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Preface to the Revised Edition

I used the opportunity of this edition to correct some minor mistakes and
clarify, wherever it possible, exposition of the theory in comparison with the
previous edition of this book (Kluwer, Dordrecht et cet, 2000). It provokes en-
largement of the book, though I tried to present the modern theory of thermic
motion of long macromolecules in compact form. I have tried to accumulate
the common heritage and to take into account different approaches in the
theory of dynamics of linear polymers, at least, to understand and make clear
the importance of various ideas for explanation of relaxation phenomena in
linear polymers, to present recent development in the field.

The theory of non-equilibrium phenomena in polymer systems is based on
the fundamental principles of statistical physics. However, the peculiarities of
the structure and the behaviour of the systems necessitate the implementation
of special methods and heuristic models that are different from those for gases
and solids, so that polymer dynamics has appeared to be a special branch of
physics now. The monograph contains discussions of the main principles of the
theory of slow relaxation phenomena in linear polymers, elaborated in the last
decades. The basic model of a macromolecule, which allows us a consistent
explanation of different relaxation phenomena (diffusion, neutron scattering,
viscoelasticity, optical birefringence), remains to be a coarse-grained or bead-
spring model, considered in different environments: viscous, to describe the
behaviour of dilute solutions, or viscoelastic, to describe the behaviour of both
weakly and strongly entangled systems. Besides, extra features of dynamics
of a chain in strongly entangled systems, namely the strong resistance to
changes of conformation of macromolecule (the internal viscosity resistance
due to the entanglements) and local anisotropy of mobility of particles of
the chain, which provokes motion of macromolecule along its contour – the
reptation motion, have to be taken into account. The dynamic transition point
between weakly and strongly entangled systems is calculated as M ∗ ≈ 10Me,
where Me is called conventionally ‘the length of the macromolecule between
adjacent entanglements’.

xi



xii Preface to the Revised Edition

Thus, among the linear polymer systems, three types of systems, according
to the ratio of the length of the macromolecule M to Me : M < 2Me –
non-entangled system, 2Me < M < 10Me – weakly entangled systems and
M > 10Me – strongly entangled systems, have to be considered separately.
The laws of the relaxation behaviour of the different systems are different: no
reptation relaxation of macromolecules exists in the non-entangled and weakly
entangled systems.

The properly formulated phenomenological dynamic equation for a single
macromolecule remains to play a role of the central organising principle of
the monograph. The model was designed to study systematically deviations
from the Rouse dynamics when adding non-Markovian and anisotropic noise.
The developed model describes underlying stochastic motion of particles of
the chain and provides both the confinement of a macromolecule in a tube
and easier (reptation) motion of the macromolecule along its contour – the
features, which were envisaged by Edwards and de Gennes for the entangled
systems. An intermediate length, which has the meaning of a tube radius
and/or the length of a macromolecule between adjacent entanglements, is
calculated through parameters of the model. The unified approach appeared
to be useful for consistent explanation the relaxation phenomena in entan-
gled linear polymers (polymer solutions and melts), and one can think that
a consequent theory of viscoelasticity (so as other phenomena) in mesoscopic
approximation can be developed on the base of the unified non-linear dynam-
ics of a macromolecule.

It is my pleasure to acknowledge my gratitude to various people for the
comments on the previous edition of the monograph and for advice how to
improve it. During the work on the revision of the monograph, in September
2004, due to courtesy of Professor Kurt Kremer, I had a privilege to be a
guest at the Max-Plank-Institut für Polymerforschung (Mainz, Germany) and
to benefit from its excellent facilities for work. I have learnt and understood
much from discussions of the relevant problems with Professor Kremer and
members of the Institute, especially, with Burkhart Dünweg, Bernd Ewen,
Tadeusz Pakula, Vahktang Rostiashvili and Nico van der Vegt. I thank all of
them.

Any comments will be greatly appreciated.

Moscow, RUSSIA Vladimir N. Pokrovskii
http://www.ecodynamics.narod.ru/

http://www.ecodynamics.narod.ru/


Preface to the First Edition

Our brutal century of atom bombs and spaceships can also be called the
century of polymers. In any case, the broad spreading of synthetic polymer
materials is one of the signs of our time. A look at the various aspects of
our life is enough to convince us that polymeric materials (textiles, plastics,
rubbers) are as widely spread and important in our life as are other materials
(metals and non-metals) derived from small molecules. Polymers have entered
the life of the twentieth century as irreplaceable construction materials.

Polymers differ from other substances by the size of their molecules which,
appropriately enough, are referred to as macromolecules, since they consist of
thousands or tens of thousands of atoms (molecular weight up to 106 or more)
and have a macroscopic rectilinear length (up to 10−4 cm). The atoms of a
macromolecule are firmly held together by valence bonds, forming a single
entity. In polymeric substances, the weaker van der Waals forces have an
effect on the components of the macromolecules which form the system. The
structure of polymeric systems is more complicated than that of low-molecular
solids or liquids, but there are some common features: the atoms within a
given macromolecule are ordered, but the centres of mass of the individual
macromolecules and parts of them are distributed randomly. Remarkably,
the mechanical response of polymeric systems combines the elasticity of a
solid with the fluidity of a liquid. Indeed, their behaviour is described as
viscoelastic, which is closely connected with slow (relaxation time to 1 sec or
more) relaxation processes in systems.

The monograph is devoted to the description of the relaxation behaviour
of very concentrated solutions or melts of linear polymers. In contrast to well-
known text-books on polymer dynamics by Doi and Edwards (1986) and by
Bird et al. (1987a), I exploit a mesoscopic approach, which deals with the
dynamics of a single macromolecule among others and is based on some state-
ments of a general kind. From a strictly phenomenological point of view, the
mesoscopic approach is a microscopic macromolecular approach. It reveals
the internal connection between phenomena and gives more details than the
phenomenological approach. From a strictly microscopic point of view, it is a

xiii
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phenomenological one. It needs some mesoscopic parameters to be introduced
and determined empirically. However, the mesoscopic approach permits us to
explain the different phenomena of the dynamic behaviour of polymer melts –
diffusion, neutron scattering, viscoelasticity, birefringence and others – from
a macromolecular point of view and without any specific hypotheses. The
mesoscopic approach constitutes a phenomenological frame within which the
results of investigations of behaviour of weakly-coupled macromolecules can be
considered. The resultant picture of the thermal motion of a macromolecule in
the system appears to be consistent with the common ideas about the localisa-
tion of a macromolecule: the theory comes to introduce an intermediate length
which has the sense of a tube diameter and/or the length of a macromolecule
between adjacent entanglements. It appears to be the most important param-
eter of the theory, as it was envisaged by Edwards and by de Gennes. In fact,
one needs no more parameters, apart from the monomer friction coefficient,
to describe dynamics of polymer melts in mesoscopic approach.

The monograph contains the fundamentals of the theory and reflects the
modern situation in understanding the relaxation behaviour of a polymer
solutions and melts. The contents of the monograph can be related to the
fields of molecular physics, fluid mechanics, polymer physics and materials
science. I have tried to present topics in a self-contained way that makes the
monograph a suitable reference book for professional researchers. I hope that
the book will also prove to be useful to graduate students of above mentioned
specialities who have some background in physics and mathematics. It would
provide material for a one or two semester graduate-level course in polymer
dynamics.

I should like gratefully to note that at different times Yu.A. Altukhov,
V.B. Erenburg, V.L. Grebnev, Yu.K. Kokorin, N.P. Kruchinin, G.V. Pyshno-
grai, Yu.V. Tolstobrov, G.G. Tonkikh, A.A. Tskhai, V.S. Volkov and V.E. Zga-
evskii participated in the investigations of the problems and in the discussions
of the results. I thank them for their helpful collaboration. I would like to ex-
press special thanks to Mrs Marika Fenech who has done much work to change
my drafts into a readable manuscript and to improve my English.

It is my great pleasure to acknowledge my indebtedness to Professor Sir
Sam Edwards who has kindly read an original version of the manuscript. His
comments and, especially, conversations with him in Cambridge in May 1998
were very useful for me. I am grateful to Professor A.D. Jenkins who has
also read the entire manuscript and made many helpful remarks concerning
language of the book.

This preface would be incomplete without words of acknowledgement to
the University of Malta Department of Physics for its hospitality during the
period of the completion of this book.

Madliena, MALTA Vladimir N. Pokrovskii
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b — mean square distance between adjacent particles along
the chain

B — coefficient of enhancement of “external” friction of a
particle due to surrounding macromolecules

c — concentration of polymer in solution
D — coefficient of diffusion
e — unit vector

〈eiej 〉 — tensor of mean orientation of segments
E — coefficient of enhancement of “internal” friction of a

particle due to surrounding macromolecules
G(ω) — dynamic shear modulus

Ge — plateau value of the dynamic modulus
l — the length of a Kuhn segment

M — molecular weight or length of macromolecule
Me — length of chain between adjacent entanglements in a

very concentrated solution
n — number of macromolecules in volume unit
N — number of subchains for a macromolecule

O(ω) — strain-optical coefficient
p — pressure
q — centre of mass of a macromolecule

rα — co-ordinate of a particle labelled α in the subchain
model

R — end-to-end distance of a macromolecule
sij = 〈eiej 〉 − 1

3δij — tensor of mean orientation of segments
S(ω) — dynamo-optical coefficient

S — radius of gyration of a macromolecular coil
T — temperature in units of energy (1 K = 1.38 × 10−16

erg)
uα = ṙα — velocity of a particle labelled α

uα
ik — tensor of internal stresses for mode α

xv
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v = v(x, t) — macroscopic velocity of continuum
xα

ik = 〈ρα
i ρα

k 〉
〈ραρα 〉0

— tensor of conformation for mode α

z — number of Kuhn segments for a chain
Z = M

Me
— length of macromolecule measured by Me

γij = 1
2 (νij + νji) — symmetric tensor of velocity gradients

εik — tensor of relative permittivity
ζ — coefficient of friction of a particle of a chain
η — coefficient of shear viscosity

η(ω) — dynamic viscosity
[η] — intrinsic viscosity
λ — coefficient of elongational viscosity

λik — tensor of recoverable displacements
2μT = 3TN

2〈R2〉0
— coefficient of subchain elasticity

νjs = ∂vj

∂xs
— tensor of velocity gradients

ξ — intermediate length in an entangled system
ρα — normal co-ordinate referred to mode α
σik — stress tensor

τ — terminal viscoelasticity relaxation time or relaxation
time of segment orientation

τ ∗ — characteristic ‘monomer’ relaxation time of a very
concentrated solution

τR
ν — relaxation time of macromolecule mode ν for a flexible

draining chain (Rouse approximation)
τ ⊥
ν , τ

‖
ν — orientation and deformation times of relaxation of

mode ν for macromolecule in viscous fluid
τ ±
ν , τν — relaxation times of mode ν for macromolecule in very

concentrated solution
φα — random force acting on particle α

χ = τ
2Bτ ∗ — fundamental dynamical parameter for entangled

systems
ψ = E

B — fundamental dynamical parameter for entangled
systems

ω — frequency of oscillation
ωij = 1

2 (νij − νji) — antisymmetric tensor of velocity gradients

Notation of the type of z−1
ij means (z−1)ij .

The Fourier transforms are defined as

f(ω) =
∫ ∞

− ∞
f(s)eiωs ds,

f(s) =
∫ ∞

− ∞
f(ω)e−iωs dω

2π
,

f [ω] =
∫ ∞

0

f(s)eiωs ds.



Notations and Conventions xvii

Latin suffixes take values 1, 2, 3. Greek suffixes take values from 0 or 1 to N .
The rule about summation with respect to twice repeated suffixes is used.

The averaging with respect to the realisation of random variable is noted
by angle brackets.

The chapter number and respective formulae are shown in references to
formulae.



Chapter 1
Introduction: Macromolecular Systems
in Equilibrium

Abstract The general theory of equilibrium and non-equilibrium properties
of polymer solutions and melts appears to be derived from the universal mod-
els of long macromolecules which can be applied to any flexible macromolecule
notwithstanding the nature of its internal chemical structure. Although many
universal models are useful in the explanation of the behaviour of the poly-
meric system, the theory that will be described in this book is based on the
coarse-grained model of a flexible macromolecule, the so-called, bead-and-
spring or subchain model. In the foundation of this model, one finds a simple
idea to observe the dynamics of a set of representative points (beads, sites)
along the macromolecule instead of observing the dynamics of all the atoms.
It has been shown that each point can be considered as a Brownian particle,
so the theory of Brownian motion can be applied to the motion of a macro-
molecule as a set of linear-connected beads. The large-scale or low-frequency
properties of macromolecules and macromolecular systems can be universally
described by this model, while the results do not depend on the arbitrary num-
ber of sites. In this chapter, the bead-and-spring model will be introduced and
some properties of simple polymer systems in equilibrium are discussed.

1.1 Microscopic Models of a Macromolecule

One says that the microstate of a macromolecule is determined, if a sequence
of atoms, the distances between atoms, valence angles, the potentials of inter-
actions and so on are determined. The statistical theory of long chains devel-
oped in considerable detail in monographs (Birshtein and Ptitsyn 1966; Flory
1969) defines the equilibrium quantities that characterise a macromolecule in
a whole as functions of the macromolecular microparameters.

To say nothing about atoms, valence angles and so on, one can notice that
the length of a macromolecule is much larger than its breadth, so one can con-
sider the macromolecule as a flexible, uniform, elastic thread with coefficient
of elasticity a, which reflects the individual properties of the macromolecule
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2 1 Introduction: Macromolecular Systems in Equilibrium

(Flory 1969; Landau and Lifshitz 1969). Thermal fluctuations of the macro-
molecule determine the dependence of the mean square end-to-end distance
〈R2〉 on the length of macromolecule M and temperature T which is, we
assume, measured in energy units. If MT � a

〈R2〉 =
2Ma

T
. (1.1)

The last relation shows that a long macromolecule rolls up into a coil at
high temperatures. The smaller the elasticity coefficient a is, the more it coils
up. Another name for the model of flexible thread is the model of persistence
length or the Kratky-Porod model. The quantity a/T is called the persistence
length (Birshtein and Ptitsyn 1966).

One can use another way to describe the long macromolecule. One can see
that at high temperatures there is no correlation between the orientations of
the different parts of the macromolecule, which are not close to each other
along the chain. This means that the chain of freely-jointed rigid segments
reflects the behaviour of a real macromolecule. This model carries the name
of Werner Kuhn who introduced it in his pioneering works (Kuhn 1934).

The expression for the mean square end-to-end distance can be written as
the mean square displacement of a Brownian particle after z steps of equal
length l (Appendix A)

〈R2〉 = zl2. (1.2)

If we return to the chain, z is the number of Kuhn segments in the chain,
and l is the length of the segment. To avoid uncertainty, one adds a condition
which is usually zl = M , so that one has a definition of the length

l =
〈R2〉
M

. (1.3)

Formulae (1.2) and (1.3) determine the model of a freely-jointed segment
chain, which is frequently used in polymer physics as a microscopic heuris-
tic model (Mazars 1996, 1998, 1999). A Kuhn segment in the flexible poly-
mers (polyethylene, polystyrene, for example) usually includes a few monomer
units, so that a typical length of the Kuhn segment is about 10 Å or 10−7 cm
and, at the number of segments z = 104, the end-to-end distance 〈R2〉1/2 of
a macromolecule is about 10−5 cm.

In such a way, there are two universal, (that is, irrespective of the chemical
nature) methods of description of a macromolecule; either as a flexible thread
or as freely-jointed segments. Either model reflects the properties of each
macromolecule long enough to be flexible. A relation

2a

T
= l

follows from the comparison of equations (1.1)–(1.3). This relation demon-
strates the imperfection of either model when applied to a real macromolecule.
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Indeed, it shows that the length of a segment or the elasticity coefficient de-
pends on the temperature, which contradicts the proposed features of the
models.

In any case, the mean square end-to-end distance of a long macromolecule
〈R2〉 is small compared to the length of the macromolecule. Whatever its
chemical composition, a macromolecule which is long enough rolls up into a
coil as a result of thermal motion, so that its mean square end-to-end distance
becomes proportional to its molecular length

〈R2〉 ∼ C∞(T )M. (1.4)

The temperature dependence of the size of a macromolecular coil is in-
cluded in the coefficient of stiffness C∞(T ) which has the meaning of the
ratio of the squared length of a Kuhn segment to the squared length of the
chemical bond, and can be calculated from the local chemical architecture of
the chain. The results of the calculations were summarised by Birshtein and
Ptitsyn (1966) and by Flory (1969).

The probability distribution function for the fixed end-to-end distance R
of macromolecule can be written down on either ground. In the simplest case,
it is the Gaussian distribution

W (R) =
(

3
2π〈R2〉

) 3
2

exp
(

− 3R2

2〈R2〉

)
. (1.5)

There are a number of ways to calculate function (1.5). One of the methods
is demonstrated in Appendix A.

We may note that function (1.5) has a non-realistic feature that R can
be larger than the maximum extended length M of the chain. Though more
realistic distribution functions are available (Birshtein and Ptitsyn 1966; Flory
1969), in this monograph, approximation (1.5) is sufficient for our purpose.

1.2 Bead-and-Spring Model

A macrostate of a macromolecule can be described with the help of the end-
to-end distance R. To give a more detailed description of the macromolecule,
one should use a method introduced by the pioneering work reported by Kar-
gin and Slonimskii (1948) and by Rouse (1953), whereby the macromolecule
is divided into N subchains of length M/N . One can consider the ends of
the macromolecule and the points, at which the subchains join to form the
entire chain, as a particles (the beads), labelled 0 to N respectively, and their
positions will be represented by r0, r1, . . . , rN .

One can assume that each subchain is also sufficiently long, so that it
can be described in the same way as the entire macromolecule, in particular,
one can introduce the end-to-end distance for a separate subchain b2. The
equilibrium probability distribution for the positions of all the particles in the
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macromolecule is determined by the multiplication of N distribution functions
of the type (1.5)

W (r0, r1, . . . , rN ) = C exp(−μAαγrαrγ), (1.6)

where
μ =

3
2b2

=
3N

2〈R2〉 , (1.7)

and the matrix Aαγ describes the connection of the particles into the chain
and has the form

A =

∥∥∥∥∥∥∥∥∥∥∥∥

1 −1 0 . . . 0
−1 2 −1 . . . 0
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 0 0 . . . 1

∥∥∥∥∥∥∥∥∥∥∥∥
. (1.8)

One notes that the free energy of the macromolecule in this approach is
given by

F (r0, r1, . . . , rN ) = μTAαγrαrγ (1.9)

and this determines the force on the particle in the first order in r

Kν
i = − ∂F

∂rν
i

= −2μTAνγrγ
i (1.10)

where ν is the bead number.
In order the expressions (1.6)–(1.10) to be valid, every subchain of the

model have to contain a great number of Kuhn segments. When it is deter-
mined in this way, the model is called the Gaussian subchain model: it can
be generalised in a number of ways. When additional rigidity is taken into
account, we have to add the interaction between different particles, so that
matrix (1.8) is replaced, for example, by a five-diagonal matrix. It is also pos-
sible to take into account the finite extension of subunits by including in (1.9)
terms of higher order in r.1

The Gaussian subchain model and its possible generalisations are uni-
versal models, which can be applied to every macromolecule, irrespective of

1 A reasonable approximation for the force between two adjacent particles is given by the
so-called FENE (finitely extendable non-linear elastic) spring force law (Bird et al. 1987a)

FFENE = − kr

1 − r/rmax
(1.11)

with k and rmax denoting the elasticity coefficient and the upper limit for the extension.
For the long subchains, when rmax → ∞, the first term of expansion of the FENE force

coincides with expression (1.10), so that the coefficient of elasticity ought to be k = 2μT ,
but often one uses the FENE force to simulate behaviour of shorter (down to Kuhn length)
chains, while choosing a different, empirical coefficient of elasticity (Kremer and Grest 1990;

Ahlrichs and Dünweg 1999; Paul and Smith 2004).
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its chemical composition, which is long enough. It does not mean that the
number of subchains N has to be very big. Indeed, at N = 1, the subchain
model becomes the simplest model of a macromolecule: a dumbbell with two
beads connected by elastic force. At large N the description can be simplified.
Instead of discrete label α of the co-ordinate, a continuous label

s =
α

N + 1
, 0 ≤ s ≤ 1

can be introduced, and the matrix A expressed by (1.8) can be represented as
the operator

A ≈ − 1
N2

d2

ds2
. (1.12)

This allows one to rewrite expressions, considered here and later, in other
forms and to fulfil analytical calculations more easily. In this monograph,
however, we prefer to use the matrixes, bearing in the mind that the theory
can be also applied to produce numerical calculations at small numbers N .

The Gaussian subchain model and its possible generalisations allows one
to calculate, in a coarse-grained approximation, the different characteristics of
a macromolecule and systems of macromolecules, playing a fundamental role
in the theory of equilibrium and non-equilibrium properties of polymers. The
model does not describe the local structure of the macromolecule in detail,
but describes correctly the properties on a large-length scale.

1.3 Normal Co-Ordinates

The equilibrium and non-equilibrium characteristics of the macromolecular
coil are calculated conveniently in terms of new co-ordinates, so-called normal
co-ordinates, defined by

rβ = Qβαρα, ρα = Q−1
αγrγ , (1.13)

such that the quadratic form in equations (1.6) and (1.9) assumes a diagonal
form

QλμAλγQγβ = λμδμβ . (1.14)

It can readily be seen that the determinant of the matrix given by (1.8)
is zero, so that one of the eigenvalues, say λ0, is always zero. The normal
co-ordinate corresponding to the zeroth eigenvalue

ρ0 = Q−1
0γ rγ

is proportional to the position vector of the centre of the mass of a macro-
molecular coil

q =
1

1 + N

N∑
α=0

rα. (1.15)
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It is convenient to describe the behaviour of a macromolecule in a co-ordinate
frame with the origin at the centre of the mass of the system. Thus ρ0 = 0
and there are only N normal co-ordinates, numbered from 1 to N.

The transformation matrix Q can be chosen in a variety of ways, which
allow us to put extra conditions on it. Usually, it is assumed orthogonal and
normalised. In this case, it can be demonstrated (see, for example, Dean 1967)
that the components of the transformation matrix and the eigenvalues are
defined as

Qαγ =
(

2 − δ0γ

N + 1

) 1
2

cos
(2α + 1)γπ

2(N + 1)
, λα = 4 sin2 πα

2N
. (1.16)

For large N and small values of α, the eigenvalues are then given by

λα =
(πα

N

)2

, α = 0, 1, 2, . . . , � N. (1.17)

In the case of an orthogonal transformation, the relationship between the
normal co-ordinate corresponding to the zeroth eigenvalue and the position
of the centre of mass of the chain is

ρ0 = q
√

1 + N. (1.18)

The distribution function (1.6), normalised to unity, then assumes the
following form

W (ρ1, ρ2, . . . , ρN ) =
N∏

γ=1

(
μλγ

π

) 3
2

exp(−μλγργργ). (1.19)

The probability distribution function allows us readily to calculate equi-
librium moments of the normal co-ordinates

〈ρν
i ρν

k 〉 =
∫

Wρν
i ρν

k {dρ} =
1

2μλν
δik,

〈ρν
i ρν

kρν
sρν

j 〉 =
1

4(μλν)2
(δikδsj + δisδkj + δijδks).

(1.20)

In a case of a general transformation, relations (1.16) and (1.17) are not
valid and ought to be replaced by other relations. A non-orthonormal trans-
formation matrix was used at investigation of non-equilibrium properties of
the macromolecule in a liquid when so-called hydrodynamic interaction was
taking into account (Zimm 1956).

