in the last section can also be
used to estimate the onset of an interfacial flow instability
which leads to a rippled interface. According to Schrenk and
co-workers (1976, 1978) this instability is due to slip at the
interface between the polymers when a critical interfacial
shear stress is exceeded. This critical stress will vary for
various polymer types, but for the system of acrylonitrile–
butadiene–styrene copolymer, ABS, and styron 470, this crit-
ical stress was 5.0 × 104 Pa. The analysis developed in Sec-
tion 7.6.2 can be used to assess the conditions under which
we might expect an interfacial instability to arise.

However, it seems that this instability may be more com-
plicated than just a failure of adhesion between layers in
shear flow. In many cases the region of fully developed shear
flow is small or nonexistent and the analysis developed in
Section 7.6.2 may not be applicable. The origin of the inter-
facial instability could be at the die exit where large stresses
arise as the velocity profile undergoes a rapid rearrangement.
It could also be associated with converging flow upstream
of the die lips. In other words, differences in the extensional
viscosity of the two polymers as well as differences in the
relaxation behavior could lead to interfacial instability.

7.7 SOLUTION TO DESIGN PROBLEM VI

The following steps are used in the solution:

1. The volumetric flow rate for each component is deter-
mined from the mass and density of each component
and the hang time.
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2. The dimensions of the die are determined from a mass
balance.

3. The curvature in the die cross section is neglected, and
it is treated as a parallel plate geometry.

4. The design equations for coextrusion are used to deter-
mine the pressure gradient, G, and the position where
the velocity profile passes through a maximum, α.

5. The shear rate and viscosity are calculated at the inter-
face to determine if the flow could be unstable.

6. A manifold system is designed to feed the die.

We first calculate the volumetric flow rate of each com-
ponent where Q(1) is Q for nylon 6 and Q(2) is Q for HDPE.
The density of nylon 6 at 25 ◦C is 1132 kg/m3 while that for
HDPE at 25 ◦C is 971 kg/m3. Given the mass of the parison
is 18 lb HDPE and 2 lb nylon 6 and time for hanging the
parison is 5 s, we find

Q(1) = 8.02 × 10−4 m3/s Q(2) = 8.42 × 10−3 m3/s

The cross-sectional area of the gasoline tank is found by using
the formula for the area of an ellipse (A = (π/4)ab, where a
is the major axis and b is the minor axis of the ellipse). The
cross-sectional area of the tank is

Ap = (1.0)(0.15)π/4 − (9.936 × 10−1) (0.1436) π/4

= 5.748 × 10−3 m2

The dimensions of the die are found next. From the infor-
mation given in the problem we know that the major axes of
the outer wall of the elliptically shaped die are ao = 0.5 m
and bo = 0.075 m. As the area is assumed to be conserved,
we can calculate the dimensions of the die. (Note: There is
actually extrudate swell which must be considered, but the
weight of the parison causes some reduction in the thickness
and the density change causes the material to shrink, which
offsets some of the extrudate swell.)

5.748 × 10−3 = π/4 [(0.5)(0.075)

− (0.5 − 2H0) (0.075 − 2H0)]

where Ho is the gap thickness. Ho is determined to be
6.51 × 10−3 m. We open the die and treat it as flow
between parallel plates having a width Wo and height Ho.
Given Ap = Ao and Ho, from above we find Wo to be 0.883 m.

We can now use the equations derived in Section 7.6 for
coextrusion through parallel plates. Equations 7.55, 7.57, and
7.59 represent three equations for finding three unknowns.
In our case, Q(1) and Q(2) are known, but G, α, and β are
unknown. We could solve the three equations simultane-
ously using numerical techniques (e.g., the IMSL subrou-
tine NEQNF). However, to facilitate the understanding of

the solution process, we can calculate β (i.e., the interfa-
cial position) from the knowledge of Q(1) and Q(2) via the
following expression:

β = Q(1) H0

Q(2) + Q(1)
= 0.087 H0 (7.63)

This equation is based on the fact that Q(1)/A1 = Q(2)/A2,
where A1 and A2 are the areas of each stream (A1 = βHoWo

and A2 = (Ho−β) HoWo).
Just as in Example 7.2 we solve for α using Eq. 7.59

by estimating G. We then check to see whether Eq. 7.55 is
satisfied. Before doing this we are faced with a dilemma.
The melting temperature of nylon 6 is about 220 ◦C, and
hence, rheological data are only available at temperatures
higher than one would normally process HDPE. Based on
the discussion of flow instabilities in coextrusion we must
select conditions such that the viscosity of the two polymers
is similar at the walls. With this in mind we select the HDPE
stream to be at 220 ◦C and the nylon 6 stream to be at 225 ◦C.
At this temperature η0 of nylon 6 is somewhat higher than
that of HDPE. However, the temperature mismatch is not
so great that we would have to consider the problem to be
nonisothermal.

The solution follows the approach in Example 7.2 very
closely. With the conditions given we find G = 5.9 × 106

Pa/m and α = 3.536 × 10−3 m. From these values, β, and
Eqs. 7.45 and 7.46 we find γ̇ (1)

w and γ̇ (2)
w :

−γ̇ (1)
w =

(
G

m1

)s1

(H0 − α)s1 = 20.4 s−1 − γ̇ (2)
w = 12.6 s−1

The viscosity of nylon 6 and HDPE at these conditions is

η1(γ̇ (1)
w ) = 858 Pa · s η2(γ̇ (2)

w ) = 1386 Pa · s

Hence, there is a mismatch in viscosity with nylon 6 having
a lower value at the wall. Hence, there would be a tendency
for nylon 6 to encapsulate HDPE. However, by keeping the
die land fairly short we can prevent this. The die length will
be chosen to be 20 Ho = 6.51 × 10−2 m.

In order to adopt the coathanger manifold design equa-
tions we must consider that two manifolds are used to feed
two streams to the die (see Fig. 7.57). Hence, the direct appli-
cation of Eq. 7.23 can’t be made. Instead, we use Eq. 7.20
with the value of |G| = 5.9 × 106 Pa/m. Furthermore, we use
Eq. 7.23 with

Q(l)n =
[

Q(1)

W
(W − x)

]n

(7.64)
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FIGURE 7.57 Planar expanded view of coathanger manifolds for
HDPE and nylon 6 for feeding the elliptically shaped annular die in
Design Problem VI.

The expression for R(x) for each manifold now becomes

(R(x)(i))3ni +1 =
−
(

3 + si

π

)ni

2mi

[
Q(i)

W
(W − x)

]ni ( 1

G(dL/dl)

)
(7.65)

For nylon 6 the expression for R(x) becomes (using
dL/dl = −0.087)

R(x)(1) = 3.15 × 10−2 [W − x]0.223 (7.66)

while for HDPE we find

R(x)(2) = 7.75 × 10−2 [W − x]0.211 (7.67)

For example, these equations tell us that the initial openings
of the manifolds (x = 0) should be 2.62 cm for nylon 6 and
6.52 cm for HDPE, which seem reasonable in light of the
relative flow rates.

PROBLEMS

A. Applications

7A.1 Pressure Drop in Segmented Dies: Constant Radius.
Calculate the pressure drop across dies II and IV

in Figure 7.28 and the wall shear rate at the die
exit. Calculate the die swell based on Tanner’s equa-
tion, Eq. 7.4, and compare it with the experimental
value. Use the rheological data given for NPE 953
in Appendix A, Table A.1 at 170 ◦C. The average
velocity at the die exit in all cases is 7.2 mm/s. The
dimensions of die II can be obtained by scaling the
dimensions from die IV.

7A.2 Pressure Drop in Segmented Dies: Tapered Radius.
Calculate the pressure drop across dies I and III
in Figure 7.28 and the wall shear rate at the die
exit. Estimate the die swell using Eq. 7.4. Use the
rheological data given for NPE 953 in Appendix
A, Table A.1. The dimensions can be obtained by
scaling the dimensions from die IV.

7A.3 Scaleup of an Extrusion Die. A die similar to die
III in Figure 7.28 is to be designed so that the final
diameter is 10 mm rather than 2 mm. Determine the
flow rate and the remaining dimensions of the larger
diameter die such that die swell will be the same as
for the smaller diameter die.

7A.4 Pressure Drop Across a Coathanger Die. Determine
the pressure drop across the coathanger manifold and
land for the sheet die discussed in Example 7.1. The
extrusion rate is 200 kg/h. (Note: The pressure drop
in the whole of the manifold system is calculated by
calculating the pressure drop at the center of the die;
that is, y = L(0) and x = 0 in Fig. 7.32.)

7A.5 Profile Extrusion: Square Duct. A square duct is to
be extruded from a profile die, die shape No. 3 in
Figure 7.46. The dimensions of the die are Ri =
10.0 cm and Ro = 10.5 cm. The resin to be used is
HDPE, resin No. 27 in Figure 7.17, and the material
is extruded at 170 ◦C at the rate of 200 kg/h. Using
the rheological data given in Figure 7.17 and the
die swell data given in Figure 7.19, estimate the
dimensions of the duct at 25 ◦C (i.e., include density
changes in your calculations). Assume that no sizing
of the duct occurs as it leaves the die (by sizing it is
meant that no pressure differential is applied to the
duct to expand it on leaving the die).

7A.6 Profile Extrusion: Tubing with an Internal Wall. Tub-
ing is to be extruded from a profile die, die No. 6
in Figure 7.46, using HDPE No. 27 (see Fig. 7.17).
The dimensions of the die are Ri = 10.0 cm, Ro =
10.5 cm, and H = 0.5 cm. The rheological proper-
ties of the resin are given in Table 2.3. The resin
is to be extruded at 170 ◦C at the rate of 200 kg/h.
Die swell data are given in Figure 7.19. Estimate the
dimensions of the tubing including density changes
and assuming no sizing takes place as the extrudate
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FIGURE 7.58 End-fed film die. Melt enters from the side and is
distributed over the width of the die.

leaves the die; that is, no pressure differential is gen-
erated to expand the tubing to its final dimensions.

B. Principles

7B.1 Flow Distribution in an End-Fed Film Die: Newto-
nian Case. In some instances end-fed film dies as
shown in Figure 7.58 are used to produce sheet and
film. Obtain an expression that can be used to deter-
mine the uniformity of flow over the width of the die,
where uniformity is determined by the ratio of the
maximum to minimum flow rates across the width
of the die, by carrying out the following steps:

(a) Show by carrying out a mass balance on a differ-
ential element of thickness �z that the pressure
variation along the manifold is given by the fol-
lowing differential equation:

dp

dz′2
− β2 P = 0 (7.68)

where β2 = 2B3L/3πR4Ld (R is the radius of the
manifold) and z′ = z/Lm.

(b) Solve this equation using the boundary condi-
tions that P = Po at z′ = 0 and dP/dz′ = 0 at z′

= 1 and show that

P

P0
= e−βz′ + e−β sin hβz′

cos hβ
(7.69)

(c) If the uniformity of flow (E) is qx(0)/qx(Lm), that
is, the ratio of the maximum to minimum flow
rates per unit width, then show that

E = P(Lm)

P(0)
= 1

cos hβ
(7.70)

(d) Based on the above equation what design stategy
should one follow to keep E near unity?

7B.2 Analysis of Flow in a T-Die. For a straight T-die as
shown in Figure 7.30 derive an expression which
allows one to evaluate the uniformity of flow across
the die similar to that given in Problem 7B.1 for the
end-fed die. Do this (a) first for the Newtonian case
and (b) then for a power-law fluid. Take the radius of
the manifold as R, the volumetric flow rate as 2Qo,
the die width as W, the die Height as B, and the die
length as Ld.

7B.3 Pressure Drop Along a Flow Path in a Coathanger
Die. Show that the pressure drop along any flow path
in the coathanger die (see Fig. 7.32) is given by the
following expression for a Newtonian fluid:

�P = 8Q0

πL

∫ l

L

l ′μ
R4(l ′)

dl ′ + 12Q0μ

L H 3
y(l) (7.71)

Obtain a similar expression for a power-law fluid.

7B.4 Residence Time of a Fluid Particle Along a Flow
Path. Show that the residence time in a coathanger
die of a particle along any flow path is (note that the
residence time consists of the residence time in the
manifold plus that in the land region)

t(l) = πL

Q0

∫ L

l

R2(l ′)
l ′

dl ′ = L H y(l)

Q0
(7.72)

7B.5 Dimensioning of the Distribution System for a Side-
Fed Mandrel. In Figure 7.36 is shown the distri-
bution system for a cylindrically shaped mandrel.
Considering the fluid to be Newtonian carry out the
following:

(a) Show that the shear rate at the wall of the mani-
fold tube is

γ̇R
4Q0ζ

πR3(ζ )
(7.73)

(b) Show that the wall shear rate in the slit is

γ̇s = 6 Q0

πr H2
(7.74)

(c) Show that the radius is given as a function of ζ
by

R(ζ ) = R0(ζ/π)1/3 (7.75)

(d) Show that y is related to ζ by

y(ζ )

y0
=
(
ζ

π

)2/3

(7.76)
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(e) Show that if the shear rate is to be the same in
both the manifold and the slit (this is the design
criterion) the maximum land length is

y0 = πr2 H 3

R4
0

(7.77)

(f) Show that the maximum radius of the manifold
is

R0 = (r H 2)1/3 (7.78)

(g) Show that the total pressure drop is

�P = 12 Q0μ y0

πr H 3
(7.79)

(h) Derive similar expressions as in parts (a) to (g)
above for a power-law fluid.

7B.6 Dies with a Triangular Cross Section. The velocity
field for the flow of a Newtonian fluid through a die
of triangular cross section is approximately given
by the following expression for the equilateral case
(Kakovris and Freakley, 1988):

vz =
[

3(dp/dz)

4aμ

](
y2 − x2

3

)
(x − a) (7.80)

where the coordinate system and a are defined in
Figure 7.59.

(a) Obtain an expression for the volumetric flow
rate, Q.

Y

X

Z

0

b

X = aY = W
X

Y = -WX

FIGURE 7.59 Cross section of a triangularly shaped die.

(b) Determine expressions for the components of
the rate of deformation tensor.

(c) Determine where γ̇ is a maximum.

7B.7 Equivalent Newtonian Viscosity. It has been sug-
gested by Broyer and co-workers (1975) that the
solutions to non-Newtonian flow problems can be
obtained by using the Newtonian solution with μ

replaced by an equivalent Newtonian viscosity, μ̄.
For isothermal flow between parallel plates carry
out the following:

(a) Show that the flow rate per unit width is given by

q = −2b2

τ 2
w

∫ τw

0
τ γ̇ dτ (7.81)

where b is one-half the die height.

(b) Show that for a Newtonian fluid the flow rate
per unit width can be written as

q = b2τw

3μ
(7.82)

(c) Show that by defining an equivalent Newtonian
viscosity,

μ̄ = τ 3
w

3
∫ τw

0
τ γ̇ dτ

(7.83)

the flow rate of a non-Newtonian fluid can be
calculated with the Newtonian equation in part
(b) with μ replaced by μ̄.

(d) For a power-law fluid find an expression for μ̄
in terms of γ̇w, m, n, and any geometric factors.

7B.8 Multiple Layer Flow Through an Annulus. Obtain
expressions for Q(1) and Q(2) and for findingα similar
to those determined for slit flow in Eqs. 7.55, 7.57,
and 7.58, respectively, for flow of two fluids through
an annulus. Obtain expressions first for Newtonian
fluids and then for power-law fluids.

7B.9 Multiple Layer Flow Through a Slit Die. Obtain
expressions for the flow of three fluids through a slit
die using the notation in Figure 7.51. In particular,
find the velocity field and the volumetric flow rate
for each layer. Confirm your solution by comparing
with the expressions in Eqs. 7.60 and 7.61.

7B.10 Bicomponent Flow in a Wire Coating Die. Derive
expressions for the volumetric flow rate in each layer
and for determining the position where τ rz = 0
(i.e., α) for the flow of two fluids through the annular
region in a wire coating die (see Figs. 2.10 and 2.11)
for each of the following cases:

(a) Newtonian fluids with no imposed pressure
gradient.
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(b) Power-law fluids with no imposed pressure gra-
dient.

(c) Power-law fluids with an imposed pressure gra-
dient.

Take the point where τ rz = 0 as αR and the location
of the interface between the two layers as βR.

7B.11 Flow Distribution in an End-Fed Film Die: Non-
Newtonian Case. Referring to Figure 7.58 and
Problem 7B.1 derive a similar expression for deter-
mining the flow uniformity in an end-fed die for a
power-law fluid. In particular, show that the pres-
sure distribution along the manifold is given by the
following differential equation:

d2 p

d z′2 − β2 p1/n(−dP

d ′z

)1/n−1 = 0 (7.84)

where

β2 = n(1 + 3n)B2 Ls+1
m

2π(1 + 2n)R3+s

(
B

Ld

)s

(7.85)

C. Numerical Problems

7C.1 Multiple Layer Sheet Extrusion. Three layers of
polymer are to be extruded through a sheet die having
a height 0.15 cm, a width of 20 cm, and a length of
4.5 cm. Following the notation in Figure 7.51, lay-
ers 1 and 2 are to be 0.3 cm thick while layer 3 is
to be 0.9 cm thick. The overall flow rate is to be
100 kg/h. The power-law parameters for the three flu-
ids are: layer 1, m = 2.62 × 103 Pa · sn and n = 0.63;
layer 2, m = 1.55 × 103 Pa · sn and n = 1.0; layer 3,

m = 3.73 × 103 Pa · sn and n = 0.61. Determine the
pressure gradient required to produce this flow and
whether the flow will be stable. Assume the densities
of all the fluids are 1000 kg/m3.

7C.2 Pressure Distribution in an End-Fed Die. Solve
Eq. 7.84 in Problem 7B.11 numerically using the
appropriate ISML subroutine (BVPFD) or MATLAB
(bvp4c) for various values of Po (in particular, take
values of 500, 1000, and 2000 psi) for a fluid with
a power-law index of 0.5. With B = 0.05 cm, Lm =
40 cm, R = 5 cm, and Ld = 1 cm determine the flow
uniformity and the volumetric flow rate for these ini-
tial pressures.

D. Design Problems

7D.1 Profile Extrusion Coating: Processing Conditions.
Profile extrusion coating is a process which is a
combination of wire coating and profile extrusion.
This technique is used to generate automotive pro-
tection molding as shown in Figure 7.60a. PVC is
pumped through the cross-head die while a metal
core is fed into the die at a constant velocity. The
flow is basically combined pressure and drag flow.
The shape and dimensions of the flow channel are
shown in Figure 7.60b. The melt and the die temper-
atures are both 150 ◦C. The rheological properties of
PVC are described by the power-law model with m =
5.45 × 104 Pa · sn and n = 0.27. If the linear speed of
the metal core, which is 25 mm in width, is 7 cm/s
and the PVC is to be 2.2 mm thick, estimate the pres-
sure at the inlet to the die and the volumetric flow
rate required to produced the coating. (This problem
is taken from Matsuoka and Takahashi, 1991.)
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FIGURE 7.60 Profile extrusion coating process: (a) schematic of the process and (b) cross-sectional
shape and dimensions of the flow channel. All dimensions are in min. The distances are: D–Exit =
22 mm, B–D along flow channel = 100 mm, A–B = 15 mm. Curved inlet channel: average arc length
is 100 mm and the channel width is 60 mm and the height is 6 mm.
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FIGURE 7.61 Wire coating die design with possible variations
in the dimensions.

7D.2 Selection of a Wire Coating Die Design. Two dies
of design similar to that shown in Figure 7.61 but
having the following dimensions:

Die No. 1 Die No. 2

A 1 cm 1 cm
B 1.5 cm 3 cm
Do 0.85 mm 1.19 mm

are used to coat a 0.5 mm diameter copper wire
with HDPE. (Note: D0 is the diameter of the die
exit.) The wire speed is 200 m/min and the final
diameter of the coated wire is to be 0.85 mm. The
melt and the die temperatures are set at 200 ◦C. By
analyzing the flow in the region starting with the
tapered annular section, determine which die design
would be best. Make your decision based on the
minimum temperature rise due to viscous dissipa-
tion, the minimum amount of mechanical degrada-
tion due to shear stresses, the minimum pressure drop
required across the section, and the smoothest sur-
face. The rheological properties for HDPE are given in
Table 2.3.
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8
EXTRUDERS

DESIGN PROBLEM VII DESIGN OF A
DEVOLATILIZATION SECTION FOR A
SINGLE-SCREW EXTRUDER

A self-wiping corotating twin-screw extruder of dimen-
sions shown in Figures 8.1 and 8.2 has been used success-
fully to remove residual methyl methacrylate (MMA) from
poly(methyl methacrylate) (PMMA). It is desired to use a
single-screw extruder to reduce the level of MMA, which is
initially 0.65% by weight (6500 ppm), to the same level as
possible in the twin-screw extruder. Design a devolatiliza-
tion section for the screw shown in Figure 8.3. In partic-
ular, given that the barrel diameter, Db, is 30 mm and the
channel depth in the devolatilization (DV) section is 5.595
mm, determine the length of the DV section, Le, the num-
ber of flights, and the screw rpm to reduce the level of
MMA to 0.10% by weight. The vacuum pump is capable
of providing a mean pressure of 10 torr (133.3 Pa). Use two
approaches to obtain your design: use dimensional analysis
and the data given in Table 8.1 first, and then use the diffu-
sion theory presented in Section 8.5.2. Compare the results
of the two approaches and specify which solution is most
accurate.

Thermodynamic data for MMA, PMMA, and the solution
are given in Table 8.2 (Biesenberger et al., 1990).

Extruders are the heart of the polymer processing industry.
They are used at some stage in nearly all polymer processing
operations. This chapter is concerned with the basic elements

of extruder design. In Section 8.1 we describe some of the
technological features of extruders. Section 8.2 is concerned
with the design of hoppers, which are often used to feed
polymer pellets to the extruder. In Section 8.3 we address the
principal features of the design of single-screw extruders. In
Section 8.4 we look at some of the most important aspects
of the design of twin-screw extruders. Extruders have other
functions than to melt and pump polymers. In Section 8.5 we
present basic elements concerned with mixing, the removal
of gases (devolatilization), and reactions in extruders. Finally,
in Section 8.6 the solution to Design Problem VII is
presented.

8.1 DESCRIPTION OF EXTRUDERS

There are basically three classifications of extruders: screw
extruders, disk extruders, and ram extruders. The most com-
mon ones are the screw extruders, and for this reason they
are emphasized in this book.

The technology of extruders is extremely vast and with
many variations. It is nearly impossible to describe all the
technology associated with extruders within the limits of this
book. There is no one reference where all this information
can be found, but extruder manufacturers usually can provide
many details. The book by Rauwendaal (1986) does contain,
in addition to a theoretical description of various aspects of
extruders, a significant amount of technological information.
Here we describe the most salient features of single- and
twin-screw extruders.

Polymer Processing: Principles and Design, Second Edition. Donald G. Baird and Dimitris I. Collias.
C© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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FIGURE 8.1 A 34 mm diameter screw used in a corotating twin-screw extruder. The lead angle
and length (in mm) are given for each section. (Data from Biesenberger et al., 1990.)
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FIGURE 8.2 Self-wiping closely intermeshing corotating twin-screw extruder. Flow of material
in double-flighted screw elements (left). Cross section of the barrel showing the pertinent dimensions
(right).
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FIGURE 8.3 A 30 mm diameter screw used in a single-screw extruder. (Data from Biesenberger
et al., 1990.)
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TABLE 8.1 Extrusion Data for the Twin-Screw System

Temperature (◦C) N (rpm) ρQ (kg/h) Fs
a fb t (s) tp (s) t/tp

90 3.44 0.91 0.103 13.3 0.099 134.3
200 30

60
90

2.82
4.14
4.92

0.78
0.82
0.83

0.172
0.126
0.100

36.0
18.0
12.0

0.297
0.127
0.076

122.0
142.0
158.0

230 30
60
90

2.18
3.83
5.80

0.82
0.86
0.84

0.137
0.120
0.120

36.0
18.0
12.0

0.265
0.124
0.084

135.9
145.2
142.9

250 30
60
90

2.84
4.15
5.02

0.83
0.88
0.85

0.180
0.133
0.107

36.0
18.0
12.0

0.306
0.127
0.079

117.6
141.7
152.9

aFs, fractional separation.
bf, degree of fill of channel.

TABLE 8.2 Thermodynamic Data for Monomer, Polymer,
and Solution

Temperature (◦C) ρm (g/cm3) ρp (g/cm3) Ps
◦a (atm) S′b (atm)

200 0.699 1.118 8.99 64.5
230 0.641 1.083 14.85 113
250 0.592 1.061 20.30 164

aPs
◦ is a coefficient in the Flory–Huggins theory for calculating S.

bS′ = 1/S, where S is the Henry’s law constant.

8.1.1 Single-Screw Extruders

The single-screw extruder consists of a metallic barrel and
a rotating screw as shown in Figure 8.4. The screw is a
metallic shaft in which a helical channel has been machined.
Sometimes parallel channels are machined in the shaft at the
same time leading to what are called multiflighted screws.
Typical barrel diameters used in the United States are 0.75,

1.0, 1.5, 2.0, 2.5, 3.5, 4.5, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0,
18.0, 20.0, and 24.0 inches. The length to diameter ratios
(L/D) range from 20 to 30, but the most common ratio is 24.

The main geometrical features of a screw are shown in
Figure 8.5. The diameter of the screw at the tip of the flight
(the flight is the metal that remains after machining the chan-
nel), Ds, is less than the diameter of the barrel, Db, by an
amount 2δf (i.e., Ds = Db − 2δf). δf is on the order of 0.2 to
0.5 mm. Of course, as the screw and barrel wear, δf increases
and the leakage flow over the flights increases to the point
where the screw looses its pumping efficiency. The lead of
the screw, Ls, is the axial distance covered in completing one
full turn along the flight of the screw. The helix angle, φ, is
the angle formed between the flight and the plane normal to
the screw axis. The helix angle at the flight tip can be related
to the lead and diameter as follows:

tan φs = L s/πDs (8.1)

Heated barrel surface

Liquid

cooling
Solid conveying zoneMelting, pumping, and mixing zone Pumping

and mixing

zone

1

2 43

FIGURE 8.4 Single-screw plasticating extruder. Four zones are illustrated: hopper, solids feed,
melting, and pumping.



238 EXTRUDERS
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FIGURE 8.5 Geometry of a screw.

The helix angle is a function of the diameter and hence is
different at the base of the flight than at the flight tip. The
radial distance between the barrel surface and the root of
the screw is the channel depth. The main design variable of
screws is the channel depth profile along the helical direction
(this is taken as the z direction as discussed later). The width
of the channel, W, is the perpendicular distance between the
flights and is given by

W = Ls cosφ − e (8.2)

where e is the flight width. We note here that W varies with
radial position, because φ does. Finally, the helical distance
along the channel, z, is related to the axial distance, l, by

z = l

sinφ
(8.3)

and it is also a function of the distance from the root of the
screw.

The most frequently used extruder is a plasticating
extruder. Referring back to Figure 8.4, polymer pellets are fed
to the extruder by means of a hopper (sometimes the pellets
are metered in). The gravitational flow of solids in the hopper
is rather complex and will not be covered here. The pellets
are compressed in the channel of the screw and then dragged

forward by friction between the pellets and the barrel. Heat
generated by sliding friction at the barrel surface and trans-
ferred from the heated barrel causes the pellets to melt. The
melt film is scraped away and collects at one end of the chan-
nel. The solid bed width decreases as the solid plug advances
along the screw channel until the solid is completely melted.
The melt is pressurized by means of a drag flow mechanism.
The pressure generated in the extruder and the performance
of the extruder are significantly affected by the die geometry.

Although the main function of the single-screw extruder
is to melt and pump polymer, there are a number of other
applications. Extruders can be used to remove volatiles such
as water or trace amounts of monomers. They can be used
to generate foamed polymers as the temperature and pres-
sure history can be controlled. They also serve as continuous
mixing and compounding devices. Hence, extruders have a
wider range of applications than other pumping devices.

8.1.2 Twin-Screw Extruders

Twin-screw extruders consist of two screws mounted in a
barrel having a “figure eight” cross section. The figure eight
cross section comes from the machining of two cylindrical
bores whose centers are less than two radii apart. Twin-screw
extruders are classified by the degree to which the screws
intermesh and the direction of rotation of the screws. In Fig-
ure 8.6 are shown three types of screw arrangements. In part
(a) is shown an intermeshing counterrotating type; in part
(b) is shown a corotating intermeshing type; and in part (c)
is shown a nonintermeshing counterrotating type. In Fig-
ure 8.7a is shown an intermeshing, self-wiping, corotating
twin-screw extruder. Not all the elements of a twin-screw
extruder are screw elements as shown in Figure 8.7b, and
kneading elements may also be used. Probably the most fre-
quently used twin-screw extruders are the corotating inter-
meshing and the counterrotating types.

There are two main areas where twin-screw extruders are
used. One is in the processing of polymers that are difficult
to process, because they don’t flow easily, and they degrade

(c)(b)(a)

FIGURE 8.6 Various types of twin-screw extruders: (a) counterrotating intermeshing elements,
(b) corotating intermeshing elements, and (c) counterrotating nonintermeshing elements.
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(a) (b)

FIGURE 8.7 Corotating screw extruder. (a) self-wiping intermeshing screw elements. (b) self-
wiping intermeshing kneading block elements.

readily. For example, they are used in the profile extrusion
of PVC compounds, which are thermally sensitive and don’t
flow well. The other is for specialty processing operations
such as compounding, devolatilization, and chemical reac-
tions. In the case of profile extrusion, counterrotating closely
intermeshing extruders are used, because their positive con-
veying characteristics allow the machine to process hard-to-
feed materials (powders, rubber particles, etc.) and yield short
residence times and a narrow residence time distribution. In
the case of specialty operations, high speed intermeshing
corotating extruders are often used, but a wide variety of
other designs are also used.

Although the differences between single- and twin-screw
extruders will be more apparent by the end of the chap-
ter, a few comments will be made now. One of the major
differences is the type of transport that takes place in the
extruder. Material transport in a single-screw extruder is by
drag-induced transport of the solid particles and the molten
material. In particular, friction between the barrel walls and
the solid pellets advances the polymer in the solids-conveying
zone, while viscous drag advances the molten polymer. On
the other hand, the transport in an intermeshing twin-screw
extruder is to some degree positive displacement. The degree
of positive displacement depends on how well the flight of
one screw closes the opposing channel of the other screw.
Closely intermeshing counterrotating twin-screw extruders
provide the most positive displacement. However, some leak-
age will occur, which reduces the degree of positive convey-
ing that can be achieved.

The flow of material in twin-screw extruders is very com-
plex, and the flow patterns are difficult to predict mathe-
matically. For this reason the simulation of processes in
twin-screw extruders is not as well developed as it is for
single-screw extruders. It is therefore difficult to predict the
performance of a twin-screw extruder based on geometri-
cal features, polymer properties, and processing conditions.
Hence, it is difficult to carry out accurate design calcula-
tions. For this reason twin-screw extruders are constructed

in modules in which the screw and barrel elements can be
changed. The screw design can be changed by changing the
sequence of the screw elements. Hence, much of the design
of twin-screw extruders is done on an empirical basis. Some
of the various types of elements that can be used are shown
in Figure 8.8. One can use a combination of screw elements
and kneading blocks to accomplish a given operation.

The sizes of twin-screw extruders range from 25 to
244 mm (this is the diameter of one of the barrels). The
barrel-length-to-diameter ratio, L/D, ranges from 39 to 48.
The length can be altered as required for most twin-screw
extruders because of the modular construction.

8.2 HOPPER DESIGN

Most extruders are of the plasticating type in which solid
pellets are fed to the extruder where they are converted to
melt and pressurized. The extruder is fed by solids that enter
the extruder from a hopper (which is a metallic cylinder with
a converging section as shown in Fig. 8.9) or are metered in.
The flow patterns in the hopper are complex and are still the
subject of research. Our intentions here are to estimate the
pressure at the base of the hopper as this value is needed to
calculate the pressure rise in the extruder.

To understand how to calculate the pressure at the base
of the hopper, we consider the pressure exerted by solids on
the base of a cylindrical container as shown in Figure 8.10.
For a cylinder filled with fluid it is known that the static
pressure variation is P = ρg(H − h) and is the same through
the cross section at any position h. For granular solids the
pressure distribution is not isotropic, because of the ability
of the solids to sustain shear stresses. We now perform a
force balance on the differential element of thickness, dh:

Aρbg dh + (P + dP)A − PA + (Cw + fw′KP)C dh = 0

(8.4)
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Pushing flight profiles, triple-flighted Pushing flight profiles, double-flighted (A-version)

Mixing elementsKneading block

FIGURE 8.8 Photograph of various types of screw elements commonly used in corotating twin-
screw elements. (Courtesy of Berstorff Corp., Charlotte, NC.)

where ρb is the bulk density, A is the crosss-sectional area, C
is the wetted circumference, and K is the ratio of compressive
stress in the horizontal direction to compressive stress in the
vertical direction (note that for a fluid K = 0, but because a
solid can sustain shear stresses, the pressures are different),
Cw is the measure of adhesion of the solids to the wall, and
f is the coefficient of friction between the pellets and the
wall. The following differential equation is obtained from
Eq. 8.4:

dP

dh
= C(Cw + fw′KPC)/A + Aρbg (8.5)

which can be integrated to give

P = PH exp

[
fw′CK(h − H )

A

]

+ (Aρbg/C) − Cw

fw′ K

{
1 − exp

[
fw′ CK(h − H )

A

]}
(8.6)

where PH is the pressure at H (in this case pa). With Cw =
0 and taking the pressures relative to pa (this is called the
gauge pressure) the pressure at the base of the cylinder is

P0 = ρbgD

4 fw′ K

{
1 − exp

[
4 fw′ K (−H )

D

]}
(8.7)

where D is the diameter of the cylinder. In the limit as H goes
to infinity we obtain

P0,max = ρbgD

4 fw′ K
(8.8)

Hence, most of the weight is supported by friction between
the pellets and the metal walls. The maximum pressure is
proportional to the bin diameter and inversely proportional
to the coefficient of friction at the wall. Whereas the pressure
at the base of a cylindrical bin will continue to increase as H
increases for a fluid, for solids it will reach a limiting value.

A few comments need to be made about measuring K, Cw,
and f. The device used to obtain these parameters is similar
to a parallel disk rheometer used to obtain fluid properties
except that a large compressive stress can be applied to the
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FIGURE 8.9 Typical hopper design consisting of cylindrical and
conical sections.

H
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KP

P

FIGURE 8.10 Cylindrically shaped hopper partially filled with
granular solids. The nonisotropic pressure distribution is described
by the parameter K.

solid material. The torque required to turn the upper plate is
proportional to f. Likewise taking measurements as a function
of applied pressure to the upper plate provides K and Cw. K
is obtained from the effective angle of friction, δ, using the
following equation:

K = 1 − sin δ

1 + sin δ
(8.9)

Most hoppers consist of cylindrical and conical sections as
shown in Figure 8.9. Under mass flow conditions the pressure
distribution is given as (Walker, 1966)

P = (h/h0)a P0 + ρbgh

a − 1

[
1 − (h/h0)a−1

]
(8.10)

where P0 is the pressure at h0, which is the pressure at the
base of the vertical section of the hopper, and a is given for
conical and wedge shaped hoppers, respectively, as

a = 2B ′ D∗

tanα
(8.11)

and

a = B′ D∗

tanα
(8.12)

α in Eqs. 8.11 and 8.12 is one-half the hopper angle and D*
is the distribution function taken as 1.0. B′ is given by

B ′ = sin δ sin(2α + κ0)

1 − sin δ cos(2α + κ0)
(8.13)

where κ0 is

κ0 = βw + arcsin

(
sinβw

sin δ

)
arcsin >

π
2

(8.14)

where βw is the wall angle of friction (i.e., βw = tan−1 f).
The coverage of this topic was brief, to say the least, but

it is not within our goals to give a lengthy derivation. Further
details can be found in the book by Tadmor and Gogos (1979,
2007) and in the original paper by Walker (1966). We use the
following example to illustrate the calculation of the pressure
at the base of a hoppper, which is required to determine the
pressure at the inlet of an extruder.

Example 8.1. Pressure at the Base of a Hopper

For a hopper of the design shown in Figure 8.9 with h0 =
0.190 m, h1 = 0.0635 m, α = 45◦, and a cylinder diameter of
0.381 m, calculate the pressure at the base of the hopper for
LDPE pellets. The bulk density, ρb, is 595 kg/m3, f = 0.3,
and δ = 33.7◦.
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Solution. P0 is calculated using Eq. 8.8. To use Eq. 8.8 we
must assume that sufficient height of solids are available to
give us 99% of the maximum pressure. We first calculate K
using Eq. 8.9 and δ:

K = 1 − sin(33.7◦)

1 + sin(33.7◦)
= 0.286

Using this value and those given in the problem we find P0

to be

P0 = (0.99)(595)(9.806)(0.381)/(4)(0.3)(0.286)

= 6.41 × 103 N/m2

Before using Eq. 8.10 to calculate P we must determine a
using Eq. 8.11, which contains the parameters κ0 and B′:

κ0 = 16.7 + arcsin(sin 16.7/ sin 33.7) = 47.9

B ′ = sin(33.7) sin((2)(45) + (47.9))

1 − sin(33.7) cos((2)(45) + (47.9))
= 0.2635

a = (2)(0.2635)

tan(45◦)
= 0.527

We now calculate the pressure at the base of the hopper, P1:

P1 = (0.0635/0.190)0.527(6.412 × 103)

+ [(595)(9.806)(0.0635)/(0.527 − 1)]

× (1 − (0.0635/0.190))−0.473

= 3.599 × 103 + 532 = 4.131 × 103 N/m2

8.3 PLASTICATING SINGLE-SCREW
EXTRUDERS

Polymer solids (pellets or powder) enter the throat of the
extruder either through the hopper or are metered in by gravi-
metric or auger type feeders. From this point they are trans-
ported through the extruder first by frictional drag and then
by viscous drag. We first describe solids transport, then melt-
ing of the compacted solids, and finally the pumping of the
melt.

8.3.1 Solids Transport

To facilitate an understanding of how particulate solids are
transported through a single-screw extruder we start with a
model for drag-induced flow in straight channels. We then
summarize the equations for flow of particulate solids in
the single-screw extruder. We next add heat transfer to the
transport of the particulate solids.

A

V0

H

W

z

y

x

FIGURE 8.11 Rectangular channel filled with granular solids
with a plate moving at angleφ relative to the down channel direction.

We consider the transport of particulate solids in a rectan-
gular channel as shown in Figure 8.11. Our goal is to deter-
mine the mass flow rate and pressure rise as a function of the
plate velocity and friction coefficient between the plate and
pellets, fw1. Although it would be desirable to somehow treat
this situation in a manner similar to that for fluids in which
we solve the equation of motion along with an appropriate
constitutive equation, it is uncertain as to what constitutive
equation best describes the flow of granular solids. For this
reason we consider the particulate solids to be a plug of den-
sity ρb dragged along by the moving upper plate through
Coulomb friction. The upper plate moves with a velocity V0

making an angle φ with the down channel direction (i.e., the
z direction). The tangential force exerted on the solid plug is
in a direction that the plate makes relative to the moving plug
as shown in Figure 8.12. The velocity of the plate relative to
the solid bed, vr, is

vr = V0 sinφδx − V0 cosφδz − uδz (8.15)

W

u

V0

FIGURE 8.12 Motion of the plate relative to the motion of the
solid bed. The plate moves at an angle φ′ relative to the solid bed.
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From Eq. 8.15 we find that

tan(φ + φ′) = V0 sinφ

V0 cosφ − u
(8.16)

Using a trigonometric identity for tan(φ + φ′) we obtain the
following expression:

tanφ′ = u sinφ

V0 − u cosφ
(8.17)

Equation 8.17 contains two unknowns, u and φ′, and hence
an additional equation must be derived.

The additional equation is obtained by performing a
steady-state force balance in the z direction on a differential
element of thickness �z (see Fig. 8.12). The contributions
to the force balance include the forces due to pressure and
the frictional forces at the upper and lower plates. The force
balance is

P|zWH − P|z+�zWH + KPWHf w1 cos(φ + φ′)�z

− KPWHf w2�z = 0 (8.18)

In this equation fw1 and fw2 are the friction coefficients
between the upper plate and lower plates, respectively, and
the solid bed and K is the anisotropy in the stress distribu-
tion (see Eq. 8.9). The contribution to the force balance from
the side walls has been neglected in this case. On dividing
through by the volume of the element and taking the limit
as �z goes to zero, the following differential equation is
obtained:

− dP

dz
+ PK( fw,1 cos(φ + φ′) − fw,z)/H = 0 (8.19)

This equation is integrated using the initial condition that at
z = 0, P = P0, to give

P = P0 exp
{⌊

K fw,1 cos(φ + φ′) − K fw,z
⌋

z/H
}

(8.20)

Equations 8.17 and 8.20 can be solved for the pressure
increase and the mass flow rate (i.e., uWHρb). Hence, we
see that the lower the flow rate the higher the pressure rise,
and it will rise exponentially with distance.

We have neglected the resistance to flow offered by the
side walls. A force balance in the x direction allows us to
determine the normal force exerted by the wall on the solid
plug. Hence, there will be an increased frictional force pro-
duced by the side wall, which will reduce the conveying
capacity for a given pressure rise.

We next consider the solids conveying capacity of a single-
screw extruder. The rectangular channel model cannot be
used to describe the solids conveying in a single-screw
extruder, because of the presence of deep channels, which

make curvature effects significant. As we don’t intend to red-
erive the equations for the single-screw extruder, the devel-
opment for the rectangular channel should serve to facilitate
the following discussion.

The model of the feed section of a single-screw extruder
is due to Darnell and Mol (1956) and is for the most part
similar to the development given for the rectangular channel.
The assumptions are as follows:

1. The particulate solid bed is treated as a continuum.

2. The channel depth is constant.

3. The flight clearance is neglected.

4. Plug flow exists.

5. The channel is full so that all surfaces are in contact
with the solid. (When the channel is not full, this is
referred to as starve feeding.)

6. The stress distribution in the bed is isotropic.

7. The density is constant.

8. Gravitational forces are neglected.

9. Isothermal conditions hold. (This will be relaxed later.)

We first relate the mass flow rate to the angle φ′, which is
the angle the relative velocity vector makes with the barrel
velocity. A cylindrical plug (or a doughnut with a bite taken
out of it) is shown in Figure 8.13. The mass flow rate, G, is
the product of the plug velocity in the axial direction, vpl, ρb,
and the cross-sectional area of the plug and is given by

G = Vplρb

[
π
4

(
D2

b − D2
s

)− eH

sinφ

]
(8.21)

where the second term on the right-hand side of the equation
is where the flight cuts across the doughnut shaped plug. Sin
is the sine of the average helix angle. Db is the diameter of the
barrel opening and Ds = Db − 2H. In Figure 8.13 the screw is
shown to be rotating in a clockwise direction. It is customary

e

Flight

Screw

Barrel Section of polymer plug

V

V

pl

pz

bV
p

FIGURE 8.13 Cylindrically shaped solid plug.
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to attach the coordinates to the rotating screw so the velocity
vectors are shown relative to the rotating screw. The plug
then has velocity components in the tangential direction, Vpθ ,
and in the down channel direction, Vpz. Following arguments
similar to those used in the previous section we can relate Vpl,
Vb, and the angle φ′, which is the angle the relative velocity
vector makes with the apparently rotating barrel (remember
we have attached the axis to the rotating screw so if you
are riding around with the screw, it looks like the barrel is
rotating relative to you), as follows:

Vpl = Vb
tanφ′ tanφb

tanφ′ + tanφb
(8.22)

where Vb = πNDb and N is the angular velocity of the screw
in revolutions per second. We next substitute Eq. 8.22 into
Eq. 8.21 to obtain

G = π2NH Db(Db − H )ρb
tanφ′ tanφb

tanφ′ + tanφb

×
[

1 − e

π(Db − H ) sinφ

]
(8.23)

This equation contains two unkowns, φ′ and G, and hence
we need an additional equation.

The additional equation is obtained by carrying out force
and torque balances on an element of the solid bed as shown
in Figure 8.14. For an isotropic stress distribution these forces
are as follows:

Barrel frictional force F1 = fbPWbdzb

Force due to pressure difference F6 − F2 = HW dP

Normal force at trailing flight F8 = PH dz

Normal force at leading flight F7 = PH dz + F∗

Frictional force at lead flight F3 = fs F7

Frictional force at trailing flight F4 = fs F8

Frictional force at screw F5 = fsPWsdzs

(8.24)
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FIGURE 8.14 Element of the solid bed showing various forces
acting on it.

where fs and fb are the friction coefficients between the poly-
mer and the screw and barrel, respectively. Force and torque
balances are then carried out to obtain the following expres-
sions:

cosφ′ = Ks sinφ′ + M (8.25)

where

Ks = D

Db

[
sinφ + fs cosφ

cosφ − fs sinφ

]
(8.26)

and

M = 2H

Wb

fs

fb
sinφb

(
Ks + D

Db
cot φ

)

+ Ws

Wb

fs

fb
sinφb

(
Ks + Ds

Db
cotφs

)

+ W

Wb

H

zb

1

fb
sinφ

(
Ks + D

Db
cot φ

)
ln

(
P2

P1

)
(8.27)

where D = 1
2 (Db + Ds) and P1 is the initial pressure at z = 0

and P2 is the pressure at any down channel distance, Zb. For a
given flow rate φ ′ is obtained from Eq. 8.23, M is calculated
from Eq. 8.25, and the pressure rise is then determined from
Eq. 8.27.

We next calculate the power consumed in the solids con-
veying section. The power input through the barrel is obtained
from

Pw =
∫

Fb · Vbd A =
∫

F1Vb cosφ′Wbd Zb (8.28)

Substituting into Eq. 8.28 for F1 using Eq. 8.24 and P using
Eq. 8.27, one obtains (Tadmor and Broyer, 1972)

Pw = πNDbWb Zb fb cosφ′ P2 − P1

ln(P2/P1)
(8.29)

Certainly there are questionable assumptions in the the-
ory of solids conveying. The assumption of an isotropic stress
distribution was addressed, but it is not clear that the over-
all predictions of the model were drastically improved by
including an anisotropic stress distribution. In fact, when
one realizes how sensitive the predictions of the model are to
the value of the friction coefficients and how difficult it is to
accurately measure these quantities, then one will understand
that improvements of this nature may be of little value.

On the contrary, the assumption of constant temperature
must be modified, because the solid plug must increase in
temperature as it advances along the screw. Eventually the
surface of the solid bed must reach the melting temperature
of the polymer. The heat is supplied through the heated barrel
and frictional heating at the solid and barrel interface. The
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nonisothermal analysis of the solids conveying section is due
to Tadmor and Broyer (1972). The total power introduced
through the shaft is partly dissipated into heat at the barrel,
flights, and the root of the screw surfaces and is partly used to
generate pressure. Most of the power, however, is dissipated
into heat at the barrel surface. The heat generated per unit of
barrel surface is given by

qb = fbπNDb
sinφb

sin(φb + φ′)
P2 − P1

ln(P2/P1)
(8.30)

The heat is conducted into the solid plug and the barrel
walls, if the barrel walls are not heated. Tadmor and Broyer
(1972) neglected curvature in the system and treated the
conveying of the solids as in a rectangular channel as shown
in Figure 8.11. Assuming conduction occurs only in the y
direction and with bulk flow in the z direction, the equation
of energy leads to the following differential equation for the
temperature distribution:

ρbC p,pVpz
∂Tp

∂z
= kp

∂2Tp

∂y2
(8.31)

where Tp is the temperature in the plug and Cp,p and kp

are the heat capacity and the thermal conductivity, respec-
tively, of the plug. Equation 8.31 can be converted to the
one-dimensional transient heat conduction equation just as
done in Chapter 5 by replacing dz/Vpz by dt:

∂Tp

∂t
= αp

∂2Tp

∂y2
(8.32)

where αp is the thermal diffusivity of the solid bed. Vpz is
the velocity of the plug in the down channel direction and is
obtained from the equations derived for the isothermal case.
The approach here is similar to that used in the forced convec-
tion approximation where the velocity field is assumed to be
unaffected by changes in temperature. Since heat is assumed
to be conducted away through the barrel, the temperature
distribution in the barrel, Tb(y, t), is also required. However,
since the thermal conductivity of the barrel is at least 100
times higher than the polymer, the temperature distribution
is assumed to be linear. The following initial and boundary
conditions are used:

I.C: at t = 0, Tp(y, t) = T0 (8.33)

B.C.1: at y = H, Tp = Tb (8.34)

The additional boundary condition required to solve Eq. 8.3-
18 comes from an energy balance at the interface between the
barrel and the solid bed where it is assumed that the frictional
heat is conducted away into the barrel and the solid plug:

B.C.2: at y = H, qb = −Kp
∂Tp

∂y
+ Kb

∂Tb

∂y
(8.35)

Tadmor and Broyer (1972) developed a numerical scheme to
solve for the temperature profile in the solid bed.

In Problem 8C.2 the IMSL subroutine IVPAG or the MAT-
LAB function pdede is used to determine the temperature
profile in the solid bed. Two approaches are used in this
problem. The first is to assume that the barrel is heated and
the solid bed is heated by conduction of heat from the bar-
rel. In the other approach the heat generated by friction is
assumed to be conducted into the solid bed only, which may
be the case when the barrel is heated to a temperature in the
range of the melting point of the polymer.

Properties for a few polymers required in the solids
conveying model are presented in Appendix B. Here it is
observed that the friction coefficient between the polymer
and steel is relatively independent of temperature. As the
temperature approaches the melting point the friction coeffi-
cients tend to increase, but over a wide range of temperatures
fb is nearly constant. Hence, it seems justifiable to use the
mass flow rate and pressure rise calculated by means of the
isothermal model in the nonisothermal model.

Example 8.2. Solids Conveying of LDPE
(Tadmor and Gogos, 1979)

LDPE is extruded in a single-screw extruder having a diam-
eter of 6.35 × 10−2 m. The square pitched screw (i.e., Ls =
Db) is 26.5 turns long with a feed section of 12.5 turns and
channel depth of 9.398 × 10−3 m, a transition section of
9.5 turns, and a metering section 3.22 × 10−3 m deep. The
flight width is 6.35 × 10−3 m, and the flight clearance is
negligible. The screw speed is 60 rpm and the mass flow rate
is 67.1 kg/h. The pellets enter the extruder at 25 ◦C from
the hopper described in Example 8.1. The hopper discharge
opening is 0.127 m and occupies the first two turns of the
screw. The barrel is maintained at 149 ◦C and melting starts
3 turns from the beginning of the flights. The friction coeffi-
cients between the polymer and the barrel and the screw are
0.45 and 0.25, respectively. Calculate (a) the pressure at the
end of the solids conveying zone (i.e., over 1 turn), (b) the
power consumption in the solids conveying zone, and (c) the
energy per unit surface area dissipated into heat.

Solution. We first compute some geometrical values
required in the solids conveying model:

φb, helix angle at barrel surface 17.65◦

φ, mean helix angle 20.48◦

φs, helix angle at root of screw 24.33◦

W , mean channel width 5.314 × 10−2 m
Wb, channel width at barrel surface 5.416 × 10−2 m
Ws, channel width at root of screw 5.151 × 10−2 m
l, axial length 10.5 turns, 0.666 m
Z , mean helical length 2.270 m

We next calculate the pressure rise from Eq. 8.27. To
calculate P2/P1 we determine φ′ from Eq. 8.22, which in



246 EXTRUDERS

turn is used to calculate M and Ks. The axial velocity of the
solid plug is

Vpl = 61.7/3600

(595)

(
(π/4)[(0.065)2 − (0.0447)2]

− (0.00635)(0.009398)/ sin(20.48◦)

)

= 0.02195 m/s

The velocity of the barrel surface Vb = πNDb = 0.19995 m/s,
and hence from Eq. 8.22 we find

tanφ′ = tanφb

(Vb/Vpl) tanφb − 1
= 0.1261

and φ′ is 7.57◦. From Eq. 8.26 we find Ks:

Ks = (0.0541)

0.0635

sin(20.48) + (0.25) cos(20.48)

cos(20.48) − (0.25) sin(20.48)
= 0.5859

and from Eq. 8.25

M = cos(7.57) − 0.5859 sin(7.57) = 0.9141

The pressure rise, P2/P1, over one turn of the solids con-
veying section (Zb = 0.0635/sin 17.6◦ = 0.209 m), which
starts just after the two flights occupied by the hopper throat
and ends with the heating of the barrel, is obtained from

0.9141 = (2)
(0.009398)

(0.05416)

(0.25)

(0.45)
sin(17.65)

×
[

(0.5859) + (0.0541)

(0.0635)
cotan(20.48)

]

+ (0.05151)

(0.05416)

(0.25)

(0.45)
sin(17.65)

×
[

(0.5859) + (0.0447)

(0.0635)
cotan(24.33)

]

+ (0.05314)(0.009398) sin(20.48)

(0.05416)(0.209)(0.45)

×
[

(0.5859) + (0.0541)

(0.0635)
cotan(20.48)

]
ln

P2

P1

= 0.1676 + 0.34328 + 0.09813 ln
P2

P1

and this leads to

P2/P1 = 60.9

P1 is the pressure at the base of the hopper, which was calcu-
lated in Example 8.1. Thus, P2 is 2.52 × 105 Pa (36.5 psi).
The solids conveying zone could in fact extend another turn
or two until the surface reaches the melting point, Tm, of

LDPE (135 ◦C). The results indicate that the solids convey-
ing zone is operating properly and that higher outputs could
be obtained before the solid bed no longer fills the channel.
The condition in which the channel is only partially full is
referred to as “starve feeding” and is dealt with in Problem
8B.4. The power input through the barrel is obtained from
Eq. 8.29 and is

Pw = (π)(1)(0.0635)(0.05416)(0.209)(0.45) cos(7.570)

((2.52 × 105) − (4.131 × 103))/ ln(60.9) = 60.8 W

The power dissipated into heat per unit of surface area is
obtained from Eq. 8.30 and is

qb = Pw(0.1995)(0.45)(sin(17.650))/ sin(17.65 + 7.57)

= 0.0639Pw

8.3.2 Delay and Melting Zones

The basic model for the conversion of the solid bed to melt is
due to Tadmor (Tadmor and Klein 1970) and is based on his
observations of the state of material along the screw chan-
nel. According to Tadmor’s observations for most polymer
systems a melt film first appears at the barrel surface as the
result of heat generation due to friction and heat conducted
from the heated barrel. Once the melt film forms the convey-
ing mechanism changes at the barrel surface, where viscous
drag is now dominant, but frictional drag is still important
at the root of the screw and the flights. The thickness of the
melt film continues to increase as the plug proceeds down
the channel until it attains a value of several times the flight
clearance. At this point, the melt film thickness stays nearly
constant and the melt is scraped off and accumulated at the
pushing flight. The axial distance from where the melt film
first appears until melt begins to accumulate at the pushing
flight is referred to as the delay zone.

There appears to be no reliable mathematical model for
predicting the length of the delay zone. Tadmor and Klein
(1970), based on limited experimental data, found an empir-
ical correlation between the number of turns (i.e., length of
the delay zone) and a dimensionless parameter �, where �

is defined later in Eq. 8.64 and represents the ratio of the rate
melting to the mass flux of the solid bed in the channel. This
relation is

N ′ = 0.008

(
1

�

)
(8.36)

where N′ is the number of turns. Although this relation was
obtained from data for a limited number of polymers, it is all
that is available for estimating the length of this zone at the
present time.
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FIGURE 8.15 Tadmor melting model.

Based on visual observations, Tadmor and Klein (1970)
proposed a melting mechanism as described in Figure 8.15.
The melt film is scraped off and accumulates at the pushing
flight. The width of the solid bed, X, decreases as one pro-
ceeds down the channel. The solid is pushed inward, and at
the melt and solid interface the bed appears to move upward
with a velocity, Vsy. The melt film thickness, δ, was observed
to change along the width of the channel but only slightly,
and it did not appear to change significantly along the down
channel direction.

The goal of a model of the melting section is to determine
the solid bed width, X, as a function of the down channel
distance, z. For the situation just described and as shown in
Figure 8.15, the basic idea is to determine the temperature
distribution in the melt film and solid bed. Then an energy
balance is performed at what is assumed to be a distinct
melt–solid interface. The heat flowing into the interface is
conducted into the solid bed and used to change the solid
bed to melt (enthalpy associated with a phase change). The
difference between melting in a single-screw extruder and
the situation described in Section 5.3.5 is that the melt film
is continually dragged away. Hence, not only does the melt
film remain at nearly the same thickness, but the temperature
does not change along the channel direction. Furthermore,
there is also the possibility of a significant contribution to
melting from viscous dissipation.

Based on observations, Tadmor and Klein made the fol-
lowing assumptions:

1. Steady-state conditions are reached in the extruder.

2. Melting takes place only at the barrel surface. (In some
cases melting has been observed at the root and flights
of the screw (Rauwendaal, 1986, p. 271).)

3. The solid bed is homogeneous, continuous, and
deformable.

4. Physical and thermophysical properties are assumed
constant.

5. The solid bed–melt film interface is assumed to be a
distinct interface existing at the melting point, Tm, of
the polymer.

The first step in determining the solid bed profile is to
determine the temperature distribution in the melt. Referring
back to Figure 8.15 we now develop the model. First, we
locate a set of axes at the melt–solid interface at the trailing
flight (right side of Fig. 8.15). Next, we make the follow-
ing postulates for the velocity and temperature fields in the
melt film:

vx = vx (y), vz = vz(y), vy = 0, and T = T (x, y)

(8.37)

and the solid bed:

Ts = Ts(y) (8.38)

The solid bed is assumed to move as a plug with down channel
velocity of Vsz, where

Vsz = G/(ρsHW) (8.39)

and is the same as solid bed velocity at the beginning of the
melting zone, Vpz (the thickness of the melt film has been
neglected). For the melt film, the equations of motion and
energy are

∂τyx

∂y
= 0 (8.40)

∂τyz

∂y
= 0 (8.41)

ρCpvx
∂T

∂X
= +k

∂2T

∂y2
+ k

∂2T

∂x2
− τyx

∂vx

∂y
− τyz

∂vz

∂y
(8.42)
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To solve this set of equations a constitutive relation is needed,
and the power-law empiricism for viscosity is used here
for convenience. The equations are coupled because of the
dependence of viscosity on temperature. However, the veloc-
ity field can be obtained independent of the energy equation.
It is the energy equation that is coupled to the equations of
motion because of the viscous dissipation terms. The velocity
field is obtained by integrating Eqs. 8.40 and 8.41 after sub-
stituting in the GNF model and using the following boundary
conditions:

B.C.1: at y = 0, vx = 0

B.C.2: at y = 0, vz = Vsz

B.C.3: at y = d, vx = Vbx

B.C.4: at y = d, vz = Vbz

(8.43)

Because of the homogeneous nature of Eqs. 8.40 and 8.41 the
viscosity function drops out, and the velocity field becomes

vx =
(

Vbx

δ

)
y (8.44)

vz =
(

Vbz − Vsz

δ

)
y + Vsz (8.45)

The difficulty comes in solving the energy equation, since η
is a function of temperature and because of the term on the
left-hand side of this equation. One should remember this
term is associated with the transport of heat by convection
and if viscous dissipation is large, this term will be important.
Tadmor and Klein (1970) assumed a parabolic temperature
distribution and initially neglected the conduction and con-
vection terms in the x direction. Rather than assume a tem-
perature distribution (see Problem 8B.3), we use the forced
convection assumption. Hence, Eq. 8.42 can be integrated
directly (provided we drop the convection term) to obtain the
following temperature distribution in the melt:

T = �

2km
(y2 − yδ) + y

(
Tb − Tm

δ

)
+ Tm (8.46)

where � is the viscous dissipation term given by

�v = m

[(
Vbx

δ

)2

+
(

Vbz − Vsz

δ

)2
](n+1)/2

(8.47)

This temperature profile was obtained using the following
boundary conditions:

B.C.1: at y = 0, T = Tm

B.C.2: at y = δ, T = Tb
(8.48)

where Tb is the barrel temperature.

The temperature distribution in the solid bed is determined
next. Assuming that Ts = Ts(y), then the energy equation
becomes

ρsC psVsy
∂Ts

∂y
= k

∂2Ts

∂y2
(8.49)

The boundary conditions used in solving this equation are

B.C.1: at y = 0, Ts = Tm

B.C.2: at y = −∞, Ts = T0
(8.50)

where T0 is the temperature of the bed entering the melt-
ing zone. B.C.2 actually presents a problem as there is a
temperature gradient in the solid bed and the bed tempera-
ture may change as it moves down the channel. Conditions
under which one should consider changes in the bed temper-
ature along the channel are discussed by Rauwendaal (1986).
Using the boundary conditions given in Eq. 8.50, the tem-
perature profile becomes

Ts = (Tm − T0) exp

(
yVsy

αs

)
+ T0 (8.51)

The final step in the determination of the melting rate is
the energy balance at the melt–solid interface. The energy
balance is given by

qy|y=0 − qsy|y=0 − Vsy�H f = 0 (8.52)

One now substitutes the temperature distributions given in
Eqs. 8.46 and 8.51 into Eq. 8.52 to obtain

�vδ

2
+ km

(Tb − Tm)

δ
= [C ps(Tm − T0) + �H f

]
ρsVsy

(8.53)

Equation 8.53 contains two unknowns, δ and vsy, and hence
an additional equation is required. Using the fact that the rate
at which the solid is converted to melt at the interface must
equal the rate at which it accumulates at the leading flight,
one obtains the following equation:

w L (z) = ρsVsy X =
∫ δ

0

Vbx

δ
y dy = Vbxδ

2
(8.54)

where X is the bed width at any z distance down the channel
and wL(z) is the rate of melting. For the Newtonian case �v

becomes

�v = μ

δ2

[
V 2

bx + (Vbz − Vsz)2
]

(8.55)
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and hence one finds the following expressions for δ,

δ =
[

2km(Tb − Tm) + μ(V 2
bx + (Vbz − Vsz)2)X

(C ps(Tm − T0) + �H f )(ρmVbx )

]1/2

(8.56)

and for wL(z),

w L (z) =
⎧⎨
⎩

Vbxρm

[
km(Tb − Tm) + (μ/2) V 2

j

]
X

�H f + C ps(Tm − T0)

⎫⎬
⎭

1/2

(8.57)

where

V 2
j = V 2

bx + (Vbz − Vsz)2 (8.58)

For a GNF with a viscosity function given by the power-law
model, Eq. 8.56 represents a nonlinear algebraic equation
that must be solved for δ.

Finally, we determine the solid bed profile as a function of
distance down the channel. The change in solid bed width is
obtained by taking a mass balance on an element of thickness
�z:

ρsVsz(H − δ)X |z − ρsVsz(H − δ)X |z+�z = wL (z)�z

(8.59)

which on taking the limit as �z → 0 and neglecting the film
thickness in the down channel direction reduces to

−d(HX)

dz
= wL (z)

ρsvsz
(8.60)

By substituting Eq. 8.57 into Eq. 8.60, we arrive at the fol-
lowing expression:

−d(HX)

dz
= �

√
X

ρsvsz
(8.61)

where

� =
{

Vbxρm[km(Tb − Tm) + (μ/2)V 2
j ]

2(C ps(Tm − T0) + �H f )

}1/2

(8.62)

For a constant channel depth, Eq. 8.61 can be integrated to
give

X2

W
= X1

W

[
1 − ψ(z2 − z1)

2H

]2

(8.63)

where X1 and X2 are the widths of the solid bed at locations z1

and z2, respectively, and the dimensionless group is defined
as

ψ = �

Vszρs
√

X1
(8.64)

Hence, for a constant channel depth we can determine the
length of the channel required to melt the solid bed from
Eq. 8.63.

For a tapered channel of constant taper, which is usually
the case, we write Eq. 8.61 as

d(HX)

dH
= �

√
X

Aρsvsz
(8.65)

where

A = −dH

dz
(8.66)

Equation 8.65 can be integrated to give

X2

W
= X1

W

[
ψ

A
−
(
ψ

A
− 1

)√
H1

H2

]2

(8.67)

where X2 and X1 are the widths of the solid bed at down
channel locations corresponding to H2 and H1, respectively.

Equations 8.63 and 8.67 represent the basic equations for
the melting model. The total length of melting for a channel
of constant depth is

zT = 2H

ψ
(8.68)

while for a tapered channel is

zT = H

ψ

(
2 − A

ψ

)
(8.69)

For a channel of constant depth, the length of channel
required to melt the solid bed is a function of the channel
depth and a dimensionless group ψ , where ψ expresses the
ratio of the local rate of melting per unit solid–melt interface
to the local solid mass flux. Thus, the length of melting is
proportional to the mass flow rate and inversely proportional
to the rate of melting. In the case of tapered channels, the
higher the taper, the shorter the melting length, zT. However,
if the taper becomes too great, the solid bed can increase in
width instead of decrease, which may lead to plugging of the
channel and surging conditions.
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8.3.3 Metering Section

The fully melted polymer now enters the third zone of the
extruder where it is pressurized. The buildup of pressure is
required in order to pump the melt through the die at the end
of the extruder. The pressurization of the melt is based on a
viscous drag mechanism. We first illustrate how viscous drag
can lead to a pressurization of the melt. This is followed by the
development of a nonisothermal non-Newtonian model of the
metering section. Because numerical methods are required
to solve the equations generated in this model, we end the
section by presenting the isothermal Newtonian case where
an analytical solution is possible.

The basic principle of operation of the metering section
of the single-screw extruder is illustrated by the simple plate
model shown in Figure 8.16. The fluid between the two plates
is considered to be Newtonian and under isothermal and
steady flow conditions. Because of a restriction at the end
of the channel (which is not shown) the pressure increases
along the z direction. vz is assumed to depend only on y,
since the aspect ratio of the plates is large (i.e., W/H > 10).
The equation of motion becomes, after substituting in the
expression for the shear stress for a Newtonian fluid,

μ
d2vz

dy2
− dp

dz
= 0 (8.70)

This equation is solved using the following boundary condi-
tions:

B.C.1: at y = 0, vz = 0
(8.71)

B.C.2: at y = H, vz = V0

After integrating Eq. 8.70 and using the boundary conditions
given above, the velocity field is determined to be

vz = H 2

2μ

(
dp

dz

)[( y

H

)2
− y

H

]
+ V0 y

H
(8.72)
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FIGURE 8.16 Drag-induced pressurization of a fluid in a rectan-
gular channel having an aspect ratio, W/H > 10.

Equation 8.72 is now integrated over the cross-sectional
area to obtain the volumetric flow rate:

Q = V0WH

2
− dp

dz

(
WH3

12μ

)
(8.73)

Q is seen to consist of two terms: the first is called the drag
flow, Qd, while the second is referred to as the pressure
flow, Qp. When there is no pressure buildup, the transport
is due entirely to the drag flow term. However, if there is
a significant pressure increase, then Q is decreased. In this
case the pressure term can dominate to the point where flow
can be in the opposite direction. (As we will see later this
cannot happen in the extruder.) The main point is that as
a result of viscous drag the fluid can be advanced against
resistance due to pressure buildup. This is in essence the
principle of operation of the metering section of the single-
screw extruder.

As a pump, however, the parallel plate device is not prac-
tical in itself. A way is needed to increase the length of the
channel and to return the upper plate to the channel after it
has transversed the length of the channel. As shown in Fig-
ure 8.17 one way to do this is to machine the channel in a
shaft and then give the channel a helical pitch so that the
length can be increased. The inner cylinder or outer cylinder
could be rotated. In the figure the outer cylinder is rotated.
When the channel depth is shallow relative to the radius of
the cylinder, then curvature can be neglected, and the flow
can be considered as that in flat plates.

We are now in position to develop a model for the meter-
ing section of a single-screw extruder. In practice, the screw
is rotated inside the barrel and helical or cylindrical coordi-
nates are needed to describe the geometry. However, because
the channel depth is usually small relative to the radius of
the barrel, we can treat the flow using rectangular Carte-
sian coordinates as shown in Figure 8.18. It is customary to
attach the axes to the rotating screw, which makes it appear

X

X

Stationary

channel

Rotating

cylinder

Rotation

W

FIGURE 8.17 Principle of operation of the metering section of
a single-screw extruder. A helical channel is machined in the inner
cylinder. The fluid in the channel is dragged forward in the channel
by the rotating cylinder.
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FIGURE 8.18 Parallel plate model of flow in the metering section
of a single-screw extruder. The axes are attached to the rotating
screw, which makes the barrel appear to move relative to the screw.

to the observer that the plate is moving over the channel at an
angle φb to the down channel direction. In principle, a three-
dimensional model is required to describe the velocity and
temperature profiles in the extruder channel. However, this
type of detail is usually not necessary in the design of screws,
nor is it computationally practical. With the assumptions of
constant fluid density and steady-state conditions, the fol-
lowing postulates pertaining to the velocity and temperature
fields can be made:

vz = vz(x, y) vx = vx (x, y) (8.74)

T = T (y, z) (8.75)

If W/H > 10, then we can simplify matters by making the
following postulates for the velocity field:

vz = vz(y) vx = vx (y) (8.76)

In essence we are neglecting the effect of the side walls of
the channel, which is probably valid for most single-flighted
screw designs. Using these postulates the equations of motion
and energy become, respectively,

0 = −∂p

∂x
− ∂τyx

∂y
(8.77)

0 = −∂p

∂z
− ∂τyz

∂y
(8.78)

ρC pvz
∂T

∂z
= k

∂2T

∂y2
− τxy

∂vx

∂y
− τyz

∂vz

∂y
(8.79)

Using the GNF model the shear stress components are given
by

τyx = −η(γ̇ , T )
∂vx

∂y
(8.80)

τyz = −η(γ̇ , T )
∂vz

∂y
(8.81)

where γ̇ is given by

γ̇ =
√(

∂vx

∂y

)2

+
(
∂vz

∂y

)2

(8.82)

This system of differential equations is nonlinear, and they
are coupled through the temperature dependence of viscosity.
Numerical techniques are required to solve the above set of
equations.

We can obtain reasonable solutions to these equations if
we assume the forced convection assumption holds and that
the helix angle, φb, is less than 20◦. In fact, most screws are
designed with a square pitch (i.e., Ls = Db, which means
φb = 17.7◦). The forced convection assumption allows us
to decouple the equations of motion from the equation of
energy. Values ofφb < 20◦ allow us to decouple the equations
of motion, since dvx/dy � dvz/dy (to see this we approximate
dvx/dy as Vb sin φb/H and dvz/dy as Vb cos φb/H and γ̇ is
approximately dvz/dy). The equations of motion become

d

dy

(
m

∣∣∣∣dvz

dy

∣∣∣∣
n−1 dvz

dy

)
= ∂p

∂z
(8.83)

d

dy

(
m

∣∣∣∣dvz

dy

∣∣∣∣
n−1 dvx

dy

)
= ∂p

∂x
(8.84)

Equation 8.83 can be integrated subject to the following
boundary conditions:

B.C.1: at y = 0, vz = 0 (8.85)

B.C.2: at y = H, vz = Vbz = Vb cosφb (8.86)

We also find it convenient to introduce the following dimen-
sionless variables:

uz = vz/Vbz ξ = y/H

Because uz passes through a maximum at some point β, the
solution is obtained over two regions:

For 0 < ξ < β:

u<
z =

(
GHn+1

mVn
bz

)s (
1

s + 1

) [
(β − ξ )s+1 − βs+1

]
(8.87)

For β < ξ < 1:

u>
z =

(
GHn+1

mVn
bz

)s (
1

s + 1

) [
(ξ − β)s+1 − (1 − β)s+1

]
(8.88)
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where G = ∂p/∂z and s = 1/n. The value for β is obtained by
equating the two velocity fields at ξ = β to give

βs+1 − (1 − β)s+1 + ms Vbz(1 + s)

Gs H 1+s
= 0 (8.89)

The volumetric flow rate is obtained by integrating the veloc-
ity field over the cross-sectional area and is

Q

WHVbz
=
(

GHn+1

mV n
bz

)[
− βs+2

s + 2
− (1 − β)s+2

s + 2

]
+ (1 − β)

(8.90)

The expression in Eq. 8.90 is referred to as the screw char-
acteristic and consists of drag flow and pressure flow terms.
Finally, the cross-flow term, vx, is obtained by integrating
Eq. 8.44 using the velocity field in Eqs. 8.87 and 8.88 and
the following boundary conditions:

B.C.1: at y = 0, vx = 0
(8.91)

B.C.2: at y = H, vx = −Vbx = −Vb sinφb

The importance of the cross-flow term to mixing will be
discussed in Section 8.5.

Using the forced convection assumption and restricting
ourselves to small helix angles, Eq. 8.79 becomes

ρC pvz(y)
∂T

∂z
= k

∂2T

∂y2
+ m

∣∣∣∣dvz

dy

∣∣∣∣
n+1

(8.92)

We cast the energy equation into dimensionless form by
introducing the following variables:

z/L = ζ vz/Vbz = u T ∗ = (T − Ti)/(Tb − Ti)

(8.93)

where Ti is the initial temperature of the melt entering the
metering zone and Tb is the barrel temperature. Equation 8.92
in dimensionless form is

Peuζ (ξ )
∂T ∗

∂ζ
= ∂2T ∗

∂ξ 2
+ Br

∣∣∣∣du

dξ

∣∣∣∣
n+1

(8.94)

where Pe = H2ρCpVbz/kL and Br = mV n+1
bz /H n−1k(Tb − Ti).

Even with the assumptions made here, numerical methods are
needed to solve Eq. 8.94.

The flow patterns in the extruder channel are difficult to
visualize for the power-law fluid, and hence, we consider the
flow for the Newtonian case. The brief development here is
mostly for pedagogical purposes but does have some appli-
cability to fluids that are nearly Newtonian under extrusion
conditions and for isothermal conditions. For a Newtonian

fluid Eqs. 8.83 and 8.84 give the following expressions for
ux and uz, respectively:

ux = −ξ + ξ (ξ − 1)(G H 2/2μVbx ) (8.95)

uz = ξ − 3ξ (1 − ξ )(H 2G/6μVbz) (8.96)

Using the fact that there is no net flow in the x direction we
can integrate ux over ξ to find

∂p

∂x
= −6μVbx

H 2
(8.97)

Substituting the expression for ∂p/∂x back into Eq. 8.95, we
obtain the cross-channel velocity profile:

ux = −ξ (2 − 3ξ ) (8.98)

Equation 8.98 tells us that away from the flights the fluid
circulates around a stagnant layer at y = 2H/3. Of course,
for a pseudoplastic material this position will change. The
volumetric flow rate is obtained by integrating Eq. 8.96 over
the cross-sectional area of the channel and is

Q = VbzWH

2
−
(
∂p

∂z

)
WH3

12μ
(8.99)

This is the screw characteristic for the Newtonian case, and
as shown in the simple one-dimensional flat plate model
described at the start of this section, it consists of drag and
pressure flow terms. The ratio of pressure to drag flow rates
(this is sometimes called the throttle ratio) is

Qp

Qd
= −

(
∂p

∂z

)
H 2

6μVbz
(8.100)

One may be under the impression that it is possible to
cause the fluid to flow backward toward the hopper. Under no
condition is this possible as shown below. The axial velocity,
vl, is obtained by taking the vectorial contributions of vx and
vz along the axial direction, l:

vl = vx cosφ + vz sinφ (8.101)

Substituting the expressions from Eqs. 8.95, 8.96, and 8.100
into Eq. 8.101 and defining ul = vl/Vb, we get

ul = 3ξ (1 − ξ )

(
1 + Qp

Qd

)
sinφ cosφ (8.102)

For the Newtonian case (see Fig. 8.19) it is observed that the
cross-flow component is independent of the Qp/Qd ratio. On
the other hand, uz and ul are highly dependent on the Qp/Qd

ratio, and as the ratio becomes more negative, the flow in
the axial direction decreases. When Qp/Qd = −1, there is no
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FIGURE 8.19 Velocity profiles for a Newtonian fluid in the screw
channel for various operating conditions as determined by the ratio
of pressure to drag flow. The cross-channel component is unaf-
fected by the ratio Qp/Qd while the down channel and axial velocity
components change significantly.

flow out of the extruder (this is known as closed discharge).
It is ux that keeps vl > 0. It should be noted that under
closed discharge conditions the residence time of the fluid
is infinite and as one approaches open discharge conditions,
the residence time is shortest.

The pressure buildup along the axial direction of the
extruder is due to the resistance offered by the die and other
elements such as connectors and filtration systems. Hence,
the operation of the extruder is directly affected by the design
of the die and connecting elements. To illustrate this we again
consider the fluid to be Newtonian, and we consider only the
metering section of the extruder. Furthermore, we assume
that the die is a simple capillary, and we neglect any pressure
losses due to contractions or expansions in the system. Using
Eq. 8.99 we write the screw characteristic as

Qs = 1
2πDb N cosφWH −

(
�Ps

Lb

)
WH3 sinφ

12μ
(8.103)

where Qs is the volumetric flow rate in the extruder, �Ps

is the pressure rise in the extruder, L is the extruder length,

and is the average helix angle. Referring to Table 2.6 we can
write an expression for the circular die in the following form:

QD =
(
πR4

8LD

)
�PD

μ
= KD�PD

μ
(8.104)

where KD is referred to as the die characteristic and QD and
�PD are the volumetric flow rate and pressure drop across
the die, respectively. Because QD = Qs(=Q) and |�Ps| =
|�PD|(=�P), Eqs. 8.103 and 8.104 represent two equations
with two unknowns. In this case they can be solved for �P
and Q to give

Q =
1
2πDb N cosφb WH

1 + (WH3 sinφ)/(12μLb KD)
(8.105)

�P =
1
2μπDb N cosφb WH

KD + (WH3 sinφ/12L)
(8.106)

We remind you that Eqs. 8.105 and 8.106 are most likely
of little quantitative use, and they serve only to illustrate the
effect of the die on the operating conditions of the extruder.
In practice, one would have to generate values of �P and
Q numerically for both the extruder and the die, and then
determine under what operating conditions the values are
identical.

8.4 TWIN-SCREW EXTRUDERS

In this section we consider the essential features of two of
the most common types of twin-screw extruders: self-wiping
corotating (SWCOR) twin-screw extruders and closely inter-
meshing counterrotating (CICTR) twin-screw extruders. As
discussed in Section 8.1.2, there are a vast number of types
of twin-screw extruders, and it is not possible to discuss all of
these here. Further discussion of the technology and theory
for twin-screw extruders is given elsewhere (Rauwendaal,
1986; White, 1990).

8.4.1 Self-wiping Corotating Twin-Screw Extruders

We consider only the melt conveying section of the SWCOR
type, because there are no theories available at present for
describing the solids transport and melting zones. We first
describe some general features of the flow regions in SWCOR
types and then geometrical features that are required to under-
stand the more quantitative aspects associated with flow.

SWCOR types have a closely matching flight profile as
shown in Figure 8.20a. A cross section taken perpendicular
to the screw axes (section A–A) as shown in Figure 8.20b
illustrates how the flights of one screw wipe the surface of
the other screw. The cross section shown in this figure is for
a double-flighted screw. Because both screws are rotating in
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FIGURE 8.20 Self-wiping corotating twin-screw extruder. (a)
Closely intermeshing double-flighted screw elements. (b) Section
A–A showing the barrel and screw cross sections. (c) Section B–B
showing the open region between the screw flights.

the same direction (e.g., counterclockwise in this case) the
flight is seen to scrape the surface of the other screw pushing
material over to the other screw. Hence, material travels in a
figure-eight pattern in the extruder. By cutting a section B–B,
which passes through the intermeshing region as shown in
Figure 8.20c, we see that there is considerable open space
between the adjacent channels. Hence, there is little pressure
buildup in the intermeshing region. For this reason SWCOR
types have nonpositive conveying characteristics and their
operation is pressure sensitive in a manner somewhat similar
to single-screw extruders.

To understand the melt conveying characteristics of
SWCOR types we must first describe the geometry of
SWCOR extruders. We consider the cross section perpen-
dicular to the screw axis as shown in Figure 8.21 for double-
flighted screws. The flight and channel geometry are deter-
mined by the screw diameter, Db (note that this is actually
Db − 2δs, but we will neglect flight clearance), the center-
line distance, CL, and the number of parallel flights, p. From
Figure 8.21 it is easy to see that

CL = Db cosαi (8.107)

i

t

1/2 CL

CL

FIGURE 8.21 Cross section of a closely intermeshing twin-screw
extruder with double-flighted screw elements (or paddle elements).
The tip angle, αt, the angle of intermesh, αi, and the centerline
distance are shown.

H(?)

t

x

LC

(b)(a)

FIGURE 8.22 Channel depth for a double-flighted corotating
self-wiping twin-screw extruder. (a) Channel depth as a function of
circumferential angle. (b) Channel depth as a function of distance x
across channel.

where αi is one-half the angle of intermesh (i.e., the degree
of overlap of the two barrels). αi is found to be related to the
tip angle, αt, by the following relation:

αi = π/2p − αt/2 (8.108)

This relation is not easy to determine from Figure 8.21, but
one must consult the work of Booy (1978). We can now deter-
mine the channel depth as a function of the circumferential
angle, θ . Referring to Figure 8.22 we find H(θ ) to be

H (θ ) = Db

2
(1 + cos θ ) − (C2

L − 1
4 D2

b sin2 θ
)1/2

(8.109)

We can now find the cross-channel depth profile along the x
direction (note that this is the same as for the single-screw
extruder where z is taken along the helical path or down
channel direction and x is taken along the channel width) by
substituting in the following coordinate transformation:

x =
(

Db

2

)
θ sinφ (8.110)

to give

H (x) = Db

2

[
1 + cos

(
2x

Db sinφ

)]

−
[

C2
L − D2

b

4
sin2

(
2x

Db sinφ

)]
(8.111)

The cross-channel depth profile is shown in Figure 8.22b,
and it is seen that the channel is no longer rectangular as is
the case for the single-screw extruder.

We next determine the open cross-sectional area between
the barrel and the screw. This is done by finding the cross-
sectional area of the barrel and subtracting the cross-sectional
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area of the two screws. The cross-sectional area of the barrel
is (Booy, 1978)

Ab = 1
2 (π − αi)D2

b + 1
2 CL Db sinαi (8.112)

For the double-flighted screw shown in Figure 8.21 this area
is easily derivable. The cross-sectional area of one screw is
(note that this is not easily derived nor seen by refering to
Fig. 8.21, but one must consult the paper by Booy, 1978)

As = pαiC
2
L − 1

2 pCL Db sinαi + 1
2 pαt

(
C2

L + 1
2 D2

b − CL Db
)

(8.113)

The open cross-sectional area between the barrel and screw
is just the difference of the two expressions above (note that
2As must be used), which can be written as

A0 = D2
b

[(
p − 1

2

)
αi + (p + 1

2

)
sinαi cosαi

− π cos2 αi + (π − 2pαi) cosαi
]

(8.114)

This equation tells us that for a fixed barrel diameter the open
area depends on the number of parallel flights and the angle
of intermesh, αi.

We are now in position to consider flow in screw elements.
Because of the complicated channel geometry we only con-
sider the isothermal flow of Newtonian fluids. The develop-
ment here is for pedagogical purposes only and not for quan-
titative design work. To analyze the flow in SWCORs the flat
plate model used for single-screw extruders is again used. The
axes are attached to the screws again and because the channel
depth is considered to be small relative to the curvature of
the barrel, we use the flat model shown in Figure 8.23. (Note:
Here we show the situation for a double-flighted screw.)
However, the channel length is not the fully unwound chan-
nel length but merely the length of one turn. If the flight tip
angle is small, then we can consider the flow between chan-
nels to be relatively unimpeded and hence neglect the excess

Screw 1

Screw 2

Screw 1s

sin   

V

x

y

z

Vz

Vx

X
o

L

FIGURE 8.23 Flat plate model for the closely intermeshing self-
wiping twin-screw extruder.

pressure drop in the intermeshing region. (Booy (1980) and
Szydlowski et al. (1987) show how to include the intermesh-
ing region.) Assuming isothermal steady flow of a Newtonian
fluid and considering the velocity components, vz and vx, to
depend on y only, the equations of motion are

0 = −∂p

∂z
+ μ

∂2vz

∂y2
(8.115)

0 = −∂p

∂x
+ μ

∂2vx

∂y2
(8.116)

with boundary conditions

vz(0) = 0, vz(H ) = Vb cosφ

vx (0) = 0, vx (H ) = −Vb sinφ
(8.117)

Equation 8.115 can be integrated to give the flow rate in one
channel:

Q = 1
2 WHVb cosφ − WH3

12μ

∂p

∂z
(8.118)

According to Booy (1980), there are (2p − 1) independent
channels and hence Eq. 8.118 must be multiplied by (2p −
1) to obtain the flow rate in the screw elements. In principle,
the screw characteristic of fully filled screw channels of the
SWCOR type resembles that of the single-screw extruder.
The main differences are in the shape of the channel and
when the tip angle becomes large leading to a large degree
of intermeshing.

In most cases the SWCOR extruder is starve-fed, and
hence the channel is only partially full. The output from the
extruder is determined by means of the device feeding the
extruder and not the extruder itself. Actually the degree of fill
changes over the length of the extruder as the final length of
the channel must be full if pressure is to be built up to pump
the melt through a die. Over most of the section with regular
screw elements there will be no pressure buildup. Sometimes
reverse elements or kneading blocks are used as restrictive
elements along the extruder.

The fairly simple development which follows is for ped-
agogical reasons and is due to Werner (1976). A partially
filled screw channel is shown in Figure 8.24. The degree of
fill is given by the ratio of the filled channel cross-sectional
area, Af, to the total cross-sectional area, A:

f = Af/A (8.119)

A is found by integrating Eq. 8.111 over the width of the
channel and is

A = D2
b

[
1
2αi − (αi + 1

2αt
)

cos2 αi

+ (
1
2 sinαi + 1

2αt
)

cosαi
]

sinφ (8.120)
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FIGURE 8.24 Partially filled screw channel. The fluid fills the
channel up to a distance xf.

Af is found by integrating Eq. 8.111 from x1 to the filled
cross-channel distance, xf:

Af =
∫ xf

xl

H (x)dx (8.121)

where x1 = 0.25 αt Db sin φ. For isothermal steady-state
flow of a Newtonian fluid the equation of motion in the down
channel direction is written as

∂2vz

∂x2
+ ∂2vz

∂y2
= 0 (8.122)

By assuming that

∂2vz

∂x2
� ∂2vz

∂y2
(8.123)

then vz becomes simply

vz = y Vbz/H (8.124)

The volumetric flow rate is obtained by integrating Eq. 8.124
over the cross section that is filled with fluid, and this is
approximately

Q = 1
2 (2p − 1)Af Vbz (8.125)

Equation 8.125 can be written as follows using Eq. 8.119:

Q = 1
2 (2p − 1) f AπDb N cosφ (8.126)

Thus, Q is directly proportional to the degree of fill and the
screw speeed, N. The cross-channel velocity profile, vx, is

found in much the same way as it was done for the single-
screw extruder and is

vx = 3Vbx y2

H 2
+ 4Vbx y

H
+ Vbx (8.127)

Finally, we consider the flow in kneading blocks (see
Fig. 8.8) as these are commonly used along with the screw
elements. The kneading blocks or paddle elements are the
heart of the SWCOR as melting and dispersing of additives
occur here. The cross section of a two-lobed paddle element
looks the same as that of a double-flighted screw element
(see Fig. 8.21). White (1990) has attempted to model flow in
paddle elements.

8.4.2 Intermeshing Counterrotating Extruders

The other frequently used twin-screw extruder is the closely
intermeshing counterrotating (CICTR) type, which is shown
in Figure 8.25. Looking along the axis of the screws from the
right side of the figure, we see that the left screw is rotating
in a counterclockwise direction and has a right-hand thread
while the right screw rotates in a clockwise direction and
has a left-hand thread. A cross section taken through the
intermeshing region, which is shown in Figure 8.25b, reveals
that there is very little opening between the channels of the
two screws. Hence, these devices can achieve nearly positive
conveying characteristics.

In theory CICTR extruders are positive conveying devices
where the maximum possible flow rate is given by

Qmax = 2p NV (8.128)

where p is the number of parallel flights, N is the screw
speed, and V is the volume of the closed C-shaped chamber as
shown in Figure 8.26. The volume of the C-shaped chamber
is approximately

V = π Db H W

cos φ
− w D2

b(2αi − sin 2αi)

4 cos φ
(8.129)

where w is the mean flight width given by

w = w + H tan ψ (8.130)

and W is the mean channel width given by

W = π
(
Db − 1

2 H
)

sin φ

p
− W (8.131)

ψ in Eq. 8.130 is the flight flank angle (i.e., the angle the
sides of the flight makes with the line perpendicular to the
channel surface).
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FIGURE 8.25 Closely intermeshing counterrotating twin-screw extruder. (a) Cross-sectional view
(end view). (b) Cross-sectional view through flights showing open region.

In practice, the CICTR extruder is not a positive convey-
ing device, and there are a number of places where leakage
can occur. Janssen (1978) has identified four places where
leakage occurs as shown in Figure 8.27:

1. Leakage through the gap between the flight and the
barrel wall, which is called flight leakage, Qf.

2. Leakage between the bottom of the channel of one
screw and the flight of the other screw, which is called
calender leakage, Qc.

3. Leakage through the gap that goes from one screw to
the other between the flanks of the flights of the two
screws, which is referred to as leakage through the
tetrahedron gap, Qt.

y

z

x

FIGURE 8.26 C-shaped chamber in a counterrotating closely
intermeshing twin-screw extruder.

4. Leakage through the gap between the flanks of the
screws perpendicular to the plane through the screw
axis, Qs.

Quantitative estimates of each type of leakage are given by
Janssen (1978) for Newtonian fluids. Since these derivations
are rather lengthy and may be of marginal value for quan-
titative design work involving non-Newtonian fluids, they
are not discussed here. The total output from the extruder is
given by

Q = 2p NV − 2 pQs − 2 Qf − Qt (8.132)
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ss c

FIGURE 8.27 Leakage flows in a counterrotating closely inter-
meshing twin-screw extruder: Qc, calendaring flow between screw
flight and opposite screw root; Qf, leakage flow between screw flight
and barrel; Qs, leakage flow between screw flight walls; Qt, leakage
flow in tetrahedron region between flights.
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8.5 MIXING, DEVOLATILIZATION, AND
REACTIONS IN EXTRUDERS

Extruders have other functions than the melting and pumping
of polymers. In particular, they are used in mixing operations,
in the removal of volatiles, and in the processing of reacting
systems. Mixing operations involve primarily the blending of
polymers and the dispersion of additives and fillers. Exam-
ples of devolatilization include the removal of monomers in
the production of polymers, the removal of reaction prod-
ucts during condensation polymerization, and the removal of
water from hygroscopic polymers. Applications of extruders
as reactors are numerous and include condensation reactions
(e.g., the generation of high molecular weight PETP), the
peroxide degradation of polypropylene, and compatibiliza-
tion of two polymers through the formation of graft copoly-
mers. The basic elements of these processes are discussed
here, and because of the complex nature of these processes
we can only present the most elementary analyses.

8.5.1 Mixing

As discussed in Chapter 6, the quality of mixing is related
to the increase in interfacial area, which is proportional to
strain. The calculation of the average strain, γ , requires the
residence time distribution function, f(t). We present the anal-
ysis for isothermal Newtonian flow in a single-screw extruder
only, which is due to Pinto and Tadmor (1970). We give only
a descriptive analysis for twin-screw extruders.

The analysis begins with the assumption that curvature is
not important, and hence, one can use the parallel plate model
to describe flow in the screw channel. The axial velocity
profile was given in Eq. 8.102 and is reproduced here in the
following form:

ul = 3ξ (1 − ξ )[1 + �′] sin φ cos φ (8.133)

where �′ = Qp/Qd. The actual path of a fluid particle is quite
complex as shown in Figure 8.28. The cross-channel velocity
component, vx, gives rise to a circulation pattern and because
there is also a vz component, the actual path of a particle in
the channel is spiral in nature. The goal at this point is to
determine how long a particle spends in the channel—that is,
its residence time. Because of the circulatory nature of the
cross flow being centered at ξ = 2/3, a fluid particle located
here moves straight down the channel. All other particles
move in a helical path. Particles located at ξ > 2/3 will turn
over on reaching the flight and move in the opposite direction.
However, the time spent moving across the channel for the
particle located at a position ξ > 2/3 is less than the time
it takes for the particle to move across the lower portion of
the channel. Hence, it is necessary to use an average axial
velocity, vl, to calculate the residence time of a particle.

Y

Yc

FIGURE 8.28 Spiral path of a fluid element in the channel of a
single-screw extruder.

First, it is necessary to locate the position of the particle
in the lower part of the channel, ξ c, which had a position ξ

in the upper portion of the channel (i.e., ξ > 2/3). Because
the flow is circulatory in the x direction, the amount of fluid
flowing between ξ and 1.0 (the wall) per unit width in the
upper part of the channel must be equal to the amount of fluid
flowing per unit width in the opposite direction between 0
and ξ c in the lower portion of the channel. Mathematically
this is given by

∫ ξc

0
ux dξ +

∫ 1

ξ

ux dξ = 0 (8.134)

which provides the relation between ξ and ξ c. Substituting
Eq. 8.98 into Eq. 8.134 gives the following expression:

ξ 2 − ξ 3 = ξ 2
c − ξ 3

c

0 ≤ ξc ≤ 2
3

2
3 ≤ ξ ≤ 1 (8.135)

A more convenient form for finding ξ c in terms of ξ is

ξc = 1 − ξ +
√

1 + 2ξ − 3ξ 2

2
(8.136)

The average axial velocity, vl , of a fluid particle which
alternates its position between ξ and ξ c, is given by the
following equation:

vl = vl (ξ ) tf + vl (ξc) (1 − tf ) (8.137)
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where tf is the fraction of time spent by a fluid particle in the
upper portion of the channel, which is given by

tf = 1

1 + ux (ξ )/ux (ξc)
(8.138)

The residence time of a particle is equal to the length of the
extruder (or metering section), L, divided by the vl . Substi-
tuting ux from Eq. 8.98 and ul from Eq. 8.133 into Eqs. 8.137
and 8.138, the residence time, t, becomes

t =
[

L

3Vb sin φ cos φ(1 + �′)

]

×
(

3ξ − 1 + 3
√

1 + 2ξ − 3ξ 2

ξ [1 − ξ +
√

1 + 2ξ − 3ξ 2]

)
(8.139)

Equation 8.139 represents the distribution of residence times
of fluid particles as a function of their initial location in the
channel. The minimum residence time occurs for particles
located at ξ = 2/3 and t decreases as one moves toward the
barrel or screw surfaces.

We next would like to know what fraction of the fluid
leaving the extruder has a certain residence time. This is
given by the residence time distribution function, f(t), which
was defined in Chapter 6. By definition f(t)dt is the fraction of
material leaving the extruder with a residence time between
t and t + dt, which is

f (t)dt = dQ + dQc

Q
(8.140)

where dQ is the fraction of flow between ξ and ξ + dξ and
dQc is the fraction of flow btween ξ c and ξ c + dξ c associated
with the residence time t. dQ and dQc are given, respectively,
by

dQ = WHVbz ξ (1 + 3�′ − 3ξ�′) dξ (8.141)

dQc = WHVbz ξc(1 + 3�′ − 3ξc�
′)|dξc| (8.142)

where the absolute value sign in Eq. 8.142 was introduced to
account for the change of direction of dξ with respect to dξ c.
From Eq. 8.136 we find a relation between dξ c and dξ :

dξc = 1 − 3ξ −
√

1 + 2ξ − 3ξ 2

2
√

1 + 2ξ − 3ξ 2
dξ (8.143)

Substituting Eqs. 8.136 and 8.143 into Eq. 8.140 and taking
dξ c = −dξ leads to the following expression for f(t)dt:

f (t) dt = 3ξ√
1 + 2ξ − 3ξ 2

(
1 − ξ +

√
1 + 2ξ − 3ξ 2

)
dξ

(8.144)

Using Eq. 8.139, Eq. 8.144 can be written in the following
form:

f (t) dt = 9

2

Vb sin φ cos φ(1 + �′)
L

×
[

ξ 3(ξ − 1 −
√

1 + 2ξ − 3ξ 2)

(6ξ 2 − 4ξ − 1)
√

1 + 2ξ − 3ξ 2 + 3ξ − 1

]
dt

(8.145)

For simple geometries such as pipe flow discussed in Sec-
tion 6.4 it was possible to solve for ξ in terms of t, which is
not possible in this case using Eq. 8.139. Equations 8.145 and
8.139 must be solved together to calculate f(t). What these
two equations do indicate, however, is that f(t) depends only
on the group Vb(1 + �′) sin φ cos φ/L.

There are two residence time values of specific interest,
and these are the mean residence time, t , and the shortest
residence time, t0. The mean residence time was defined in
Eq. 6.117 and for the single-screw extruder (i.e., metering
section or melt pump) is

t = 2L/Vb sin φ cos φ(1 + �′) (8.146)

t is also given by the volume of the channel (WHL/sin φ)
divided by the volumetric flow rate. The minimum residence
time, t0, is obtained from Eq. 8.139 with ξ = 2/3 and is equal
to 3t /4.

The cumulative residence time distribution, RTD, func-
tion, F(t), is found by integrating Eq. 8.144 from ξ = 2/3
(this is t0) to ξ (this is t):

F(t) = F(ξ ) = 1
2

[
3ξ 2 − 1 + (ξ − 1)

√
1 + 2ξ − 3ξ 2

]
(8.147)

F(t) is plotted versus reduced time, t/t , in Figure 8.29, where
we also compare F(t) against values for plug flow, laminar
flow in a pipe, and a continuous stirred tank reactor. F(t) is
seen to lie between plug and laminar flow in pipes. F(t) for
the extruder is rather narrow with no long tails.

We next obtain the strain distribution in the metering
section of the extruder following the work of Pinto and
Tadmor (1970). The shear rate in the upper portion of the
channel is

γ̇ = [γ̇yx (ξ ) + γ̇yz(ξ )
]1/2

(8.148)

Using Eqs. 8.95 and 8.96 we find γ̇yx and γ̇yz to be

γ̇yx = 2Vbx (1 − 3ξ )/H (8.149)

γ̇yz − Vbz[1 + 3�′(1 − 2ξ )]/H (8.150)
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FIGURE 8.29 Cumulative residence time distribution function
versus reduced time for flow in an extruder, plug flow, flow of a
Newtonian fluid in a pipe, and a continuously stirred tank (CST)
vessel.

In the upper portion of the channel we find

γ̇ = Vb R(ξ )/H (8.151)

where

R(ξ ) = [4(1 − 3ξ )2 sin2 φ + (1 + 3�′ − 6ξ�′)2 cos2 φ]1/2

(8.152)

and in the lower portion of the channel it will be

γ̇c = Vb R(ξc)/H (8.153)

where

R(ξc) = [4(1 − 3ξc)2 sin2 φ

− (1 + 3�′ − 6ξc�
′)2 cos2 φ]1/2 (8.154)

The average total strain of a fluid particle alternating between
the two portions of the channel is

γ = γ̇ tf t + γ̇c(1 − tf )t (8.155)

Combining Eqs. 8.139, 8.151, 8.153, and 8.155 leads to

γ = 1

3

(
L

H

)(
1

1 + �′

)[
2F(ξ,�′)

cos φ
+ G(ξc,�

′)
sin φ

]
(8.156)

where

F(ξ,�′) =
tf

[
(1 − 3ξ )2 + cotan2φ

4
(1 + 3�′ − 6ξ�′)2

]1/2

ξc(1 − ξc) + tf (ξ − ξc)(1 − ξ − ξc)
(8.157)

and

G(ξ,�′)

= (1 − tf)[4(1 − 3ξc)2 tan2 φ + (1 + 3�′ − 6ξ�′)2]1/2

ξc(1 − ξc) + tf (ξ − ξc)(1 − ξ − ξc)
(8.158)

We are now in position to discuss mixing in the single-
screw extruder. The weighted average total strain (WATS) has
been proposed by Pinto and Tadmor (1970) to be a measure
of mixing in the extruder. WATS was defined in Eq. 6.141,
and its calculation requires both f(t) and the strain distribu-
tion (Eq. 8.158). WATS is a measure of the total deformation
experienced by the material leaving the extruder. It is a single
number for a given extruder set at specific operating condi-
tions, and it gives a quantitative measure of the quality of
mixing.

It is apparent that WATS depends on three parameters:
L/H, the helix angle, φ, and the pressure to drag flow ratio,
�′. Calculations by Pinto and Tadmor (1970) showed that
over practical ranges of values for φ and �′, WATS was not
very sensitive to these parameters. Hence, in the metering
section of an extruder the most important parameter affecting
mixing is the L/H ratio.

Bigg and Midddleman (1974) carried out a similar analy-
sis for non-Newtonian fluids using the power-law model. As
there are no analytical results available, we only summarize
a few of the most pertinent findings. In Figure 8.30 is pre-
sented the cumulative distribution function, F(t), versus the
reduced time for various values of the power-law index, n,
and for a fixed value of �′ = −0.88. Here it is seen that for
values of n ≥ 0.4 the shape of F(t) is similar (i.e., the F(t)
curves for a Newtonian fluid and a power-law fluid with a
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FIGURE 8.30 Cumulative residence time distribution function
versus reduced time in an extruder for fluids with various values
of the power-law index and compared to values for plug flow and
complete back-mixing continuous stirred tank reactor (Bigg and
Middlemann, 1974).
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value of n ≥ 0.4 are similar for �′ = −0.88). For a highly
shear-thinning fluid, F(t) becomes broader, approaching that
of the curve for the well mixed state. The shape of the F(t)
curve was found to be sensitive to the value of �′.

The analyses carried out by Pinto and Tadmor (1970) for
Newtonian fluids and by Bigg and Middleman (1974) for
power-law fluids were for the metering section of a single-
screw extruder or for the single-screw melt pump only. More
frequently, plasticating extruders are used, and mixing proba-
bly starts in the melting zone. There are apparently no models
available at the time of writing which deal with mixing in the
melting zone.

Mixing in twin-screw extruders is much more difficult
to estimate because of the complex flow patterns. For inter-
meshing corotating twin-screw extruders, Montes and White
(1991) have developed a model to describe mixing. The
model of mixing in the screw elements follows the work
of Pinto and Tadmor (1970) for a single-screw extruder. The
strains generated in each screw element are added together
to get the total strain. The major part of the mixing occurs
in the kneading blocks. To analyze mixing here the veloc-
ity profiles are needed, and these can only be calculated
numerically for power-law fluids. There is no experimental
evidence to support the calculations of Montes and White
(1991), and hence, it is not known whether their approach is
adequate to describe mixing in intermeshing corotating twin-
screw extruders. There is apparently no adequate model to
describe mixing in intermeshing counterrotating extruders
either. Potente and Schultheis (1989) described F(t) in this
type of extruder by a distribution function (a double Weibull
distribution), which required fitting to experimental data to
obtain the constants in the model. The function was based
on knowing the minimum and mean residence times. toi per
chamber is given by

toi = Li

Vl
= Li

Nπ Db tan φi
(8.159)

FIGURE 8.31 Flow in a Kenics static mixer. The mixer consists
of a pipe with helical elements of alternating reverse pitches.

where Li is the length of the C-shaped chamber and V1

is the axial velocity. to results from adding the values of
toi in each chamber. The mean residence time, t , is just
the ratio V/Q, where V is the volume of the screw chan-
nels. The only certain conclusion is that in general F(t) for
twin-screw extruders is narrower than that for single-screw
extruders.

Before leaving this section a few comments about static
mixers will be made. In order to improve distributive mixing
and to provide melt streams with more uniform tempera-
ture distribution, especially for single-screw extruders, static
mixers are placed between the end of the extruder and the
die. Static mixers consist of a pipe with nonmoving ele-
ments, which lead to a rearrangement and distribution of
fluid elements. For example, a Kenics static mixer is shown
in Figure 8.31. It consists of helical elements that are turned
90◦ relative to each other with each element having alter-
nating pitch. Fluid entering the element near the center is
distributed to the wall and fluid entering near the wall is
distributed toward the center. A stream entering the first ele-
ment is split into two streams. The two streams are split into
four streams and so on. This is illustrated in Figure 8.32
where two streams enter the first element, and then they are
split into four streams in the second element. In general, the

Element no.

No. of striations

54321

3216842

FIGURE 8.32 Illustration of how fluid streams are split and separated in a Kenics static mixer.
After passing through five elements there are 32 layers of fluid.
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number of striations, Nδ , at the exit of a pipe containing N
elements is

Nδ = 2N (8.160)

There are quite a few different types of static mixers (see
Rauwendaal, 1986), but they all serve the same function.

The flow patterns in static mixers are very complex and
only finite element methods can be used to analyze the details
of these flows. The shear rates generated in these devices are
rather low (on the order of 10 s−1), and hence, the pres-
sure drop across the static mixer can be estimated from the
expression for flow of a Newtonian fluid through a tube with
a correction factor for the given geometry as

�P = (4/π)Ns μQ L/D (8.161)

where Ns = 220 for the Kenics static mixer (see Rauwen-
daal, 1986, for this and other values) and L and D are the
total length and diameter of the pipe containing the mixing
elements.

8.5.2 Devolatilization in Extruders

The removal of volatiles such as water or residual monomer
can be carried out in both single- and twin-screw extruders. In
the case of single-screw extruders, specialized screw designs
are required whereas for twin-screw extruders the flexible
nature of their design allows the appropriate elements to be
added. In the case of the single-screw extruder either an
extra long extruder is required having a design as shown in
Figure 8.33, or two extruders in a cascade arrangement are
used. The general screw design shown in Figure 8.33 con-
sists of a standard plasticating screw design followed by a
section possessing a deep channel and a vacuum port and
then a metering section. Because the pumping capacity of
the section with the deep channel is less than that of the last
metering section (section 3 in Fig. 8.33), the channel will not
be full. For a single-flighted screw as shown in Figure 8.33
there are a rotating melt pool and a polymer melt film from
which volatiles can be removed. The driving force for the dif-
fusion of volatiles from the pool and film is a concentration
gradient set up by reducing the surface concentration of the
volatile to that of the equilibrium concentration, Ce, which is
determined by Henry’s law. There is also the possibility that
additional mass transfer occurs by the generation of bubbles
in the rotating melt pool. In the case of twin screws starve-
feeding of the screw elements is accomplished by the addi-
tion of paddle elements or reverse screw elements. Because
of certain geometric limits only double-flighted screw ele-
ments can be used in twin-screw systems. When this is done,
there are three melt pools generated as shown in Figure 8.34.
To generate a similar number of melt pools in a single-
screw extruder, a triple-flighted screw is required as shown in

FIGURE 8.33 Degassing in a single-screw extruder. Zone 1 con-
sists of a typical plasticating screw section; zone 2 is a deep channel
section with a vacuum port; zone 3 is a metering section. The chan-
nels in zone 2 are partially full to facilitate degassing.

(a) (b)

FIGURE 8.34 Cross-sectional views of (a) a double-flighted
twin-screw extruder and (b) a triple-flighted single-screw extruder.
Each system exhibits three melt pools which are available for
degassing.
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Figure 8.34b. In principle, the process of removing volatiles
is similar in both single- and twin-screw extruders.

The few models available concerned with devolatilization
(DV) in single-screw extruders are based on diffusion the-
ory (Biesenberger and Sebastian, 1983). Experimental data
available suggest that the process is more rapid than can be
accounted for by diffusion alone. However, a summary of the
model is useful, because at least the most important variables
are brought out.

It is postulated that DV in single-screw extruders occurs by
two mechanisms (Roberts, 1970). One is evaporation from
the bulk polymer melt flowing in the partially filled screw
channel, and the other is evaporation from the film that is
generated by the clearance between the flight and barrel as the
flight wipes over the barrel surface. The melt in the channel
is viewed as an evaporating melt pool that rotates as it flows
owing to the angle of drag, φ. These mechanisms are shown
in Figure 8.35.

The goal of a model for DV is to calculate the concen-
tration of the volatile, CA, as a function of distance down
the channel. Referring to Figure 8.35 a mass balance is per-
formed on the element of thickness �z. The contributions
of mass to this element are from the transport of A by bulk
flow, the loss of A by evaporation at the film surface, Ef(z),
and by evaporation at the surface of the pool, Ėp(z), where
the dot denotes the rate of evaporation. Mathematically this
mass balance is

0 = fWH[NA|z − NA|z+�z] − Ėp(z) − Ėf(z) (8.162)
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FIGURE 8.35 Model for devolatilization in extruders. Gas
removal occurs from the melt film on the barrel wall and from
the rotating melt pool.

Ėp(z) is obtained by methods described in Chapter 4 (in
particular, the derivation is similar to that in Example 4.5 but
with gas diffusing out of the film) and Eq. 8.162 becomes

0 = fWH[NA|z − NA|z+�z] − Vbx Hf�z[CA − C ′
A]

−
(

4DA

πtp

)1/2

[CA − CAe] (8.163)

where CAe is the equilibrium concentration at the vapor–melt
interface, Hf is the film thickness, and tp is the exposure time
of the melt pool surface, which is limited by the circular
motion of the pool. Roberts (1970) estimated this exposure
time as

tp = H/Vbx (8.164)

The evaporation rate of A from the film is obtained from a
mass balance on the film, which is

Ėf (z) = Vbx Hf�z[CA(z) − C ′
A(z)] (8.165)

where C ′
A is the concentration of A in the melt reentering

the melt pool having left the melt pool at a distance of �z1

downstream (see Fig. 8.35). Dividing Eq. 8.163 by �z and
taking the limit as �z → 0, we obtain

fWH
dNAz

dz
= Vbx Hf [CA(z) − C ′

A(z)]

+
(

4DA

πtp

)1/2

H [CA(z) − CAe] (8.166)

We next must relate C ′
A to the concentration at z + �z1,

CA(z + �z1), where this is the concentration of A in the
melt leaving the melt pool at a distance z + �z1 downstream
minus the amount of the volatile lost through evaporation
during the exposure time tf = (1 − f)/N, where N is the screw
speed. This relation is obtained through the staged efficiency
of the diffusing film, Xf:

X f = CA(z + �z1) − C ′
A(z)

CA(z + �z1) − CAe
. (8.167)

Following Roberts (1970), CA(z + �z1) can be related to
CA(z) by means of a Taylor series in which only terms through
second order are kept:

CA(z + �z1) = CA(z) + dCA(z)

dz
�z1

+ d2CA(z)

dz2

�z2
1

2
+ · · · (8.168)

After eliminating CA(z + �z1) from Eqs. 8.167 and 8.168
and substituting the result for C ′

A into the mass balance
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(Eq. 8.166) and replacing NAz by CAvz, we obtain

Vbx Hf (1 − X f )
�z2

1

2

d2CA

dz2
+ [Vbx Hf (1 − X f)�z1 − Q]

dCA

dz

− [X f Vbx Hf + kp H ](CA − CAe) = 0 (8.169)

Equation 8.169 can be written in dimensionless form as

1

Pe

d2C∗
A

dξ2
− dC∗

A

dξ
− Ex C∗

A = 0 (8.170)

where

ξ = z/Le �z∗
1 = �z1/Le (8.171)

and

Pe =
(

2

�z∗
1

)[
1

nf (1 − X f)�z∗
1

− 1

]
(8.172)

and

Ex = nf X f + kp H Le/Q

1 − nf(1 − X f )�z∗
1

(8.173)

and

nf = Vbx Hf Le

Q
C∗

A = CA − CAe

CA0 − CAe
(8.174)

Le is the unwound channel length of the devolatilization sec-
tion.

The Peclet number, Pe, represents the effect of backmixing
generated by the film which reenters the melt pool. When
Pe � 1, the effects of backmixing can be neglected. The
effect of backmixing is determined directly by the magnitude
of �z1. As can be seen in Figure 8.35, �z1 is related directly
to the degree of fill, f, the channel width, W, and the helix
angle, φ:

�z1 = f W

tan φ
= f π Db cos φ (8.175)

The second equality in the above equation is correct for
single-flighted screws and negligible flight widths. Hence,
backmixing increases with the degree of fill and decreasing
values of φ. Ex is the extraction number, and it is a measure
of the overall devolatilization efficiency.

If the backmixing effect can be neglected, then Eq. 8.169
becomes

dC∗
A

dξ
= Ex C∗

A (8.176)

With C∗
A(0) = 1, the concentration profile becomes

C∗
A = exp [−Exξ ] (8.177)

where Ex reduces to nfXf + kpHLe/Q. Hence, the concentra-
tion of the volatile is an exponential function of distance.

Finally, the devolatilization efficiency of the machine, XT,
is a function of the individual stage efficiency, X, and the
extent of surface renewal. In the extruder, the extent of sur-
face renewal is described by nf in Eq. 8.174. The film stage
efficiency, Xf, is a function of the surface-to-volume ratio and
the exposure time, tf. In general Xf is a function of nf and the
ratio tf/tD, where tD is the residence time in the devolatiliza-
tion section of the extruder.

The model developed here is based on diffusion. However,
in many cases the length required to reduce the concentration
of a volatile below some specified value is overpredicted.
Hence, it is believed that the formation of bubbles or foam
accelerates the devolatilization process. There is no model
available at the time of writing this book which deals with
foam DV.

The process of DV in corotating twin-screw extruders
is similar to that in the single-screw extruder. However, no
detailed mathematical model for DV in these devices is avail-
able.

8.5.3 Reactive Extrusion

There are numerous examples of the use of extruders to
carry out chemical reactions in polymeric systems (Xan-
thos, 1992). In general, two types of reactions are carried out
in extruders: polymerization or depolymerization and poly-
mer modification. In this section we illustrate the approach
to modeling reactive extrusion by considering the stepwise
polycondensation reaction of two species A and B in a single-
screw extruder.

The starting point for the analysis is the flat plate model
of the extruder shown in Figure 8.18. It is assumed that
steady-state conditions exist and that the material properties
such as viscosity, thermal conductivity, and heat capacity
do not depend significantly on temperature. It is postulated
that

vz = vz(y) vx = vx (y) T = T (y, z) CA = CA(z)

(8.178)

The equation of motion becomes

∂p

∂x
= − ∂

∂y

(
η
∂vx

∂y

)
∂p

∂z
= − ∂

∂y

(
η
∂vz

∂y

)
(8.179)
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The energy equation takes on the following form:

ρC pvz
∂T

∂z
= k

∂2T

∂y2
+ η

[(
∂vx

∂y

)2

+
(
∂vz

∂y

)2
]

+ Ṡr

(8.180)

where Ṡr is the energy generated per unit volume per unit time
by the reacting system. The conservation of mass equation
for species A is

vz
dCA

dz
= RA (8.181)

where RA is the rate at which species A disappears as the
result of the reaction of A and B.

The rate of reaction, RA, is given by the rate at which
species A disappears and is assumed to follow nth-order
reaction kinetics given by

RA = −k0 exp(−E/RT ) Cn
A (8.182)

where k0 and E are the reaction rate at the reference tem-
perature and the activation energy, respectively. The heat
generated by the reaction is given by

Ṡr = (−�H A)RA (8.183)

where �H A is the heat of reaction.
As the two species react the molecular weight of the prod-

uct increases, leading to an increase in the viscosity of the
bulk material. For the polycondensation reaction of species A
and B, the weight average molecular weight as a function of
the degree of conversion, p, is (Macosko and Miller, 1976)

Mw = [r (1 + rC2)M2
A0 + (1 + rC2)M2

B0 + 4rC MA0 MB0]

(r MA0 + MB0)(1 − rC2)
(8.184)

where C = (CA0 − CA)/CA0, r is the stoichiometric ratio of
species A and B, and MA0 and MB0 are the initial molecular
weights of species A and B, respectively. As a result of
the increase in Mw the viscosity of the melt is changing
as it progresses down the channel. The zero shear viscosity
increases with increasing Mw in the following manner as
described in Chapter 3:

η0 = ηCR Mw/MCR, Mw ≤ MCR (8.185)

η0 = ηCR(Mw/MCR)3.4, Mw > MCR (8.186)

where MCR is the critical entanglement molecular weight for
the given polymer and ηCR is the zero shear viscosity at MCR.

The initial and boundary conditions required to solve
Eqs. 8.179, 8.180, and 8.181 are similar to those used in Sec-
tion 8.3 with the exception that the concentration of species A
at z = 0 is CA0. The solution of this set of equations requires
numerical methods, but a direct finite difference solution is
not possible because of the velocity field changing signs near
the surface of the screw. To overcome this problem the space-
fixed coordinate system is replaced by one that travels along
the streamlines. Neglecting the viscous dissipation terms,
Eqs. 8.180 and 1.181 become, respectively,

ρC p
∂T

∂t∗ = k
∂2T

∂y2
+ Ṡr (8.187)

∂CA

∂t∗ = RA (8.188)

where t* is the residence time of a fluid element along a
streamline. The numerical algorithm required to solve these
equations is describe in the paper by Tzoganakis and co-
workers (1988).

8.6 SOLUTION TO DESIGN PROBLEM VII

The solution is carried out by two methods. Because of
the modular nature of twin-screw extruders, experiments
were carried out in advance to determine what length of
devolatilization section was required to reduce the level of
MMA to 0.1%, which corresponds to a fractional separa-
tion, Fs, of about 0.85. Because the single-screw extruder is
cheaper to build, it is desirable to determine the length of
the DV section and the processing conditions (i.e., ρQ, N,
and f) required to accomplish the same reduction of MMA in
PMMA as done in the SWCOR extruder. The first approach
is based on dimensional analysis. In the second approach
we use the penetration or diffusion theory summarized in
Section 8.5.2.

8.6.1 Dimensional Analysis

The starting point is to make sure that sufficient vacuum is
available such that the equilibrium weight fraction, we, is less
than the desired final weight fraction. From Henry’s law and
the data given in Table 8.2, we calculate we at 250 ◦C to be

we = P

S′ = 133.3 Pa

164 × 105 Pa
= 81 × 10−6 = 8.0 ppm

while at 200 ◦C we = 20.4 ppm. Hence, sufficient vacuum is
available to reduce the level of MMA below 1000 ppm.

Dimensional analysis requires that both extruders be geo-
metrically and dynamically similar. To ensure geometric
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similarity it is necessary that the length to diameter of the
devolatilization (DV) sections be the same:

Lb1/Db1 = Lb2/Db2 (8.189)

where the subscripts 1 and 2 refer to the single- and twin-
screw systems, respectively. Furthermore, because double-
flighted screw elements are used in the twin-screw extruder,
there are three independent flow channels partially filled each
with melt pools. Hence, the single screw must be made triple
flighted to produce the same number of melt pools. Dynamic
similarity is much more difficult to determine, because it is
not clear what mechanisms are important in devolatilization.
Based on experimental studies, Biesenberger and co-workers
(1990) found that mass transfer in the DV process in extruders
occurs primarily by flash evaporation in which foam forma-
tion and rupture are enhanced by rotational motion of the
melt in the partially filled channel. Based on their observa-
tions, they proposed that the pool size and rotational speed
are the factors on which dynamic similiarity should be based.
With this they proposed that the main dimensionless group
should be the ratio

t/tp (8.190)

where t is the mean residence time and tp is the time of
rotation of the pool. Hence, the fractional separation, Fs,
should be expressed as

Fs = Fs(Lb/Db, t/tp) (8.191)

The ratio t /tp represents the number of devolatilization stages
(Ns) available during the extrusion process.

We first use the condition of geometric similarity to find
the length of the DV section:

Lb1 = Db1(Lb2/Db2) = 30(300/34) = 265.0 mm

The calculation of t1/tp1 and t2/tp2 requires some additional
manipulations for the single-screw extruder. The mean resi-
dence time in the DV section of the single-screw extruder is

t1 = Le1/ < vz1 > (8.192)

where Le1 is the length of the unwound screw channel and is
given by

Le1 = Lb1/ sin φ1 (8.193)

<vz1> is the average velocity in the down channel direction
and is approximately

< vz1 >≈ (π Db N/2) cosφ (8.194)

because the velocity profile in the down channel direction
is not known exactly in the partially filled channel. tp is
approximated by

tp1 = ( f1 A1)1/2

< vx1 >
= ( f1 A1)1/2

(π Db1 N1/2) sin φ1
(8.195)

where A1 is the cross-sectional area of the screw channel and
f is the degree of fill. Hence, for the single-screw extruder:

Ns1 = t1

tp1
= Lb1

( f1 A1)1/2 cos φ1

For the twin-screw extruder the calculations of Ns2 are
more complicated because of the complex geometry. The
flow path for PMMA is shown in Figure 8.2. For the single-
screw extruder in covering a circumferential distance of πDb1

one must travel a distance of Ls1/tan φ1 along the helical path
(i.e., tan φ1 ≈ Ls1/πDb1). For the double-flighted twin screw
in a plane orthogonal to the screw axis one must travel a
circumferential distance, C, given by

C = 2(2π − 2αi)(Db2/2)

where αi is the angle of intermesh defined in Section 8.4.1.
An apparent helix angle, φ′

2, can be defined as

tan φ′
2 =

(
3

2

)
Ls2

C

and the unwound channel length, Le2, would be

Le2 = Lb2/ sin φ′
2

αi is related to Db2 and CL by means of Eq. 8.107 and is 28.1◦

(see Fig. 8.21). The mean residence time in the twin-screw
extruder, t2, is

t2 = Le2

< vz2 >
≈ Le

(π Db2 N/2) cos φ′ (8.196)

where <vz2> has been approximated by (πDb2N/2) cos φ′

in the absence of an accurate model for flow in the partially
filled screw channels. The time of rotation of the melt pool,
tp2, is

tp2 = [( f2 Ao/p2) sin φ′
2]1/2

< vx2 >
= [( f2 A0/p2) sin φ′

2]1/2

(π Db N/2) sin φ′
2

(8.197)

where Ao is defined in Eq. 8.114. Finally the degree of fill, f,
is given by

f = Q/QD (8.198)
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We are now in position to calculate the remaining
unknowns for the single-screw extruder, which are N and
ρQ. Using the data for the twin-screw system given in Table
8.1 we can calculate Ns2 (= t2/tp2). The unwound channel
lengths are

Le1 = 265

sin 17.65◦ = 874 mm

Le2 = (270 mm/ sin 20.52◦) + (30/ sin 14.01◦) = 894 mm

At N = 90 rpm for the twin-screw extruder,

t2 = 770

(π · 34 · 90/60/2)(cos 20.52◦)
+ 124

(80.1) cos 14.01◦

= 11.9 s

Using Eqs. 8.197 and 8.114 and the data given in Table 8.1,
tp2 is found to be 0.079 s. Now using dynamic similarity (i.e.,
Ns1 = Ns2) we find that

Le1 tan φ1

( f1 A1)1/2 = 11.9

0.079
= 150.6

With A1 = WH = 58.71 mm, we find f1 = 0.058. We now
use Eq. 8.198 to calculate Q1 assuming N1 = 90 rpm:

Q1 = f1 QD1 = (0.058) P1 < vz1 > A1

= 0.058(3) (58.71) (67.4)

= 688.1 mm3/s = 2.62 kg/h

Hence, in order to obtain a fractional separation of 0.85 using
a single-screw extruder, we must use a triple-flighted screw
with a length, Lb1, of 265 mm. The processing conditions
must be:

Degree of fill f = 0.058
Screw rpm N = 90 rpm
Mass flow rate ρQ = 2.62 kg/h

It should be added that Biesenberger and co-workers
(1990) reported the following experimental results for obtain-
ing Fs = 0.86 on a similar single-screw extruder with a triple-
flighted screw of Db = 30 mm:

Temperature T = 230 ◦C (rather than 250 ◦C)
Degree of fill f = 0.092
Screw rpm N = 90
Mass flow rate ρQ = 3.15 kg/h
Screw length Lb = 270 mm

The dimensional analysis approach with the choice of t /tp as
the dimensionless group for determining dynamic similarity
seems to be reasonable.

8.6.2 Diffusion Theory

Because we may not always have data available for carry-
ing out dimensional analysis, it is worthwhile to see whether
the penetration theory (diffusion model) described in Sec-
tion 8.5.2 provides a reasonable design. In Eq. 8.170, we
assume that Pe > 1, and hence, we can use the expression
given in Eq. 8.177, which is

C∗
A = exp[−Ex z/Le] (8.199)

We also assume that the staged efficiency of the film diffusion
process is 1 (i.e., Xp = 1.0) as there is no way to obtain this
quantity directly (with Xf = 1.0, Pe � 1). Ex (the extraction
number) is now

Ex = nf + (kp H Le)/Q (8.200)

where

nf = Vbx Hf Le

Q
kp =

(
4 DA

π tp

)1/2

(8.201)

To calculate nf we must make assumptions about Hf and f. We
take Hf to be similar to the magnitude of the flight clearance
or 2.54 × 10−2 mm. The screws are typically run with a
degree of fill (f) in the range of 0.1 to 0.3. We take f = 0.1.
DA for MMA in PMMA is about 1 × 10−10 mm2/s (see
references in Chapter 4). We now find nf, kp, and Ex:

nf = tanφ Hf Le

pf WH
= (0.318)(2.54 × 10−2)

(3)(0.1)(58.7)
Le

= 4.59 × 10−4 Le

kp = (4 × 10−10Vbx/πH )1/2 = 2.21 × 10−5

Ex = 4.59 × 10−4 Le + (2.21 × 10−5)(5.595)

1186
Le

= 4.59 × 10−4 Le + 1.04 × 10−7 Le ≈ 4.59 × 10−4 Le

Substituting the above value back into Eq. 8.199, we can now
solve for the unwound channel length required to reduce the
amount of MMA to 0.1%:

ln (0.143) = −Ex z/Le

z = − ln(0.143) Le

Ex
= 1.944 Le

4.59 × 10−4 Le= 4235 mm

The barrel length, Lb, is

Lb = Le sin φ = (4235)(0.303) = 1283.2 mm
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This value is about 4.6 times the value estimated by means of
dimensional analysis and reported by Biesenberger and co-
workers (1990). Hence, the theory based on diffusion over-
estimates the length required to reduce the level of MMA to
0.1%. This is true in spite of the fact that in this case most of
the volatiles are predicted to be removed from the melt film
and not the pool.

PROBLEMS

A. Applications

8A.1 Solids Conveying of Nylon in a Single-Screw
Extruder. The solids conveying section of a single-
screw extruder with a 5.08 cm barrel diameter con-
sists of a screw with a 5.08 cm lead, a screw diam-
eter of 5.06 cm, a 3.49 cm root diameter, and a
flight width of 0.508 cm. The bulk density of the
nylon pellets is 475 kg/m3, and the friction coeffi-
cient between nylon and steel is 0.25 (assume this
value for both the barrel and screw). Assuming at
first no pressure rise, calculate the solids convey-
ing rate (kg/rev) for the following conditions: (a)
no friction between the screw and the solids, (b) no
friction between the solids and screw flights, (c) no
friction between the solids and the trailing flight, and
(d) friction on all contacting surfaces. (e) Compare
your results with the experimental value of 0.0149
kg/rev reported by Darnell and Mol (1956).

8A.2 Solids Conveying with a Pressure Rise. Calculate
the pressure at the end of the solids conveying zone
and the power consumption in Problem 8A.1 when
the pressure at the base of the hopper is calculated to
be 3.0 × 103 Pa and the solid conveying zone is one
turn of the screw. Assume that fs = 0.8fb and that
only the friction between the solids and the screw
surface and the barrel is important. The mass flow
rate is 0.0149 kg/rev.

8A.3 Scaleup of Solids Conveying Section. The optimum
channel depth for the solids conveying zone of a
single-screw extruder having a barrel diameter of
5.0 cm was found to be 0.6 cm. At 100 rpm the mass
flow rate of nylon was found to be 10.45 g/s and
P2/P1 = 100. fs = 0.3 and fb = 0.5. Determine the
screw rpm (N), the channel depth (H), and the mass
flow rate (G) in scaling up to a single-screw extruder
with Db = 11.4 cm.

8A.4 Pressure at the Base of a Silo. A silo 7.0 ft in diam-
eter and 40 ft high contains LDPE pellets having a
bulk density of 40 lb/ft3. Assuming the silo is full
(i.e., it contains 61,575 lb of pellets), determine the
lateral and vertical pressures at the base of the silo

if the coefficient of friction, f ′
w , is 0.2 and the angle

of repose, δ, is 45◦.

8A.5 Delay Zone Length for LDPE. Using Eq. 8.36 and
the data in Example 8.2, estimate the number of turns
in the delay zone for LDPE. Use the rheological data
given in Appendix A for NPE 953 (Table A.1).

8A.6 Solid Bed Profile in a Single-Screw Plasticating
Extruder. Determine the solid bed profile and the
length of screw channel required for melting of
LDPE in a 2.5 in. diameter screw extruder with a
single-flighted square-pitched screw having the fol-
lowing screw geometry:

Feed section: 3.2 turns and 0.5 in. channel depth

Compression section: 12 turns with a linear
taper

Metering section: 12 turns and 0.125 in. channel
depth

Flight width: 0.25 in. and a negligible flight
clearance

and the following operating conditions:

Screw rpm: 82

Barrel temperature: 150 ◦C

G = 120 lb/h.

Assume that melting starts one turn before the end
of the feed section. The physical property data can
be found in Chapter 5, and the following relation for
the viscosity is to be used:

η = 5.6 × 104 exp[−0.01(T − 110)]γ̇−0.655

(8.202)

where η is given in units of Pa · s and T in ◦C.

8A.7 Shear Rate in the Melting Zone. Using the condi-
tions given in Problem 8A.6, calculate the shear rate
in the melt film and compare this with the nominal
shear rate in the metering section.

8A.8 Operating Conditions for a Single-Screw Extruder.
The single-screw extruder described in Problem
8A.6 is used to pump LDPE at 150 ◦C through a pel-
letizing die consisting of ten capillaries each having
a diameter of 0.3175 cm and L/D ratio of 20. Con-
sidering only the pressure drop across the capillaries
(i.e., neglect the pressure drop across the manifold
or distribution section and any filtration sections),
determine the pressure rise in the metering section
and the screw speed in rpm required to extrude
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120 lb/h of polymer (i.e., is 82 rpm sufficient?).
Assume isothermal conditions and that there is neg-
ligible pressure rise in the melting section.

8A.9 Equilibrium Composition by Henry’s Law. Molten
polystryrene (PS) produced in a bulk polymerization
process is flashed to a styrene content of 1.0% but
still requires further devolatilization in an extruder
at 260 ◦C to a final content of 100 ppm. The Henry’s
law constant, Kw, for styrene in PS at 260 ◦C is
50 atm (note that P = Kw wi). Vacuum at 10 Torr
(1 Torr = 1333.22 microbar) is available. Is this
sufficient vacuum and, if not, what final composition
can be attained theoretically?

8A.10 Geometry of Self-wiping Corotating Screw Ele-
ments. Screw elements in a corotating self-wiping
twin-screw extruder have the following geometric
characteristics: D = 43 mm, Ls = 43 mm, CL =
39 mm. Determine the angle of intermesh, the flight
tip angle, the flight width (note that e = αtLs/2π), and
the open cross-sectional area, Ao, for both double-
and triple-flighted screw elements. Compare the cal-
culated values for the two cases.

8A.11 Sizing of Reactive Zones in Extruders. Determine
the relative lengths of the reaction zones for a single-
screw and corotating and counterrotating twin-screw
extruders. The extrusion rate of the melt is to be
1000 kg/h and 3 minutes of residence time is required
for the reaction to occur. The following data are
given for all three types of extruders: screw lead,
Ls = 0.3 Db; fractional degree of fill, f = 0.5;
H = 0.175Db; ρ = 900 kg/m3. The single screw
is to be triple-flighted while the twin-screw devices
have double-flighted screw elements. Assume that
the Lb/Db of the reactive section is in the range of
10 to 30.

B. Principles

8B.1 Heat Generation at the Barrel–Solid Interface.
Derive Eq. 8.30, which is the heat generated per
unit of barrel surface due to friction between the
solid bed and the barrel.

8B.2 Optimum Channel Depth in the Solids Conveying
Zone. Starting with the expression for the mass
flow rate given in Eq. 8.23, find an expression for
the optimum channel depth (i.e., maximize G with
respect to H). Although the value of H must be
determined numerically from the expression, spec-
ify what parameters H depends on.

8B.3 Optimum Helix Angle in the Solids Conveying Zone.
Find an expression from which the optimum helix

angle for which the mass flow rate in the solids
conveying section is a maximum can be determined.

8B.4 Solids Conveying in a Starve-Fed Single-Screw
Extruder. Starve-feeding of a single-screw extruder
is a process option whereby solid polymer is metered
into the feed throat using a gravimetric or auger
type feeder at a rate less than the solids convey-
ing capacity of the screw. The resin compacts fur-
ther downstream in the screw channel as a result of
lower pressures and temperatures are generated that
are advantageous for processing thermally sensitive
polymers. The degree of fill is given by

f = Gs/Go (8.203)

where Gs and Go are the mass flow rates for the
starve-fed and flood-fed cases, respectively, at the
same screw rotational speed. The average bed width
in the starve-fed case is given in terms of the channel
width, W, as W s = W f .