1.4 Macromolecular Coil

The subchain model gives a more detailed description of a macromolecule
and allows one to introduce, in line with the end-to-end distance 〈R2〉 = Nb2,
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another characteristic of the macromolecular coil – the mean square radius of
gyration

〈S2〉 =
1

1 + N

N∑
α=0

〈
(rα − q)2

〉
, q =

1
1 + N

N∑
α=0

rα. (1.21)

This quantity, as it is followed from the above definitions, can be also calcu-
lated as

〈S2〉 =
1

2(1 + N)2

N∑
α,γ=0

〈
(rα − rγ)2

〉
. (1.22)

In the normal co-ordinates (1.13), in the case of the orthogonal transfor-
mation, the mean square radius of gyration of the macromolecule (1.21) is
expressed in equilibrium moments

〈S2〉 =
1

1 + N

N∑
α=1

〈ρα
i ρα

i 〉.

The formulae (1.20) allow one to estimate the mean square radius of gyration
of the macromolecule

〈S2〉 ≈ 1
6

〈R2〉 =
N

6
b2.

An important property of the Gaussian chain is that the distribution of
the distance between any two particles of the chain is Gaussian and is similar
to function (1.5). So, the mean values of the functions of the vector rα − rα =
eαγ |rα − rγ | where α and γ are the labels of the particles of the chain, can be
calculated with the help of the distribution function

W (rα − rγ) =
(

3
2π|α − γ|b2

)3/2

exp
{

− 3(rα − rγ)2

2〈(rα − rγ)2〉

}
,

which allows one to calculate averaged values of various quantities, for exam-
ple,

〈(rα − rγ)2〉 = |α − γ|b2,〈
1

|rα − rγ |

〉
0

=
1
b

(
6

π|α − γ|

)1/2

, (1.23)
〈

eαγ
i eαγ

j

|rα − rγ |

〉

0

=
1
3b

(
6

π|α − γ|

)1/2

δij .

To characterise the size and form of the macromolecular coil, one can
introduce a function of density of the number of particles of the chain

ρ(r) =
N∑

ν=0

〈δ(r − rν)〉,
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where rν is the co-ordinate of particle ν, and r is the separation from the
mass centre of the coil. At equilibrium, one considers the macromolecular coil
to have spherical symmetry. The effective radius of the macromolecular coil
is assumed to be equal to the mean radius of inertia of the coil 〈S2〉 which is
determined by equation (1.21). A spherical-symmetrical distribution function
of the density of the macromolecular coil ρ(r), where r is the vector from the
centre of the coil, can now be introduced by relations

∫
ρ(r)dr = N,

1
N

∫
ρ(r)r2dr = 〈S2〉.

This allows us to approximate the function ρ(r), for example, by a two-
parameter exponential function

ρ(r) =
(

3
2π〈S2〉

)3/2

N exp
(

− 3
2

r2

〈S2〉

)
. (1.24)

1.5 Excluded-Volume Effects

One says that the above results are valid for a chain with non-interacting
particles. However, the monomers in a real macromolecule interact with each
another, and this ensures, above all, that parts of the molecule cannot occupy
the place already occupied by other parts; i.e. the probabilities of successive
steps are no longer statistically independent, as was assumed in the derivation
of the above probability distribution functions and mean end-to-end distance
(Flory 1953). So, considering the coarse-grained model, one has to introduce
lateral forces of attractive and repulsive interactions. The potential energy of
lateral interactions U depends on the differences of the position vectors of all
particles of the chain and, in the simplest case, can be written as a sum of
pair interactions

U =
1
2

N∑
ν=0

N∑
γ = 0
γ �= ν

u (|rγ − rν |) . (1.25)

The presentation of potential in this form can be apparently justified only for
large numbers N of subchains.

The effective potential u(r) between two fictious particles of the chain
can be chosen in a convenient form. For analytical calculations, the potential
function is approximated (Doi and Edwards 1986) by the delta function,

u(r) = vTδ(r). (1.26)

The parameter v has the dimension of volume and is called the excluded
volume parameter. The above approximation of repulsive force can be appar-
ently valid for a long macromolecule, when a very large number of subchains
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N can be introduced. For a finite number of subchains, the potential can be
approximated (Öttinger 1995) by a Gaussian function

u(r) =
vT

(2πσ2)3/2
exp

(
− r2

2σ2

)
,

where the parameter of interaction σ depends on the number of subchains
of a macromolecule in such a way, that, at N → ∞, σ → 0, and repulsive
potential turns into function (1.26). The dependence ought to be chosen in
such a way, that properties of macromolecular coil do not depend on number
of division of macromolecule into subchains.2

For the subchain model under consideration, an equilibrium distribution
function that includes the particle interaction potential, takes the form

W = C exp
(

−μAαγrαrγ − 1
T

U

)
(1.27)

where C is the normalisation constant. The definition of the quantity μ
in (1.27) does not coincide with expression (1.7), so as the internal interac-
tions are taken into account, but nevertheless the quantity can be expressed,
on the basis of scaling speculations, through the mean end-to-end distance of
a subchain as

μ ∼ b−2.

The free energy of a macromolecule, instead of (1.9), is given by

F (r0, r1, . . . , rN ) = μTAαγrαrγ + U(r0, r1, . . . , rN ). (1.28)

However, if one is not interested in observing the variables r0, r1, . . . , rN

at all, the independent on these parameters free energy can be defined. This
quantity can be calculated, starting from expression (1.25) and (1.27), so that
it depends on the parameters T, N, b, v, whereby the arbitrary quantity N
cannot influence the free energy of the macromolecular coil and the explicit

2 The problem of how to chose the effective potential for simulation purposes was recently

discussed by Müller-Plathe (2002). At least, one parameter σ with dimension of length is
usually included also in the function u(r). The magnitude of interaction decreases when N

increases, so that, for long chains, the potential can be presented in universal form as

u(r) =
T

Nη
v

( r

σ

)
.

The universality also assumes that σ ∼ b. The index η can be estimated, when one calculates

free energy of the coil. Specifically, the Lennard-Jones potential

u(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
+

1

4

]
, r < 21/6σ

is often used (Kremer and Grest 1990; Ahlrichs and Dünweg 1999; Paul and Smith 2004)

to describe interaction between particles.
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dependence on arbitrary parameter N has to be excluded. So, after dimen-
sional considerations has been taken into account, one has to write free energy
of the coil as a function of the only parameter

F (T ) = Tg
( v

b3

)
. (1.29)

A relation between the mean end-to-end distance of the entire chain 〈R2〉
and the mean end-to-end distance of a subchain b can be found from simple
speculation. This relation includes temperature T , mean distance b between
the nearest along chain particles, excluded volume parameter v and the num-
ber of particles on the chain N . When dimensional considerations are taken
into account, the relation can be written in the form

〈R2〉 = b2f
(
N,

v

b3

)
. (1.30)

Of course, the end-to-end distance of the entire macromolecule 〈R2〉 does
not depend on the arbitrary number of subchains N at N → ∞, when the
ratio v/b3 is constant. This means that the relation between 〈R2〉 and a finite
number of subchains should be written in a way, which keeps the form of the
relation under repeating divisions of the macromolecule, so that the mean
square end-to-end distance of the macromolecule has to be written as a power
function

〈R2〉 ∼ N2νb2.

It is easy to see that this relation is valid for an arbitrary number of divisions.
Thus, general consideration leads to the power dependence of the end-to-end
distance of the macromolecule on its length

〈R2〉 ∼ M2ν . (1.31)

We can guess that the dimensions of a macromolecular coil with the
excluded-volume effect are larger than those of the ideal coil, so that ν ≥ 1/2.
However, it is necessary to fulfil a number of special and sophisticated cal-
culations to find a specific value of power 2ν in expression (1.31) (Alkhi-
mov 1991). The first estimates of the index (Flory 1953; Edwards 1965) were
done by simple self-consistent methods. Then the mean end-to-end distance
was calculated by a perturbation method, while the chain in a imaginable
4-dimensional space is considered to be non-perturbed, and deviation of di-
mensionality of the imaginable space from the real physical space ε is believed
to be the small parameter of expansion. The first-order term gives (Gabay
and Garel 1978) the following value of index

2ν =
9
8
.

The answer is known to many decimal places (Alkhimov 1991).
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A great deal of effort has been expended in attempts to find a distribution
function for the end-to-end length of the chain (Valleau 1996). Oono et al.
(1981) have shown that in the simplest approximation, the distribution func-
tion for non-dimensional quantity R2/〈R2〉 is close to Gaussian, so the above
results allow one to write down an expression for the elasticity coefficient,
when the excluded-volume effect is taken into account, in the form

μ ∼
(

N

M

)2ν

. (1.32)

It is an approximation; in fact, the index in (1.32) is slightly different from 2ν.
The lateral forces depend on temperature: at high temperatures the re-

pulsion interactions between particles prevail; on the contrary, at low tem-
peratures the attraction interactions prevail, so that there is a temperature
at which the repulsion and attraction effects exactly compensate each other.
This is the θ-temperature at which the second virial coefficient is equal to
zero. It is convenient to consider the macromolecular coil at θ-temperature
to be described by expressions for an ideal chain, those demonstrated in Sec-
tions 1.1–1.4. However, the old and more recent investigations (Grassberger
and Hegger 1996; Yong et al. 1996) demonstrate that the last statement can
only be a very convenient approximation. In fact, the concept of θ-temperature
appears to be immensely more complex than the above picture (Flory 1953;
Grossberg and Khokhlov 1994).

1.6 Macromolecules in a Solvent

The picture considered in the previous section is idealised one: the macro-
molecule does not exist in isolation but in a certain environment, for example,
in a solution, which is dilute or concentrated in relation to the macromolecules
(Des Cloizeaux and Jannink 1990). The important characteristic for the case
is the number of macromolecules per unit of volume n which can be written
down through the weight concentration of polymer in the system c and the
molecular weight (or length) of the macromolecule M as

n = 6.026 × 1023 c

M
cm−3. (1.33)

The mean distance between the centres of adjacent macromolecular coils
d ≈ n−1/3 can be compared with the mean squared radius of gyration of
the macromolecular coil 〈S2〉, which presents the mean dimension of the coil.
Taking the definition (1.21) into account, one can see, that a non-dimensional
parameter n〈R2〉3/2 is important for characterisation of polymer solutions.
The condition

n〈R2〉3/2 ≈ 1 (1.34)

defines the critical molecular weight for a given concentration, or the critical
concentration of the solution for a given molecular weight, at which the coils
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Figure 1. A macromolecular coil in a good solvent.
The curves illustrate two variants of the concentration dependence of the mean size of
a macromolecular coil in solution. The example is taken of a macromolecule in a good

solvent, so that at low concentrations the size of the macromolecular coil is larger than
the size of ideal coil, 〈R2〉/〈R2〉0 > 1.

begin to overlap. However, the mean square end-to-end distance 〈R2〉 of the
macromolecule itself depends on concentration c and molecular length M . The
possible concentration dependencies of the mean square end-to-end distance of
the macromolecule are depicted on Fig. 1. The increase in the concentration
of the polymer from dilute to very concentrated solution can be accompa-
nied by the mutual interpenetrating or repulsion of the macromolecular coils
(Erukhimovich et al. 1976).

1.6.1 Macromolecules in a Dilute Solution

The condition for a polymer solution to be dilute can be written as

n〈R2〉3/2 � 1

Macromolecules in dilute solutions (c � 1) can be considered as not inter-
acting with each other, though this is not always valid (Kalashnikov 1994;
Polverary and de Ven 1996).

To consider the behaviour of a single macromolecule in the solution, the
interaction of the atoms of the macromolecule with the atoms of solvent
molecules has to be taken into account, apart from the interactions between
the different parts of the macromolecule. To find the distribution function for
the chain co-ordinates, one ought to consider N +1 “big” particles of chain in-
teracting with each other and each with “small” particles of solvent. One can
anticipate that after eliminating the co-ordinates of the small particles in the
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distribution function, the distribution function of the chain co-ordinates can
be taken in the form (1.27). In this case, the energy potential of the particle U
is an effective potential, while taking into account both the interaction of the
atoms of the macromolecule with the atoms of solvent and the interaction of
the atoms of the macromolecule with each other. The speculations and results
of the previous section are valid for the considered case.

From the energy point of view polymer–solvent contacts as compared with
polymer–polymer contacts are preferred for some solvents called “good” sol-
vents in this situation. A macromolecular coil swells and enlarges its dimension
in a “good” solvent. On the contrary in a “bad” solvent, a macromolecular coil
decreases in its dimension and can collapse, turning into a condensed globule
(Flory 1953; Grossberg and Khokhlov 1994).

The second virial coefficient of the macromolecular coil B(T ) depends
not only on temperature but on the nature of the solvent. If one can find
a solvent such that B(T ) = 0 at a given temperature, then the solvent is
called the θ-solvent. In such solvents, roughly speaking, the dimensions of the
macromolecular coil are equal to those of an ideal macromolecular coil, that
is the coil without particle interactions, so that relations of Sections 1.1–1.4
can be applied to this case, as a simplified description of the phenomenon.

1.6.2 Weakly-Coupled Macromolecules

In the alternative case, when the solution is very concentrated, that is the
condition

n〈R2〉3/2 � 1

is satisfied, the system of linear interacting macromolecules can exist in various
physical states, depending on temperature. Transition points from the fluid
state to the crystalline and/or glassy state are different for different polymers
(Table 1). Further on, in this monograph, we shall consider the systems at
temperatures exceeding the characteristic crystallisation and glass points, Tc

and Tg, so that the system, schematically depicted in Fig. 2, can be considered
to be fluid. Either macromolecule in the system can only move as freely as its
macromolecular neighbours allow it to. Similar to entangled ropes, polymer
chains in a concentrated system can slide past but not through each other.
These topological constrains, the so-called entanglements lead to a specific
interaction between the macromolecules in the system, to the formation of
sites and tangles (Kholodenko and Vilgis 1998; Marcone et al. 2005). An
analysis of the entangled polymer system by numeric simulations discovers
a certain topological structure – primitive path mesh (Everaers et al. 2004;
Kremer et al. 2005).

To describe the system in the coarse-grained approximation, the position
of each macromolecule can be defined, as before, by specifying certain points
along the macromolecule, spaced at distances that are equal, but not too
small; as before, we shall refer to these points as particles. If one takes N + 1
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TABLE 1. Characteristics of typical polymers

Polymer Density Transition Me

in flow state, temperature, ◦C
g cm−3 crystal glass

Polystyrene 0.962 – 100 18 100
Poly-α-methylstyrene – – 168 13 500
Polybutadiene 0.910 −25 −110 2 200

Poly(vinyl acetate) 1.380 – 32 12 000
Poly(dimethyl siloxane) 0.960 −70 −123 8 100

Polyethylene 0.767 140 −20 5 100
Polyisoprene

(natural rubber) 0.910 10 −71 5 800
Poly(methyl

methacrylate) 1.380 – 100 5 900
Polyisobutylene 0.812 24 −55 8 900

points to define the position of the macromolecule, 3n(N + 1) co-ordinates
are needed to specify the state of the entire system. Let us note that due to a
great number of Kuhn segments in a separate subchain, the number density
of Brownian particles is much less than the number density of the segments,
so that the system of Brownian particles can be considered as dilute. The
equilibrium distribution function of the system can be written as

W = C exp

(
−μ

n∑
a=1

Aγνraγraν − U

T

)
(1.35)

where raγ is the co-ordinate of the γth particle of a macromolecule labelled a
or, in short, the co-ordinate of the particle aγ; the matrix A and the quantity μ
are given by (1.8) and (1.32), respectively. The potential energy U associated
with the “lateral” interaction between the chains depends on the differences
between the co-ordinates of all the particles in the system, but in contrast
to the case of a single macromolecule, described in Section 1.4, it is doubtful
that the potential can be written as a sum of pair interactions.

For concentrations approaching the limiting value (c → 1), the system of
macromolecular coils becomes homogeneous in space. The presence of other
coils changes the potential of interaction between two particles of the same
chain in such a way, that the interactions between particles of a chosen macro-
molecule in a highly entangled system could be neglected. This remarkable
phenomenon – excluded-volume-interaction screening – was guessed by Flory
(1953) and strictly confirmed by Edwards in mid sixties (Doi and Edwards
1986). This means that, for description of every macromolecule in a strongly
entangled system, one can use the distribution function for ideal chains

W = C exp(−μAγνraγraν), a = 1, 2, . . . , n. (1.36)
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Figure 2. Schematisation of amorphous polymeric material.
Macromolecules are coupled with weak van der Waals forces. At T > Tg, the system is

in a fluid state, and the thermal motion makes the macromolecules move besides each
other. At T < Tg, the system is in a glassy state, large-scale conformations of the chains

are frozen, and a macromolecule can change its neighbours at the deformation of the
material only.

This expression could be found by integrating function (1.35) with respect
to the co-ordinates of the particles of all the macromolecules apart from the
particles of a chosen one.3 In this situation, one can use the results for ideal
coil, so that one can write for the parameter

n〈R2〉3/2 ∼ cM1/2. (1.37)

Free energy of the system in volume V , due to general relation (1.35),
depends on the parameters n, T, V, N, b and parameters of interaction,
whereby the arbitrary quantity N cannot influence the free energy of the
system. So, after dimensional considerations has been taken into account, one
has to write free energy for unit of volume

F (T ) = nTg
( v

b3
, n〈R2〉 3

2

)
. (1.38)

The additional, in comparison with equation (1.29), parameter has appeared.
Discussions of dynamic phenomena in polymer melts are frequently based

on assumptions about a structure of the system, which was earlier taken to be
3 Experiments due to neutron scattering by the labelled macromolecules allow one to esti-

mate the effective size of macromolecular coils in very concentrated solutions and melts of
polymers (Graessley 1974; Maconachie and Richards 1978; Higgins and Benoit 1994) and

confirm that the dimensions of macromolecular coils in the very concentrated system are
the same as the dimensions of ideal coils. It means, indeed, that the effective interaction

between particles of the chain in very concentrated solutions and melts of polymers appears
changes due to the presence of other chains in correspondence with the excluded-volume-
interaction screening effect. The recent discussion of the problem was given by Wittmer et

al. (2007).
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a network with a characteristic site lifetime and nearest-neighbour separation
(Lodge 1956). Modifications of these presentations retain a certain intermedi-
ate scale, as a postulated quantity. The elaborated theory (Doi and Edwards
1986) includes this quantity as the diameter of a tube in which macromolecu-
lar displacement, i.e. reptation, is possible, but this hypothetical intermediate
scale has been detected only in dynamic phenomena, and its existence should
be regarded as a consequence rather than the origin of the theory. The theory
that we shall consider in subsequent chapters does not rely on the assumption
of an intermediate scale, but it does assume that the mean size 〈R2〉 and the
macromolecular number density n (or concentration c) are the most signif-
icant static parameters of the system. However, an intermediate dynamical
length ξ will appear in our theory later (see Section 5.1.2). The intermediate
length is closely related to “the length of a macromolecule between adjacent
entanglements” Me (see examples in Table 1). The ratio M/Me, for which we
shall use a special symbol Z, appears to be a very important parameter in the
theory of dynamic behaviour of entangled system.

We shall not discuss here the spatial correlation functions introduced by
Daoud et al. (1975) for a more detailed description of the system structure and
of the relative position of monomers, since they are relatively unimportant in
our, admittedly very coarse, approximation.

1.7 Elasticity of Polymer Networks

One can imagine that macromolecules in the a dense system can be connected
to each other at some points by a chemical agent. In this way, there appear
polymer networks consisting of long chains, connected by the chemical bonds
in an entire body. As a rule, such structures are non-regular; networks have
free dangling ends, tangles; chains between adjacent junctions have different
lengths, and so on. Nevertheless it is convenient to study the behaviour of
a perfect network with the regular structure of chains of equal length and
without any defects, as shown in Fig. 3. The mobility of the macromolecules
is now restricted and the more the density of junctions ν, the more the re-
strictions. The mobility of the junctions about their mean positions is severely
restricted too.

The main subject of the following discussion is the mechanical behaviour
of networks in terms of the behaviour of the system of weakly coupled macro-
molecules. The network modulus of elasticity is small in comparison to the
values of the elasticity modulus for low-molecular solids (Dušek and Prins
1969; Treloar 1958). Nevertheless, large (up to 1000%) recoverable deforma-
tions of the networks chains are possible.

In this section we consider the simplest approach to the thermodynamics
of a deformed network, for which a tensor of displacement gradients is given
by
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Figure 3. Schematisation of an ideal polymer network.
Every knot connects four chains by chemical bonds. At T > Tg, both chains and knots
take part in thermal motion as Brownian particles, at T < Tg, the network is in a

glassy state, large-scale conformations of the chains are frozen, the motion of the knots
is negligible.

λik =
∂xi

∂x0
k

, (1.39)

where x0
j and xj are the co-ordinates of a body point, before and after defor-

mation, respectively.
In the ideal case, when one considers the network of chains of equal lengths,

the stresses under the given deformation can be obtained in a very simple way.
In virtue of the speculations of the previous section, free energy of the whole
network can be represented as the sum of free energy of all the chains, while
each of the equal chains of the network can be characterised by the same
equilibrium distribution function W (s), where s is the separation between
adjacent junctions. In the state without deformation, the function has the
form (1.5), while in a deformed state, it depends on the displacement gradi-
ents (1.39). The free energy of the whole network can be written down simply
as

F = νTV μ

∫
W (s)s2ds, (1.40)

where ν is the number of chains in the volume unit of the network, so that
νV is the number of chains in the whole network. The coefficient of elasticity
μ is the same for each chain and is defined as

μ =
3

2〈s2〉0
,

where 〈s2〉0 is the equilibrium mean square separation between adjacent junc-
tions.

The equation (1.40) can be rewritten in the form

F = F0(T, V ) + νTV μ
(

〈s2〉 − 〈s2〉0

)
, (1.41)
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where 〈s2〉0 and 〈s2〉 are the mean square separations between the adjacent
junctions of the network before and after deformation. The assumption of
a regular structure of a network is followed by a statement that every in-
ternal length changes accordingly to the given tensor of displacement gradi-
ents (1.39). So, one can define the tensors of the mean square separations
between the adjacent junctions of the network before and after deformation

〈sisk 〉 =
1
3
λijλkj 〈s2〉0, 〈sisk 〉0 =

1
3
δik 〈s2〉0.

It is convenient to introduce, following to Murnaghan (1954), the tensor
of deformation Λik = λsiλsk. The latter is useful to write down a free energy
function (1.41) of a deformed network as

F = F0(T, V ) +
1
2
νTV (Λii − 3). (1.42)

Then the relation between the free energy of body and the stress tensor (Ap-
pendix B, equation (B.7)) can be used

σik =
2
V

λklλij

(
∂F

∂Λjl

)
T

.

The formula for the stress tensor of a deformed network, as follows from the
above relations, is given by

σik = −pδik + νT (λijλkj − δik) (1.43)

where p is the thermodynamic pressure, and ν is the number of chains in the
volume unit of the network. Relation (1.43) defines the shear modulus of a
polymer network as

G = νT. (1.44)

Expression (1.44) is useful to estimate the number density of the active chains
of the network, due to the measured temperature T and shear modulus G.

The above results, which were formulated in the early thirties (Treloar
1958), explain the main features of the elastic behaviour of polymer net-
works. Nevertheless, there are notable discrepancies between empirical data
and the cited results. Further investigations demonstrated that the values of
shear modulus and stress–strain dependence are determined substantially by
topological constraints due to the proximity of the chains. The theory was
improved by taking into account the discussed issue (Edwards 1967a, 1967b,
1969; Flory 1977; Erman and Flory 1978; Priss 1957, 1980, 1981). More re-
cent developments are summarised in the work of Panyukov and Rabin (1996),
where many additional relevant references could be found.
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Figure 4. Schematisation of crystalline polymer material.
Crystallite sizes are of order 102–103Å. The amorphous parts of the material are in a

fluid state at T > Tg and in a glassy state at T < Tg.

1.8 Crystalline and Glassy Systems

In Section 1.6.2 we assumed that the temperature is high enough to consider
the van der Waals’ interaction between chains to be small, so the chains (not
to consider chemical crosslinks) can move freely beside each other. To com-
plete the picture, we will shortly describe the structure and behaviour of the
systems, described in Section 1.6.2, at lower temperatures. In contrast to the
previous cases, interchain interaction is not small, so that the mobility of the
macromolecule is very severely restricted by neighbouring macromolecules.
One can observe, instead of a fluid state, a crystalline and/or glassy state in
this case (Ferry 1980).