(a) If in the case of starve-feeding it is assumed that
the forces acting on the trailing flight (i.e., F4 and
F8 in Fig. 8.14) are zero, obtain an expression
similar to that in Eq. 8.27 for the pressure rise.

(b) Calculate the pressure rise for the conditions
given in Problem 8A.2 when the mass flow rate
is only 0.5 of that of the fully flooded screw.

8B.5 Maximum Shear Rate in the Metering Section.
Obtain an expression for determining the maximum
shear rate in the metering section of a single-screw
extruder for the Newtonian fluid case.

8B.6 Pressure Profile in a Single-Screw Extruder. Show
that the pressure profile along the barrel wall of a
single-screw extruder for a Newtonian fluid is given
by the following expression:

P − P0 = 6μπ Db Nl

H 2

[
1 − Qp

Qd

]
cos φb sin φb

(8.204)

where l is the axial distance along the extruder barrel.

8B.7 Power Input to a Single-Screw Extruder. For the
isothermal Newtonian model show that the power
input through the screw is given by the following
expression:

Pw = μπ2 N 2 D2
b W

sin φ H

[
4 − 3 cos2 φb

(
Q

Qd

)]
(8.205)
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Using the above expression find the helix angle φb,
which minimizes the power input (take φ = φb).

8B.8 Optimizing the Design of a Screw. Using the screw
characteristic given in Eq. 8.103 (isothermal Newto-
nian model) find the following: (a) optimum channel
depth for maximum pressure rise for a given flow
rate; (b) optimum channel depth and helix angle for
maximum flow rate at constant screw speed (assume
the flow rate through the die is given by K �PD/μ);
(c) channel depth for lowest screw speed for a
given flow rate; and (d) determine the Q/Qd ratio in
part (a).

8B.9 Scaleup of a Single-Screw Extruder: Shear Rate
Method. The shear rate at the barrel wall in the
metering section of a single-screw extruder is given
approximately by

γ̇b = π Db N

H
(8.206)

If in scaling up from a small extruder (D1, L1, N1,
etc.) to a large extruder (D2, L2, N2, etc.) dynamic
similarity is maintained by keeping the shear rate
constant (Chung, 1984) and geometric similarity is
maintained by keeping the L/D ratio constant, deter-
mine the channel width, channel depth, screw speed,
flow rate, and power input through the screw for the
large extruder in terms of the corresponding quanti-
ties of the small extruder and the ratio D2/D1 (e.g.,
show that H2 = H1 (D2/D1), Q2 = Q1 (D2/D1)2,
etc.). The helix angle is taken to be the same for
both extruders.

8B.10 Scaleup of a Single-Screw Extruder: Mixing Method.
As discussed in Sections 6.4 and 8.5.1, mixing is
taken to be a function of strain, which in the meter-
ing section of a single-screw extruder is L/H. (This
follows from γ = γ̇ t = (πDb N/H ) (L/π Db N ).)

(a) Using constant strain as the scaleup criterion,
determine W2, H2, N2, Q2, and Pw2 in terms
of the corresponding values for the smaller
extruder and the ratio of D2/D1 (e.g., show that
W2 = W1 (D2/D1), Q2 = Q1(D2/D1)3, Pw2 =
Pw1(D2/D1)2, etc.).

(b) If the output of a 5.0 cm diameter extruder is
100 kg/h, determine the mass flow rate in a
15 cm diameter extruder where scaleup is based
on a constant strain. Compare this value to that
obtained when scaleup is based on a constant
shear rate.

8B.11 Velocity Profiles in the Curved Channel Model (Pinto
and Tadmor, 1970). Show that the velocity profiles,
vz(r) and vθ (r), for flow of a Newtonian fluid in the

channel of an extruder where curvature is included
are

vz = A

2

r

1 − β2

[
ln

r

Rb
− β2 ln

r

Rs
−
(

Rs

r

)2

ln β

]

+ 2πN

1 − β2

r2 − R2
s

r
(8.207)

vθ = B Rb

4

[(
r

Rb

)2

+ (1 − β2)
ln(r/Rb)

ln β
− 1

]

(8.208)

where β = Rs/Rb is the ratio between the inner and
outer radii and A and B are given as

A = 8πN
K (β)

G(β)
− 4Q

πR3
b G(β) tan φb

(8.209)

B = 8Q

πR3
b F(β)

(8.210)

K(β), G(β), and F(β) are given as

K (β) = 1 + 2β2 ln β

1 − β
(8.211)

G(β) = (1 − β2)

[
1 −

(
2β ln β

1 − β2

)2
]

(8.212)

F(β) = (β2 − 1)

[
1 + β2 + 1 − β2

ln β

]
(8.213)

Cylindrical coordinates are used where z is in the
axial direction of the extruder.

8B.12 Residence Time Distribution: Curved Channel
Model (Pinto and Tadmor, 1970). The residence
time distribution (RTD) function for flow of a New-
tonian fluid in a rectangular channel was developed
in Section 8.5.1. Derive the RTD for the case in
which curvature is included. A fluid particle located
at position r in the extruder channel will turn over
when it hits the screw flight and start moving in the
opposite direction at a position rc.

(a) Show that the analogous equation in cylindrical
coordinates to Eq. 8.134 for finding ξ and ξ c is

∫ rc

Rs

vz r dr d θ +
∫ Rb

r
vzr dr d θ

=
∫ rc

Rs

vθ dr dz +
∫ Rb

r
vθ dr dz (8.214)
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(b) Show that the above equation can be rewritten
after changing the integration limits as

∫ rc

r
vz r dr d θ −

∫ rc

r
vθ dr dz

= −
∫ Rb

Rs

vzr dr θdt +
∫ Rb

Rs

vθ dr dz (8.215)

(c) Substitute in the velocity profiles for the New-
tonian case and use the relation dz = Rb tan φb

dθ to obtain

C1(ρ4
c − ρ4) + C3(ρ2

c ln ρc − ρ2 ln ρ)

+ C4(ρ2
c − ρ2) + C5(ln ρc − ln ρ) = 0

(8.216)

where A and B are given in Problem 8B.11 and

ρ = r/Rb ρc = rc/Rb β = Rs/Rb

C1 = (1 − β2)β

2A tan φb

C2 = 4πN

A

C3 = 2

[
C1(1 − β2)

ln β
− 1 + β2

]

C4 = 1 − 2C1 − C1
1 − β2

ln β
− β2 − 2C2

− 2β2 ln β

C5 = 4β2(ln β + C2)

C. Numerical Problems

8C.1 Calculation of the Optimum Channel Depth for
Solids Conveying. In Problem 8B.2 an expression
for the optimum channel depth was obtained. For a
11.4 cm diameter extruder running at 60 rpm with
values of fb = 0.5 and fs = 0.3 and P2/P1 = 200,
determine the optimum value of H (i.e., find the
value of H that makes G/ρ a maximum). It should
be noted that in practice it is difficult to obtain accu-
rate values of the friction coefficients, and hence,
one must use results of the nature asked for here
only as a guideline.

8C.2 Nonisothermal Solids Conveying Model (Tadmor
and Broyer, 1972). As a result of frictional heat-
ing at the barrel and plug interface the solid plug

can prematurely melt, inhibiting adequate pressure
buildup in the solids conveying zone. The heat gen-
eration per unit area of barrel surface is given in
Eq. 8.30. Develop a model for predicting the tem-
perature in the solid bed and at the barrel surface, and
then use the model to calculate the surface temper-
ature for LDPE under the given conditions. Follow
these steps:

(a) Perform an energy balance on the solid plug to
obtain the following differential equation:

ρbC pbvpz
∂Tp

∂z
= kp

∂2Tp

∂y2
(8.217)

(b) Assuming that Vpz can be obtained from the
isothermal theory for solids conveying, Eq. 8.21,
show that Eq. 8.217 becomes

∂Tp

∂t
= αp

∂2Tp

∂y2
(8.218)

where dt = dz/Vpz.

(c) Carry out an energy balance at the plug and bar-
rel interface, which shows that the heat gener-
ated by friction per unit surface area is conducted
to the plug and metallic barrel to obtain the fol-
lowing equation:

qb = −kp
∂Tp

∂y

∣∣∣∣
y=0

+ kb
∂Tb

∂y

∣∣∣∣
y=0

(8.219)

where qb is the heat generated per unit of barrel
surface area and the subscript b refers to the
barrel.

(d) As kb � kp, the temperature distribution in
the barrel is assumed to be linear. Use this
information to specify the boundary condi-
tion at the interface where y = 0. Specify
the remaining boundary condition for solving
Eq. 8.217.

(e) Use the numerical approach described in Exam-
ple 5.5 to obtain the temperature at the sur-
face of a LDPE plug as a function of posi-
tion along the channel for the following
conditions:

Extruder geometry: Db = 2.5 in.; square-
pitched screw, e = 0.25 in.; H = 0.375
in.

Processing conditions: G = 150 lb/h; P1

(under hopper) = 0.4 psi
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Tb (barrel temperature) = 80 ◦F; bed tem-
perature is initially 80 ◦F; N = 80 rpm

Material properties: LDPE properties are
given in Appendix B

8C.3 Maximum Conveying Rate in a SWCOR Extruder.
Calculate the maximum conveying rate for LDPE
at 150 ◦C in a self-wiping corotating (SWCOR)
twin-screw extruder for the geometry described in
Problem 8A.10 for p = 2, except take Ls/Ds = 0.71
and e = 1.78 mm. It will be necessary to use the
numerical integration such as in the IMSL subrou-
tine QDAGS or the MATLAB function quad to find
the cross-sectional area. Compare your calculated
value to the measured value of 94.3 kg/h at a screw
speed of 43 rpm.

8C.4 Effect of Curvature on Fluid Particle Position. An
expression for finding the complementary position
of a particle as a function of curvature is given in
Eq. 8.216 (Problem 8B.12). Solve this equation for
values of a = 0.95, 0.9, 0.85, and 0.82 for β = 0.8
and Q = Qd, where a = (ρ − β)/(1 − β) and ac =
(ρc − β)/(1 − β).

D. Design Problems

8D.1 Design of a Tubing Extrusion Process. A 1 inch
diameter garden hose is to be produced at the rate
of 500 lb/h using LDPE. The wall thickness of the
hose is to be 0.075 in. Design an extruder and die
to accomplish this. Use data given for NPE 953 in
various places in the book (e.g., Appendix A, Table
A.1, and Chapter 3). In addition to specifying the size
of extruder, screw geometry, and die dimensions,
list all the assumptions you made in arriving at your
design.

8D.2 Design of a Coextrusion System. Two resins,
acrylonitrile–butadiene–styrene (ABS) and
acrylonitrile–EPDM–styrene (AES), are to be
coextruded to form a sheet that is 2.8 mm thick
with AES representing 10% of the total thickness
of the sheet (i.e., 0.28 mm). The sheet is to be
1.42 m wide, and the overall extrusion rate is to be
455 kg/h. The density of each polymer is similar
(i.e., ρ = 1100 kg/m3). ABS and AES have similar
viscosity functions at 200 ◦C with values for the
power-law model given below:

For ABS: m = 45,455 Pa · sn, n = 0.342

For AES: m = 45,000 Pa · sn, n = 0.342

Size and design extruders for providing the desired
output with the only requirement being that the L/D
ratio of the extruders be 30. Design a feedblock
system for joining the fluids and a sheet die for
producing the desired sheet dimensions. Because
of the close match in viscosity, the two fluids can
be joined in the feedblock before entering the sheet
die. Use the thermal and frictional properties given
for polystyrene, if necessary, in your design calcu-
lations.
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POSTDIE PROCESSING

DESIGN PROBLEM VIII
DESIGN OF A FILM BLOWING
PROCESS FOR GARBAGE BAGS

Garbage bags are made from low-density polyethylene
(LDPE; NPE 953) by the process of film blowing, in which
the film leaves the nip rolls as a “lay-flat” film, before being
cut and sealed to form garbage bags. A typical bag holding
13 gallons of garbage is 25.41 μm (= 1 mil) thick, 61 cm
(= 2 ft) wide, and 69.6 cm (= 2 ft 3 3

8 in.) long. The pro-
duction line consists of an extruder with annular die and film
blowing instrumentation (air supply for blowing, air ring,
guide rolls, nip rolls, etc.), and it can accommodate 1500 bags
per hour. This design problem consists of two parts: (a) calcu-
lation of the dimensions of the annular die from which LDPE
is extruded at 170 ◦C without any melt fracture present, and
(b) calculation of the blowing air pressure and the drawing
force at the nip rolls to obtain the desired strength bags.

The LDPE exiting the die is assumed to exhibit die swell
(see Fig. 3.1 in Chapter 3), which can be calculated from
Eq. 3.89 (i.e., assume that capillary die swell is equal to diam-
eter and thickness swell from an annular die). Melt fracture
(Section 7.2.2) for LDPE appears when the maximum wall
shear stress exceeds 1.13 × 105 Pa. To secure uninterrupted
production a safety factor of 3 is applied with regard to the
maximum wall shear stress. The power-law relationship for
LDPE at 170 ◦C and for γ̇ ≥ 0.1 s−1 is

η = 5.17 × 103γ̇ −0.413

where η is in Pa·s. The density of the polymer is 0.77 g/cm3

at the extrusion temperature and 0.92 g/cm3 at room
temperature, and the following relationship correlates the
primary normal stress difference, N1, to the shear stress, τxy:

N1 = 0.119τ 1.304
xy

for N1 and τxy in Pa. Table 1.1 (p. 6) can be used to provide the
film thickness at the maximum die swell level as a function
of the final thickness.

We then consider the analysis of the film blowing process,
which should be based on the maximum die swell dimen-
sions as the initial dimensions and isothermal conditions are
assumed. Calculate the pressure of the blowing air, the draw-
ing force, and the velocity at the nip rolls if the dimensionless
frost line height is confined to 5 and the distance of the nip-
roll system from the position where the maximum die swell
level occurs is 1.5 m.

In spite of the geometry of the final product the processes
of fiber spinning, film casting, and film blowing bear an
important similarity. There are no constraining surfaces to
determine the final dimensions of the product. The surfaces
are free, and hence the final dimensions are determined by the
rheological properties of the melt as well as processing condi-
tions such as take-up speed, cooling rate, extrusion rate, and
die dimensions. Modeling of these processes is complicated
by not only the complex rheology of the melt (or solution)
but by the crystallization process. In Section 9.1 we discuss
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the process of fiber spinning in detail. For the sake of sim-
plicity the analysis starts by considering a single isothermal
filament in which the rheological properties are considered
to be Newtonian. These results are then extended to the non-
isothermal case in which the processes of crystallization and
structure formation are considered. The heat transfer process
is analyzed in the context of nonisothermal fiber spinning.
The approach required for viscoelastic fluids is discussed
next. The solution of these equations is the primary goal, but
a knowledge of the assumptions in the equations is necessary.
Finally, an analysis of the various instabilities that occur in
fiber spinning is presented.

In Section 9.2 the process of film casting is considered
along with its associated stability. Both fiber spinning and
film casting impart uniaxial stretching. One way to impart
biaxial stretching is by film stretching, which is discussed
next. The other way of producing biaxially oriented films
with high mechanical and physical properties is by film blow-
ing, which is discussed in Section 9.3, along with the asso-
ciated problems of stability and scaleup. In these last two
processes we only present the final equations as the empha-
sis is on solving the equations.

9.1 FIBER SPINNING

A fiber is the fundamental unit of textiles, and it is defined
as a material unit of axial length scale about 100 times
the length scale in the cross direction (width or radius). There
are two types of fibers: natural and synthetic (or man-made).
The term spinning has different meaning for natural and syn-
thetic fibers. Spinning of natural fibers refers to the twisting
of short fibers into continuous lengths (also called filaments).
On the other hand, spinning of synthetic fibers refers to pro-
duction of continuous lengths by any means. Finally, the yarn
is made by twisting many filaments together.

The production of man-made fibers usually includes the
following processes (Ziabicki, 1976):

1. Preparation of polymer (polymerization, chemical
modification, etc.).

2. Preparation of the spinning fluid (polymer melt or
solution).

3. Spinning (extrusion, solidification, and deformation of
the spinning line or filament).

4. Drawing (due to higher linear speed at the take-up
roll than that at the die; drawing is used to increase
the degree of molecular orientation and improve the
tensile strength, modulus of elasticity, and elongation
of the fibers).

5. Heat treatment.

6. Textile processing (twisting, oiling, dyeing, etc.).

Process 3 can be achieved mainly by three procedures:
melt spinning, solution dry spinning, and solution wet

spinning. Of these three procedures, melt spinning is the
simplest and the most economical one. Its simplicity stems
from the fact that it involves only heat transfer and exten-
sional deformation, whereas the other methods in addition to
the above processes involve also mass transfer and diffusion.
Melt spinning procedure can be applied to polymers that
are thermally stable at the extrusion temperature and that
exhibit relatively high fluidity at that temperature. Typical
examples of melt-spun polymers are polyamides, polyesters,
polystyrene, polyolefins, and inorganic glasses.

In the solution dry-spinning procedure the polymer is dis-
solved in a volatile solvent and the solution is extruded. Then
the spinning line meets a stream of hot air and the solvent
is evaporated. The recovery of the solvent increases the cost
of the whole process. Typical examples of dry-spun poly-
mers are cellulose acetate, acrylonitrile, vinyl chloride, and
acetate. In the 1980s, extended-chain PE fibers (ECPE, Spec-
tra fibers) have been made by solution spinning in a typical
melt-spinning apparatus. The solution wet-spinning proce-
dure is applied to polymers that meet neither criteria of the
previous two methods (i.e., thermal stability and solubility
in a volatile solvent). It involves the extrusion of a poly-
mer solution into a liquid bath of coagulating agents, which
drive the solvent out of the filament. The basic principles of
wet and dry spinning were discussed in Chapter 4, because
mass transfer and diffusion are the controlling mechanisms
of those types of spinning. There are four other spinning pro-
cedures (phase separation spinning, emulsion spinning, gel
spinning, and reaction spinning), which will not be addressed
in this textbook.

A schematic (not to scale) of the typical melt-spinning
procedure is shown in Figure 9.1 (see also Fig. 1.5). Polymer
is pumped by means of an extruder through a screen pack, in
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FIGURE 9.1 Melt-spinning process and its geometric character-
istics. The origin of the coordinate system is located at the point of
maximum die swell.
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Trilobal Cross

Square Circular

FIGURE 9.2 Examples of various shapes of spinneret holes.

which the polymer is filtered through layers of screens and
sand. Then it is divided into many small streams by means
of a plate containing many small holes, the spinneret. Some
spinnerets can have as many as 10,000 holes (rayon spin-
ning from a 15 cm platinum disk spinneret). The extrusion
through the spinneret (or die), the subsequent die swell (due
to the relaxation of the elastic stresses of the polymer; Sec-
tion 7.2.3), the cooling of the filament by cooling air (or
water vapor) flowing perpendicularly to the filament axis,
the solidification of the polymer, and its cold drawing in
the region from the solidification point to the take-up roll
are shown in Figure 9.1. Part of the time the holes in the
spinneret are circular in shape, but mostly they are of other
regular shapes. Other typical shapes include trilobal, square,
and cross, and they are shown in Figure 9.2. Note that dry
and wet spinning from circular spinneret holes usually result
in irregularly shaped fibers.

The key aspects of the modeling of the fiber spinning
process are:

1. Extrusion through a short die (usually of nonround
cross section) in which the fluid velocity field must
undergo rapid rearrangement.

2. Swell of the liquid leaving the hole.

3. Rapid axisymmetric extension to large strains.

4. Rapid temperature changes and hence large changes
in the rheological behavior.

5. Crystallization under conditions of high stress and
rapid cooling.

The origin of the coordinate axes is considered to be at
the point of maximum cross-sectional area, which occurs at
a small distance from the face of the spinneret as a result of

die swell. The distance between the spinneret and the point
of maximum die swell is only a few die diameters long, and
thus it is small compared to the distance between the face of
the spinneret and the take-up roll. Therefore, by neglecting
it we cause no severe problems in the following analysis.

In terms of the number of the filaments per spinneret
plate, as well as the spinning speed, melt spinning is divided
into various groups. Monofilaments are produced by one-
hole spinneret plates, even though most of the time there are
numerous filaments extruded through the spinneret (multifil-
ament yarns). Very-low-speed spinning, with speeds ranging
from 30 to 100 m/min, usually occurs for thick monofila-
ments spun through liquid baths. Low-speed spinning is usu-
ally carried out at speeds in the range of 100 to 750 m/min,
where the filament tension is constant along the entire length.
In order to enhance the degree of orientation and crystallinity
and hence physical properties, the yarns are subsequently
drawn and annealed, and therefore the melt-spinning pro-
cess is considered to be a two-step process (TSP; first step:
spinning; and second step: drawing). At intermediate speeds
of 750 to 3500 m/min, the filament tension is increased
due to inertia and air drag. Finally, at high spinning speeds
of 3500 m/min and above polymers such as poly(ethylene
terephthalate) (PET) undergo stress-induced crystallization.
At high spinning speeds (Section 9.1.4) the structure, mor-
phology, and resulting physical properties are somewhat dif-
ferent from those obtained in conventional low-speed spin-
ning processes.

Typical physical and mechanical properties of melt-spun
fibers include the following: density, boil-off shrinkage, bire-
fringence, tensile strength, percent elongation, modulus of
elasticity, shrinkage tension, and dyeability. Some of these
properties are shown in Table 9.1 for PET spun under conven-
tional conditions of a two-step process and in a one-step pro-
cess at high take-up speed in the range of 6000 m/min. In the
same table, we also provide data for the highest performance
industrial fibers, Spectra (ECPE) and Kevlar (Aramid). In
practice, some of the above properties might be found under
different names. Denier per filament (dpf; unit: denier, d) is
usually substituted for density, and tenacity (unit: g-force/d
or gf/d) is used in place of tensile strength. More about the
definitions of these specific terms and units can be found in
Section 9.1.2.

In the following analysis we first present the Newtonian
isothermal model, which leads to an analytical solution. Then
we discuss the Newtonian nonisothermal model, which gives
insight into the complexities of the coupled heat and momen-
tum transfer equations. PET, Nylon, and polysiloxanes are
three typical polymers which are almost Newtonian at spin-
ning conditions. Finally, we introduce the non-Newtonian
isothermal model together with its associated difficulties.
High-density polyethylene (HDPE), LDPE, polypropylene
(PP), and polystyrene (PS) are all pseudoplastic and vis-
coelastic and fall into the latter category.
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TABLE 9.1 Typical Properties of Fibers

PET

OSP TSP ECPE Aramid
Property (at 6000 m/min) (conventional) Spectra 1000 Kevlar 149

Density (g/cm3) 1.38 1.375 0.97 1.47
Boil-off shrinkage (%) 3–4 8.0
Birefringence (10−3) 105–115 150
Tensile strength (MPa) 460–550 610 3000 3450

or tenacity (gf/d) 3.8–4.5 5.0
Elongation at break (%) 45–50 35 2.7 1.5
Modulus of elasticity (GPa) 13–14 18 172 172
Modulus of elasticity (gf/d) 75–80 120

Source: Kawagushi, 1985; and Cordova and Donnelly, 1990.

9.1.1 Isothermal Newtonian Model

The basic ideas of modeling the fiber-spinning process are
best understood by considering the steady-state isothermal
Newtonian analysis first. This analysis can be considered to
be valid in the case that (1) the drawing takes place in a short
distance in air, and then (2) the fiber is quenched into a water
bath. In later steps all the other factors will be added. In the
isothermal Newtonian analysis we neglect any interaction
between the filament and the surrounding medium; that is,
no heat transfer is taking place and the surface tension and air
drag forces are negligible. Schematically, Figure 9.1 presents
the overall melt-spinning picture and Figure 9.3 presents
a section of the filament and all the stress, velocity, and
direction vectors associated with the problem.

At a point in the filament boundary the unit outward nor-
mal vector is n and the tangential vector is t. The appropriate
coordinate system for the problem is cylindrical with the axis
of symmetry coinciding with the z axis (Fig. 9.3). The veloc-
ity vector is v and the total stress tensor is𝛑. The components

r
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rr
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FIGURE 9.3 Velocity, stress vectors, and geometry at a point
during melt spinning.

of the total stress tensor are related to the components of the
extra stress tensor τ by the following relationship (Eq. 3.7):

πii = p + τii; πij = τij when i = j (9.1)

where p is the isotropic pressure.
To start our analysis we postulate the following:

vz = vz(r, z); vr = vr (r, z); p = p(r, z) (9.2)

Because of symmetry and no-rotation of the filament, the
θ component of the velocity field is zero and there is no θ

dependence of the velocity and pressure fields. The equation
of continuity yields

ṁ = ρAvz = ρπR2vz = constant (9.3)

where ṁ is the polymer mass flow rate, A is the cross-
sectional area of the filament, R(z) is the radius of the filament
at the axial position z, and vz is the average axial velocity
across the filament cross section. The z component of the
equation of motion is (Table 2.7, Eq. F)

ρ

(
vr
∂vz

∂r
+ vz

∂vz

∂z

)
= −1

r

∂

∂r
(rπrz) − ∂πzz

∂z
(9.4)

where the gravitational force, ρgz , has been considered to
be negligible. Similarly, the r component of the equation of
motion is (Table 2.7, Eq. D)

ρ

(
vr
∂vr

∂r

)
= −1

r

∂

∂r
(rπrr) − ∂πrz

∂r
+ πθθ

r
(9.5)

The Newtonian constitutive equation is used, and thus,

πzz = p + τzz = p − 2μ
∂vz

∂z
(9.6)
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The boundary conditions for the problem are based on
the facts that no fluid crosses the interface between the fil-
ament and the surrounding medium and that no stresses are
imposed on the free boundary because air drag and surface
tension forces are neglected in this analysis. These boundary
conditions are stated as follows:

B.C.1 : v · n = 0; no flow across the interface (9.7)

B.C.2 : 𝛑 · n = 0; no air drag and surface tension (9.8)

From analytical geometry we get

n = nzδz + nr δr (9.9)

where δi represents the unit vector in the i direction. The z
and r components of the unit normal vector are related to the
angle φ between the unit normal vector and the z axis and
the change of the radius of the filament with respect to z by
the following relationships:

nz = sinφ = − dR/dz√
1 + (dR/dz)2

= − R′√
1 + (R′)2

(9.10)

nr = cosφ = dR/dz√
1 + (dR/dz)2

= R′√
1 + (R′)2

(9.11)

At the free surface (i.e., at r = R(z)), Eq. 9.7 becomes

v · n = 0 = vr nr + vznz (9.12)

Combining Eqs. 9.10, 9.11, and 9.12, we get vr =
(dR/dz)vz = R′vz at r = R(z). Note that if R′ � 1, that is,
if the filament radius is slowly changing with z, then vr

∼= 0,
which is true over most of the distance between the spinneret
and the take-up roll. Also note that the relationship vr = R′vz

indicates that R(z) is a streamline of fluid flow in the filament.
The z and r components of the total stress vector at the

free surface are

(𝛑 · n)z = πrznr + πzznz (9.13)

(𝛑 · n)r = πrrnr + πrznz (9.14)

and using Eq. 9.8 we get

πrz(R) = −nz

nr
πzz(R) = R′πzz(R) (9.15)

In this relationship πzz is the tensile stress due to the drawing,
and πrz is due to the fact that we do not have a cylindrical
geometry (i.e., R is a function of z). Thus, we expect that πrz

is approximately zero for R changing very slowly with z and
neglecting air drag on the filament surface. Mathematically
the previous argument follows from Eq. 9.15 for R′ � 1.

If we further assume that vz = vz(z) = vz , then the aver-
age of the z component of the equation of motion obtained
by multiplication of each term by 2πr dr and integration from
0 to R(z) leads to (Middleman, 1977)

R∫
0

ρvr
∂vz

∂r
r dr = 0, since vz = vz(r ) (9.16)

R∫
0

ρvz
∂vz

∂z
r dr = 1

2ρvzv ′
z R2 (9.17)

R∫
0

1

r

[
∂

∂r
(rπrz)

]
r dr = Rπrz(R) = RR′πzz(R) (9.18)

R∫
0

∂πzz

∂z
r dr = d

dz

R∫
0

πzzr dr − πzzRR′(R) = 1
2π

′
zz R2 (9.19)

where v ′
z is the derivative of vz with respect to z. Note that

the right equality in Eq. 9.19 is based on Leibnitz’s rule of
differentiation of an integral. Substitution of Eqs. 9.16 to 9.19
into Eq. 9.4 yields

ρvzv
′
z = −2

R′

R
πzz − π′

zz = − 1

R2

d

dz
(R2πzz) (9.20)

which is the general equation of the isothermal fiber-spinning
problem. Note that we have not yet introduced the constitu-
tive equation, which is given in Eq. 9.6.

Equation 9.20 can be transformed into a differential equa-
tion containing only vz and its derivatives by substituting
expressions for πzz and π′

zz obtained from Eq. 9.6. These rela-
tions are found from Eq. 9.6 by eliminating the pressure term
as follows. The isotropic pressure is one-third of the trace of
the total stress tensor, that is,

p = 1
3 (πrr + πzz + πθθ ) (9.21)

Because only the z component of the velocity field exists (see
also Eq. 9.14 for πrr) πrr = πθθ = 0, and thus Eq. 9.21 yields

πzz = 3p = −3μ
dvz

dz
= −η1

dvz

dz
(9.22)

where η1 is the uniaxial elongational viscosity (Eq. 3.36).
For Newtonian fluids, this viscosity is equal to three times
the viscosity (Trouton’s rule; η1 = 3μ).

Substitution of Eq. 9.22 and its derivative into the equation
of motion, Eq. 9.20, yields

d

dz
(vz)

2 = 12
μ

ρ

R′

R

dvz

dz
+ 6

μ

ρ

d2vz

dz2 (9.23)
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Neglecting the inertial term we obtain, as a solution to Eq. 9.3
(i.e., R′/R = −v ′

z/2vz), (v ′
z/vz)′ = 0, which is solved as

vz = C1eC2z (9.24)

The melt-spinning problem has the following boundary con-
ditions:

B.C.1: vz = v0, at z = 0

B.C.2: vz = vL , at z = L
(9.25)

With the help of the above boundary conditions Eq. 9.24
becomes

vz = v0 exp

[
z ln DR

L

]
= v0(DR)z/L (9.26)

where DR is the draw (or draw-down) ratio, and it is equal
to

DR = vL

v0
(9.27)

Finally, the radius of the filament, R, as a function of the axial
distance z is found from the continuity equation as

R(z) = R0 exp

[
−1

2
z

ln DR

L

]
(9.28)

In summary, the steady-state Newtonian isothermal model
is able to provide the axial velocity profile as well as the fila-
ment radius profile, and it is based on the following additional
assumptions: (1) slowly changing radial profile with axial
distance, (2) negligible inertial and gravitational forces, (3)
nonexistent radial velocity profile, (4) circular filament, (5)
axial velocity profile not dependent on the radial coordinate,
and (6) negligible surface tension and air drag forces. (See
also Problem 9A.1 for the validity of some of the above
assumptions and Schultz (1987) for a challenge of these
assumptions.)

Example 9.1. Newtonian and Isothermal Model for
Melt-Spun Nylon 6,6

Nylon 6,6 is extruded at 285 ◦C under isothermal conditions
(in a temperature-controlled chamber), and it is drawn in such
a way that L = 400 cm and the draw ratio is equal to 100.
If the take-up speed is 1000 m/min, the polymer volumetric
flow rate is 0.1 cm3/s, and the die swell diameter is three
times the die diameter, carry out the following:

(a) Calculate the maximum stretching rate of the melt.

(b) Compare this stretching with the shear rate inside the
die, if the die diameter is 0.16 cm.

(c) Assess the validity of the approximate relation vr
∼= 0.

(d) Determine the maximum tensile stress in the melt and
the force required to draw the melt.

Assume that Nylon 6,6 is Newtonian at the spinning temper-
ature.

Solution. The stretching rate is calculated by differentiating
Eq. 9.26 as follows:

ε̇ = v ′
z = dvz

dz
= v0 exp

[
z ln DR

L

]
ln DR

L
(9.29)

The maximum in ε̇ occurs at z = L:

ε̇max = (v ′
z)max = vL

ln DR

L
(9.30)

and it is equal to 19 s−1.
The maximum shear rate (at the walls) inside the die is

given by the relation (Table 2.4)

γ̇max = 4Q

πR3
die

(9.31)

where Q is the polymer volumetric flow rate. Thus, γ̇max is
equal to about 250 s−1, which is one order of magnitude
higher than the maximum stretching rate of 19 s−1.

The validity of the relation vr
∼= 0 depends on the value of

the slope of the filament radius, which follows from Eq. 9.28:

∣∣R′∣∣ = ∣∣∣∣dR

dz

∣∣∣∣ = R0

2

ln DR

L
exp

[
−1

2
z

ln DR

L

]
(9.32)

The maximum of the slope occurs at z = 0 (i.e., at the die
swell level), and it is equal to

∣∣R′∣∣
max

= R0

2

ln DR

L
(9.33)

Numerically the maximum slope is calculated to be
1.4 × 10−3, which is much smaller than 1, and so the radial
velocity is about equal to zero.

The maximum tensile stress in the melt occurs at the
location where the maximum stretching takes place, that is,
at the take-up roll. It is calculated from Eq. 9.22 as

(πzz)max = −3μ(v ′
z)max (9.34)

The viscosity of Nylon 6,6 at 285 ◦C is taken from Table A.11
in Appendix A as 250 Pa·s, and so the maximum tensile
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stress is calculated to be equal to −14.3 kPa. Finally, the
force required to draw the melt is

F = −πR2
L (πzz)max = 9π

R2
die

DR
(πzz)max (9.35)

which is calculated to be −2.6 mN (i.e., 2.6 mN in
tension).

9.1.2 Nonisothermal Newtonian Model

The dynamics of the nonisothermal melt-spinning process
has been analyzed since the early 1960s. The analysis that
follows is drawn from the work of Kase and Matsuo (1965,
1967) and Kase (1985). These authors presented a model
called thin-filament theory, and it is based on purely exten-
sional flow field in the filament. The model in its unsteady-
state form consists of four partial differential equations
based on the continuity, momentum, constitutive, and energy
equations. Compared to the previous Newtonian isothermal
model, the present model includes the additional complica-
tion of nonconstant temperature along the axial distance z.
The independent variables are time, t, and distance, z, from
the spinneret, and the dependent variables are cross-sectional
area of the filament, A(z, t), temperature, T(z, t), axial velocity,
vz(z, t), and rheological tensile force, F(z, t). Obviously, the
steady-state solution of the four equations gives the depen-
dent variables as a function of the axial distance z only. Fig-
ure 9.1 shows a typical melt-spinning process valid in this
section.

Assumptions. The simplifying assumptions of the thin-
filament theory are as follows:

1. Circular cross section of the filament; A = πR2.

2. Constant polymer density; ρ = constant.

3. Constant specific heat of the polymer; C p = constant.

4. No die swell effect.

5. Newtonian viscosity with Arrhenius-type dependence
on temperature.

6. No resistance to radial heat conduction within the fil-
ament; that is, ∂T/∂r = 0.

7. No heat conduction within the filament in the axial
direction.

8. Vertical filament.

9. Heat transfer at the surface (with composite coeffi-
cient U) consists of two parts: convective (with coef-
ficient h) and radiant heat transfer with governing
equation σε

(
T 4 − T 4

a

)
with U = h + σε

(
T 4 − T 4

a

)
/

(T − Ta), where Ta is the ambient air temperature, σ is
the Stefan–Boltzmann constant, and ε is the emissivity.

10. Empirical dependence of the heat transfer coefficient
U on the filament velocity, vz, and the cooling air
cross-flow velocity, vay.

11. No interactions, either hydrodynamic or thermal,
between adjacent filaments.

12. Purely extensional flow field in the filament, that is,
∂vz/∂r = 0.

Most of the assumptions are valid for industrial melt-
spinning conditions. However, assumptions 4 and 5 may not
be absolutely valid, because die swell exists and polymers
exhibit viscoelastic behavior. To accommodate assumption 4,
we consider the origin of the coordinate axis to be at the point
of maximum die swell. Furthermore, other developments in
numerical schemes (Fisher et al., 1980; and Keunings et al.,
1983) have verified that the thin-filament theory and finite
element calculations give comparable results in a region only
a few die diameters downstream from the die swell region.
Consequently, for all practical purposes, the thin-filament
theory is satisfactorily accurate for most fiber-spinning pro-
cesses. Finally, industrial and laboratory experience suggests
that the neglect of viscoelasticity might not be a serious prob-
lem (Ziabicki and Kawai, 1985), except when dealing with
instability issues.

Equations. The continuity equation is the same as Eq. 9.3.
It can easily be shown to be of the following form:

∂A

∂t
+ vz

∂A

∂z
+ A

∂vz

∂z
= ∂A

∂t
+ ∂(Avz)

∂z
= 0 (9.36)

The unsteady-state equation of motion (Table 2.7, Eq. F), tak-
ing also assumptions 8 and 12 into consideration, becomes

ρ

(
∂vz

∂t
+ vz

∂vz

∂z

)
= ρg − 1

r

∂

∂r
(rπrz) − ∂πzz

∂z
(9.37)

The equation of energy (Table 5.1, Eq. B) using also assump-
tion 2 becomes

ρC p

(
∂T

∂t
+ vz

∂T

∂z

)
= −1

r

∂

∂r

(
rqr

)− ∂qz

∂z
+ Ṡ (9.38)

where Ṡ is the rate of energy production (examples: phase
change and chemical reaction). Because there is no signif-
icant heat production and no heat conduction in the axial
direction (assumption 7), Eq. 9.38 simplifies to

ρC p

(
∂T

∂t
+ vz

∂T

∂z

)
= −1

r

∂

∂r

(
rqr

)
(9.39)

The heat transfer in the radial direction is given by the fol-
lowing relation (assumption 9):

qr = U (T − Ta) = h (T − Ta) + σε
(
T 4 − T 4

a

)
(9.40)
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By averaging the equation of motion over the cross section
(i.e., multiplying each term by 2πr dr and integrating them
from 0 to R(z)), we get

ρA

(
∂vz

∂t
+ vz

∂vz

∂z

)
= ρgA − 2π

(
rπrz

∣∣
R(z)
)

−2π

R(z)∫
0

dπzz

dz
r dr (9.41)

The left-hand-side term in Eq. 9.41 represents the inertia of
the filament and the first term on the right-hand side rep-
resents the force due to gravity acting on the filament. The
second term on the right-hand side represents the drag force
due to air, and the last term represents the tensile stress in
the polymer and the surface tension forces. Thus, Eq. 9.41
presents the balance of the acting forces:

(inertia) = (gravity) − (air drag) − (surface tension)

+ (rheological forces)

The air drag force acts along the tangential direction, t,
as shown in Figure 9.3 and thus can be decomposed into
two components: one in the r direction and one in the z
direction. The summation of the r components of the traction
vector over the circumference of the filament at a specific z
plane is zero, because they cancel out, and the summation of
the z components results in the shear stress πrz evaluated at
the surface of the filament. When R′ � 1, we are allowed
to consider the z component of the air drag to be the same
as the air drag itself, for all practical purposes. Thus, the
summation of the z components gives: rπrz|R(z) = Rπrz,s =
R(1/2)CDρav2

z = RD, where CD is the hydrodynamic drag
(or friction) coefficient, ρa is the density of the surrounding
medium, that is, the density of air, and the subscript s denotes
the surface of the filament.

Using the Leibnitz rule for the last term in Eq. 9.41, we
get

d

dt

R(z)∫
0

πzzr dr = πzz

∣∣
R(z) R(z)

dR

dz
+

R(z)∫
0

d

dz
(πzz) r dr (9.42)

Based on Eq. 9.42, the equation of motion becomes

ρA

(
∂vz

∂t
+ vz

∂vz

∂z

)

= ρgA − 2DπR + 2ππzz |R R
dR

dz
− 2π

d

dz

R(z)∫
0

πzzr dr

(9.43)

const.

const. z

r

z

R1

R2n
-

R

FIGURE 9.4 Definition of the principal radii R1 and R2 associated
with the surface tension force during melt spinning.

A curved surface always creates a surface tension term that
relates the pressure differential across the interface between
the melt and air. The term πzz||R = πzz,s is related to the
surface tension force via the relationship

πzz,s = 3�p = 3(p − pa) = 3γ

(
1

R1
+ 1

R2

)
(9.44)

where Eq. 9.22 was used, R1 and R2 are the principal radii
of curvature of the fiber surface at position z (Fig. 9.4), γ is
the surface tension, and pa is the ambient pressure. The last
equality in Eq. 9.44 is the Young–Laplace equation. Note
that the principal radii of curvature have opposite signs, as
they are on opposite sides of the filament surface. For a
slowly changing filament radius (i.e., for R′ � 1) R1

∼= R
and R2 � R so that

πzz,s
∼= 3γ /R (9.45)

is a good approximation. Based on this, the unsteady-state
equation of motion attains the following form:

ρA

(
∂vz

∂t
+ vz

∂vz

∂z

)
= ρgA − 2D

√
πA

+ d

dz

(
H

√
πA
)

− d F

dz
(9.46)

where H = 6γ and F is the tensile force (also called tension),
which is equal to 2π

∫ R(z)
0 πzzr dr.



FIBER SPINNING 283

Similarly, the energy equation is integrated over the cross
section to give

2πρC p
R2

2

(
∂T

∂t
+ vz

∂T

∂z

)
= −2πRU (T − Ta) (9.47)

which finally can be brought into the following format:

∂T

∂t
+ vz

∂T

∂z
= − 2

√
πU

ρC p

√
A

(T − Ta) (9.48)

Finally, the Newtonian constitutive equation, Eq. 9.6, can
be used where the viscosity, μ, follows an Arrhenius type
equation:

μ = μ0 exp

[
− E

Rg

(
1

T0
− 1

T

)]
(9.49)

where Rg is the universal gas constant (= 8.314 J/mol·K),
E is the activation energy, and μ0 is the viscosity at some
reference temperature T0. Note that a WLF relationship (see
Section 5.1) or an empirical relationship can also be used to
express the effect of temperature on viscosity. In conclusion,
Eqs. 9.36, 9.46, 9.48, and 9.49 are the four transient equations
that describe the Newtonian nonisothermal unsteady-state
melt-spinning problem.

Experimental Correlations. In order to solve the previous
set of equations, we need correlations for the heat trans-
fer coefficient, U, and for the hydrodynamic drag coeffi-
cient, CD. For typical melt-spinning conditions, typical val-
ues of the cooling air parameters are: thermal conductivity,
ka = 0.808 × 10−4 cal/cm·s·◦C; kinematic viscosity, νa =
0.290 cm2/s; and density, ρa = 0.815 × 10−3 g/cm3.

The literature (Kase and Matsuo, 1967) presents the exper-
imental correlations of the various parameters used in the
equations of motion and energy:

U = 0.473 × 10−4
(vz

A

)1/3
[

1 +
(

8
vay

vz

)2
]1/6

(9.50)

where vay is the velocity of cross air flow, vz is in cm/s, A
is in cm2, and U is in cal/cm2·s·◦C. Equation 9.50, which is
valid for any polymer, is based on the following formula:

Nu = (2R)U

ka
= 2U

√
A

ka
√
π

= 0.42(Re∗)1/3

[
1 +

(
8

vay

vz

)2
]1/6

(9.51)

where Re∗ is the air-side Reynolds number:

Re∗ = (2R)vz

va
= 2vz

√
A

va
√
π

(9.52)

Also, note that the term
[
1 + (8vay/vz

)2]1/6
expresses the

effect of the direction angle of the air flow measured from
the filament axis. Equation 9.50 was developed from data for
air moving past a stationary cylinder, and thus it does not
take into account the effect of the moving cylinder. George
(1982) provides a more accurate relation for moving cylin-
ders, which is similar to Eq. 9.50, but with the two first terms
replaced by 1.37 × 10−4(vz/A)0.259.

In terms of the hydrodynamic drag (or friction) coefficient,
the following equation is used:

CD = 0.65
(
Re∗)−0.81

(9.53)

and thus

2D
√
πA = 3.12 × 10−4v1.19

z A0.095 (9.54)

Note that other researchers (e.g., George, 1982) have used
expressions such as 0.44(Re∗)−0.61 or 0.37(Re∗)−0.61 in
Eq. 9.53. Also

F = −3μ
dvz

dz
A (9.55)

with the following relationship for the viscosity function,
which is typical for PET:

μ = μ∞ exp

(
E ′

T + 273

)
, when T ≥ 60 ◦C

μ = ∞, when T < 60 ◦C

(9.56)

where E ′ (= E/Rg) and μ∞ are material properties of PET.
The above form of the viscosity function indicates that crys-
tallization (or solidification) takes place at 60 ◦C. Figure 9.1
shows the solidification point at z = L s, beyond which the
polymer is being cold-drawn.

The final form of the equations of continuity, Eq. 9.36,
motion, Eq. 9.46, energy, Eq. 9.48, and constitutive, Eq. 9.55,
for the steady state are (Kase, 1985)

d (Avz)

dz
= 0 (9.57)

dF

dz
= d

dz

(
H

√
πA
)

+ ρgA − ρAvz
dvz

dz

−3.12 × 10−4 A0.095v1.19
z (9.58)
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vz
dT

dz
= 1.67 × 10−4v1/3

z

ρC p A5/6

[
1 +

(
8

vay

vz

)2
]1/6

(Ta − T )

(9.59)

− dvz

dz
=
{

F/
[
3Aμ∞ exp

(
E ′/(T + 273)

)]
, for T ≥ 60 ◦C

0, for T < 60 ◦C

(9.60)

In this set of four equations with four unknowns
(vz, A, T, and F) the following boundary conditions apply:

B.C.1: at z = 0, A = A0 = πR2
0; vz = v0; T = T0; F = F0

(9.61)

B.C.2: at z = L or at z such that T (z) = 60 ◦C, vz = vL

(9.62)

Equation 9.62 is considered to apply to a constant-take-up-
speed filament and the last part of Eq. 9.61 to a constant-
tension filament.

Dimensionless Forms of the Equations. It is useful to make
the governing equations nondimensional, so that the relative
importance of the various terms becomes easily identifiable.
To this end we define the following dimensionless variables:

ζ = z

L
, ξ = A

A0
, ψ = vz

v0
, τ = v0t

L
, θ = T

T0

λ = (−F) L

3A0v0μ∞ exp [E ′/(T0 + 273)]
= (−F) L

3A0v0μ∞0

(9.63)

and the following dimensionless parameters:

ψay = vay

v0
, θa = Ta

T0
, ψL = vL

v0
, λ0 = (−F0)L

3A0v0μ∞0
(9.64)

Substituting these dimensionless variables and parameters
into the equations of continuity, motion, and energy and into
the constitutive equation yields

ξψ = 1 (9.65)
dλ

dζ
= d

dζ

(
C1

ξ
− C4

√
ξ

)
− C3ξ + C2

ξ 1.095
(9.66)

dθ

dζ
= (St)

[
1 + (8ξψay

)2]1/6

ξ 1/6
(θa − θ ) (9.67)

dξ

dζ
=

⎧⎪⎨
⎪⎩
λξ

exp
(
E ′/ (T0 + 273)

)
exp

(
E ′/ (θT0 + 273)

) , for θT0 ≥ 60 ◦C

0, for θT0 < 60 ◦C

(9.68)

where the definitions of the various constants are

C1 = ρLv0

μ∞0
= Re C2 = 3.12 × 10−4v0.19

0 L2

A0.905
0 μ∞0

C3 = ρgL2

v0μ∞0
= Re

Fr
=
(
ρLv0

μ∞0

)(
gL

v2
0

)

C4 = L H
√
π

v0μ∞0
√

A0
= Re

Ca
=
(
ρLv0

μ∞0

)(
H

√
π

ρv2
0

√
A0

)

St = 1.67 × 10−4 L

ρC p A5/6
0 v2/3

0

(9.69)

and where Re, Fr, Ca, and St are the Reynolds, Froude,
capillary (or Weber), and Stanton numbers, respectively.
Also, note that in Eqs. 9.66, 9.67, and 9.68 the continuity
equation, Eq. 9.65, was used. The boundary conditions,
Eqs. 9.61 and 9.62, become

B.C.1: at ζ = 0, ξ = ψ = θ = 1; λ = λ0 (9.70)

B.C.2: at ζ = 1 or at ζ such that θ = 60/T0, ψ = ψL (9.71)

The solution for the Newtonian and isothermal case
developed in Section 9.1.1 can be found by solving Eqs. 9.66
to 9.68 (see Problem 9A.3) using the appropriate simplifica-
tions. Furthermore, the Newtonian and isothermal case can
be extended to include all the additional forces, that is, to
include the forces of air drag, surface tension, gravity, and
inertia. The numerical solution of Eqs. 9.66 to 9.68 and its
comparison with experimental data were shown by Kase
and Matsuo (1967) for low-speed melt-spun polypropylene,
with the following parameters: C1 = C2 = C3 = C4 = 0,
vL = 500 m/min, vay = 20 cm/s, Ta = 20 ◦C, ρ = 0.83 g/cm3,
C p = 0.7 cal/g·◦C, E ′ = 3500 K (i.e., E ≈ 7000 cal/mol),
and take-up denier (dpf) = 8 (see Problem 9C.1). The denier
per filament (dpf) is the weight in grams of a 9000 m long
filament. Thus, for ṁ in g/s, vL in m/s, ρ in g/cm3, and RL

in cm, the definition becomes

dpf = 9000
ṁ

vL
= 2.83 × 106ρR2

L (9.72)

The tenacity of a fiber is the ultimate stress expressed
as grams-force per denier (gf/d): (tenacity) = (strength)/
(9 × 105 ρ), where the strength is expressed in grams-
force/cm2. Figure 9.5 shows the data from Kase and Matsuo
(1967). The agreement between the theory and experiments
is good. Note that similar analyses have been carried out by
other groups for polymers such as HDPE, LDPE, PET, and
so on (Ziabicki and Kawai, 1985).

The simulation of nonisothermal fiber spinning of PET
at intermediate spinning speeds by George (1982) is worth
mentioning at this point. His model works well for spinning
speeds from 1000 to 3000 m/min. For PET with an intrinsic
viscosity (IV) equal to 0.675 dL/g (1 dL = 100 cm3), which
is a measure of molecular weight, extrusion temperatures
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FIGURE 9.5 Filament cross-sectional area, A, and temperature, T, at different spinneret tempera-
tures. Data points represent experiments of polypropylene filaments with the following parameters:
take-up speed, 500 m/min; cooling cross air flow, 20 cm/s; temperature of cooling air, 20 ◦C; filament
denier, 8; and diameter of the spinneret nozzle, 0.6 mm; (No 0), spinneret temperature is 240 ◦C; and
(No 1), spinneret temperature is 270 ◦C. Solid lines represent the theoretical calculations. (Reprinted
by permission of the publisher from Kase and Matsuo, 1967.)

of 290–315 ◦C, and shear rates of 2500–32000 s−1, the die
swell, B, is calculated as

B ∼= 0.627 exp

[
−3650

(
1

548
− 1

T + 273

)]
γ̇ 0.134 (9.73)

where γ̇ is the shear rate at the die wall. The elongational
viscosity, η1, is given by

η1 = 3.82 × 10−5 exp

[
6802

T + 273

]
(9.74)

and the momentum equation contains only inertia, air drag,
gravitational, and tension forces. (Note that surface tension
forces are not included.) The air drag force and the heat
transfer coefficient are calculated as described in the sub-
section “Experimental Correlations” (George, 1982). Some
results from the numerical solution of the four equations,
continuity, momentum, heat transfer, and constitutive, and
experimental data are shown in Figure 9.6.

Finally, the relative importance of the various forces in
Eq. 9.58 is shown in Figure 9.7 (from Ziabicki and Kawai,
1985) as a function of the take-up speed. The melt-spun
polymer is a polyester, the spinneret radius is 125 μm,
the filament radius at take-up is 9.25 μm, the viscosity is
300 Pa·s, the cooling air is stationary, and the mass flow
rate is proportional to the spinning speed. It is clear from
this figure that for low take-up speeds the rheological and

inertial forces are significant. As the take-up speed increases
the air drag force increases dramatically, while the inertial
force increases to a lesser extent and the rheological force
remains constant. Gravity and surface tension forces are
negligible at all take-up speeds.

9.1.3 Isothermal Viscoelastic Model

Analyses of the Newtonian isothermal and nonisothermal
models can be even further complicated by the introduction
of the viscoelastic nature of the polymers in the melt state.
The viscoelasticity of the polymer is important in cases where
the relaxation time, λ, is of the same order of magnitude or
slower than the characteristic time constant of the process,
which might be taken to be equal to v0/L . The ratio of these
two time constants is called the Deborah number (Eq. 3.90),
and it is equal to

De =v0λ

L
(9.75)

where λ is the relaxation time of the polymer in extensional
flows.

The complete analysis should include both the nonisother-
mal nature of the melt-spinning process and the viscoelastic
nature of the polymer. Analytical solutions for this situation
do not exist. We outline, for pedagogical reasons, the solu-
tion to the isothermal case but without going into significant
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details. Denn et al. (1975) and Fisher and Denn (1976) eval-
uated the effect of the viscoelastic nature of the fluid on melt
spinning.

The momentum equation for the Newtonian case,
Eq. 9.20, can also be used in the viscoelastic case and can be
written for the case of negligible inertia as

2
R′

R
πzz + π′

zz = 1

R2

d

dz

(
R2πzz

) = 0 (9.76)
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spinning conditions are: spinneret radius, 125 μm; filament radius
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The force at the take-up point, F, is given by

F = πR2
Lπzz|L (9.77)

Combining Eqs. 9.76 and 9.77, together with Eq. 9.3, we get

πzz = ρFvz

ṁ
(9.78)

A more convenient way of expressing Eq. 9.78 is by consid-
ering that πrr

∼= 0 (Eqs. 9.14 and 9.15). Thus,

πzz − πrr = τzz − τrr = ρFvz

ṁ
(9.79)

The constitutive equation used by Denn and co-workers
(Denn et al., 1975; Fisher and Denn, 1976) was the White–
Metzner model (see also Section 3.2.1; Eq. 3.42), which was
thought to be applicable to high Deborah number processes
such as melt spinning. The zz and rr components of the
constitutive equation in cylindrical coordinates are

τzz + λ

(
vz

dτzz

dz
− 2τzz

dvz

dz

)
= −ηγ̇zz = −2η

dvz

dz

τrr + λ

(
vz

dτrr

dz
+ τrr

dvz

dz

)
= −ηγ̇rr = η

dvz

dz

(9.80)

where the relaxation time, λ, is related to viscosity, η, by the
relationship

λ = η

G
(9.81)
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and G is the shear modulus of the polymer. Finally, the vis-
cosity function, η, was considered to obey the power law,
so that the model includes both the shear-thinning and the
elastic character of the polymer. Equations 9.79 and 9.80 can
be combined to eliminate the stress components and yield
the following equation (Fisher and Denn, 1976):

ψ + (αψ − 3ε)
(
ψ ′)n − 2α2ψ

(
ψ ′)2n − nαψ2

(
ψ ′)n−2 = 0

(9.82)

where ψ is the dimensionless velocity, vz/v0, ψ ′ means dif-
ferentiation of ψ with respect to ζ (= z/L), α and ε are
dimensionless parameters given by

α = m (3)(n−1)/2

G

(v0

L

)n
ε = mṁ (3)(n−1)/2

ρ|F |L
(v0

L

)n−1

(9.83)

and m is the consistency of the polymer melt. Note that the
ratio of the two dimensionless parameters is ε/α = G A0/|F |
and that α is a purely rheological parameter whereas 1/ε is
a dimensionless force.

The boundary conditions of the problem are the same as
for the Newtonian isothermal case (Eq. 9.25) but with the
addition of one more boundary condition:

B.C.3: at z = 0, τzz = τ0 (9.84)

It is difficult to make a good estimate of the value of τ0,
but Fisher and Denn (1976) showed that this posed no major
problem. The numerical solution of Eq. 9.82 with bound-
ary conditions, Eqs. 9.25 and 9.84, is shown in Figure 9.8
(from Fisher and Denn, 1976), where also experimental data
of melt-spun polystyrene (Zeichner, 1973) are shown. The
agreement between theory and experiments is not good,
because the parameter α for polystyrene has an experimen-
tal value of about 0.2 to 0.3 while the theory fits the data
with α about 0.4 to 0.5. Nevertheless, the viscoelastic theory
described above provides the general effect of viscoelasticity
on the melt-spinning process.

Better agreement with experiments was achieved by Phan-
Thien (1978), who solved the fiber-spinning problem using
the PTT viscoelastic model (see Eq. 3.45). In this case the
constitutive equation was fitted to data for LDPE and PS and
the solutions to the fiber-spinning problem were compared
to experimental data.

Example 9.2. Dimensionless Tension, 1/ε, for
Newtonian and Power-Law Fluids

Calculate the dimensionless tension, 1/ε (Eq. 9.83), for a
power-law fluid. Then find 1/ε in the limit as n → 1 (i.e., for
a Newtonian fluid). Use n = 0.4 and DR = 15 in both cases.
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FIGURE 9.8 Theoretical dimensionless velocity profiles, ψ , as
a function of the dimensionless axial distance, ζ , for the following
values of the parameters: n = 1/3, DR = 5.85, and τ0ṁ/ρv0 F = 1.
Data shown are for the isothermal spinning of polystyrene at 170 ◦C.
(Reprinted by permission of the publisher from Fisher and Denn,
1976.)

Solution. To calculate 1/ε we need to provide expressions
for the tension, F, and the mass flow rate, ṁ. The mass flow
rate is calculated as

ṁ = ρπR2
LvL = ρπR2

L v0 DR (9.85)

and the force as

F = πR2
Lπzz|L = −πR2

L m (3)(n+1)/2
(
v ′

z

)n |L (9.86)

Substitution of Eqs. 9.85 and 9.86 along with the velocity
profile obtained in Problem 9B.1 into Eq. 9.83 yields

1

ε
= 3

{
n

1 − n

[
1 − (DR)n−(1/n)]}n

(9.87)

The limit of Eq. 9.87 for n → 1 is easily calculated to be

1

ε
= 3 ln DR (9.88)

Finally, we obtain

(
1

ε

)
n=0.4

= 2.53;

(
1

ε

)
n=1

= 8.12 (9.89)

9.1.4 High-Speed Spinning and Structure Formation

The discussion of fiber spinning in the preceding sections
referred to low and moderate spinning speeds in which very
little degree of crystallinity can be generated in the spun
fibers especially for slowly crystallizing polymers (e.g., PET,
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Table 5.17). For example, PET needs to be spun at speeds of
5000 m/min and above in order to exhibit significant crys-
tallinity (see Fig. 5.23). As mentioned at the beginning of this
chapter, the lack of crystallinity during the conventional low-
speed spinning process forced the industry to use an addi-
tional step (drawing) immediately after the spinning process
(two-step process, TSP). In this way, the PET fibers exhibit a
high degree of orientation, and they are fully oriented yarns
(FOY).

Nevertheless, the objective of the synthetic fiber industry
is to make fibers in a simple one-step process, in which melt-
spun fibers will have a high degree of orientation and crys-
tallinity (structure formation). For slowly crystallizing poly-
mers that simple process is high-speed (3500–5000 m/min)
or very-high-speed (>5000 m/min) spinning, which is a one-
step process (OSP) in which a high degree of orientation
and crystallinity occur during the spinning process. In this
way, relatively lower cost equipment and energy costs are
required as compared to conventional TSP spinning. Fur-
thermore, increased productivity can be achieved.

High-speed spinning is an attractive process. The mechan-
ical properties of high-speed-spun PET fibers are no better
than those produced by a TSP (see Table 9.1). The density
of the OSP fibers is higher than that of the TSP fibers, which
means that the crystallinity is higher, but the birefringence is
lower, which means that the orientation is lower. However,
the boil-off shrinkage and the elongation at break are better
for fibers generated by a OSP than by a TSP.

Next, we discuss the formation of structure, that is, crystal-
lization, crystalline morphology, and orientation, during the
spinning process. We use PET as a model polymer, because
data for this polymer are abundant in the literature. PET is a
slowly crystallizing polymer (t1/2

∼= 50 s, Section 5.5.1), but
under high stress conditions stress-induced crystallization
takes place. Thus, high-speed spinning is necessary for PET
crystallization. However, rapidly crystallizing polymers, like
Nylon 6,6 (t1/2

∼= 0.42 s) and PE (see also Section 5.5.1),
can crystallize even in low- or intermediate-speed spinning
processes. Finally, crystallization does not take place in non-
crystallizable polymers (e.g., atactic PS), and thus orientation
is the only structure formation achieved during the spinning
process of these polymers.

Crystallinity is important in fibers, because its degree
affects the mechanical, diffusional, and solubility properties,
as well the shrinkage of the fibers. In general, crystallization
takes place under either quiescent or stress conditions. The
effects of both these states on crystallinity were discussed
in Section 5.5. When crystallization takes place during the
spinning process the energy equation, Eq. 9.38, should be
rewritten as

ρC p

(
∂T

∂t
+ vz

∂T

∂z

)
= −1

r

∂

∂r

(
rqr

)− ∂qz

∂z
+ ρc�H c

dφc

dt
(9.90)

TABLE 9.2 Kinetic Crystallization Characteristics of
Various Polymers

Polymer Kmax (s−1) D ( ◦C) J (◦C/s)

PP (isotactic) 0.55 60 35.0
PET 0.016 64 1.1
Nylon 6 0.14 46 6.8
Nylon 6,6 1.64 80 139
PS (isotactic) 0.0037 40 0.16

Source: Ziabicki, 1976.

where �H c is the latent heat of crystallization per unit mass
(see Appendix C for tabulated values), ρc is the density of
the crystalline phase, and φc is the volume fraction of the
crystalline phase (Eq. 5.160). Consequently, the steady-state
form of Eq. 9.48 becomes (Lin et al., 1992)

dT

dz
= −2πRU (T − Ta)

ṁC p

+ ρc

ρ

�H c

C p

dφc

dz
(9.91)

This equation adds one more unknown, the degree of crys-
tallinity, φc, to the system of equations: continuity, constitu-
tive, momentum, and energy. Thus, one additional equation is
needed, which relates the crystallization rate to the spinning
and physical characteristics of the system. This additional
equation comes from a simplified approach to nonisother-
mal crystallization under conditions of molecular orientation,
which is discussed next.

Nucleation and growth rates, and thus crystallization rates,
are very sensitive to temperature. This sensitivity comes
from the effect of the temperature on the energy terms
in the respective equations of nucleation and growth rate.
The experimentally observed crystallization half-time, t1/2

(time for φc/φ∞ = 1/2), or its reciprocal rate constant,
K(T) (t1/2 = (ln2/K (T ))1/n; see also Eq. 5.159), was shown
to obey an empirical relationship of the following form
(Ziabicki, 1976):

K (T ) = Kmax exp
(−4 ln 2 (T − Tmax)2 /D2

)
(9.92)

where D is the half-width of the K(T) curve (similar to
Fig. 5.20), Kmax is the maximum in the rate–temperature
curve, and Tmax is the temperature at which K = Kmax.
Table 9.2 shows some typical values of Kmax and D for
various polymers. Note that Eq. 5.163 is another form of
an empirical equation used to fit crystallization rate-versus-
time data.

The area under the rate curve can be shown to be

Tm∫
Tg

K (T ) dT ∼= 1.064Kmax D = J (9.93)



FIBER SPINNING 289

where J is called kinetic crystallizability, and it character-
izes the degree of crystallinity achieved when the material is
cooled from the melting temperature, Tm, to the glass tran-
sition temperature, Tg, at unit cooling rate. Typical values
of the kinetic crystallizability are shown in Table 9.2. Thus,
for the same cooling rate and for φc � φ∞, the degree of
crystallinity of Nylon 6,6 will be 125 times higher than that
for PET.

Polymer crystallization is also very sensitive to molecular
orientation in the amorphous regions. Orientation affects the
entropy and enthalpy of fusion, the nucleation rate, and so on,
but the mathematics of the problem goes beyond the scope of
the present textbook. Instead, we use Ziabicki’s (1976) idea
that any function of molecular orientation, X ( fam), that is,
melting temperature Tm, crystallization rate K, free energy
�F, and so on, can be expanded as a series:

X ( fam) = X (0) + α2 f 2
am + · · · (9.94)

where fam is the orientation of the amorphous region of
the polymer before crystallization. Note that for symmetry
reasons, Eq. 9.94 does not include a linear term. For low
degrees of orientation we can obtain

ln [K ( fam) /K (0)] ∼= A (T ) f 2
am (9.95)

or, after combination with Eq. 9.92,

K (T, fam) = K (T, 0) exp
[
A (T ) f 2

am

]
= K 0

max exp
[
−4 ln 2

(
T − T 0

max

)2
/
(
D0
)2

+A (T ) f 2
am

]
(9.96)

where the parameters with superscript 0 refer to the unori-
ented state. Equation 9.96 shows that the rate of crystal-
lization increases with orientation, fam, as A(T) is always
positive. Note that Eq. 9.96 is similar to Eq. 5.163. For PET
the function A(T) is shown to be equal to

A (T ) = 3.09 × 1010 − 1.55 × 108 (284 − T )

(284 − T )3 (9.97)

The rate of crystallization can now be assessed using the
modified Avrami equation (Eq. 5.162) as

dφc

dz
= nφ∞K (T, fam)

vz

⎛
⎝ z∫

0

K (T, fam)

vz
dz′

⎞
⎠

n−1

× exp

⎛
⎝−

⎛
⎝ z∫

0

K (T, fam)

vz
dz′

⎞
⎠

n⎞
⎠ (9.98)

where K is given by Eq. 9.96. The boundary condition for
the above equation is

φc= 0 at z= 0 (9.99)

The relation between the orientation of the amorphous
region and the state of stress in the filament is shown next.
From Eq. 5.180 we know that the orientation of the amor-
phous region of a polymer melt is related directly to the stress
applied to the polymer. But during the spinning process, tem-
perature, polymer relaxation, and extensional rate might have
an effect on the orientation. The equations that relate bire-
fringence to stress in the filament are usually empirical. For
polyesters the relevant equation can be either (Katayama and
Yoon, in Ziabicki and Kawai, 1985)

�N = 0.2

[
1 − exp

{
−1.65 × 10−6 (F/A)

T + 273

}]
(9.100)

or (Shimizu et al., in Ziabicki and Kawai, 1985)

d (�N )

dz
= Copt

vz

dvz

dz
− G

η

�N

vz
(9.101)

where Copt is equal to 0.53. For LDPE the relevant equation
is (Ziabicki, 1976)

�N

dvz/dz
= Copt

[
F/A

dvz/dz
− η1

]
(9.102)

where η1 is equal to 6000 Pa·s, and Copt is equal to
1.5 × 10−11 Pa.