Due to the atomic structure of the macromolecule, some of the polymers
can be in crystalline state at a temperature T < Tc. The long macromolecules
are folded several times, thus creating crystallites of definite size for each
polymer (see review: Oleinik 2003). In this case the polymer materials consist
of crystalline and amorphous parts, the latter being in a rubbery state at
T > Tg (Fig. 4). Crystallites are arranged in a special way so that there is
order even on large scales: so-called spherulites exist and can be discovered by
light scattering (Treloar 1958). Though the structure of the material is rather
complex, there is an important characteristic of a semi-crystalline body – the
volume fraction of the crystalline part χ (0 < χ < 1), which correlates with
the density of the material quite well.

In the temperature region between melt and glass points Tc > T > Tg, the
modulii of elasticity of the amorphous and crystalline parts differ very much
(Tashiro 1993), so the deformation of relatively soft and mobile amorphous
areas consisting of chain sections anchored in a crystal lattice of adjacent
crystalline region is large in comparison with the crystalline parts. So, small
(up to 10–20%) elastic deformations of the whole body can be attributed to
the deformation of the amorphous parts of the material (Zgaevskii 1977). One
can suppose that the crystallite modulus is high enough in comparison to the
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modulus of the amorphous part. For intermediate values of the volume fraction
of crystalline part χ, the assumption leads to the expression for modulus of
semi-crystalline polymer material

G = νT

[
1 +

χ2

(1 − χ)2

]
(1.45)

where ν is the number density of the active chains of the amorphous part of
the material. Relation (1.45), which is the generalisation of formula (1.44), is a
particular case of the more general relation (Zgaevskii 1977). This model can
be also used to calculate photoelastic properties of semi-crystalline polymer
material (Patlazhan 1993).

At far lower temperatures T < Tg, polymer materials (no matter whether
they are crystalline or amorphous) become rigid; one says that the poly-
mer materials transit into the glassy state. The interaction between different
macromolecules in glassy materials is not weak. The free energy of materials
cannot be written down as the sum of chain free energies, as was the case
for the higher temperatures considered in Sections 1.6.2 and 1.7. A macro-
molecule in a glassy material cannot move, the large-scale conformations of
macromolecules are frozen. The structure of the material can be imagined as
a very dense network capable of small elastic deformations (Laius and Ku-
vshinskii 1963; Shishkin et al. 1963).

Glassy materials can be deformed without fracture up to hundreds of per-
cents. Under this so-called forced deformation, the conformations of macro-
molecules change but the structure of the dense network does not change.
After the stresses have been removed, the sample is still in a deformed state,
which is a metastable equilibrium state. The macromolecules in such a sample
are frozen in a deformed state, so that on heating, when the crosslink number
density decreases, forces are exerted and the sample can return to its initial
form (Laius and Kuvshinskii 1963; Shishkin et al. 1963).



Chapter 2
Dynamics of a Macromolecule
in a Viscous Liquid

Abstract In this chapter, the dynamics of the macromolecule moving in the
uniform flow of a viscous liquid will be considered. To be accurate, one ought
to consider a system consisting of a macromolecule and molecules of solvent
(microscopic approach). However, since we are interested in large-scale or
low-frequency dynamics of a macromolecular coil, a bead-spring model of a
macromolecule can be used and molecules of solvent can be considered to con-
stitute a continuum – a viscous liquid. This is a mesoscopic approach to the
dynamics of dilute solutions of polymers. The approach provides the simplest
model that appears to be rather complex, if the effects of excluded volume,
hydrodynamic interaction, and internal viscosity are taken into account. Due
to these effects, all the Brownian particles of the chain ought to be consid-
ered to interact with each other in a non-linear way. There is no intention
to collect all the available results and methods concerning the dynamics of
a macromolecule in viscous liquid in this chapter. We need to consider the
results for dilute solutions mainly as a background and a preliminary step
to the discussion of the dynamics of a macromolecule in very concentrated
solutions and melts of polymers.

2.1 Equation of Macromolecular Dynamics

The theory of relaxation processes for a macromolecular coil is based, mainly,
on the phenomenological approach to the Brownian motion of particles. Each
bead of the chain is likened to a spherical Brownian particle, so that a set
of the equation for motion of the macromolecule can be written as a set of
coupled stochastic equations for coupled Brownian particles

m
d2rα

dt2
= F α + Gα + Kα + φα, α = 0, 1, . . . , N (2.1)

where m is the mass of a Brownian particle associated with a piece of the
macromolecule of length M/(N +1), rα are the co-ordinates of the Brownian
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particles. Every Brownian particle is involved in thermal motion, which, as
usual (Chandrasekhar 1943; Gardiner 1983; Doi and Edwards 1986), can be
described by putting a stochastic force φα (for a particle labelled α) into an
equation of motion of a macromolecule. The essential features of the stochas-
tic force are connected with properties of the dissipative forces F α and Gα

(the fluctuation-dissipation theorem). For the linear case, the relation will be
discussed in Section 2.6.

According to relations (1.10) and (1.28), the elastic forces acting on the
particle are taken in the form

Kα = − ∂F

∂rα
= −2TμAαγrγ − ∂U

∂rα
, (2.2)

whereas the dissipative forces F α and Gα are needed in special discussion.
To say nothing about the different equivalent forms of the theory of the

Brownian motion that has been discussed by many authors (Chandrasekhar
1943; Gardiner 1983), there exist different approaches (Rouse 1953; Zimm
1956; Cerf 1958; Peterlin 1967) to the dynamics of a bead-spring chain in the
flow of viscous liquid.1 In this chapter, we shall try to formulate the theory in
a unified way, embracing all the above-mentioned approaches simultaneously.
Some parameters are used to characterise the motion of the particles and in-
teraction inside the coil. This phenomenological (or, better to say, mesoscopic)
approach permits the formulation of overall results regardless to the extent to
which the mechanism of a particular effect is understood.

2.2 Intramacromolecular Hydrodynamic Interactions

In the study of the dynamics of the macromolecule in the subchains approx-
imation, each particle of the chain is considered, to a first approximation, to
be spherical with a radius a, so that the coefficient of resistance of the particle
in a viscous liquid, according to Stokes, can be written as follows

ζ0 = 6πηsa, (2.3)

where ηs is viscosity coefficient of the liquid.
Each particle, moving at a velocity uγ , is acted upon by the hydrodynamic

drag force, which has the form

F γ = −ζ0(uγ − vγ), (2.4)

where vγ is the velocity of the liquid of the point, at which the given particle is
present, the velocity corresponding to the situation where no account is taken
of the particle. When an assembly of particles is considered, the velocity vγ

1 See Ferry (1990) for a short history of development.
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is, generally speaking, determined by the motion of all the particles. As can
be seen from formulae for forces applied to points (see Appendix C), we have

vγ
j = νjlr

γ
l −

N∑

β=0

Hγβ
jl F β

l , (2.5)

where νjlr
γ
l is velocity of the flow in the point rγ

l in absence of the particles
in the liquid, and νij = ∂vi

∂xj
is a tensor of velocity gradients2 of the uniform

flow.3 The components of the hydrodynamic interaction tensor Hγβ
jl for γ = β

are zero, while, in the case γ �= β, they are determined by the relation

Hγβ
ik =

1
8πηs|rγ − rβ |

(
δik + eγβ

i eγβ
k

)
(2.6)

where eγβ
i = (rγ

i − rβ
i )/|rγ − rβ |.

A system of equations for the drag forces follows from equations (2.4)
and (2.5)

Fα
j = −ζ0(uα

j − νjlr
α
l ) − ζ0

∑

γ

Hαγ
jl F γ

l . (2.7)

A solution of equations (2.7) can be written in the form

Fα
j = −ζ0B

αγ
jl (uγ

l − νlir
γ
i ) (2.8)

where the matrix of hydrodynamic resistance Bαγ
jl is introduced as the matrix

inverse to the matrix
δjlδαγ + ζoH

αγ
jl .

For small perturbations, the solution of equations (2.7) assumes the fol-
lowing form, to the first approximation

Fα
j = −ζ0

∑

γ

[(
δαγδjl − ζ0H

αγ
jl

)
(uγ

l − νlir
γ
i )

]
. (2.9)

This equation shows that the resistance-drag force for a certain particle de-
pends on the relative velocities of all the particles of the macromolecule and
also on the relative distance between the particles. This expression determines
an approximate matrix of hydrodynamic resistance

2 Note that henceforth it will be convenient to use the following notation for the symmetric

and antisymmetric tensors of velocity gradients

γij =
1

2
(νij + νji), ωij =

1

2
(νij − νji).

3 The dependence of the velocity gradients on the co-ordinates leads to possible migration
of macromolecules in a flow (Aubert and Tirell 1980; Brunn 1984) – the effect, which is not

discussed in this monograph.
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Bαγ
jl = δαγδjl − ζ0H

αγ
jl . (2.10)

The exact components of the matrix of hydrodynamic resistance for a two-
particle chain are shown in Appendix F.

We note that the values of the hydrodynamic interaction tensor (2.6) av-
eraged beforehand with the aid of some kind of distribution function, are
frequently used to estimate the influence of the hydrodynamic interaction, as
was suggested by Kirkwood and Riseman (1948).4 For example, after aver-
aging with respect to the equilibrium distribution function for the ideal coil
and taking the relation (1.23) into account, the hydrodynamic interaction
tensor (2.6) assumes the following form

〈ζ0H
αγ
ij 〉 = 2h|α − γ| −1/2δij .

The non-dimensional hydrodynamic interaction parameter appears here

h =
ζ0

√
6/π

12πηsb
≈ a

b
(2.11)

where a is the radius of a fictious particle associated with a subchain of length
M/N and b is the mean square distance between neighbouring particles along
the chain.

One can expect that the parameter of hydrodynamic interaction (2.11)
behaves universally for subsequent division of the chain. One can reasonably
guess that the quantity (2.11) does not depend on the length of the macro-
molecule and on the number of subchains. In this case, the hydrodynamic
radius of the particle for the Gaussian chain

a ∼
(

M

N

)1/2

.

The dependence of the friction coefficient of the particle is similar. If the
excluded-volume effect is taken into account, the more general relation (2.19)
is valid.

2.3 Resistance-Drag Coefficient of a Macromolecular
Coil

To calculate the resistance coefficient for the macromolecular coil, we have to
determine, first of all, the velocity of the coil, which is the velocity of the mass
centre of the macromolecular coil

v =
1

1 + N

N∑

α=0

uα

4 A more general approach can be found in paper of Bixon and Zwanzig (1978).
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and the force acting on the coil, which is the sum of forces acting on every
particle of the coil

F =
N∑

α=0

F α

where the force F α is determined by equation (2.9).
We assume that the macromolecular coil moves in a non-flowing liquid and

each particle has the mean velocity of the macromolecular coil as a whole. So,
we can write down Stokes law for the coil

Fj = −ζ0(1 + N)

(
δjl − ζ0

8πηs

1
N + 1

N∑

α=0

N∑

γ=0

δjl + eαγ
j eαγ

l

|rα − rγ |

)
vl. (2.12)

After the preliminary averaging of the right-hand side of relation (2.12)
with respect to the equilibrium distribution function has been done (see rela-
tions (1.23)), we have

F = −ζMv, ζM = ζ0(1 + N)

(
1 − 2h

N + 1

N∑

α=0

N∑

γ=0

1
|α − γ|1/2

)
.

One can easily estimate the asymptotic behaviour of the sum as

1
N + 1

N∑

α=0

N∑

γ=0

1
|α − γ|1/2

≈ 2.47 N1/2,

so that the above equations are followed the asymptotic expression for the
friction coefficient

ζM = ζ0N
(
1 − 4.94 hN1/2

)
. (2.13)

This expression, with accuracy up to the first-order terms in the power of
h, practically coincides with expression derived by Kirkwood and Riseman
(1948); they have the numerical coefficient 5.33 instead of 4.94, though their
way of calculation was more accurate.

It is understandable that the resistance coefficient decreases as the hydro-
dynamic interaction increases. However, if one uses the bead-spring model of
a macromolecule, the resistance coefficient of the whole macromolecule cannot
depend on the arbitrary number of subchains N .5 To ensure this, one has to
consider that the product hN1/2 does not depend on N which implies that
the coefficient of hydrodynamic interaction changes with N as h ∼ N −1/2

which means, in this situation, that coefficient of resistance of a particle al-
ways remains to be proportional to the length of the subchain. All this is valid,

5 Kirkwood and Riseman (1948) did not encounter this problem, because they used the
bead-rod or, in other words, pearl-necklace model of macromolecule (Kramers 1946), in
which N is a number of Kuhn’s stiff segments, so that N present the length of the macro-

molecule.
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when the hydrodynamic interaction is weak and we consider the first-order
corrections to the resistance coefficient.6

In the general case of arbitrary values of h, simple speculations appeared
to be useful to determine the dependence of the resistance coefficient on the
length of the macromolecule (Gennes 1979). The excluded-volume effects (see
Section 1.5) can also be taken into account and one considers the resistance
coefficient to be a function of two non-dimensional parameters h and v/b3.
For a macromolecule, consisting of N smaller subchains, the friction coefficient
can be written as

ζM = ζ Z
(
N,

v

b3
, h

)
,

where ζ is the friction coefficient of a particle of the chain. To obtain the
dependence of the resistance coefficient on the length of the macromolecule,
we compare the resistance coefficients for the two different presentations of
a macromolecule. One can assume, as was done in Section 1.5 for a similar
consideration, that, at N → ∞, the quantities v/b3 and h do not depend on
the number of divisions of the macromolecule into subchains. The requirement
of the universality of the representation of the resistance coefficient is followed
by the asymptotic (long macromolecules) expression for the dependence of the
resistance coefficient on the length of the macromolecule.

ζM ∼ M (z−2)ν , 0 < (z − 2)ν ≤ 1. (2.14)

Here ν is the index introduced in relation (1.31), whereas z is a new index,
so-called dynamic index. To calculate the index in the power function, it is
necessary to use special methods (Al-Naomi et al. 1978; Baldwin and Helfand
1990; Öttinger 1989b, 1990), which gives values from 3 to 4 for the parameter
z.

2.4 Effective Resistance-Drag Coefficient of a Particle

One may note that, in linear approximation with respect to the velocity of a
particle (see, for example, equations (2.4) and (2.9)), the expression for forces
are determined by small velocities of the particles and of the flow. The force,
acting on a particle in the flow, does not depend on the specific choice of
hydrodynamic interaction and can be written in the following general form

Fα
j = −ζ0B

αγ
ji (uγ

i − νilr
γ
l ). (2.15)

The resistance matrix depends on co-ordinates of all particles, in non-
linear manner. The situation is illustrated in Appendix F for the case of two
particles. To avoid the non-linear problem, one uses the preliminary averaging
of the hydrodynamic resistance matrix (Kirkwood and Riseman 1948; Zimm

6 The development of the theory of translational mobility of a macromolecule can be found

in papers of Dünweg et al. (2002) and Liu and Dünweg (2003).
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1956). If one averages with respect to the equilibrium distribution function,
the matrix takes the form

Bαγ
ji = Bαγδji (2.16)

where matrix Bαγ does not depend on the co-ordinates and assumes, under the
conditions of weak hydrodynamic interaction, the following form, according
to equations (2.10) and (2.11),

Bαγ = δαγ − 2h|α − γ| −1/2. (2.17)

This is the first term of expansion in powers of the parameter of hydrodynamic
interaction.

When normal co-ordinates, defined by equations (1.13), are employed, it
is possible to make use of the arbitrariness of the transform matrix to define
matrix Q in such a way that matrix B in the right-hand side of equation (2.16)
assumes a diagonal form after transformation. The problem of the simultane-
ous adjustment of the symmetrical matrices A and B to a diagonal form does
have a solution. Since matrix A is defined non-negatively and B is defined pos-
itively, it is possible to find a transformation such that B is transformed into
a unit matrix (with accuracy to constant multiplier), and A into a diagonal
matrix. Therefore, one can write simultaneously the equations

QαλAαγQγν = λνδλν ,

ζ0QαλBαγQγν = ζδλν .
(2.18)

One ought to introduce the effective coefficient of friction of the particle ζ
into relation (2.18) to ensure the physical dimensionality of the friction coef-
ficient. Eigenvalues λμ are now defined not by equations (1.16), but by more
general expression that will be discussed in Section 2.6.

The dependence of the effective friction coefficient on the length of the
macromolecule is of special interest. In a case when the hydrodynamic inter-
action of the particles of the macromolecule may be neglected, i.e. when the
coil is, as it were, free-draining, the coefficient of resistance of the latter is
proportional to the length of the macromolecule and the coefficient of friction
of the particle associated with length M/N is proportional to this length

ζ ∼ M

N
.

The mutual influence of the particles leads to their shielding within the
coil and the overall coefficient of the resistance of the coil proves to be smaller
than that for a free-draining coil. The requirement of covariance in relation
to successive subdivisions of the macromolecule into subchains gives rise, ac-
cording to formula (2.14), to the following power dependence for large values
of N

ζ ∼
(

M

N

)(z−2)ν

. (2.19)
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In order to calculate the power exponents, a calculation based on specific
representations, similar the case, when volume-effects are taken into account,
is necessary. One notes that these results are valid for infinitely long chains.

2.5 Intramolecular Friction

On the deformation of the macromolecule, i.e. when the particles constituting
the chain are involved in relative motion, an additional dissipation of energy
takes place and intramolecular friction forces appear. In the simplest case of a
chain with two particles (a dumbbell), the force associated with the internal
viscosity depends on the relative velocity of the ends of the dumbbell u1 − u0

and is proportional, according to Kuhn and Kuhn (1945) to

−(u1
j − u0

j )ejei (2.20)

where e is a unit vector in the direction of the vector connecting the particles
of the dumbbell and κ is the phenomenological internal friction coefficient.

When a multi-particle model of the macromolecule (Slonimskii–Kargin–
Rouse model) is considered, one must assume that the force acting on each
particle is determined by the difference between the velocities of all the par-
ticles uγ − uβ . These quantities must be introduced in such a way that dis-
sipative forces do not appear on the rotation of the macromolecular coil as a
whole, whereupon uα

j = Ω jlr
α
l . Thus, in terms of a linear approximation with

respect to velocities, the internal friction force must be formulated as follows

Gα
i = −

∑

β �=α

Cαβ(uα
j − uβ

j )eαβ
j eαβ

i , (2.21)

where eαβ
j = (rα

j − rβ
j )/|rα − rβ |. Matrix Cαβ is symmetrical, the components

of the matrix are non-negative and may depend on the distance between the
particles. The diagonal components of the matrix are equal to zero.

The internal friction force can also be written in the form

Gα
i = −Gαγ

ij uγ
j , (2.22)

where the matrix

Gαβ
ij = δαβ

∑

γ �=α

Cαγeαγ
i eαγ

j − Cαβeαβ
i eαβ

j (2.23)

has been introduced.
The written matrix is symmetrical with respect to the upper and lower

indices. Expression (2.23) defines the general form of a matrix of internal
friction, which allows the force to remain unchanged on the rotation of the
macromolecular coil as a whole. In contrast to matrix Cαβ , matrix (2.23) has
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non-zero diagonal components, which are depicted by the first term in (2.23).
Since the components of matrix Cαβ are non-negative, the diagonal compo-
nents of matrix Gαβ exceed the non-diagonal ones and can be considered to
be approximately diagonal to the indices α and β.

Expression (2.22) for an internal friction force is non-linear with respect to
the co-ordinates. To avoid the non-linearity, some simpler forms for internal
friction force were used (Cerf 1958). One can introduce a preliminary-averaged
matrix of internal viscosity

〈Gαγ
ik 〉 = Gαγδik,

where Gαγ is now a symmetrical numerical matrix which retains the main
features of matrix (2.23), so that, instead of equation (2.22), we obtain the
following expression for the force

Gα
i = −Gαγuγ

i .

The equation clearly does not satisfy the requirement that the internal viscos-
ity force disappears when the coil is rotated as a whole. By ensuring linearisa-
tion of the internal friction force according to Cerf’s procedure, equation (2.22)
may be modified and written thus

Gα
j = −Gαγ(uγ

i − Ωilr
γ
l ). (2.24)

The speed of rotation of the macromolecular coil in a flow Ωjl is determined
by the velocity gradients

Ωjl = ωjl + Ajlskγsk.

When linear effects are considered, matrix Ajlsk can be determined by con-
sidering the average rotation of the coil subjected to equilibrium averaging.
Since the coil is spherical at equilibrium, it follows from symmetry conditions
that

Ωjl = ωjl

to within first-order terms, so that the internal friction force can be written
as

Gα
j = −Gαγ(uγ

j − ωjlr
γ
l ). (2.25)

In terms of the normal co-ordinates introduced by equation (1.13), the
matrix of the internal friction can be written as follows

QαλGαγQγμ = −ζϕαδλμ

and for the internal friction force, we have

Gα
j = −ζϕα(ρ̇α

j − ωjlρ
α
l ) (2.26)

where ζ is the effective coefficient of friction, ϕα is an internal viscosity co-
efficient of mode α. It is noteworthy that the representation of the force in



30 2 Dynamics of a Macromolecule in a Viscous Liquid

the form of equation (2.26) is possible only for weak intramolecular friction,
ϕα 
 1.

The characteristics ϕα = ϕα(M, α) of the intramolecular friction forces in
equations (2.26), introduced here as phenomenological quantities, should not
depend on the method of subdivision of the macromolecule into subchains
and, by virtue of the nature of the transformation, should be a function of the
ratio α/M. One may expect that ϕα is a monotonically increasing function of
the number of the mode α. This dependence can be fitted by

ϕα = ϕ1α
θ ∼

( α

M

)θ

, ϕ1 ∼ M −θ, (2.27)

where θ is a positive number and ϕ1 is a measure of the internal viscosity.7

For the considered subchain model, the internal rigidity cannot reach infinity,
so it is better to use the following approximation

ϕα =
ϕ1ϕ∞αθ

ϕ∞ + ϕ1αθ
.

The internal viscosity force is defined phenomenologically by equations
(2.26) formulated above. Various internal-friction mechanisms, discussed in
a number of studies (Adelman and Freed 1977; Dasbach et al. 1992; Gennes
1977; Kuhn and Kuhn 1945; MacInnes 1977a, 1977b; Peterlin 1972; Rabin
and Öttinger 1990) are possible. Investigation of various models should lead
to the determination of matrices Cαβ and Gαβ and the dependence of the
internal friction coefficients on the chain length and on the parameters of the
macromolecule.

The significance and importance of the internal viscosity can be elucidated
by comparing the consequences of the theory with experimental data, which
will be discussed further on. However, here one should note that the phe-
nomenological characteristics of the intramolecular friction prove to depend
not only on the characteristics of the macromolecule, as might have been ex-
pected, but also on the properties of the liquid in which the macromolecule is
present (Schrag 1991).

The internal viscosity of the macromolecule is a consequence of the in-
tramolecular relaxation processes occurring on the deformation of the macro-
molecule at a finite rate. The very introduction of the internal viscosity is
possible only insofar as the deformation times are large, compared with the
relaxation times of the intramolecular processes. If the deformation frequen-
cies are of the same order of magnitude as the reciprocal of the relaxation
time, these relaxation processes must be taken explicitly into account and the
internal viscosity force have to be written, instead of (2.26) as

Gα
j = −ζ

∫ ∞

0

ϕα(s)(ρ̇α
j − ωjlρ

α
l )t−s ds. (2.28)

7 To satisfy empirical relations in viscoelasticity and optical anisotropy of dilute solutions

of polymers (see Sections 6.2.3 and 10.4.1), one has to assume that θ = zν − 1.
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This relation, at ϕα(s)∼δ(s), is equivalent to relation (2.26).