In conclusion, when crystallization takes place due to
either the nature of the polymer or high-speed spinning (like
in PET), the system of steady-state equations which describes
the spinning process consists of the following equations: con-
tinuity, Eq. 9.57; momentum, Eq. 9.58; energy, Eq. 9.91;
constitutive, Eq. 9.60; crystallization, Eq. 9.98; and orien-
tation, Eq. 9.100 or 9.101 or 9.102. The relevant boundary
conditions are Eqs. 9.61, 9.62, and 9.99. Various numerical
solutions of the system of equations relevant to specific poly-
mers are presented in Ziabicki and Kawai (1985) and they go
beyond the scope of this textbook.

Finally, the manner in which individual molecules crys-
tallize depends on the nature of the polymer molecule and
the conditions under which crystallization takes place (see
Fig. 5.18). It is worth noting at this point the work of Dees and
Spruiell (1974) concerned with the structure development
during melt spinning of HDPE fibers. Figure 9.9 presents
their morphological model based on crystallite orientation
factors and some other information. At low take-up speeds
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speeds. (Reprinted by permission of the publisher from Dees and Spruiell, 1974.)

they assumed spherulitic growth. At higher speeds the mor-
phological model is that of row nucleated, twisted, ribbon-
like lamella and at even higher speeds that of row nucleated
untwisted lamellae.

9.1.5 Instabilities in Fiber Spinning

In general, the rate of production in many polymer process-
ing operations is limited by the onset of instabilities. In melt
spinning there are two major types of instabilities (Petrie and
Denn, 1976). The first type is called spinnability and refers
to the ability of a polymer melt to be transformed into long
fibers (i.e., to be drawn to large elongations) without break-
ing because of either capillary waves and necking (ductile) or
cohesive (brittle) fracture. The spinnability is due to the free
boundary flow between the spinneret and the take-up roll.
The second type is called draw resonance, and it appears
as a periodic fluctuation in the take-up cross-sectional area.
Besides these two types of instability specific to melt spin-
ning, typical instabilities associated with flow through dies
usually referred to as melt fracture (Section 7.2.2) are also
present. We first discuss spinnability followed by draw
resonance.

Brittle fracture refers to the situation of the tensile stress,
τzz, of a polymer jet exceeding some critical tensile strength,
τ ∗. This type of fracture is possible in viscoelastic materi-
als because these materials store some of the deformational
energy, whereas purely viscous materials dissipate all the
deformational energy. Figure 9.10 shows a schematic of a

polymer filament failing by means of cohesive fracture. As
the polymer fiber is being drawn, its tensile stress, τzz (z), and
strength, τ ∗ (z), increase with the axial distance z. At a cer-
tain axial distance, z∗

coh, both the tensile stress and strength
are equal. Beyond that point, the tensile stress exceeds the
strength and the material fails cohesively. For isothermal
spinning of Newtonian fluids the maximum length of a poly-
mer fiber is calculated as (Ziabicki, 1976)

z∗
coh = 1

β
ln

(
(2ecoh E)1/2

3ηv0β

)
(9.103)
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FIGURE 9.10 Cohesive (brittle) fracture of a molten thread.
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FIGURE 9.11 Breakup of a molten thread due to capillary wave
instability.

where ecoh is the cohesive energy density (CED) of the mate-
rial, β is the deformation gradient defined as d ln v/dz, and
E is the modulus of elasticity of the polymer.

The other mechanism responsible for instabilities during
melt spinning is referred to as capillary waves or Rayleigh
instabilities. Depending on the velocity of the polymer melt
in the spinneret hole, three broad regimes can be distin-
guished: (1) formation of droplets, (2) formation of a liquid
jet sustaining waves at its interface, which finally disinte-
grates into droplets, Figure 9.11, and (3) complete atom-
ization. For polymer melts, the disintegration step can be
described by the following equation:

z∗
cap = 12d

(
Ca1/3 + 3

Ca

Re

)
(9.104)

where z∗
cap is the maximum uninterrupted jet length, d is the

diameter of the jet, Ca (= v2dρ/γ ) is the capillary number
of the jet, and Re (= v dρ/η) is the jet Reynolds number.
Note that the analysis of the stability of a molten jet is similar
to the stability analysis of an extended droplet (mentioned in
more detail in Section 6.5.2). Finally, note that polymers, due
to their higher viscosity and lower surface tension, compared
to metals and glass, can be drawn safely to larger lengths as
Eq. 9.104 indicates (for the same extrusion velocity).

Diagrammatically, Figure 9.12 shows the space of all pos-
sible conditions of material properties and spinning charac-
teristics. This space is further divided into the various regions
of spinnability S, hydrodynamic stability H, cohesive fracture
F, capillary breakup C, and hydrodynamic instability x-H. A
system is called hydrodynamically stable, if an imposed small
perturbation decays with time to either zero or some small
steady value (see about the growth factor q in Eqs. 6.194

C; capillary break-up

x-H; hydrodynamic instability
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H; hydrody-

namic

stability

F; cohesive
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FIGURE 9.12 Space of all possible melt-spinning conditions,
including regions of: hydrodynamic stability H, cohesive fracture
F, capillary breakup C, spinnability S, and hydrodynamic instability
x-H. (Reprinted by permission of the publisher from Ziabicki, 1976.)

and 6.195). The cohesive fracture region F is included into
the hydrodynamic stability region. Finally, the spinnability
region S consists of the part of region H where no cohesive
fracture takes place, and the part of the x-H region where the
growth is too slow to cause breakage.

The various melt-spun materials can be divided into three
groups (Ziabicki, 1976): (1) metals and glasses, (2) linear
polycondensates (polyesters and polyamides) with relatively
low molecular weights (from 10,000 to 30,000), and (3) linear
polyolefins and vinyl polymers (PE, PP, PVC, etc.), with rel-
atively high molecular weights (from 50,000 to 1,000,000).
The basic differences between these groups are the following:

1. Metals and glasses are primarily Newtonian fluids with
high surface tension (from 100 to 500 mN/m) and thus
a high probability of capillary breakup.

2. Linear polycondensates are also primarily Newtonian
(or slightly viscoelastic with short relaxation times)
with low shear viscosity (about 100 Pa·s) and high
spinnability. The die swell is obviously low (about 1.0
to 1.5) and cohesive fracture is not usually a problem.
For example, the critical shear rate for the onset of melt
fracture in Nylon 6,6 is about 105 s−1 at 275 ◦C, and
the maximum spinneret shear rate is usually not higher
than 104 s−1. Usually, take-up velocities of 4000 to
5000 m/min cause no brittle fracture of these materials.

3. Linear polyolefins and vinyl polymers include melts
with high shear viscosity (higher than 1000 Pa·s),
with strong viscoelastic behavior, and long relaxation
times. Usually, the spinning velocities of polyolefins
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are lower than those of polycondensates due to cohe-
sive fracture. Also, die swell is extremely pronounced
in these melts.

Draw resonance appears as a sustained periodic fluctua-
tion with a well-defined and steady period and amplitude of
the cross section at the take-up roll, and it occurs even when
the flow rate and the take-up speed are constant. This insta-
bility should not be confused with the spinnability, as it has
nothing to do with breakup of the filament. It appears in both
purely viscous and elastic fluids, and there are two factors
that reduce its effect: elasticity and nonisothermal conditions
of spinning.

The steady-state solution for fiber spinning (Newtonian
and isothermal case) was presented in Section 9.1.1, and
it consists of Eqs. 9.26 and 9.28. Linearized (small distur-
bances) stability analysis involves (Fisher and Denn, 1976)
the study of finite amplitude disturbances, and we do not
present it. Rather, we present the results of such an analysis.
The value of DR = 20.21 is considered to be the critical draw
ratio beyond which the flow becomes unstable. Figure 9.13
(Donnelly and Weinberger, 1975) shows experimental data
that confirm the theory. More specifically, silicone oil (of
viscosity equal to 100 Pa·s), which seems to be Newtonian,
was extruded and the ratio of maximum to minimum filament
diameters was plotted against the draw ratio. An instability
appears at a draw ratio of about 17, or about 22 if we take into
consideration about 14% die swell. The value of the critical
draw ratio of 22 compares well with the theoretical value of
20.21. Pearson and Shah (1974) extended the analysis to a
power-law fluid and included surface tension, gravitational,

and inertial forces in the momentum balance and found that
the critical draw ratio is lower than 20.21 for shear-thinning
fluids and larger than 20.21 for shear-thickening fluids. For
example, the critical draw ratio range is from 3 to 5 for a
power-law index of 0.4 to 0.5.

The energy equation, Eq. 9.39, should be incorporated
into the model to account for temperature variation along the
filament axial length. Pearson and Shah (1974) solved the
system of equations subjected to a linearized analysis and
found that the critical draw ratio depends, besides on the
power-law index, on the dimensionless number, S:

S =k (T0 − Ta) (St) e−St (9.105)

where k is the viscosity temperature coefficient (η0 ∝
exp [−k (T − Ta)]), and St is the Stanton number defined as

St = 2

√
πv1/3

0

ρṁ

ςL

C p
(9.106)

where ς (units: cal/cm8/3·s1/3·◦C) is the ratio U/v2/3
z . Note

that the theoretical analysis of Pearson and Shah is based on
the assumption that U ∝ v2/3

z (valid if Eq. 9.50 is used). For
shear-thinning fluids the critical draw ratio increases very
slowly with S, whereas for Newtonian and shear-thickening
fluids the increase is dramatic for S > 0.1.

Fisher and Denn (1976) presented the linearized stability
analysis for the isothermal viscoelastic case as an extension
of the steady-state case presented in Section 9.1.3. The anal-
ysis showed (Fig. 9.14) that the critical draw ratio depends
on the power-law index, n, and on the viscoelastic parame-
ter α1/n , where α is defined in Eq. 9.83. Three regions are
shown in Figure 9.14: stable, unstable, and unattainable. The
lower boundary of the unattainable region is described by the
relationship DR = 1 + α−1/n . At low values of the parameter
α, the constant viscosity fluids exhibit higher critical draw
ratio, and the power-law fluids exhibit a critical draw ratio
value as low as 3 to 5 for n from 0.33 to 0.5. Finally, as
the viscoelastic parameter α increases the critical draw ratio
can increase dramatically, and it can be extended up to the
unattainable region.

Experimentally, the critical draw ratio for various poly-
mers is measured as the draw ratio at which the ratio of
maximum to minimum filament diameters increases above
1. Figure 9.15 shows experimental data for PP, HDPE, and
PS. The corresponding critical draw ratios are 2.7, 3.8, and
4.6. The power-law index of PP and PS is about 0.5, and
thus the agreement between experimental data and theory is
generally good.

Finally, finite (large) amplitude stability analysis, which
can give information about the large disturbances and macro-
scopic diameter variations, supports the findings of the lin-
earized stability analysis. Thus, for draw ratios less than
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spinning process. (Reprinted by permission of the publisher from
Fisher and Denn, 1976.)

20.21 a Newtonian system is stable to finite amplitude dis-
turbances, and for draw ratios larger than 20.21 disturbances
grow and reach a sustained oscillation (draw resonance).

Example 9.3. Critical Draw Ratio and Spinning Length

A viscoelastic material is being melt spun at DR = 10. Esti-
mate the possibility of draw resonance if the spinning length
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FIGURE 9.15 Diameter ratio of drawn polymers as a function
of draw ratio for isothermal spinning at 218 ◦C. Other conditions
are v0 = 5 cm/s; L = 16.5 cm; and R0 = 0.08 cm. (Reprinted by
permission of the publisher from Weinberger et al., 1976.)

is 3 m. The various properties of the material are n = 1/3,
m = 3000 Pa·s1/3, G = 2000 Pa, R0 = 200 μm, ρ = 1 g/cm3,
and ṁ = 0.02 g/s. Apply the analysis of Fisher and Denn
(1976). Also indicate the maximum spinning length for sta-
ble operation at the same draw ratio.

Solution. At a draw ratio of 10 and power-law index of
1/3, Figure 9.14 shows that the minimum and the maximum
attainable values of the viscoelastic parameter α1/n are 0.043
and 0.1, respectively. The velocity at zero axial distance is
given as 7.09 cm/s. Thus, the parameter α1/n is calculated
as 0.027, which is outside the limits of 0.043 and 0.1. Melt
spinning with these conditions is expected to result in draw
resonance. To get rid of this problem we need to decrease the
spinning length to about 180 cm.

9.2 FILM CASTING AND STRETCHING

A large activity of the polymer processing industry is the
production of films and sheets of thermoplastic polymers.
By definition, the term film is used for thicknesses less than
250 μm (equal to about 0.010 in.), and the term sheet is used
for thicker films. Note that in this section we use the term film
generically, and we occasionally mention the term sheet when
confusion might occur. These products are used primarily in
the packaging industry for either foodstuffs (groceries, dairy
produce, etc.) or other consumer products. Quite frequently,
the properties of various polymers need to be combined by
coating, lamination, or coextrusion. The major properties of
the films and sheets are transparency, toughness, flexibility,
and a very large aspect ratio (width or length to thickness) of
about 103. Typical values of the thickness range from about
10 to 2500 μm, whereas the other two dimensions can vary
from 40 to 320 cm.

Flat-film production consists mainly of the following three
processes: extrusion, casting, and stabilization. Depending
on the film thickness there are three major groups: fine film,
with thickness of 10 to 50 μm; thicker cast film and sheet,
with thickness of 100 to 400 μm; and thermoformable sheet,
with thickness of 200 to 2500 μm. The first two groups are
produced on chrome-plated chill-roll or water bath lines (see
Fig. 9.16), whereas the third one is produced with a special
roll. All film types, after the chill-roll or water bath, are
trimmed at the edges (some curling might occur there) and
either wound or undergo stretching (uniaxial or biaxial) or
thermoforming. Polypropylene, polyethylene, polyester and
polyamide are the four most frequently used polymers on
chill-roll lines.

9.2.1 Film Casting

Figure 9.16 shows two typical configurations for film cast-
ing: the film freezes upon contact with a chill-roll or upon
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FIGURE 9.16 (a) Sectional view of chill-roll casting. (b) Sectional view of water bath casting.

submersion in a water bath. In both cases freezing occurs at
a fixed point, which moves at a known velocity. Figure 9.17
shows two views of the film between the extrusion die and
the chill-roll. In the following sections we describe first the
general form of equations for very thin films (|∇h| � 1), and
then we present the isothermal Newtonian case for thicker
films.

Consider the origin of the Cartesian coordinate system,
xyz, at the intersection of the line of symmetry and the die
lips (Fig. 9.17). The original width of the polymer film (in the
x direction and at the die lips) is w0 and the extension length
is L. The width of the film decreases along the z direction,
because the film is being drawn in that direction by the chill-
roll. Its width at the roll is wL. Similar drawing takes place in
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FIGURE 9.17 (a) Geometry of the front view of the film-casting process. The polymer film between
the die and the roll is called the web. (b) Side view of the film-casting process.
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the y direction as well, where the thickness changes from h0

at the die lips to hL at the chill-roll. The deformation in the
y and x directions distinguishes the film-casting flow from a
typical plane flow.

The die swell effect is neglected here as was done in the
fiber-spinning analysis. In film casting no significant cooling
is obtained between the face of the die and the chill-roll (see
Section 5.2), whereas in the melt spinning of fibers cooling
was very important. If the z component of the film velocity at
the die lips is vz0 and at the freeze line is vzL, then the draw
ratio, DR, is defined as (see Eq. 9.27)

DR = vzL

vz0
(9.107)

Typical values of the draw ratio range from 2 to 20.
The objective of the analysis is to calculate the thickness

and temperature at the chill-roll as a function of the take-up
speed, rheology, distance L, and conditions at the die lips. In
the case of w0 > L � h0, changes in the y direction can be
considered insignificant for the rest of the analysis. Then, we
postulate the following surface velocity field for the steady-
state film-casting problem:

vx = vx (x, z); vz = vz(x, z) (9.108)

with the associated thickness, h, being h(x, z). The continuity
equation at steady state can be written as

∂

∂x
(ρhvx ) + ∂

∂z
(ρhvz) = 0 (9.109)

The x and z components of the equation of motion are
(Table 2.7)

∂

∂x
(ρhv2

x ) + ∂

∂z
(ρhvx vz) = −∂(hπxx )

∂x
− ∂(hπxz)

∂z
(9.110)

∂

∂x
(ρhvx vz) + ∂

∂z
(ρhv2

z ) = −∂(hπxz)

∂x
− ∂(hπzz)

∂z
+ ρgh

(9.111)

where the surface tension and air drag forces are neglected
because they are really unimportant. Also, note that we
assume that the z coordinate is vertical. If the film is drawn
away from the vertical, the above equations need modifica-
tions. Finally, the energy equation can be written as follows.
Since the thickness of the film is considered small, the aver-
age temperature (Pearson, 1985) over the film thickness is

T = T (x, z) =
+h/2∫

−h/2

T (x, y, z)
dy

h
(9.112)

The energy equation can now be based on the average tem-
perature as

∂

∂x
(ρhC pT vx ) + ∂

∂z
(ρhC pT vz) = −2ha(T − Ta) (9.113)

where Ta is the temperature of the surrounding medium (air),
and ha is the air-side heat transfer coefficient. The heat gener-
ation by viscous dissipation has been neglected in Eq. 9.113.

The boundary conditions are:

B.C.1: at z = 0, vx = 0; vz = vz0; h = h0; T = T 0

B.C.2: at z = L , vx = 0; vz = vzL

B.C.3: at x = ±1/2w(z), 𝛑 · n = 0 (9.114)

Note that B.C.3 is valid in cases where symmetry along the z
axis is preserved, and surface tension is insignificant (see also
Eq. 9.8). There is one additional condition, which specifies
the edge:

∂w

∂z
= vx

vz
(9.115)

Finally, the set of equations is complete with the incorpora-
tion of the rheological constitutive equation. The complicated
set of equations, Eqs. 9.109, 9.110, 9.111, and 9.113, along
with the constitutive equation can be simplified in the follow-
ing special cases for Newtonian and isothermal conditions:
(1) L � w0, and (2) L � w0 (see Problem 9B.5).

In the case of thicker films the flow of the polymer is
considered as two-dimensional along the z (machine) and
y (transverse) axes instead of the z and x axes as in the
previous section (Fig. 9.17b). Thus, the width of the film will
be considered constant:

w(z) = w0 (9.116)

The steady-state continuity equation now becomes

∂vz

∂z
+ ∂vy

∂y
= 0 (9.117)

and because vz = vz(z) Eq. 9.117 yields

vy = −dvz

dz
y (9.118)

The mass flow rate is calculated as

ṁ = w0

+h/2∫
−h/2

ρvzdy = ρvzhw0 (9.119)
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and because it is constant over time, it follows that

1

h

dh

dz
= − 1

vz

dvz

dz
(9.120)

for constant density.
The steady-state momentum equation in the z direction

(for vertical casting) after neglecting inertia and gravity
becomes

∂τyz

∂y
+ ∂πzz

∂z
= 0 (9.121)

Note that the shear stress in Eq. 9.121 comes from the geom-
etry of the system (as in the fiber-spinning case). Integration
of Eq. 9.121 from −h/2 to + h/2 yields

w0hπzz = F (9.122)

where F is the force necessary to draw the film. πzz is now
correlated to the velocity gradient through an equation similar
to Eq. 9.22 in the fiber-spinning case as

πzz = −4μ
dvz

dz
= −ηp

dvz

dz
(9.123)

where ηp is the planar elongational viscosity (equal to 4μ).
Upon combining Eqs. 9.119, 9.120, 9.122, and 9.123, we

get the following differential equation:

1

h

dh

dz
= ρF

ηpṁ
(9.124)

which is solved as

h

h0
= exp

[
−z

ρ|F |
ηpṁ

]
= exp

[
z
ρF

ηpṁ

]
= (DR)−z/L (9.125)

and consequently,

vz = vz0 exp

[
z
ρ|F |
ηpṁ

]
= vz0 exp

[
−z

ρF

ηpṁ

]
= vz0(DR)z/L

(9.126)

Note that the draw ratio, DR, in this case can be written as

DR = exp

[
−L

ρF

ηpṁ

]
= exp

[
L
ρ|F |
ηpṁ

]
(9.127)

Equation 9.126 is similar to Eq. 9.26 of the fiber-spinning
case, and in general the film-casting process can be consid-
ered the two-dimensional counterpart of the fiber-spinning
process (see also Problem 9A.4).

9.2.2 Stability of Film Casting

Theoretical analysis of the stability problem for film casting
shows the similarities between fiber spinning and film cast-
ing. Yeow (1974) showed that the critical draw ratio for draw
resonance of Newtonian fluids is 20.21, which is exactly
the same as that in the fiber-spinning case (Section 9.1.5).
For non-Newtonian fluids the similarity is not necessarily
preserved, but the qualitative effects of the non-Newtonian
viscosity, viscoelasticity, and cooling are expected to be the
same. For power-law fluids the theory suggests that the crit-
ical draw ratio increases with increasing power-law index
n, being 40 and 91 for n = 1.2 and 1.5, respectively. Kase
(1974a) and Bergonzoni and DiCresce (1966) studied the
problem experimentally and showed that the ratio of max-
imum to minimum film thickness ranges from 1.8 to about
4.5. Furthermore, data for PS and PP exhibited a critical draw
ratio of about 20, which is in agreement with the theory.

Anturkar and Co (1988) studied the effects of viscoelas-
ticity on the stability of the film-casting process in a similar
fashion to that of Fisher and Denn (1976). The constitutive
equation used in their theoretical analysis is the UCM
(Eqs. 3.40 and 3.41) with the Carreau viscosity function
(Eq. 2.8; with η∞ = 0) η(γ̇ ) = η0

(
1 + λ2

u γ̇
2
)(n−1)/2

, which
is the White–Metzner model, and a similar function for
the characteristic fluid time, λ(γ̇ ) = λ0

(
1 + λ2

u γ̇
2
)(n′−1)/2

.
The critical draw ratio, DR, as a function of the viscoelastic
parameter defined below,

�0(2�t )
n′−1 = λ0(2λt )

n′−1/(L/vz0) (9.128)

is shown in Figure 9.18. Note the similarity between Fig-
ures 9.14 and 9.18 for the fiber-spinning and film-casting
processes.
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the film-casting process. (Reprinted by permission of the publisher
from Anturkar and Co, 1988.)
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Finally, one problem associated with film casting is
the presence of edge beads (Dobroth and Erwin, 1985;
d’Halewyn et al., 1990). These edge beads in the form of
thick edges appear in the web, and they cause problems in
other downstream processes such as winding. The most com-
mon way to get rid of the edge beads is to cut them and either
recycle or scrap them, and the associated cost is about 12% of
the production cost. The main cause of this instability is the
difference in stress that the center and the edges of the web
experience (plain strain at the center, Section 6.3.1, “Planar
Elongation (or Pure Shear)”; and uniaxial elongational stress
at the edges, Section 6.3.1, “Uniaxial (or Pure) Elongation”).
The experimentally observed ratio of the thicknesses of the
edge to the centerline, also called bead ratio, is about 2 to
4. The theory based on the plain strain at the centerline and
plane stress at the edges predicts a bead ratio equal to the
square root of the draw ratio, and experiments confirm such
a relationship.

9.2.3 Film Stretching and Properties

The term film stretching can also be encountered in the lit-
erature as cold drawing of the film. The objective of this
process is to impart biaxial orientation in the film and to
increase its modulus. These improvements are achieved by
stretching the film in two directions (x and z; transverse (TD)
and machine (MD) directions, respectively) simultaneously.
The operation temperature should be below the temperature
of maximum crystallization rate and above the glass transi-
tion temperature. PP and PET have been used successfully
in this process. Industrially, the process is carried out in the
stender (or tender; from the textile industry). This device
grips the edges of the film and extends them to larger widths
as the film moves from the inlet to the exit roller. As soon as
the film reaches the exit roller, the stender clamps release the
grips of the film. During this stretching the polymer experi-
ences an extensional flow.

The biaxially stretched films are characterized by the
amounts of crystallinity and orientation, and their mechan-
ical properties are correlated to the extension rates in both
the machine and transverse directions. As an example we
present the results for poly(phenylene sulfide) (PPS) (Mae-
mura et al., 1989), which is an important engineering ther-
moplastic because of its high dimensional stability, solvent
resistance, and temperature stability. PPS film 300 μm in
thickness was biaxially stretched at temperatures in the range
of 90–115 ◦C and at 600–15,000 %/min stretching rates. PPS
crystallizes under stress, and the increase of stretching rate
increases birefringence and crystalline orientation. As far as
the tensile properties of the stretched film are concerned, the
modulus of elasticity and tensile strength increase, and the
elongation at break decreases with stretching. Figure 9.19
shows the effect of the stretching and the testing angle on the
modulus of elasticity. The testing angle refers to the angle
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FIGURE 9.19 Modulus of elasticity of stretched and unannealed
PPS films as a function of testing angles, for various stretch ratios.
(Reprinted by permission of the publisher from Maemura et al.,
1989.)

between the machine direction and the direction of the sam-
ple cut for testing. The most anisotropic material is that which
is uniaxially drawn, while the most isotropic is that which is
equally biaxially drawn. All of the samples have modulus of
elasticity greater than that of the cast film, which is 2.0 GPa.

9.3 FILM BLOWING

One method to produce film with a good balance of mechan-
ical properties is by extruding a polymer through a film die
and then subsequently stretching the film in two directions
as described in the previous section. The other technique
involves extrusion through an annular die. Then, the moving
tubular film is stretched and inflated by an air stream flowing
from inside the annular die (the pressure is slightly higher
than atmospheric pressure, Fig. 9.20) creating a “bubble”
(see also Section 1.2). This bubble is cooled by an air jet
flowing from an air ring toward its outside surface. The cool-
ing results in crystallization and solidification, which start
at the freeze line. Beyond this line the bubble boundaries
become parallel to the centerline, and the polymer melt is
transformed into a two-phase mixture consisting of molten
and solidified polymer. Finally, the frost line (Campbell and
Cao, 1987) is the other boundary of the region which starts
with the freeze line. Beyond the frost line the deformation
of the bubble is practically zero, and the bubble consists of
one-phase material only, the solidified polymer.

This cylinder is then flattened by a set of guide rolls and
taken up by a set of rubber nip rolls, which form an airtight
seal at the upper end of the bubble. The takeoff at the nip rolls
may be of either constant speed or constant torque. Finally,
the film is wound onto cylinders and sold as “lay-flat” tubing
or trimmed at the edges and wound into two rolls of flat
film. Figure 9.20 (or Fig. 1.6) shows a schematic of the film
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blowing process, which is called tubular film blowing (or
simply film blowing). In terms of direction, most frequently
this process takes place vertically upward and less frequently
vertically downward and horizontally. The major advantages
of this method over the first method are the economics and
the speed of production.

Film blowing and fiber spinning have general similari-
ties. Both processes have free boundaries, and the flows are
predominantly elongational. They differ with respect to the
orientation generated. The fiber-spinning process imparts ori-
entation in the axial direction only, whereas the film blowing
process imparts unequal (in general) biaxial orientation. The
two axes of orientation are the axial (machine; MD) direction
due to the drawing of the tube and the circumferential (non-
machine, or transverse; TD) direction due to the blowup of
the tube. The mechanical properties of blown film are nearly
uniform in both directions as a result of biaxial orientation,
and this is the reason for producing flat film by the film
blowing process.

The two main parameters of this process are the blow ratio
(or blowup ratio), BR (or BUR), and the machine-direction
draw (or draw-down) ratio, DR. The blow ratio is defined
as the ratio of the final tube radius, Rf, to the initial tube
outside radius just downstream of the annular die, R0 (see
also Figs. 9.20 and 9.21, and Section 1.2):

BR = Rf

R0
(9.129)
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FIGURE 9.21 Moving Cartesian coordinate system and cylin-
drical polar coordinate system, for the film blowing process.

Similarly, the draw ratio is defined as

DR = V

v0
(9.130)

where V is the take-up speed, and v0 is the die extrusion
speed. The final film thickness, Hf, can be calculated from
the blow and draw ratios and the mass conservation equation
as follows:

Hf = H0

BR DR
(9.131)

where H0 is the initial film thickness, or equivalently the die
gap thickness. Typical parameters in the film blowing process
are H0 = 1–2 mm; R0 = 2.5–25 cm; v0 = 1–5 cm/s; BR =
1.5–5; DR = 5–25; �P = 50 Pa, that is, the internal pressure
is about 0.05% of the atmospheric pressure; and freeze-line
height Z = 0.25–5 m. An average value of the blow and
draw ratios and of the initial film thickness yields a final film
thickness on the order of 50 μm (i.e., about 2 mils in English
units). In terms of nomenclature, the final film is considered
to be thick gauge blown film whenever its thickness exceeds
75 μm or equivalently 3 mils. In terms of applications, thick
gauge blown film is used in the production of dunnage bags,
heavy duty shrink film, greenhouse film, lawn and garden
bags, and resin and chemical packaging.

As far as the mechanical properties are concerned, the tear
(test name: Elmendorf tear), impact (test name: dart drop),
and tensile strengths give an indication of the mechanical
strength of the tubular film. Some of these properties and the
effect the processing parameters have on them were discussed
in Section 1.2. The amorphous as well as the crystalline ori-
entation developments during the blowing process depend on
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the stretching imparted in the machine and transverse direc-
tions. Finally, besides orientation, the amount of crystallinity
as well as the size of the crystallites may play a significant role
in the mechanical and physical properties of the blown film.

This process is not as fast as fiber spinning, which results
in a more uniform temperature distribution in the film relative
to that in the fiber. Usually, cooling is achieved by blowing an
air stream from an axisymmetric air ring toward the external
film surface (see Fig. 9.20). In some cases, in addition to the
external air ring, an internal air cooling system is provided.
Finally, in some other cases, especially in thick tube and large
bag production, cooling is achieved by a water spray or ring.
Note that in the latter cases the film must be dried before
winding up, which leads to an additional step.

Commercially, the film blowing process is extensively
used for the production of polyolefin (LDPE, HDPE, and PP)
wrapping film. Mechanical strength, optical clarity, which
depends on the degree and type of crystallinity for crystalliz-
able polymers, and the uniformity of thickness (variations of
about 5% for films with a length scale of 10 mm to 10 m is
acceptable) are the three most important and general proper-
ties of the film.

Before we start analyzing the equations describing the film
blowing process in detail, it is worth mentioning a variation
of the main technique referred to as that of the double bubble
tubular film extrusion process. It has been applied by White
and co-workers (Kang et al., 1990; Kang and White, 1990)
to PPS and PET. It consists of producing two bubbles. The
first one is generated under conditions of moderate blow and
draw ratios, while the second is produced by reheating and
blowing the first bubble. The process is usually employed
for polymers with low melt strength and slow crystallization
rates. By quenching the bubble in the first step very little
crystallization occurs. The material is then heated above Tg

and blown again.
As in the fiber-spinning section, we first gain extensive

understanding of the film blowing process by analyzing the
simplest case, that of the isothermal Newtonian film blowing
case. Then, we discuss some points about the nonisothermal
film blowing for Newtonian and viscoelastic materials. The
stability analysis of this process is introduced, and some
overall remarks are presented at the end of this section.

9.3.1 Isothermal Newtonian Model

Figure 9.21 shows a schematic of the geometry of the
film blowing process. The analysis that follows comes
from the work of Pearson and Petrie (1970a,b,c). Besides
the assumptions of isothermal conditions and Newtonian
(homogeneous and incompressible) behavior of the polymer,
the following assumptions are also incorporated:

1. Inertial, gravitational, air drag, and surface tension
forces are neglected.

2. The film thickness is small with respect to other char-
acteristic dimensions (i.e., H � R which is the thin-
sheet approximation).

3. Die swell is neglected or the origin of the fixed coordi-
nate system is assumed to be just beyond the maximum
die swell.

4. Steady-state conditions exist.

5. The fluid bubble is axisymmetric.

6. The region between the freeze and frost lines is col-
lapsed into a single line demarking a sharp transition
between liquid and solid phases.

The significance of the second assumption is that the
deformation field in the film is essentially elongational. Shear
stresses are not present, if the film thickness is very small.
The first assumption makes the final equations simpler with-
out losing any significant information. Finally, overall these
assumptions resemble those used in Section 9.1.2 in the thin-
filament theory for the fiber-spinning process.

Cylindrical polar coordinates (r, φ, z) are taken with z
in the direction of flow (or axial direction). Also, symme-
try around the z axis is assumed. Although the cylindrical
system is space-fixed, for the calculation of stresses, a mov-
ing Cartesian coordinate system, ξ 1, ξ 2, ξ 3, embedded in the
inner surface of the bubble is used, as shown in Figure 9.21
(where both coordinate systems are shown). The ξ2 direction
is normal to the film (i.e., thickness direction); the ξ 1 direc-
tion is in the direction of flow (i.e., machine direction); and
the ξ 3 direction is perpendicular to ξ 2 and ξ 1 and tangent to
the circumferential directions.

We first calculate the strain field, then the stress field in
the bubble, and finally the force balance at the frost line is
written in terms of the radius and thickness of the bubble.
The principal rates of strain are

γ̇ii = 2
∂vi

∂ξi
(9.132)

where i = 1, 2, 3, and v i is the ith component of the veloc-
ity vector in the moving coordinate system. Note that the
γ̇ii terms are equal to zero for i = j. Also note that for an
incompressible fluid

3∑
i=1

γ̇ii = 0 (9.133)

The goal for the subsequent analysis is to relate the various
strain rates to the geometry of the film.

The v2 velocity component is zero at the inner surface of
the bubble (ξ 2 = 0), and it is equal to dH/dt at the outer surface
of the bubble (ξ 2 = H). Then the velocity gradient across the
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thickness of the bubble for very thin-walled bubbles is

γ̇22
∼= 2

v2

H
= 2

H

dh

dt
= 2

H

dh

dξ1

dξ1

dt
= 2v1

H

dh

dξ1

= 2v1 cos θ

H

dh

dz
(9.134)

where use of the following correspondence between the
space-fixed cylindrical and the moving Cartesian systems
was made:

dξ1 = 1

cos θ
dz (9.135)

Similarly, the extension rate in the ξ3 direction is calculated
using the circumferential velocity, v3, which in turn is related
to the rate of bubble expansion. Thus,

γ̇33 = 2v1 cos θ

R

dR

dz
(9.136)

and from Eq. 9.133 we get the following expression for the
last extension rate:

γ̇11 = −2v1 cos θ

(
1

H

dh

dz
+ 1

R

dR

dz

)
(9.137)

The continuity equation relates the mass polymer flow rate,
ṁ, to v1 as follows:

ṁ = 2ρπRHv1 (9.138)

Equation 9.138 can be incorporated into Eqs. 9.134, 9.136,
and 9.137 to yield the following rate of deformation tensor:

γ̇ = ṁ cos θ

ρπRH

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1

H

dH

dz
− 1

R

dR

dz
0 0

0
1

H

dH

dz
0

0 0
1

R

dR

dz

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.139)

Now, we can calculate the stress field in the bubble. For a
Newtonian fluid,

πij = pδij − μγ̇ij (9.140)

where the components of 𝛑 refer to the ξ coordinate system.
Because no external forces act on the bubble, π22 = 0 (for
�P � p), and thus the isotropic pressure in the fluid is

p = μγ̇22 = μṁ cos θ

ρπRH

1

H

dH

dz
(9.141)

Thus, the rest of the nonzero total stress components are
equal to

π11 = μṁ cos θ

ρπRH

(
2

H

dH

dz
+ 1

R

dR

dz

)
(9.142)

π33 = μṁ cos θ

ρπRH

(
1

H

dH

dz
+ 1

R

dR

dz

)
(9.143)

In order to be able to determine the thickness and the
radius of the bubble, we must apply force balances on the
bubble. Taking a fluid element with dimensions 2πR, H, and
dξ 1, the viscous forces in the axial (L) and transverse (H)
directions are, respectively,

FL = 2πRHπ11

dFH = Hdξ1π33 (9.144)

The above equations can also be written in terms of viscous
forces per unit length as

PL = Hπ11 = FL

2πR
= μṁ cos θ

ρπR

(
2

H

dH

dz
+ 1

R

dR

dz

)

PH = Hπ33 = dFH

dξ1
= μṁ cos θ

ρπR

(
1

H

dH

dz
+ 1

R

dR

dz

)(9.145)

For thin shells the pressure difference between the inside and
outside of the film, �P (also called internal overpressure), is
related to the forces per unit length in the film as follows:

�P = (−PL )

RL
+ (−PH )

RH
(9.146)

which is similar to the Young and Laplace equation (Eq. 9.44)
for the pressure inside a bubble. In the above equation, RL and
RH are the principal radii of curvature of the bubble surface
at the point of interest (Fig. 9.21). These radii are calculated
by geometrical arguments as

RH = R sec θ = R

(
1 +

(
dR

dz

)2
)1/2

(9.147)

RL = − sec3 θ

d2 R/dz2 = − (1 + (dR/dz)2)3/2

d2 R/dz2 (9.148)

Finally, the draw (or draw-down) force at the frost line,
FZ, is related to the pressure difference and the viscous force
in the axial direction as

2πRPL cos θ − π
(
R2

f − R2
)
�P = FZ = − |FZ | (9.149)

where Rf is the constant bubble radius beyond the frost line,
and FZ is considered to be constant beyond the frost line.
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Equations 9.145–9.149 can be combined together to yield
the following two differential equations:

2r2(T̂ + r2 B)r ′′ = 6r ′ + r sec2 θ (T̂ − 3r2 B) (9.150)

and

w ′

w
= − r ′

2r
− sec2 θ

T̂ + r2 B

4
(9.151)

where the various dimensionless variables and parameters
are defined as follows:

r = R

R0
; w = H

R0
; x = z

R0
; sec2 θ = 1 + (r ′)2 (9.152)

B = ρπR3
0�P

μṁ
; TZ = ρR0 |FZ |

μṁ
; T̂ = TZ − B2

R B

(9.153)

and ( )′ means differentiation with respect to x (i.e., ≡ d/dx).
Thus, B is the dimensionless internal overpressure, and T̂ is
the dimensionless stress. Typical values of these parameters
are 0.075 ≤ B ≤ 0.4 and 0.5 ≤ TZ ≤ 2.5. Equation 9.150 is a
second-order differential equation for the bubble radius, and
Eq. 9.151 is a first-order differential equation for the bubble
wall thickness. The boundary conditions for these equations
are

B.C.1: at x = 0, r = 1 (9.154)

B.C.2: at x = X = Z

R0
, r ′ = 0 (9.155)

B.C.3: at x = 0, w = w0 = H0

R0
(9.156)

Typical values of X range from 5 to 20. Equation 9.150 with
boundary condition Eqs. 9.154 and 9.155, and Eq. 9.151
with boundary condition Eq. 9.156 constitute the set of dif-
ferential equations and boundary conditions that describe the
isothermal Newtonian model. Note that to solve this model
we need to specify Z and H0, which in general are not known
a priori. Pearson and Petrie (1970c) solved this model numer-
ically with three parameters: B, TZ, and X (see also Problem
9C.2). Their results are shown in parametric graphs such as
Figure 9.22. Similarly, Figure 9.23 shows the blow ratio as
a function of the thickness reduction for X = 5. Further-
more, if one specifies one of these parameters, the other two
must be adjusted to give the desired product dimensions (see
Table 9.3). Finally, note that in the following relationship the
thickness ratio is calculated as a function of the draw and
blow ratios (see also Eq. 9.131):

H0

Hf
= BR DR (9.157)
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FIGURE 9.22 Calculated isoparametric curves of blowup versus
thickness ratio, for the Newtonian isothermal model and X = 20.
(Reprinted by permission of the publisher from Pearson and Petrie,
1970c.)
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FIGURE 9.23 Calculated isoparametric curves of blowup versus
thickness ratio, for the Newtonian isothermal model and X = 5.
(Reprinted by permission of the publisher from Cain and Denn,
1988.)

TABLE 9.3 X, B, and TZ Required to Give BR = 3 and
DR = 20/3

X 8 9 10 20 23
B 0.2 0.175 0.165 0.1 0.09
TZ 2.3 2.0 1.85 1.15 1.0

Source: Pearson and Petrie, 1970c.
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Example 9.4. Blown LLDPE Film

Tubular linear low-density polyethylene (LLDPE) film of
thickness equal to 34.1 μm is produced (Kanai and White,
1984) by a blown film operation with draw ratio equal to 4.
The annular die has an inner diameter 1.387 cm and outer
diameter 1.496 cm. Calculate the pressure of the air to blow
a bubble (i.e., the internal overpressure) of the given specifi-
cations and the axial tension to draw such a bubble. Consider
that LLDPE is Newtonian with viscosity 720 Pa·s, the pro-
cess is isothermal at 180 ◦C, and LLDPE freezes at an axial
distance of 15 cm. The mass flow rate of the polymer is
0.21 g/s, and its density is 0.919 g/cm3.

Solution. We have Z = 15 cm and R0 = 1.496/2 cm =
0.748 cm. Thus,

X = Z

R0
= 15

0.748
= 20 (9.158)

Consequently, Figure 9.22 applies to this blown film case.
The thickness ratio is easily calculated to be

H0

Hf
=

(
1.496 − 1.387

2

)
34.1 × 10−4

∼= 16 (9.159)

and the blow ratio is then

BR = 16/4 = 4 (9.160)

From Figure 9.22 and for a blow ratio of 4 and thickness ratio
of 16 the corresponding approximate values of the parameters
B and TZ are 0.0675 and 1.15, respectively. Finally, Eq. 9.153
yields the following values for the pressure and tension:

�P = 8.45 Pa FZ = −25 mN (9.161)

9.3.2 Nonisothermal Newtonian Model

The isothermal Newtonian model is a useful model, because
it reveals most of the characteristics of the tubular film blow-
ing process. Nevertheless, it suffers from two disadvantages:
the actual film blowing process is basically a nonisothermal
process, and the polymer melt is non-Newtonian in character.
In this section we address the nonisothermal case, and in the
next section the matter of the non-Newtonian character of
the polymer melt.

In industrial practice, cooling of the blown film is
enhanced from the outside by an annular air jet, which flows
from an air ring (see Fig. 9.20) attached very close to the
die and/or the inside by a process called internal bubble
cooling (IBC). Note that the air jet usually “hits” the film

bubble at a point slightly above the die, so that the heat trans-
fer that occurs in the region between the die and that point is
rather low. There are two ways to approach the nonisothermal
nature of the film blowing process. The first one includes the
temperature dependence of viscosity and density only, but
does not employ the energy equation, whereas the second
approach includes the use of the energy equation.

Petrie (1975) incorporated the effect of temperature on
Newtonian viscosity and density through exponential and
linear relationships, respectively (for the viscosity function
see also Eq. 9.105),

μ = μ0 exp[−k(T − T0)] (9.162)

ρ = ρ0

1 + c(T − T0)
(9.163)

where the various constants have the following values for
LDPE: k = 0.03 ◦C−1; c = 0.00069 ◦C−1; ρ0 = 0.801 g/cm3;
and T0 = 115 ◦C. Note that the actual value ofμ0 is not needed
until the pressure difference across the film is calculated. In
this model, γ̇11 differs from that of Eq. 9.137, and it is equal
to

γ̇11 = −2v1 cos θ

(
1

H

dH

dz
+ 1

R

dR

dz
+ 1

ρ

dρ

dT

dT

dz

)
(9.164)

The temperature profile was taken from experimental data.
This theory underestimates the actual bubble size obtained
from experimental data.

The next approach incorporates the energy equation (Wag-
ner, 1976). By assuming no heat transfer at the inner surface
the steady-state energy equation (Eq. 9.38) takes the follow-
ing form (see also Eq. 9.47):

C p
ṁ cos θ

2πR
dT

dz
= ha(Ta − T ) + σε

(
T 4

a − T 4) (9.165)

where all the variables are defined as in Eq. 9.40. The bound-
ary condition required to solve Eq. 9.165 is

B.C.1: at z = 0, T = T0 (9.166)

Moreover, the temperature at the frost line X is equal
to the solidification temperature of the polymer, which
is the crystallization temperature for semicrystalline poly-
mers (about 116 ◦C for LDPE) and the glass transi-
tion temperature for amorphous polymers. Wagner (1976)
assumed a constant heat transfer coefficient, h, equal to
8.33 × 10−4 cal/cm2·s·◦C, relative emissivity, ε, equal to
0.3, exit temperature, T0, equal to 160 ◦C, k = 0.033 ◦C−1,
c = 0.00073 ◦C−1, ρ0 = 0.782 g/cm3, and

C p = 0.478 + 8.46 × 10−4T (9.167)



FILM BLOWING 303

in cal/g·◦C (see also Table 5.6 for equivalent relationships).
These values of the parameters are for LDPE. Note that gen-
eral relations for the heat transfer coefficient can be found in
Kanai and White (1984). The prediction of the model agreed
well with experimental data, only when an average New-
tonian viscosity was assumed for the process, which also
depended on the draw ratio.

Kanai and White (1985) combined the dynamics of the
process, which is expressed in Eqs. 9.138, 9.150, 9.151,
and the following equations for the energy balance and the
Newtonian viscosity:

C p
ṁ cos θ

2πR
dT

dz
= ha(Ta − T ) + σε

(
T 4

a − T 4
)

+ ρc

ρ

ṁ cos θ

2πR
�H c

dφc

dz
(9.168)

μ = μ0 exp

[
E

Rg

(
1

T
− 1

T0

)]
exp[Cφc] (9.169)

where C is a constant obtainable from experimental results
of viscosity versus percent crystallinity. The resulting set of
four differential equations was solved numerically, and it was
shown that the predicted and experimental data agree well at
least qualitatively.

9.3.3 Nonisothermal Non-Newtonian Model

A purely viscous non-Newtonian approach was followed by
Han and Park (1975b). They used the power-law model and
the energy equation, assuming that the effects of crystalliza-
tion were insignificant. The agreement of this model with
experimental data in terms of the bubble radius and thick-
ness as a function of the axial distance for LDPE and HDPE
was reported to be reasonable. In terms of viscoelastic mod-
els, Luo and Tanner (1985) considered the Leonov model,
and Cain and Denn (1988) considered the upper convected
Maxwell and Marrucci models in nonisothermal cases of film
blowing. In some of the cases analyzed, multiple steady-state
solutions were present (see also Problem 9C.2).

Campbell and Cao (1987) presented a different model that
incorporates the interaction of crystallinity, viscoelasticity,
and the two phases, liquid and solid, on the bubble shape.
Equations 9.139 and 9.146–9.149 remain the same, whereas
Eq. 9.145 is now given by

PL = H lπl
11 + H sπs

11

PH = H lπl
33 + H sπs

33

(9.170)

where the superscripts 1 and s denote liquid and solid phase,
respectively. The mass conservation equation is

ṁ = 2ρπR(H lρl + hsρs)v1 (9.171)
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FIGURE 9.24 Comparison of model and experimental bubble
shape. (Reprinted by permission of the publisher from Campbell
and Cao, 1987.)

The rheological modeling of the solid phase was based on a
mechanical model of a dashpot connected in parallel with a
spring and a slide. For small stresses, the model is equivalent
to a dashpot and a spring (Kelvin–Voigt two-element model).
For large stresses, the model is equivalent to the Bingham
model. The rheology of the liquid phase was described by a
truncated power-law model. The overall model is essentially
a UCM model with altered parameters. By combining all
these equations, as well as the energy equation (similar to
Eq. 9.91), Campbell and co-workers solved the tubular film
blowing problem numerically, and their results are shown in
Figures 9.24 and 9.25. Figure 9.24 shows the bubble radius
as a function of the axial distance. The agreement between
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FIGURE 9.25 Comparison of model and experimental tempera-
ture profiles. (Reprinted by permission of the publisher from Camp-
bell and Cao, 1987.)
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theory and experiments (HDPE, from Kanai and White,
1984) is quite good, especially near the freeze and frost lines.
The agreement is better near the freeze and frost lines for the
temperature as a function of the axial distance (Fig. 9.25).
Cao and Campbell (1990) also found similar agreement
between experimental data for PS and theoretical results.

It is clear from all this that the film blowing process still
remains difficult to analyze theoretically. In practice, the
operator of the film blowing tower adjusts the various param-
eters by trial and error. Consequently, one major consider-
ation is the scaleup (Section 9.3.6) of a small experimental
setup to an industrial scale film blowing tower, especially for
polymers tested for the first time in the experimental setup.

9.3.4 Biaxial Stretching and Mechanical Properties

Biaxial stretching is part of the tubular blown film process.
This type of stretching was also encountered in the second
step of a film casting process (see Section 9.2.3). Biaxially
stretched PPS from a film casting process was analyzed in
Section 9.2.3, where it was shown that the modulus of elas-
ticity in the MD decreases with increasing TD stretching. On
the other hand, the TD modulus of elasticity increases with
increasing stretching in the same direction. The same trend
was shown to be followed by PET in tubular film blowing
experiments (Ma and Han, 1988). As far as the effect of MD
stretching (which in the film blowing nomenclature is called
draw ratio) on the modulus of elasticity is concerned, Ma
and Han (1988) showed experimentally that the MD modu-
lus increases and the TD modulus decreases with increasing
draw ratio.

9.3.5 Stability of Film Blowing

Unstable flow in film blowing, fiber spinning, and film casting
is unacceptable for two reasons: (1) it limits the production
rate of the facility, and (2) it lowers the quality of the product.
As was mentioned in Section 9.1.5 for melt spinning, besides
melt fracture, which is associated with die flow, draw res-
onance is present as a periodic diameter fluctuation, when
the draw ratio exceeds a critical value. Draw resonance as it
applies to the uniaxial extension cases of fiber spinning and
film casting was analyzed in Section 9.1.5. On the other hand,
film blowing in the general sense imparts biaxial orientation
in the film, and the equivalence of draw resonance appears
now as a sequence of surface waves (Han and Park, 1975c;
Fig. 9.26). Furthermore, if the blow and draw ratios are such
that uniaxial extension (see Problem 9B.7) is dominant in the
film blowing process, then draw resonance appears as in the
fiber-spinning case.

Han and Park (1975c) experimentally studied flow insta-
bilities in film blowing by introducing disturbances in the air
overpressure or the take-up speed. They found that HDPE
and LDPE are more sensitive to take-up speed disturbances

FIGURE 9.26 Typical bubble instability shapes. (Reprinted by
permission of the publisher from Kanai and White, 1984.)

than to air overpressure disturbances and that a decrease in
melt temperature tends to stabilize the bubble after it has
been disturbed. Finally, the disturbed bubble stabilized itself
when the size of the disturbance is below a critical value.

Yeow (1976) theoretically analyzed the instabilities due
to axisymmetric disturbances in an isothermal Newtonian
fluid and presented neutral stability curves in the space wf

(= Hf/R0) and BR and for various values of the parame-
ter X (X = Z/R0, which is the dimensionless freeze line).
Kanai and White (1984) experimentally studied the stability
of nonisothermal film blowing of viscoelastic melts, such as
LLDPE, LDPE, and HDPE, and their results are shown in
Figures 9.27 and 9.28. LDPE is more stable than LLDPE
and HDPE, which is in accord with LDPE’s strain hardening
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FIGURE 9.27 Stability and instability regions in the space: wf

and BR, for X = 16. (Reprinted by permission of the publisher from
Kanai and White, 1984.)
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FIGURE 9.28 Stability and instability regions in the space: wf

and BR, for various X, and for LLDPE. (Reprinted by permission
of the publisher from Kanai and White, 1984.)

extensional behavior. In addition, for LLDPE as the frost-line
height increases, the bubble becomes more unstable.

9.3.6 Scaleup

Scaleup is a process that is best investigated through the
use of dimensionless numbers and scaleup criteria. The lat-
ter determine the variables that are expected to be the same
in the laboratory and industrial scale, and the equality of
the various dimensionless numbers and groups ensure that
the solution of the governing equations remains the same in
both scales. For example, if the ratios of various geometrical
lengths in both cases are the same, then geometrical simi-
larity is observed. Similarly, both scales are considered to
be dynamically similar if the Reynolds number is the same.
Weissenberg, Deborah, Reynolds, Froude, and Weber num-
bers are some of the most frequently encountered dimen-
sionless numbers in the scaleup process. The best approach
for scaleup is discussed in Problem 9D.3. See also Pearson
(1985) for a detailed discussion of film blowing scaleup and
the relevant dimensionless groups for a viscoelastic polymer
melt.

9.4 SOLUTION TO DESIGN PROBLEM VIII

In this design problem we need to analyze the process in
two sections: (a) from the die to the die swell level, and (b)
from the die swell level to the nip rolls. In the first section,
the critical wall shear rate for melt fracture, taking into con-
sideration the safety factor, will dictate the dimensions of
the die. The volume of material in each bag is calculated
as 2 × (61 × 69.6 × 0.002541) = 21.6 cm3. The mass flow

rate is then calculated from the requirement of production of
1500 bags/h as

ṁ = 1500
bags

3600 s
× 0.92

g

cm3
× 21.6

cm3

bag
= 8.3 g/s

(9.172)

From the statement of the problem we know that

Rf = 2 × 61

2π
cm = 19.4 cm; Hf = 0.002541 cm (9.173)

Assume that R0 is the die outer radius, and that κR0 is the die
inner radius. As the final thickness of the film is 25.41 μm,
it is reasonable to expect that the die gap is small, and con-
sequently that the annular die can be approximated by a slit
of thickness, H0, and width, W0, where

H0 = R0(1 − κ) (9.174)

W0 = πR0(1 + κ) (9.175)

Die swell is present in this problem, and the radius and thick-
ness at the maximum die swell level will be noted as Rp and
Hp, respectively (see Fig. 3.1). Note that the dimensions at
this die swell level will be considered as the initial dimen-
sions for the film blowing process. From Table 1.1 we get
that Hp = 0.018 in. = 0.0457 cm for a die land length of
3.81 cm. Thus, the reduction in film thickness becomes

Hp

Hf
= BR DR = 18 (9.176)

The dimensions of the die are determined by means of a
mass balance and the thickness increase in the film due to
die swell as follows. Equation 3.89 is used as

B = Rp

R0
= Hp

H0
= 0.1 +

[
1.0 + 1

2

(
N1,w

2τxy,w

)2
]1/6

(9.177)

The wall shear stress inside the die is one-third of the max-
imum wall shear associated with the onset of melt fracture;
that is, it is equal to ([1.13 × 105]/3) Pa = 37,667 Pa. Thus,
the allowed ratio in parentheses in Eq. 9.177 (primary normal
stress difference over wall shear stress) is equal to

N1,w

2τxy,w
= 0.119

2
τ 0.304

xy,w = 1464 (9.178)

Consequently, the die swell ratio (Eq. 9.177) becomes

Rp

R0
= Hp

H0
= 1.23 (9.179)
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Substituting the known die swell film thickness into
Eq. 9.179, we get the first equation for the unknowns R0 and
κ:

R0(1 − κ) = 0.0457

1.23
cm = 0.03721 cm (9.180)

The second equation comes from the mass balance and is

ṁ = ρπR3
0(1 − κ2)

2(s + 2)

(τxy,w

m

)s
(9.181)

where the use of Table 2.5 for flow in a slit die was made.
Thus, Eq. 9.181 yields

R3
0(1 − κ2) = 0.8641 cm3 (9.182)

Equations 9.180 and 9.182 can be recast into a single
quadratic equation with the following solution:

R0 = 3.41 cm κ = 0.99 (9.183)

The value of κ , which is very close to 1, justifies the approx-
imation of the annular die with a slit die made at the begin-
ning of this section. The die gap is thus calculated to be
0.03721 cm = 372.1 μm or 14.65 mils. Equations 9.179 and
9.183 can be combined to yield Rp = 4.1 cm or 1.65 in.

The blow and draw ratios of the film blowing process can
be calculated from the known values of the radii of the die
and final bubble, and from Eq. 9.176 as

BR = Rf

Rp
= 19.4

4.2
= 4.62 (9.184)

DR = V

vp
= 18

BR
= 3.89 (9.185)

To calculate the drawing velocity we need to calculate first
the velocity at the die and the die swell level. This is done
through mass balances as follows:

v0 = ṁ

ρπR2
0(1 − κ2)

= 13.6 cm/s (9.186)

and

vp = v0
R2

0 − (R0 − H0)2

R2
p − (Rp − Hp)2

= 9.0 cm/s (9.187)

Thus, the drawing velocity is calculated as

V = DRvp = 35.0 cm/s (9.188)

which is equivalent to 68.8 fpm (feet per min).

The film blowing process in this case is assumed to be
isothermal, and we consider the viscosity to be Newtonian
as well. For X = 5, BR = 4.62, and DR = 3.89, solution
of Eqs. 9.150 and 9.151 with boundary conditions given in
Eqs. 9.154 through 9.156 (see also Problem 9C.2 or Fig-
ure 9.23) yields

B = 0.1 ⇒ �P = 22.9 Pa (9.189)

and

TZ = 2.23 ⇒ |FZ | = 2.6 N (9.190)

The viscosity required to get the above values is calculated
as follows. The total strain in the ξ1 direction is calculated
from Eq. 9.132 as

γ̇11(tZ − tp) = ln
vZ

vp
(9.191)

where vZ is the velocity at the frost line, and tZ − tp represents
the travel time from the die swell level to the frost-line level.
Based on the mass balance, vZ is calculated to be equal to
29.1 cm/s, and thus the total strain is equal to 1.2 units.
Similarly, the total strain in the transverse direction ξ 3 is
equal to 1.5 units. The average strain rates in those directions
are about 1.2 and 1.5 s−1, respectively, as the travel time is
approximated to be 1 s. Then, the viscosity is calculated to
be equal to 4500 Pa·s.

Finally, the force at the nip rolls is calculated by applying
a force balance on the film from the frost line to the nip rolls
to give

FL = FZ − ρg(L − Z )2πRf Hf (9.192)

Based on Eq. 9.192, the force at the nip rolls is calculated as
FL = −3.0 N (i.e., 3.0 N in tension).

PROBLEMS

A. Applications

9A.1 Significance of Inertia in Newtonian Isothermal Fiber
Spinning. Calculate the relative importance of the
inertial terms to viscous terms in the Newtonian and
isothermal fiber-spinning process. Use the data of
Example 9.1 to assess this importance in the isother-
mal fiber spinning of Nylon 6,6 at 285 ◦C. Further-
more, estimate the relative importance of (1) gravita-
tional forces and (2) shear rate.



PROBLEMS 307

9A.2 Heat Transfer Coefficient and the Melt-Spinning
Process

(a) Prove that the heat transfer coefficient for cross
flow is twice that for parallel flow.

(b) Show that in the upper part of the spinning cham-
ber (i.e., close to the spinneret) the heat transfer
coefficient depends on the cooling air velocity
only, while in the lower part it depends on the
filament speed only.

9A.3 The Newtonian and Isothermal Model as a Spe-
cial Case of the Newtonian and Nonisothermal
Model. Prove that the solution of the Newtonian
isothermal model, Eq. 9.26, can be deduced from
Eqs. 9.66 to 9.68 with the appropriate simplifications.

9A.4 Draw Ratios in Fiber Spinning and Film Casting.
Prove that the following relationship holds for isother-
mal and Newtonian fiber spinning and film casting:

[ln DR]spin

[ln DR]cast
= 4

3

9A.5 Principal Radii of Curvature. Prove Eqs. 9.147 and
9.148.

B. Principles

9B.1 Isothermal Spinning of a Power-Law Fluid. Show
that the axial velocity profile of a power-law fluid in
the fiber-spinning process is given by the following
equation:

vz = v0

[
1 + ((DR)1−(1/n) − 1

) z

L

]n/(n−1)

where n is the power-law index. To show that, use all
the assumptions of the Newtonian case. Also, show
diagramatically the effect of the power-law index on
the axial velocity profile.

9B.2 Centerline Temperature in Intermediate Speed PET
Spinning. Melt-spun PET is cooled by an air cross
flow of 20 cm/s. The extrusion temperature is 300 ◦C,
the take-up velocity is 2000 m/min, the polymer mass
flow rate is 2.5 g/min, and the filament surface temper-
ature and speed are shown in Figure 9.6. Estimate the
centerline filament temperature at a distance of 60 cm
below the spinneret plate. The physical parameters of
PET are ρ = 1.37 g/cm3, k = 6.9 × 10−4 cal/cm·s·◦C,
and C p = 0.3 cal/g·◦C. The cooling air temperature is
25 ◦C. Also, comment on the validity of assumption
6 in Section 9.1.2 (p. 281), that is, there is no radial
heat conduction within the filament.

9B.3 Draw Resonance of a Power-Law Nonisothermal Melt
Spinning. Estimate the critical draw ratio for draw

resonance for a melt-spun polymer. The properties of
the polymer are C p = 0.7 cal/g·◦C, k = 0.02 ◦C−1 (see
Eq. 9.105), ρ = 0.83 g/cm3, and T0 = 270 ◦C, and the
characteristics of the spinning system are L = 50 cm,
dpf (at take-up) = 8, vL = 500 m/min, Ta = 20 ◦C,
vay = 20 cm/s, and R0 = 0.3 cm. The power-law index
of the polymer is about 0.4. Base your calculations
on Section 9.1.5.

9B.4 Spinning Length for Stable Melt Spinning. Using
the data of Example 9.3 sketch the spinning length as
a function of the draw ratio for stable and attainable
operation. Apply the results of the theoretical analysis
by Fisher and Denn (1976). Propose changes that will
decrease the spinning length.

9B.5 Special Cases of Very Thin Film Casting. Prove that
the following relationship holds for two special cases
of very thin film casting:

[h/h0]L�w0 = ([h/h0]L�w0 )2

Assume Newtonian and isothermal flow in the case
of L � w0, and the same draw ratio in both cases.

9B.6 Straight Tubular Film Extrusion. Prove that in the
case where there is no blowing of the polymer film
that is extruded from an annular die the film thickness
is given by the following relationship:

H = H0 exp

[
−B

z

R0

]

where B is given by Eq. 9.153. Compare this case to
the isothermal fiber spinning of a Newtonian fluid.

9B.7 Various Forms of Extension in Film Blowing. Prove
that the following relationships hold for the film blow-
ing operation:

(1) For uniaxial extension: DR B2
R = 1

(2) For equibiaxial extension: DR = BR

(3) For planar extension: BR = 1

Then, for DR = 3 calculate the relative values of the
air pressure and the axial tension at the nip rolls in
each extensional case.

9B.8 Production of Straight Tube. Calculate the air pres-
sure and the nip rolls tension for the production
of a straight tube of LLDPE from the extruder of
Example 9.4.

9B.9 Draw Resonance in Coextrusion Fiber Spinning.
Coextrusion fiber spinning is an industrial process
used for the production of plastic optical fibers. Based
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on the rheological differences between LDPE and
LLDPE (i.e., LDPE has a longer relaxation time than
LLDPE, and it exhibits strain hardening), provide
qualitative arguments about the expectation of draw
resonance for a bicomponent fiber-spun with LLDPE
as the core material. (Hint: Read the paper by Lee and
Park, 1992.)

C. Numerical Problems

9C.1 Newtonian and Nonisothermal Fiber Spinning. Cal-
culate the diameter of the filament at the take-up roll
for the Newtonian and nonisothermal model using
Eqs. 9.66 to 9.68. Use the same parameters as Kase
and Matsuo (1967), which are given in the figure cap-
tion under Figure 9.5. (a) Neglect air drag, surface
tension, inertial, and gravitational forces. (b) Include
only the air drag forces (μ∞0 = 200 Pa·s).

9C.2 Isothermal Newtonian Film Blowing. Consider the
isothermal Newtonian film blowing process described
by Eqs. 9.150 and 9.151 and boundary conditions and
Eqs. 9.154, 9.155, and 9.156. Show that the following
two sets of conditions constitute steady-state solutions
of the model: (1) B = 0.2, X = 5, TZ = 1.35, BR = 2.4,
H0/Hf = 4.4, and (2) B = 0.2, X = 5, TZ = 1.35, BR =
0.5, H0/Hf = 4.2; and thus, multiple solutions might
exist for a certain set of conditions (Cain and Denn,
1988). More specifically, plot the dimensionless bub-
ble radius, r, and the dimensionless film thickness, w,
versus the dimensionless axial distance, x.

D. Design Problems

9D.1 Elongational Viscosity Measurements and the Fiber-
Spinning and Film Blowing Processes. Design a
set of experiments, based on the fiber-spinning and
film blowing processes, which allow one to calculate
extensional viscosity (uniaxial, biaxial, and planar) as
a function of extension rate. (Hint: Read the paper by
Han and Park, 1975a.)

9D.2 Spinning of Hollow Fibers. Consider the fiber-
spinning process of a hollow fiber (Freeman et al.,
1986). Formulate the continuity, momentum, energy,
and rheological equations for this process along the
same principles as in Sections 9.1.1 and 9.1.2. For the
special case of isothermal Newtonian low-speed (no
inertia, air drag, and gravity) spinning and using the
thin-filament theory, prove that the average velocity
profile is given by the relation

vz = v0 exp

[
z

Ro0 − Ri0

( |F | − πR2
i0 pi

3πμv0(Ro0 + Ri0)

)]

where R0 and Ri are the initial outside and inside radii,
respectively, at z = 0, pi is the internal pressure, and
F is the axial tension needed to draw the hollow fiber.