2.6 The Cerf-Zimm-Rouse Modes

Now one can return to the equation (2.1) for the dynamics of the macro-
molecule in the flow of a viscous liquid. The dissipative forces acting on the
particles of the chain have generally non-linear forms, but the assumptions,
when these force can be written in linear approximation, were discussed in
the previous sections, so that we are able to write, in terms of the normal
co-ordinates introduced previously and by taking into account all the consid-
erations described above, the dynamic equation

QγαQγμm
d2ρμ

i

dt2
= −ζ(ρ̇α

i − νijρ
α
j ) − ζϕα(ρ̇α

i − ωijρ
α
j ) − 2μTλαρα

i + ξα
i ,

ξα
i = Qγαφγ

i , α = 0, 1, 2, . . . , N (2.29)

The transformation matrix Qαν is not, generally speaking, orthogonal and
the left-hand side of the equation formulated therefore includes the derivatives
of all the co-ordinates, but we shall not dwell on this factor, bearing in mind,
that in the limit m → 0 in which we are interested, the left-hand side of the
equation vanishes.

At the above limit, equation (2.29) at α = 0 is the equation of motion
for the centre of the mass of the macromolecule – a diffusion mode. At α =
1, 2, . . . 
 N , equation (2.29) defines the independent relaxation modes of the
macromolecule.

It is convenient here to introduce two sets of relaxation times

τ ⊥
α =

ζ

4Tμλα
, τ ‖

α = (1 + ϕα)τ ⊥
α , α = 1, 2, . . . , 
 N (2.30)

as relaxation times of the mean dimensions of the macromolecular coil (see
Section 2.7.2), whereas every mode is characterised by two relaxation times:
orientational and deformational. These terms are justified, when one con-
siders the dynamics of dumbbells with arbitrary big internal viscosity (see
Appendix F).

The behaviour of modes with small numbers should be independent on
the arbitrary number of subdivisions N. This means that the relaxation
times should not depend on N. Since the dependence of quantities μ and
ζ on the number of subdivisions was elucidated previously (equations (1.32)
and (2.19)), the above requirement immediately leads to the expression

λα ∼
( α

N

)zν

, α = 1, 2, . . . , 
 N,

so that for the relaxation times one has
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τ ⊥
α ∼

( α

M

)−zν

.

The situation of a freely-draining macromolecule without excluded-volume
effects and internal viscosity, when zν = 2, and the above eigenvalues reduce
to (1.17), is especially simple. In this case, equation (2.29) describes Rouse
modes, and it is convenient to use the largest orientation relaxation time

τ1 =
ζN 〈R2〉
6π2T

=
ζN2

4π2μT
∼ M2, (2.31)

where 〈R2〉 is the end-to-end distance, as a characteristic (Rouse) relaxation
time of a macromolecule.

The random force ξγ
i in the dynamic equations (2.29) is determined by its

average moments and is specified from the condition that the equilibrium
moments of the co-ordinates and velocities are known beforehand (Chan-
drasekhar 1943). In the linearised version, with ϕα 
 1, this requirement
determines the relation

〈ξα
i (t)ξγ

j (t′)〉 = 2Tζ(1 + ϕα)δαγδijδ(t − t′) (2.32)

which is valid to within first-order terms in the velocity gradients. Here and
henceforth the angular brackets indicate averaging with respect to the assem-
bly of realisations of the random force.

Let us notice that the eigenvalues λα in equation (2.29) are considered con-
stant here and henceforth. The same applies to ϕα. However, the introduced
dissipative matrices are, generally speaking, functions of invariants ραρα or of
mean values 〈ραρα〉. The latter are functions of the velocity gradients, the ex-
pansion of which begins with a second-order term. It will be necessary to take
this into account when discussing the non-linear results of the calculations.

2.7 The Moments of Linear Modes

In this section we refer to the stochastic equation (2.29) to calculate the
mode moments, that is, the averaged values of the products of the normal
co-ordinates and their velocities. It is convenient in this section to omit the
label of mode and to rewrite the dynamic equation for the relaxation mode
in the form of two linear equations

dρi

dt
= ψi,

m
dψi

dt
= −ζ(ψi − νijρj) − ζϕ(ψi − ωijρj) − 2Tμλρi + ξi.

(2.33)
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2.7.1 Equations for the Moments of Co-ordinates

To calculate second-order moments of co-ordinates and velocities, one can
start with the rates of change of quantities that can be written as follows

d〈ρiρk 〉
dt

=
〈

ρi
dρk

dt

〉
+

〈
ρk

dρi

dt

〉
,

d〈ψiψk 〉
dt

=
〈

ψi
dψk

dt

〉
+

〈
ψk

dψi

dt

〉
,

d〈ρiψk 〉
dt

=
〈

ρi
dψk

dt

〉
+

〈
ψk

dρi

dt

〉
,

while it is assumed that the equilibrium values of the moments are given by

〈ρiρk 〉0 =
1

2μλ
δik, 〈ψiψk 〉0 =

T

m
δik, 〈ρiψk 〉0 = 0.

Then, one can use equations (2.33) to obtain equations for the moments.
After one has determined the averaged values of the products of the variables
and the random force, the equations for the moments take the form

d〈ρiρk 〉
dt

= 〈ρiψk 〉 + 〈ρkψi〉, (2.34)

d〈ψiψk 〉
dt

=
2Tμλ

m
(〈ρiψk 〉 + 〈ρkψi〉)

+
ζ

m

[
2

T

m
δik − 2〈ψiψk 〉 + νij 〈ρjψk 〉 + νkj 〈ρjψk 〉

+ ϕ

(
2

T

m
δik − 2〈ψiψk 〉 + ωij 〈ρjψk 〉 + ωkj 〈ρjψi〉

)]
, (2.35)

d〈ρiψk 〉
dt

= 〈ψiψk 〉 − 2Tμλ

m
〈ρiρk 〉

− ζ

m
[〈ρiψk 〉 − νkj 〈ρjρi〉 + ϕ(〈ρiψk 〉 − ωkj 〈ρjρi〉)] . (2.36)

It is easy to see that, at zeroth velocity gradients, the right-hand sides of
the above equations are identically equal to zero.

2.7.2 The Slowest Relaxation Processes

The set of equations (2.34)–(2.36) for the second-order moments of co-
ordinates and velocities can be simplified, if we consider the situation when the
distribution of velocities corresponds to equilibrium, that is, we put m → 0.
In this case, equation (2.35) is followed by relation

〈ρiψk 〉 = − 1
2τ ‖

(
〈ρiρk 〉 − 1

2μλ
δik

)
+ νkj 〈ρjρi〉 − ϕγkj 〈ρjρi〉 (2.37)
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where the relaxation times are given by relations (also by formulae (2.30))

τ ‖ = (1 + ϕ)τ ⊥, τ ⊥ =
ζ

4Tμλ
. (2.38)

Now, one can use equations (2.34) to obtain relaxation equations for the
moments of co-ordinates

d〈ρiρk 〉
dt

− νij 〈ρjρk 〉 − νkj 〈ρjρi〉

= − 1
τ ‖

(
〈ρiρk 〉 − 1

2μλ
δik

)
− ϕ(γij 〈ρjρk 〉 + γkj 〈ρjρi〉). (2.39)

The relaxation time τ ‖ refers to the deformation processes. Indeed, by
carrying out a direct summation of equation (2.39) with identical indices, one
finds

d〈ρ2〉
dt

= − 1
τ ‖

(
〈ρ2〉 − 3

2μλ

)
+ 2(1 − ϕ)γij 〈ρjρi〉. (2.40)

This equation describes only the deformation of the macromolecular coil and
therefore τ ‖ is a relaxation time of the deformation process. It can be shown
(see Appendix F) that the orientation relaxation process is characterised by
the relaxation time τ ⊥.

Explicit expressions for the moments will be necessary later to calculate the
physical quantities. In the non-steady-state case, the second-order moments
of co-ordinates are calculated as solutions of equations (2.39). To find the
solutions, we multiply equation (2.39) by exp( t

τ ‖ ) and integrate over time
from t to ∞. After some transformation, we obtain

〈ρiρk 〉 =
1

2μλ
δik +

∫ ∞

0

exp
(

− s

τ ‖

)

× [νij 〈ρjρk 〉 + νkj 〈ρjρi〉 − ϕ(γij 〈ρjρk 〉 + γkj 〈ρjρi〉)]t−s ds.

The moments and velocity gradients in the integrand are taken at the point
of time t − s.

Now we can use the equilibrium moments to find the first terms of the
expansion of the moments as a series of repeated integrals

〈ρiρk 〉 =
1

2μλ

{
δik + 2(1 − ϕ)

∫ ∞

0

exp
(

− s

τ ‖

)
γik(t − s)ds

}
. (2.41)

The iteration procedure can be continued.
In the steady-state case, the expansion assumes the form

〈ρiρk 〉 =
1

2μλ
{δik + 2τ ⊥γik

+ 2(τ ⊥)2 [2γijγjk + (1 + ϕ)(ωijγjk + ωkjγji)]
}

. (2.42)

We may note that, in the approximation of the preliminary averaging,
which was used, the expressions for the moments are valid only to within
second-order terms with respect to the velocity gradients.
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2.7.3 Fourier-Transforms of Moments

One can calculate the mode moments in different way. One can pass from equa-
tions (2.34)–(2.36) to the set of algebraic equations, introducing the Fourier-
transforms of the unknown functions

〈ρiρk 〉 =
∫ ∞

− ∞
Rik(ω)e−iωt dω

2π
,

〈ρiψk 〉 =
∫ ∞

− ∞
Yik(ω)e−iωt dω

2π
,

〈ψiψk 〉 =
∫ ∞

− ∞
Zik(ω)e−iωt dω

2π
.

The solution of the resulting set of equations can be written accurately,
within the first order terms with respect to the velocity gradients, as

Rik(ω) =
1

2μλ
[δikδ(ω) + 2Cτ ⊥γik(ω)] ,

Yik(ω) =
1

2μλ
[−ωik(ω) − iωCτ ⊥γik(ω)] ,

Zik(ω) =
T

m

[
δikδ(ω) +

2iωτmC

2(1 + ϕ) − iωτm
τ ⊥γik(ω)

]
,

C =
2(1 + ϕ − iωτm)

[1 − iωτ ⊥(1 + ϕ) − τmτ ⊥ω2][2(1 + ϕ) − iωτm] − iωτm
.

(2.43)

The solution contains two characteristic relaxation times

τ ⊥ =
ζ

4Tμλ
, τm =

m

ζ
.

The first relaxation time is much bigger than the second one within the limits
of applicability of the subchain model. So, the terms multiplied by the quantity
ωτm in relations (2.43) can be neglected, and expressions can be written down
in the simpler form

Rik(ω) =
1

2μλ

[
δikδ(ω) +

2τ ⊥

1 − iωτ ‖
γik(ω)

]
,

Yik(ω) =
1

2μλ

[
−ωik(ω) +

−iωτ ⊥

1 − iωτ ‖
γik(ω)

]
,

(2.44)

Zik(ω) =
T

m
δikδ(ω). (2.45)

It can easily be seen that the first expression from equations (2.44) corresponds
to expressions (2.41) and (2.42).



Chapter 3
Dynamics of a Macromolecule
in an Entangled System

Abstract In this chapter, a system of entangled macromolecules in fluid
state, that is a concentrated solution or a melt of polymer, will be consid-
ered. Every macromolecule in the investigated system can move among the
others macromolecules, exchanging neighbours and remaining the integrity
of each individual macromolecule unaffected. It allows introducing the meso-
scopic approximation, which deals with the motion of a single macromolecule
in an effective medium, created by the neighbouring macromolecules. One can
note that the tradition of the mesoscopic approach begins with the first work
on concentrated polymer solutions (Ferry et al. in J. Appl. Phys. 26:259–
362, 1955), in which some specifying hypotheses about the environment of
the probe macromolecule were formulated. Some earliest approaches to the
problem are developed by Edwards with collaborators (Scolnick and Kolinski
in Adv. Chem. Phys. 78:223–278, 1990). One of the hypotheses ascribes the
properties of a relaxing medium to the environment of a probe macromolecule
(Edwards and Grant in J. Phys. A: Math. Nucl. Gen. 6:1169–1185, 1973). This
idea was developed later into the theory, based on the non-Markovian stochas-
tic equation. An alternative hypothesis was an assumption about the tube
and reptation motion of macromolecules (Doi and Edwards in The Theory of
Polymer Dynamics (Oxford University Press, Oxford), 1986). Now, one can
see that both the first and the second hypothesis reflect the reality, and the
theory, which will be exposed here, can be considered as a reconciliation of the
alternative approaches. In this chapter, a unified model of macromolecular dy-
namics can be formulated as the Rouse model of a chain of coupled Brownian
particles in the presence of a random dynamic force. It came to a consistent
theory of the phenomena and constitutes a phenomenological frame within
which both the results of empirical investigations and the results of micro-
scopic, many-chains approaches can be considered. The mesoscopic approach
reveals the internal connection between phenomena and provides more details
than a strictly phenomenological approach.

V.N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics,

Springer Series in Chemical Physics 95,
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3.1 Admitted Approximations in the Many-Chain
Problem

To say nothing about the truly atomistic models, every flexible macromolecule
can be universally presented as consisting of z freely jointed rigid segments
(Kuhn segments, see Section 1.1) – this is considered as a microscopic ap-
proach. So, the system of entangled macromolecules can be imagined as con-
sisting of nz interacting segments, every z of them being connected in chain,
and the basis heuristic model, kinetics of which has to be investigated, is a
system of interacting rigid segments connected in chains. In other words, it
is a system of interacting Kuhn-Kramers chains. The system is dense, the
interactions are strong, and it seems to be a rather complex problem, which
has not solved yet,1 so that one has to look for more coarse approximations
to describe dynamics of this system. One can use the coarse-grained Gaus-
sian model for every macromolecule (bead-and-spring model, see Section 1.2)
to describe the behaviour of the system. This is a heuristic model easier to
consider. To formulate an equation for the large-scale stochastic dynamics of
the entangled system as dynamics of interacting chains of Brownian parti-
cles, one can consider a system of interacting segments (atoms) and follow
Zwanzig-Mori method (Zwanzig 1961; Mori 1965), described, for example,
in monographs (Hansen and McDonald 1986; Boon and Yip 1980). There is
no available solution of the problem; nevertheless, one can easily imagine a
general form of the anticipated results.

3.1.1 Dynamics of Entangled Course-Grained Chains

When one is interested in slow modes of motion of the system, each macro-
molecule of the system can be schematically described in a coarse-grained way
as consisting of N + 1 linearly-coupled Brownian particles, and we shall be
able to look at the system as a suspension of n(N + 1) interacting Brownian
particles. An anticipated result for dynamic equation of the chains in equi-
librium situation can be presented as a system of stochastic non-Markovian
equations

m
d2raα

dt2
= −

∫ ∞

0

Baα,bβ(s)ṙbβ(t − s) ds − ∂U

∂raα
+ φaα(t),

a = 1, 2, . . . , α = 0, 1, 2, . . . , N, (3.1)

where raα is a co-ordinate of a particle (where a is the label of the macro-
molecule to which the Brownian particle belongs, and α is the label of the
particle in the macromolecule), m is the mass of a Brownian particle associ-
ated with a section of the macromolecule of length M/(1 + N). The potential
U(raα) depicts interaction of a particle raα with particles of its own and

1 Curtiss and Bird (1981a and 1981b) have posed and considered such a problem.
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the other macromolecules. The integral term on the right is the friction force
(external and internal resistance), determined through the memory matrix
Baα,bβ(s), by all the Brownian particles in the system. The properly derived
memory function must be expressed in terms of interaction between segments
and includes relaxation time which, generally speaking, cannot be neglected.

One can think that this situation, described by equations (3.1), can be
visualised as a picture of interacting (and connected in chains) Brownian par-
ticles suspended in anisotropic viscoelastic ‘segment liquid’. Introduction of
macroscopic concepts is unavoidable consequence of transition from micro-
scopic to mesoscopic approach, or better to say, from the microscopic model
of interacting Kuhn-Kramers chains to mesoscopic model of interacting chains
of Brownian particles.

Up to now no specific results for memory function and effective potential
in equations (3.1) are available,2 so that, to simplify the system (3.1), one has
to make some suggestions, two of which are intensively exploited.

Course-Grained Interacting Chains in Non-Relaxing Medium

The situation looks simpler, if one assumes that relaxation times of the sur-
rounding can be neglected, and one obtains for the collective motion of the
entire set of macromolecules, considered as a set of Brownian particles, a
system of stochastic Markovian equations

m
d2raα

dt2
= −ζ ṙaα − 2μTAαγraγ − ∂U

∂raα
+ φaα(t),

a = 1, 2, . . . , α = 0, 1, 2, . . . , N, (3.2)

In other words, it is assumed here that the particles are surrounded by a
isotropic viscous (not viscoelastic) liquid, and ζ is a friction coefficient of the
particle in viscous liquid. The second term represents the elastic force due
to the nearest Brownian particles along the chain, and the third term is the
direct short-ranged interaction (excluded volume effects, see Section 1.5) be-
tween all the Brownian particles. The last term represents the random thermal
force defined through multiple interparticle interactions. The hydrodynamic
interaction and intramolecular friction forces (internal viscosity or kinetic stiff-
ness), which arise when the macromolecular coil is deformed (see Sections 2.2
and 2.4), are omitted here.

When this approximation is valid? The empirical estimation of the relax-
ation time of the medium shows that, for the systems of short macromolecules
(M < 2Me), the relaxation time of the medium indeed can be neglected, so
that the approximation is valid for these systems. For the systems of longer

2 The methods used by Karl Freed with associates (Chang and Freed 1993; Tang et al. 1995;
Guenza and Freed 1996; Kostov and Freed 1997) for calculation time-correlation functions

of single macromolecules can be apparently useful in a more complicated case of many
interacting macromolecules.
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macromolecules (M > 2Me), when the entanglements exist, there seems to be
no evidence that the relaxation times are equal to zero.

Course-Grained Non-Interacting Chains in Relaxing Medium

As an alternative to the approximation of non-relaxing medium (equations
(3.2)), one can suppose that the effect of the direct interactions between
Brownian particles is less than the effect of the effective relaxing medium.
It is supported by the fact, that the number density of the Brownian particles
in the coarse-grained approximation is much less than the number density
of segments, so that the Brownian particles make up a weakly interacting
system. If the effect of direct interactions of coarse-grained chains with each
other can be neglected at all, the system (3.1) appears to be a collection of
n independent equations, everyone of which describes effective dynamics of a
chain of fictional Brownian particles. It is an amazing possibility: the system
of entangled interacting macromolecules can be considered as a collection of
non-interacting chains of Brownian particles suspended in a liquid, which is
made up of interacting segments. The chains of Brownian particles appear to
behave independently, though the system is closely packed. This is something
of a paradox which, nevertheless, is confirmed in the following chapters.

Thus, one can choose from the two possibilities to simplify the system (3.1).
We are convinced, that the approximation of independent chains appears to
be a very good initial approximation. The situation appears to be similar to
a situation in dilute solutions discussed in the previous chapter. However, in
contrast to the case of dilute solutions, the correlation times of the surrounding
medium cannot be neglected for entangled systems. The initial phase of the
theory might be found to be rather formal but the justification for every the-
ory regarding physics eventually rests on the agreement between deductions
made from it and experiments, and on the simplicity and consistency of the
formalism. Comparison with experiment will be discussed in Chapters 5, 6, 9
and 10.

3.1.2 Dynamics of a Probe Macromolecule

The behaviour of a single macromolecule appears to be crucial in the dis-
cussion of properties of entangled polymers. It is not difficult to imagine the
result of eliminating all co-ordinates, apart of the course-grained co-ordinates
of the only chosen single chain in the system of entangled macromolecules,
as schematised in Fig. 5. Whatever the way one chooses, to start from dy-
namics of interacting rigid Kuhn segments or from dynamics of interacting
Brownian particles (equations (3.1) or (3.2)), an anticipated result in linear
approximation and for the equilibrium situation can be written as

m
d2rα

dt2
= −

∫ ∞

0

Γαγ(s)ṙγ(t − s)ds − 2μTAαγrγ(t) + φα(t),

α = 0, 1, 2, . . . , N, (3.3)
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Figure 5. Macromolecule in an entangled system.
Entangled macromolecules, connected with weak van der Waals forces, make up a very

concentrated polymer solution or a polymer melt. Mesoscopic approach considers the
coarse-grained dynamics of a single macromolecule. The surrounding macromolecules are

considered a reacting medium.

where the memory tensor function Γαγ(s) is connected with the correlation
function of the random force φα(t)

〈φα(t)φγ(t′)〉 = 6TΓαγ(t − t′).

In terms of our previous discussion, the result for the memory function Γαγ(s)
has to retain traces from, generally speaking, two consequent steps: the tran-
sition from the microscopic picture of interacting segments to a picture of
a system of interacting coarse-grained chains (equation (3.1) or (3.2)) and
transition from one of these systems to the single-chain equation (3.3).

The results for the memory function Γαγ(s) are available for the case,
when the system (3.2) is chosen as a starting point of derivation of a dy-
namic equation for a single chain in the system of entangled macromolecules
(Schweizer 1989a, 1989b; Vilgis and Genz 1994; Guenza 1999; Rostiashvili et
al. 1999; Fatkullin et al. 2000). It means that the segment carrier liquid is
assumed viscous. Schweizer (1989a, 1989b) employed the Mori-Zwanzig pro-
jector operator techniques to the problem. Another method of derivation of
the same equation was presented by Vilgis and Genz (1994) and Rostiashvili
et al. (1999). After having succeeded in eliminating all variables from the
set of stochastic equations, other than those that refer to the chosen macro-
molecule, and some approximations, the scholars came to equations (3.3) and
evaluated, which is the most essential, the memory function Γαγ(s) through
the intermolecular correlation functions and structural dynamic factor of the
system of interacting Brownian particles. Their results allow us to estimate
the contribution into the memory function from the second step of derivation
and allow us to judge about importance of this contribution – the analysis
that yet has to be done.
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3.2 The General Form of Dynamic Equation

The most advanced theories of relaxation phenomena in a system of entangled
macromolecules is based on the dynamics of a single macromolecule. Dynamics
of the tagged macromolecule is simplified by the assumption that the neigh-
bouring macromolecules can be described as a uniform structureless medium
and all important interactions can be reduced to intramolecular interactions.
The dynamic equation for a macromolecule can be written as a modification
of equation (2.1) for dynamics of macromolecule in viscous liquid

m
d2rα

i

dt2
= −ζ(ṙα

i − νijr
α
j ) + Fα

i + Gα
i − 2TμAαγrγ

i + φα
i ,

α = 0, 1, 2, . . . , N, (3.4)

where m is the mass of a Brownian particle associated with a piece of the
macromolecule of length M/(N + 1), rα are the co-ordinates of the Brown-
ian particles, the label α = 0, 1, . . . , N being the label of the particle in the
macromolecule. The external resistance experienced by a moving particle are
divided into two terms, namely, the resistance due to the ‘monomer’ liquid,
represented by a coefficient ζ, and the reaction of the neighbouring chains Fα

i .
The equation assumes one more dissipative term: internal resistance force Gα

i

which obeys the requirement

N∑
α=0

Gα
i = 0. (3.5)

Indeed, the intramacromolecular forces, both dissipative and elastic, do not
affect motion of the coil as a whole.

The fourth term on the right hand side of (3.4) represents the elastic forces
on each Brownian particle due to its neighbours along the chain; the forces en-
sure the integrity of the macromolecule. Note that this term in equation (3.4)
can be taken to be identical to the similar term in equation for dynamic of
a single macromolecule due to a remarkable phenomenon – screening of in-
tramolecular interactions, which was already discussed in Section 1.6.2. The
last term on the right hand side of (3.4) represents a stochastic thermal force.
The correlation function of the stochastic forces 〈φα

i (t)φγ
k(t′)〉 is connected

with the dissipative forces (the fluctuation-dissipation theorem). The relation
will be discussed later, in Section 3.4 for the case, when the equation (3.4) is
linear in velocities, but can be non-linear in co-ordinates.