9D.3 Scaleup of the Film Blowing Process. It is very use-
ful to be able to predict industrial scale film pro-
cessability and resulting physical and mechanical
properties from laboratory scale film blowing exper-
iments. Based on the nonisothermal model analyzed
in Section 9.3.2, discuss the scaleup principles and
dimensionless numbers for the film blowing process.
Then assume that the scaleup criterion requires equal
stresses at the freeze line for machine and transverse
directions. Propose a scaleup model for the radii of
the annular die (multiplication factor is α) and the
final (beyond freezing) bubble radius (multiplication
factor is κ). Show that the scaleup criterion is satisfied
as long as the reciprocal of the internal pressure and
the freeze-line tension, both at the industrial scale, are
κ times the corresponding variables in the laboratory
scale, for the same temperature profiles and final film
thickness in both scales.
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DESIGN PROBLEM IX DESIGN OF A
COMPRESSION MOLDING PROCESS

Polypropylene (PP) containing 30 wt% glass fiber mat is to
be compression molded to form a panel with curved ends as
shown in Figure 10.1. The PP/glass composite, an example
of which is Azdel PM 10300 (Giles and Reinhard, 1991),
comes in the form of sheets that are 3.6 mm thick by 19.1 cm
by 21.6 cm. The final part is to be 3.2 mm thick, have a
breadth of 64.8 cm, and the remaining dimensions as shown
in Figure 10.1. The sheets, also referred to as blanks, are
to be heated to the processing temperature by means of an
infrared oven through which the blanks are able to pass on
a continuous basis. The infrared heaters are located on both
sides of the conveyor system and are considered to be parallel
plate sources with a maximum surface temperature of 427 ◦C.
Based on dynamic mechanical thermal analysis, in which a
strip of the composite is tested in the dynamic oscillatory
mode as a function of temperature (see Fig. 10.21), the mate-
rial begins to flow at about 160 ◦C, which is about the melting
point of PP. Because of the complex nature of these composite
materials, the only rheological data available are the complex
viscosity versus frequency at three temperatures as shown in
Figure 10.22. The upper processing temperature limit for PP
is known to be 230 ◦C. Typical presses can be operated in a
speed range of 4.23 to 33.9 mm/s. Determine the arrangement
of the blanks in the mold and the number of blanks required,
the minimum time required to heat the blanks to a temperature
where the material will flow into the remainder of the mold,
the rate of closing of the press and the required operating

force, and the temperature of the mold plattens which will
minimize the time required for the part to remain in the mold.

This chapter is concerned with processes in which a discrete
mass of polymer, which is either above its melting temper-
ature in the case of semicrystalline polymers or above its
glass transition temperature in the case of amorphous poly-
mers, is forced to take the shape of a cavity by means of
applied pressure. The processes vary somewhat in the details
but in general involve heating the polymer mass, pressur-
izing it, and then cooling the formed sample. Processes of
this nature include injection molding, compression molding,
thermoforming, and blow molding. In this chapter we dis-
cuss these various processes in the order just mentioned. Our
intentions are to describe the most important features as well
as point out where design and analysis can be carried out.

10.1 INJECTION MOLDING

Injection molding is probably the most widely used cyclic
process for manufacturing parts from thermoplastics. In this
section we discuss some of the general aspects of the process,
the fluid mechanics of mold filling, the method by which
structuring occurs, and the basis for computer-aided design.

10.1.1 General Aspects of Injection Molding

A general description of injection molding was given in
Chapter 1. In essence, polymer pellets are plasticated in a
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FIGURE 10.1 Compression molding process for producing a panel from polypropylene and glass
fiber mat composite sheets.

single-screw extruder, and the molten polymer accumulates
at the tip of the screw in a reservoir. As this part of the process
has been described in Chapter 8, we concentrate on what hap-
pens to the melt from this point on. In Figure 10.2 is shown the
end of the extruder and its connection to the mold. The melt,
which has accumulated in the reservoir, is pushed forward
by the screw whose displacement is controlled by hydraulic
pressure. The melt flows through the nozzle, which connects
the extruder to the mold, passes through the sprue, along the
runner, through the gate, and into the mold cavity. The sprue

FIGURE 10.2 Injection molding tooling showing the tip of the
injection system and its connection to the mold. Melt passes from the
reservoir through the nozzle, the sprue, and runner system entering
the mold cavities through the gate.

is designed to offer the least resistance to flow as possible
while minimizing the amount of polymer that is wasted. The
runner is designed to carry melt to the mold cavity, and when
multiple cavities are involved, it must be designed to ensure
that each cavity fills at the same time. The gate represents
the entrance to the mold. Its location is of utmost importance
to the appearance of the part. Furthermore, it is desirable to
make the gate as small as possible, for not only cosmetic rea-
sons but to facilitate the separation of the part from the rest
of the material solidified in the runner. The melt enters the
mold cavity where it begins to solidifiy as it touches the mold
wall. As semicrystalline polymers solidify, they shrink as a
result of increases in density. Pressure is maintained during
the cooling process to ensure that melt continues to flow into
the mold. Once solidification is complete, the mold plates
open and the part is ejected. While the screw is being pulled
back, it rotates, plasticating more polymer.

The flow rate and pressure in the reservoir are shown
schematically in Figure 10.3. The injection pressure, which
is the hydraulic pressure applied to the screw, is one of the
variables that can be selected. Because of little resistance to
flow in the beginning, the flow rate through the nozzle is
constant. However, as the melt advances through the sprue
and runner, the resistance to flow increases, and the pressure
increases. As the cavity fills, the set pressure reaches a con-
stant pressure (this is the injection pressure and is a machine
setting), but the resistance to flow continues to increase. The
flow rate through the nozzle as well as the flow rate into the
cavity must decrease. If the resistance to flow is too great
either as a result of the polymer solidifying or the melt vis-
cosity being too high, the polymer will fail to fill the mold,
leading to what is known as a “short-shot.” Once the mold
fills, the hydraulic pressure applied to the screw is reduced
(this is called the holding pressure) to a value which main-
tains enough flow of material into the mold to compensate
for the volume changes due to shrinkage. Some pressure is
maintained during the complete cooling cycle.



INJECTION MOLDING 313

FIGURE 10.3 Flow rate and pressure in the reservoir of an injec-
tion molding unit as a function of time.

Mold filling involves both high deformation and cooling
rates. For this reason a considerable amount of orientation
and structure or morphology can be developed in an injec-
tion molded part. The shrinkage distribution in an injection
molded sample of polystyrene, an amorphous polymer, is
shown in Figure 10.4. Shrinkage is used here as a measure
of molecular orientation with the highest amount of shrink-
age representing material with the highest degree of orien-
tation. In part (a) of this figure the shrinkage distribution is
shown as a function of thickness for two different fill rates.
For the highest fill rate the highest shrinkage is at the mold
wall, while there is a local maximum at a distance of about
0.22 mm from the mold wall. The shrinkage then decreases
as one approaches the centerline of the mold. For the lowest
fill rate the shrinkage is still highest at the mold wall, but it is
lower in value than that for the higher fill rate. There is also a
local maximum, but it is now at a distance of about 0.44 mm
from the wall. In Figure 10.4b the shrinkage distributions
along and transverse to the flow direction are compared. The
shrinkage along the transverse direction is negligible over
most of the part thickness except near the wall. It is always
lower along the transverse direction than along the flow direc-
tion, which suggests a significant amount of anisotropy will
exist in the properties.

To account for this distribution of shrinkage (orienta-
tion) Tadmor (1974) proposed the fountain flow mechanism,
which occurs in the advancing front. In Figure 10.5 the flow
patterns in normal mold filling are shown schematically. As
the melt leaves the gate, the front is found to occupy various
positions in the mold at different times. The velocity pro-
files in the fully developed flow behind the front are shown
in Figure 10.5b. The flow well behind the front is primarily

FIGURE 10.4 Shrinkage distribution as a function of distance from the surface of an injection
molded part consisting of amorphous polystyrene. (a) Shrinkage along the flow direction for two
different fill rates. (b) Comparison of the shrinkage distribution along the flow direction (solid line)
and transverse to the flow direction (broken line). (Reprinted by permission of the publisher from
Menges and Wübken, 1973.)



314 MOLDING AND FORMING

FIGURE 10.5 Flow patterns in an end-gated mold. (a) Top view
of fronts as a function of time. (b) Side view of velocity profiles
in the fully developed region and frontal region. (Reprinted by
permission of the publisher from Tadmor and Gogos, 1979.)

shear flow, while that at the front involves stagnation flow.
In essence, fluid passes through the center of the cavity to
the front where it turns and then is laid up on the wall of the
mold where it solidifies. In Figure 10.6 the velocity profile
in the fully developed region as seen by an observer moving
with the average velocity of the flow is shown. The velocity
gradient, and hence stress, is seen to pass through a maxi-
mum at an interior point in the flow. Because orientation is
directly related to stress (see Section 5.5), one can see why
there would be at least a local maximum in shrinkage at this
point. A fluid element near the centerline will decelerate as
it approaches the front and become compressed along the x
direction and stretched along the y direction. The element
is then stretched further at the front and laid up on the wall
where it is rapidly solidified in a highly oriented state. Hence,
the extensional flow at the front stretches the fluid element
and leads to a higher degree of orientation in the material at
the mold wall than at the interior of the material.

The fountain flow associated with the advancing front is
extremely important to the properties of materials generated
by means of injection molding. In the case of homogeneous
polymer systems we have already seen how the molecular
orientation is affected. For fiber-filled systems, the flow at
the front can lead to highly oriented fibers at the surface of

FIGURE 10.6 Flow pattern in the advancing front for flow
between two parallel plates as observed relative to the average veloc-
ity. A fluid element approaching the front is compressed along the
flow direction and stretched along the y direction before being laid
up on the cold wall. (Reprinted by permission of the publisher from
Tadmor, 1974.)

an injection molded part, which certainly will affect the flex-
ural properties of the part. In the case of blends, extensional
flow at the front leads to a morphology in which the minor
component exists as fibrils. Hence, in simulating the injection
molding process it is important that frontal flow eventually
be included.

On occasion the opening at the gate is smaller than the
cavity thickness, and the melt no longer fills the mold by an
advancing front mechanism. Rather, it “snakes” its way into
the mold, leading to a material with a poor surface appearance
and reduced physical properties. Snaking does not seem to
be a common method found in the filling of molds, but it
can occur.

One of the major problems in injection molding of parts is
the formation of weld lines that lead to surface imperfections
and weak spots in the part. Weld lines arise from the pres-
ence of obstructions in the flow and from the impingement
of advancing fronts from different gates. The former type
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FIGURE 10.7 Impingement of two fronts during injection mold-
ing to form a weld line. (Reprinted by permission of the publisher
from Hobbs, 1974.)

of weld line is referred to as a hot weld, while the latter is
referred to as a cold weld. In the case of the hot weld the
melt, as it flows into the cavity, is split by an obstruction
such as a pin, for example, and then the streams are brought
back together. Usually the temperature at the interface does
not change much, and hence the streams are brought back
together at the processing temperature. On the other hand,
when two fronts impinge on each other as shown in Fig-
ure 10.7, the temperature of the free surfaces has dropped
somewhat, leading to the formation of what are called cold
welds. Healing of these weld lines is controlled by self-
diffusion, which was discussed in Section 4.2.5. According
to theory of self-diffusion one must either use higher melt
temperatures and longer hold times in the mold or use lower-
molecular-weight polymers to accelerate the healing process.

10.1.2 Simulation of Injection Molding

The design of injection molding tooling is a complex process.
In a commercial process the tooling usually contains multiple

cavities and the cavities are fed by several gates. The simu-
lation of the injection molding process must at least contain
the capability to predict cavity layout and runner design, the
fill rate as a function of injection pressure, gate location,
weld line positions, and cooling time. In addition, it would
be desirable to predict molecular orientation, morphology,
residual stresses, warpage, and shrinkage. In this section we
discuss the approach presently taken in simulating injection
molding and its role in computer-aided design. Because quite
large computer programs are required to simulate injection
molding, our goal is to explain the approach and its capa-
bilities. Those aspects of design that can be handled at this
level, such as heat transfer and the cooling of parts, will
be discussed.

The flow geometries frequently encountered in injection
molding can be reduced to the three geometrically simple
units shown in Figure 10.8 (Pearson and Richardson, 1983).
Flow through runners and the sprue can be handled by the

FIGURE 10.8 Basic geometric elements to which runners and
mold cavities can be reduced: (a) tubular element, (b) planar ele-
ment, and (c) center-gated disk.
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first geometric unit as shown in Figure 10.8a, although many
times the runners are semicircular in cross-sectional shape.
The cavities can be considered to be a combination of thin
planar geometries as shown in Figure 10.8b or as center-gated
disk geometries as shown in Figure 10.8c.

We consider the flow of polymer melt into thin rectangular
cavities as a means of illustrating the approach taken. Hieber
and Shen (1980) model the flow of polymer melt in a thin
cavity using classical Hele–Shaw flow. In this approach the
velocity field is considered to consist of two components,
vx and vy, which depend primarily on z but not on x or y
(i.e., ∂vx/∂x � ∂vx/∂z). The components of the equation
of motion are then taken as

0 = ∂

∂z

(
η
∂vx

∂z

)
− ∂p

∂x
(10.1)

0 = ∂

∂z

(
η
∂vy

∂z

)
− ∂p

∂y
(10.2)

where η is the viscosity taken to be of the form

η = η(γ̇ , T ) (10.3)

and is

γ̇ =
√(

∂vx

∂z

)2

+
(
∂vy

∂z

)2

(10.4)

The continuity equation is of the following form for this
flow:

0 = ∂

∂x
(bvx ) + ∂

∂y
(bv y) (10.5)

where b is the half gap width, which may depend on x and y
and the bar denotes an average over the gapwise coordinate,
z. The energy equation takes the following form:

ρC p

(
∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y

)
= k

∂2T

∂z2
+ ηγ̇ 2 (10.6)

In the development of these equations the viscoelastic nature
of the fluid and the fountain flow at the advancing front have
been neglected. The above set of equations are solved using
the following boundary conditions:

at z = b, vx = vy = 0, T = Tw (10.7)

at z = 0,
∂vx

∂z
= ∂vy

∂z
= 0 = ∂T

∂z
(10.8)

The solution of this set of equations is facilitated by the
following procedure. Because p is independent of z, Eqs. 10.1

and 10.2 can be integrated to give

η

(
∂vx

∂z

)
=
(
∂p

∂x

)
z (10.9)

η

(
∂vy

∂z

)
=
(
∂p

∂y

)
z (10.10)

where Eq. 10.8 has been used. These equations can be inte-
grated again using Eq. 10.7 to give

vx =
(

−∂p

∂x

)∫ b

z

z′dz′

η
(10.11)

vy =
(

−∂p

∂y

)∫ b

z

z′dz′

η
(10.12)

The gapwise-averaged velocities are obtained by integration
of Eqs. 10.11 and 10.12:

v x =
(

−∂p

∂x

)
S

b
v y =

(
−∂p

∂y

)
S

b
(10.13)

where

S =
∫ b

0

z2dz

η
(10.14)

Substituting Eq. 10.13 into Eq. 10.5 gives

∂

∂x

(
S
∂p

∂x

)
+ ∂

∂y

(
S
∂p

∂y

)
= 0 (10.15)

Equation 10.15 is solved subject to the following boundary
conditions:

Along the advancing front: p = 0 (10.16)

At the entry to the mold: p = pe(x, y, t) (10.17)

At the mold wall: ∂p/∂n = 0 (10.18)

Finally, when two melt fronts coalesce, forming a weld line,
the boundary conditions are that the pressure and normal
velocity be continuous; that is,

p+ = p− (10.19)

and

(S ∂p/∂n)+ = −(S ∂p/∂n)− (10.20)

where the + and − signs denote values on either side of the
weld line.

In summary, the primary governing equations are given
by Eqs. 10.15 and 10.6 for p and T, respectively, while S, vx,
vy, γ̇ , and η are calculated by means of Eqs. 10.14, 10.11,
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10.12, 10.4, and 10.3, respectively. To complete the solution
of these equations an empiricism for viscosity must be used.
The power-law and the Carreau models are often used. The
solution of these equations requires numerical methods as
discussed by Hieber and Shen (1980) and Wang and co-
workers (1986).

In Example 10.1 the solution to Eq. 10.15 is illustrated for
the isothermal Newtonian case.

Example 10.1. Isothermal Newtonian Flow in a
Rectangular Cavity

Consider the isothermal flow of a Newtonian fluid in a rect-
angular mold as shown in Figure 10.8b but with W and 2b
constant and W/2b> 10. The gate at the entrance to the mold
is a fan gate so that the flow is considered to occur only in
the y direction: that is, vy = vy(z) and p = p(y). The location
of the front at any instant is L(t). The pressure at the gate
is constant and is P0. Determine Q(t) and the time to fill a
cavity of length L using the approach of Hieber and Shen
(1980).

Solution. The pertinent equations are

μ
∂2vy

∂z2
− ∂p

∂y
= 0 (10.21)

∂

∂y

(
S
∂p

∂y

)
= 0 S = b3

3μ
(10.22)

Equation 10.22 can be integrated to find the pressure distri-
bution, which is

P = −P0

L(t)
y + P0 (10.23)

where P0 is the pressure at y = 0 and P = 0 at y = L(t), which
is the position of the front. vy is obtained from Eq. 10.12:

vy = b2 P0

2L(t)μ

[
1 −

( z

b

)2
]

(10.24)

The position of the front is found from a mass balance:

Q = b3 P0

3L(t)μ
= 2bW

dL

dt
(10.25)

where Q is obtained by integrating Eq. 10.24 over the cross-
sectional area. Equation 10.25 can be solved to find the posi-
tion of the front as a function of time:

L(t) =
√

b2 P0t

3μW
(10.26)

The time for filling the mold is determined by setting
L(t) = L. One can also see by substituting Eq. 10.26 back into
Eq. 10.25 that Q decreases with increasing time as follows:

Q = b2

√
P0W

3μt
(10.27)

Once the cavity is filled, additional material is forced into
the cavity to compensate for an increasing polymer density
arising from crystallization and compressibility of the melt.
Wang and co-workers (1986) have included compressibility
throughout the entire filling, packing, and cooling phases for
amorphous polymers. However, for semicrystalline polymers
their approach may not be satisfactory.

If one is to predict the orientation distribution in a part,
then it is necessary to include fountain flow at the advanc-
ing front. Mavridis and co-workers (1988) have presented
an approach for modeling fountain flow under isothermal
conditions.

Referring to Figure 10.6, axes are attached to the mov-
ing front that move with the average velocity of the flow,
<vx>. At the upstream boundary the flow is modeled as a
one-dimensional shear flow. The equation of motion and the
boundary conditions for this flow are

dp

dx
= d

dy

(
η

dvx

dy

)
(10.28)

B.C.1: at y = 0,
dvx

dy
= 0 (10.29)

B.C.2: at y = 1, vx = B

(
η

dvx

dy

)
(10.30)

where B is the slip coefficient. The flow in the rest of the
region is such that the following postulates are made:

vx = vx (x, y); vy = vy(x, y); p = p(x, y) (10.31)

The boundary conditions are as follows:

at x = 0, vx = vx (y) (10.32)

at y = b, vy = 0, vx = Bτyx (10.33)

At the front, v · n = 0, π · n = 0 (10.34)

where v · n means there is no flow across the front and π · n
means there are no forces acting on the front. The parameter
B is a measure of slip, and when B → 0 there is no slip and
when B → ∞ there is perfect slip. The postulates in Eq. 10.31
along with the equation of motion and a constitutive equation
lead to a set of nonlinear differential equations which must
be solved by means of numerical methods, preferably finite
element methods. At present, most simulations of injection
molding do not include fountain flow.
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The cooling of the melt can be considered as a transient
one-dimensional heat transfer problem. The approach used
in Chapter 5 can be employed to calculate temperature dis-
tributions and cooling times as well as estimate the degree
of crystallinity and the morphology. The main difficulty is
establishing the appropriate boundary conditions at the mold
walls. In a commercial process where a large number of parts
are made per hour, it may take several hours before the mold
surfaces reach an equilibrium temperature. This temperature
can be somewhat higher than what is expected based on
the temperature settings of cartridge heaters inserted in the
mold base or fluids circulated through channels machined
in the mold base. The most accurate way to determine the
temperature distribution in the melt is to use a heat trans-
fer coefficient. The overall heat transfer coefficient per unit
length of coolant line, U, is given by

1

U
= 1

Skm
+ 1

πDh
(10.35)

where km is the thermal conductivity of the mold material
(e.g., 43.3 W/m · K for steel), h is the convective heat transfer
coefficient for flow through tubes (see Chapter 5 for deter-
mining this value), D is the diameter of the coolant line, and
S is the shape factor, which is defined in Figure 10.9 and
given as (Throne 1979)

S = 2π
ln[(2P/πd) sin h(2πD/P)]

(10.36)

10.1.3 Microinjection Molding

The microinjection molding (μIM) process is not just a
scaling down of the conventional injection process, but it
requires a rethinking of each part of the process. The molding
machine, tooling, material, and process, as well as compo-
nent handling and inspection need to be specially addressed
(Giboz et al., 2007). In order to fill the mold, the mold tem-
perature is typically held just under the melting point for
semicrystalline polymers while for glassy polymers it is held
around Tg. For example, for PP (Tm ∼ 168 ◦C) the mold
temperature is held at 163 ◦C in μIM while for conventional
injection molding the mold is held between 30 and 60 ◦C. For
PC, a glassy polymer with a Tg of 150 ◦C, the mold is held at
140 ◦C for μIM while for conventional molding it is held at
temperatures between 90 and 110 ◦C. In Table 10.1 we have
summarized the molding conditions and some applications
of a range of polymeric materials. In this table, the minimum
part thickness that can be produced along with the largest
aspect ratio, that is, the largest lateral dimension to the part
thickness ratio, are indicated. Shear rates are estimated to be
between 105 and 5 × 106 s−1 for μIM (gate region) while for
conventional injection molding they are estimated to be in the
range of 104 s−1. The high shear rates can have two detrimen-
tal effects: mechanical degradation due to high stresses and
thermal degradation due to viscous heating. The control of the
classical IM process is generally ensured by measuring the
injection pressure. The injection pressures used in the μIM
process can reach 200 MPa and more, whereas conventional
injection pressures are generally ten times lower. The mold

FIGURE 10.9 Shape factor geometry for coolant lines in a mold block.
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TABLE 10.1 Polymer Materials Often Used in Microinjection Molding, Mold Temperature
(Micromolding/Conventional Molding), Maximum Aspect Ratios (ARs),
Minimum Structural Thickness (Smin), and Typical Applications

Polymer

Mold Temperature
Micro/Conventional

Mold (◦C)

Aspect
Ratio
(AR)

Minimum
Thickness,
Smin (μm) Application

PMMA 20 20 Optical fiber connector
PC 60–140/90–110 Cell container
PA 10 50 Microgear wheels
HDPE 125–150/30–60 230 20 Components for microactuators
PEEK 5 270 Housings for micropumps
PP 163/30–60 230 20 Components for microactuators

Source: Data from Giboz et al., 2007, and Piotter et al., 2002.

temperature and the injection pressure have to be higher than
that of conventional IM. The high mold temperatures lead to
a significant increase of the cycle times.

The tools used in the simulation of μIM are similar to
those used in the simulation and design of conventional
injection molding processes. However, there are a number
of considerations that are significantly different, such as high
shear rates and rapid cooling due to the small dimensions
(Giboz et al., 2007). Furthermore, because the aspect ratio
of the parts produced my means of μIM are typically small,
the use of the Hele–Shaw approximation for simulating mold
filling may be adequate and the inclusion of the advancing
front may not be necessary. Furthermore, because the mold
temperatures are held near the Tm for semicrystalline poly-
mers or Tg for glassy polymers, there may be considerable
relaxation of chain orientation. Furthermore, crystallization
may occur under nearly quiescent conditions leading to a dif-
ference in morphology versus that in conventional injection
molding.

Before leaving this section, we should make a few com-
ments on the size and features of μIM machines (see Giboz
et al., 2007). Typically the screw ranges from 5 to 16 mm in
diameter. Some systems use a screw to plasticate the polymer
and a plunger to push the melt into the mold. The clamp-
ing force runs from 49 to 147 kN, the injection capacity is
from 0.082 to 10 cm3, the injection pressure is from 1700
to 3500 × 105 Pa, and the injection speed is from 180 to
1200 mm/s.

10.2 COMPRESSION MOLDING

Compression molding is used primarily to process thermoset-
ting systems and difficult-to-process thermoplastics, such
as fiber-filled systems or thermoplastic elastomers. We first
describe some of the basic features of the process and the
areas where design is needed. This is followed by discus-
sion of the elementary ideas in the modeling of compression
molding.

10.2.1 General Aspects of Compression Molding

The essential features of the compression molding process
are illustrated in Figure 10.10. In the case of thermoplastics
a preheated mass of polymer, which may be either a sheet or

FIGURE 10.10 Compression molding process showing the
hydraulic system and mold.
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a pile of pellets or powder, is placed in the mold. The tem-
perature of the mold is set low enough to cause the polymer
to solidify but not so rapidly that it will not flow. Hydraulic
pressure is applied to the top or bottom plate pushing the
plattens together. The molds are designed to prevent the top
part of the mold from touching the bottom part, which would
squeeze the resin from the mold.

The design of a compression molding process consists of
four aspects. The first is the selection of the proper amount
of material to fill the cavity when the mold halves are closed.
The second is determining the minimum time required to
heat the blank to the desired processing temperature and
the selection of the appropriate heating technique (radiation
heating, forced convection, etc.). It is necessary to make sure
that the center reaches the desired processing temperature
without the surface being held at too high a temperature for
too long of time. The third is the prediction of the force
required to fill out the mold. Finally, the temperature of the
mold must be determined, keeping in mind that one wants to
cool the part down as rapidly as possible, but that too rapid of
a cooling rate will prevent the polymer from filling the mold.

Compression molding is used for processing thermoplas-
tics, which do not flow readily, such as highly filled systems
and granular materials that don’t really melt but only fuse
under pressure. In the case of thermoplastic composite sys-
tems reinforced with long fibers, the process is referred to as
stamping. It is a process that is being used more frequently
for processing thermoplastic composites used in the manu-
facture of panels such as would be found in car trunks and
hoods. Typically, the process involves much less flow than
found in injection molding or other forming processes dis-
cussed in the remainder of the chapter.

10.2.2 Simulation of Compression Molding

Compression molding of thermoplastics typically involves
very little flow. A discrete mass of material is placed in the
mold whose volume is adequate to fill the mold when the
plates are pushed together. The preliminary material may
be in the form of a sheet, referred to as a blank, or stacked
sheets reinforced with long continuous fibers, called prepreg.
Initially, the surface area of the plates may be completely cov-
ered or only partially covered with material. When the plates
of the mold are brought together, the material is forced to
cover the rest of the mold surface. For example, blanks may
cover initially from 20% to 80% of the mold surface. Ther-
moplastic prepregs are placed over the entire mold surface,
and hence the application of pressure leads only to shaping,
compaction, and bonding of the stacked sheets.

Compression molding is a highly nonisothermal process.
In the processing of blanks consisting of a thermoplastic
reinforced with long fibers, the blanks are preheated and
then placed in the mold, which is at a temperature lower than
that of the blanks. In the case of thermoplastic prepregs, the

stacked sheets are heated and cooled in the same mold. In
either case there is a temperature distribution in the sample
before being molded, and it is enhanced during molding.
The accurate simulation of the compression molding process
requires a solution of the coupled momentum and energy
equations.

When there is significant flow, the deformation of the
blank can be complex. For example, the blank initially may
be square but during compression may be required to deform
more in one direction than the other. In any event, the mod-
eling of the deformation may not be handled easily without
the use of numerical techniques such as the finite element
method.

To illustrate the modeling of the compression molding
process we consider the compression molding of a blank as
shown in Figure 10.11. The blank is constrained on the sides
so that it can only flow on squeezing along the x direction.
In principle, one would like to develop the nonisothermal
viscoelastic model of the process, but this disguises some
of the essential features of the modeling process. For this
reason we first develop the isothermal Newtonian model of
the process and then look at the difficulties involved with
the development of a complete nonisothermal viscoelastic
model.

In the process shown in Figure 10.11 a blank of polymeric
material is compressed in a mold, which allows the material
to deform in the x direction only. The mold is of width W and
the blank is of width W, initial thickness h0, and initial length
2X0. The blank is assumed to cover 50% of the surface area
of the plates, and hence only low deformation of the blank
occurs. We assume that the blank rheology is Newtonian
and that the flow is isothermal and quasisteady. With these
assumptions we postulate the following for the velocity and
pressure fields:

vx = vx (x, z); vz = vz(z); p = p(x, z) (10.37)

The continuity equation for this situation is

∂vx

∂x
+ ∂vz

∂z
= 0 (10.38)

The equations of motion are

− ∂p

∂x
− ∂τzx

∂z
− ∂τxx

∂x
= 0 (10.39)

− ∂p

∂z
− ∂τzz

∂z
= 0 (10.40)

For the Newtonian fluid the stress components are

τxx = −2μ
∂vx

∂x
; τzz = −2μ

∂vz

∂z
; τzx = −μ

∂vx

∂z
(10.41)
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FIGURE 10.11 Two-dimensional flow in compression molding between two parallel platens. Flow
occurs in the z and x directions only.

From the conditions given in the problem it is possible to
show

∂vx

∂z
� ∂vx

∂x
and

∂vz

∂z
(10.42)

and hence the dominant stress component is τ zx. The equa-
tions of motion become, on introducing the expression for
τ zz in Eq. 10.41 and conditions in Eq. 10.42,

μ
d2vx

dz2 = dp

dx
(10.43)

Equation 10.43 is integrated using the following boundary
conditions:

at z = 0, vx = 0

at z = h, vx = 0
(10.44)

to give

vx = Gh2

2μ

[( z

h

)2
− z

h

]
(10.45)

where G = dp/dx.
The goal is to determine a relation between the rate of

plate closing (dh/dt), which is usually constant in most com-
mercial presses, the force required to maintain this rate, the
plate geometry, and the viscosity of the fluid. It is also desired
to know how long it takes to completely fill out the mold.
The first step is to relate the rate of flow out through a plane

perpendicular to the x direction to the rate of closing of the
plate, which is given by(

dh

dt

)
WX = W

∫ h

0
vx dz (10.46)

or on substituting Eq. 10.45 into Eq. 10.46 for vx we obtain(
dh

dt

)
WX = Gh3W

μ

∫ 1

0

(
ξ 2 − ξ

)
dξ = −Gh3W

6μ
(10.47)

where G = dp/dx, X is the half-width of the sheet, and
ξ = z/h. From Eq. 10.47 we obtain the pressure distribution
in the sample:

p − pa =
(

dh

dt

)(
6μ

h3

)
X (X − x) (10.48)

Finally, we carry out a force balance on the upper plate:

− F + paW 2X + 2W
∫ X

0
p(x)dx = 0 (10.49)

to obtain the following relation (note that Eq. 10.48 is sub-
stituted into Eq. 10.49 and the integration is carried out):

F = 6Wμḣ X3

h3
(10.50)

Equation 10.50 can be used to determine the force as a func-
tion of plate position if dh/dt = ḣ is constant, or if F is
constant, a nonlinear ordinary differential equation arises
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which can be solved for h(t). In the following example we
use the equations just presented to estimate conditions in a
compression molding process.

Example 10.2. Compression Molding of a
Newtonian Fluid

Consider the compression molding of a blank of polypropy-
lene reinforced with glass fiber as shown in Figure 10.11.
For the time being, consider the material to be Newtonian
with a viscosity of 5 × 102 Pa · s. The thickness of the blank
is 3.6 mm, and it is to be molded to fill the mold which has a
length of 1 m, a width of 0.25 m, and a thickness of 3.2 mm.
Determine the initial dimensions of the sheet required to fill
out the mold (take the width as 0.25 m), the time for filling
the mold, and the force required to complete the filling of the
mold. The press can exert a maximum force of 20 MN and
operate at rates between 4.23 and 33.9 mm/s.

Solution. Starting with the lowest closing rate of 4.23 mm/s
we obtain

h(t) = −4.23 × 10−3t + 3.6 × 10−3

The time for the gap to reach 3.2 mm is then 0.0946 s. Using
Eq. 10.50 the force required to fill out the mold is

F = 6(0.25)(5.0 × 102)
(
4.23 × 10−3

)
(0.5)3(

3.2 × 10−3
)3 = 12.1 MN

Hence, one could operate at a slightly higher closing rate if
necessary, because the force required at the lowest rate is less
than the maximum force available.

Although we have considered a highly idealized case of
isothermal Newtonian flow, the model and calculations give
an idea of the approach one must take in modeling and design-
ing an actual process. In practice the time for heating the
blank up to the processing temperature and the time for cool-
ing the sample in the mold are by far the longest times. The
time for filling out the mold may be on the order of seconds.
Hence, although there will be an initial temperature distri-
bution in the sample, very little change in temperature will
occur during the deformation process. As a first approxima-
tion, provided we can handle the initial temperature variation
in the sample, we can decouple the equation of motion from
the energy equation. Once the mold is filled out, the time for
cooling the part can be determined by treating the situation
as a one-dimensional transient heat conduction.

There are still several parts of the problem that cannot be
dealt with at this level. First, the viscoelastic nature of the
flow must be considered as the deformation occurs over short
times and may involve a significant extensional component.
Second, the rheological properties of materials that are usu-
ally processed by means of compression molding are difficult

to obtain. Materials such as PP filled with long glass fibers
are extremely difficult to characterize rheologically (see
Ortman et al., 2011, for discussion of a method). In fact,
the best approach may be to use lubricated squeezing flow,
which was discussed in Chapter 3. Finally, the shape changes
that the blank may undergo may require the use of finite
element methods.

10.3 THERMOFORMING

Thermoforming is used primarily for the manufacturing of
packaging and disposable containers. However, it is also
becoming a useful technique in the processing of engineer-
ing thermoplastics to produce parts used in the transportation
industry. Polymers that are processed by this technique must
have sufficient melt strength so that on heating they do not
sag significantly under their own weight, yet they can be
deformed under pressure to take the shape of a mold. Hence,
highly crystalline polymers with high melting temperatures
and low molecular weight cannot readily be thermoformed.
For example, nylon 66 (Tm = 265 ◦C and Mw = 30,000)
is not usually processed by means of thermoforming, while
LDPE (Tm = 110 ◦C and Mw = 200,000) is. In this section
we first describe the general aspects of thermoforming and
then some basic features of modeling this process as required
in design.

10.3.1 General Aspects of Thermoforming

The essential features of the thermoforming process are
shown in Figure 10.12. Thermoplastic sheet is heated usu-
ally by means of radiation but sometimes in conjunction
with convection cooling to temperatures either just above
Tg in the case of amorphous polymers or Tm in the case of
semicrystalline polymers. The exact temperature depends on
the degree of sag exhibited by the material under its own
weight, which is determined by its rheological properties.
The sample is then removed from the heating system and
brought into position over the mold. The sample is forced to
take the shape of the mold by applying pressure to the top of
the sheet or by generating a vacuum on the underside of the
sheet as shown in Figure 10.12. The forming step occurs in
the matter of a second. The sample is maintained in the mold
until it is rigid enough to be removed from the mold without
altering its shape.

There are a number of variations on the basic process,
which are described in more detail by Throne (1986). For
example, in plug-assisted vacuum forming the heated sheet is
forced by a plug into the mold with the remainder of the shape
being produced by the application of vacuum to the under-
side of the sheet. This method is used to help maintain a more
uniform wall thickness throughout the part. Another exam-
ple is matched die molding, which is shown in Figure 10.13.
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FIGURE 10.12 Typical pressure thermoforming process. (a) The clamped sheet is heated to the
processing temperature by means of infrared heaters. (b) The heated sheet is removed from the
radiation heating source and placed into position for forming. (c) Vacuum is applied to the underside
of the sheet or air pressure is applied to the top side of the sheet, forcing the heated sheet into
the mold.

FIGURE 10.13 Forming in a matched metal die system. After heating, the sheet is formed by the
application of mechanical pressure to the upper part of the mold.
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FIGURE 10.14 Twin sheet thermoforming process. (a) Heated sheets are placed between the mold
halves. (b) The mold is closed, sealing the two sheets at the edges and around an inflation tube. (c)
Air pressure is supplied through the tube, causing the sheets to inflate against the mold walls. (d) The
mold is opened once the sheets are cooled and the part is removed.

The heated sheet is forced to take the shape of the female
portion of the mold by the male part. This process is charac-
terized by the formation of parts with more intricate shapes
and uniform wall thickness. Finally, one last technique is that
of twin sheet thermoforming as shown in Figure 10.14. Here
two sheets are heated and then forced to take the shape of
the mold by applying air pressure on the inside of the sheets
and possibly vacuum on the outside. This process resem-
bles somewhat that of blow molding, which is discussed in
Section 10.4. However, the sheets can be forced to take on
different shapes as each half of the mold can have a different
shape. Furthermore, different polymers can be used for each
half. The sheets must be held in the mold long enough for
bonding to occur.

Thermoforming can be divided into four sections: (1)
sheet heating without deformation, (2) sheet stretching
without significant heat transfer, (3) part cooling in the
mold and (4) postmolding operations such as trimming.
The time to make a part is primarily determined by steps
1 and 3 as these are the order of minutes. However, the
successful functioning of the part is determined by step 2
as the distribution of wall thickness is determined in this
step. In the next section we consider the modeling of each of
these steps.

10.3.2 Modeling of Thermoforming

Of the four subdivisions we discussed the first three—
heating, forming, and cooling—lend themselves to simula-
tion and modeling, which in turn lead to the possibility of
carrying out effective design considerations. We first discuss
the heating and cooling aspects followed by ideas on the
forming step.

The success of a thermoforming process depends primar-
ily on the rate at which a part can be produced. This is con-
trolled by the time required to heat the sheet to the processing
temperature and the time to cool the part down once it has
been formed. The time required to heat a sheet to the pro-
cessing temperature depends on the heat transfer conditions
and, of course, the temperature at which the sheet becomes
sufficiently formable but not so low in melt strength that sig-
nificant sagging occurs. In the case of amorphous polymers
this is usually 30 to 60 ◦C above Tg, while for semicrystalline
polymers it is usually just above the temperature where melt-
ing is just completed. In the case of semicrystalline polymers
the molecular weight must be sufficiently high to impart a
viscosity that is high enough to resist sagging.

At present there seems to have been no quantitative
attempts to estimate the temperature at which a polymer is
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FIGURE 10.15 Dynamic mechanical thermal analysis (G′ versus
temperature at an angular frequency of 1.0 rad/s) of polypropylene
(PP) and PP filled with 20 wt% glass fiber determined using the
torsional mode of a rheometer.

suitably formable. There are some empirical guidelines based
on experience with given polymers. For example, Gruenwald
(1987) gives the thermoforming temperature for polypropy-
lene to be between 150 and 199 ◦C and for polystyrene to be
between 143 and 177 ◦C. (Note: Tg for PS is about 100 ◦C.)
Dynamic mechanical properties obtained as a function of
temperature may provide a way to estimate the processing
temperatures. For example, the storage modulus (G′) versus
temperature at an angular frequency of 10 rad/s is shown in
Figure 10.15 for PP and glass-filled PP. Based on experience
when G′ reaches about 1 × 107 Pa the material is formable.
This appears to occur at a temperature above 150 ◦C for
PP. For glass-filled PP this temperature appears to be above
170 ◦C. Experience coupled with dynamic mechanical prop-
erties may provide the best approach for estimating the pro-
cessing temperature.

Once the processing temperature has been determined, the
time required to heat the sheet to this temperature can be cal-
culated by methods given in Chapter 5. Basically the problem
becomes one of one-dimensional transient heat conduction.
Heating is usually accomplished by radiation combined with
convection. The radiation heat transfer coefficient is given
in Eq. 5.138, while the view factor for two parallel planes
(Eq. 5.134) is most frequently used. The emissivities of the
heating source fall in the range of 0.9 to 0.95, while that
of the polymer sheet is about 0.9. The rating of the heat-
ing source is available from the manufacturer of the radiant
heating source. For example, resistance heated strip elements
usually found in commercial thermoforming machines have
a surface temperature of 427 ◦C at the highest power input.
If the distance of the heaters from the sheet is greater than
about 30 cm, then free convection cooling of the sheet surface
can occur. Throne (1986) has estimated the free convection
heat transfer coefficient to be on the order of 11.3 W/m2 · K,
but this can be calculated via methods given in Chapter 5.

Sometimes forced convection is used cyclically to cool the
sheet surface and again the methods described in Chapter 5
can be used to estimate the heat transfer coefficient. The
numerical procedure associated with Example 5.5 (p. 127)
can be used for determining the heating time and temperature
distribution in the sheet.

Although the time for producing a part is determined by
the heating and cooling times, the utility of the part is deter-
mined by the wall thickness distribution. If during the form-
ing process the wall becomes too thin in certain regions, then
the part may fail under loading or have reduced barrier prop-
erties. The ability to estimate the wall thickness distribution
is crucial to the design of a thermoforming process.

Estimating the wall thickness distribution is extremely
difficult especially for irregularly shaped parts. Numerical
methods, such as the finite element method, are required.
Furthermore, an appropriate nonlinear constitutive equation
for the polymer is required, and this may be difficult to obtain
for materials that exist in the near rubbery state at the forming
temperature. Obtaining rheological data at the forming tem-
perature is very difficult. Finally, the solution of the coupled
equations of motion and the nonlinear constitutive equation
requires sophisticated numerical codes, which are not readily
available at this time.

In principle, it is desirable to be able to predict wall thick-
ness distribution for a given polymer being formed into a
given shape. Then given the various processing variables,
including temperature, differential pressure, and sheet rhe-
ological properties, determine how to move the material
around in order to meet the necessary part design criteria
while using the minimum initial sheet thickness. We are not
in position at this point to be able to accurately do this. How-
ever, there are at least two things we can do. First, we can
estimate whether sufficient material is available to maintain
a desired average wall thickness; and second, we can see
how for simple geometries the wall thickness distribution is
obtained using geometric arguments and a mass balance.

As a first estimate we must be able to determine on the
average whether sufficient material is available in the sheet
for producing a certain part. This is in essence done by car-
rying out a mass balance on the sheet. For example, consider
Figure 10.16 in which a sheet of arbitrary dimensions is to
be formed into a female mold. Since the original volume of
material available for forming in this configuration is CDti
(note that AB − CD is the area that contacts the mold surface
first and this will deform very little, leaving only the area CD)
where ti is the initial thickness of the sheet. After forming
the volume of the material is

Vf = (2DE + 2CE + CD)tf (10.51)

and hence using the dimensions given in arbitrary units
tf = ti/4. Obviously, if the average thickness doesn’t meet the
design requirements, then sufficient material is not available.
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FIGURE 10.16 Relative dimensions of a container generated
from a thermoformed sheet using a female mold. Before forming,
the area of the section to be formed is 2 units. After forming, the
surface area of the box is 8 units.

However, because there will be a distribution of wall
thickness, there may be regions that don’t satisfy the design
requirements. This is inspite of sufficient material being
available to provide the wall thickness on the average. It
is desirable, therefore, to be able to predict the wall thick-
ness distribution as a function of processing conditions and
rheological properties of the polymer. This has been done for
several simple geometries (Rosenzweig et al., 1979) and we
illustrate the approach in the following example.

Example 10.3. Wall Thickness Distribution in a
Conical Mold

Consider the thermoforming of a sheet in which the mold
is conical in shape as shown in Figure 10.17. The sheet is
forced into the mold by means of an applied pressure differ-
ential (e.g., air pressure is applied to the surface). The sheet is
initially of uniform thickness, h0, and the process is isother-
mal. Obtain an expression for the thickness distribution as a
function of the initial sheet thickness and mold geometry.

Solution. The following assumptions are made:

1. The polymer is incompressible.

2. Polymer deformation occurs only in the bubble.

3. The free surface is uniform in thickness and has a
spherical shape.

4. The sheet solidifies on touching the mold walls, but
the spherical surface remains isothermal.

5. The polymer does not slip on the walls.

6. The spherical surface, or bubble, thickness is small
compared to its radius.

FIGURE 10.17 Geometry of a conical mold used in the thermo-
forming of a sheet. The sheet is assumed to expand as a spherically
shaped bubble freezing as it contacts the walls.

Referring to Figure 10.17 a differential mass balance is
made to obtain the thickness distribution:

2πR2(1 − cosβ)h
∣∣
zk − 2πR2(1 − cosβ)h

∣∣
zk+�zk

= 2πrh �zk (10.52)

where the first term is the volume of the spherical bubble at
position zk along the wall and the second term is the volume
of the bubble at a position zk + �zk. The volume of material
deposited on the wall as the bubble moves from zk to zk +
�zk is represented on the right side of Eq. 10.52. Dividing
through by �zk and taking the limit as �zk goes to zero gives
the following differential equation:

− d

dzk
(R2h) = rh

(1 − cosβ)
(10.53)

From geometrical considerations we can replace r by R sin
β and R by

R = H − zk sinβ

sinβ tanβ
(10.54)

to give the following differential equation for h:

dh

h
=
(

2 − tanβ sinβ

1 − cosβ

)
sinβ

dzk

H − zk sinβ
(10.55)
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Equation 10.55 can be integrated using the initial condition
that h(0) = h1, where h1 is the initial thickness of the bubble
tangent to the cone at zk = 0, to give

h

h1
=
(

1 − zk

H
sinβ

)secβ−1
(10.56)

Finally, it is possible to relate the initial thickness, h1, to the
original sheet thickness, h0, by the following relation:

πL2h0

4
= πL2(1 − cosβ)h1

2sin2β
(10.57)

where the left side of this equation is just the volume of
the circular piece of sheet above the mold opening before
forming and the right side is the spherical surface when
zk = 0. On replacing h1 in Eq. 10.56 with the value for
h1 in terms of h0 in Eq. 10.57, the thickness distribution is
thus given by

h

h0
= 1 + cosβ

2

(
1 − zk

H
sinβ

)secβ−1
(10.58)

The approach described in Example 10.3 is based totally
on conservation of mass with no mention of the role played
by the rheological properties of the polymer. In spite of this,
the approach used in Example 10.3 seems to work reason-
ably well for shallow geometries, which lend themselves
to geometric analysis. When then is the constitutive equa-
tion required in the analysis of thermoforming? In principle,
the shape of the bubble is not known but is related to both
processing conditions and the rheology of the polymer. Fur-
thermore, the pressure required to deform the sheet and the
time to fill the mold are determined by the rheology of the
polymer. In the following example we illustrate how the con-
stitutive equation is used in simulating thermoforming.

Example 10.4. Inflation Pressure of the Bubble

Establish the equations required to determine the pressure
and time to form a sheet in the conical mold shown in Fig-
ure 10.17 for two cases: (1) a Newtonian fluid and (2) a
viscoelastic fluid.

Solution. In addition to the assumptions used in Exam-
ple 10.3, we assume that the deformation of the spherical film
is occurring under quasisteady-state conditions, and hence
we use an unsteady-state mass balance but the steady-state
equation of motion. The bubble thickness is also assumed to
be small relative to the radius. Using spherical coordinates
the following postulates are made:

vr = vr (r ) p = p(r ) (10.59)

where r is the spherical coordinate taken along R in Fig-
ure 10.17 and not the radius of the conical cross section as
indicated in this figure. The continuity equation becomes

∂

∂r

(
r2vr

) = 0 (10.60)

which can be integrated to give

vr = A(t)/r 2 (10.61)

where A(t) is an arbitrary function of time. At the inside
surface of the bubble, which is located at R, the velocity of
the fluid just equals the velocity of the surface which is dR/dt
(we denote this as Ṙ): that is,

vr (R) = Ṙ (10.62)

From Eqs. 10.61 and 10.62 we find that A(t) = ṘR2, and vr

becomes

vr = ṘR2

r2
(10.63)

Hence, an expression for the velocity field has been obtained
directly from the continuity equation without using the equa-
tion of motion.

In order to relate the rate at which the mold is filled to
the applied pressure it is necessary to use the equation of
motion. Independent of the choice of constitutive equation
the equation of motion becomes

0 = −∂p

∂r
− 1

r2

∂

∂r

(
r2τrr

)+ τθθ + τφφ

r
(10.64)

Equation 10.64 can be rewritten in the following form:

∂πrr

∂r
= τθθ + τφφ − 2τrr

r
(10.65)

where πrr is the total stress (see Chapter 3). At the inside
surface (i.e., at R) it can be shown that πrr(R) = −P(R) while
at the outside surface πrr (R + h) = −P(R + h). Therefore,
the pressure differential across the film is given by

P(R) − P(R + h) = �P =
∫

τθθ + τφφ − 2τrr

r
dr

(10.66)

In our case it is assumed that the film is thin, and hence the
stresses don’t vary significantly over the film thickness, and
hence Eq. 10.66 becomes

�P = h
(
τθθ + τφφ − 2τrr

) |Rh

R
(10.67)
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To complete our goal we now must assume a constitutive
equation for the polymer. We first assume the Newtonian
model, as this allows one to obtain an analytical solution.
This is also an advisable procedure to follow before embark-
ing on a solution using a viscoelastic model, which will
more than likely require numerical methods to obtain an
answer. For the Newtonian model (see Chapter 2) the stress
components are

τθθ = −2μ
vr

r
= −2μṘR2

r3

τφφ = −2μ
vr

r
= −2μṘR2

r3
(10.68)

τrr = −2μ
∂vr

∂r
= 4μṘR2

r3

These quantities are now substituted back into Eq. 10.67 to
obtain an expression for the pressure difference:

�P = −8μṘh

R2
(10.69)

By using Eqs. 10.58 and 10.54 we can express Eq. 10.69 as

�P = −8μṘh0

R2

[
R sinβ tanβ

H

]secβ−1

(10.70)

Equation 10.70 represents a nonlinear ordinary differential
equation for finding R(t) for a given pressure differential
across the film or bubble. The solution of this equation
is obtained numerically in Problem 10C.3 using either the
IMSL subroutine IVPAG or an ordinary differential equation
solver in MATLAB.

We next consider the formulation of the problem for
the viscoelastic case. We select the PTT model again (see
Eq. 3.45), which in spherical coordinates (Bird et al., 1987)
leads to the following equations for the stress components:

exp

(
−ελtrτ

μ

)
τrr + λ

∂

∂t
τrr + 4λṘ

R
(1 − ξ )τrr = 4μṘ

R
(10.71)

exp

(
−ελtrτ

μ

)
τθθ + λ

∂τθθ

∂t
− 2λṘ

R
(1 − ξ )τθθ = −2μṘ

R
(10.72)

exp

(
−ελtrτ

μ

)
τφφ + λ

∂τφφ

∂t
− 2λṘ

R
(1 − ξ )τφφ = −2μṘ

R
(10.73)

The above set of equations represents three coupled nonlinear
ordinary differential equations for finding τ rr, τ θθ , and τφφ .

Since they can’t be solved explicitly for the stresses as was
the case for the Newtonian fluid, it is not possible to obtain a
differential equation such as Eq. 10.70, which can be solved
to find Ṙ/R directly. To solve these equations one must guess
at values of Ṙ/R first, solve the set of coupled differential
equations numerically, and then determine whether the stress
values satisfy Eq. 10.67. One must repeat this process until
Eq. 10.67 is satisfied for a given pressure differential. (This
approach is used in Problem 10C.3.) Because the solution is
obtained numerically, the guess for Ṙ/R is made for a small
time step over which it is assumed that Ṙ/R is constant, and
hence R(t) = R0exp(Ct). The thickness distribution is then
determined using the calculated value of R(t) and Eqs. 10.58
and 10.54.

Before leaving this section we make a few comments
about solving problems using nonlinear rheological equa-
tions of state. The solution of the nonlinear equations is
facilitated by obtaining the Newtonian solution first. In the
example just presented the solution of the Newtonian case
serves to provide an estimate of the time required to fill the
mold, the magnitude of the pressure difference, and Ṙ/R.
Because the solution must be obtained numerically using an
iterative procedure in the viscoelastic case, the rate of con-
vergence of the solution is greatly enhanced by the initial
guesses for Ṙ/R and the time for filling the mold provided
by the solution for the Newtonian case. Hence, it is advisable
to obtain a solution to the Newtonian case before embarking
on the solution to the viscoelastic case.

10.4 BLOW MOLDING

Blow molding is a process for generating hollow plastic arti-
cles such as bottles and containers. It is a process that was
used initially by the packaging industry but more recently has
been used by the automotive industry to produce parts such
as fuel tanks, bumpers, dashboards, and seatbacks. In other
words, plastic parts are being manufactured for applications
where some structural integrity is required.

In this section we first review some of the more salient
technological features of blow molding. We then consider the
parts of the process which can be subjected to quantitative
analysis and design.

10.4.1 Technological Aspects of Blow Molding

Although there are a number of variations in the way in which
blow molding is carried out, there are a number of common
steps. First, conventional melt processes are used to make
a cylindrical tube. (Note: The preformed sample may be of
other shapes.) When extrusion is used, this tube is referred to
as a parison, and when injection molding is used, it is referred
to as a preform. The softened preformed tube is transferred
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FIGURE 10.18 Commercial extrusion blow molding process.
The tubular parison is extruded into position between the walls
of the open mold. The mold walls close, pinching the ends of the
parison, and simultaneously the parison is cut from the continuously
extruded tube. The parison is inflated against the mold walls, where
the part cools and is removed when the mold is opened.

to a mold consisting of two halves, where it is sealed and
inflated to assume the internal contours of the mold. The part
is cooled in the mold, until it reaches a temperature where it
will maintain the shape of the mold when the mold is opened.

Extrusion blow molding is used frequently for polymers
that exhibit high melt strength such as polyolefins. The pro-
cess is shown schematically in Figure 10.18. In this figure the
tubular parison is continuously extruded from a die into posi-
tion between the two mold halves and then separated from
the main stream by means of a knife. The mold closes sealing
the end of the parison, and air pressure is applied inflating the
parison against the walls of the mold. The time for inflation is
very short, usually in the range of a second depending on the
size of the part. The longest step in the process is the cooling
of the part. The time for cooling depends on the temperature
to which the part must be lowered in order for it to maintain
the shape of the mold and the rate of heat transfer between
the mold wall and the part. The mold opens finally and the
part is ejected.

In some cases injection molding is used to generate pre-
forms rather than extrusion, but otherwise the process is
nearly the same. Injection molding is used primarily when the

screw-thread dimensions must be precise and to avoid flash,
weld lines, and material waste at the base of the container.
Just as in the case of extrusion blow molding, it is possible to
generate preforms with multiple layers for situations where
barrier properties are required.

In continuous processes the parison or preform must have
sufficient melt strength so that it does not sag under its own
weight. Sagging leads to unacceptable variations in the wall
thickness of the part. For polymers such as PETP it is usually
not possible to use extrusion blow molding because of severe
sagging problems. To overcome sagging problems preforms
are injection molded in a separate step where they can rapidly
be quenched to inhibit crystallization and hence remain clear.
The preforms are then heated by means of radiation to a tem-
perature about 30 ◦C above Tg, where crystallization kinetics
are slow, but the material is deformable. The heated preforms
are then transferred to the mold, where they are inflated by
means of air pressure. This type of two-step process can be
used for resins such as PPS, which also has slow crystalliza-
tion kinetics and low melt strength.

Resistance to sagging is due to the rheological properties
of the melt. It is preferable to modify the polymer such that
the extensional behavior of the melt is altered rather than
raise η0 by means of increasing the molecular weight. In
Figure 10.19 the length of a parison as function of time is
presented for PETP and a modified form of PETP which pre-
sumably contains branching (Birley et al., 1991). The boken
lines in Figure 10.19 represent the length of the parison in the
absence of any swell or sagging (i.e.,<vz>t). One can see for
short times that the parison length is below that given by the
broken line (this is for extrusion times up to about 5 s, which

FIGURE 10.19 Length of an extruded parison of PETP and
PETG (modified PETP) versus time. The lines represent the length
of the parison as a function of time under conditions of no extrudate
swell or sagging. (Reprinted by permission of the publisher from
Birley et al., 1991.)
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corresponds to a parison length of about 12 cm), while after
about 5 s there is considerable parison sagging. For the mod-
ified PETP, referred to as PETG, parsions of length of about
20 cm can be extruded before sagging starts, but even then
there is less sagging than for PETP. Although no rheological
data were given, it is assumed that PETG contains branching,
and the material exhibits extensional strain hardening.

The process of inflating the parison is primarily one of
planar extensional flow especially away from the ends of
the parsion. Since the ends of the parsion are constrained
as the parison expands, the thickness of the wall decreases
as the diameter expands, leading to primarily planar exten-
sional deformation. For this reason the blow molded part
contains primarily orientation along the circumferential or
hoop direction and hence exhibits mechanical anisotropy.

In order to generate a better balance of mechanical prop-
erties it is necessary to create biaxial orientation in the part.
Stretch blow molding is used to accomplish this. In essence
the parison is stretched along the axial direction before being
inflated. Biaxial orientation is specifically required in large
containers for fluids. For example, bottles for carbonated
beverages are typically processed by means of stretch blow
molding.

This coverage of blow molding is by no means thorough,
as it only serves to provide enough background for the fol-
lowing section, which is concerned with more quantitative
aspects of blow molding as required in design and analy-
sis. More details about the technology of blow molding can
be found elsewhere (Lee, 1990). We now turn our attention
to the aspects of blow molding which can be handled in a
quantitative fashion.

10.4.2 Simulation of Blow Molding

In order to emphasize the basic parts of blow molding, the
process is shown schematically in Figure 10.20. There are
basically four steps that must be considered in the analysis of
a blow molding process (these are in addition to the extrusion
or injection molding steps which have already been consid-
ered): (1) the cooling of the hanging parison or preform by
free convection before the mold closes or the heating of the
preform in a two-step process; (2) the sagging of the pari-
son in the case of extrusion processes; (3) the expansion of
the parison or preform against the mold walls; and (4) the
cooling of the part by means of forced convection. Although
we make a few comments about the heat transfer parts of
the process, most of this analysis falls under the area of tran-
sient heat transfer, which was discussed in Chapter 5. We
emphasize topics such as parison sagging and expansion.

During the hanging of the parison in the case of extrusion
blow molding, there is some cooling of the parison as the hang
times may be on the order of 10 to 20 s for large parts. There
is probably little heat transfer at the inner surface, and hence,
this can be considered as an insulated surface. At the exterior

FIGURE 10.20 Blow molding process showing an extruded pari-
son of cylindrical shape leaving an annular die and the walls of the
mold.

surface heat transfer occurs by means of free convection. The
heat transfer coefficient can be estimated using the material
given in Section 5.3. The problem can be considered as that
of one-dimensional transient heat conduction with the axes
attached to the moving parison. There will be some thickness
variation along the length of the hanging parison which may
present some problem in the analysis. Certainly if there is a
significant drop in temperature, then the temperature of the
melt leaving the die will have to be adjusted accordingly.

In two-step processes, such as used for blow molding
PETP, the preform must be heated up to a temperature suit-
able for inflation. This is usually accomplished by means of
radiation heating as discussed in Section 5.4. As this topic
was discussed in some detail in Section 5.4, we do not discuss
it further here.

Once the parison has been inflated, it is cooled primar-
ily by means of heat transfer at the mold surface. Chan-
nels through which water can be circulated are machined in
the mold walls similar to what is done in injection mold-
ing. Approximately 50–95% of the total processing time is
involved in cooling the part. At the inner surface very little
heat transfer occurs with the heat transfer coefficient due to
free convection being estimated to be in the range of 5.7–57
W/m2 · K. Hence, the cooling time of the part can be short-
ened by increasing the heat transfer at the inner surface. Using
chilled air in the blowing process certainly helps, but other
methods such as injecting liquid nitrogen (Gibbs, 1989) or
a high-pressure mixture of air and water in which the water
freezes as the air expands to form fine ice crystals (Hunkar,
1973) may provide more rapid cooling. Again the cooling of
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the side walls is described by the one dimensional transient
heat conduction equation.

Sagging of the parison as discussed above leads to a
nonuniform distribution of the wall thickness. If the wall
becomes too thin, it will fail during the inflation process. In
the next example we consider how to approach the modeling
of sagging.

Example 10.5. Sagging of a Cylindrical Parison

Determine the equations required to calculate the length of
the parsion shown in Figure 10.20 as a function of time
and the thickness of the parison as a function of position.
Assume that the melt is Newtonian and that the thickness of
the parison is small relative to the diameter so that curvature
can be neglected. Take the initial thickness as the maximum
thickness due to extrudate swell.

Solution. For most cases it can be assumed that the thickness
of the parison is small relative to the diameter, and hence we
can treat the parison as a flat sheet. Furthermore, we assume
that the deformation occurs along the axis of the parison
and in the thickness direction but that the diameter does not
change significantly. With these assumptions we can follow
the development for thick films given in Section 9.1 and refer
to Figure 9.17b. We assume quasisteady-state conditions in
which the mass balance is unsteady, but the steady-state equa-
tion of motion holds. With these assumptions we postulate
that

vz = vz(z) vy = vy(y) (10.74)

Following the development given in Eqs. 9.116 through
9.119, we can determine a relation between vz and h, which
is given below (Eq. 9.120):

1

h

dh

dz
= − 1

vz

dvz

dz
(10.75)

The equation of motion in the z direction including the grav-
itational term is

∂τyz

∂y
+ ∂πzz

∂z
− ρg = 0 (10.76)

Neglecting the effect of surface tension and air drag, which
means the surface is stress free, we can relate τ yz to πzz by
the following relation:

τyz = 1

2

dh

dz
πzz (10.77)

where h is the wall thickness at any z position. Since
vz is assumed to be nearly constant over the cross sec-
tion of the parison, we can integrate Eq. 10.76 across the
thickness to obtain the following form of the equation of
motion:

h ′

h
πzz + dπzz

dz
= ρg (10.78)

where h′ = dh/dz. At this point we assume that the fluid can
be described as Newtonian, but a viscoelastic constitutive
equation could be used as well. Using Eq. 9.123, Eq. 10.78
becomes

− 4μ
d2vz

dz
+ 4μ

vz

(
dvz

dz

)2

− ρg = 0 (10.79)

Equation 10.79 can be solved numerically using the follow-
ing boundary conditions:

at z = 0, vz = <vz>

at z = L , dvz

dz = 0
(10.80)

The solution to Eq. 10.79 must be obtained numerically as
it is a nonlinear ordinary differential equation. (See Prob-
lem 10C.6 for a solution.) The solution is obtained for arbi-
trary values of L. The thickness profile can be obtained by
means of Eq. 10.75 using the initial thickness estimated from
die swell data. One must assume that die swell is unaffected
by the weight of the hanging parison. The complete solu-
tion of the problem can only be obtained using numerical
techniques.

Finally, we consider one more example and this is the
pressure required to inflate a cylindrical parison. In the fol-
lowing example we consider the inflation process up to the
point where the cylinder just touches the walls of the mold. In
the central region of the parison the deformation is primarily
that of planar extensional flow. The complete filling of the
mold requires the use of finite element methods, as once the
parison touches the wall the deformation of the remaining
parison is very complex.

Example 10.6. Inflation of a Cylindrical Parison

Referring to Figure 10.20, determine the time required at a
given inflation pressure for a cylindrically shaped parison of
length L to contact the mold wall. Assume that because the
ends of the parison are clamped, the process is primarily one
of planar extensional flow. Furthermore, assume that surface
tension is negligible, ρ is constant, inertial effects are negli-
gible, h � R, and the process is isothermal. Obtain solutions
for first the Newtonian case and then the viscoelastic case.
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Solution. The solution follows closely that used in Exam-
ple 10.3 for the inflation of a spherical bubble, and hence,
some steps are carried out without detailed justification. With
the postulate that vr = vr(r, t) the continuity equation plus
the boundary condition that vr(R, t) = dR/dt leads to the
following velocity field:

vr = ṘR/r (10.81)

where Ṙ = dR/dt. Assuming that the fluid can be described
as Newtonian, the stresses are

τrr = −2μ
∂vr

∂r
= 2μṘR

r2

τθθ = −2μ
vr

r
= −2μṘR

r2

(10.82)

The equation of motion for this type of flow is

0 = −∂p

∂r
− 1

r

∂

∂r
(rτrr) + τθθ

r
(10.83)

Using the definition for the total stress Eq. 10.83 can be
rewritten as

− ∂πrr

∂r
= τrr − τθθ

r
(10.84)

With the assumptions that h � R and that the stresses are con-
stant over the thickness of the parison, Eq. 10.84 is integrated
to give

P − pa = (τrr − τθθ ) (h/R) (10.85)

where P is the applied pressure and pa is the pressure on the
outside of the parison. For the Newtonian case the expres-
sions for the stresses given in Eq. 10.82 are substituted into
Eq. 10.85 to give

P − pa = 4μṘh/R2 (10.86)

In order to solve Eq. 10.86 another expression that relates
h and R must be obtained from the conservation of mass.
Because ρ is constant and the length of the parison is con-
stant, one finds that ḣ/h = −Ṙ/R. (Note: This is obtained
by differentiating V = 2πRhL with respect to time.) Equa-
tion 10.86 plus this last equation must be solved simultane-
ously to find R(t) and h(t) using the initial conditions that at
t = 0, R = Rp and h = hp. The solution of these equations is
obtained numerically in Problem 10C.4.

We next obtain the equations required to find R(t) and
h(t) for the case of a viscoelastic fluid. Using the PTT model
and the velocity field given in Eq. 10.81, the equations for
determining the stress components are

λ
∂τrr

∂t
+ exp [− (ελ/μ) (τrr + τθθ )] τrr

+ (2λṘ/R)(1 − ξ )τrr = 2μṘ/R (10.87)

λ
∂τθθ

∂t
+ exp [−(ελ/μ)(τrr + τθθ )] τθθ

− (2λṘ/R)(1 − ξ )τθθ = −2μṘ/R (10.88)

The details of determining Eqs. 10.87 and 10.88 are consid-
ered in Problem 10B.6. As in the situation in Example 10.4,
Eqs. 10.87 and 10.88 represent two nonlinear ordinary
differential equations that must be solved numerically using
guesses for Ṙ/R based on the Newtonian solution. The
stresses must satisfy Eq. 10.85 as well as the expression
relating h and R obtained from the mass balance. The
solution requires an iterative approach, as is discussed in
Problem 10C.5.

The discussed approach for dealing with the inflation of
a parison certainly represents a way to estimate the required
inflation pressure and inflation time. However, the complete
filling of the mold cavity is more complicated than that rep-
resented by planar extensional flow, and hence, finite ele-
ment methods are required to more accurately handle the
simulation of the inflation of the parison. The capability of
accurately predicting the wall thickness distribution in the
part is crucial in the successful design of a blow molding
process. Furthermore, it would be desirable to be able to pre-
dict molecular orientation and associated physical properties
as a function of processing conditions. The ultimate goal
would be to model the complete extrusion blow molding pro-
cess including extrudate swell, parison sag, and the blowing
process.

10.5 SOLUTION TO DESIGN PROBLEM IX

The solution to Design Problem IX is presented in this
section. The solution basically consists of four parts: (1)
determining the number of sheets required to fill the mold
when the mold is closed; (2) determining the temperature
setting of the infared heaters in order to heat the blanks
to the processing temperature as fast as possible without
exceeding the upper processing temperature of PP at the
surfaces; (3) determining the rate of closing of the press
and the maximum operating force required to fill out the
mold; and (4) specifying the cooling conditions at the mold
wall to minimize the time required for the part to remain in
the mold.