In virtue of the results, described in the previous section, it is natural to
present the extra dissipative terms in equation (3.4) in an integral forms. One
has to require the resistance forces to be independent of the rotation of the co-
ordinate system with constant angular velocity and, assuming also the proper
covariance and linearity in the velocities of particles, determines (Pokrovskii
and Volkov 1978a) the general form of the terms
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Fα
i = −

∫ ∞

0

Bαγ
ik (s)(ṙγ

k − νkjr
γ
j )t−sds (3.6)

Gα
i = −

∫ ∞

0

Gαγ
ik (s)(ṙγ

k − ωkjr
γ
j )t−sds (3.7)

where vα
i = νikrα

k is the mean velocity of the medium, while νik is the tensor
of velocity gradients in the point where particle α is located. The resulting
dynamic equation for a chain looks like a stochastic equation with memory
function terms – generalised Langevin equation.3 The presence of the top
and bottom labels in the symbols of memory functions shows the influence
of the other particles of the chain and the anisotropy of the medium on the
motion of the considered particle. Strictly speaking, we should also write these
terms in the form of non-local (in co-ordinates) expressions, since the agitation
propagates directly through the chain to a distance 〈R2〉 – the distance that is
large in comparison to the size of the Brownian particle under consideration.
However, for the sake of simplicity, this will not be shown here, although the
consequences of a non-local effect will be investigated in Section 3.3.2.

One can assume that each Brownian particle of the chain is situated in a
similar environment, which is approximately correct for long chains, so that
we can rewrite the memory functions in (3.6) and (3.7) as

Bαγ
ik (s) = Hαγ

ik β(s), Gαγ
ik (s) = Gαγ

ik ϕ(s)

where β(s) and ϕ(s) are universal scalar memory functions. This allows to
make the memory terms more tractable.

3.2.1 The Linear Approximation

In the simplest case, one can assume that there is neither global nor local
anisotropy, which means that

Hαγ
ik = Hαγδik, Gαγ

ik = Gαγδik.

3 Some scholars are being stuck to Markov stochastic processes and determine the dynam-
ics of a probe macromolecule, in contrast to equation (3.4)–(3.7), as a dynamics of a chain

in a certain viscous medium – modified Rouse dynamics. These theories stem from works
of Ferry et al. (1955), Vinogradov et al. (1972b) and others who tried to modify the friction

coefficient of Brownian particles in such a way, to make it possible to interpret results of
investigation of viscoelasticity of linear polymer. An advanced example of such theories

is the constraint-release theory, due to Graessley (1982) and many others (see review by
Watanabe 1999), which suggests a detailed mechanism of a large-scale lateral motion of a

macromolecule in an entangled system due to process of release of some constraints of the
probe chain and jumps of some parts of the chain in lateral direction. To the best of our
experience, Markov processes, that is the Rouse dynamics (even with modified friction coef-

ficients), cannot adequately describe the basic stochastic motion of a macromolecule among
the neighbouring macromolecules and we are going to show that non-Markov stochastic

processes are adequate for this aim.
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The non-diagonal terms of the matrixes Hαγ and Gαγ are connected with
mutual influence of the particles of the chain. One can admit that, in accor-
dance with the works by Edwards and Freed (1974) and Freed and Edwards
(1974, 1975), the hydrodynamic interaction in the system between the parti-
cles of the chain becomes negligible, and one can introduce a diagonal matrix
of external resistance, but, in virtue of relation (3.5), one cannot introduce
non-zero diagonal matrix of internal resistance, so that the simplest forms of
the matrixes are

Hαγ
ik = δαγδik, Gαγ

ik = Gαγδik. (3.8)

The symmetrical numerical matrix Gαγ represents the influence of motion of
the particle γ on the motion of the particle α. The only general requirement
one ought to put on matrix Gαγ in the last relation is the following: in nor-
mal co-ordinates it has a zero eigenvalue. The simplest forms, satisfying the
requirement (3.5), can be written as

Hαγ
ij uγ

j = uα
i , Gαγ

ij uγ
j =

1
N

{
(N + 1)uα

i −
N∑

γ=0

uγ
i

}
(3.9)

so that the components of the numerical matrix Gαγ are defined as

G =

∥∥∥∥∥∥∥∥∥∥∥∥

1 −1/N . . . −1/N

−1/N 1 . . . −1/N

. . . . . . . . . . . .

. . . . . . . . . . . .

−1/N −1/N . . . 1

∥∥∥∥∥∥∥∥∥∥∥∥
. (3.10)

Thus, equation (3.4) in the simplest case can be specified in the form

m
d2rα

i

dt2
= −ζ(ṙα

i − νijr
α
j ) −

∫ ∞

0

β(s)(ṙα
i − νijr

α
j )t−sds

− Gαγ

∫ ∞

0

ϕ(s)(ṙγ
i − ωijr

γ
j )t−sds − 2μTAαγrγ

i + φα
i (t). (3.11)

The equation (3.11) is the equation for the dynamics of a single macromolecule
in the case of linear dependence on the co-ordinates and velocities.4 Let us
note that, if memory functions β(s) and ϕ(s) turn into δ-functions, equa-
tion (3.11) becomes identical to the equation of motion of the macromolecule
in a viscous liquid, which was used in Chapter 2 to describe the dynamics of
a macromolecule in this case.
4 Particular cases of dynamic equation (3.11) were investigated by Ronca (1983) and by
Hess (1986, 1988) who apparently did not know about previously published results. They

made unsuccessful attempts to describe dynamics of macromolecule in an entangled system
without the second dissipative term which is connected with the internal resistance forces.

One can see in subsequent chapters that the properties of polymer melts cannot be un-
derstood correctly without this term. The importance of the internal resistance term was
recognised by Pokrovskii and Volkov (1978b) after the first attempt to tackle the problem

(Pokrovskii and Volkov 1978a).
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3.2.2 A Non-Linear Approximation – Local Anisotropy

The simple relations (3.8)–(3.11) are valid for linear approximation when
there is neither global nor local anisotropy, that is the particles have spheri-
cal forms and the medium is isotropic. The set of equations (3.11) describes
basic stochastic motion of the Brownian particles of the chain and allows
us to introduce essential restrictions on the motion of particles by forces of
external and internal resistance. In linear approximation, the equations deter-
mine the generalised Cerf-Rouse modes. However, there are some important
effects, which cannot be described without some non-linear terms in equa-
tion of dynamics of a macromolecule. The non-linearity is connected with
the easier motion of the chain along its contour – the reptation motion of
the macromolecule, introduced by Gennes (1971) for explanation mobility of
macromolecules among other chains – the effect, which is also very important
for explanation some effects of viscoelasticity in strongly entangled system. It
is assumed that a macromolecule moves among other macromolecules like a
snake and create an effective tube, inside which the particles of the chain are
moving with increased mobility. This effect can be described by introduction
of local anisotropy of mobility of a particles of the chain.

For the case, when the local anisotropy is taken into account, the rela-
tions (3.9) ought to be generalised as

Hαγ
ij uγ

j = uα
i − 3

2
ae

(
eα

i eα
j − 1

3
δij

)
uα

j ,

Gαγ
ij uγ

j =
1
N

{
(N + 1)

[
uα

i − 3
2
ai

(
eα

i eα
j − 1

3
δij

)
uα

j

]

−
N∑

γ=0

[
uγ

i − 3
2
ai

(
eγ

i eγ
j − 1

3
δij

)
uγ

j

]}
, (3.12)

eα
i =

rα+1
i − rα−1

i

|rα+1 − rα−1| , α = 1, 2, . . . , N − 1,

e0
i e

0
j = eN

i eN
j =

1
3
δij ,

where ae and ai are parameters of local anisotropy introduced in such a way,
that positive values of the parameters correspond to increase in mobility along
the contour of the chain. To describe the effect of local anisotropy, to every
internal particle of the chain is ascribed the direction vector eα, while the
end particles of the chain having no direction, so that there are N − 1 vectors
for a chain. However, it is convenient further formally to ascribe the vectors
e0 and eN for the end particles and to define products of components of the
vectors as above. For the linear case, when on average eα

i eα
j = (1/3)δij , one

returns from equations (3.12) to relations (3.9). The matrixes Hγμ
ij and Gγμ

ij ,
as defined by equations (3.12), have the forms
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Hαγ
ij = δαγ

[
δij − 3

2
ae

(
eγ
i eγ

j − 1
3
δij

)]
,

Gαγ
ij = Gαγ

[
δij − 3

2
ai

(
eγ
i eγ

j − 1
3
δij

)]
.

(3.13)

In the simplest case the matrix G has the form (3.10), but can be modified.
Introduction of the local anisotropy of mobility allows us to specify the

matrixes of the extra forces of external and internal resistance and to formulate
dynamic equations, which will be discussed in Section 3.4. One can expect
that, as a result of the introduction of the local anisotropy, mobility of a
particle along the axis of a macromolecule appears to be bigger than mobility
in the perpendicular direction, so that the entire macromolecule can move
more easily along its contour. The local anisotropy hinders also change of the
form of the macromolecular coil, and, by this way, plays a role similar to the
role of the term with internal resistance in linear version of the model.

3.3 Molecular Interpretation of the Dissipative Terms

In the case, when one applies the coarse-grained approximation for the de-
scription of chains, each particle of the chain can be considered as moving in
a liquid, which represents a dense system made of the interacting rigid Kuhn
segments. The memory functions β(s) and ϕ(s) in equations (3.11) cannot be
determined from general considerations: they could be found theoretically as
correlation functions of the random force in microscopic dynamics of inter-
acting Kuhn-Kramers chains, or, otherwise, the memory functions ought to
chosen in such a way, that the final results would describe empirical facts. At
the moment, we have no choice as to look for empirical memory functions.

3.3.1 Concept of Microviscoelasticity

Underlying Relaxation Process

The effective dense medium, in which a particle of the chain is moving, con-
sists of the interacting rigid Kuhn segments and has properties of relaxing
liquid; thus, the concept of microviscoelasticity, instead of the concept of mi-
croviscosity in the case of dilute solutions, can be introduced. The times of
relaxation of the surrounding medium are times of relaxation of the mean
orientation of segments 〈eiek 〉, whereas one can accept, that the rotation of
a separate segment in a dense system of long linear macromolecules is deter-
mined strongly by its environment, being weakly dependent on its position in
the chain. We assume that a fundamental process has a single relaxation time
τ , so that the relaxation of orientation is described by equation

d〈eiek 〉
dt

= − 1
τ

(
〈eiek 〉 − 1

3
δik

)
. (3.14)
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The medium surrounding of the given segment consists from both the seg-
ments of neighbouring macromolecules and the segments of the tagged macro-
molecule, so that the relaxation time τ depends on the lengths both of probe
macromolecule M and macromolecules of environment M0. The relaxation
time τ has to be considered as a relaxation time of the mechanical (viscoelas-
tic) reaction of the ambient medium.

So, one can write down the specification for the memory functions in equa-
tions (3.11) as

β(s) =
ζ

τ
B exp

(
− s

τ

)
, ϕ(s) =

ζ

τ
E exp

(
− s

τ

)
. (3.15)

In this formulae, ζ is a friction coefficient of a particle in a “monomer” liquid,
while non-dimensional phenomenological quantities B and E are measures of
the increase in the ‘external’ and ‘internal’ friction coefficients due to the
neighbouring macromolecules.

Self-Consistency of the Approach

In line with the relaxation time τ of the ambient medium, it is convenient to
use the non-dimensional quantity

χ =
τ

2Bτ ∗ , (3.16)

where τ ∗ is the characteristic Rouse relaxation time of the macromolecule in
viscous ’monomer’ liquid, which is a combination of some parameters of the
dynamic equations (3.11)

τ ∗ =
ζN2

4π2μT
∼ M2.

The quantity χ is a characteristic of a macromolecule with molecular
weight M in the surrounding, consisting of linear polymer with molecular
weight M0. We shall distinguish the macromolecules, even the system is a
polymer melt, M = M0. It is especially essential, if one consider a system
with a small additive of a similar polymer – a dilute blend.

In the case of the bulk polymer, the requirement of self-consistency of
the theory states that the relaxation time τ can be interpreted as a char-
acteristic of the whole system. Properties of the system will be calculated
in Sections 6.3.2 and 6.4.3, which allows one to estimate relaxation time τ
and quantity χ. It will be demonstrated that, for weakly entangled systems
(2Me < M < 10Me), the quantity χ has the self-consistent value

χ ≈ π2

30
.
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For strongly entangled systems (M > 10Me), the requirement of self-consist-
ency is fulfilled identically, while the quantity χ is connected with the in-
termediate length ξ (see Section 5.1.2, formula (5.8)), or (as we shall see in
Section 6.4.4, formula (6.55)) with the length of the macromolecule between
adjacent entanglement Me, that is

χ =
τ

2Bτ ∗ ≈
{

(2ξ)2/〈R2〉,

Me/M.

In the last case, the parameter has the meaning of the ratio of “a length of
macromolecule between adjacent entanglements” to the length of the macro-
molecule (see Section 5.1.2). The parameters τ, χ, ξ, and Me appear to be
equivalent for the strongly entangled systems. One of these parameters is
used to describe polymer dynamics in either interpretation.

The parameter χ is always small for entangled systems. Due to the above
written results, the self-consistent values of the quantity can be approximated,
for M/Me > 2, as

χ ≈ π2

6
1

1 + 2Z
, Z =

M

Me
. (3.17)

It will be convenient to measure the length of macromolecules in units of
Me, Me being the length of a part of a macromolecule between ‘adjacent
entanglements’.

3.3.2 External Friction

If we consider very slow motion of a macromolecular coil with constant veloc-
ity, the force of internal resistance can be neglected and the resistance-drag
coefficient for the external force can be written down as

ζB =
∫ ∞

0

β(s)ds, (3.18)

where the non-dimensional quantity B is a measure of the increase in the fric-
tion coefficient, due to the fact that the particle is moving among neighbouring
macromolecules, perturbing them. There is a slight difference in resistance,
when the particle moves along the chain or in a perpendicular direction, but,
in this subsection, the anisotropy of resistance will be neglected for simplicity.

Overlapping-Coils Friction

Let us imagine, following Pokrovskii and Pyshnograi (1988), the shear motion
of the system as a motion of overlapping macromolecular coils, each of which is
characterised by the function (1.24) of the mean number density of Brownian
particles
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ρ(r) =
(

3
2π〈S2〉0

)3/2

N exp
(

− 3r2

2〈S2〉 0

)
(3.19)

where r is the distance from the mass centre of the macromolecule.
The motion of a Brownian particle of the chosen macromolecule agitates

a volume with size of 〈S2〉1/2
0 through its adjacent chain particles. This vol-

ume is the bigger the longer the macromolecules are. Note once more that
the agitation comes through the chain, not through viscous friction. In this
situation, for a particle with radius a � 〈S2〉1/2

0 , the average environment has
to be considered as a non-local liquid for which the following stress tensor can
be written

σij = −pδij + 2
∫

η(r − r′)γik(r′)dr′.

If the influence function η(r) is known, the resistance-drag coefficient of a
Brownian particle can be calculated (see Appendix E) as

ζB = 6πa

∫
η(r)dr. (3.20)

To find the influence function η(s), we shall consider shear deformation of
the system at velocity gradient γij , while two macromolecular coils, separated
by a distance dj , move beside each other at velocity γijdj . We add to the sum
the contributions of every coil, apart from the chosen one, and find the density
distribution of the energy dissipation for the chosen coil. The proportionality
coefficient depends only on the concentration of the Brownian particles, if an
assumption is made that local dissipation is determined by relative velocities
of macromolecular coils,

η(r)γijγij ∼
∑

a

ρ(r)ρ(r − da)da
l da

kγilγjk. (3.21)

When the linear in velocity gradients approach is considered, the equilib-
rium density distribution function (3.19) can be used. We turn the sum into
the integral and, after calculating, obtain

η(r)γijγij ∼ nN2

(
3

2π〈S2〉0

)3/2

×
[
(〈S2〉0 − r2)δlk + rlrk

]
× exp

(
− 3r2

2〈S2〉 0

)
γilγik. (3.22)

Now the friction coefficient of the Brownian particle is calculated according
to (3.20)

ζB ∼ nN2.

It means that
B ∼ M2. (3.23)
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The approximation of overlapping coils is very rough, the real value of the in-
dex in the dependence of the coefficient B on the length of the macromolecules
apparently ought to be bigger than the estimated one, because one has to take
into account extra motions of the macromolecule among the other chains in
order to disentangle itself from its neighbours, as it was speculated by Bueche
(1956).

Constraint-Release Estimate

The constraint-release theory, due to Graessley (1982), Klein (1986) and many
others (see review by Watanabe 1999), studied the detailed mechanism of a
large-scale lateral motion of a macromolecule in an entangled system, due to
process of release of some constraints of the probe chain and jumps of some
parts of the chain in lateral direction. The result of this consideration (specif-
ically, the relaxation times of the macromolecule) is equivalent to the formal
assumption that a particle of the chain is moving through the environment
as a particle in viscous medium. The friction coefficient of the particle can be
presented as a product of the friction coefficient in ‘monomer’ liquid, multi-
plied by some measure of enhancement of the friction coefficient due to the
neighbouring chains. This measure of enhancement corresponds to the above
parameter B, so that, referring to the results of the calculations, one can
say that the constraint-release mechanism determines the dependence of the
coefficient B on the lengths of the neighbouring chains as

B ∼ M3. (3.24)

Approximation of the Dependence

So, according to the alternative estimations (3.23) and (3.24), the coefficient
of friction of a Brownian particle increases with increase in length of macro-
molecules. One has to distinguish the probe macromolecule (with molecular
weight or length M) and the neighbouring macromolecules (with the length
M0), even if all of them are equal. The derived estimates of the parameter B
show that the parameter depends only on the length of neighbouring macro-
molecules, so that the derived dependence of the enhancement coefficient on
molecular weights of the macromolecules can be written as

B ∼ Zδ
0Z0, Z0 =

M0

Me
, Z =

M

Me
.

The length of macromolecules is measured in units of Me, Me being the length
of a part of a macromolecule between ‘adjacent entanglements’). For the index
δ, the above estimations give the values between 2 and 3.

It is convenient to have an approximate expression for the dependence of
the parameter B on molecular length, and, accepting B = 1 at Z0 = 2, one
can write the universal function
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B ≈
(

Z0

2

)δ

. (3.25)

The formula contains only one index δ, which has been estimated theoreti-
cally (δ = 2 or 3) and empirically. In the last case, note, that in virtue of
equation (6.52), the parameter B can be derived directly from measurements
of coefficient of viscosity η

B =
6η

π2nTτ ∗ ,

where τ ∗ is the characteristic Rouse relaxation time of the macromolecule
in viscous ‘monomer’ liquid (see Section 3.3.1). According to experiment, co-
efficient of viscosity is proportional to M3.4, so that the reliable empirical
estimation of index δ, is δ = 2.4. This value corresponds to the above theo-
retical estimation of index.

3.3.3 Intramolecular Friction

If deformation of the system is fast enough (that is, before relaxation of chains
can occurs), one expects that macromolecules deform affinely, i.e., for every
particle ṙα

i = νijr
α
j , where νij is the velocity gradient, and rα

j is the position
in space of a particle α of a chain. Under given deformation, the external
force (3.6) is equal to zero, while the intramolecular resistance force (3.7) is
proportional to ṙα

i − ωijr
α
j , where ωij is the vorticity, or γijr

α
j , where γij is the

symmetric part of the velocity gradient, so that this force is a force of the in-
tramolecular resistance due to the change in shape of the macromolecular coil
(kinetic stiffness). As far as we consider the coarse-grained approximation, all
the neighbouring chains, or, one can say, the particles of coarse-grained chains
follow the deformation affinely, and there is no apparent cause for this force.
To explain the emerging of the force, we have to refer to more detailed model
of macromolecule – to the chain of freely-jointed rigid segments. Apparently,
small parts of macromolecules cannot follow the deformation affinely, seg-
ments can only rotate, and an extra force is needed to change the direction of
a segment in the case, when the segments of the other chains present around.
That is why we can say that the internal resistance force for a macromolecule
in a polymer melt has to be attributed to the interaction with neighbouring
chains, though in the coarse-grained approximation we forget about segments,
and this force is characterised by only phenomenological coefficient of internal
resistance, which, in the simplest case, can be denoted as

ζE =
∫ ∞

0

ϕ(s)ds. (3.26)

This quantity has value of zero for non-entangled systems and increase with
increase in the length of macromolecules. As for external force, there is a
slight difference in resistance, when the particle moves along the chain or in
a perpendicular direction, but, in this subsection, this effect is neglected for
simplicity.
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Approximation of Internal Resistance Matrix

The force of intramolecular resistance appears, when relative motion of the
particles exists, so that one can write a general expression (which is identical
to expression (2.21) for a chain in a dilute solution)

Gαγ
ij =

∑
γ �=α

Cαγ(uα
j − uγ

j )eαγ
j eαγ

i ,

where eαγ
j = (rα

j − rγ
j )/|rα − rγ |. Matrix Cαγ is symmetrical, the components

of the matrix are non-negative and may depend on the distance between the
particles. The diagonal components of the matrix are equal to zero. One can
also reasonably assume that components of the matrix are equal to zero, if
the difference between indexes |α − γ| is less than a certain value.

One can rewrite the matrix of internal resistance in the following form

Gαγ
ij = δαγ

∑
β �=α

Cαβeαβ
i eαβ

j − Cαγeαγ
i eαγ

j . (3.27)

This expression defines the general form of a matrix of internal friction, which
allows the force to remain unchanged on the rotation of the macromolecular
coil as a whole. The written matrix is symmetrical with respect to the up-
per and lower indices and, in contrast to matrix Cαβ , has non-zero diagonal
components, which are depicted by the first term in (3.27). In equilibrium sit-
uations, after averaging over the orientation, matrix (3.27) can be presented
as

Gαγ
ij = Gαβδij , Gαβ =

1
3

⎛
⎝δαγ

∑
β �=α

Cαβ − Cαγ

⎞
⎠ .

Since the components of matrix Cαβ are non-negative, the diagonal compo-
nents of matrix Gαβ exceed the non-diagonal ones and can be considered to
be approximately diagonal with respect to the indices α and β. The effect
is very strong for long macromolecules and reduces to zero at M ≈ 2Me.
As an initial approximation, to express the idea of severe confinement, one
can assume that the intramolecular resistance force is determined equally by
all the particles of the chain, so that the matrix is reduced to the already
written matrix (3.10). It is easy to find, that in normal co-ordinates (1.13),
matrix (3.10) has a diagonal form with the eigenvalues

ϕα =

{
0, α = 0,

1, α �= 0.
(3.28)

One can directly check that, if matrix (3.10) is modified, for example, zeros
are placed on a few diagonals next to the main diagonal in the matrix, the
transformed matrix retains approximately its diagonal form, while eigenval-
ues are close to unity and decrease slightly when the index of an eigenvalue
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increases. So, the effect of diagonals with zeros can be neglected indeed and
the above matrix does approximate the situation for large-scale motions of
the chain at N → ∞

Approximation of the Measure of Internal Resistance

For the systems of long macromolecules (strongly entangled systems), the
requirements of universality and self-consistency allow us to write practically
identical asymptotic relations (5.17) and (6.53) between the parameter χ,
introduced in Section 3.3.1, and the ratio E/B, which allows us to write for
this case

E ∼ Mδ
0M.

For the weakly entangled systems, one can expect, that the ratio E/B, that is
the parameter of ‘internal’ viscosity is small. It can be demonstrated in Sec-
tion 4.2.3, that transition point from weakly to strongly entangled systems
occurs at E ≈ B. To describe these facts, one can use any convenient approx-
imate function for the measure of internal resistance, for example, the simple
formula

E ≈ B(Z0)
12 (Z − 2)2

Z + 768
, Z0 =

M0

Me
, Z =

M

Me
. (3.29)

3.3.4 Fundamental Dynamical Parameters

To describe the behaviour of a macromolecule in an entangled system, we
have introduced the ratio of the relaxation times χ and two parameters B
and E connected with the external and the internal resistance, respectively.
These parameters play a fundamental role in the description of the dynamical
behaviour of polymer systems, so that it is worthwhile to discuss them once
more and to consider their dependencies on the concentration of polymer in
the system.

Equations (3.17), (3.25) and (3.29) define the dependence of the parame-
ters on the length of a macromolecule due to empirical evidence. The above-
written relations are applicable to all linear polymers, whatever their chemical
structure is. One can also define these quantities as functions of concentration.
Indeed, one can see that the parameters χ, B and E can be written as func-
tions of a single argument. Actually, since the above kinetic restrictions on the
motion of a macromolecule are related to the geometry of the system, the only
parameters in this case are the number of macromolecules per unit volume
n and the mean square end-to-end distance 〈R2〉, while (see formulae (1.4)
and (1.33))

n ∼ c

M
, 〈R2〉 ∼ C∞(T )M.

We shall not pay attention to the optional slight dependence of the last quan-
tity on the concentration (see Section 1.6). The non-dimensional quantities
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χ, B and E can therefore be regarded as universal and independent of the
chemical structure of the polymer functions of the non-dimensional parameter

n〈R2〉3/2 ∼ c C3/2
∞ M1/2.

Now the dependencies of the phenomenological parameters χ, B and E on
the concentration of polymer c can also be given. From the above relations,
it follows, for example, that for the strongly entangled systems

χ ∼ c−2C−3
∞ M −1, B ∼ c2δC3δ

∞ Mδ
0 , E ∼ c2(1+δ)C3(1+δ)

∞ Mδ
0 M. (3.30)

In these formulae, however, the coefficients of proportionality must be esti-
mated empirically.

Note that the above estimates of the coefficients B and E are valid for
linear macromolecule. The principles of the theory can be applied to macro-
molecules of a different architecture: to macromolecule as a ring, a brush, a
star, or something else. One can expect that the enhancement coefficient for
the friction coefficient of a Brownian particle can be also introduced, but for
macromolecule of complex architecture, index δ in (3.25) can be specific in
each case. Moreover, dependence on the molecular weights cannot be a power
function at all. Of course, the choice of memory functions is eventually justi-
fied by empirical facts discussed in later chapters, so we consider the memory
functions (3.15) to be empirical, but to give a rather good description for the
case c2M → ∞ for linear macromolecules. In other situations, the memory
functions (3.15) ought to be chosen in different ways.

3.4 Markovian Form of Dynamic Equation

Now one can return to dynamic equation (3.4) of a macromolecule in very
concentrated solutions and melts of polymers, which can be rewritten in the
form

drα
i

dt
= uα

i ,

m
duα

i

dt
= − ζ(uα

i − νijr
α
j ) + Fα

i + Gα
i − 2μTAαγrγ

i + φα
i (t).

(3.31)

Due to the preceding analysis, the extra forces of external and internal resis-
tance Fα

i and Gα
i can be specified as

Fα
i = −B

ζ

τ

∫ ∞

0

exp
(

− s

τ

)
Hαγ

ij (uγ
j − νjlr

γ
l )t−sds, (3.32)

Gα
i = −E

ζ

τ

∫ ∞

0

exp
(

− s

τ

)
Gαγ

ij (uγ
j − ωjlr

γ
l )t−sds. (3.33)

In these formulae, ζ is a friction coefficient of a particle in a “monomer” liquid,
B and E are phenomenological parameters discussed in the previous sections,
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while matrixes Hαγ
ij and Gαγ

ij are numerical matrixes defined by relations (3.8)
and (3.10) in linear approximation and by relation (3.13) in approximation of
local anisotropy.

Expressions (3.32) and (3.33) are solutions of equations which are written
below in the simplest covariant form (see Section 8.4 and Appendix D)

τ

(
dFα

i

dt
− ωilF

α
l

)
+ Fα

i = −ζBHαγ
ij (uγ

j − νjlr
γ
l ), (3.34)

τ

(
dGα

i

dt
− ωilG

α
l

)
+ Gα

i = −ζEGαγ
ij (uγ

j − ωjlr
γ
l ). (3.35)

The properties of the stochastic forces in the system of equations (3.31)–
(3.35) are determined by the corresponding correlation functions which, usu-
ally (Chandrasekhar 1943), are found from the requirement that, at equi-
librium, the set of equations must lead to well-known results. This condition
leads to connection of the coefficients of friction with random-force correlation
functions – the dissipation-fluctuation theorem. In the case under considera-
tion, when matrixes Hαγ

ij and Gαγ
ij depend on the co-ordinates but not on the

velocities of particles, the correlation functions of the stochastic forces in the
system of equations (3.31) can be easily determined, according to the general
rule (Dünweg 2003), as

〈φα
i (t)φγ

k(t′)〉 = Tζ

[
2δαγδikδ(t − t′) +

1
τ

(BHαγ
ij + EGαγ

ij ) exp
(

− t − t′

τ

)]
.

(3.36)

The random process in equation (3.31) can be conveniently represented as
the sum of two independent processes

φα
i (t) = φ̄α

i (t) + φ̃α
i (t),

so that, introducing the variable Φα
i = Fα

i + Gα
i + φ̃α

i (t), the system of equa-
tions (3.31), (3.34) and (3.35) can be written as

drα
i

dt
= uα

i ,

m
duα

i

dt
= −ζ(uα

i − νijr
α
j ) + Φα

i − 2μTAαγrγ
i + φ̄α

i (t), (3.37)

τ
dΦα

i

dt
= −Φα

i − ζBHαγ
ij (uγ

j − νjlr
γ
l ) − ζEGαγ

ij (uγ
j − ωjlr

γ
l ) + σα

i (t).

The first two of the above equations represent Langevin equation for the Rouse
chain in presence of extra random force Φα

i . One can note that dynamics
of a polymer chain in random fields was studied extensively (Baumgärter
and Muthukumar 1996; Ebert et al. 1996), as a possible mode of motion of
a macromolecule in entangled system. Note also that the two top equation
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from (3.37) (at m = 0) are identical to the Langevin equation, which was
formulated (Migliorini et al. 2003) for investigating the behaviour of polymer
chain in a random static field. The equation was investigated numerically by
Milchev et al. (2004). However, in contrast to the cited works, the force Φα

i

in equations (3.37) for chain in entangled system is not static and can be
specially defined according to the third equation.

The random process in the last stochastic equation from set (3.37) is re-
lated to the above introduced random process by equation

σγ
i = φ̃γ

i + τ

(
d
dt

φ̃γ
i − ωilφ̃

γ
l

)
, (3.38)

which can be looked upon as the equation for the random force φ̃γ
i for the

given random quantity σα
i . Then, if the relation

〈σγ
i (t)σμ

j (t′)〉 = 2ζ(B Hγμ
ij + E Gγμ

ij ) δ(t − t′) (3.39)

is satisfied, the random force correlator satisfies the following relation

〈φ̃γ
i (t)φ̃μ

j (t′)〉 =
Tζ

τ

(
B Hγμ

ij + E Gγμ
ij

)
exp

(
− t − t′

τ

)
. (3.40)

This relation, in line with relation

〈φ̄γ
i (t)φ̄μ

j (t′)〉 = 2Tζδγμδijδ(t − t′), (3.41)

return us to the random-force correlation function (3.36).
The set of stochastic equations given by (3.37) is equivalent (in the linear

case) to equations (3.11) with the memory functions defined in Section 3.3,
but, in contrast to equations (3.11), set (3.37) is written as a set of Markov
stochastic equations. This enables us to determine the variables that describe
the collective motion of the set of macromolecules. In this particular approx-
imation, the interaction between neighbouring macromolecules ensures that
the phase variables of the elementary motion are co-ordinates, velocities, and
some other vector variables – the extra forces. This set of phase variables de-
scribes the dynamics of the entire set of entangled macromolecules. Note that
the Markovian representation of the equation of macromolecular dynamics
cannot be made for any arbitrary case, but only for some simple approxi-
mations of the memory functions. We are considering the case with a single
relaxation time, but generalisation for a case with a few relaxation times is
possible.

3.5 Reptation-Tube Model

The system of dynamic equations (3.37) for a chain of Brownian particles with
local anisotropy of mobility appears to be rather complicated for direct anal-
ysis, and one ought to use numerical methods, described in the next Section,



3.5 Reptation-Tube Model 57

to be convinced that equations (3.37) really describe the observed effects. Not
to explore non-linear equations, one can exaggerate anisotropy of mobility,
assuming that unbounded lateral motion of particles is completely suppressed
due to the presence of many neighbouring coils. By this way, one comes to
a very elegant linear model of reptating macromolecule proposed by Doi and
Edwards (1978) (see also Doi and Edwards 1986).

Following Doi and Edwards (1978), we shall consider a bead-spring model
consisting of Z = M/Me subchains and assume that the distance between
adjacent particles along the chain is constant and equal to a certain interme-
diate length ξ, which is considered to be the radius of ‘a tube’, so that the
number of particles is not arbitrary, but satisfies the condition

Zξ2 = 〈R2〉. (3.42)

The states of the macromolecule will be considered in points of time in a
time interval Δt, so that the stochastic motion of Brownian particles of the
chain can be described by the equation for the particle co-ordinates

r0(t + Δt) =
1 + φ(t)

2
r1(t) +

1 − φ(t)
2

[r0(t) + v(t)],

rν(t + Δt) =
1 + φ(t)

2
rν+1(t) +

1 − φ(t)
2

rν−1(t), ν = 1, 2, . . . , Z − 1,(3.43)

rZ(t + Δt) =
1 + φ(t)

2
[rZ(t) + v(t)] +

1 − φ(t)
2

rZ−1(t)

where φ(t) is a random quantity, which takes the values +1 or −1, and v(t)
is a vector of constant length ξ and random direction, so that

〈φ(t)φ(u)〉 = δtu, 〈φ(t)〉 = 0,

〈v(t)v(u)〉 = δtuξ2, 〈v(t)〉 = 0.
(3.44)

The set of equations (3.43) describes the stochastic motion of a chain along
its contour. The “head” and the “tail” particles of the chain can choose ran-
dom directions. Any other particle follows the neighbouring particles in front
or behind. The smaller the time interval Δt is the quicker moves the chain.
Clearly, the time interval cannot be an arbitrary quantity and is specified by
the requirement that the squared displacement of the entire chain by diffusion
for the interval Δt is equal to ξ2, so that

ξ2 = 2D0Δt =
2T

ζZ
Δt (3.45)

where D0 = T/(ζZ) is the diffusion coefficient of the macromolecule in a
monomeric viscous liquid (see Section 5.1.1 for explanation). Note that we
follow the original Doi-Edwards model in which diffusion of the chain is con-
sidered to be one-dimensional.
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The model described by equations (3.42)–(3.45) is valid for equilibrium
situations. For chain in a flow, one ought to define displacements of the par-
ticles under flow and to consider the average values (3.44) to depend on the
velocity gradient (Doi and Edwards 1986). McLeish and Milner (1999) consid-
ered mechanism of reptation motion of branched macromolecules of different
architecture.

It is convenient to rewrite equations (3.43) in more compact form, taking
also definition of Δt into account,

rα(t + Δt) − rα(t)
Δt

= − T

ζξ2Z3
Aαγrγ(t)+σα(t), α = 0, 1, 2, . . . , Z, (3.46)

where the stochastic force is defined as

σα(t) =
1
2

φ(t) ×

⎧⎪⎪⎨
⎪⎪⎩

r1(t) − r0(t) + v(t), α = 0,

rα+1(t) − rα−1(t), α = 1, 2, . . . , N − 1,

rZ−1(t) − rZ(t) + v(t), α = Z.

(3.47)

To obtain relation (3.46), one has to take into account that motion of the
particles of the chain ought to be considered to be coherent. Now, it is not
difficult to pass from equation (3.46) to the normal-mode equation

dρα

dt
= − π2Tα2

ζξ2Z3
ρα + Qγασγ(t), α = 0, 1, 2, . . . , � Z. (3.48)

These equations describe the reptation normal relaxation modes, which can
be compared with the Rouse modes of the chain in a viscous liquid, described
by equation (2.29). In contrast to equation (2.29) the stochastic forces (3.47)
depend on the co-ordinates of particles, equation (3.48) describes anisotropic
motion of beads along the contour of a macromolecule.

It is instructive to compare the system of equations (3.46) and (3.47)
with the system (3.37). One can see that both the radius of the tube and
the positions of the particles in the Doi-Edwards model are, in fact, mean
quantities from the point of view of a model of underlying stochastic motion
described by equations (3.37). The intermediate length ξ emerges at analysis of
system (3.37) and can be expressed through the other parameters of the theory
(see details in Chapter 5). The mean value of position of the particles can be
also calculated to get a complete justification of the above model. The direct
introduction of the mean quantities to describe dynamics of macromolecule
led to an oversimplified, mechanistic model, which, nevertheless, allows one to
make correct estimates of conformational relaxation times and coefficient of
diffusion of a macromolecule in strongly entangled systems (see Sections 4.2.2
and 5.1.2). However, attempts to use this model to formulate the theory of
viscoelasticity of entangled systems encounted some difficulties (for details,
see Section 6.4, especially the footnote on p. 133) and were unsuccessful.
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There were different generalisations of the reptation-tube model, aimed
to soften the borders of the tube and to take into account the underlying
stochastic dynamics. It seems that the correct expansion of the Doi-Edwards
model, including the underlying stochastic motion and specific movement of
the chain along its contour – the reptation mobility as a particular mode of
motion, is presented by equations (3.37), (3.39) and (3.41). In any case, the
introduction of local anisotropy of mobility of a particle of chain, as described
by these equations, allows one to get the same effects on the relaxation times
and mobility of macromolecule, which are determined by the Doi-Edwards
model.

3.6 Method of Numerical Simulation

One can consider equations (3.37), (3.39) and (3.41) to be a basic system of
equations for description of dynamics of entangled systems. The system can
be investigated analytically in linear approximation as will be demonstrated
in the ensuing chapters. However, to study these non-linear equations in com-
plete form, one has to use numerical methods of simulation of the stochastic
processes for the particle coordinates.

3.6.1 Non-Dimensional Form of Dynamic Equation

It is convenient to use the time scale τ ∗, which is called the Rouse character-
istic relaxation time and is a combination of parameters of the theory

τ ∗ =
ζN 〈R2〉
6π2T

=
ζN2

4π2μT
∼ M2, (3.49)

and the length scale R =
√

〈R2〉, where 〈R2〉 is the end-to-end distance, to
define non-dimensional variables as

d
dt

=
1
τ ∗

d
ds

,

rα
i = R Rα

i ,

uα
i =

R

τ ∗ Uα
i ,

Fα
i + Gα

i + φ̃α
i (t) =

ζR

τ ∗ Φα
i ,

so that the system of equations of dynamics of macromolecule can be written
in the form
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dRα
i

ds
= Uα

i ,

m

ζτ ∗
dUα

i

ds
= −Uα

i + Φα
i − N2

2π2
AαγRγ

i + f̄α
i (s),

2χB
dΦα

i

ds
= −Φα

i − BHαγ
ij Uγ

j − EGαγ
ij Uγ

j + f̃α
i (s), χ =

τ

2τ ∗B
,

f̄α
i (s) =

τ ∗

ζR
φ̄α

i (τ ∗s) , f̃α
i (s) = χB

dφ̃α
i

ds
+ φ̃α

i (s),

〈f̄γ
i (s)f̄μ

j (s′)〉 =
(

τ ∗

ζR

)2

〈φ̄γ
i (τ ∗s)φ̄μ

j (τ ∗s′)〉 =
N

3π2
δγμδijδ(s − s′), (3.50)

〈f̃γ
i (s)f̃μ

j (s′)〉 =
N

3π2
(BHγμ

ij + EGγμ
ij ) δ(s − s′). (3.51)

The inertial effects can be neglected (m = 0), so that the above system of
equations can be written as

dRα
i

ds
= Uα

i ,

dΦα
i

ds
=

1
2χB

(
−Φα

i − BHαγ
ij Uγ

j − EGαγ
ij Uγ

j + f̃α
i (s)

)
,

Uα
i = Φα

j − 1
2

N2

π2
AαγRγ

j + f̄α
j (s). (3.52)

Relations (3.50) and (3.51) are being satisfied, if the random processes are
given as

f̄γ
i (s) =

(
N

3π2

)1/2

ḡγ
i (s), (3.53)

f̃γ
i (s) =

(
N

3π2
B

)1/2
{

(Aeδij + Cee
γ
i eγ

j ) g̃e
γ
j (s) +

1
N

√
E

B

×
[
(1 + N)(Aiδij + Cie

γ
i eγ

j ) g̃i
γ
j (s) −

N∑
α=0

(Aiδij + Cie
α
i eα

j ) g̃i
α
j (s)

]}
,

Ae =
√

1 + ae/2, Ce = −Ae +
√

1 − ae,

Ai =
√

(1 + ai)/2, Ci = −Ai +
√

1 − ai, (3.54)

where ḡγ
i (s), g̃e

γ
j (s) and g̃i

γ
j (s) are independent Gaussian random processes

with dispersion equal to unity.
Dynamics of a single macromolecule in an entangled system is defined by

the system of non-linear equations (3.52)–(3.54), containing some phenomeno-
logical parameters, which will be identified later.
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3.6.2 Algorithm of Calculation

We use the simplest method (Eyler method, with the step of integration h)
to write the algorithm for numerical solution of equations (3.52)

Rα
i (s + h) = Rα

i (s) + hUα
i ,

Φα
i (s + h) = Φα

i (s) +
h

2χ

(
− 1

B
Φα

i − Hαγ
ij Uγ

j − ψGαγ
ij Uγ

j + Δf̃α
i (s)

)
, (3.55)

Uα
i = Φα

j − N2

2π2
AαγRγ

j + Δf̄α
j (s).

The random forces are defined here as

Δf̄α
j (s) =

1
h

∫ s+h

s

f̄α
j (u) du, Δf̃α

j (s) =
1

hB

∫ s+h

s

f̃α
j (u) du.

Calculating the dispersions of the random processes Δf̄α
j (s) and Δf̃α

i (s), one
has to take into account that relations (3.50) and (3.51) for the random forces
are written for the continuous time, so that in the discrete approach one has

〈Δf̄γ
i (s) Δf̄μ

j (s′)〉 =
N

3π2h
δγμδijδ(s − s′), (3.56)

〈Δf̃γ
i (s) Δf̃μ

j (s′)〉 =
N

3π2hB
(Hγμ

ij + ψGγμ
ij ) δ(s − s′). (3.57)

It is easy to see that, the expressions for the random forces have to be similar
to relations (3.53) and (3.54), that is

Δf̄γ
i (s) =

(
N

3π2h

)1/2

ḡγ
i (s), (3.58)

Δf̃γ
i (s) =

(
N

3π2hB

)1/2
{

(Aeδij + Cee
γ
i eγ

j ) g̃e
γ
j (s)

+
1
N

√
E

B
×

[
(1 + N)(Aiδij + Cie

γ
i eγ

j ) g̃i
γ
j (s)

−
N∑

α=0

(Aiδij + Cie
α
i eα

j ) g̃i
α
j (s)

]}
. (3.59)

To solve the system of equations (3.55), initial values of co-ordinates and
an extra random force have to be chosen. We accept that

R0
i (0) = 0, Rα

i (0) = Rα−1
i (0) +

1√
N

gα
i , α = 1, 2, . . . , N, (3.60)

where gα
i is a Gaussian random process with dispersion equal to unity. Initial

values of the extra random force can be chosen as
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Φα
i (0) = 0, α = 0, 1, 2, . . . , N, i = 1, 2, 3. (3.61)

As a result of calculation, one has the positions of the particles

Rα
i (s), α = 1, 2, . . . , N, i = 1, 2, 3, s = 0, h, 2h, 3h, . . . ,

which allows one to calculate mean values of different quantities. It is conve-
nient also to use the normal co-ordinates defined by equation (1.13).

Note that steady-state situations are investigated, so that the end-to-end
distance 〈R2〉 and the mean gyration radius

S2 =
1

1 + N

N∑
α=0

3∑
i=1

(Rα
i − Qi)2, Qi =

1
1 + N

N∑
α=0

Rα
i (3.62)

must be constant on average. The mean kinetic energy for one degree of free-
dom also must be constant

1
3(1 + N)

N∑
α=0

3∑
i=1

Uα
i Uα

i ∼ const . (3.63)

The above conditions allow us to monitor whether the fluctuation-dissipation
relations are valid during calculations.



Chapter 4
Conformational Relaxation

Abstract The fundamental model of macromolecular dynamics in an entan-
gled system, which was formulated in the previous chapter, imitates the basic
isotropic stochastic motion of the particles of the chain among the neigh-
bouring chains, and includes a special non-linear effect – reptation motion
of the macromolecule. The system of equations allows one to find correla-
tion functions of coordinates and calculate conformational relaxation times
of macromolecular coils. In the analytic investigation, some approximations
of the fundamental system will be considered: instead of a single non-linear
equation, we shall consider two particular cases: linear mesoscopic equation for
weakly entangled systems and the original non-amended reptation-tube model
for strongly entangled systems. We consider these two models as complemen-
tary models and combine the results, unless an analysis of unified non-linear
model is available. The numerical investigation of complete non-linear model
allows us to calculate the times of relaxation of the macromolecular coil, while
the transition point between two modes of relaxation (diffusive and reptation)
is evaluated as 10Me. Both for the weakly and strongly entangled systems, in
contrast to relaxation behaviour of the macromolecule in a viscous liquid, two
relaxation branches emerge as characteristics of the relaxation behaviour of a
macromolecular coil in a system of entangled macromolecules.

4.1 Correlation Functions for the Linear Dynamics

4.1.1 Modified Cerf-Rouse Modes

One has to refer to dynamic equations (3.11) of the macromolecule to find
independent modes of motion. The matrices A and G in these equations are
defined by equations (1.8) and (3.10), and, in the normal co-ordinates (1.13),
simultaneously have diagonal forms

V.N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics,
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QαλAαγQγν = λνδλν ,

QαλGαγQγν = ϕνδλν ,

where the eigenvalues λν and ϕν are defined by equation (1.17) and (3.28),
correspondingly.

The zeroth eigenvalues of matrix A and G are zero, so that without any
approximation, one can write an equation for diffusion mode

m
d2ρ0

i

dt2
= −

∫ ∞

0

β(s)(ρ̇0
i − νijρ

0
j )t−sds + ξ0

i . (4.1)

The intermolecular forces are naturally absent from the equation for the zeroth
mode, because this mode presents the motion of the mass centre of the coil.

In accordance to approximate form (3.10), the other eigenvalues of the
matrix G are constant and equal to unity, so that the set of equations for
relaxation modes of the macromolecule now assumes the form

m
d2ρν

i

dt2
= −

∫ ∞

0

β(s)(ρ̇ν
i − νijρ

ν
j )t−sds

−
∫ ∞

0

ϕ(s)(ρ̇ν
i − ωijρ

ν
j )t−sds − 2μTλνρν

i + ξν
i , ν = 1, 2, . . . , N.

(4.2)

Let us note, that the matrixes A and G are approximations of the real
situation; though, in any case, the zeroth eigenvalues of the matrixes must be
zero and equation (4.1) for diffusive mode is valid, the other eigenvalues of
matrix G depends, generally speaking, on the mode label. In fact, the written
equations for the relaxation modes are implementation of the statements that
the motion of a single macromolecule can be separated from others, and the
motion of a single macromolecule can be expanded into an independent motion
of modes.

We shall now start with the formal representation of the solution of equa-
tions (4.2), which, first of all, is conveniently written in the form

ρν
i (t) =

∫ ∞

0

{
χν(s)ξν

i (t − s) +
[
μν(s)νil(t − s) + πν(s)ωil(t − s)

]
ρν

l (t − s)
}
ds,

(4.3)
where functions χα, μα and πα are determined by their Fourier one-side trans-
forms

χν [ω] = (2Tμλν − mω2 − iωB[ω])−1,

μν [ω] = β[ω]χν [ω], πν [ω] = ϕ[ω]χν [ω].
(4.4)

Functions χα, μα and πα always vanish for s → 0 and s → ∞, if m �= 0.
Within the limits of applicability of the subchain model, the inertial effects
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have to be omitted, i.e. we can believe that m = 0, but this limit can change
the values of functions (4.4) as functions of time s at limiting cases for s → 0
and s → ∞. To avoid any discrepancies, the results ought to be calculated at
m �= 0. Then the limiting values at m → 0 can be obtained.