We first determine the arrangement of the sheets in the
mold and the number of sheets required. The total length
of the mold including the curved sections is 1.628 m. The
breadth of the mold as given is 64.8 cm, and the final thickness
is given as 3.2 mm. Hence, the total volume of the final part
will be 3.3758 × 10−3 m3. Because the mold is 64.8 cm in
breadth, we can place three sheets across this dimension. If
we fill the flat section of the mold with 5.23 sheets that are
19.1 cm in width, they will not fill the curved section of the
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mold when it is closed. Therefore, we must stack the sheets.
If we stack the sheets 2 deep, then covering 72.39 cm of the
flat section of the mold will provide enough material to fill
the mold when it is closed. Hence, we need two layers of
sheet in which three are needed to cover the breadth of the
mold, and 3.79 are needed along the width of the mold. A
total of 12 sheets are needed in which three of the sheets must
be cut to a width of 15.1 cm.

We next consider at what temperature the infared heaters
should be set in order to heat the sheets to an acceptable pro-
cessing temperature in the shortest time possible. The sheets
are heated in the oven from both sides and the maximum
temperature of the surface of the infared heaters is given as
427 ◦C. The problem is that if the infared heaters are used
at the highest temperature, then the surface will come up
to temperature in a time much shorter than required to heat
the centerline to temperature. Hence, the PP will degrade at
the surface, leading to a reduction in properties. The other
problem is determining the temperature to which the sheets
must be heated in order for them to flow under a reason-
able force level. It is suggested by the dynamic mechanical
properties of the composite sheet presented in Figure 10.21
that at a temperature between 160 ◦C and 168 ◦C a sheet
begins to soften. (Note: The melting point of polypropylene
is about 165 ◦C.) The storage modulus decreases rapidly
with increasing temperature at this point. Above 184 ◦C the
method of testing changes, and the parallel plate fixtures must
be used. Dynamic mechanical properties (η∗ and G′) at three
temperatures are presented in Figure 10.22 for this material.
Based on past experience it is known that the complex vis-
cosity at low values of ω (1.0 rad/s) should be no more than
about 2 × 105 Pa · s in order for the material to flow with the

FIGURE 10.21 Dynamic mechanical thermal analysis of
polypropylene reinforced with 30 wt% glass fiber mat (Azdel
PM 10300). Measurements were made at an angular frequency of
1.0 rad/s on rectangular strips in a rheometer operated in the tor-
sional mode.

FIGURE 10.22 Dynamic oscillatory shear properties (i.e., |η∗|
and G′) of Azdel PM 10300 obtained at three temperatures.

application of reasonable pressure levels. Hence, it is desir-
able to keep the sheet or blank between about 230 ◦C and
215 ◦C during compression molding.

We next formulate the solution to the heat transfer prob-
lem. Although the blanks will be stacked two deep in the
compression mold, they will pass through the oven as single
blanks. The problem to be solved is that of one-dimensional
transient heat conduction in which the top and bottom sur-
faces are subjected to radiation heating. Following the devel-
opment in Sections 5.3 and 5.4, the differential equation for
the heat transfer process becomes

∂θ

∂t
=
(

k

ρC pb2

)
∂2θ

∂ξ 2
(10.89)

where the dimensionless variables θ and ξ are defined,
respectively, as

θ = T − Ti

TR − Ti
and ξ = x

b
(10.90)

where TR is the surface temperature of the infared heater, Ti is
the initial temperature of the blank, and b is the half-thickness
of the blank (1.8 × 10−3 m). The initial and boundary condi-
tions in dimensionless form are

I.C.: at t = 0, θ (0, ξ ) = 0

B.C.1: at ξ = 0,
∂θ

∂ξ
(t, 0) = 0

B.C.2: at ξ = 1,
∂θ

∂ξ
(t, 1)

= −
(

bhr

k

)[
θ (t, 1) (TR − Ti) + Ti

TR − Ti

]
(10.91)
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where hr is the radiation heat transfer coefficient defined in
Eq. 5.137 and in terms of θ is given as

hr = σF
[
(θ (t, 1)(TR − Ti) + Ti)4 − T 4

R

]
(Ti − TR)(1 − θ (t, 1))

(10.92)

For parallel flat plates F is given in Eq. 5.134 and taking
values of e1 and e2 to be about 0.9, F becomes 0.82.

Before solving Eq. 10.89 a few comments regarding the
material properties and energy absorbed on melting of PP
must be made. In order to solve Eq. 10.89 values of ρ, C p,
and k for both the glass and PP are required. For PP the
values at 180 ◦C are given in Table 5.5 (p. 121). For glass,
values are given only at 22 ◦C (Harper, 1992), and these are
2500 kg/m3, 2584.3 J/kg·◦C, and 1.021 W/m·◦C for ρ, C p,
and k, respectively. Blending rules for calculating k and C p

were given in Section 5.3, where Eq. 5.73 was used for k and
Eq. 5.74 for C p. The values for the composite sample are

ρb = 1084 kg/m3, C pb = 2207 J/kg·K,

kb = 0.162 W/m·K
The melting point of PP is around 165 ◦C, and as the poly-
mer reaches this temperature during the heat-up cycle, addi-
tional energy is absorbed, delaying the time for the blank
to reach the desired processing temperature. Although as a
first approximation we neglect the latent heat of fusion, this
should be included as a source term in the energy equation.
(See Example 5.11.)

To solve Eq. 10.89 we use the numerical approach dis-
cussed in Section 5.4. We can adopt the numerical solutions
used to solve Example 5.5 (see the solutions for problems
in Chapter 5). The main differences are in the form of the
heat transfer coefficient, hr, which is given in Eq. 10.92, the
expression for the surface node temperature changes to

θNEQ+1 =
4θNEQ − θNEQ−1 +

(
2hb �ξ

k

)
(TR − Ti)

3 + (2hb �ξ (TR − Ti)/k)
(10.93)

and the ordinary differential equation for the nodal tempera-
ture next to the last node at the surface changes to

∂θNEQ

∂t
=
(

k

ρC pb2(�ξ )2

)
∗ (θNEQ+1 − 2.0θNEQ + θNEQ−1)

(10.94)

The computer code for solving Eq. 10.89 with a heat flux
due to radiation at the slab surface is given in “Numerical
Solutions, Chapter 10” on the accompanying website. Some
experimentation with the numerical technique was needed
before a stable numerical solution was obtained. Because the
size of the time steps was relatively large (1 × 10−4 s), it was
necessary to refine the spacing of the nodal points until a

FIGURE 10.23 Calculated surface and centerline temperatures
as a function of time for Azdel sheets 3.6 mm thick subjected to
two different infrared heater surface temperatures.

stable solution was obtained. Division of the half-thickness
of the slab into 10 segments was not sufficient to obtain
a stable solution. However, 20 segments or 21 nodal points
gave a stable solution that improved only slightly with further
refinement of the nodal spacings.

Results for two different heater settings are plotted in
Figure 10.23. Using the highest temperature of the heating
elements of 427 ◦C resulted in the surface of a blank reach-
ing the upper processing temperature (UPT) of 230 ◦C in
less than 10 s. Meanwhile, it took about 30 s for the cen-
terline to reach the suggested lowest processing temperature
(LPT) limit. Severe degradation of the blank will occur under
these conditions. Taking the heater temperature at 230 ◦C,
which is the UPT limit, it is observed that it takes about 70 s
before the centerline reaches the LPT limit and 90 s before
it reaches 215 ◦C. However, the surface of the blank remains
below the UPT limit. Certainly one could optimize the time
for heating the centerline to the LPT limit by trying differ-
ent values of the heating element surface temperature. The
actual time for heating the blank to the processing tempera-
ture will be longer than this as there will be some cooling of
the blank by convection and energy will be absorbed at the
melting temperature. Furthermore, it has been observed that
when the temperature of the blank reaches the melting point
of PP, then there is a swelling of the blank to almost twice
its original thickness due to the recovery of elastic stresses
imparted to the material during the fabrication of the com-
posite sheet. These calculations at least give an estimate of
the time required to heat the blank to the processing temper-
ature and more importantly an approach for more accurately
calculating this temperature.

We next estimate the pressure required to fill out the mold.
A relation relating the force required to close the mold platens
to the viscosity, geometric factors, and the rate of closing the
platens was given in Eq. 10.50. In the derivation of Eq. 10.50



PROBLEMS 335

it was assumed that the fluid was Newtonian and isother-
mal conditions prevailed. Some cooling of the blanks will
occur during the time of transfer from the oven to the mold.
Giles and Reinhard (1991) have reported this time to be in
the range of 15 s to a minute. There will be some drop in
surface temperature do to free convection cooling. It can be
estimated using the numerical approach presented in Sec-
tion 5.4 that the average temperature of the blanks will be
about 215 ◦C when the compression process starts for trans-
fer times less than 30 s. At the lowest closing rate available of
ḣ = 4.23 mm/s it takes only about 0.76 s to close the mold.
Hence, there should be little drop in the temperature of the
blanks during the compression process, and the assumption
of isothermal conditions should be valid. The maximum force
required is that which occurs just as the mold is filled with
the composite blank. In calculating this quantity by means of
Eq. 10.50 the viscosity is required. The only data available is
the complex viscosity as a function of angular frequency as
shown in Figure 10.22. The rheology of the composite blanks
consisting of PP and random long glass fiber mat is unknown
at this point and difficult to obtain. (Lubricated squeezing
flow discussed in Section 3.5 may be a way to obtain this
data.) We must therefore estimate the viscosity of the blank.
At the point of closing the mold the average rate of deforma-
tion (based on planar extensional deformation only) is ḣ/h
= 1.32 s−1. From the data in Figure 10.22, |η∗| = 500 Pa · s.
Using this value for the viscosity, the force is given by

F = 8(0.648)(500)(2.23 × 10−3)(0.814)3

(3.2 × 10−3)3
= 5.16 × 107 N

= 1.16 × 107lbf = 5.80 × 103 tons (10.95)

Hence, to manufacture a part of this size a high force
hydraulic press is required.

Finally, we make a few comments about the cooling of the
part in the mold. If the mold wall temperature is set too low,
then the blanks will cool too rapidly and not flow well enough
to fill out the mold. On the other hand, if the mold temperature
is set too high, then the part will take too long to cool.
The maximum rate of crystallization for PP occurs at about
90 ◦C. By setting the mold temperature at this value it may be
possible to keep the material at a high enough temperature so
that it will flow without the application of excessively high
pressures and yet crystallize rapidly enough so that the part
can be removed from the mold in the shortest time possible.
At this point one can use the numerical approach described
in Section 5.4 to calculate the time for cooling. One may
find that variations of the mold temperature around 90 ◦C
will lead to the optimum time for cooling. However, because
these calculations are straightforward as already described,
there is little to be gained in repeating them. The main point
is to provide some insight for selecting an initial guess for
the mold temperature.

PROBLEMS

A. Applications

10A.1 Heat Removal from an Injection Mold Using Coolant
Lines. The overall heat transfer coefficient per unit
length of coolant line is given in Eq. 10.35. Using
this equation answer the following questions if km

and h are held fixed:

(a) If the coolant line diameter is doubled from ini-
tial values of P/d = 2 and D/d = 2, how does
U change?

(b) If a second row of coolant lines are added
decreasing P/d from 4 to 2, how is U changed?
(Remember h is held constant.)

(c) If D/P is decreased from 1 to 0.5 by decreasing
D, how is U changed?

10A.2 Equilibration Temperature of a Mold Base.
Polypropylene containing 30 wt% glass is injection
molded into a rectangular cavity 8.9 cm × 8.9 cm by
0.15 cm thick. The mold base consists of two rectan-
gular stainless steel plates 15 cm × 30 cm by 2.5 cm
thick. One-half the cavity thickness is machined in
each of the bottom and top plates of the mold. The
polymer enters the cavity at 230 ◦C with a fill time
of 1.0 s. The mold temperature is originally 25 ◦C.
The mold is held closed for 25 s while the polymer
cools and is in the open position for 5 s. During the
time that the mold is opened it is subjected to free
convection cooling by air at 25 ◦C. The following
properties are given for stainless steel:

ρ = 7750 kg/m3, km = 2.30 W/m·K,

C pm = 460.2 J/kg·◦C

Show the procedure for determining the time
required for the mold base to come to an equilibrium
temperature, listing all your assumptions, and carry
the calculations out for two cycles of the process.

10A.3 Flow Rate of Coolant Through a Mold Base.
Coolant lines of 1.27 cm in diameter are machined
in the base of a mold with a spacing of 3.81 cm
(this is the centerline distance) and a distance of
2.54 cm from the mold surface. The total length of
the line is 1.83 m. Tap water is used as the coolant
and enters the line at 12 ◦C with a line pressure of
1 × 108 Pa. The coolant must remove heat at the rate
1758.3 J/s. The mold base is made of stainless steel
with the thermal properties given in Problem 10A.2.
Determine the convection heat transfer coefficient in
the coolant lines, the increase in temperature of the
water (i.e., the temperature of water at the exit of the
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coolant line), and the flow rate of water required to
produce the heat transfer coefficient.

10A.4 Time for Healing a Weld Line. LDPE (NPE 953) is
injection molded into a cavity from two gates. The
fronts meet at the center of a mold cavity, which is
0.3175 cm thick, with a melt temperature of 180 ◦C.
Determine the mold temperature and the length of
time required for the melt to remain in the mold
in order to obtain a part with adequate weld line
strength. Treat the geometry as that of a slab and use
the conditions given in Section 4.2.5 for determining
weld line strength.

10A.5 Effect of CaCO3 on the Thermal Properties of
Polypropylene. CaCO3 is added to polymers as a
filler with the intent of lowering material costs. Cal-
culate the thermal conductivity, the heat capacity,
and the density of a polypropylene composite con-
taining 40 wt% CaCO3. Take the following proper-
ties for PP:

ρ = 900 kg/m3, k = 0.20 W/m·◦C,

C p = 1.8 kJ/kg·◦C

while the following properties are reported for
CaCO3:

ρ = 3000 kg/m3, k = 2.7 W/m·◦C,

C p = 0.86 kJ/kg·◦C

Compare your calculated values to the experimental
values, which are given as

ρ = 1250 kg/m3, k = 0.56 W/m·◦C,

C p = 1.34 kJ/kg·◦C

Under similar conditions of heating, which material
will come to temperature sooner: PP or PP/CaCO3?

10A.6 Average Wall Thickness in a Thermoformed Sheet.
Consider the sheet of arbitrary dimensions shown
in Figure 10.24, which is formed by draping over a
positive or male mold. Calculate the average reduc-
tion in wall thickness assuming that the hot sheet
first contacts area CD, which retains its original
thickness.

B. Principles

10B.1 Extension Rate at the Advancing Front. Tadmor
(1974) estimated the extension rate at the advancing
front in the filling of a rectangular cavity to be

ε̇ = dvy

dy
= −dvx

dx
= <vx> − vmax

2b
(10.96)

FIGURE 10.24 Drape forming over a positive or male mold.

where 2b is the thickness of the mold, <vx> is the
average velocity in the x direction, and vmax is the
maximum velocity. For a power-law fluid show that
Eq. 10.96 becomes

− ε̇ =
(

n

n + 1

)
<vx>

2b
(10.97)

For LDPE (NPE 953) at 170 ◦C calculate ε̇ for the
filling of a square cavity, 8.89 cm × 8.89 cm and
0.16 cm thick, in the times of 0.5 and 1.0 s.

10B.2 Lubricated Compression Molding. For the com-
pression molding process shown in Figure 10.11 the
plates are lubricated either with mold-release agent
or by using Teflon sheets. Calculate an expression
for the force required to close the plates similar to
Eq. 10.50 when the polymer is assumed to exhibit
complete slip. Do this first for a Newtonian fluid
and then a polymer melt with rheological properties
described by the PTT model.

10B.3 Compression Molding in a Cup-Shaped Cavity.
Consider the compression molding of a polymeric
material in the cup-shaped mold shown in Fig-
ure 10.25. For isothermal flow of a power-law fluid
carry out the following steps to obtain an expression
for the compression force.

(a) Show that the velocity field for the radial flow
portion of the flow (i.e., the flow between the
two parallel disks up to Ri) is

vr (z, r, t) = h1+s

1 + s

(
− 1

m

∂p

∂r

)s

×
[

1 −
( z

h

)1+s
]

(10.98)

What assumptions are made in obtaining
Eq. 10.98?



PROBLEMS 337

FIGURE 10.25 Cup-shaped cavity used in compression molding
of a thermoplastic.

(b) Show that the pressure required to compress the
polymer sample is

P − pa = m(2 + s)n(−ḣ)Rn+1

2n(n + 1)h2n+1
×
[

1 −
( r

R

)n+1
]

(10.99)

(c) Show that the applied force is

F = mπ(2 + s)n(−ḣ)n Rn+1

2n(n + 3)h2n+1
(10.100)

(d) When the flowing material reaches the outer wall
at r = Ro, it is forced to flow in the annular space.
Show that for a constant squeeze rate the rate of
increase of material along the axial distance in
the annulus is

− πR2
i ḣ(t) = π

(
R2

o − R2
i

)
l̇ (10.101)

where l is the axial coordinate.

(e) For a thin annulus (i.e., �R = (Ro − Ri) � Ro)
show that the volumetric rate of flow, Q, is

Q = πR
2
ḣ (10.102)

where R = 0.5 (Ri + Ro).

(f) Because ḣ � l̇ for a thin annulus (i.e., the
plunger travel rate, ḣ, is small compared to the
rate of advancement of the fluid in the annu-
lus, l̇), the flow can be considered to be one of
pressure flow only and not combined drag and
pressure flow. Show that the pressure drop across
the annular flow region for the case of a small
gap is

P(Ri) − pa =
(

2ml

R3n+1
o

) [
2(s + z)R �R l̇

]n
(1 − κ)1+2n

(10.103)

(g) Obtain a final expression for the plunger force
when flow exists in the annular space.

10B.4 Wall Thickness Distribution in a Deep Truncated
Conical Mold. The problem of determining the
wall thickness distribution in a deep truncated con-
ical mold as shown in Figure 10.26, along with
several other geometries, was analyzed by Rosen-
zweig (1983). Until the spherical bubble touches the
bottom of the mold, the thickness distribution was
assumed to be that given in Eq. 10.58. Carry out the
following steps to show how Rosenzweig arrived at
an expression for the thickness distribution once the
bubble touched the bottom of the mold.

FIGURE 10.26 Truncated conical mold.
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(a) When the spherical bubble just touches the bot-
tom of the mold, show that the position of
detachment along the wall, zT, is

zT = H (1 + cosβ)

sinβ
− L

2
(10.104)

(b) Show that the initial area of the free bubble just
as it makes contact with the bottom of the mold
is

SI = 2π(1 + cosβ)(H/ sinβ − zT)2 (10.105)

(c) Show that the area of the free bubble at any
instant is

S = (2π/(1 − cosβ)) (H − z sinβ)

× [(z − zr )β + (H − z sinβ)] (10.106)

(d) Finally, show that the thickness distribution in
this part of the forming process is

h/hI = SI/SF (10.107)

where hI is the initial thickness calculated by
substituting zT into Eq. 10.68 and F is given by

F =
∣∣∣∣ az2 + bz + c

az2
T + bzT + c

∣∣∣∣
f sinβ/2a(2− f )

+
∣∣∣∣ (2az + b − g)(2azT + b + g)

(2azT + b − g)(2az + b − g)

∣∣∣∣
sinβ(d−fb/2a)/g(2− f )

(10.108)

where

a = sinβ − β

b = β(H/ sinβ + zT ) − 2H

c = (H − zTβ)H/ sinβ

d = W

2
− zT − H

(
1

tanβ
− cosβ

)
f = 1 − cosβ

g =
√

b2 − 4ac = β

(
H

tanβ
− W

2

)
(10.109)

10B.5 Wall Thickness Distribution in a Long Triangu-
lar Prism Mold (Rosenzweig, 1983). Following
the development used in Example 10.3, obtain an
expression for the wall thickness distribution in a
long triangular prism mold, which is shown in Fig-
ure 10.27, by carrying out the following steps.

FIGURE 10.27 Triangular prism mold: (a) end view and (b) top
view.

(a) Neglecting the deformation at the ends of the
mold perform a mass or volume balance to
obtain the following differential equation for the
thickness, h:

−dh

h
= dR

R
+ dzk

βR
(10.110)

(b) Show that the radius of the bubble as a function
of contact position along the wall, zk, is

R = H − zk sinβ

sinβ tanβ
(10.111)

(c) On integrating, Eq. 10.110 becomes

h

h1
=
[

H − zk sinβ

H

](1/β)(tanβ−1)

(10.112)

where h1 is related to the initial sheet thickness
by h1 = [(sinβ)/β]h0. The thickness distribution
is obtained by substituting the expression for h1

into Eq. 10.112.

10B.6 Inflation of a Viscoelastic Cylindrical Parison. In
determining R(t) for the expansion of a cylindrically
shaped parison, the components of stress for the PTT
model were given in Eqs. 10.87 and 10.88. Show
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how to obtain these two equations. (See Bird et al.,
1987, for convected time derivatives in cylindrical
and spherical coordinates.)

10B.7 Inflation of a Bicomponent Parison. A cylindri-
cally shaped parison consists of two layers of poly-
mer: an inner layer of initial thickness h01 and vis-
cosity μ1 and an outer layer of initial thickness h02

and viscosity μ2. Assuming the fluids are Newto-
nian, derive expressions for determining Ri(t) and
hi(t) where the subscript i is 1 or 2.

C. Numerical Problems

10C.1 Effect of Filler on the Thermoforming Time of
Polypropylene. In the thermoforming of pen bar-
rels CaCO3 is added to PP to reduce material costs.
The pen barrel is formed from a cylindrical tube
having an O.D. of 5.28 mm and an I.D. of 2.82 mm.
The tube is heated by conduction heating in which
the tube is in contact with a metal ring having a
temperature of 143 ◦C. The inside of the tube is not
heated, and no heat transfer is considered to occur
there. Determine the time required for the inner wall
of the tube to reach a temperature of 143 ◦C for both
pure PP and PP/40%CaCO3. The thermal properties
are given in Problem 10A.5. How much does the
presence of CaCO3 reduce the heating time?

10C.2 Infrared Heating of a Transparent Sample of
Polyurethane. A clear disk of polyurethane,
25.4 cm in diameter and 3.5 mm thick, is to be
heated by means of an infrared heater with a sur-
face temperature rating of 2400 K. Menezes and
Watt (1992) obtained by means of a bolometric
detector the following expression for the transmitted
intensity:

I = 6.432 × 106e−536x (10.113)

Calculate the time to heat the sheet from an initial
temperature of 27 ◦C to 180 ◦C for the following
two cases: (a) the convective heat transfer coeffi-
cient at both surfaces is 100 W/m2 · K; (b) the con-
vective heat transfer coefficient at the top surface is
12 W/m2 · K and 5 W/m2 · K at the bottom surface.
The thermal properties of polyurethane are ρ = 1250
kg/m3, k = 0.31 J/ms · K, C p = 1.88 × 103 J/kg · K.
Consider the problem to be that of one-dimensional
transient heat conduction.

10C.3 Pressure Forming of a Polymeric Sheet in a Conical
Mold. A sheet of LDPE (NPE 953) of thickness
0.3175 cm is thermoformed in the conical cavity
shown in Figure 10.17 at a temperature of 170 ◦C.

The dimensions of the mold are H = 30.48 cm and
L = 20.0 cm. The applied pressure differential is
6.9 × 105 Pa. Calculate the wall thickness distribu-
tion and the time to fill the mold using first the New-
tonian constitutive equation and then the PTT model.
Compare the predictions of the two models.

10C.4 Expansion of a Cylindrical Parison: Newtonian
Case. A cylindrical parison consisting of LDPE
(NPE 953) at 170 ◦C is inflated with a pressure dif-
ferential of 3.5 × 105 Pa. Initially, the diameter of the
parison is 2.60 cm and the wall thickness is 0.13 cm.
Determine the time for the parison to contact the
mold walls and the thickness of the inflated parison
at this point, if the diameter of the mold is 13 cm
(see Fig. 10.20). Assume the melt can be considered
as a Newtonian fluid and use the rheological prop-
erties given for LDPE (NPE 953) in Appendix A,
Table A.1. The equations to be solved are Eq. 10.86
and the expression based on conservation of mass
(i.e., ḣ/h = −Ṙ/R).

10C.5 Expansion of a Cylindrical Parison: Viscoelas-
tic Case. Do Problem 10C.4 again, but use the
PTT model. The solution requires the solving of
Eqs. 10.85, 10.87, and 10.88. Compare the solution
against that obtained for the Newtonian case.

10C.6 Sagging of a Cylindrical Parsion. Solve Eqs. 10.79
and 10.80 to find the thickness distribution and
velocity as a function of position for a thin-walled
parison. Also determine the length of the parison as
a function of time and compare the results against
the ideal case (i.e., L = <vz>t). The viscosity of the
melt is 500 Pa · s, and its density is 900 kg/m3. The
wall shear rate in the die is 200 s−1. The outer diam-
eter of the parison is 2.54 cm, and its thickness is
0.127 cm. The parison thickness and diameter swell
are 1.5.

D. Design Problems

10D.1 Design of a Cooling Line System for Injection
Molding. Nylon 66 containing 30 wt% glass is
injection molded to form a manifold cover for an
engine block. The manifold is basically a box 0.76 m
long by 0.20 m wide by 0.10 m high with a wall
thickness of 0.635 cm. Design a cooling line sys-
tem that uses tap water at 10 ◦C, which will min-
imize the time the part must remain in the mold.
The melt enters the mold at 285 ◦C. The mold base
consists of stainless steel. The coolant lines are to
be continuous with a single inlet and outlet. In your
design specify the dimensions of the coolant lines,
their spacing, and their location relative to the melt
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FIGURE 10.28 Schematic of a multicavity mold. Only half of
the symmetric arrangement of the cavities is shown.

(i.e., D in Fig. 10.9). Furthermore, specify the veloc-
ity of the water, the pressure drop, and the temper-
ature of the water on leaving the mold. The only
restriction is that the coolant lines should not exceed
a diameter of 1.27 cm. Also assume that the cavity
is machined in one side of the mold base.

10D.2 Design of a Multiple Cavity Runner System (Tadmor
and Gogos, 2007). In many commercial situations
molds are designed with multiple cavities. In order
that each part have identical physical properties it is
necessary that the cavities fill simultaneously. For
the runner–cavity system shown in Figure 10.28
(here only one-half of the cavity and runner sys-
tem are shown) it is desired to have the cavities fill
at the same time. First assuming that the fluid is
Newtonian and then non-Newtonian with the vis-
cosity described by the power-law model, carry out
the following for isothermal conditions:

(a) Design the runner branches for each of the four
cavities with the gates taken identical in order to
get simultaneous filling.

(b) Design the gates so that there is simultaneous
filling in each of the cavities with the run-
ner branches taken to be identical. The runners
and gates are taken to be cylindrical. Neglect
pressure losses across the contractions and the
expansions.

10D.3 Cooling Conditions for a Two-Layer Blow-Molded
Tank. A gasoline tank consisting of an inner layer
of nylon 6 and an outer layer of HDPE is to be
produced by blow molding. Design a cooling process
that will provide the minimum amount of cooling

time. Consider both the cooling of the interior and
exterior walls of the blown parison. Tap water at
12 ◦C is available for cooling the mold and air as
cool as 12 ◦C or as hot as 100 ◦C can be used on the
interior. The temperature of the parison as it contacts
the mold wall is 220 ◦C. The thickness of the parison
as it contacts the mold is 0.635 cm with one-fifth of
the thickness being nylon 6. In order for the nylon to
act as an effective barrier to gasoline it must reach
75% of its maximum degree of crystallinity, and the
HDPE should reach 100% of its maximum degree
of crystallinity to have adequate impact properties.
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Menges, G. and W. Wübken. 1973. “Influence of Processing Con-
ditions on Molecular Orientation in Injection Molds.” Society of
Plastics Engineers Technical Papers, 31, 519.

Ortman, K. C., N. Agarwal, D. G. Baird, P. Wapperom, and A. J.
Giacomin. 2011. “Transient Shear Flow Behavior of Concen-
trated Long Glass Fiber Suspensions in a Sliding Plate Rheome-
ter.” J. Non-Newtonian Fluid Mech., 166 (11), 533–547.



REFERENCES 341

Pearson, J. R. A. and S. M. Richardson. 1983. Computational
Analysis of Polymer Processing (Applied Science Publishers,
London).

Piotter, V., K. Mueller, K. Plewa, R. Ruprecht, and J. Hausselt. 2002.
“Performance and Simulation of Thermoplastic Micro-injection
Molding.” Microsystem Technol., 8, 387–390.

Rosenzweig, N. 1983. “Wall Thickness Distribution in Thermo-
forming.” Society of Plastics Engineers Technical Papers, 29,
478–482.

Rosenzweig, N., M. Narkis, and Z. Tadmor. 1979. “Wall Thick-
ness Distribution in Thermoforming.” Polym. Eng. Sci., 19,
946.

Tadmor, Z. 1974. “Molecular Orientation in Injection Molding.”
J. Appl. Polym. Sci., 18, 1753.

Tadmor, Z. and C. G. Gogos. 1979. Principles of Polymer Process-
ing (Wiley, Hoboken, NJ).

Tadmor, Z. and C. C. Gogos. 2007. Principles of Polymer Process-
ing, 2nd edition (Wiley, Hoboken, NJ).

Throne, J. L. 1979. Plastics Process Engineering (Marcel Dekker,
New York).

Throne, J. L. 1986. Thermoforming (Hanser Verlag, Munich).

Wang, V. W., C. A. Hieber, and K. K. Wang. 1986. “Dynamic
Simulation and Graphics for the Injection Molding of Three-
Dimensional Thin Parts.” J. Polym. Eng., 7, 21.





11
PROCESS ENGINEERING FOR RECYCLED
AND RENEWABLE POLYMERS

This chapter is concerned with the recycling of thermoplas-
tics and the processing of renewable polymers. However,
the decision to recycle a polymer cannot be made without
the appropriate analysis guided by the purpose to recycle,
as inappropriate recycling can not only be economically
unsound but can lead to more pollution than merely dis-
carding the polymer to landfills. For this reason we introduce
the concept of life-cycle assessment (LCA) in Section 11.1,
which provides a systematic method for determining whether
recycling and which form of recycling is the proper environ-
mental choice. Furthermore, in this section we consider mate-
rial and energy flows associated with various types of recy-
cling streams as it is important that more energy not be used
in recycling plastics than is required in the conversion of raw
materials to virgin resin. Also, this section includes an exam-
ple of using LCA as a decision support tool, that is, to identify
the best plastic to use in specific applications, a description
of the 12 principles of green chemistry and engineering that
could guide the development of new materials and polymer
processes, and an example of combining LCA and the 12
principles to identify the best plastic to use in various appli-
cations. The next three sections are concerned with techni-
cal aspects of recycling. In Section 11.2 reprocessing at the
equipment site, referred to as primary recycling, is addressed
in which scrap polymer is reground and blended back in with
the fresh polymer. In Section 11.3 the topic of mechanical
or secondary recycling is presented, which is concerned with
the reprocessing of polymeric materials after they have been
used. In this case separation of polymer streams is required.
In Section 11.3 we limit our coverage to topics concerned
with the rheology and flow of mixed polymers and filtration.

In instances where mechanical recycling is not possible, the
polymer may be reduced to chemical feedstock suitable for
polymerization. This topic, also referred to as tertiary recy-
cling, is discussed in Section 11.4, but we limit the cover-
age to processing in extruders. In Section 11.5 we discuss
the processing of new-to-world renewable polymers (i.e.,
polymers that come from renewable resources (e.g., carbo-
hydrates) and are not identical to today’s petroleum-derived
polymers). Examples of these polymers are poly(lactic acid)
(PLA), thermoplastic starch (TPS), and polyhydroxyalka-
noate (PHA). The other category of renewable polymers is
that of identical renewable polymers (also called bioiden-
tical polymers). These renewable polymers have identical
structure, performance, and processing to petroleum-derived
polymers, with examples being bio-HDPE, bio-PP, and bio-
poly(butylene succinate) (bio-PBS). The reader is directed to
the previous chapters in this book for processing information
on the bioidentical polymers.

11.1 LIFE-CYCLE ASSESSMENT

The decision to recycle polymers is by no means straight-
forward. In some instances recycling polymers can lead to
more energy usage and more pollution than merely dispos-
ing of them in landfills. The decision to recycle polymers
depends on the ultimate goal. Is it to reduce consumption of
raw materials (i.e., feedstock)? Is it to reduce the consump-
tion of fuel? Is it to reduce the generation of solid waste?
To determine whether recycling is the appropriate option
and what type of recycling option should be selected, one
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FIGURE 11.1 Life-cycle assessment conceptual model. (Data
from Curran, 1996.)

turns to a systems analysis which accounts for all energy and
raw materials used to produce a product or process and all
wastes produced. This type of analysis is referred to here
as life-cycle assessment (LCA), but other names are often
used, such as ecobalance, cradle-to-grave analysis, and life-
cycle analysis. LCA is used defensively to justify recycling
and offensively to improve products and processes and help
select the appropriate polymers and processes for various
applications. Although considerable discussion of the tech-
nique and its application is given in the books by Curran
(1996) and Horne et al. (2009), we present an overview of
the topic with enough detail to hopefully make the concept
useful to the process engineer.

The LCA conceptual model is shown in Figure 11.1. At
the center of LCA is initiation or scoping in which the

goals of the study and the system boundaries are defined.
All operations that contribute to the life cycle of the prod-
uct or process fall within the system boundaries as shown in
Figure 11.2. The environment is the surroundings for the sys-
tem. Inputs to the system are the natural resources, including
energy resources. Outputs of the system are the collection of
releases to the environment (i.e., land, water, or air) as well
as discarded product. The quantification of energy and raw
material requirements, air emissions, waterborne effluents,
solid waste, and other environmental releases throughout the
life cycle of a product is referred to as life-cycle inventory
(LCI). Impact analysis is an attempt to quantify the effects of
the environmental loadings identified in the inventory phase.
It mainly refers to the pollution of the ecosystems and the
effects on human health. Improvement assessment is a sys-
tematic evaluation of the opportunities to reduce the environ-
mental burden associated with energy and raw materials use
and environmental releases throughout the whole life cycle
of the product or process. This assessment may include both
quantitative and qualitative measures of improvement, such
as changes in the product or process design, use of raw mate-
rials, consumer use, and waste management. The empha-
sis in this book is on the technical and scientific aspects of
recycling, which are key elements in life-cycle inventory.
Although the whole purpose for LCA is to judge the effect of
recycling on the environment and human health, it is beyond
the scope of the material coverage in this chapter and the
reader is referred to the books by Curran (1996) and Horne
et al. (2009).
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FIGURE 11.2 Life-cycle system concept showing the boundaries on which the life-cycle assess-
ment must be performed. (Reprinted by permission of the publisher from Curran, 1996.)



LIFE-CYCLE ASSESSMENT 345

FIGURE 11.3 The flow diagram, sometimes referred to as a cradle-to-grave materials flow dia-
gram, of a recycling scheme showing both materials and energy flow in and out of the system for a
product life cycle. (Reprinted with permission of the publisher from Curran, 1996.)

The life-cycle system concept for a product life cycle is
illustrated in Figure 11.3. This diagram is often referred to as
a cradle-to-grave materials flow diagram. The boundaries for
the LCI encompass the acquisition of raw materials, manu-
facture of intermediate materials, manufacture of the product
being studied, use of the product, and the final disposition.
Recycling or reuse of the product is part of the LCI analysis.
Reuse here means the direct reuse of the product for its initial
intended use, such as a beverage bottle being placed back into
service. The product could be separated from a mixed stream,
ground, and returned to the product manufacturing step. In
the figure is also shown the return of the product all the way
back to the materials manufacturing step, which is referred
to as feedstock recycling. Furthermore, the product can be
incinerated to recover the inherent energy associated with the
polymer. In this diagram various types of recycling options
are illustrated. The use of energy, as shown for each step in
Figure 11.3, carries with it the input of energy resources as
well as the inputs and outputs for processing these energy

resources into usable fuels. The inputs and outputs for trans-
portation of materials between process steps are implied by
the arrows showing the flow of materials between steps.

Before any recycling scheme is introduced, it is essential
that the ultimate goal be specified. If the goal is not specified,
then it is impossible to judge whether the recycling scheme
has achieved its purpose. If the goals are to reduce the con-
sumption of raw materials or the generation of solid waste,
then it is clear that recycling should be practiced. If the goal
is to reduce energy consumption, then the process must be
examined very closely. The basis for making the decision is
centered on the use of material and energy balances.

Several types of recycling schemes exist: (1) closed-loop
recycling with no losses in the recycling loop; (2) closed-
loop recycling when losses occur in the recycling loop; and
(3) open-loop recycling. To illustrate how mass and energy
balances are employed in the analysis of recycling schemes
we consider closed-loop recycling with losses as shown
schematically in Figure 11.4. Unit operation 1 or stage 1 in

FIGURE 11.4 Simple closed-loop recycling when the reprocessing stage produces waste materials.
(Reprinted with permission of the publisher from Brandrup et al., 1996.)
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this figure represents the conversion of raw material to prod-
uct (e.g., polyethylene milk bottles). Stages 2 and 3 represent
the consumer and the disposal phase, respectively. Stage 4
is the reprocessing operation for converting the waste back
into useful product. Consider that a single mass, m, of 1 kg
of product is passed initially to the consumer. Our goal is
to determine with an infinite number of recycles how much
material is passed by the consumer. A fraction f of the mate-
rial leaving the consumer is now fed into the recycling loop,
and the recycling loop is responsible for a loss of a fraction F
of the material passing through the reprocessing stage 4. The
amount of material returned to the main production sequence
will be of mass mf(1 − F). The amount of material sent to the
disposal stage after the first pass consists of the sum of the
material disposed of directly after consumer use, m(1 − f),
plus the amount lost from the reprocessing step, mFf (total =
m((1 − f) + fF) or = m(1 − f(1 − F))). The amount of mass
that passes the consumer after the first recyle is reduced to

mp1 = m f (1 − F) (11.1)

After a second recycle the mass of original product, mp2,
passing the consumer will be reduced to

mp2 = m f 2(1 − F)2 (11.2)

and so on. If the material is continually recycled under the
same conditions, then after a large number of cycles the
total mass of the original product that will have passed the
consumer, Mp, is

Mp = m + m f (1 − F) + m f 2(1 − F)2

+ m f 3(1 − F)3 + · · · (11.3)

Summing Eq. 11.3, assuming there is an infinite number of
terms, gives

Mp = m

1 − f (1 − F)
(11.4)

For example, if there is a loss of 20% of the recycled materials
(i.e., F = 0.2) and the recycle rate f is 50%, then the product
flow past the consumer will be 1.67 kg. From this equation
it is obvious that F should be as small as possible if we are
to minimize the amount of raw material used. This is further
illustrated by referring to Figure 11.4. The amount of raw
material required from operation 1 to provide a mass m to
the customer increases as F increases.

Example 11.1. Amount of Virgin PE Passing by
a Consumer

Suppose 50 kg of milk bottles consisting of PE pass by a
consumer each year and the recycle ratio is 50% while the
loss during recycle is 20%. How many kilograms of virgin

resin pass by the consumer per year assuming the number of
recycles is very large?

Solution. Using Eq. 11.4 with Mp = 50 kg/yr, f = 0.5, and
F = 0.2, we find that m = 30 kg/yr.

We are primarily interested in the amount of energy that is
required to execute a particular recycling scheme. Following
Figure 11.4 the energies per unit mass associated with each
operation are, respectively, E1, E2, E3, and E4. The total
energy requirement for the overall system, Es, is the sum of
the energies for each operation:

Es = E1m(1 − f (1 − F)) + E2m + E3m(1 − f (1 − F))

+ E4m f (1 − F) (11.5)

Equation 11.5 can be rearranged to emphasize various con-
tributions to the energy requirements:

Es = m(E1 + E2 + E3) + m f (E4 − E1 − E3)

− mfF(E4 − E1 + E3) (11.6)

It is now easier to see the significance of the energy balance
as the first term on the right side of Eq. 11.6 represents
the energy requirements when no recycling is employed.
The second term represents the energy associated with the
recycling loop if no losses occur. It is obvious if the amount
of energy associated with the reprocessing of the polymer is
less than the energy required to process the virgin resin, then
the amount of energy consumed would be less than with no
recycling. The third term represents the energy requirements
associated with losses in the recycling loop. Hence, energy
savings in the recycling step will be reduced as a result of the
loss of material.

We are now at a point to answer the question: When does
one implement recycling? In general, recycling will always
result in a reduction in raw-materials consumption and solid-
waste generation per unit product used by the consumer. For
energy, however, there is no guarantee that savings will occur
when recycling is implemented as this factor is governed by
a number of different parameters. Furthermore, because the
other parameters, such as air and water emissions, usually
follow the same general pattern as energy, we will concentrate
on energy savings as a criterion for determining whether to
recycle (Brandrup et al., 1996). The saving of energy depends
on whether the sum of the energies required for recovery
(ERC) and reprocessing (ERP) of a polymer are less than the
sum of the energies required for processing the virgin resin
(EV) and disposal (ED), that is:

EV + ED > ERC + ERP (11.7)

In terms of the notation in Figure 11.4:

E1 = EV E4 = ERC + ERP E3 = ED (11.8)
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If we are to implement a recycle program, then the energy
required for reprocessing and recovery of the waste cannot
exceed the energy used in making the virgin resin and dis-
posing of the product.

The next question one must answer is what type of recy-
cling should be implemented: that is, which type of recycling
will provide the greatest energy savings. There are basically
three choices. We can separate polymer streams, grind the
product, and reprocess the resin to form new product. This is
referred to as mechanical recycling. The separated polymer
can be treated chemically and subjected to high temperatures
to reduce the molecular weight back to the level of monomer.
The recycling of the polymer back to feedstock is referred
to as tertiary recycling. Finally, we can recover plastics and
incinerate them to recover their calorific value (e.g., for PE
the calorific value is about 45 MJ/kg, which is similar to that
of crude oil). (Note that wood’s calorific value is about 15
MJ/kg.) Hence, we can recycle plastics for the purpose of
energy recovery.

In order to illustrate how the choice is made to select a
method of recycle we consider the following example. We
have simplified the selection of data to illustrate our points,
but one must be aware of the immense uncertainty involved
in obtaining this data.

Example 11.2. Energy Gained in the Mechanical
Recycling of Polyethylene Milk Bottles
(Brandrup et al., 1996)

Determine how much energy can be gained by mechanical
recycling of PE milk bottles given the following data:

1. Average production energy of virgin PE (E1) = 40
MJ/kg. (Note: This does not include the small amount
of energy for converting PE to bottles.)

2. Disposal energy (E3) = 1 MJ/kg.

3. Twenty percent loss of material during recycling.

4. Recovery: ERC = 3 MJ/kg (includes energy for col-
lection, transport to reprocessing site, and energy for
transporting to converter).

5. The energy for converting the virgin resin and ground
recycled bottles is similar and is on the order of 0.5
MJ/kg.

6. The bottles are completely recycled at the consumer
step (i.e., f = 1).

Solution. Using Eq. 11.5 we first calculate the total energy
requirements with no recycling, Es(NR):

Es(NR)/m = (E1 + E2 + E3) = (40 + E2 + 1)

= (41 + E2) MJ/kg

where we have taken m = 1 kg/yr. Using Eq. 11.5 again for
the case that the bottles are completely recycled and 20% of
the bottles are lost during the recycle step we calculate the
total energy usage, Es (R):

Es(R)/m = (F E1 + E2 + E3 F + (1 − F)E4)

= (8 + E2 + 0.2 + 2.4) = (10.6 + E2) MJ/kg

Therefore, the amount of energy available for reprocessing
is

ERP/m = (ES(NR) − ES(R))/m = 30.4 MJ/kg

Hence, it appears that considerable energy can be saved in
the case of PE by mechanical recycling. However, it should
be recognized that if all the energy consumed in the equip-
ment used for reprocessing is electricity and the plants for
producing electricity are only 50% efficient, then we really
only have about 15 MJ/kg. Without going into details, the
value of energy available for heating from PE is about 14.5
MJ/kg (Brandrup et al., 1996). Hence, one wonders whether
recycling is economically and energetically favorable.

As mentioned at the beginning of this section, LCA is
also used as a toll to help make decisions on which plas-
tics to use in specific applications, which processes to use
in the production of various plastic articles, and how to
improve the environmental profile of plastic processes. An
example of such use of LCA is reported in the Athena Insti-
tute Report (2006). In this report, the Institute presents the
life-cycle inventory (LCI), consistent with the methodology
described in the ISO 14040 and 14044 Standards, of five
products: 16 ounce cups, two-piece 16 ounce deli contain-
ers, envelope window film, foam meat trays, and 12 ounce
water bottles, produced from corn-based polylactic acid,
PLA, high impact polystyrene (HIPS), polyethylene tereph-
thalate (PET), polypropylene (PP), and general purpose PS
(GPPS). The report also includes calculations for the global
warming potential (GWP) effects for the various products
using the 2001 work by the International Panel of Climate
Change (IPCC). Without going into great detail, the LCI
results include energy consumption, solid waste generation,
environmental emissions to air and water, and GWP. Some of
the results are shown in Table 11.1. It is clear from the table
that in some cases the specific renewable polymer, polylactic
acid, PLA, examined in the report has lower environmental
metrics (e.g., total energy and greenhouse gases in the water
bottle case) than PET, and in some other cases it has higher
metrics (e.g., postconsumer solid waste in the cold drink cup)
than PP. Thus, each application of plastic materials needs to
be examined separately to reach a conclusion about which
material has the best environmental profile.

However, before one uses LCA for the reasons mentioned
above, one should employ one or more of the 12 principles
of green engineering (Anastas and Zimmerman, 2003) and
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TABLE 11.1 Life-Cycle Inventory for Some Standard Consumer Products

Total Postconsumer Greenhouse Gases
Product Energy (GJ) Solid Waste (kg) (kg of CO2 equivalents)

16 ounce cold drink cup (basis: 10,000 cups)
PLA 14.5 118 510
HIPS 13.3 98.4 576
PP 9.8 84 345
PET 16.1 126 719

Envelope window film (basis: 1,000,000 in.2)
PLA 2.03 18.8 62.6
GPPS 1.87 15.8 76.1

Foam meat tray (basis: 10,000 trays)
PLA 5.59 43.8 192
GPPS 5.77 41.8 231

12 ounce water bottle (basis: 10,000 bottles)
PLA 19.8 168 744
PET 21.4 162 961

Source: Athena Institute Report, 2006.

green chemistry (Anastas and Warner, 2000) shown in Table
11.2 in the processes to make plastic articles. These princi-
ples should be viewed as capable of providing a framework
for chemists and engineers to employ when designing new
plastics and processes. Combining the LCA metrics and the
12 principles summarized in Table 11.2 could lead to a com-
posite assessment of a particular set of polymers. Tabone
et al. (2010) did exactly that in their study of 12 polymers,
7 of which were derived from petroleum (i.e., PET, HDPE,
LDPE, PP, PC, PVC, and GPPS), 4 from renewable sources
(i.e., PLA-G (via a general process), PLA-NW (via a Nature-
Works LLC process), PHA-G (from corn grain), and PHA-S
(from corn stover)), and 1 from both (i.e., bio-PET made
with bioethylene glycol and petroterephthalic acid). We note
that the structures for the 4 polymers from renewable sources
are given in Table 11.9. The authors used a functional unit of
comparison of 1 liter of polymer pellets, and a decision matrix
to generate a single metric for each polymer to measure its
LCA “cradle-to-gate” environmental impact and another sin-
gle metric to measure its adherence to the 12 principles.

11.2 PRIMARY RECYCLING

The first opportunity to practice recycling is at the processing
facility. As no separation of material is required, this can
be considered a form of mechanical recycling. In all major
forming operations, such as extrusion, injection molding,
calendaring, and thermoforming, a certain amount of scrap
is produced. For example, scrap can originate from rejected
parts, sprues and runners generated during injection molding,
and trim from thermoformed parts. In some cases, such as
in thermoforming, the scrap can represent 50 wt% of the
material processed. This scrap (also called regrind) can be

ground and combined with virgin resin to not only improve
the economics of the process but to prevent disposing of the
material in landfills. However, one cannot repeatedly process
the polymer without consequences. In particular, repeated
processing leads to degradation of the polymer resulting in
the loss of mechanical properties, surface appearance, and
processability. The major changes that occur in a polymer
are a loss of molecular weight, increase in molecular weight
due to crosslinking, and cyclization. In the case of glass
filled polymer, the aspect ratio of the reinforcing fibers is
reduced with each pass through an injection molding machine
resulting in a loss in mechanical properties.

The major question to be answered is: How much regrind
can we use relative to the virgin resin and still maintain
mechanical properties that are similar to those of the vir-
gin resin? Of course, one way to answer this question is to
carry out a set of experiments in which the level of regrind
and the number of recycling steps is changed systematically.
However, it would be expeditious to estimate the amount
of regrind and the resulting properties after n recycle steps.
Information needed to make decisions of this nature include
the amount of original material left in a sample after n recycle
steps, the decrease in mechanical properties with each pass
through the process, or the decrease in MW with each pass
and the relation between properties and MW, and a mixing
rule for weighting the contributions from each fraction to the
final mechanical properties.

To illustrate how one would go about determining the
level of original polymer remaining in a product after n recy-
cle steps, we consider the following example. Polymer scrap
is collected, ground, and combined with virgin resin at a
constant ratio. The combination of virgin resin and regrind
is then always processed with the ratio of regrind to virgin
resin held fixed. The flow chart for this process is shown in
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TABLE 11.2 Twelve Principles of Green Engineering and Green Chemistry

Principle Green Engineering Green Chemistry

Principle 1 Designers need to strive to ensure that all material and
energy inputs and outputs are as inherently
nonhazardous as possible.

It is better to prevent waste than to treat or clean up waste
after it is formed.

Principle 2 It is better to prevent waste than to treat or clean up waste
after it is formed.

Synthetic methods should be designed to maximize the
incorporation of all materials used in the process into the
final product.

Principle 3 Separation and purification operations should be designed
to minimize energy consumption and materials use.

Wherever practicable, synthetic methodologies should be
designed to use and generate substances that possess little
or no toxicity to human health and the environment.

Principle 4 Products, processes, and systems should be designed to
maximize mass, energy, space, and time efficiency.

Chemical products should be designed to preserve efficacy of
function while reducing toxicity.

Principle 5 Products, processes, and systems should be “output
pulled” rather than “input pushed” through the use of
energy and materials.

The use of auxiliary substances (solvents, separation agents,
etc.) should be made unnecessary wherever possible and
innocuous when used.

Principle 6 Embedded entropy and complexity must be viewed as an
investment when making design choices on recycle,
reuse, or beneficial disposition.

Energy requirements should be recognized for their
environmental and economic impacts and should be
minimized. Synthetic methods should be conducted at
ambient temperature and pressure.

Principle 7 Targeted durability, not immortality, should be a design
goal.

A raw material of feedstock should be renewable rather than
depleting wherever technically and economically
practicable.

Principle 8 Design for unnecessary capacity or capability (e.g., “one
size fits all”) solutions should be considered a design
flaw.

Unnecessary derivatization (blocking group, protection/
deprotection, temporary modification of physical/chemical
processes) should be avoided wherever possible.

Principle 9 Material diversity in multicomponent products should be
minimized to promote disassembly and value retention.

Catalytic reagents (as selective as possible) are superior to
stoichiometric reagents.

Principle 10 Design of products, processes, and systems must include
integration and interconnectivity with available energy
and material flows.

Chemical products should be designed so that at the end of
their function they do not persist in the environment and
break down into innocuous degradation products.

Principle 11 Products, processes, and systems should be designed for
performance in a commercial “afterlife.”

Analytical methodologies need to be developed further to
allow for real-time in-process monitoring and control prior
to the formation of hazardous substances.

Principle 12 Material and energy inputs should be renewable rather
than depleting.

Substances and the form of a substance used in a chemical
process should be chosen so as to minimize the potential
for chemical accidents, including releases, explosions, and
fires.

Source: Data from Anastas and Zimmerman, 2003, and Anastas and Warner, 2000.

Figure 11.5. The process could be any one used for ther-
moplastics, such as injection molding or thermoforming. All
scrap is sent for regrinding, but some may be lost as waste,
stream F6. In Figure 11.5 the flow rates (units of kg/h) of the
various streams are labeled as Fi and defined in Table 11.3.
The basis for the process is taken as the feed to the process,
F2, which consists of virgin plus recycle resin. The ratio of
recycle resin (F7) to the total feed to the process (F2) is taken
as r (r = F7/F2). Following the notation of Figure 11.4 with
f being the fraction that is recycled and F being the fraction
of regrind which is loss in the grinding process, we can also
express the recycle ratio as r = f(1 − F).

The goal now is to determine the composition of the prod-
uct as a function of the number of recycles (i.e., determine

FIGURE 11.5 Flow chart for a recycling scheme in which the
ratio of regrind to virgin resin is held fixed. The flow streams are
defined in Table 11.3.
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TABLE 11.3 Definitions of Streams in the Recycling Scheme
Shown in Figure 11.5

Stream Flow
(kg/h) Description

F1 Virgin resin feed
F2 Feed of virgin plus recycle resin to the process
F3 Flow of resin leaving process
F4 Scrap resin sent to be recycled
F5 Product
F6 Waste
F7 Scrap resin combined with virgin resin

the age distribution of material in the product as a function
of number of recycles). From an overall mass balance on the
system it can be shown that the amount of product leaving
the process, F5, is equal to F1 − F6. Next, we can calculate
the amount of material associated with each pass through
the process, Pi. After one pass the fraction of material with
two passes through the equipment is r2 while the fraction of
material with one pass through the equipment is 1 − r. The
regrind now contains material with both 1 pass (r(1 − r))
and two passes (r2). When this passes through the equipment
during a second recycle, the product contains material with
one pass (1 − r), two passes (r(1 − r)), and three passes (r2).
In Table 11.4 we summarize the age distribution of material
within the product through n recycles.

Example 11.3. Determination of the Age Distribution of
Polymer in a Product Stream

For the recycle scheme shown in Figure 11.5 determine the
age distribution of polymer (i.e., the fraction of material with
one pass, two passes, and so on through the processing equip-
ment) in the product stream for the following conditions:

(a) F2 = 100 kg/h (basis), F6 = 0, F7 = 5 kg/h, n = 4.

(b) F2 = 100 kg/h, F6 = 5 kg/h, F7 = 5 kg/h, n = 4.

(c) Derive a general equation for the conditions in part
(b) for n recycles.

TABLE 11.4 Fraction of Polymer in the Product Stream
with Various Numbers of Passes Through the Processing
Equipment

Recycle
Number P1 P2 P3 P4 Pn−1 Pn

1 1− r r
2 1− r r(1− r) r2

3 1− r r(1− r) r2(1− r) r3

n 1− r r(1− r) r2(1− r) r3(1− r) rn−1(1− r) rn

Solution. We have r = F7/F2 = 5/100 = 0.05. From a mass
balance on point A, F1 + F7 = F2, and on the system, F1 =
F5 + F6, we find that F5 = 95 kg/h. From Table 11.4 the
composition of the product stream is

F5 = 95(0.95) + 95(0.0475) + 95(0.002375)

+ 95(0.00011875)

= 90.25 + 4.51 + 0.23 + 0.011 kg/h

Hence, after four passes through the processing equipment
only 1.1% of the original material remains in the product
stream. That means 95% of the material is essentially virgin
material, only having passed through the processing equip-
ment once.

For part (b) in which there is loss of material from the
system, we can combine the two mass balances above to
show that F5 = F2 – F7 – F6 = 90 kg/h. Hence, after four
recycles the composition of the product stream is

F5 = 90(0.95) + 90(0.0475) + 90(0.002375)

+ 90(0.00011875) kg/h

Hence, although there is loss in the system, the age distri-
bution of material (i.e., the fraction of material remaining
in the product with n passes through the system) remains
unchanged.

We can generalize the expression for determining the com-
position of the product stream by again referring to Table
11.4:

F5 = (F2 − F7 − F6)

⎛
⎝n−1∑

j=0

r j (1 − r ) + rn

⎞
⎠ (11.9)

Now that we know how to determine the age distribution
of the polymer in the product, the next question is: How do
we use this information to determine the properties of the
product? In particular, it is desirable to predict the tensile
strength and modulus of the polymer product as a function
of the number of recycles, the recycle ratio. Furthermore, it
would be useful to know how the rheology and, hence, pro-
cessability of the polymer have changed. One way to use the
results might be to determine how the molecular weight of the
product changes and then use correlations between molec-
ular weight and physical properties. Another way would be
to develop correlations between the physical properties and
the number of recycles of the polymer (Abbas et al., 1978).
However, to use either of these approaches, mixing rules are
needed. In Section 5.3.2 we discussed how properties were



MECHANICAL OR SECONDARY RECYCLING 351

combined using either parallel or series combination of prop-
erties. Another mixing rule involves taking the logarithmic
combination of properties as shown in Eq. (11.10) below:

lnPp =
n∑

i=1

wi lnPi (11.10)

In the approach taken by Abbas and co-workers (1978) they
assumed the parallel arrangement of properties, and, hence,
the properties of the product are given by

Pp =
n∑

i=1

wi Pi (11.11)

where Pp is the property of the product, wi is the weight frac-
tion of material with age distribution i (or the weight fraction
of material that has passed through the process i times), and
Pi is the property of the material after i processing cycles.
It should be noted that the method of combining properties
is crucial to the success of the approach, and the approach
described by Eq. 11.11 may not always be the best. Abbas
and co-workers (1978) then obtained properties of a polymer
as a function of the number of processing cycles. Results
of this nature can be obtained, for example, by injection
molding a polymer, measuring the properties, grinding the
samples, processing them again, and so on. For example, a
linear decrease in properties was observed for the notched
impact strength of polycarbonate and the impact strength
of glass-reinforced Nylon 6,6. In polymers containing ther-
mal stabilizers or antioxidants, there is typically an induc-
tion period followed by a nonlinear decrease in properties.
When degradation involves formation of compounds promot-
ing main chain scission, the degradation rate increases with
an increase in the number of recycles. For a linear decrease
in properties, Pi after i cycles of processing is given by

Pi = P0 + i�P (11.12)

where P is the change in property from one cycle to another.
P0 represents the initial properties of the polymer (one pass
through the equipment). In the case of decreasing properties,
this value will be negative. Another choice for change in
properties with the number of cycles of processing is a power-
type dependence:

Pi = P0(1 + i�P)a (11.13)

where a is an exponent similar to that for the power-law
model discussed in Section 2.1. To illustrate how we use a
relationship, such as in Eq. 11.13, and the age distribution
of material after n recycle steps we consider the following
example.

Example 11.4. Determination of the Percent of Original
Properties for a Linear Decay in Properties

The decay in tensile strength of an injection molded sample
is given by the following equation:

Pi

P0i
= 1.0 − P0 − Pf

20P0
i (11.14)

where Pf = (1/5)P0 is the strength after 20 cycles of repro-
cessing the polymer, and after 20 cycles there is negligible
change in the tensile strength. After 5 recycles of the polymer
determine the percent of original properties for regrind ratios
of 20% and 50% for the situation described in Table 11.4.

Solution. Assuming Eq. 11.11 is valid for determining the
tensile strength and using Table 11.4 for determining the
weight fraction with given age or process history, we can
write a general expression for the percent reduction in prop-
erties as

Pp = (1 − r )(1) + r (1 − r )(0.96) + r2(1 − r )(0.92)

+ r 3(1 − r )(0.88) + r4(1 − r )(0.84) + r5(0.8)

(11.15)

The numbers in parentheses result from evaluating Eq. 11.14.
Now, for a recycle ratio of 0.2, the reduction in properties
is only 1.2% or the polymer retains 98.8% of the original
properties. For a recycle ratio of 0.5, 91% of the original
properties are retained. Actually, after about 3 recycle steps,
there is very little change in the properties.

11.3 MECHANICAL OR SECONDARY
RECYCLING

Secondary recycling refers to the use of plastics unsuitable for
primary recycling using standard plastics processing equip-
ment. Sources of plastic wastes potentially suitable for sec-
ondary recycling processes include (1) post-consumer waste
recovered from municipal refuse, (2) post-consumer waste
obtained from returnable packages, (3) mixed industrial plas-
tic waste, and (4) industrial plastic waste consisting of a
single type of plastic (Leidner, 1981). Sometimes secondary
recycling is also referred to as mechanical recycling, which
means reusing the recovered product as material for either
the original purpose or for different ones. Once the plastic
article is put into use, recovery and recycling become much
more complicated. The complications arise as a result of
the mixing of polymer types and the presence of impurities
(metal, sand, glass, paper, etc.). The problem with mixed
polymer types is that polymers are highly incompatible, and
their properties are significantly lower than those of the pure
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TABLE 11.5 Plastic in Municipal Solid Waste of
Hamilton, Ohio

Percent by Percent by
Weight Weight of

Plastic Type (SPI #)a in MSW Plastics

PS (6) foam 0.5 8.0
PET (1) soda bottles 1.0 16.0
HDPE (2) milk/water bottles 0.7 11.0
Bags (4) LDPE film 1.8 29.0
Other (LDPE (4), PVC (3) bottles,

PS (6) caps, and other (7) plastics)
2.2 36.0

Total 6.2 100.0

aSPI is the Society of the Plastics Industry. The SPI resin identification
coding system was introduced in 1988 and is used internationally.
Source: Hegberg et al., 1992.

components. In some cases, such as in the generation of parts
with thick walls (e.g., plastic lumber), mixed polymers can
be tolerated.

The breakdown in plastics composition of a typical munic-
ipal solid waste (MSW) stream is shown in Table 11.5. Here
we see that not only are a wide variety of plastics present
but a wide variety of other materials are present as plastics
make up only 6.2% of MSW. Because of the incompatibil-
ity of polymers and because of differences in their melting
points and processing temperatures, it is difficult to directly
reprocess a mixture of polymeric materials. Hence, it is pre-
ferred to separate the polymers before recycling. Separation
can be as simple as sorting by hand but is usually based
on density, wettability, magnetizability, electrical properties,
chemical properties, optical properties, and solubility (Bran-
drup et al., 1996). The discussion of the various techniques
is given in the book by Brandrup et al. (1996). Another issue
arises in that even when a polymer is completely separated
from a mixture of polymers, the initial molecular weights of
the starting material can be variable. For example, as shown
in Table 11.6, PPs with a wide range of MW (as indicated by
the melt index) can be found in the waste stream. Hence, the
quality of the recycled material can be variable.

Technical approaches to secondary or mechanical recy-
cling include direct reprocessing, reprocessing using spe-
cialized equipment, chemical modification of mixed plastic
waste (compatibilizers), using recyclate in the core, using
waste as a filler, and using waste as a binder for a low-cost
filler. As the technology of separation is discussed more fully
in Brandrup et al. (1996), we concentrate on those aspects
that lend themselves to engineering analysis. In particular,
we cover the topics of blend rheology, filtration, and com-
patibilization.

11.3.1 Rheology of Mixed Systems

During the processing of a mixture of polymers, such as
in the manufacture of plastic lumber or in the presence of a

TABLE 11.6 Melt Indices of Polypropylene for Various
Processing Applications

Processing Operation Melt Index (230 ◦C/2.16 kg)

Compression molded sheet 0.1
Extruded tube and sheet 0.1–0.6
Blow molding 0.3–2.0
Thermoforming 1–5
Cast film 8–15
Biaxially oriented film 1–4
Blown film 2–10
Thin-walled injection molding 30–100
Injection molding 2–50
Fibers 8–35
Monofilaments 5–10
Tapes 2–4

Source: Brandrup et al., 1996.

compatibilizer, it is necessary to estimate at least the viscosity
of the mixture as a function of shear rate. Various mixing rules
exist as discussed for estimating the viscosity of a mixture
of the same polymer of different MWs. Grizzuti et al. (2000)
found that for shear rates> 1.0 s−1, the reciprocal and linear–
ln mixing rules given below represented the experimental
data for a blend of two incompatible polymers very well (φi

is the volume fraction of the ith component):

1

η
=

n∑
i=1

φi

ηi
(11.16)

ln η =
n∑

i=1

φi ln ηi (11.17)

Below shear rates of 1 s−1, these empirical mixing rules
underpredicted the viscosity of the blend, which tended to
continue to increase at low shear rates. This was attributed
to the continuous change in morphology that occurred dur-
ing shearing as the drops continued to break down finally
reaching an equilibrium size. Grizutti et al. (2000) applied
these empirical rules using viscosity data at each shear rate
from the given polymers. Equation 11.16 seemed to work the
best. These same mixing rules can be applied to a mixture of
plastics of the same type but of different MW. Hence, given
PP consisting of a mixture of different MIs, one can estimate
the viscosity of the mixture.

11.3.2 Filtration

The processing of recyclates puts a high demand on the poly-
mer purity. Numerous types of contaminants exist including
solid particles of foreign matter (e.g., glass, paper, metal,
paint, sand) and polymer particles. Separation of foreign par-
ticles is typically carried out by placing filters (also called



MECHANICAL OR SECONDARY RECYCLING 353

filtration media) between the end of the extruder and the die.
The filtration media typically consist of woven and nonwo-
ven screens or porous plates with sintered powdered metal
particles supported by a breaker plate. The geometry of the
filtration system may be as simple as that of a screen sup-
ported by a breaker plate (plate with small holes), which is
placed between the end of the extruder and the die. More
complicated geometries, such as cartridge filters, drum fil-
ters, and disk filters, are also used (Brandrup et al., 1996).
The screen medium can be removed discontinuously or con-
tinuously out of the melt stream for the purpose of cleaning.
Brandrup et al. (1996) list some of the common impurities,
the appropriate screen system, the required mesh size given in
microns, pore size, porosity, the required screen surface area,
the resultant load on the screen, and the final product with
which they are usually associated. For example, for remov-
ing fiber and paper it is recommended to use a cartridge filter
with a mesh size of 100 to 200 μm with mass flow rates of
700 to 1000 kg/h/m2.