The expression for the velocity of the normal co-ordinate follows from
equation (4.3). Differentiating (4.3) with respect to time, and integrating by
parts, we find, by using the above shown properties of the integrands, that

ρ̇ν
i (t) =

∫ ∞

0

{
χ̇ν(s)ξν

i (t − s) +
[
μ̇ν(s)νil(t − s) + π̇ν(s)ωil(t − s)

]
ρν

l (t − s)
}
ds.

(4.5)
Iteration of (4.3) and (4.5) can be used to expand the normal co-ordinates

and their velocities into a power series of small velocity gradients of the
medium. We can write down the zero-order approximation

ρν
i0(t) =

∫ ∞

0

χν(s)ξν
i (t − s)ds,

ρ̇ν
i0(t) =

∫ ∞

0

χ̇ν(s)ξν
i (t − s)ds

(4.6)

and the first-order approximation

ρν
i (t) = ρν

i0(t) +
∫ ∞

0

[
μν(s)νil(t − s) + πν(s)ωil(t − s)

]
ρν

l0(t − s)ds,

ρ̇ν
i (t) = ρ̇ν

i0(t) +
∫ ∞

0

[
μ̇ν(s)νil(t − s) + π̇ν(s)ωil(t − s)

]
ρν

l0(t − s)ds.

(4.7)

Now, we have to discuss in some details the properties of the stochastic
force ξα

i (t), defined so that 〈ξα
i (t)〉 = 0. The second-order moment

Kαγ
ij (t, t′) = 〈ξα

i (t)ξγ
j (t′)〉 (4.8)

depends on the velocity gradients and can be expanded into a power series
of this quantity. The first-order term cannot, in general, satisfy the condi-
tions of symmetry under interchange of the arguments of function (4.8), and
must therefore be discarded. This means that, to within first-order terms in
the velocity gradients, the correlation function has the same form as in the
equilibrium, i.e. time-independent, case

Kαγ
ij (t, t′) = Kα(t − t′)δαγδij .

The random force correlator is determined by the rule that, at equilibrium,
the moments of the velocities and the co-ordinates must be known. In our
simple case, the Fourier transform of the correlator is determined as follows

K(ω) =
∫ ∞

− ∞
K(s)eiωsds = 2TReB[ω] (4.9)
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where the one-sided Fourier transform of a function is indicated by square
brackets

B[ω] = β[ω] + ϕ[ω].

4.1.2 Equilibrium Correlation Functions

The expansion of normal co-ordinates and their velocities (4.7) allows us to
calculate various moments of co-ordinates and velocities, which are needed
to determine physical quantities, first of all of second-order moments. For
simplicity, we shall omit the label of the normal co-ordinates at calculation of
the moments.

First, we shall consider moments at zero-velocity gradients; in other words,
the equilibrium moments that depend on just one argument

〈ρi(t)ρk(t − s)〉0 = M(s)δik,

〈ρ̇i(t)ρ̇k(t − s)〉0 = L(s)δik, (4.10)

〈ρi(t)ρ̇k(t − s)〉0 = S(s)δik.

The angle brackets denote the averaging over the ensemble of the realisation
of the random forces in the equations of motion (4.1) and (4.2).

It is easy to see that the equilibrium moments (4.10) satisfy the following
relations

M(s) = M(−s),
dM(s)

ds
= −S(s) = S(−s),

− d2M(s)
ds2

= L(s) = L(−s).

Thus, we obtain relations between the Fourier transforms of moments

L(ω) = −ω2M(ω), S(ω) = −iωM(ω) (4.11)

and, taking into account the symmetry properties of the moments (4.10), the
Fourier transforms can be represented by the one-sided Fourier transforms

M(ω) = M [ω] + M [−ω],
L(ω) = L[ω] + L[−ω],
S(ω) = S[ω] − S[−ω].

We use relation (4.4) to write an expression for the moment of the normal
co-ordinate

M(u) =
∫ ∞

0

∫ ∞

0

χ(s)χ(v)K(u − s − v)dsdv, (4.12)
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where the correlation function of the random forces is defined by relation (4.9).
Multiplying (4.12) by eiωu and integrating with respect to u from −∞ to ∞,
we find

M(ω) =
T (B[ω] + B[−ω])

(2Tμλ − mω2 − iωB[ω])(2Tμλ − mω2 + iωB[−ω])
. (4.13)

The last expression can be represented as a sum of two terms, which is, gener-
ally speaking, ambiguous. But as far as we know expressions for the moment
at t = 0, the expansion is not ambiguous

M(ω) =
1

2μλ

(
B[ω] − imω

2Tμλ − mω2 − iωB[ω]
+

B[−ω] + imω

2Tμλ − mω2 + iωB[−ω]

)
.

Comparing with the above presentation, we have the one-sided Fourier trans-
form of moment

M [ω] =
1

2μλ

B[ω] − imω

2Tμλ − mω2 − iωB[ω]
. (4.14)

The first term of the expansion of the quantity in a power series of (−iω)−1

has the form
M [ω] =

1
2μλ

1
−iω

.

It is followed by

lim
s→0

M(s) =
1

2μλ
.

Note that the case, when m = 0, gives the correct results only for B(ω) �= 0
at ω → ∞. Otherwise, to get the correct results, it is essential to maintain the
order in which the limit is approached, hence we ought to take m = 0 after
calculation.

The other moments of velocities and co-ordinates can be determined ac-
cording to relations (4.11) or can be obtained after multiplying some ex-
pressions from (4.7) and averaging the result. In either way, we obtain an
expression for the Fourier transform of the equilibrium moment of velocities

L(ω) = T

(
iω

2Tμλ − mω2 − iωB[ω]
+

−iω

2Tμλ − mω2 + iωB[−ω]

)
.

The last relation is followed by

L[ω] = T
iω

2Tμλ − mω2 − iωB[ω]
. (4.15)

It gives the correct result for the limiting value of the velocity moment

lim
s→0

L(s) =
T

m
.
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In a similar way, the expression for the Fourier transform of the equilibrium
moment of co-ordinate and velocity can be found

S[ω] =
T

2Tμλ − mω2 − iωB[ω]
. (4.16)

The limiting value follows from (4.16)

lim
s→0

S(s) = 0.

4.1.3 One-Point Non-Equilibrium Correlation Functions

We turn to the non-equilibrium moments of co-ordinates and velocities of
linear macromolecules. As a first step, we shall consider one-point second-order
moments. The expressions for co-ordinates and velocities (4.7) with the same
arguments can be used to make up proper combinations, and by averaging
over the ensemble of realisation of random forces, we find the moments with
accuracy to the first-order terms in velocity gradients. Then, by taking into
account the properties of equilibrium moments and the antisymmetry of tensor
ωil, we find that

〈ρi(t)ρk(t)〉 =
1

2μλ
δik + 2

∫ ∞

0

μ(s)M(s)γik(t − s)ds, (4.17)

〈ρ̇i(t)ρ̇k(t)〉 =
T

m
δik + 2

∫ ∞

0

μ̇(s)Ṁ(s)γik(t − s)ds, (4.18)

〈ρi(t)ρ̇k(t)〉 =
∫ ∞

0

[μ(s)S(s)νik(t − s) + μ̇(s)M(s)νki(t − s)

+ π(s)S(s)ωik(t − s) + π̇(s)M(s)ωki(t − s)] ds.

The last expression can be simplified in the case, when the inertial forces
acting on the Brownian particles are unimportant, that is m = 0. This is the
only case that is of interest for application. In this case, by taking expressions
(4.4) and (4.14) into account, we find the auxiliary relation

π(s) + μ(s) + R(s) = 2μλM(s).

which contains a function R(x) of a non-negative argument x – the function
of instant relaxation.1

1 To keep the correct expression for correlation functions when limit m = 0 is approached,
it is convenient to use the function of a non-negative argument

R(t) = lim
τ →0

e−t/τ =

{
1, t = 0,

0, t > 0.
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So as the moments (4.17) and (4.18) are expressed in terms of the functions
M(s) and μ(s), it is convenient to express the third moment in these functions
as well. After calculating, we obtain

〈ρi(t)ρ̇k(t)〉 =
1

2μλ
ωki +

∫ ∞

0

[
μ(s)Ṁ(s) + μ̇(s)M(s)

]
γik(t − s)ds. (4.19)

We see that the non-equilibrium moments are expressed in terms of the
equilibrium moment of co-ordinate M(s) and its derivative, which were de-
termined in the previous section by their Fourier transforms.

4.1.4 Two-Point Non-Equilibrium Correlation Functions

Now, we turn to the calculation of two-point moments. We take the quantities
defined by expression (4.7) and average the products of ρi(t) and ρk(t−s), ρi(t)
and ρ̇k(t − s), respectively. By taking into account the properties of the equi-
librium moments, we find that

〈ρi(t)ρk(t − s)〉

= M(s)δik +
∫ ∞

0

{
μ(u)

[
M(u − s)νik(t − u) + M(u + s)νki(t − s − u)

]

+ π(u)
[
M(u − s)ωik(t − u) + M(u + s)ωki(t − s − u)

]}
du,

〈ρi(t)ρ̇k(t − s)〉

= S(s)δki +
∫ ∞

0

[μ(u)S(u − s)νik(t − u) + μ̇(u)M(u + s)νki(t − s − u)

+π(u)S(u − s)ωik(t − u) + π̇(u)M(u + s)ωki(t − s − u)] du.

These expressions can be written in a simplified form when inertia effects are
not taken into consideration.

〈ρi(t)ρk(t − s)〉

= M(s)δik +
∫ ∞

0

μ(u)
[
M(u − s)γik(t − u) + M(u + s)γik(t − s − u)

]
du

+ 2μλ

∫ ∞

0

M(u)
[
M(u − s)ωik(t − u) + M(u + s)ωki(t − s − u)

]
du,

〈ρi(t)ρ̇k(t − s)〉

= S(s)δik + M(s)ωki(t − s)

The derivative of the function of instant relaxation is expressed in the delta-function

Ṙ(t) = −2δ(t).
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+
∫ ∞

0

[
μ(u)Ṁ(u − s)γik(t − u) + μ̇(u)M(u + s)γik(t − s − u)

]
du

+ 2πλ

∫ ∞

0

[
M(u)Ṁ(u − s)ωik(t − u)

+ Ṁ(u)M(u + s)ωki(t − s − u)
]
du.

These expressions ought to be transformed to eliminate the dependence
on the antisymmetrical tensor of the velocity gradients. We can use the new
variable v = s − u to rewrite some of the integrals in the above expressions.
So, for example,
∫ ∞

0

M(u)M(u − s)ωik(t − u)du =
∫ ∞

−s

M(v + s)M(v)ωik(t − s − v)dv

=
∫ ∞

0

M(u + s)M(u)ωik(t − s − u)du +
∫ 0

−s

M(u + s)M(u)ωik(t − s − u)du.

Similar transformations allow us to find new expressions for the considered
moments

〈ρi(t)ρk(t − s)〉 = M(s)δik

+
∫ ∞

0

[μ(u + s)M(u) + μ(u)M(u + s)]γki(t − s − u)du

+
∫ 0

−s

μ(u + s)M(u)γik(t − s − u)du

+ 2μλ

∫ 0

−s

M(u + s)M(u)ωik(t − s − u)du,

〈ρi(t)ρ̇k(t − s)〉 = S(s)δik + M(s)ωki(t − s)

+
∫ ∞

0

[μ(u + s)Ṁ(u) + μ̇(u)M(u + s)]γik(t − s − u)du

+
∫ 0

−s

μ(u + s)Ṁ(u)γik(t − s − u)du

+ 2μλ

∫ 0

−s

M(u + s)Ṁ(u)ωik(t − s − u)du.

We see that the last integrals in the previous formulae can be omitted, so
the final expressions for the moments take the final form
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〈ρi(t)ρk(t − s)〉 = M(s)δik

+
∫ ∞

0

[μ(u + s)M(u) + μ(u)M(u + s)]γki(t − s − u)du,

(4.20)

〈ρi(t)ρ̇k(t − s)〉 = S(s)δik + M(s)ωki(t − s)

+
∫ ∞

0

[μ(u + s)Ṁ(u) + μ̇(u)M(u + s)]γik(t − s − u)du.

(4.21)

Naturally, the expressions (4.17) and (4.19) for one-point moments follow,
at s = 0, from formulae (4.20) and (4.21), respectively.

4.2 Relaxation of Macromolecular Coil

The results discussed in the previous section are valid in linear approximation
for any concrete representations of the memory functions β(s) and ϕ(s). To
calculate relaxation times for macromolecular coil, one has to specify the
memory functions and include the effect of local anisotropy.

4.2.1 Correlation Functions for Isotropic Motion

In accordance with equations (3.15), the memory functions β(s) and ϕ(s) in
the dynamic equations are given by their one-sided transforms

β[ω] = ζ

(
1 +

B

1 − iωτ

)
, ϕ[ω] =

ζE

1 − iωτ
. (4.22)

In this case the theory, apart from the characteristic Rouse relaxation time τ ∗,
contains three more parameters, namely: the relaxation time τ of the medium,
the measure B of the increase in the resistance of the particle when it moves
among the chains, and the measure of internal viscosity E associated with
resistance to the deformation of the coil due to the present of ambient macro-
molecules.

We use expression (4.22) to specify the quantities (4.4) and calculate equi-
librium correlation functions (4.14) for the case, when m = 0,

μν [ω] =
2(1 + B − iωτ)τR

ν

(1 − iω2τ+
ν )(1 − iω2τ −

ν )
, (4.23)

Mν [ω] =
1

2μλ

2(1 + B + E − iωτ)τR
ν

(1 − iω2τ+
ν )(1 − iω2τ −

ν )
. (4.24)

Here, τR
ν are the relaxation times of the macromolecule in a monomer viscous

fluid – Rouse relaxation times
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τR
ν =

ζ

4Tμλν
=

τ ∗

ν2
, τ ∗ =

ζb2N2

6π2T
(4.25)

and symbols for the new sets of relaxation times are introduced

2τ ±
ν = τν ±

(
τ2
ν − 2ττR

ν

)1/2
,

τν =
τ

2
+ τR

ν (1 + B + E) = τ ∗B

(
χ +

1
ν2

(1 + ψ)
)

,
(4.26)

where ψ = E/B and, in accordance with definition (3.16), χ = τ/(2τ ∗B). The
following relations are valid for introduced relaxation times

2ττR
ν = 4τ+

ν τ −
ν , τ+

ν − τ −
ν =

(
τ2
ν − 2ττR

ν

)1/2
.

The dynamic equations determine the two relaxation branches, while one
of them contains the small relaxation times τ −

α , the other – the large ones τ+
α

which practically for long macromolecules coincide with the relaxation time
τα. Further on, it is convenient to consider asymptotic formulae for small
and large mode numbers separately, so that for these branches, one has
approximations

τ+
α = (B + E)τR

α , τ −
α =

τ

2(B + E)
, α2 � 1 + ψ

χ
,

τ+
α =

τ

2
, τ −

α = τR
α , α2 � 1 + ψ

χ
.

(4.27)

To determine the functions μ(s) and M(s) from equations (4.23) and
(4.24), one can use the reciprocal Laplace transform. Before calculating, we
remind the reader that the correct results can be obtained when the mass is
retained in expressions (4.4) and (4.14). This changes expressions (4.23) and
(4.24). However, it is easier to operate with limiting (at m → 0) expressions.
The final results can be improved by adding terms that contain function R(t),
described in a footnote on one of the previous pages. We can also find, by
simple alternative calculations, that

μν(t) = T+
ν exp

(
− t

2τ+
ν

)
− T −

ν exp
(

− t

2τ −
ν

)
− R(t), (4.28)

Mν(t) =
1

2μλν

[
S+

ν exp
(

− t

2τ+
ν

)
− S−

ν exp
(

− t

2τ −
ν

)]
, (4.29)

where

T ±
ν =

τR
ν (1 + B) − τ ∓

ν

τ+
ν − τ −

ν
, S±

ν =
τR
ν (1 + B + E) − τ ∓

ν

τ+
ν − τ −

ν
. (4.30)

Equation (4.29) defines a correlation function due to the diffusive mech-
anism of relaxation. One can see that time dependence of the equilibrium
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correlation functions of normal co-ordinates is determined by relaxation pro-
cesses.

Some simplifications can be achieved for the large values of B. It appears
to be valid the following relation

ττR
ν � τ2

ν

and the relaxation times (4.26) can be written in the form

τ+
ν = τν − ττR

ν

2τν
, τ −

ν =
ττR

ν

2τν
. (4.31)

In the limiting case of very large values of the parameter B when ζ → 0
(but ζB �= 0, ζE �= 0), we find that

τ+
ν → τν , τ −

ν → 0.

In this limiting case, expressions (4.28) and (4.29) can be written as

μν(t) =
BτR

ν

τν
exp

(
− t

2τν

)
− BτR

ν

τν
R(t), (4.32)

Mν(t) =
1

2μλν

[
(B + E)τR

ν

τν
exp

(
− t

2τν

)
+

τ

2τν
R(t)

]
. (4.33)

Let us note that formula (4.33) is a generalisation of the equilibrium cor-
relation function of the normal co-ordinates of the macromolecule in a viscous
liquid

Mν(t) =
1

2μλν
exp

(
− t

2τR
ν

)
. (4.34)

There is a great difference between the relaxation behaviour of the system of
entangled macromolecules and the relaxation behaviour of a macromolecule
in a dilute system. Two relaxation branches have been shown to exist in a
system of entangled macromolecules.

4.2.2 Effect of Local Anisotropy

Derived from linear approximation of the equations (3.37), the equilibrium
correlation function (4.29), defines two conformation relaxation times τ+

α and
τ −
α for every mode. The largest relaxation times have appeared to be unrealis-

tically large for strongly entangled systems, which is connected with absence
of effect of local anisotropy of mobility. To improve the situation, one can use
the complete set of equations (3.37) with local anisotropy of mobility. It is con-
venient, first, to obtain asymptotic (for the systems of long macromolecules)
estimates of relaxation times, using the reptation-tube model.
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Correlation Functions for Pure Reptation

It is not difficult to reproduce an expression for the correlation function Mα(t)
and estimate times of relaxation due to the conventional reptation-tube model
(see Section 3.5). Indeed, an equation for correlation function follows equation
(3.48) and has the form

dMα

dt
= − π2Tα2

ζZ3ξ2
Mα.

The equation has a simple solution

Mα(t) =
1

2μλα
exp

(
− t

2τ rep
α

)
, (4.35)

τ rep
α =

ζξ2Z3

2π2 T

1
α2

=
3〈R2〉0

ξ2

τ ∗

α2
, α = 1, 2, . . . , � Z. (4.36)

These are exactly the known results (Doi and Edwards 1986, p. 196). The time
behaviour of the equilibrium correlation function is described by a formula
which is identical to formula for a chain in viscous liquid (equation (4.34)),
while the Rouse relaxation times are replaced by the reptation relaxation
times. In fact, the chain in the Doi-Edwards theory is considered as a flexible
rod, so that the distribution of relaxation times naturally can differ from
that given by equation (4.36): the relaxation times can be close to the only
disentanglement relaxation time τ rep

1 .
One can refer to equations (5.8) to use the other parameter

〈R2〉0

ξ2
=

π2

2χ
,

so that the reptation branch of relaxation times can be written as

τ rep
α =

3
2

π2

χ

τ ∗

αx
, α = 1, 2, . . . , � Z. (4.37)

We have introduced here, instead of index 2, an index x, value of which can
be less than 2 according to the results of simulation (see the next subsection,
x ≈ 0.5).

An Estimation of Relaxation Times

The rates of relaxation τγ(t) in the moment t, or, in other words, the current
relaxation times of the macromolecular coil can be directly calculated as

τγ(t) = − 1
2

(
d log(Mγ(t)/Mγ(0))

dt

)−1

, γ = 1, 2, . . . , N. (4.38)
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Figure 6. The rate of relaxation of a macromolecule.
The rates of relaxation of the first and the third modes of macromolecule of length

M = 25Me (χ = 0.04, B = 429, ψ = 8.27). The results calculated from analytical
correlation function (4.29) are depicted by solid lines. By straight dashed lines, the values

of the relaxation times due to the Doi-Edwards model are presented. The circles (for the
first mode) and squares (for the third mode) depict the results of simulation for above

values of parameters ψ and B and values of parameters of local anisotropy ae = 0.3,
ai = 0.06. Adapted from Pokrovskii (2006).

In Fig. 6, the rates of relaxation τγ(t) for two modes are depicted by solid
lines, according to values of the equilibrium correlation function Mγ(t) given
by equation (4.29) for linear approximation. The correct result for big times
(slow relaxation) can be found at presence of local anisotropy, which is possible
by numerical integration of non-linear equations (3.52)–(3.54). The calculation
were fulfilled for the chain with M = 25Me divided into 10 subchains and are
depicted in Fig. 6 by points. The simulation for the small times reproduces the
theoretical dependence of the relaxation rates on the current time (with large
scattering, so as the changes of the correlation functions in this region are
small), while the results shows the existence of the two relaxation branches
as well, in accordance with equation (4.29). The introduction of the local
anisotropy of external resistance alone does not affect the relaxation times, in
contrast to the local anisotropy of the internal resistance. The latter provokes
changes of the largest relaxation times of the macromolecular coil, which is the
bigger, the bigger the coefficient of the local anisotropy of external resistance.
Asymptotic values of the relaxation times are estimated for each case as the
mean values of the rate of relaxation in the interval from 0.7 τ ∗ to 10 τ ∗.
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Figure 7. The relaxation times vs internal anisotropy.
Each point is calculated as the asymptotic value of the rate of relaxation for large times
(see examples of dependences in Fig. 6) for a macromolecule of length M = 25Me (χ =

0.04, B = 429, ψ = 8.27) with the value of the coefficient of external local anisotropy: ae =
0.3. The dashed lines reproduce the values of the relaxation times of the macromolecule

due to the reptation-tube model. The labels of the modes are shown at the lines. Adapted
from Pokrovskii (2006).

A particular choice of the coefficients ae = 0.3 and ai = 0.06 determines the
value τ1 = 417 τ ∗ for the relaxation time of the first mode, which is close to
the reptation relaxation time 370 τ ∗. The calculated relaxation times of the
third mode: τ3 = 315 τ ∗ is a few times as much as the corresponding reptation
relaxation time 41.1 τ ∗, which indicates that the dependence of the relaxation
times on the mode label is apparently different from the law (4.36). It is clearly
seen in Fig. 7, where the dependence of the relaxation times of the first six
modes of a macromolecule on the coefficient of internal anisotropy is shown.
The relaxation times of different modes are getting closer to each other with
increase of the coefficient of internal anisotropy. The values of the largest
relaxation time of the first mode for different molecular weights are shown
in Fig. 8. The results demonstrate a drastic decrease in values of the largest
relaxation times for strongly entangled systems induced by introduction of
local anisotropy.

In relaxation processes of the macromolecular coil to equilibrium, the com-
peting mechanisms of mobility of particles are present simultaneously. How-
ever, in the region of weakly entangled macromolecules, relaxation occurs due
to isotropic mobility of particles of the chain – the diffusive mechanism –



4.2 Relaxation of Macromolecular Coil 77

Figure 8. The largest relaxation times of a macromolecule.
Each point is calculated as asymptotic value of the rate of relaxation for large times (see
examples of dependences in Fig. 6) for different molecular weights with corresponding

values of the parameters B and ψ. The values of the coefficients of local anisotropy are:
ae = 0.3, ae = 0.06 for the circles and ae = 0.3, ae = 0.15 for the squares. The solid

line depicts analytical results for linear approximation. The dashed lines with the slope 1
reproduce the well-known dependence τ1 ∼ M3 for the relaxation time of macromolecules
in strongly entangled systems. Adapted from Pokrovskii (2006).

and, in the region of strongly entangled systems, the reptation mechanism of
relaxation predominates.