The main issue in using filtration is the increase in pres-
sure drop through the screens and filters and the buildup of
pressure during the accumulation of contaminants. Hence,
in this section we provide the background for estimating
pressure drop through various types of porous media. Before
proceeding onto estimating the pressure drop across screens
and filters, a few comments about relating mesh size to the
size of the openings in the screen and the fraction of material
with voids are necessary. In Table 11.7 a few values of mesh
size to the size of the openings and the volume fraction of
voids is presented. Mesh refers to the number of openings per
linear inch of screen. Hence, 40 mesh means that there are 40
openings per linear inch of screen, or equivalently, that each
opening size and wire diameter is equal to 1/40 in., that is,
0.025 in. (or 0.635 mm or 635 μm). Another characteristic of
the screen is its open area fraction (also called percent open
area) or void fraction. The open area fraction is calculated
as: opening size/(opening size + wire diameter), assuming
square openings. In the example of the U.S. 40 mesh screen,
the opening size is 0.0165 in. (see Table 11.7), and therefore,
the open area fraction is calculated as: 0.0165/0.025 = 0.66,

TABLE 11.7 Values of the Size of the Openings as a
Function of Mesh Size

Void Fraction
U.S. Opening Opening Opening or Open Area
Mesh (in.) (μm) (mm) Fraction

4 0.1875 4760 4.760 0.75
40 0.0165 420 0.420 0.66

100 0.0059 149 0.149 0.59
400 0.0015 37 0.037 0.60

Source: This data was taken from a table found at:
http://en.wikipedia.org/wiki/Mesh_(scale).

which means that the openings account for 66% of the screen
area.

The most effective way for calculating the pressure drop
through a packed column is based on considering the flow to
be that of flow through a bundle of tangled tubes of irregular
cross section (Bird et al., 2007). The starting point is to
consider the flow through a tube and then replace the diameter
by 4 times the mean hydraulic radius, RH. Of course, one of
the key issues here is to replace RH by the characteristics of
the packed bed, which are usually related to the porosity or
permeability. The derivation that follows here is similar to
that presented by Bird et al. (2007) for a Newtonian fluid.
For a power-law fluid the average velocity for flow through
a tube is (Table 2.4)

< vz >= Rs+1

s + 3

(
�P

2mL

)s

(11.18)

The mean hydraulic radius, RH, is the ratio of the cross-
sectional area available for flow to that of the wetted perime-
ter. If we multiply these values by the length of the column
of porous media and divide both by the volume of the bed,
we can find RH in terms of ε, and the parameter a, given
as the ratio of the total particle surface to the volume of the
particles:

RH =
volume of voids
volume of bed
wetted surface
volume of bed

= ε

a
(11.19)

The quantity a is related to the specific surface, av (the total
particle surface/the volume of the particles making up the
bed) by

a = av(1 − ε) (11.20)

The average particle diameter for any geometry of particle is
given as

Dp = 6

av
(11.21)

where Dp is defined so that for spherical particles, av =
(4πR2

p/4πR3
p/3) = 6/Dp. Hence, RH is now in terms of

variables that can be measured as shown in Eq. 11.22
below:

RH = Dpε

6(1 − ε)
(11.22)

Rather than using the average velocity in the twisted tubes,
it is customary to use the superficial velocity, vo, which is
defined so that when vo is multiplied by the cross-sectional
area of the bed, one obtains the volumetric flow rate. With

http://en.wikipedia.org/wiki/Mesh_
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vo = ε<vz> and D (or 2R) replaced by 4RH, Eq. 11.18
becomes

vo = nε

3n + 1

[
Dpε

3(1 − ε)

]1+s [
6�P

25 mL

]s

(11.23)

In Eq. 11.23 the length of the column has been replaced by
(25/12)L to account for the additional length of the twisted
tubes as explained by Bird et al. (2007). Similar expressions
for the Newtonian fluid (see Problem 11B.8) and generalized
Newtonian fluid with an Ellis empiricism for viscosity (see
Problem 11B.9) can be obtained. In many instances it is
impossible to estimate Dp, so we rewrite Eq. 11.23 in terms
of the permeability, κ , which is defined from the Newtonian
solution (see Problem 11B.8) as follows:

κ = D
2
pε

3

9(1 − ε2)
(11.24)

Rearranging Eq. 11.23 using Eq. 11.24 we find

vo = nε

3n + 1

(
50κ

3ε

)(1+s)/2 ( 6

25m

)s (
�P

L

)s

(11.25)

Example 11.5. Estimate the Initial Pressure Drop
Across a 40 Mesh Filter Screen

A 40 mesh (meaning 40 openings per linear inch) screen
of thickness 1.04 mm and diameter 18.75 mm is supported
on a breaker plate and is used to filter sand and dirt from
polypropylene (PP). The mass flow rate produced by the
extruder is 12.5 kg/h. Estimate the initial (i.e., before accu-
mulation of any sand) pressure drop across the screen for
a PP in which the viscosity is described by the power-law
model having parameters of m = 3.21 × 104 Pa · sn and n =
0.25, and ρ = 867 kg/m3.

Solution. Starting with Table 11.7 we can calculate the num-
ber of holes or openings in the screen of diameter 0.75 in.
and the size of the holes, which are assumed to be square.
The number of holes is found by dividing the open area of
the screen by the area of hole:

(Screen area × void fraction)/hole area

= (0.375 in.)2π 0.66/(0.0165 in.)2 = 1071 holes

We can then calculate the volumetric flow rate per hole:

(12.5 kg/h)/(1071 ∗ (867 kg/m3) ∗ (3600 s/h))

= 4 × 10−9 m3/s

The mean hydraulic radius, RH, of the hole is

RH = (0.0165)2/(4 × 0.0165) = 4.125 × 10−3 in.

= 1.0478 × 10−4 m

We now use Eq. 11.18 to solve for �P:

�P = < vz >
n (S + 3)n2 mL/(2RH)(1+n)

= (4 × 10−9/1.6 × 10−7)0.251.626

× 2(3.21 × 104) 1.0414 × 10−3/(2 × 10−4)1.25

= 1.786 × 106 Pa = 259 psi

11.4 TERTIARY OR FEEDSTOCK RECYCLING

Mechanical recycling is primarily limited to single-polymer
waste because of the desire for the recycled products to match
the original products as closely as possible in quality. When
efficient and economical separation of the plastic stream is
not feasible, then in some cases the plastic waste can be used
as raw material for petrochemical processes, such as hydro-
genation, gasification, cracking, and coking. This type of
recycling is referred to as tertiary or feedstock, and there are
also restrictions on the quality of the feedstock, especially in
regards to traces of halogens, heavy metals, and fillers. One
way of preparing plastic scrap for chemical materials recy-
cling is to subject it to degradative extrusion, which allows
highly diverse mixed-plastic stockpiles to be homogenized,
sterilized, compacted, chemically modified, and converted
into a form fit for transport. In this section we focus on the
degradative extrusion of plastics scrap.

Degradative extrusion used to prepare plastic scrap for
feedstock recycling is a special type of extrusion process that
is characterized by the following features (Brandrup et al.,
1996):

1. Reduction in molecular weight of the thermoplastic
scrap to low-molecular weight and consequently low-
viscosity polymer melts.

2. Degradation occurs by means of exposure of the sam-
ple to high temperatures and viscous dissipation cou-
pled with the catalytic effect of chemical agents and
reactive gases.

3. Suitable compounds for generating the catalytic effect
are air or oxygen, steam, hydrogen, metal oxides, and
other catalysts.

4. Decomposition products (e.g., HCl gas) that interfere
with downstream processing are eliminated as much as
possible by means of devolatilization (see Chapter 7)
or bonded to compounds, such as CaCO3, and then
filtered.
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5. The product at the extruder exit is either a homoge-
neous liquid or solid strands, which are granulated at
the exit.

6. The product at the exit can be heated to temperatures
>520 ◦C, which leads to volatilization.

The process may consist of cascaded extruders (two
extruders connected together) or single extruders with a vent-
ing zone (see Fig. 8.33, p. 262). The first step is the elimina-
tion of HCl by means of thermal decomposition. In the vent-
ing zone the HCl gas is extracted along with other volatile
fractions, which are primarily water and low-boiling sub-
stances. The HCl gas forms in large amounts at temperatures
above 250 ◦C. After the removal of HCl the melt can then
be degraded further with additives that promote degradation.
Both twin-screw and single-screw devices are used.

As representative of other polymers, we begin our discus-
sions on polymer degradation with HDPE. Various authors
have proposed that the polyethylene (PE) thermal degrada-
tion proceeds mainly by a random chain scission mechanism
to form intermediate species (heavy waxes and tars), which
are further cracked to produce the final products (gases, aro-
matics, long-chain paraffins and olefins, coke, etc.) (Aguado
and Serrano, 1999). In other cases, it is assumed that end-
chain cleavage takes place simultaneously to yield some of
the observed gaseous products. Most of the kinetic stud-
ies on PE thermal degradation have been based on thermo-
gravimetric analysis (TGA) measurements, mainly using a
power-law model to describe the rate of weight loss. In a
paper by Westerhout et al. (1997) these studies have been
reviewed and a new model referred to as the random chain
dissociation (RCD) model was developed to describe the
low-temperature thermal cracking of polyolefins. The RCD
model takes into account the influence of factors, such as
molecular weight, extent of branching (i.e., frequency of side
groups) and β-scission, and evaporation of species from the
reaction medium. PE volatilization was observed to begin at
temperatures close to 400 ◦C, although the degradation of
the polyolefin chains started at lower temperatures. Results
are also reported that illustrate the changes in the average
molecular weight of LDPE, determined by gel permeation
chromatography (GPC), and the amount of volatile products
formed when this polymer is treated at different tempera-
tures in a stirred tank reactor under a nitrogen atmosphere.
Although the production of gases is negligible up to 400 ◦C,
from 350 to 400 ◦C the polymer undergoes significant degra-
dation, leading to a large decrease in the average molecular
weight.

While for polypropylene (PP) similar mechanisms and,
therefore, similar models apply to describe the pyrolysis
kinetics as used for PE, the pyrolysis of polystyrene (PS)
differs from that of PE and PP. In particular, the pyrolysis of
PS yields a large amount of its monomer, styrene, while the

products of PE and PP are more or less random. However, as
in the case of PP, half of the carbons in the polystyrene chain
are tertiary due to the presence of side benzyl groups. There-
fore, thermal degradation of PS also occurs at relatively low
temperatures. TGA of PS in a nitrogen flow shows that the
thermal cracking of this polymer with formation of volatiles
starts at temperatures around 350 ◦C. PS thermal degrada-
tion also proceeds through a free-radical mechanism initiated
by random chain scission. Primary, secondary, and tertiary
radicals are involved in a series of transformations, mainly
hydrogen transfer reactions and β-scissions, to yield the final
degradation products. Detailed descriptions of the PS thermal
degradation mechanism can be found in the paper by Wester-
hout et al. (1997). A number of studies have been performed
on the kinetics of PS thermal decomposition mainly based
on TGA measurements, which were recently summarized by
Westerhout et al. (1997). Likewise, a model has recently been
developed to describe the MWD evolution during PS thermal
degradation.

The first model used to interpret the TGA experimental
data was a simple first-order power-law model, but this model
was only applicable in a small conversion range, because the
actual reaction order varies with the conversion (Westerhout
et al., 1997). In their study the use of the first-order power-
law model was restricted to the 70–90% conversion range,
because most studies have revealed that this description is
valid only in this conversion range. Hence, the power-law
model has limited utility in carrying out design calculations
and will not be considered further.

A second model was developed to describe the pyroly-
sis kinetics on a more fundamental basis (Westerhout et al.,
1997). The model accounts for the fact that both physical
and chemical processes play an important role during the
pyrolysis of polymers. When an apparatus, such as a TGA,
is used for a kinetic study of a pyrolysis process, the rate of
evaporation of pyrolysis products is measured, but not the
intrinsic chemical reaction (the breaking of bonds) rate. Not
every broken bond in the polymer chain leads to the evapora-
tion of product. Only polymer chain fragments small enough
to evaporate at the given reaction temperature will actually
leave the polymer sample. This implies that both physical and
chemical processes influence the measured rate of change of
the polymer mass and hence the observed pyrolysis kinetics.

To account for the physical and chemical processes in
the model proposed by Westerhout et al. (1997), termed the
random chain dissociation (RCD) model, a polymer chain
is represented as a chain of carbon atoms with side groups.
A certain rate constant, ki, can be associated with each bond
type i between the carbon atoms. The number of bonds of type
i is represented by Ni, and the rate of change of the number
of each bond type is described by a simple first-order model:

∂Ni

∂t
= −k0i e(−Eact,i/RT ) Ni = −ki Ni (11.26)
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Different types of bonds possess different breakage rates
and associated rate constants, such as β-bonds and bonds
between carbon atoms to which a side chain is attached have
higher breakage rates, due to the formation of relatively stable
radicals during the reaction. This is accounted for in the
model by distinguishing between different types of bonds
and the specification of different kinetic parameters (i.e., k0i

and Eact,i) for each type of bond. The conversion is calculated
by determining the number and weight of the fragments in the
polymer chain with a length (including side chains) less than
a certain length Lc, which just can evaporate. This parameter
Lc is a function of temperature and pressure, and its value
can be estimated from the boiling points of normal alkanes
and alkenes. Other input parameters required by the model
are the length and the extent of branching (or the frequency
of the side groups, such as CH3 in the case of PP) of the main
chain. These parameters can be determined from the initial
molecular weight and the structure of the polymer. The side
groups (which can be branches in the case of LDPE) on the
main chain can be either methyl, ethyl, propyl, or even benzyl
groups. These groups are assumed to be distributed evenly
over the main chain.

The most important difference between the first-order
model and the RCD model is that the latter model accounts
for the influence of physical processes (not every broken
bond leads to the evaporation of a fragment of the polymer
chain). However, at high conversions the polymer chain is
degraded to relatively small fragments, which will immedi-
ately evaporate if another bond in the fragment is broken.
Therefore, every broken bond leads to the evaporation of a
chain fragment at high conversions and, because of the direct
coupling of the breakage rate and the evaporation rate at high
conversions, the evaporation rate exhibits first-order behav-
ior as does the breakage rate. The RCD model combines the
most relevant features of the different models proposed in the
literature without introducing a large number of fit param-
eters: the difference between evaporation rate and breakage
rate is accounted for, and the model also accounts for the
presence of weaker bonds in the polymer chain (weak bond
model) by accounting for side groups and different types
of bonds. With the RCD model the conversion-versus-time
curve can be calculated and from this information the conver-
sion rate-versus-time or conversion can be determined. The
RCD model can also be used to predict the product spec-
trum of the primary pyrolysis reaction. Representative data
for commonly used polymers are shown in Table 11.8. The
values shown in this table were obtained at temperatures in
the range of 400–450 ◦C for the PEs and PPs while for PS
in the range of 365–400 ◦C. Although LDPE has about 50
branches per 1000 carbon atoms and PP has CH3 groups on
every other carbon atom (likewise PS has a benzyl group on
every other carbon atom), we only observe single values for
k0 and Eact. This is because in the case of LDPE only a few
carbon atoms have side chains or branches and in the case of,

TABLE 11.8 Fitted Kinetic Parameters for the RCD Model
for the Pyrolysis of Different Polymers

k0 Eact k at 703 K
Polymer (s−1) (kJ/mol) (10−4 s−1)

HDPE (Mw = 125,000) 1.3 × 1011 207 0.5
LDPE1 (Mw = 350,000) 9.2 × 1013 244 0.7
PP (Mw = 250,000) 9.4 × 1013 237 2.1
PS (Mw = 280,000) 1.3 × 1014 219 69.4

Source: Westerhout et al., 1997.

for example, PP every carbon–carbon bond is influenced by
the presence of the CH3 group. We should also add that the
molecular weight and its distribution have an insignificant
effect on the rate of degradation.

In practice, mixtures of polymers will be present in house-
hold waste. It is therefore important to know whether the
pyrolysis kinetics of a polymer is influenced by the pres-
ence of a second polymer, which would be the case if inter-
molecular reactions play a dominant role during the pyrolysis
process. To examine whether this effect exists, mixtures of
LDPE1 and PP2 were prepared in an extruder and subse-
quently pyrolyzed (Westerhout et al., 1997). Three mixtures
(25, 50, and 75 wt% PE) were examined at a temperature of
425 ◦C. In the pyrolysis experiments with pure and mixed
polymers, no significant difference in pyrolysis kinetics could
be observed, which might be due to the fact that the kinetic
constants for PE and PP pyrolysis only differ by a factor of
2 in the temperature range from 400 to 450 ◦C. It can be
concluded, however, that there is no large mixing effect on
the conversion rate. It is therefore possible to apply a linear
mixing rule for the kinetic constants to calculate the kinetic
constant of the mixture.

Example 11.6. Time to Degrade HDPE and PS

Determine the time to degrade the HDPE and PS materials,
whose properties are given in Table 11.8, to Mw ’s of 420
and 3120 g/gmol (∼30 C-C bonds), respectively. In the case
of HDPE use a temperature of 450 ◦C, while for PS use a
temperature of 400 ◦C.

Solution. For HDPE at 450 ◦C we calculate the rate constant,
k, as

k = k0e(−Eact/RT ) = 1.3 × 1011 exp(−207 × 103/(8.3145 ∗ 723))

= 1.443 × 10−4 s−1

We next solve Eq. 11.26 to find the time required to degrade
the HDPE sample:

− ln(N/N0) = kt
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We now substitute in the values from Table 11.8 to find the
time:

− ln(420/125,000)/1.443 × 10−4 = 39,472 s

= 10.96 hours

A similar procedure is used for PS as we first calculate k:

k = k0e(−Eact/RT ) = 1.3 × 1014 exp(−219 × 103/(8.3145 ∗ 673))

= 1.3084 × 10−3 s−1

and then time:

− ln(3120/280,000)/1.3084 × 10−3 = 3437 s = 0.95 hour

11.5 RENEWABLE POLYMERS AND THEIR
PROCESSABILITY

For the purposes of this book, the term “petroleum-derived
polymers” refers to polymers produced from nonrenewable
crude oil or natural gas. Also, the term “renewable polymers”
refers to polymers produced from renewable resources, that
is, natural resources that can be replenished within a 100
year time frame. The resources may be replenished naturally
or via agricultural techniques. Examples of natural resources
are carbohydrates from lignocellulosic biomass, plant oils,
and animal fats. Note that the term “renewable” is used inter-
changeably with the term “sustainable” for the purposes of
this book.

There are typically two types of renewable polymers:
identical and new-to-world. The identical renewable poly-
mers (sometimes called bioidentical polymers or drop-in
renewable polymers) are polymers that have an identical
chemical structure to today’s petroleum-derived polymers.
Examples of these polymers are bio-PE, bio-PP, and bio-PET.
The various properties and processing characteristics of these
polymers are identical to those from their petroleum-derived
polymer equivalents, and as such the reader is directed to use
the information in this book interchangeably between the
bioidentical and the petroleum-derived polymers. Braskem,
which is presently the largest manufacturer of thermoplas-
tic resins in the Americas, started producing biopolyethy-
lene (Green PE; HDPE and LLDPE) in commercial quan-
tities in September 2010 from sugarcane. The biopolyethy-
lene produced is identical to petroleum-derived polyethylene
with the only difference being that it is made from sugar.
The technology is based on fermenting sugarcane sugar into
ethanol, dehydrating ethanol to ethylene, purifying ethylene
to polymer-grade ethylene, and polymerizing the polymer-
grade ethylene to polyethylene using conventional technolo-

gies. As such, the biopolyethylene does not require any
change in equipment or processes compared to petroleum-
derived polyethylene as it gets converted to bottles, films,
fibers, and so on. Based on the Braskem literature and LCA,
their Green PE captures and sequesters up to 2.5 metric tons
of CO2 from the atmosphere for each ton produced. Note
that the respective number for each ton of petroleum-derived
polyethylene produced is about 2.5 metric tons of CO2 emit-
ted. Also, Braskem recently announced that it will introduce
to the market Green PP by the end of 2013. Similarly to the
Green PE, the Green PP is expected to capture and sequester
about 2.3 metric tons CO2 from the atmosphere for each
ton produced, whereas the respective number for each ton
of petropolypropylene produced is about 2.5 metric tons of
CO2 emitted.

On the other hand, the new-to-world renewable poly-
mers are polymers that do not have an identical chem-
ical structure to any of today’s petroleum-derived poly-
mers. Examples of these polymers are PLA, PHA and its
copolymers, PBS, thermoplastic starch (TPS), poly(ethylene
furanoate) (PEF), poly(propylene carbonate) (PPC), and
poly(ethylene carbonate) (PEC). The structures of these poly-
mers and their thermal transitions are given in Table 11.9.
As we move toward the new “green” economy and away
from the petroleum-based economy, it is expected that the
new-to-world renewable polymers will dominate the market
applications.

With the desire to reduce the amount of waste remaining
in landfills, there is a need to use biodegradable (sometimes
also referred to as compostable) polymers in parts of the
world where the infrastructure to capture the gases formed
exists. Biodegradable polymers come from either renewable
resources or petroleum sources. The primary biodegradable
polymers from renewable resources are PLA, PHA, TPS,
cellulose, chitin, and proteins. The basic structures of these
polymers along with some key thermal characteristics are
shown in Table 11.9 and will be discussed in more detail in
the following section.

There are three principal ways to produce the new-to-
world renewable polymers:

1. Make use of natural polymers, which may be mod-
ified but remain intact to a large extent (e.g., starch
polymers).

2. Produce bio-based monomers by fermentation, which
are then polymerized (e.g., polylactic acid).

3. Produce bio-based polymers directly in microor-
ganisms or in genetically modified crops (e.g.,
PHA).

These synthesis mechanisms are significantly different from
those for synthetic polymers and are discussed in more detail
in the book by Rudnik (2008).
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TABLE 11.9 Renewable Polymers and Their Thermal Transitions

Chemical Structure Tg (◦C) Tm (◦C) Tc (◦C)

45–60 150–162 190

PLA

5–15 168–182 160

PHA

240–250 300

Starch

CH2OH

OH

OH

O
O

n

— —

Cellulose

OH

OH OH

OH OH
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OH

OH

OH

O

O O O O

O O

OH

HO HO HO

HO HO

— —

Chitosan Acetate

180

Protein

Biodegradable polymers can also be produced from
petroleum sources and are comprised of aliphatic polyesters
and copolyesters (e.g., PBS, and poly(butylene succinate
adipate)—PBSA), aromatic copolyesters (e.g., poly(butylene
adipate terephthalate)—PBAT), poly(ε-caprolactone) PCL,
polyesteramides (PEA), and poly(vinyl alcohol) (PVA). Fur-
ther details concerning the synthesis of these polymers can
be found in the book by Rudnik (2008). In this section we
summarize some of the key properties of these materials

and emphasize some of the issues associated with processing
these polymers.

11.5.1 Thermal Stability and Processing
of Renewable Polymers

In this section we summarize some of the key temperatures,
such as Tm, Tg, and that for the onset of thermal degrada-
tion (Tc) for renewable polymers. In general, most of these
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TABLE 11.10 Summary of Thermal Properties of Renewable Polymers Based on PLA and PHB

Property PLA l-PLA dl-PLA PHB

Density, g/cm3 1.21–1.25 1.24–1.30 1.25–1.27 1.18–1.26
Glass transition, ◦C 45–60 55–65 50–60 5–15
Melting temperature, ◦C 150–162 170–200 Amorphous 168–182

materials have temperature limits above which rapid degra-
dation sets in. We refer to this temperature as the critical
processing temperature, Tc, above which significant thermal
degradation occurs, reducing the polymer molecular weight.
Properties such as C p and k do not seem to be readily avail-
able.

We start with a brief discussion of PLA because of the
wide range of structures and associated properties (Rudnik,
2008). The basic chemical structure of PLA is shown in Table
11.9. PLA is a compostable/biodegradable plastic derived
from the polymerization of lactic acid, which is predomi-
nantly produced via fermentation of sugar or starch and, to a
lesser extent, via chemical catalysis. Lactic acid exists in opti-
cally active d- or l-enantiomers, and their polymer versions
are noted as PDLA and PLLA, respectively. The copolymer
of the two enantiomers is also called PDLLA. The proportion
of the enantiomers in PLA determines its properties and the
process used to form the PLA articles (e.g., blow molding,
injection molding, thermoforming).

The thermal characteristics of PLA, as shown in Table
11.10, are highly dependent on the copolymer ratio of the
two enantiomers and, as such, this polymer deserves separate
attention as the properties vary widely. Generally, commer-
cial PLA grades are copolymers of poly(l-lactic acid), PLLA,
and poly(d,l-lactic acid), PDLLA, which are produced from

l-lactides and d,l-lactides, respectively. The ratio of l- to
d,l-enantiomers is known to affect the properties of PLA,
such as Tm and the degree of crystallinity. Pure PLA is a
semicrystalline polymer with a Tg of about 55 ◦C (it reaches
60 ◦C at infinite molecular weight for 100% l-isomer), Tm

of about 180 ◦C, and β transition of about −45 ◦C. Introduc-
tion of stereochemical defects into PLA reduces the melting
point, rate of crystallization, and the extent of crystallization
of the resulting polymer but has little effect on Tg. After
roughly 15% incorporation of mesolactide, the polymer is
no longer crystallizable. For example, introduction of meso-
lactide depresses Tm to 130 ◦C. The comparison of the glass
transition, Tg, and melting, Tm, temperatures of PLA with
other thermoplastics is shown in Fig 11.6.

Melt viscosities of high-molecular-weight PLA (about
100,000 g/mol to about 300,000 g/mol) are typically between
500 and 1000 Pa·s at shear rates between 10 and 50 s−1. PLA
exhibits a typical pseudoplastic non-Newtonian fluid behav-
ior. The zero-shear viscosity, η0, is shown in Figure 11.7
as a function of the weight-average molecular weight, Mw,
of poly(l-lactic acid), PLLA, and copolymers of l- and d-
lactic acid, PDLLA. In terms of extensional behavior, studies
have shown that PLA strain hardens, which is an important
characteristic for processing operations (e.g., fiber spinning,
blow molding, and film casting). Similarly to the thermal
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FIGURE 11.6 Comparison of melting and glass transition temperatures of various thermoplastics.
(Reprinted with permission of the publisher from Lim et al., 2008.)
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FIGURE 11.7 Comparison of zero-shear viscosity and molecular weight for various PLA materials.
squares: PLLA at 180 ◦C; open circles: Poly(85%L-co-15% D-lactide) at 100 ◦C; filled circles
Poly(85%L-co-15% D-lactide) at 85 ◦C. (Reprinted with permission of the publisher from Lim et al.,
2008.)

behavior described above, the strain hardening is enhanced
significantly by the addition of even low amounts of PDLA
in PLLA.

Processing of PLA requires attention to its thermal degra-
dation, which relates to the process tempearture and resi-
dence time. PLA is found to be highly sensitive to heat, espe-
cially at temperatures higher than 190 ◦C (Rudnik, 2008).
There may be several reasons for its poor thermal stabil-
ity: (1) hydrolysis by trace amounts of water catalyzed by
hydrolyzed monomer (lactic acid); (2) zipper-like depoly-
merization, catalyzed by residual polymerization catalyst;
(3) oxidative, random main-chain scission; (4) intermolecu-
lar transesterification to monomer and oligomeric esters; and
(5) intermolecular transesterification resulting in formation
of the monomer and oligomeric lactides of low molecular
weight. However, with controlled residence time in the pro-
cessing equipment, higher temperatures can be reached with
one commercial PLA system in which processing in the range
of 190 to 240 ◦C is recommended.

Prior to melt processing, PLA requires sufficient drying to
prevent hydrolysis, which can reduce the mechanical prop-
erties of the PLA article due to reduced molecular weight.
NatureWorks LLC, one of the main suppliers of PLA, rec-
ommends drying PLA to a maximum of 250 ppm moisture
before extrusion. In terms of extrusion equipment, PLA resins
can be processed using a conventional extruder with a general
purpose screw of 24 to 30 L/D or typical PET extruder with

low-shear screw to minimize resin degradation. Furthermore,
the recommended screw compression ratio is 2 to 3, and the
extrusion temperature is 200 to 210 ◦C.

PLA resins can be tailor-made for different fabrication
processes, including injection molding, sheet extrusion, blow
molding, thermoforming, film forming, and fiber spinning.
The key is controlling certain molecular parameters in the
process, such as branching, d-isomer content, and molecu-
lar weight distribution. Injection molding of heat-resistant
PLA materials requires rapid crystallization rates, which can
be achieved by PLA that contains less than 1% d-isomer
and often with the addition of nucleating agents. Extrusion-
thermoforming is optimized at a d-isomer content that does
not allow crystallization to occur during the melt processing
steps, with 4–8% d-isomer content being the effective range.

PLA bottles are used today with beverages that are not
sensitive to oxygen (e.g., water or pasteurized milk). The
production of PLA bottles is based on injection stretch blow
molding (ISBM). PLA films and sheets, containing between
92% and 98% l-lactide, have been extruded successfully
using typical film casting and extrusion equipment. However,
because PLA has low elongation, tear, and burst strengths, it
is often coextruded to form multilayer structures and enhance
its properties. Finally, the high surface energy of PLA allows
for better printing than polyolefin films. PLA fibers can be
made with either the dry- or melt-spinning process. Commer-
cially, PLA fibers are produced by the melt-spinning process
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at 185 to 240 ◦C and using spinnerets with L/D ratios ranging
from 2 to 10.

Poly(hydroxy butyrate) (PHB) has a density in the range
of 1.18 g/cm3 (amorphous) to 1.26 g/cm3 (crystalline), as
summarized in Table 11.10. PHB is water insoluble and rela-
tively resistant to hydrolytic degradation. This differentiates
it from most other currently available renewable plastics,
which are water soluble. Mechanical properties of PHB, such
as Young’s modulus and tensile strength, are similar to those
of polypropylene although its elongation to break is markedly
lower than that of PP. Due to its high stereoregularity, it is
highly crystalline, which makes it stiff and brittle. PHB has a
melting point of 180 ◦C and forms highly crystalline solids,
which crystallize slowly and form large spherulitic structures
that impart poor mechanical properties in molded plastics and
films. Because of its high melting point, PHB is also suscep-
tible to thermal degradation during melt processing by ester
pyrolysis of the aliphatic secondary esters of the repeating
units. It is thermally unstable during processing and readily
degrades at 180 ◦C and is unstable at temperatures as low
as 160 ◦C. In spite of the degradation issues, with careful
control of the thermal conditions PHB can be processed by
means of many of the conventional thermoplastic processes,
such as extrusion, injection molding, film casting, thermo-
forming, and fiber spinning (Rudnik, 2008). The rheological
properties of four commercial PHA resins are reported in
Corre et al. (2012).

The Tg of dry amorphous starch (see Table 11.9 for the
structure) is estimated to be in the range of 240–250 ◦C, but
is inaccessible owing to thermal degradation, which leads
to the use of plasticizers to allow melt processing (Rudnik,
2008). Native starch is a nonplasticized material because
of the intra- and intermolecular hydrogen bonds between
hydroxyl groups of the starch molecules. In the presence
of a plasticizer the semicrystalline granules of starch are
transformed into homogeneous material with hydrogen-bond
cleavage between starch molecules leading to the loss of crys-
tallinity. Various industrial processing techniques have been
used to prepare starch plastics, including kneading, extru-
sion, compression molding, and injection molding. Process-
ing temperatures are in the range of 100–200 ◦C, although
care has to be taken at temperatures above 175 ◦C because of
starch’s molecular breakdown. Most research has focused on
water and glycerol as the most important additives. Several
native starches have been processed, such as wheat, rice, corn,
waxy maize starch, high amylose corn starch, and potato
starch. The dimensions of molded objects from hydrophilic
polymers, such as starch, depend on their water content. If
precise dimensions are required, processing should be car-
ried out so that products are formed at approximately the
equilibrium in-used water content. For potato starch, for
example, this means water contents of around 14 wt% for
use under ambient conditions. If higher water contents are
used in processing, distortion and shrinkage will occur as

the equilibrium water content is naturally achieved after pro-
cessing. In addition, higher water content can induce more
hydrolytic degradation of the starch chains during processing
and also gelatinization rather than melt formation. If lower
water contents are used, thermal degradation can occur dur-
ing processing. Rheological measurements in the time sweep
mode for thermoplastic wheat starch with 40% glycerol con-
tent demonstrate that TPS has excellent thermal stability at
150 ◦C, but becomes unstable at temperatures above 380 ◦C.
However, it was found that TPS stability is maintained for
short time periods at temperatures up to 300 ◦C.

Cellulose (see Table 11.9 for its structure) cannot be pro-
cessed by means of techniques used for thermoplastics, but
esterification can yield materials suited for thermoplastic pro-
cessing. A variety of raw materials, such as cotton, recycled
paper, wood cellulose, and sugarcane, are used in making cel-
lulose ester biopolymers in powder form. Cellulose esters are
easy to extrude and injection mold. Through plasticization
of cellulose acetate with environmentally friendly triethyl
citrate, they are processable at 170–180 ◦C, which is below
their melting point of 233 ◦C.

Chitosan (see Table 11.9 for its chitosan acetate struc-
ture) possesses an excellent ability to form porous structures.
It can be molded into various forms as porous membranes,
blocks, tubes, and beads. It also readily forms films and pro-
duces materials with very high gas barrier. Chitosan films
are prepared by dissolving it in dilute acid and spreading
on a flat surface and air-drying to room temperature. It has
potential applications in many fields, such as biomedical,
wastewater treatment, functional membranes, and floccula-
tion. It has been used in the purification of drinking water and
in cosmetics and personal care products. Due to its excellent
biological properties, such as biodegradation in the human
body, biocompatibility, and immunological, antibacterial,
and wound-healing, it also has a variety of medical uses. It has
found a potential application as a support material for gene
delivery, cell culture, and tissue engineering. Chitosan, like
other polysaccharides, is susceptible to a variety of degrada-
tion mechanisms, including oxidative/reductive free radical
depolymerization and acid-, alkaline- and enzyme-catalyzed
hydrolysis. Degradation of polysaccharides occurs via cleav-
age of the glycosidic bonds. Depolymerization of chitosan
is useful in order to control properties, such as viscos-
ity, solubility, and biological activity. Potential mechanisms
for temperature-induced degradation are oxidative/reductive
degradation and acid-catalyzed degradation. The thermal
degradation of chitosan has been studied in nitrogen atmo-
sphere and found to follow a random scission pathway.

Most proteins (see Table 11.9 for their structure) have
been used in food sciences, but recently a number of proteins
of plant origin have received attention for the production of
biodegradable polymers. These proteins include corn zein,
wheat gluten, soy protein, and sunflower protein. The major
drawback of protein-based plastics, apart from keratin, is
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TABLE 11.11 Summary of Characteristics Useful in Processing Compostable Polymer Materials
Derived from Petrochemical Resources

Poly(capro Poly(ester Poly(butylene Poly(butylene Poly(vinyl
lactone) amide) succinate/adipate) adipate-co-terephthalate) alcohol)

Property (PCL) (PEA) (PBSA) (PBSA) (PVA)

Density, g/cm3 1.11 1.05 1.23 1.21 1.19–1.31
Glass transition temperature, ◦C −60 −30 −45 −30 85
Melting temperature, ◦C 60–62 125 92–94 110–115 230

their sensitivity to relative humidity. Soy protein plastics in
nitrogen gas were stable up to 300 ◦C, but in the presence of
oxygen the plastic decomposed at 180 ◦C. Native soy protein
was converted into a thermoplastic material in a corotating
twin-screw extruder in the presence of 35% water and 10%
glycerol (Rudnik, 2008). The extrusion was carried out at
temperatures ranging from 70 to 80 ◦C. Glycerol plasticized
wheat gluten sheet was produced by extrusion at the barrel
and die set temperature of 130 ◦C.

The five main types of renewable polymers that can be
produced from either petroleum or renewable sources are, in
general, melt processable with less stability issues than those
obtained from natural resources. We summarize the proper-
ties of the main types of polymers in Table 11.11 and present
values of Tg and Tm which are important to their processing.
The only polymer with melt processing stability issues is
PVA, which begins to degrade around 150 ◦C, which is sim-
ilar to its melting point. A discussion of the uses, properties,
and methods of processing of these polymers is summarized
in the book by Rudnik (2008). All of the materials listed
in Table 11.11 can be processed by means of conventional
processes.

PROBLEMS

A. Applications

11A.1 Estimation of Energy Gained in Mechanical Recy-
cling with No Loss at the Consumer. Considering a
closed-loop process in which plastic bags are recy-
cled with a loss of 15% at the recycling site (i.e.,
F = 0.15), calculate the energy available per kilo-
gram for reprocessing.

(a) Assume that the production energy of virgin PE
is 40 MJ/kg, f = 100%, and the energy to collect
and transport to the reprocessing site and then
to the converter is 3 MJ/kg. Disposal of PE bags
requires about 1 MJ/kg. From the estimated
value of energy available for reprocessing, is
recycling energy efficient?

(b) Redo the calculations but use updated values of
energy required for the various sources such as

collection and transport obtained from various
websites.

11A.2 Use of the Logarithmic Mixing Rule. Redo Exam-
ple 11.4 using a logarithmic decay in mechanical
properties.

11A.3 Dependence of Mechanical Properties on Molecu-
lar Weight. The mechanical properties of a poly-
mer have been proposed to depend on molecular
weight according to the following empirical equa-
tion:

P = A + B/Mw

where A and B are constants. For the tensile strength
(MPa) of a polypropylene the coefficients are A =
38.5 and B = −3.58 × 105. Determine the tensile
strength for a PP of Mw = 160,000 g/gmol.

11A.4 Estimate the Flow Curve for a Blend of PP and
LDPE. Estimate the flow curve for a blend of PP
and LDPE at 190 ◦C over a shear rate range of 0.1
to 1000 s−1 using Eqs. 11.16 and 11.17. Use the
viscosity data for LDPE in Appendix A.1 and the
following viscosity for a PP at 190 ◦C:

(η (Pa · s)/γ̇ (s−1) = 9821/0.01; 9500/0.1;

6178/1.0; 2690/10.0; 1181/50; 780/100)

11A.5 Estimation of Energy Gained in Mechanical Recy-
cling with Loss at the Consumer. Redo Problem
11A.1 with a recycle ratio f = 0.75, that is, loss of
material at the consumer step.

B. Principles

11B.1 Amount of Material to Pass by the Consumer.
Obtain the series in Eq. 11.3 which gives the total
amount of product to pass by the consumer after a
number of recycles.

11B.2 Series Summation. Obtain the sum (i.e., Eq. 11.4)
for the geometric series given in Eq. 11.3.
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11B.3 Effect of No Losses on Amount of Product Seen
by the Consumer. Following Figure 11.4, obtain
the total mass Mp of product passing through the
consumer for closed-loop recycling with no losses.
With an input of 1 kg of product, determine how
much product the consumer sees with a large num-
ber of recycles.

11B.4 Open-Loop Recycling of PET. Used PET bottles
are recycled to provide polymer for textiles fiber
production. In this case PET bottles are of higher
MW and when recycled are used in an application
requiring lower MW PET. Let m be the mass flow
rate of PET bottles past the consumer and let M be
the mass flow rate of fiber past the consumer. Fol-
lowing the notation in Figure 11.4, let box “1” be
the unit operation involved with the production of
bottles, box “2” be the consumer of the bottles, and
box “3” the unit operation involved with the dis-
posal of the PET bottles. Unit operations “4,” “5,”
and “6” are similar operations for the fiber. The
recycling unit operation “7” links the two produc-
tion sequences. In the case of the bottles m kg/yr
pass by the consumer while M kg/yr of fiber pass by
the consumer. The fraction of bottles being repro-
cessed is f while the fraction of the bottles listed as
solid waste from the reprocessing step is F.

(a) Construct a flow chart for this process.

(b) Show that the demand for input material is now
reduced by fm(1 − F) relative to the case when
no recycling is implemented.

(c) Show that mass of solid waste generated when
recycling is practiced is reduced by mf(1 − F).

(d) Carry out an energy balance and show that the
total energy involved with open-loop recycling
is

Es = [m(E1 + E2 + E3) + M(E4 + E5 + E6)]

− [fm(E3 + E4 − E7)]

+ [Ffm(E3 + E4 + E7)]

11B.5 Recycling of Polymer Scrap at the Processing
Stage. Consider the flow sheet in Figure 11.5,
which is associated with recycling at the processing
step. Let the basis F2 = m, f be the fraction of scrap
that is recycled (i.e., F4 = fm), and the fraction of
material lost at the regrinding step (i.e., stage “2”)
be F (i.e., F6 = Ffm). Find F1, F5, and F7. The
recycle ratio is r = F7/F2. Also find r in terms of f
and F.

11B.6 Age Distribution of Polymer in the Product Steam.
Consider the recycle scheme shown in Figure 11.5

for recycling at the processing stage. Calculate the
mass fraction of material with variable number of
passes through the process for 2 and 3 recycles (i.e.,
show how to get entries 2 and 3 in Table 11.2).

11B.7 Composition of the Product Stream. Derive Eq.
11.9 for the general case of a variable number of
recycling steps when recycling occurs at the pro-
cessing step.

11B.8 Pressure Drop Across a Packed Column for a New-
tonian Model. Derive Eq. 11.25 for a Newtonian
fluid.

11B.9 Pressure Drop Across a Packed Column for an Ellis
Model. Dervie Eq. 11.25 for an Ellis model.

11B.10 Radial Flow Through a Porous Disk. Consider
radial flow (see Example 2.4) through a porous
disk. Derive an expression similar to that for Eq.
11.25 for a Newtonian fluid and then a power-law
fluid.
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NOMENCLATURE

A Area of the plates Eq. 2.1
A Hamaker constant Eq. 6.173
A Radius of a set of unit cells Eq. 6.24
A Interface Eq. 6.36
A Cross-sectional area Eq. 8.4
AL Cross-sectional area of land Eq. 7.27
Ae Cross-sectional area of entry Eq. 7.27
Af Filled channel cross-sectional area Eq. 8.119
A1 Area of polymer Eq. 5.135
A2 Area of source Eq. 5.135
As Area across which mass transfer

takes place
Eq. 4.99

Av Interfacial area per unit volume Eq. 6.31
A0 Interfacial area Eq. 6.35
a Acceleration Eq. 2.68
a Coefficient Eq. 5.165
a Crystallographic axis Eq. 5.172a
a Radius of a particle Eq. 6.24
aT Shifting factor Eq. 5.3
a Vector that forms interface A0 Eq. 6.32
a′ Vector which forms interface A Eq. 6.62
a Average diameter of crystallites Eq. 5.148
B Scaling constant relating the fraction

of E(λ) that reaches the preform
Eq. 5.139

B Holdback Eq. 6.138
B Short axis Eq. 6.184
B Capillary die swell Eq. 7.5
B Dimensionless internal overpressure Eq. 9.150
B Slip coefficient Eq. 10.30
Br Dimensionless number Eq. 8.94
BR Blow (blowup) ratio Eq. 9.129

B′ Length Eq. 6.104
B1 Diameter swell Eq. 7.6
B2 Thickness swell Eq. 7.7
Bir Radiative Biot number
Bi−1 Reciprocal of Biot number, k/hb
b Shear-free flow constant Eq. 3.2
b Crystallographic axis Eq. 5.172b
b Number of black particles Eq. 6.1
b Vector that forms interface A0 Eq. 6.33
b′ Vector that forms interface A Eq. 6.36
b Crystal dimension Eq. 5.21
C Characteristic constant for every

polymer; for a number of
polymers, C = 265 K

Eq. 5.155

C Stress optic coefficient Eq. 5.177
C Wetted circumference Eq. 8.4
C Cauchy–Green strain tensor Eq. 6.85
CA Concentration of the volatile Eq. 8.163
Ce Equilibrium concentration Eq. 8.163
CD Constant Eq. 5.154
CD Hydrodynamic drag coefficient Eq. 9.53
Ci Molar concentration of ith species Eq. 4.1
CL Centerline distance Eq. 8.107
Cw Measure of adhesion of solids to wall Eq. 8.4
C

′
A Concentration of A in melt reentering

melt pool
Eq. 8.165

C p Constant pressure heat capacity per
unit mass

Eq. 5.16

C p,p Heat capacity of plug Eq. 8.31
Cv Constant volume heat capacity per

unit mass
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C1 Constant Eq. 9.69
C2 Constant Eq. 9.69
C3 Constant Eq. 9.69
C4 Constant Eq. 9.69
Ca Capillary (or Weber) number Eq. 6.183
c Coefficient Eq. 5.165
c Crystallographic axis Eq. 5.173
c Vector perpendicular to A0 Eq. 6.34
c′ Vector perpendicular to A Eq. 6.36
Dp Diameter of extrudate Eq. 3.89
D Characteristic length
D Deformation Eq. 6.184
D Tube diameter Eq. 5.127
D Film thickness
D Half-width of K(T) curve Eq. 9.92
D/DT Material time derivative or time

derivative following the fluid
motion

Eq. 5.58

Db Barrel diameter Eq. 8.21
De Deborah number Eq. 3.90
DR Draw (or draw-down) ratio Eq. 9.26
Ds Screw diameter Eq. 8.1
D∗ Distribution function Eq. 8.11
D 1

2 (Db + Ds) Eq. 8.26
DAair Diffusivity of solvent in the air

stream
.

DAB Mutual diffusion coefficient Eq. 4.12
Dw Diffusivity of moisture Eq. 4.83
D0 Pre-exponential factor Eq. 4.53
Ds Self-diffusion coefficient Eq. 4.87
d Distance between spheres
d Diameter of jet Eq. 9.104
dpf Take-up denier (denier per filament) Eq. 9.72
E Young’s modulus of elasticity
E Exit geometry Eq. 7.5
E Activation energy Eq. 9.49
EG Entrance geometry Eq. 7.5
ED Activation energy of diffusion Eq. 4.53
−ED/RT Diffusive transport of molecules

in melt
Eq. 5.152

Ef Evaporation at film surface Eq. 8.162
Ep Evaporaton at surface of pool Eq. 8.162
Ev Friction loss Eq. 2.69
Ex Extraction number Eq. 8.173
e Emissivity
e Flight width Eq. 8.2
erf Error function Eq. 4.51
erfc Complementary error function Eq. 4.92
eL Efficiency of mixing Eq. 6.89
ecoh Cohesive energy density Eq. 9.103
e1 Emissivity of sheet Eq. 5.134
e2 Emissivity of source Eq. 5.134
F Force Eq. 2.1
F Tensile force Eq. 3.106

F Combined configuration
emissivity factor

Eq. 5.133

F Distribution Eq. 6.13
F Force at take-up point Eq. 9.77
F Cohesive fracture
F Drawing force acting on film Eq. 9.16
Fr Froude number Eq. 9.69
F′ Related to surface geometry and

called view factor
Eq. 5.133

FZ Force at frost line Eq. 9.149
�F∗

n Free energy of the nucleus with
n-dimensional growth

Eq. 5.152

�F∗
n /kBT Nucleation factor Eq. 5.155

FT Transpose of deformation gradient
tensor

Eq. 6.84

F(t) Cumulative RTD function, or F
function

Eq. 6.115

f Packing factor Eq. 5.148
f Degree of fill Eq. 8.119
fam Amorphous orientation function Eq. 5.179
f ′
w Coefficient of friction between

pellets and wall
Eq. 8.4

f(t) External RTD function Eq. 6.116
G Shear modulus Eq. 3.51
G Pressure gradient Eq. 7.17
G Linear rate of growth Eq. 5.152
G Shear modulus Eq. 9.81
G Mass flow rate Eq. 5.127
G(t) Cumulative RTD function Eq. 6.133
Gr Grashof number Eq. 4.103
Gor Oriented linear growth rate Eq. 5.167
Gun Unoriented linear growth rate Eq. 5.167
Grf Grashof number evaluated at the

film temperature
Eq. 5.130

�Gun Free energy difference between
amorphous and crystalline states
under random orientation

Eq. 5.167

�Gmix Change of Gibbs free energy of
mixing

Eq. 6.202

G0 Molecular jump frequency Eq. 5.152
G∗ Complex shear modulus Eq. 3.24
G′ Storage modulus Eq. 3.24
G′′ Loss modulus Eq. 3.24
gc Mass of crystalline material
g(t) Internal RTD function Eq. 6.134
H Separation distance Eq. 2.1
H Distance of the capillary to the

wheel
Eq. 3.105

H Slit height Eq. 7.30
H Hydrodynamic stability
H(t) Unit step function Eq. 3.25
Hf Final film thickness Eq. 9.131
H0 Initial film thickness Eq. 9.131
Hl Film thickness in liquid phase Eq. 9.170
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Hs Film thickness in the solid phase Eq. 9.170
�H A Heat of reaction Eq. 8.183
�H c Heat of crystallization
�H f Heat of fusion
�H m Enthalpy change of melting

process
Eq. 5.164

�H c Latent heat of crystallization per
unit mass

Eq. 9.90

�H s Molar heat of sorption Eq. 4.62
�Hmix Change in enthalpy of mixing Eq. 6.202
h Heat transfer coefficient Eq. 5.122
h Wall thickness Eq. 10.75
ha Air-sided heat transfer

coefficient
Eq. 9.113

hL Thickness of film at chill roll
hm Total surface of submerged

object
hP Planck constant
hr Radiation heat transfer

coefficient
Eq. 5.138

h Average heat transfer coefficient Eq. 5.124
I Intensity of segregation Eq. 6.19

Ihkl(φi,z)
Intensity diffracted from (hkl)

planes which are normal to
the i crystallographic axis

Eq. 5.174

Is(λ) Intensity of radiation at surface
for a given λ

Eq. 5.140

I1 First invariant of the rate of
deformation tensor

Eq. 2.60

I2 Second invariant of the rate of
deformation tensor

Eq. 2.61

I3 Third invariant of the rate of
deformation tensor

Eq. 2.62

J Kinetic crystallizability Eq. 9.93
J∗

i Molar flux of species i Eq. 4.11
jD Mass transfer Chilton–Colburn

j-factor
Eq. 4.106

jA Mass flux of species A Table 4.3
j∗i Mass flux of species i Eq. 4.11
K Related to half-time for

crystallization; volume rate of
crystallization

Eq. 5.161

K Partition coefficient Problem 4C.1
K Ratio of compressive stress in

horizontal direction to
compressive stress in vertical
direction

Eq. 8.4

k(λ) Absorption coefficient Eq. 5.140
Kmax Maximum of rate–temperature

curve
Eq. 9.92

kp Thermal conductivity of plug Eq. 8.31
Ktot Total kinetic energy Eq. 2.69
k Rate constant for mixing Eq. 6.18
k Viscosity temperature coefficient Eq. 9.105

kB Boltzmann constant Eq. 5.152
kc Convective mass transfer coefficient Eq. 4.98
km Thermal conductivity Eq. 10.35
kx Convective mass transfer coefficient Eq. 4.98
k ·

c Convective local mass transfer
coefficient

Eq. 4.96

k ·
x Convective local mass transfer

coefficient
p. 98

k0 Reaction rate Eq. 8.182
kc Average mass transfer coefficient Eq. 4.99
kx Average local mass transfer

coefficient
Eq. 4.100

L Length Eq. 2.15
L Long axis of an ellipse Eq. 6.184
Le Unwound length of devolatilization

section
Eq. 8.174

Ln Horizontal length
Ls Lead of screw Eq. 8.1
Lv Thickness of plate
lN Total spiral length Eq. 6.111
M Degree of mixing Eq. 6.15
Mi Molecular weight of component i Eq. 4.4
Mt Amount absorbed or desorbed at

time t
Eq. 4.91

Mw Weight average molecular weight Eq. 3.142
M∞ Total amount absorbed or

desorbed
Eq. 4.91

MA0,
MB0

Initial molecular weight Eq. 8.184

m Mass Eq. 2.68
m Orientation vector Eq. 6.88
m Consistency, power-law parameter Eq. 2.6
m◦ Value of parameter at reference

temperature
Eq. 5.12

ṁ Polymer mass flow rate Eq. 9.3
m′ Power-law parameter in the

Hershel–Bulkley model
Eq. 2.11

ṁP Dope output Eq. 4.124
N Number of crystalline units Eq. 5.148
N Number of samples tested Eq. 6.3
N Number of steps Eq. 6.71
N Number of revolutions Eq. 6.111
N Angular velocity of screw, rad/s Eq. 8.23
N′ Number of turns Eq. 8.36
Nmin Minimal rotational frequency Eq. 6.220
N dθ Displacement after N revolutions Eq. 6.111
Nu Nusselt number Eq. 5.23
Nδ Number of striations Eq. 8.160
NA Molar rate over entire interface Eq. 4.99
NB Molar rate over entire interface Eq. 4.99
�N Birefringence Eq. 5.177
�N0 Intrinsic birefringence p. 144
�N 0

cr Birefringence value of perfectly
oriented crystalline region

Eq. 5.189
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�N 0
am Birefringence value of perfectly

oriented amorphous region
Eq. 5.179

Ni Molar flux of species i Eq. 4.9
N1 Primary normal stress difference Eq. 3.11
Num Nusselt number for entire surface Eq. 5.129
n Power-law index Eq. 2.6
n Dimensionality of nucleation

process which is usually taken
as 2.0

Eq. 5.155

n Number of species in the system Eq. 4.2
n Total number of individual groups

per structural unit of the
macromolecule

Eq. 4.79

n Number of particles Eq. 6.1
n0 Value of power-law index at

reference temperature
Eq. 5.13

n′ Power-law parameter in the
Hershel–Bulkley model

Eq. 2.11

P Partial pressure Eq. 4.61
P Probability Eq. 6.1
p Ratio of viscosity of dispersed to

continuous phase μc/μd

Eq. 6.185

P Perimeter Eq. 6.206
P(n) Spectral description or power

spectrum
Eq. 6.30

PH Pressure at H Eq. 8.6
Pw Power input through barrel Eq. 8.28
P0 Pressure at h0 Eq. 8.10
P1 Initial pressure at z = 0 Eq. 8.27
P2 Pressure at any down channel

distance
Eq. 8.27

Pv Power consumption per unit
volume (specific power)

Eq. 6.74

P0 Pure solvent vapor pressure Eq. 4.86
P Permeability Eq. 4.71
P0 Pre-exponential factor Eq. 4.75
Psc Permeability in semicrystalline

materials
Eq. 4.81

P
∗

Pre-exponential permeability factor Eq. 4.78
PeD Peclet number for diffusion Eq. 4.105
Pr Prandtl number Eq. 5.123
Prf Prandtl number evaluated at the

film temperature
Eq. 5.130

Pend End pressure Eq. 3.121
Pent Entrance pressure Eq. 3.121
Pex Exit pressure Eq. 3.121
PH Hole pressure Eq. 3.129
P ′

0 Combined pressure at the die entry Eq. 2.17
P ′

L Combined pressure at die exit Eq. 2.17
Ptot Total pressure Eq. 3.122
�P Internal overpressure Eq. 9.146
p Pressure Eq. 2.71
p Fraction of black particles in entire

mixture
Eq. 6.1

p Isotropic pressure Eq. 2.71
p Number of parallel flights Eq. 8.128
p Degree of conversion
pa Atmospheric pressure Eq. 3.102
p0 Dynamic pressure at the die entry Eq. 2.16
pL Dynamic pressure at the end of the

die
Eq. 2.16

Q Volumetric flow Eq. 2.31
Qc Calender leakage
Qd Drag flow Eq. 8.100
Qf Flight leakage Eq. 8.132
Qp Pressure flow Eq. 8.100
Qs Volumetric flow rate in the extruder Eq. 8.103
Qt Volumetric flow rate through

tetrahedron gap
Eq. 8.132

q Flow rate per unit width Eq. 7.21
qn|s Heat flux in the direction normal to

the surface and evaluated at the
surface

Eq. 5.122

qr Heat flux due to conduction in the r
direction

Eq. 5.43

qz Heat flux due to conduction in the z
direction

Eq. 5.43

R Radius of capillary Eq. 3.120
R Function Eq. 9.15
R Radius of outer cylinder Eq. 2.19
κR Radius of inside cylinder Eq. 2.19
R Radius of roll
R(r) Correlation function Eq. 6.20
R(z) Radius of spinning line at every z

distance
Eq. 4.117

Re Reynolds number
ṘA Net rate of molar production of

species A
Eq. 4.21

RA Rate of reaction of species A Eq. 8.181
Rex Local Reynold’s number Eq. 5.123
Rf Initial tube outside radius Eq. 9.129
Rf Constant bubble radius beyond frost

line
Eq. 9.149

Rg Universal gas constant Eq. 4.53
RH Mean hydraulic radius Eq. 7.27
RH Principal radius of curvature of

bubble surface at point of interest
Eq. 9.146

RL Radius of die at exit Eq. 2.111
RL Principal radius of curvature of

bubble surface at point of
interest

Eq. 9.146

R1, R2 Principal radii of curvature of fiber Eq. 9.44
Rs Radius of outer surface Eq. 5.144
RT Droplet radius according to Taylor’s

theory
Eq. 6.198

R0 Die radius at entrance Eq. 2.11
Rw Wheel radius Eq. 3.135
Re∗ Air-side Reynold’s number Eq. 9.51
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Rcl Cluster radius Eq. 6.181
r Thickness of a thin cylindrical

shell
Eq. 2.16

r Distance between molecules Eq. 4.52
r Stoichiometric ratio Eq. 8.184
r Spherical coordinate Eq. 10.59
r Separation vector Eq. 6.20
ṙA Net rate of mass production of

species A
Eq. 4.18

S Solubility Eq. 4.61
S Segregation
S Spinnability
S Shape factor Eq. 10.36
Sc Schmidt number Eq. 4.102
Sh Sherwood number Eq. 4.101
St Stanton number Eq. 9.69
StD Stanton number for diffusion Eq. 4.104
SL Linear scale of segregation Eq. 6.28
SV Volumetric scale of segregation Eq. 6.29
Sw Weight swell Eq. 7.9
S∞ Unconstrained elastic recovery Eq. 7.3
Ṡ Source term Eq. 5.43
Ṡ Rate of energy production Eq. 9.38
�Sun Entropy difference between

amorphous and crystalline states
under random orientation

Eq. 5.168

�Smix Change in entropy of mixing Eq. 6.202
Ṡr Energy generated per unit volume

per unit time by a reacting system
Eq. 8.180

S0 Pre-exponential factor Eq. 4.62
Sa Solubility in amorphous regions Eq. 4.67
Ssc Solubility in semicrystalline

polymers
Eq. 4.67

S Cross-sectional contact area of
rupture plate

Eq. 6.176

s Constant Eq. 2.42
s Scaling factor Eq. 4.78
s Standard deviation Eq. 6.8
s2

N Variance of the binomial distribution Eq. 6.3
T̂ Dimensionless stress Eq. 9.150
Ta Temperature of the cooling fluid Eq. 5.81
Ta Ambient air temperature
Tabs Absolute temperature Eq. 7.1
Tf Film temperature
Tg Glass transition temperature Eq. 4.54
TK Absolute temperature
Tm Melting temperature
Tmax Temperature at Kmax Eq. 9.92
T (K)

m Melting point in Kelvin
T ′

m Thermodynamic equilibrium
melting point

Eq. 5.155

T 0
m Melting point at atmospheric

conditions
Eq. 5.164

TR Reference temperature Eq. 5.16

Tr Temperature of radiation source Eq. 5.133
Tx Crystallization temperature Eq. 5.155
�T T0 − T∞
�T T ′

m − Tx (undercooling) Eq. 5.155
Tb Barrel temperature Eq. 8.46
Tp Temperature in plug Eq. 8.31
T0 Temperature of bed entering

melting zone
Eq. 8.50

t Time after a fluid element leaves
the die

Eq. 7.5

t Residence time Eq. 8.139
t Confidence coefficient Eq. 6.10
tav Process time Eq. 3.90
tb Burst time Eq. 6.194
tf Fraction of time spent in upper

portion of channel
Eq. 8.138

tf Exposure time
tH Hang time Eq. 2.127
tlag Time lag Eq. 4.90
tp Time required for melt to pass

through the land
Eq. 7.5

tp Exposure time of melt pool surface
tp Time of rotation of pool Eq. 8.190
t0 Shortest residence time Eq. 6.121
t Tangential vector Fig. 9.3
t∗ Dimensionless time Eq. 5.107
t∗ Residence time of fluid element

along streamline
t∗
b Dimensionless burst time Eq. 6.196

t Mean residence time Eq. 6.117
t1/2 Half-time Eq. 4.94
U Combined heat transfer coefficient Eq. 9.40
uz Dimensionless velocity Eq. 8.87
V Velocity Eq. 2.1
V Air speed
V Length of a needle
V Take-up speed Eq. 9.130
V Volume of closed C-shaped

chamber
Eq. 8.128

V Velocity of filament Eq. 4.123
VA Volume of gas at STP dissolved into

polymer per unit volume of
solution

Eq. 4.61

Vb Velocity of barrel surface
Vcell Volume of a cell Eq. 6.24
VP Volume of polymer per unit volume

of solution
Eq. 4.61

VI Volume of region I Eq. 6.24
V0 Velocity of plate Eq. 8.15
V i Molar volume of i Eq. 4.4
�V m Volume change of melting process Eq. 5.164
vay Cooling air cross-flow velocity Eq. 9.64
vx Velocity component Eq. 6.75
vy Velocity component Eq. 6.75
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vz Axial velocity Eq. 6.208
vz Filament velocity
vz Circumferential velocity
vθ Tangential velocity Eq. 6.108
vl Axial velocity Eq. 8.101
v Time average velocity Eq. 2.69
vl Average axial velocity Eq. 8.137
v Mass average bulk velocity Eq. 4.2
vi Velocity of the ith species Eq. 4.2
vP Velocity of membrane with respect

to a fixed reference system
Eq. 4.14

vr Velocity of plate relative to solid
bed

Eq. 8.15

<v> Average velocity Eq. 2.31
v∗ Molar average bulk velocity Eq. 4.3
v· Volume average bulk velocity Eq. 4.4
vay Velocity of cross-flow air Eq. 9.50
W Width Eq. 6.144
W Work input to the system Eq. 2.69
W Film width Eq. 4.40
W Width of channel Eq. 8.2
W Angular velocity Eq. 6.108
W Mean channel width
Wb Channel width at barrel surface
Wb Channel width at barrel surface
Ws Channel width at root of screw
WL Final width Eq. 2.114
W0 Initial width Eq. 2.114
w Mass flow rate Eq. 2.69
w Water content Eq. 4.83
w L Width at roll
w Mean flight width Eq. 8.130
w L (z) Rate of melting Eq. 8.54
X Width of solid bed Eq. 8.54
X Individual stage efficiency
X Dimensionless freezeline height Eq. 9.155
Xf Staged efficiency of diffusing film Eq. 8.167
XT Devolatilization efficiency of

machine
x Depth Eq. 5.140
xa Component of a Eq. 6.32
xb Component of b Eq. 6.33
xi Mole fraction of ith species Eq. 4.1
ya Component of a Eq. 6.32
yb Component of b Eq. 6.33
Z Freezeline height Eq. 9.155
Zb Down channel distance Eq. 8.29
z Length Eq. 2.128
z Confidence coefficient Eq. 6.9
z Machine axis Eq. 9.115
z Frost-line height
z Helical distance along channel Eq. 8.3
z Mean helical length
za Component of a Eq. 6.32

zb Component of b Eq. 6.33
zT Total length of melting Eq. 8.68
z∗

coh Axial distance Eq. 9.103
z∗

cap Maximum uninterrupted jet length Eq. 9.104

Greek Symbols

α Angle Eq. 2.66
α Thermal diffusivity
α Rheological parameter Eq. 9.83
α One half the hopper angle Eq. 8.11
α Dimensionless parameter Eq. 9.83
αi One-half the angle of intermesh Eq. 8.107
αp Thermal diffusivity of solid bed Eq. 8.32
αt Tip angle Eq. 8.108
β Function of geometry, r/R Eq. 2.19
β Volume coefficient of expansion
β Angle Eq. 6.210
β Average Liapunov exponent Eq. 6.206
β Deformation gradient Eq. 9.103
βn Eigenvalues Eq. 5.92
βw Wall angle of friction Eq. 8.14
�b Bulk composite property (Cp or k) Eq. 5.73
�1 Matrix property (Cp or k) Eq. 5.73
�2 Second component property

(Cp or k)
Eq. 5.73

γ Total shear strain Eq. 6.62
γ̇ Shear rate Eq. 2.8
γ̇ r Reduced shear rate Eq. 5.2
γ̇ w Wall shear rate Eq. 3.97
γ̇ Rate of strain tensor Eq. 2.59
γ̇ c Shear rate in continuous phase Eq. 6.106
γ̇ d Shear rate in dispersed phase Eq. 6.106
γ Mean total strain Eq. 6.141
γ 0 Strain amplitude Eq. 3.22
γ̇ 0 Shear rate amplitude Eq. 3.18
γ̇crit Critical shear rate for drop breakup Eq. 6.180
δ Coating thickness Eq. 2.53
δ Tg/T ′

m Eq. 5.157
δ Thickness over which concentration

changes from CAi to CA0

δ Penetration of dye into the film
δ Striation thickness Eq. 6.31
δ Solubility parameter Eq. 6.203
δ Effective angle of friction Eq. 8.9
δij Kronecker delta Eq. 3.7
δs Db − Ds = 2δs

δi Unit vector in the i direction Eq. 9.9
δx Unit vector along x direction Eq. 6.32
δy Unit vector along y direction Eq. 6.32
δz Unit vector along z direction Eq. 6.32
� Difference
ε Emissivity
ε Potential energy constant Eq. 4.52
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ε Extensional strain Eq. 6.54
ε Void volume fraction or porosity

of cluster
Eq. 6.175

ε Dimensionless parameter Eq. 9.83
ε̇ Extension rate Eq. 3.2
1/ε Dimensionless force
ε/k Lennard-Jones temperature Table 4.8
ζ Dimensionless coordinate Eq. 5.21
ζ Dimensionless variable Eq. 9.63
η Shear viscosity Eq. 2.5
η x/

√
4 -DAPt Eq. 4.51

ηp Planar elongational viscosity Eq. 9.123
ηr Reduced viscosity Eq. 5.1
η0 Zero shear viscosity Eq. 2.7
η0(T) Zero shear viscosity at

temperature T
Eq. 5.3

η0(T0) Zero shear viscosity at
temperature T0

Eq. 5.3

η∞ Viscosity as shear rate → ∞ Eq. 2.8
η∗ Complex viscosity Eq. 3.21
η′ Viscous contribution to dynamic

viscosity
Eq. 3.21

η′′ Elastic contribution to dynamic
viscosity

Eq. 3.21

η Uniaxial elongational viscosity Eq. 3.36
θ Dimensionless variable Eq. 9.63
θ Dimensionless temperature Eq. 5.112
θ Spherical coordinate angle Eq. 6.51
θ Circumferential angle Eq. 8.109
θ Mean temperature Eq. 5.25
θ a Dimensionless parameter Eq. 9.64
κ Limit of integration Eq. 2.25
κR0 Die inner radius Eq. 9.180
λ Dimensionless variable Eq. 9.63
λ ∼1/γ̇ for the onset of shear

thinning
Eq. 2.8

λ Wavelength Eq. 5.139
λ Relaxation time Eq. 3.39
λx Principal elongational ratio Eq. 6.37
λy Principal elongational ratio Eq. 6.37
λz Principal elongational ratio Eq. 6.37
λ0 Dimensionless parameter Eq. 9.64
λ0 Elongation ratio Eq. 6.47
λ0 Characteristic time Eq. 9.128
μ Newtonian viscosity Eq. 2.1
μ Mean value Eq. 6.9
μc Viscosity of major (continuous)

phase
μd Viscosity of minor (dispersed)

phase
μk Roots of Bessel function J0(μk) = 0 Eq. 4.121
μ0 Bingham model parameter Eq. 2.9
ξ Limit of integration Eq. 2.25
ξ T ′

m/Tx Eq. 5.157

ξ Dimensionless variable Eq. 8.87
ξ c Particle position in lower part of

channel
Eq. 8.134

ξ ′ Dummy variable of integration Eq. 2.25
π Permachor Eq. 4.78
πa Permachor for amorphous

materials
Eq. 4.80

πii Normal component of total stress
tensor

Eq. 9.1

πij ijth Component of the total stress
tensor

Eq. 3.7

πrr r Component of the total stress
tensor

Eq. 10.65

πsc Permachor for semicrystalline
materials

Eq. 4.80

ρ Density Eq. 2.15
ρ Total mass concentration Eq. 4.1
ρ Density of surrounding medium
ρa Density of amorphous phase Eq. 5.160
ρb Bulk density Eq. 8.4
ρc Density of spherulitic phase Eq. 5.160
ρc Density of crystalline plane Eq. 5.156
ρi Mass concentration Eq. 4.1
ρ(r) Correlation coefficient Eq. 6.22
σ Stefan–Boltzmann radiation

constant
Eq. 5.133

σ Liapunov exponent Eq. 6.205
σ Potential length, or collision

diameter
Eq. 4.52

�σ Difference between the principal
stresses

Eq. 5.177

σ e End surface energy associated with
lamellar growth

Eq. 5.156

σ s Side surface energy Eq. 5.156
σ 2

n Variance of the distribution Eq. 6.2
σ x Collision diameter of molecule x Eq. 4.54
τ Dimensionless variable Eq. 9.63
τ Stress tensor Eq. 2.59
τ Time scale of burst process Fig. 6.21
τ cr Critical wall shear stress Eq. 7.1
τ ii Normal component of extra stress

tensor
Eq. 9.1

τ ij ijth component of the extra stress
tensor

Eq. 3.7

τR Wall shear stress for a capillary Eq. 7.5
τ 0 Yield stress Eq. 2.9
τ 0 Tortuosity Eq. 4.81
τw Wall shear stress for slit flow Eq. 3.127
τ 1/2 τ yx when η = 1

2 η0 Eq. 2.7
τ ∗

xy Shear stress (mechanics convention) Eq. 2.4
τ xx Extra normal stress component Eq. 3.6
τ yx Shear stress, viscous flux of x

momentum in the y direction
Eq. 2.3

τ yy Extra normal stress component Eq. 3.6
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v Angular velocity Eq. 3.134
v Kinematic viscosity
v0 Die extrusion speed Eq. 9.130
� Viscous dissipation term Eq. 8.47
� Phase shift angle Eq. 3.19
φc Volume fraction of crystallinity Eq. 5.159
φi,z Angle each orthographic axis makes

with the z axis
Eq. 5.174

φc Equilibrium volume fraction of
crystallinity

Eq. 5.159

φ1 Volume fraction matrix Eq. 5.73
φ2 Volume fraction second

component
Eq. 5.73

φ∞ Equilibrium volume fraction of
crystallinity

Eq. 5.159

φ Spherical coordinate angle Eq. 6.51
φ Angle between unit normal vector

and z-axis
Eq. 9.10

φ Helix angle Eq. 8.16
φ Angle of drag
φ Angle of deformed droplet Eq. 6.188
φA Solvent volume fraction Eq. 4.86
φb Helix angle at barrel surface
φc Crystallinity of material Eq. 4.58

φ(r) Intermolecular energy of two
molecules r distance apart

Eq. 4.52

φs Helix angle screw surface Eq. 8.1
φtot Total potential energy Eq. 2.69
φ1 Volume fraction of mixture Eq. 6.203
φ2 Volume fraction of mixture Eq. 6.203
φ̂ Potential energy per unit mass Eq. 2.69
χ Interaction parameter of

solvent-polymer system
Eq. 4.86

χ Confidence coefficient Eq. 6.11
χopt Principal optical direction Eq. 5.185
χ stress Principal stress direction Eq. 5.185
�1 Primary normal stress difference

coefficient
Eq. 3.16

�2 coefficient Eq. 3.17
ψ Stream function Eq. 6.204
ψ Dimensionless variable Eq. 8.64
ψ Flight flank angle Eq. 8.130
ψay Dimensionless parameter Eq. 9.64
ψL Dimensionless parameter Eq. 9.64
ω Angular frequency Eq. 3.18
ωi Mass fraction of ith species Eq. 4.1
ωr Reduced angular frequency



APPENDIX A

RHEOLOGICAL DATA FOR SEVERAL POLYMER MELTS

This appendix contains rheological data for a few poly-
mer melts (LDPE, LLDPE, HDPE, mineral filled Nylon 6,6,
and PPS).

A.1 LDPE DATA

TABLE A.1 Steady Shear Viscosity and Primary
Normal Stress Difference Data for LDPE (NPE 953,
Quantum Chemicals)

γ̇ (s−1)
η (Pa · s)
170 ◦C

η (Pa · s)
180 ◦C

η (Pa · s)
190 ◦C

0.010 2.310E + 04 1.530E + 04 1.112E + 04
0.0215 2.215E + 04 1.526E + 04 1.147E + 04
0.0464 2.013E + 04 1.446E + 04 1.129E + 04
0.100 1.693E + 04 1.309E + 04 1.088E + 04
0.215 1.437E + 04 1.124E + 04 9.237E + 03
0.464 1.122E + 04 9.224E + 03 7.538E + 03
1.00 8.192E + 03 7.023E + 03 5.845E + 03

γ̇ (s−1)
N1 (Pa)
170 ◦C

N1 (Pa)
180 ◦C

N1 (Pa)
190 ◦C

0.0100
0.0215
0.0464 6.474E + 02 2.486E + 02 1.498E + 02
0.100 1.216E + 03 6.852E + 02 5.568E + 02
0.215 3.717E + 03 2.184E + 03 1.765E + 03
0.464 1.071E + 04 5.051E + 03 5.104E + 03
1.00 2.652E + 04 1.328E + 04 1.306E + 04

TABLE A.2 Dynamic Oscillatory Shear Data for LDPE
(NPE 953, Quantum Chemicals) at 170 ◦C and 190 ◦C

170 ◦C

Frequency (rad/s) G′ (Pa) G′′ (Pa) η∗ (Pa · s)

1.000E−01 5.851E + 02 1.339E + 03 1.461E + 04
2.154E−01 1.189E + 03 2.127E + 03 1.131E + 04
4.642E−01 2.204E + 03 3.326E + 03 8.597E + 03
1.000E + 00 3.895E + 03 5.013E + 03 6.349E + 03
2.154E + 00 6.477E + 03 7.336E + 03 4.542E + 03
4.641E + 00 1.023E + 04 1.027E + 04 3.123E + 03
1.000E + 01 1.556E + 04 1.422E + 04 2.108E + 03
2.154E + 01 2.297E + 04 1.935E + 04 1.394E + 03
4.641E + 01 3.285E + 04 2.585E + 04 9.008E + 02
1.000E + 02 4.539E + 04 3.366E + 04 5.651E + 02

190 ◦C

Frequency (rad/s) G′ (Pa) G′′ (Pa) η∗ (Pa · s)

1.000E−01 3.291E + 02 9.073E + 02 9.651E + 03
2.154E−01 7.283E + 02 1.535E + 03 7.888E + 03
4.642E−01 1.456E + 03 2.525E + 03 6.280E + 03
1.000E + 00 2.644E + 03 3.877E + 03 4.693E + 03
2.154E + 00 4.589E + 03 5.785E + 03 3.428E + 03
4.641E + 00 7.565E + 03 8.476E + 03 2.448E + 03
1.000E + 01 1.190E + 04 1.193E + 04 1.685E + 03
2.154E + 01 1.807E + 04 1.665E + 04 1.141E + 03
4.641E + 01 2.661E + 04 2.260E + 04 7.523E + 02
1.000E + 02 3.765E + 04 2.984E + 04 4.804E + 02
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TABLE A.3 Capillary Rheometer Data for LDPE
(NPE-953, Quantum Chemicals) at 170 ◦C

L/D = 12.5

γ̇ a (s−1) τ a (Pa) γ̇ c (s−1) τ c (Pa)

0.37504E + 02 0.66010E + 05 0.56246E + 02 0.64136E + 05
0.75007E + 02 0.88013E + 05 0.11249E + 03 0.65933E + 05
0.11251E + 03 0.10617E + 06 0.16874E + 03 0.74074E + 05
0.22502E + 03 0.14082E + 06 0.33747E + 03 0.96463E + 05
0.37504E + 03 0.17603E + 06 0.56246E + 03 0.13049E + 06
0.75007E + 03 0.24204E + 06 0.11249E + 04 0.14130E + 06
0.11251E + 04 0.26844E + 06 0.16874E + 04 0.17624E + 06
0.22502E + 04 0.39166E + 06 0.33747E + 04 0.23477E + 06
0.37504E + 04 0.44006E + 06 0.56246E + 04 0.25862E + 06

L/D = 37.1

γ̇ a (s−1) τ a (Pa) γ̇ c (s−1) τ c (Pa)

0.37504E + 02 0.48188E + 05 0.54467E + 02 0.47556E + 05
0.75007E + 02 0.63756E + 05 0.10893E + 03 0.56317E + 05
0.11251E + 03 0.74135E + 05 0.16340E + 03 0.63322E + 05
0.22502E + 03 0.96375E + 05 0.32680E + 03 0.81430E + 05
0.37504E + 03 0.11584E + 06 0.54467E + 03 0.10049E + 06
0.75007E + 03 0.17422E + 06 0.10893E + 04 0.14028E + 06
0.11251E + 04 0.17978E + 06 0.16340E + 04 0.14871E + 06
0.22502E + 04 0.24464E + 06 0.32680E + 04 0.19179E + 06
0.37504E + 04 0.29191E + 06 0.54467E + 04 0.23077E + 06

L/D = 75.1

γ̇ a (s−1) τ a (Pa) γ̇ c (s−1) τ c (Pa)

0.37504E + 02 0.54935E + 05 0.55277E + 02 0.54623E + 05
0.75007E + 02 0.64091E + 05 0.11055E + 03 0.60416E + 05
0.11251E + 03 0.73246E + 05 0.16583E + 03 0.67905E + 05
0.22502E + 03 0.95220E + 05 0.33166E + 03 0.87837E + 05
0.37504E + 03 0.12086E + 06 0.55277E + 03 0.11328E + 06
0.75007E + 03 0.15748E + 06 0.11055E + 04 0.14071E + 06
0.11251E + 04 0.17579E + 06 0.16583E + 04 0.16045E + 06
0.22502E + 04 0.23622E + 06 0.33166E + 04 0.21011E + 06
0.37504E + 04 0.27284E + 06 0.55277E + 04 0.24264E + 06

Source: Data from R. H. Moynihan. 1990. Flow Stability of Linear Low
Density Polyethylene at Polymer and Metal Interfaces (Ph.D. Thesis,
Virginia Tech, Blacksburg, VA).

TABLE A.4 Extensional Data for LDPE
(NPE 953, Quantum Chemicals) at 170 ◦C

ε̇ = 0.020 s−1

Time (S) Strain η (Pa · s) σ (Pa)

0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00
0.50000E + 01 0.10000E + 00 0.39900E + 05 0.79800E + 03
0.12500E + 02 0.25000E + 00 0.53850E + 05 0.10770E + 04
0.20000E + 02 0.40000E + 00 0.61050E + 05 0.12210E + 04
0.27500E + 02 0.55000E + 00 0.65200E + 05 0.13040E + 04
0.35500E + 02 0.71000E + 00 0.72450E + 05 0.14490E + 04
0.43000E + 02 0.86000E + 00 0.76500E + 05 0.15300E + 04
0.50500E + 02 0.10100E + 01 0.78200E + 05 0.15640E + 04
0.58000E + 02 0.11600E + 01 0.81550E + 05 0.16310E + 04
0.65500E + 02 0.13100E + 01 0.83600E + 05 0.16720E + 04
0.73000E + 02 0.14600E + 01 0.85350E + 05 0.17070E + 04
0.80500E +02 0.16100E + 01 0.93650E + 05 0.18730E + 04
0.88500E + 02 0.17700E + 01 0.98050E + 05 0.19610E + 04
0.96000E + 02 0.19200E + 01 0.94550E + 05 0.18910E + 04

ε̇ = 0.053 s−1

Time (s) Strain η (Pa · s) σ (Pa)

0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00
0.28302E + 01 0.15000E + 00 0.37679E + 05 0.19970E + 04
0.58491E + 01 0.31000E + 00 0.50811E + 05 0.26930E + 04
0.88679E + 01 0.47000E + 00 0.57604E + 05 0.30530E + 04
0.11887E + 02 0.63000E + 00 0.65792E + 05 0.34870E + 04
0.14906E + 02 0.79000E + 00 0.72755E + 05 0.38560E + 04
0.17925E + 02 0.95000E + 00 0.76774E + 05 0.40690E + 04
0.20943E + 02 0.11100E + 01 0.83415E + 05 0.44210E + 04
0.23962E + 02 0.12700E + 01 0.91453E + 05 0.48470E + 04
0.26981E + 02 0.14300E + 01 0.96755E + 05 0.51280E + 04
0.30000E + 02 0.15900E + 01 0.10666E + 06 0.56530E + 04
0.33019E +02 0.17500E + 01 0.11323E + 06 0.60010E + 04
0.36038E + 02 0.19100E + 01 0.12523E + 06 0.66370E + 04
0.39057E + 02 0.20700E + 01 0.14026E + 06 0.74340E + 04
0.42075E + 02 0.22300E + 01 0.15343E + 06 0.81320E + 04

ε̇ = 0.200 s−1

Time (s) Strain η (Pa · s) σ (Pa)

0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00
0.70000E + 00 0.14000E + 00 0.20565E + 05 0.41130E + 04
0.14500E + 01 0.29000E + 00 0.30115E + 05 0.60230E + 04
0.22000E + 01 0.44000E + 00 0.37800E + 05 0.75600E + 04
0.29500E + 01 0.59000E + 00 0.44105E + 05 0.88210E + 04
0.37000E + 01 0.74000E + 00 0.52050E + 05 0.10410E + 05
0.44500E + 01 0.89000E + 00 0.59800E + 05 0.11960E + 05
0.52000E + 01 0.10400E + 01 0.68650E + 05 0.13730E + 05
0.59500E + 01 0.11900E + 01 0.79300E + 05 0.15860E + 05
0.67000E + 01 0.13400E + 01 0.89700E + 05 0.17940E + 05
0.74500E + 01 0.14900E + 01 0.10190E + 06 0.20380E + 05
0.82000E +01 0.16400E + 01 0.11495E + 06 0.22990E + 05
0.89500E + 01 0.17900E + 01 0.12975E + 06 0.25950E + 05
0.97500E + 01 0.19500E + 01 0.14495E + 06 0.28990E + 05

Source: Data from S. A. White. 1987. The Planar Entry Flow Behavior of
Polymer Melts: An Experimental and Numerical Analysis (Ph.D. Thesis,
Department of Chemical Engineering,Virginia Tech, Blacksburg, VA).
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A.2 HDPE DATA

TABLE A.5 Steady Shear Data for HDPE (EMN 885,
Philips Petroleum Co.)

γ̇ (s−1)
η (Pa · s)
170 ◦C

η (Pa · s)
180 ◦C

η (Pa · s)
190 ◦C

0.100 7.801E + 02 6.649E + 02 5.575E + 02
0.2154 7.608E + 02 6.657E + 02 5.390E + 02
0.4641 7.049E + 02 6.111E + 02 4.846E + 02
1.00 6.396E + 02 5.689E + 02 4.561E + 02
2.154 5.908E + 02 5.138E + 02 4.139E + 02
4.641 5.207E + 02 4.535E + 02 4.267E + 02
10.0 4.336E + 02 3.922E + 02 3.705E + 02

γ̇ (s−1)
N1 (Pa)
170 ◦C

N1 (Pa)
180 ◦C

N1 (Pa)
190 ◦C

0.464 1.161E + 02 9.379E + 01 8.240E + 01
1.00 2.917E + 02 2.165E + 02 2.075E + 02
2.15 7.430E + 02 5.089E + 02 4.743E + 02
4.64 1.608E + 03 1.423E + 03 1.098E + 03
10.0 3.658E + 03 3.052E + 03 2.640E + 03

TABLE A.6 Dynamic Oscillatory Shear Data for HDPE
(EMN 885, Phillips Petroleum Co.)

170 ◦C

ω (rad/s) G′ (Pa) G′′ (Pa) η∗ (Pa · s)

1.000E−01 1.171E + 01 1.044E + 02 1.050E + 03
2.154E−01 4.193E + 01 1.523E + 02 7.330E + 02
4.642E−01 5.541E + 01 3.120E + 02 6.826E + 02
1.000E + 00 1.267E + 02 6.364E + 02 6.489E + 02
2.154E + 00 2.819E + 02 1.165E + 03 5.566E + 02
4.641E + 00 5.850E + 02 2.238E + 03 4.984E + 02
1.000E + 01 1.290E + 03 4.173E + 03 4.368E + 02
2.154E + 01 2.746E + 03 7.680E + 03 3.786E + 02
4.641E + 01 5.586E + 03 1.370E + 04 3.189E + 02
1.000E + 02 1.095 + 04 2.348E + 04 2.591E + 02

180 ◦C

ω (rad/s) G′ (Pa) G′′ (Pa) η∗ (Pa · s)

1.000E−01 1.359E + 01 6.945E + 01 7.077E + 02
2.154E−01 2.167E + 01 1.366E + 02 6.420E + 02
4.642E−01 2.567E + 01 2.642E + 02 5.718E + 02
1.000E + 00 1.146E + 02 5.296E + 02 5.418E + 02
2.154E + 00 2.196E + 02 1.044E + 03 4.951E + 02
4.641E + 00 5.022E + 02 1.986E + 03 4.413E + 02
1.000E + 01 1.122E + 03 3.696E + 03 3.862E + 02
2.154E + 01 2.367E + 03 6.841E + 03 3.360E + 02
4.641E + 01 4.859E + 03 1.227E + 04 2.843E + 02
1.000E + 02 9.585E + 03 2.107E + 04 2.314E + 02

(continued)

TABLE A.6 (Continued)

190 ◦C

ω (rad/s) G′ (Pa) G′′ (Pa) η∗ (Pa · s)

1.000E−01 8.319E + 00 4.105E + 01 4.189E + 02
2.154E−01 1.635E + 01 1.141E + 02 5.351E + 02
4.642E−01 3.233E + 01 2.151E + 02 4.687E + 02
1.000E + 00 7.965E + 01 4.210E + 02 4.284E + 02
2.154E + 00 1.711E + 02 8.179E + 02 3.879E + 02
4.641E + 00 3.893E + 02 1.581E + 03 3.508E + 02
1.000E + 01 8.810E + 02 3.017E + 03 3.143E + 02
2.154E + 01 1.872E + 03 5.602E + 03 2.742E + 02
4.641E + 01 3.854E + 03 1.013E + 04 2.335E + 02
1.000E + 02 7.679E + 03 1.759E + 04 1.920E + 02

A.3 LLDPE DATA

TABLE A.7 Steady Shear Data for LLDPE
(NTA 101, Mobil) at 170 ◦C

γ̇ (s−1) η (Pa · s) N1 (Pa)

0.1000E−01 0.1334E + 05 0.7010E + 00
0.2154E−01 0.1321E + 05 0.4717E + 01
0.4641E + 01 0.1296E + 05 0.9272E + 02
0.1000E + 00 0.1250E + 05 0.4520E + 03
0.2154E + 00 0.1168E + 05 0.1444E + 04
0.4641E + 00 0.1061E + 05 0.3925E + 04
0.1000E + 01 0.8871E + 04 0.9759E + 04
0.2154E + 01 0.6962E + 04 0.2043E + 05

Source: Data from R. H. Moynihan. 1990. Flow Stability of Linear Low
Density Polyethylene at Polymer and Metal Interfaces (Ph.D. Thesis,
Virginia Tech, Blacksburg, VA).

TABLE A.8 Dynamic Shear Data for LLDPE
(NTA 101, Mobil) at 170 ◦C

ω (rad/s) η∗ (Pa · s) G′ (Pa)

0.1000E + 00 0.1213E + 05 0.1709E + 03
0.1585E + 00 0.1155E + 05 0.3031E + 03
0.2512E + 00 0.1102E + 05 0.5204E + 03
0.3981E + 00 0.1042E + 05 0.8915E + 03
0.6310E + 00 0.9781E + 04 0.1500E + 04
0.1000E + 01 0.9109E + 04 0.2514E + 04
0.1585E + 01 0.8374E + 04 0.4137E + 04
0.2512E + 01 0.7613E + 04 0.6707E + 04
0.3981E + 01 0.6833E + 04 0.1069E + 05
0.6310E + 01 0.6046E + 04 0.1666E + 05
0.1000E + 02 0.5265E + 04 0.2535E + 05
0.1585E + 02 0.4508E + 04 0.3760E + 05
0.2512E + 02 0.3794E + 04 0.5433E + 05
0.3981E + 02 0.3140E + 04 0.7653E + 05
0.6310E + 02 0.2551E + 04 0.1049E + 06
0.1000E + 03 0.2026E + 04 0.1394E + 06

Source: Data from R. H. Moynihan. 1990. Flow Stability of Linear Low
Density Polyethylene at Polymer and Metal Interfaces (Ph.D. Thesis,
Virginia Tech, Blacksburg, VA).
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TABLE A.9 Capillary Data for LLDPE
(NTA 101, Mobil) at 170 ◦C

L/D = 12.5

γ̇ a (s−1) τ a (Pa) γ̇ c (s−1) τ c (Pa)

0.37504E + 02
0.75007E + 02
0.11251E + 03
0.22502E + 03
0.37504E + 03
0.75007E + 03
0.11251E + 04
0.22502E + 04
0.37504E + 04

0.14082E + 06
0.19803E + 06
0.23983E + 06
0.31685E + 06
0.37846E + 06
0.45327E + 06
0.48847E + 06
0.55888E + 06
0.73491E + 06

0.77567E + 02
0.15513E + 03
0.23270E + 03
0.46540E + 03
0.77567E + 03
0.15513E + 04
0.23270E + 04
0.46540E + 04
0.77567E + 04

0.15929E + 06
0.23295E + 06
0.28144E + 06
0.28939E + 06
0.29303E + 06
0.29107E + 06
0.39236E + 06
0.40904E + 06
0.45584E + 06

L/D = 37.1

γ̇ a (s−1) τ s (Pa) γ̇ c (s−1) τ c (Pa)

0.37504E + 02
0.75007E + 02
0.11251E + 03
0.22502E + 03
0.37504E + 03
0.75007E + 03
0.11251E + 04
0.22502E + 04
0.37504E + 04

0.12974E + 06
0.16680E + 06
0.20387E + 06
0.26503E + 06
0.32249E + 06
0.38179E + 06
0.41515E + 06
0.48188E + 06
0.53933E + 06

0.65226E + 02
0.13045E + 03
0.19568E + 03
0.39136E + 03
0.65226E + 03
0.13045E + 04
0.19568E + 04
0.39136E + 04
0.65226E + 04

0.13596E + 06
0.17857E + 06
0.21789E + 06
0.25578E + 06
0.29370E + 06
0.32714E + 06
0.38277E + 06
0.43139E + 06
0.44530E + 06

L/D = 75.1

γ̇ a (s−1) τ a (Pa) γ̇ c (s−1) τ c (Pa)

0.37504E + 02
0.75007E + 02
0.11251E + 03
0.22502E + 03
0.37504E + 03
0.75007E + 03
0.11251E + 04
0.22502E + 04
0.37504E + 04

0.14283E + 06
0.19593E + 06
0.23805E + 06
0.27467E + 06
0.30763E + 06
0.33876E + 06
0.40285E + 06
0.44680E + 06
0.49624E + 06

0.69768E + 02
0.13954E + 03
0.20930E + 03
0.41861E + 03
0.69768E + 03
0.13954E + 04
0.20930E + 04
0.41861E + 04
0.69768E + 04

0.14591E + 06
0.20175E + 06
0.24498E + 06
0.27010E + 06
0.29342E + 06
0.31177E + 06
0.38686E + 06
0.42186E + 06
0.44979E + 06

TABLE A.10 Extensional Data for LLDPE
(NTA 101, Mobil) at 170 ◦C

ε̇ = 0.200 s−1

Time (s) Strain η (Pa · s) σ (Pa)

0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00
0.80000E + 00 0.16000E + 00 0.33755E + 05 0.67510E + 04
0.15500E + 01 0.31000E + 00 0.36615E + 05 0.73230E + 04
0.24000E + 01 0.48000E + 00 0.38480E + 05 0.76960E + 04
0.31500E + 01 0.63000E + 00 0.39485E + 05 0.78970E + 04
0.39000E + 01 0.78000E + 00 0.38780E + 05 0.77560E + 04
0.47000E + 01 0.94000E + 00 0.40495E + 05 0.80990E + 04
0.54500E + 01 0.10900E + 01 0.39770E + 05 0.79540E + 04
0.62500E + 01 0.12500E + 01 0.40085E + 05 0.80170E + 04
0.70000E + 01 0.14000E + 01 0.40045E + 05 0.80090E + 04
0.77500E + 01 0.15500E + 01 0.40805E + 05 0.81610E + 04
0.85500E + 01 0.17100E + 01 0.40295E + 05 0.80590E + 04
0.93000E + 01 0.18600E + 01 0.39560E + 05 0.79120E + 04
0.10050E + 02 0.20100E + 01 0.39670E + 05 0.79340E + 04

(continued)

TABLE A.10 (Continued)

ε̇ = 0.053 s−1

Time (s) Strain η (Pa · s) σ (Pa)

0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00
0.30189E + 01 0.16000E + 00 0.37962E + 05 0.20120E + 04
0.60377E + 01 0.32000E + 00 0.33245E + 05 0.17620E + 04
0.90566E + 01 0.48000E + 00 0.38943E + 05 0.20640E + 04
0.12075E + 02 0.64000E + 00 0.39321E + 05 0.20840E + 04
0.15094E + 02 0.80000E + 00 0.39000E + 05 0.20670E + 04
0.18113E + 02 0.96000E + 00 0.38019E + 05 0.20150E + 04
0.21132E + 02 0.11200E + 01 0.37925E + 05 0.20100E + 04
0.24151E + 02 0.12800E + 01 0.39642E + 05 0.21010E + 04
0.27170E + 02 0.14400E + 01 0.37189E + 05 0.19710E + 04
0.30189E + 02 0.16000E + 01 0.35925E + 05 0.19040E + 04
0.33208E + 02 0.17600E + 01 0.35226E + 05 0.18670E + 04
0.36226E + 02 0.19200E + 01 0.34358E + 05 0.18210E + 04

ε̇ = 0.020 s−1

Time (s) Strain η (Pa · s) σ (Pa)

0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00
0.75000E + 01 0.15000E + 00 0.31550E + 05 0.63100E + 03
0.15000E + 02 0.30000E + 00 0.32750E + 05 0.65500E + 03
0.22500E + 02 0.45000E + 00 0.33900E + 05 0.67800E + 03
0.30000E + 02 0.60000E + 00 0.38600E + 05 0.77200E + 03
0.38000E + 02 0.76000E + 00 0.40300E + 05 0.80600E + 03
0.45500E + 02 0.91000E + 00 0.39550E + 05 0.79100E + 03
0.53000E + 02 0.10600E + 01 0.39400E + 05 0.78800E + 03
0.60500E + 02 0.12100E + 01 0.36950E + 05 0.73900E + 03
0.68000E + 02 0.13600E + 01 0.42550E + 05 0.85100E + 03
0.75500E + 02 0.15100E + 01 0.42450E + 05 0.84900E + 03
0.83000E + 02 0.16600E + 01 0.38500E + 05 0.77000E + 03
0.90500E + 02 0.18100E + 01 0.39500E + 05 0.79000E + 03
0.98500E + 02 0.19700E + 01 0.37900E + 05 0.75800E + 03

A.4 NYLON 6,6 DATA

TABLE A.11 Steady Shear Cone-and-Plate Data for
Mineral-Filled Nylon 6,6 at 285 ◦C

γ̇ (s−1) η (Pa · s) N1 (Pa)

3.981E−02 2.978E + 03
6.310E−02 2.642E + 03
1.000E−01 2.046E + 03
1.585E−01 1.680E + 03
2.512E−01 1.350E + 03
3.981E−01 1.014E + 03
6.310E−01 8.116E + 02 9.482E + 01
1.000E + 00 6.369E + 02 9.311E + 01
1.585E + 00 5.232E + 02 8.648E + 01
2.512E + 00 4.359E + 02 7.696E + 01
3.981E + 00 3.861E + 02 7.101E + 01
6.310E + 00 3.444E + 03 8.464E + 01
1.000E + 01 3.105E + 02 1.257E + 02
1.585E + 01 2.703E + 03 3.937E + 02
2.512E + 01 2.067E + 02 5.958E + 02
3.982E + 01 1.505E + 02 1.437E + 03
6.310E+ 01 1.557E + 02 3.284E + 03

Source: Data from R. Pisipati. 1983. A Rheological Characterization of
Particulate and Fiber Filled Nylon 6,6 Melts and Its Application to
Weldline Formation in Molded Parts (Ph.D. Thesis, Department of
Chemical Engineering, Virginia Tech, Blacksburg, VA).
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A.5 PPS DATA

TABLE A.12 Dynamic Oscillatory Shear Data for PPS
(Ryton, Phillips Petroleum Co.)

Temperature = 293 ◦C

ω (rad/s) G′ (Pa) G′′ (Pa) η∗ (Pa · s)

0.1 45 170 1759
0.32 89 481 1529
1.00 248 1406 1428
3.16 1008 3508 1155

10.00 2277 8373 868
31.62 10100 18250 660

100.00 24660 35740 434

Temperature = 330 ◦C

ω (rad/s) G′ (Pa) G′′ (Pa) η∗ (Pa · s)

0.1 13 89 899
0.32 39 238 754
0.46 50 360 790
1.00 89 790 795
2.15 230 1654 777
3.16 394 1974 637
6.81 1105 4366 661

10.00 1500 5150 536
21.54 4055 10680 530
31.62 5267 12330 424
68.13 12060 23310 385

100.00 14690 25930 298

TABLE A.13 Shift Factors for PPS for a
Reference Temperature of 330 ◦C

Temperature ( ◦C) Shift Factor

330 1.000
312 1.307
293 1.708
273 2.918
253 4.546





APPENDIX B

PHYSICAL PROPERTIES AND FRICTION COEFFICIENTS
FOR SOME COMMON POLYMERS IN THE BULK STATE

TABLE B.1

Friction Coefficient on Steel Temperature (◦C)

Polymer
ρb

(kg/m3)
kb

(W/m·K) αb (m2/s) 20 60 100

LDPE 500 0.346 9.29 × 10−8 0.34 0.40 0.32
PVC 620 0.156 9.55 × 10−8 0.43 0.46 0.76
Nylon 66 0.25
Teflon 1000 0.208 9.55 × 10−8 0.04 0.04 0.04
PS 0.45

Polymer Processing: Principles and Design, Second Edition. Donald G. Baird and Dimitris I. Collias.
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APPENDIX C

THERMAL PROPERTIES OF MATERIALS

TABLE C.1 Thermal–Physical Properties of
Polyethyleneterephthalate

Parameter Value Units

T 540 K
Tg 353 K
�Hc 30 cal/gm
ρm 1.335 g/cm3

ρc 1.455 g/cm3

b0 4.04 × 10−8 cm
a0 5.76 × 10−8 cm
σ 5 ergs/cm2

σ e 40 ergs/cm2

σσ e 200 ergs2/cm4

φ∞ 0.34

Source: Data from D. G. Bright. 1975. Quantitative Studies of Polymer
Crystallization Under Non-Isothermal Conditions (Ph.D. Thesis, Georgia
Institute of Technology, 1975).

TABLE C.2 Thermal–Physical Properties of High Density
Polyethylene

Parameter Value Units

T 415 K
Tg 231 K
�Hc 68.4 cal/gm
ρm 0.8838 g/cm3

ρc 1.0075 g/cm3

b0 4.13 × 10−8 cm
a0 4.46 × 10−8 cm
σ 10.25 ergs/cm2

σ e 57.0 ergs/cm2

σσ e 584.0 ergs2/cm4

φ∞ 0.72

Source: Data from D. G. Bright. 1975. Quantitative Studies of Polymer
Crystallization Under Non-Isothermal Conditions (Ph.D. Thesis, Georgia
Institute of Technology, 1975).

TABLE C.3 Thermal–Physical Properties of
Polycaprolactam, Nylon 6

Parameter Value Units

T 505 K
Tg 323 K
�Hc 45.3 cal/gm
ρm 1.0840 g/cm3

ρc 1.2255 g/cm3

b0 8.62 × 10−8 cm
a0 8.83 × 10−8 cm
σ 8 ergs/cm2

σ e 60 ergs/cm2

σσ e 480 ergs2/cm4

φ∞ 0.31

Source: Data from D. G. Bright. 1975. Quantitative Studies of Polymer
Crystallization Under Non-Isothermal Conditions (Ph.D. Thesis, Georgia
Institute of Technology, 1975).
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TABLE C.4 Thermal–Physical Properties of
Poly(hexamethylene adipamide), Nylon 6,6

Parameter Value Units

T 545 K
Tg 330 K
�Hc 46.6 cal/gm
ρa 1.07 g/cm3

ρc 1.266 g/cm3

b0 4.77 × 10−8 cm
a0 4.04 × 10−8 cm
σ 8.5 ergs/cm2

σ e 42.35 ergs/gm2

σσ e 360 ergs2/cm4

φ∞ 0.32

Source: Data from D. G. Bright. 1975. Quantitative Studies of Polymer
Crystallization Under Non-Isothermal Conditions (Ph.D. Thesis, Georgia
Institute of Technology, 1975).

TABLE C.5 Crystallization Parameters for
Polyetheretherketone (PEEK)

Crystal dimension b0 = 4.7 Å
Side surface energy σ s = 38 ergs/cm2

End surface energy σ e = 49 ergs/cm2

Heat of fusion �H f = 130 J/g
Thermodynamic melting point T ′

m = 395 ◦C
Glass transition temperature Tg = 144 ◦C
Activation energy ED = 2000 cal/mol
Crystal density ρc = 1.40 g/cm2

Amorphous density ρa = 1.263 g/cm2

φ∞ 0.33

Source: Data from D. J. Blundell and B. N. Osborn. 1983. “The
Morphology of Poly(aryl-ether-ether-ketone).” Polymer, 24, 753.

TABLE C.6 Properties of Water (Saturated Liquid)

T (◦C) Cp (kJ/kg · ◦C) ρ (kg/m3) μ (kg/m · s) k (W/m · ◦C) Pr
gβ ρ2cp

μk
(1/m3 · ◦C)

0.0 4.225 999.8 1.79 × 10−3 0.566 13.25 1.91 × 109

4.44 4.208 999.8 1.55 0.575 11.35 6.34 × 109

10.0 4.195 999.2 1.31 0.585 9.40 1.08 × 1010

15.56 4.186 998.6 1.12 0.595 7.88 1.46 × 1010

21.11 4.179 997.4 9.8 × 10−4 0.604 6.78 1.91 × 1010

26.67 4.179 995.8 8.60 0.614 5.85 2.48 × 1010

32.22 4.174 994.9 7.65 0.623 5.12 3.3 × 1010

37.78 4.174 993.0 6.82 0.630 4.53 4.19 × 1010

43.33 4.174 990.6 6.16 0.637 4.04 4.89 × 1010

48.89 4.174 988.8 5.62 0.644 3.64 5.66 × 1010

54.44 4.179 985.7 5.13 0.649 3.30 6.48 × 1010

60.0 4.179 983.3 4.71 0.654 3.01 7.62 × 1010

65.55 4.183 980.3 4.30 0.659 2.73 8.84 × 1010

71.11 4.186 977.3 4.01 0.665 2.53 9.85 × 1010

76.67 4.191 973.7 3.72 0.668 2.33 1.09 × 1011

82.22 4.195 970.2 3.47 0.673 2.16
87.78 4.199 966.7 3.27 0.675 2.03
93.33 4.204 963.2 3.06 0.678 1.90 1.23 × 1011

104.4 4.216 955.1 2.67 0.684 1.66
115.6 4.229 946.7 2.44 0.685 1.51
126.7 4.250 937.2 2.19 0.685 1.36
137.8 4.271 928.1 1.98 0.685 1.24
148.9 4.296 918.0 1.86 0.684 1.17 2.81 × 1011

176.7 4.371 890.4 1.57 0.677 1.02
204.4 4.467 859.4 1.36 0.665 1.00 5.02 × 1011

232.2 4.585 825.7 1.20 0.646 0.85
260.0 4.731 785.2 1.07 0.616 0.83 8.59 × 1011

287.7 5.024 735.5 9.51 × 10−5

315.6 5.703 678.7 8.68



TABLE C.7 Properties of Saturated Liquids

T (◦C) ρ (kg/m3) Cp (kJ/kg · ◦C) v (m2/s) k (W/m · ◦C) α (m2/s) Pr β (K−1)

Ethylene glycol, C2H4(OH)2

0 1130.75 2.294 57.53 × 10−6 0.242 0.934 × 10−7 615
20 1116.65 2.382 19.18 0.249 0.939 204 0.65 × 10−3

40 1101.43 2.474 8.69 0.256 0.939 93
60 1087.66 2.562 4.75 0.260 0.932 51
80 1077.56 2.650 2.98 0.261 0.921 32.4

100 1058.50 2.742 2.03 0.263 0.908 22.4

Engine Oil (Unused)

0 899.12 1.796 0.00428 0.147 0.911 × 10−7 47,100
20 888.23 1.880 0.00090 0.145 0.872 10,400 0.70 × 10−3

40 876.05 1.964 0.00024 0.144 0.834 2870
60 864.04 2.047 0.839 × 10−4 0.140 0.800 1050
80 852.02 2.131 0.375 0.138 0.769 490

100 840.01 2.219 0.203 0.137 0.738 276
120 828.96 2.307 0.124 0.135 0.710 175
140 816.94 2.395 0.080 0.133 0.686 116
160 805.89 2.483 0.056 0.132 0.663 84

TABLE C.8 Properties of Air at Atmospheric Pressure

T (K) ρ (kg/m3) Cp (kJ/kg · ◦C) μ (kg/m · s × 105) v (m2/s × 106) k (W/m · ◦C) α (m2/s × 104) Pr

100 3.6010 1.0266 0.6924 1.923 0.009246 0.02501 0.770
150 2.3675 1.0099 1.0283 4.343 0.013735 0.05745 0.753
200 1.7684 1.0061 1.3289 7.490 0.018090 0.10165 0.739
250 1.4128 1.0053 1.4880 9.49 0.022270 0.13161 0.722
300 1.1774 1.0057 1.9830 16.840 0.026240 0.22160 0.708
350 0.9980 1.0090 2.0750 20.760 0.030030 0.29830 0.697
400 0.8826 1.0140 2.2860 25.900 0.033650 0.37600 0.689
450 0.7833 1.0207 2.4840 31.710 0.037070 0.42220 0.683
500 0.7048 1.0295 2.6710 37.900 0.040380 0.55640 0.680
550 0.6423 1.0392 2.8480 44.340 0.043600 0.65320 0.680
600 0.5879 1.0551 3.0180 51.340 0.046590 0.75120 0.680
650 0.5430 1.0635 3.1770 58.510 0.049530 0.85780 0.682
700 0.5030 1.0752 3.3320 66.250 0.052300 0.96720 0.684
750 0.4709 1.0856 3.4810 73.910 0.055090 1.07740 0.686
800 0.4405 1.0978 3.6250 82.290 0.057790 1.19510 0.689
850 0.4149 1.1095 3.7650 90.750 0.060280 1.30970 0.692
900 0.3925 1.1212 3.8990 99.300 0.062790 1.42710 0.696
950 0.3716 1.1321 4.0230 108.200 0.065250 1.55100 0.699

1000 0.3524 1.1417 4.1520 117.800 0.067520 1.67790 0.702
1100 0.3204 1.1600 4.4400 138.600 0.07320 1.9690 0.704
1200 0.2947 1.1790 4.6900 159.100 0.07820 2.2510 0.707
1300 0.2707 1.1970 4.9300 182.100 0.08370 2.5830 0.705
1400 0.2515 1.2140 5.1700 205.500 0.08910 2.9200 0.705
1500 0.2355 1.2300 5.4000 229.100 0.09460 3.2620 0.705
1600 0.2211 1.2480 5.6300 254.500 0.10000 3.6090 0.705
1700 0.2082 1.2670 5.8500 280.500 0.10500 3.9770 0.705
1800 0.1970 1.2870 6.0700 308.100 0.11100 4.3790 0.704
1900 0.1858 1.3090 6.2900 338.500 0.11700 4.8110 0.704
2000 0.1762 1.3380 6.5000 369.000 0.12400 5.2600 0.702
2100 0.1682 1.3720 6.7200 399.600 0.13100 5.7150 0.700
2200 0.1602 1.4190 6.9300 432.600 0.13900 6.1200 0.707
2300 0.1538 1.4820 7.1400 464.000 0.14900 6.5400 0.710
2400 0.1458 1.5740 7.3500 504.000 0.16100 7.0200 0.718
2500 0.1394 1.6880 7.5700 543.500 0.17500 7.4410 0.730

Source: Data from J. P. Holman. 1981. Heat Transfer (McGraw Hill, New York).
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TABLE C.9 Experimental Heat Capacities of Polymers

Polymer C
s
p (298 K) (J/kg · K) C

m
p (J/kg · K)

Polyethylene 1550/1760 2260
Polypropylene 1630/1760 2140
Polybutene 1550/1760 2140
Polyvinylchloride (PVC) 960/1090 1220
Nylon 6 1470 2140/2470
Nylon 6,6 1470
Polystyrene 1220 1720
PET 1130 1550

Source: Data from D. W. Van Krevelen. 1992. Properties of Polymers
(Elsevier, Amsterdam).

In the event experimental data are not available for Cp(T),
the following expressions can be used for estimating the heat

capacity in the solid state, C s
p, and in the melt state, Cm

p (Van
Krevelen, 1990):

C
s
p(T ) = C

s
p(298 K)[0.106 + 3 × 10−3T ] (C.1)

C
m
p (T ) = C

m
p (298 K)[0.64 + 1.2 × 10−3T ] (C.2)

where T is in kelvin units (K) and C (298 K) and C are given
in Table C.9 for a number of common polymers. Equation
C.1 is valid for Tg ≤ T ≤ Tm and Eq. C.2 for T > Tm for
semicrystalline polymers. For amorphous polymers, Eq. C.2
is used for T > Tg.



APPENDIX D

CONVERSION TABLE

To Convert from To Multiply by

Force
lbf

lbm · ft · s−2 (poundals)
kg · m · s−2 (newtons)
newtons

4.4482
1.3826 × 10−1

Pressure
lbf · in.−2

atmospheres
kg · m−1 · s−2 (N · m−2)
N · m−2

6.8947 × 103

1.0133 × 105

Energy
Btu
cal

kg · m2 · s−2 (joules)
kg · m2 · s−2

1.0550 × 103

4.1840

Viscosity
lbf · s · ft−2

g · cm−1 · s−1 (poise)
kg · m−1 · s−1 (Pa · s)
kg · m−1 · s−1

4.7880 × 101

10−1

Thermal conductivity
Btu · h−1 · ft−1 · ◦F−1

cal · s−1 · cm−1 · K−1
kg · m · s−3 · K−1

(W · m−1 · K−1)
W · m−1 · K−1

1.7307
4.184 × 102

Heat transfer coefficients
Btu · ft−2 · h−1 · ◦F−1

cal · cm−2 · s−1 · K−1
kg · s−3 · K−1 (W · m−2 · K−1)
W · m−2 · K−1

5.6782
4.1840 × 104

Mass transfer coefficients
lbm · ft−2 · h−1

lbf · ft−3 · s
kg · m−2 · s−1

kg · m−2 · s−1
1.3562 × 10−3

1.5709 × 102
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Absorption coefficient, 135
Activation energy of diffusion, 84–86
Air, properties at atmospheric pressure, 383
Amorphous polymers, thermal properties, 120
Annular dies, 216–219

center-fed, 216–217
Annular swell, 209
Avrami equation, 140, 143, 289

Baker’s transformation, 190
Ballman method, 58–59
Barrier polymers, 87, 102
Beer’s law, 134
Biaxial stretching, 38, 68, 304
Binary systems

definitions for concentrations, 75
definitions for velocities, 75
mass and molar fluxes, 77

Bingham fluid, 11
Bingham model, 12, 303
Binomial distribution, 158
Birefringence, 142–145, 278, 289
Blending, 156
Blend morphology, 187
Blow molding, 3

die design, 212–225
simulation, 329–331
technological aspects, 328

Blow ratio, 298, 301–302
Blowup ratio (BUR), 298
Bradley–Hamaker theory, 181
Branching, 61–62
Bulk diffusion, 155

Burst time, 184, 186–188
Bursting modes, 184
Bursting process, 184, 187

Capillary breakup, 187, 291
Capillary rheometer, 56–57
Capillary waves, 186, 290–291
Carbon dioxide, 84

in polycarbonate, 85
permeability, 89

Carreau viscosity model, 65
Cartesian coordinate system, 294, 298–299
Cauchy–Green strain tensor, 170, 194
Circular tube pressure flow, 21
Clapeyron equation, 142
Closed-loop recycling, 345
Closely intermeshing

corotating twin screw extruders, 236, 254
counter-rotating twin screw extruders, 239, 253, 256

Coathanger manifolds, 230
Coextrusion, 153

blow-molding die, 201
dies, 223, 224
film die, 225

Cohesionless cluster, 181
Cohesive (brittle) fracture, 290
Cohesive cluster, 181
Cohesive energy density (CED), 291
Cold drawing, 2, 142, 297
Collision diameter, 84–85
Complementary error function, 94
Composite systems, thermal properties of, 123–124
Compounding, 155
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Compression molding, 4
general aspects, 319–320
Newtonian fluid, 322
process, 311
simulation, 320–321

Computer solution, 29–30
Cone-and-plate rheometer, 56
Confidence intervals, 158
Connectivity indices, 90
Consistency, 11
Constitutive equation, 51

nonlinear, 44–54
nonlinear viscoelastic, 38, 51
viscoelastic fluids, 38

Continuity equations, 78
Continuous filament-reinforced composite extruded profiles, 4
Convective transport, 155
Conversion tables, 385
Cooling

injection-molded slab, 127
nondeforming polymeric materials, 124
of strand in pelletizing bath, 131

Correlation coefficient, 161–163
Correlation function, 161
Correlogram, 162–163
Couette flow, 171–175
Cox–Merz rule, 61
Cradle-to-grave analysis, 344
Crystalline morphology, 288
Crystallinity, 85–86, 287–288
Crystallization, 124, 135–149, 288–289

factors affecting, 142
in quiescent state, 136

Deborah number, 42, 51, 95, 221, 285
Devolatilization, 235, 262–266
Die, 1, 201–234. See also Under specific types of dies

design, 9–30
geometries, 1
land length, 6
radius, 18
recommendations, 6
swell, 207–212

Diffusion, 73–109
activation energy of, 84–86
case I (or Fickian), 95
case II (or non-Fickian), 93, 95
in falling polymer film, 83–84
Fick’s first law, 74, 76–77, 103
Fick’s second law, 80, 106
in multidimensional objects, 82
polymer–polymer, 93
similarity with heat transfer, 80–81
in slab, 81
theory, 105, 267
velocity, 75–76

Diffusion coefficient, 76, 80, 84
Diffusion equation, 80, 99–100

Diffusivity, 84–103
measurement technique, 94–95

Dilatant, 11
Dimensional analysis, 265–268
Dimensionless tension, 287
Dimethylformamide (DMF), 73, 100–101
Dipole throwing, 162
Dispersion of agglomerates, 180–182
Draw ratio, 142–143, 292
Draw resonance, 290, 296, 304
Dry-spinning system, 73, 100

Eddy diffusion, 155, 157
Elliptic point, 189
Ellis model, 10–14, 226
Elongational flow, 38, 45, 165
Energy equation, 113–120
Energy flux, components of, 118
Equation of thermal energy, 118, 119
Error function, 84
Extra stress tensor, 39, 168, 278
Extrudate

nonuniformities, 202
swell, 207, 212

Extruders, 234–273. See also Single-screw extruders; Twin-screw
extruders, and under specific types

description of, 235–238
Extrusion, 1

instabilities, 203
of polymer melt for film blowing, 26

Extrusion blow molding, 329
Extrusion die, see Die

Fast Fourier transform (FFT) method, 163
Feedstock recycling, 345, 354
Fiber aspect ratio, 52, 54
Fiber flexibility, 52
Fiber spinning, 2, 276–293

high-speed spinning and structure formation, 287–290
instabilities, 290–293
key aspects of, 277
processes involved, 277–278
speeds, 277
steady-state solution, 281

Fiber suspensions, 52–55
Fick’s first law of diffusion, 74, 76–77, 103
Fick’s second law of diffusion, 80, 106
Film blowing, 2–3, 297–305

case study, 5–7
garbage bags, 275–276
physical properties of film, 5–6
stability, 304

Film casting, 112, 293–297
stability, 296–297

Film die, 114, 212–215, 225–226
Film stretching, 297
Filtration media, 353
Flat-film production, 293
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Flory–Huggins swelling behavior, 91
Flow

instabilities in multiple layer, 227–228
through a tapered tube, 27
through an annular die, 14–17
in wirecoating die, 17–18

Fluxes, 76–79
Folgar–Tucker model, 53–54
Forming, 2–5
Fourier’s law, 114, 115, 119–120
Friction coefficient, 70, 379
Fully oriented yarn (FOY), 288

Garbage bag, film-blowing process for, 275
Gas-polymer system, 85, 87
Gas, simple, 84, 87–90
Generalized Newtonian fluid (GNF), 13, 24, 44, 116, 118–120,

119, 220, 354
Glass transition temperature, 86, 120, 187–188, 359, 362,

382
Glasses, 276, 291
Gleissele’s mirror relation, 61
Growth rate, 138–140, 288

Hamiltonian structure, 189
HDPE

branching, 61
coathanger manifolds, 230
coextrusion, 225
cooling injection-molded slab, 127
dynamic oscillatory shear data, 373
film blowing, 206
flow behavior, 203
flow rate, 226
flow through pipe die, 116
forming, 2
fracture, 203
molecular weight parameters, 209
parameters, 20
parison, 9
physical properties, 136
pipe, 14
and shear rate, 206
slip-stick, 207
steady shear data, 373
thermal-physical properties, 381
viscosity, 229
viscous dissipation, 115

Heat capacity, 113, 120–121, 384
Heat conduction, 80–81

in nondeforming systems, 125–130
Heat flux, 130, 132
Heat of fusion, 120, 124
Heating, nondeforming polymeric materials, 124
Heat of sorption, 87
Heat transfer, 124

and mass transfer, 97
similarity with diffusion problems, 80–84

Heat transfer coefficient, 129, 130–132
Hele–Shaw flow, 316, 319
Helix angle, 237
Henry’s law, 86, 90, 93, 237
Hershel–Bulkley model, 12
Heteroclinic point, 189
High density polyethylene, see HDPE
Hole pressure, 58
Homoclinic point, 189
Hopper design, 239–242
Hydrodynamic force, 181–183
Hydrodynamic stability/instability, 291
Hydrophilic polymer, 90
Hydrophobic polymer, 90
Hyperbolic point, 189

Injection molding, 4, 311–319
general aspects, 319–320
simulation, 315–318
tooling design, 315

Intensity of segregation, 161–163
Interdiffusion coefficient, 76
Interface growth function, 167–168
Internal bubble cooling (IBC), 302
Isothermal flow

one-dimensional, 13–19
purely viscous non-Newtonian fluids, 9–35

Isothermal systems, equations of change for, 19–25

Jeffrey’s equation, 53

Kelvin–Voight two-element model, 303
Kenics static mixer, 190, 261
Kinetic crystallizability, 289
Kneading, 156
Kronecker delta, 39

LDPE
branching, 61
capillary rheometer data, 374
and die swell, 207
dynamic oscillatory shear data, 373
extensional data, 374
and extrudate swell, 207
film blowing, 275, 304
flow behavior, 203
fracture, 204
melt flow characteristics, 63
primary normal stress difference data, 373
and shear rate, 206, 207
solids conveying, 245
steady shear viscosity, 373
viscosity, 203

Leibnitz rule, 282
Lennard–Jones equation, 84
Lennard–Jones scaling factors, 84
Lennard–Jones temperature, 84, 86
Level of significance, 159–160



390 INDEX

Liapunov exponent, 189–190
Life-cycle analysis, 344
Life-cycle assessment, 344
Life-cycle inventory, 344
Linear low density polyethylene, see LLDPE
Linear polycondensates, 291
Liquid-liquid dispersion, 182–188
LLDPE

branching, 61
capillary data, 376
dynamic shear data, 375
extensional data, 376
film, 302
film blowing, 304
fracture, 205, 207
power-law parameters, 13
slip-stick, 207
steady shear data, 375

Low density polyethylene, see LDPE
Loss angle, 188
Lubrication approximation, 26–28, 215–217

Machine direction (MD), 6
Mandrel support system, 217
Mass average bulk velocity, 74
Mass average velocity, 75–77
Mass concentration, 74–75
Mass diffusion, 81
Mass diffusivity, 76
Mass flux, 76–79
Mass fraction, 73–75
Mass transfer, 73–109

Chilton–Colburn j-factor, 98
fundamentals, 74–84
and heat transfer, 97

Mass transfer coefficient, 73, 96–99
Masterbatch, 182
Material functions

for shear flow, 40–43
for shear-free flow, 43
useful relations for, 60–62
for viscoelastic fluids, 38–44

Mechanical recycling, 347–348
Mesh size, 353
Meissner method, 58–59
Melt extrusion temperature, 6
Melt flow characteristics, 63
Melt fracture, 2, 203, 290
Melt spinning, 2, 276

materials, 290
physical and mechanical properties of fibers, 278
process, 277

Melt temperature, 123
Metal, 291, 354
Methane, 84, 90–92
Methyl methacrylate (MMA), 235, 265, 267–268
Microinjection molding, 4, 318–319
Milling, 156

Mixing, 153–199, 258–262
basic types, 155
chaotic, 189–191
characterization of the state degree of, 157, 160, 191
description of, 154–156
dispersive, 155–157, 180–188
effects of deformation types, 165–167
efficiency, 169–171
goodness of, 160
index of, 160
laminar, 164–173
measurement techniques, 163–164
of mixture, 156–164
perfect, 160, 174–177
in plane Couette flow, 171
rule, 348, 350–352
in simple geometries, 171–173
statistical description, 157–161
thermodynamics of, 188–189
time average efficiency, 170, 188

Modulus of elasticity, 297
Moisture sorption, 90
Molar average bulk velocity, 75
Molar average velocity, 75–76, 80
Molar concentration, 74–75
Molar flux, 76–78, 79
Molar permachor, 89
Molar water content, 91
Molecular diffusion, 75, 155
Molecular orientation, 135, 143–145, 288–289
Molecular stresses, 39
Molecular weight, 60, 209
Mole fraction, 74–77
Monofilament, 277, 352
Morphology, crystalline, 135, 288, 291
Mulling, 156
Multilayer extrusion, 222–228
Multilayer flow, flow instabilities in, 227–228
Multilayered extrusion die, 153
Multistage die, 220
Mutual diffusion coefficient, 76

Natural rubber, 86–87, 89, 124
Navier–Stokes equations, 20
Necking, 59, 290
Needle throwing, 162
Nematic liquid crystalline phase, 52
New-to-world renewable polymer, 343, 357
Newtonian fluid, 10, 11, 15, 20, 24, 39, 175, 180–185, 220, 247,

252, 254, 255, 261, 317, 327
compression molding, 322
radial flow between two parallel disks, 24

Newtonian isothermal model, 278–281, 299–302
Newtonian nonisothermal model, 281–285, 302–303
Newton’s law of cooling, 130
Newton’s law of viscosity, 11, 15, 20
Non-Fickian transport, 95–96
Non-Newtonian fluid, 11, 16, 26, 260



INDEX 391

Non-Newtonian nonisothermal model, 303–304
Normal distribution, 159
Nucleation, 136–139, 288–289
Nucleation factor, 139
Nusselt number, 80, 114
Nylon 6, 89, 227, 228

thermal-physical properties, 381
Nylon 6,6, 89, 140, 280–281

steady shear cone-and-plate data, 376
thermal-physical properties, 382

Open-loop recycling, 345
Orientation function, 143–144
Orientation tensor, 52–54
Orifice die, 220
Ostwald–de Waele power-law, 11

Parallel plate pressure flow, 20
Parison, 9, 14, 328–330

diameter, 27
inflation, 331
sagging, 331

Parison die, design for viscoelastic fluid, 37
Peclet number, 52, 97, 114, 264
Permachor, 87–90
Permanent gas, 84
Permeability, 87–90

measurement techniques, 94–95
Permeability parameter, 88
PETG, 329–330
PETP, 86–87, 121, 139, 286, 329–330
Phan–Thien–Tanner (PTT) model, 45–49, 65
Pipe die, 216

nonisothermal flow, 116
Planar elongational flow, 165, 169, 171, 184–185
Planar extensional flow, 38–39, 330–332
Planck’s distribution, 134
Plasticating extruder, 237, 239, 242–253
Plate-plate (P-P) rheometer, 51
Plug flow, 101, 164, 174–177, 259–260
Poiseuille flow, 166, 174–176, 179, 191
Poisson distribution, 158
Polyacrylonitrile (PAN), 73, 89, 100–101, 188
Poly(aryl ether ketone ketone) (PEKK), 123
Polybutylene (PB1), 5–7
Polycaprolactam, thermal-physical properties, 381
Polycarbonate (PC), 85, 87, 89, 92, 120–121, 351

carbon dioxide in, 92
Polyetheretherketone (PEEK), 112, 123, 124, 140, 319

crystallization parameters, 382
Polyetheretherketone, (PEEK)/carbon fiber composites, 124
Polyethylene (PE), 5, 61–62, 93, 143, 155, 347, 357. See also

HDPE, LDPE, LLDPE
Poly(ethylene carbonate), 357
Poly(ethylene furanote), 357
Polyethyleneterephthalate (PET), 3, 124, 134, 135, 142, 277–278,

283, 287–288, 348
thermal-physical properties, 381

Poly(hydroxyl butyrate), 361
Poly(hexamethylene adipamide) thermal-physical properties, 382
Polyisobutylene (PIB), 61, 89, 206
Polylactic acid, 347, 357
Polymer melts

rheological data for, 373
viscous behavior of, 10–11

Polymer membrane-penetrant system, 77
Polymer-polymer diffusion, 93
Polymer processability, 62–64
Polymer process design, 1–8

basics of, 7–8
Polymer processes, classification, 1–5
Polymer processing, Nonisothermal aspects, 111–151
Poly(methyl acrylate) (PMA) 90
Polymethylmethacrylate (PMMA), 103, 121, 153, 235, 265, 266,

319
Polymethylmethacrylate (PMMA)-methanol system, 96
Polyolefins, 59, 61, 90, 291, 329
Polyphenylene sulfide (PPS), 41–43, 112, 123–124, 139, 297

dynamic oscillatory shear data, 377
shift factors, 377

Polypropylene (PP), 81, 89, 138, 140, 145, 211, 284, 297, 311,
322, 352

cooling of film, 113
film-casting, 111

Polystyrene (PS), 43–46, 93, 153, 205, 287, 313
Polysulfone, 123
Poly(vinyl acetate) (PVAc), 86–87
Poly(vinylchloride) (PVC), 121–122, 220–222, 239
Poly(vinylidene chloride), 88–89
Postdie processing, 2, 275–309
Power law fluid, radial flow of, 25
Power law parameters, program listing, 12, 13
Power spectrum, 163
Pre-exponential factor, 86, 90
Pre-exponential permeability factor, 88
Preform, 125, 328–330
Pressure coating dies, 218
Primary recycling, 343, 348
Profile extrusion dies, 220–222
Pultrusion, 4–5
Pure shear, 165, 184–185, 297

Radial flow
of power-law fluid, 25
between two parallel disks, 24

Radiation heat transfer, 132–135
Random chain dissociation, 355
Regrind, 348–351
Renewable polymers, 343, 357–362
Rate-of-strain tensor, 23
Rayleigh instabilities, 291
Reaction injection molding (RIM), 4
Reactive extrusion, 264–265
Refractive index, 95, 153
Reptation theory, 94
Residence time, 174–180, 187–188, 259–261, 360
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Residence time distribution (RTD), 174–177, 258–260
Reynolds number, 19, 99, 291
Rheological data for polymer melts, 373
Rheological measurements, 62–64
Rheological properties, temperature and pressure effects, 111–113
Rheometry, 55–60
Rheotens, 59
Rotary diffusivity, 52
Rotary Peclet number, 52
Rotary rheometer, 56, 60
Rotational Couette flow (RCF), 172–173, 179

Saturated liquids, properties of, 383
Saturation moisture content, 90
Scale factor, 194
Scale of segregation, 161, 163–164
Scaleup, 305
Scaling factor, 84, 88
Scoping, 344
Screw

elements of, 240
geometry of, 238

Secondary recycling, 351
Self-diffusion coefficient, 93, 94
Self-wiping corotating twin-screw extruders, 253–256
Semicrystalline polymer

physical properties, 136
thermal properties, 121–122

Shear, flow measurements, 56–58
Shear flow, 38, 39

experiments, 40
material functions for, 40–43

Shear-free flow, 37–40
material functions for, 43–44
measurements of, 58–60

Shear strain, 165, 167
Shear stress, 11
Shear thinning, 13, 16
Sheet dies, 212–215
Sheet forming, 2
Shell energy balances, 113–117
Sherwood number, 80, 97, 99
Side-fed mandrel dies, 216
Significance test, 159–160
Silicone oil, 61, 292
Silicone rubber, 86–92
Simple shear flow, 166–169
Single-screw extruders, 1, 235–238, 242–253

delay and melting zones, 246–249
devolatilization, 262–264
metering section, 250–253
mixing, 260–261
solids transport through, 242–246

Slip coefficient, 54
Slit-die rheometers, 53
Smale horseshoe map, 189–190
Solid-phase forming, 4
Solids transport through single-screw extruder, 242–246

Solubility, 84, 188
measurement techniques, 94

Solution casting, 99
Spinnability, 290–292
Spinneret plate, 277
Spinning, see Fiber spinning
Spiral mandrel dies, 216–218
Static mixer, 190, 261–262
Steady shear flow, 40–42, 48, 189
Steady shear-free flow, 48
Steady simple shear flow, 11, 38, 47–48
Stereology science, 163
Strain, 166–168
Strain distribution function (SDF), 177–180
Strain distributions, 174, 177–180
Stress growth experiment, 42, 44, 48
Stress-optical coefficient, 145
Stress relaxation, 40, 48
Stress tensor component, 39, 49
Striation thickness, 164–173

reduction from geometrical arguments, 164–167
reduction from kinematical arguments, 169–171
in rotational Couette flow (RCF), 172

Striation thickness reduction, effects of reorientation, 171–172
function, 170, 173, 193

Student’s t distribution, 159
Sulfur dioxide, 84
Superconcentrates, 182
Surface temperature, step change in, 125–127

Tadmor melting model, 247
Tapered profile dies, 220
Temperature dependence of physical properties, 122
Tensile moduli, 136
Tertiary recycling, 347, 354
Thermal conductivity, 114, 120–121, 318
Thermal properties, 381

of composite systems, 123–124
homogeneous polymer systems, 120
semicrystalline polymer, 121–122

Thermal transport properties, 120–124
Thermoforming, 3, 133

general aspects, 322
inflation pressure of bubble, 327
modeling, 322–328
wall thickness distribution, 325, 326

Thermoplastics, processing, 1, 4
Thermoplastic starch, 343, 357
Thermosetting systems, processing, 4
Thickness swell, 65
Thin-filament theory, 281, 308

assumptions of, 281
equations of, 281–283
experimental correlations, 283–285

Thread breakup, 186–187
Throttle ratio, 252
Time lag, 94, 176
Toluene-polystyrene system, 92
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Tortuosity of crystallites, 89
Total stress components, 39
Tracer diffusion coefficient, 93
Transverse direction (TD), 6
Transverse heteroclinic point, 189
Transverse homoclinic point, 189
Tube-coating dies, 218
Tubular blownfilm process, 304
Twin-screw extruders, 1, 237, 238–239, 253–257

devolatilization, 262–264
mixing, 260

Uniaxial elongational flow, 166, 169, 185
Uniaxial extensional flow, 38, 43, 58, 166
Upper convected Maxwell (UCM) model, 45

Van der Waals force, 181
Vinyl polymers, 291
Viscoelastic fluids, 327

material functions for, 38–44

Viscoelastic isothermal model, 285–287
Viscoelastic phenomena, 203
Viscoelastic properties, linear, 61
Viscoelastic response of polymeric fluids, 37–71
Viscoelastic functions, 61
Viscous behavior of polymer melts, 10–13
Viscous dissipation, 114

Water, properties of, 382
Weighted average total strain (WATS), 177, 260
Weissenberg number, 42
Weld lines, 217, 314–315
White–Metzner (WM) model, 45–48, 65, 286, 296
Wide-angle X-ray diffraction, 144
Wide-angle X-ray scattering (WAXS), 143–144
Williams–Landel–Ferry (WLF) equation, 112, 139, 283
Wire coating die, 2, 17, 217–220
Wire speed, 18

Yield stress, 11–12, 140
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