4.2.3 Transition Point

To determine the position of transition point, we shall compare the relax-
ation times (4.27) and (4.37), due to different mechanisms of conformational
relaxation, which gives an equation

B(1 + ψ) =
3
2

π2

χ
. (4.39)

The transition point can be different, if one uses different modes, but only
the transition point for the first mode is considered here. For the strongly
entangled systems, according to relation (5.17), ψ = π2/χ, so that, at ψ � 1,
the left-hand side of the above equation is always bigger than the right-hand
side: the reptation mechanism of relaxation is realised. However, for short
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macromolecules ψ ≈ 0, and one can find a point, where the relaxation times
coincide. The transition point depends on the value of ψ in this point. At
ψ = 1, the above equation reduces to the relation

χB =
3
4
π2. (4.40)

One can consider the parameter B to be a function of χ and, taking equations
(3.17), (3.25) and empirical value δ = 2.4 into account, finds a solution of the
equation, and estimate the value of the transition point between weakly and
strongly entangled systems as

χ∗ ≈ 0.1, M ∗ ≈ 10Me.

This value determines a point, where the mechanism of relaxation is changing.
The point practically coincides with the point of the change of mechanisms of
diffusion, determined by equation (5.23) in the next chapter, so that one can
say about a single transition point.

The position of the transition point can be estimated (see Section 6.4),
due to measurements of viscoelastic properties, as M ∗ ≈ (4.6–12.0)Me. It
corresponds to the above value of transition point, though the empirical eval-
uation of relaxation times could not be done with great accuracy in these
investigations.

So, one ought to conclude that large scale (slow) relaxation of the con-
formation of a macromolecular coil is realised through reptation, instead of
the more slow mechanism of rearrangement of all the entangled chains, if the
parameter B > π2/2χ.

4.2.4 Conformational Relaxation Times

The dependencies of the relaxation times on the length of the macromolecule
are different in two regions. Besides, one has to distinguish the relaxing
macromolecule (with molecular weight or length M) and the neighbouring
macromolecules (with the length M0), even if all of them are equal, so that
the dependencies can be written as

τ conf
α =

{
BτR

α ∼ Mδ
0M2, 2χB < π2, weakly entangled system

3
2

π2

χ
τ ∗

αx ∼ M0
0 M3, 2χB > π2, strongly entangled system

.

(4.41)
This relations are valid for small mode numbers, in any case, α � M/Me. The
index δ in the above formula can be estimated theoretically (δ > 2) and empir-
ically according to the measurements of the characteristics of viscoelasticity
(δ ≈ 2.4). It remains to be a dream to get a unified formula for relaxation
times from the system of dynamic equations (3.37). One can expect that the
all discussed relaxation branches will emerge as different limiting cases from
one expression for general conformation branch.
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The mechanism of small-scale (fast) relaxation of conformation of the
macromolecule does not change at the transition from weakly to strongly
entangled systems; the times of relaxation are defined by formulae (4.31).
However, one has to take into account, that ψ � 1 for weakly entangled sys-
tems, whereas ψ � 1 for strongly entangled systems, so that one has for the
largest of the fast relaxation times

τ −
max =

{
τ ∗χ ∼ M, 2χB < π2, weakly entangled system

τ ∗χ/ψ ∼ M0, 2χB > π2, strongly entangled system
. (4.42)

One can see that the relaxation times τ −
α at α > (ψ/χ)1/2 are the Rouse

relaxation times of the part of the macromolecule that correspond approxi-
mately to the length of the macromolecule between adjacent entanglements
Me. There is an interval between slow and fast relaxation times, which is the
bigger the longer the macromolecules.

4.3 Macromolecular Coil in a Flow

4.3.1 Non-Equilibrium Correlation Functions

The non-equilibrium moments of the normal co-ordinates for an entangled
system are defined by expression (4.17) with accuracy up to first-order terms
in the velocity gradients. It is written down once more with the label of normal
co-ordinates

〈ρν
i ρν

k 〉 = 〈ρν
i ρν

k 〉0 + 2
∫ ∞

0

μν(s)Mν(s)γik(t − s)ds.

The functions Mν(s) and μν(s) are defined in previous sections. To describe
the most slow relaxation, we use expressions (4.32) and (4.33) and find that

〈ρν
i ρν

k 〉 =
1

2μλν
+

B2(1 + E/B)
μλν

(
τR
ν

τν

)2 ∫ ∞

0

exp
(

− s

τν

)
γik(t − s)ds, (4.43)

where γik(x) is the velocity gradient as an arbitrary function of time x. The
assumption that

γik =

{
const , t < 0,

0, t > 0

determines the law for relaxation of the moments to their equilibrium values

〈ρν
i ρν

k 〉 =
1

2μλν
δik + 2

B2(1 + E/B)(τR
ν )2

τν
γik exp

(
− t

τν

)
. (4.44)

This expression demonstrates that the relaxation time τν , defined by rela-
tion (4.27), is the relaxation time of the mean square normal co-ordinate, or
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the mode labelled ν, which can be separately approximated for the small and
big indices

τν =

⎧⎨
⎩

τ ∗B(1+ψ)
ν2 , ν2 � 1+ψ

χ ,

τ ∗Bχ, ν2 � 1+ψ
χ .

(4.45)

At a constant velocity gradient, expression (4.43) takes the form

〈ρν
i ρν

k 〉 =
1

2μλν

(
δik + 2

B2(1 + E/B)(τR
ν )2

τν
γik

)
. (4.46)

For the small indices, this expression can be written as

〈ρν
i ρν

k 〉 =
1

2μλν
(δik + 2BτR

ν γik) , ν2 � 1 + ψ

χ
. (4.47)

There are no major difficulties in calculating the mean square normal co-
ordinate when more general formulae (4.28) and (4.29) for the functions Mν(s)
and μν(s) are used. In this case three sets (branches) of relaxation times

τ+
ν , τ −

ν , τ0
α =

2τ+
α τ −

α

τ+
α + τ −

α

appear as the relaxation times of the macromolecular coil. One of the branches
contains large relaxation times τ+

ν , the other two small. This is a characteristic
feature of polymer melts, as is revealed in experiments.

4.3.2 Size and Form of the Macromolecular Coil

A macromolecular coil at equilibrium has a spherical form (Section 1.4). Under
deformation of the system, the macromolecular coil change its form that is
characterised in this case by the tensor of gyration

〈SiSk 〉 =
1

N + 1

N∑
ν=0

〈(rν
i − qi)(rν

k − qk)〉

where N + 1 is the number of Brownian particles in the chain which rep-
resents a macromolecule, qi is the co-ordinate of the centre of mass of the
macromolecular coil, and rα

i is the co-ordinate of the particle labelled α.
In normal co-ordinates, to which we transform in accordance with the rule

defined by (1.13), the expression for the tensor of gyration acquires the form

〈SiSk 〉 =
1

N + 1

N∑
ν=1

〈ρν
i ρν

k 〉. (4.48)

This relation is valid both for the macromolecular coil in a viscous liquid and
for the macromolecular coil in an entangled system.
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At constant velocity gradient γik, the moments 〈ρα
i ρα

k 〉 are given by rela-
tions (4.46) for the diffusive mechanism of relaxation, and by similar formula
(there is a difference in definition of the relaxation times only) for the rep-
tation mechanism, so that we can evaluate the expression for the tensor of
gyration of the macromolecular coil, taking into account alternative mecha-
nisms of relaxation

〈SiSk 〉 =
1
3

〈S2〉o ×

⎧⎨
⎩

δik + 2π2

15 Bτ ∗γik, χ > χ∗, non-reptation

δik + 2π2

15
π2

χ τ ∗γik, χ > χ∗, reptation
. (4.49)

The sizes of macromolecular coils in flows can be estimated in experiments
with light and neutron scattering. For illustration, we refer to the results
of measuring the sizes of coils under flow by small angle neutron scattering
(Muller et al., 1990). A blend of hydrogenated and deuterated polystyrene
with M ≈ 8 × 105 was used. For elongational flow (ν22 = ν33 = 1

2ν11) at
T = 123oC, the sizes of the deuterated coils were measured in a both parallel
and perpendicular to the stretching direction. The data by Muller et al. (1990)
allow one to estimate the mean relaxation time of the macromolecular coil as
400 s. This relaxation time is certainly to be a reptation relaxation time. To
confirm the statement, it would be interesting to have similar measurements
for samples with different molecular weights to determine the dependence
of the relaxation time on the length of the macromolecule. In this case, the
relaxation mechanism could be revealed.

The function of density distribution ρ(r) can also be introduced in the
non-equilibrium state; it must now satisfy the following conditions

∫
ρ(r)dr = N,

1
N

∫
ρ(r)rirkdr = 〈SiSk 〉.

In a deformed system, the average form of the macromolecular coil can be
approximated by an ellipsoid. The effective volume of the macromolecular
coil depends on the velocity gradients. The expansion of the effective volume
as a series in powers of the velocity gradients does not contain the first-order
term, so νii = 0. This means that, at low velocity gradients, the coil does not
change its volume (one says: the coil is orientated by flow). At larger velocity
gradients, the volume of the coil is increased.



Chapter 5
The Localisation Effect

Abstract In this chapter, peculiarities of thermal motion of a macromolecule
in an equilibrium system of entangled macromolecules will be discussed. It will
be shown, that the mesoscopic stochastic equation of macromolecule dynam-
ics, considered in the previous chapters, is followed by a localisation effect.
This means that the time dependence of the mean square displacements of the
centre of mass of the macromolecule and the chain particles are non-linear,
so a dynamical internal length (a scale of localisation) can be introduced.
This internal length coincides practically with the radius of a tube conven-
tionally used in reptation theories. The macromolecule wobbles around in the
tube-like region, remaining near its initial position for some time (a time of
localisation), which is the larger, the longer the macromolecule is. A very long
macromolecule appears, in fact, to behave exactly as if confined in a tube,
though no other restrictions than the fundamental equation exist. Localisa-
tion of a macromolecule or tube formation is a linear mesoscopic phenomenon,
which can be revealed directly in experiments on neutron scattering, while the
reptation of the macromolecule is a non-linear effect.

5.1 Mobility of a Macromolecule

Diffusion of a macromolecule is understood as the diffusion of a co-ordinate
of the centre of mass of a chain, which is, according to relation (1.18), pro-
portional to the zeroth normal co-ordinate, that is,

q ∼ ρ0.

The mean square displacement of the centre of mass of a diffusing macro-
molecule for a time t is calculated as

Δ(t) =
3∑

i=1

〈[qi(t) − qi(0)]2〉.
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One can use the expression

qi(t) − qi(0) =
∫ t

0

q̇i(s) ds,

to present the mean square displacement in another form

Δ(t) =
∫ t

0

∫ t

0

〈q̇(s)q̇(u)〉dsdu. (5.1)

This expression reduces the calculations to the evaluation of the time-
dependent velocity correlation function

L(u − s) =
1
3

〈ρ̇0(s)ρ̇0(u)〉 ∼ 〈q̇(s)q̇(u)〉

which appears to be dependent on the properties of the environment, that is
specific for different cases (see Section 4.2.1).

5.1.1 A Macromolecule in a Viscous Liquid

In this case, according to relations (2.43) and (4.15), the correlation function
of the zero normal co-ordinate is determined by equation

L(x) =
T

m
exp

(
− ζ

m
x

)

which allows one, after simple calculations, to find that the macromolecule
moves like a Brownian particle in a viscous liquid, and its displacement is
given by the standard relation

Δ(t) = 6D0t, (5.2)

where the coefficient of the macromolecule diffusion is inversely proportional
to the mobility of the macromolecular coil

D0 ∼ T

ζM

. (5.3)

The dependence of the friction coefficient ζM of the macromolecule on its
length M is affected by exclude-volume effects and effects of draining or non-
draining (permeability of macromolecular coils). Taking into account equa-
tion (2.14), the coefficient of diffusion can be written as

D0 ∼ M −(z−2)ν .

The value of the index in this formula changes from 1/2 to 1 for different
situations. For example, (z − 2)ν = 1 for a freely-draining macromolecule
without volume effects (Rouse case).
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The description of the diffusion of macromolecular coils (5.2)–(5.3) appears
to be in good agreement with experimental evidence for dilute solutions (Doi
and Edwards 1986; Gennes 1979). It has been also shown (Meerwall et al. 1982;
Fleisher and Appel 1995) that short macromolecules in melts at M < 2Me can
be considered to diffuse according to law (5.2) with the coefficient of diffusion

D0 ∼ M −1. (5.4)

Computer simulations (Paul and Smith 2004) and calculations (Rostiashvili
et al. 1999) show, nevertheless, that, due to interactions between chains, the
index in the law (5.4) for a macromolecule in a melt can be less than unity.

5.1.2 A Macromolecule in an Entangled System

Diffusive Mobility of a Macromolecule

The mobility of a macromolecule, constrained by other macromolecules, can
be also calculated as (5.1). In the linear approximation, the zeroth normal
co-ordinates of the macromolecule (equation (4.1), at νij = 0) define diffusive
mobility of macromolecule. The one-sided Fourier transform velocity correla-
tion function is determined by expression (4.15), so that we can write down
the Fourier transform

L(ω) =
T

−iωm + B[ω]
+

T

iωm + B[−ω]
.

Multiplying this expression by 1
2π e−iωt and integrating with respect to ω from

−∞ to ∞, we find

L(t) =
T

π

∫ ∞

− ∞

cosωt

−iωm + B[ω]
dω.

We use the formula to write down the general expression for the mean square
displacement of a particle in an arbitrary viscoelastic liquid

Δ(t) =
6T

π(1 + N)

∫ ∞

− ∞

1 − cos ωt

ω2(−iωm + B[ω])
dω.

Turning to the particular memory functions (3.15), one finds for this simple
case

B[ω] = ζ +
ζB

1 − iωτ
,

and calculates the displacement of the centre of mass of a macromolecule

Δ(t) =
6Tτ

ζNB

(
t

τ
+ 1 − exp

(
− t

τ
B

))
. (5.5)
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Figure 9. The mobility of a macromolecule.
The mean square displacement of the centre of mass of a macromolecule is measured
in units of the intermediate length ξ. The displacement has been calculated for macro-

molecules of different lengths according to equation (5.5) at B = 100 and B = 1000
(curves 1 and 2). The curves demonstrate the existence of the intermediate scale ξ – the

value of the displacement on the plateau which is the longer the longer macromolecules
are.

The time dependence of the displacement of a macromolecule, shown in Fig. 9
as a function of the ratio t/τ , is typical for diffusion of Brownian particle in
viscoelastic fluid (Zanten and Rufener 2000; Zanten et al. 2004). The func-
tion (5.5) for big values of B can be approximated as

Δ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

6T
Nζ t, t � τ/B,

6Tτ
NζB , τ/B � t � τ,

6T
NζB t, t � τ.

(5.6)

The mean mobility of the macromolecule changes at t = τ/B, but the
displacement remains constant over a certain time of observation, and is given
by

ξ2 =
6Tτ

NζB
=

〈R2〉τ
π2τ ∗B

=
2
π2

〈R2〉χ. (5.7)

The characteristic time τ/B and the characteristic scale thus appear in the
theory. The non-dimensional quantity χ, defined by equation (3.16), can be
interpreted as the ratio of the square of twice the characteristic scale to the
mean square end-to-end distance of the macromolecule

χ =
τ

2Bτ ∗ =
π2

8
(2ξ)2

〈R2〉 ≈ (2ξ)2

〈R2〉 . (5.8)



5.1 Mobility of a Macromolecule 87

The quantity ξ may be expected to be a characteristic of the system of
chains, and is independent of both the length M of the diffusing macro-
molecules and the lengths M0 of macromolecules of matrix, so that

χ ∼ M0
0 M −1. (5.9)

For short times of observation, t � τ/B, the expression for the displace-
ment is identical to (5.2) which was written for the displacement of a macro-
molecule in a viscous liquid. The situation is similar for long observation times
t � τ. So, we can see that the coefficient of diffusion of a macromolecule can
be defined differently for different displacements: for distances which are less
than ξ

D =
T

Nζ

and for distances which are bigger than ξ

D =
T

NζB
. (5.10)

In the last particular situation, the motion of a test chain is also coupled
to the motion of neighbouring macromolecules, and the diffusion coefficient
is determined both by the length of the test macromolecule M and by the
length of the ambient macromolecules M0

D = D0B
−1 ∼ M −δ

0 M −1. (5.11)

The self-diffusion coefficient for long chains is proportional to M −δ−1 and is
small. In this situation, however, a competing mobility mechanism gives a
different dependence of the diffusion coefficient on the length of the macro-
molecule. This will be discussed further in this section.

Localisation of a Macromolecule

One can see that the investigated equations of dynamics even in linear ap-
proximation describe anomalous diffusion of the mass centre of macromolecule
moving amongst the other macromolecules. The displacement of every parti-
cle of the chain is also anomalous in comparison with case of a macromolecule
in a viscous liquid. Now we shall consider, following work by Kokorin and
Pokrovskii (1990, 1993), the displacement of each internal particle of the chain

Δα(t) =
3∑

i=1

〈[rα
i (t) − rα

i (0)]2〉, α = 0, 1, . . . , N. (5.12)

It is convenient to transform the expression to normal co-ordinates and to
separate the zeroth normal co-ordinate
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Figure 10. The mobility of a macromolecule and its particles.
The mean square displacement Δ of the centre of mass of a chain (thick solid line) and
the mean square displacement ΔN/2 of the central particle are measured in units of the

intermediate length ξ. The curves are calculated according to formulae (5.5) and (5.13)
for the values of the parameters: B = 100; χ = 10−2. The displacement of the centre of

mass does not depend on parameter ψ, but the mean square displacement of the internal
particles does. The values of parameter ψ are shown at the curves for ΔN/2. The picture

demonstrates the existence of the universal intermediate scale ξ. Adapted from the papers
of Pokrovskii and Kokorin (1985) and Kokorin and Pokrovskii (1990).

Δα(t) =
1

N + 1
〈[ρ0(t)−ρ0(0)]2〉+2

N∑

γ=1

QαγQαγ

(
〈ργ(t)ργ(t)〉 − 〈ργ(t)ργ(0)〉

)

where the transform matrix Qαγ is defined by (1.16). The first term of the ex-
pression present the displacement of the centre of mass of the macromolecule
Δ(t), which is defined by (5.5). To calculate the second term, we use expres-
sion (4.29) for the equilibrium moments and find the displacement

Δα(t) = Δ(t) + 6
N∑

γ=1

QαγQαγ
1

2μλγ

×
{

S+
γ

[
1 − exp

(
− t

2τ+
γ

)]
− S−

γ

[
1 − exp

(
− t

2τ −
γ

)]}
. (5.13)

The quantity Δα(t) − Δ(t) represents the mean square displacement of the
particle relatively to the displacement of the mass centre of the macromolecule.
The quantity can be evaluated in experiment (Kehr et al. 2007).

As an example, the time dependence of the displacement of the central
particle is shown in Fig. 10 for certain values of the parameters. We can see
that the dependence of any particle of the chain is similar to the dependence of
the entire macromolecule. Both dependencies are characterised by the different
mobility for short and long times of observation.



5.1 Mobility of a Macromolecule 89

The asymptotic (χ � 1, ψ � 1) evaluations for the mean square displace-
ment of a particle were found by Kokorin and Pokrovskii (1990, 1993). For a
short time of observation, t � τ

B , the mobility of the particle is N + 1 times
more than the mobility of the macromolecule

Δα(t) =
6T

ζ
t. (5.14)

In the internal interval τ
B < t < τ, when the change of the displacement is

negligible, we can find the expression

Δα(t) =
12πTτ ∗

ζ(N + 1)

(
Bχ

B + E

)1/2

. (5.15)

For a long time of observation, t > τ ∗B, the displacement of any particle is
identical to the displacement of the entire macromolecule.

Δα(t) =
6T

ζ(N + 1)B
t. (5.16)

Formula (5.15) defines a certain intermediate scale, which can be com-
pared to the intermediate scale revealed in the consideration of the diffusion
of a macromolecule (see expression (5.7)). We ought to believe that the local
displacement of any point of the macromolecule should depend neither on
the number of subchains nor on the length of the macromolecule, so that we
can identify the quantities (5.7) and (5.15) to find the relation between the
parameters of the theory at B � 1

ψ =
π2

χ
. (5.17)

This formula ought to be taken as an asymptotic relation, which requires
large values of the parameter ψ for the strongly entangled systems. The above
value of ψ ensures that any Brownian particle of the chain does not move more
than ξ during the times t < τ. For this time of observation, the large-scale
conformation of the macromolecule is frozen, but the small-scale motion of
the particles confined to the scale ξ can take place, and the macromolecule,
indeed, can be considered to be in a “tube” with radius ξ. Reptation of the
macromolecule inside the tube is possible. Localisation of a macromolecule in
a tube was assumed by Edwards (1967a) and by Gennes (1971), who have in-
troduced reptation motion for the macromolecule as well. The latter is needed
to explain the observed law of diffusion of very long macromolecules in entan-
gled systems. The tube and its diameter are postulated in the earlier theories
(Doi and Edwards 1986).

Reptation Mobility of a Macromolecule

It is important to remember now that there is anisotropy of mobility, which
can bring the reptation mode of motion and a different law of mobility of
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macromolecules. To consider these effects, one can refers to the system of equa-
tion (3.37) or to the Doi-Edwards model of dynamics of the macromolecule,
which was described in Section 3.5. We start with the last model and specify
some parameters of the model. As we saw in the previous section, a macro-
molecule in the system is confined by the scale ξ during the short time τ/B.
Up to this scale, a particle moves as in a viscous liquid according the law of
diffusion (5.2), so that one can chose the time step as

Δt =
ξ2

6D0
(5.18)

where D0 = T/ζZ is coefficient of diffusion of macromolecule in a viscous
liquid. Then, the Doi-Edwards model assumes that the macromolecule moves
only along its axis by the specific mechanism, substituting the particles by
neighbouring ones, which is possible at b ≥ ξ. Following Doi and Edwards
(1978), we accept that b = ξ, so that 〈R2〉0 = Zξ2.

To consider the mobility of the macromolecule, one ought to calculate the
displacement of the centre of mass of the chain

q(t) =
1

N + 1

Z∑

ν=0

rν(t).

After summing equations (3.43), we find

Δq(t) = q(t + Δt) − q(t) =
1
Z

R(t)φ(t) +
1
Z

v(t).

We assume that Z � 1 here, so Z + 1 ≈ Z, whereas R = rZ − r0 is the end-
to-end distance of the chain. Then, one calculates the correlation function

〈Δq(t)Δq(u)〉 =
1

Z2
〈φ(t)φ(u)R(t)R(u)〉 +

1
Z2

〈v(t)v(u)〉

+
1

Z2
[〈φ(t)R(t)v(u)〉 + 〈φ(u)R(u)v(t)〉].

Taking into account the properties (3.44) of random quantities, we find

〈Δq(t)Δq(u)〉 = δtu

(
ξ2

Z
+

ξ2

Z2

)
.

Thus, the one-step mean square displacement is determined, at Z � 1, by
relation

Δ(t) =
ξ2

Z
.

One multiplies the above quantity by the step number t
Δt = 6D0

ξ2 t, to find the
mean square displacement in time t
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Figure 11. Displacement of macromolecule vs time.
The straight solid line – the consequence of equations (3.52) and (3.53) at Φα

i = 0 –
depicts the analytical result for the Rouse dynamics. The solid curves represents the

displacement for a macromolecule of length M = 25Me (χ = 0.04) with corresponding
(according to relations (3.25) and (3.29)) values of parameters B = 429 and ψ = 8.27

and the values of parameters of local anisotropy ae = 0 and ae = 0.3. For the isotropic
situation (ae = 0), the curve can be calculated analytically according to equation (5.5),

but for the parameter of local anisotropy ae = 0.3, the displacement ought to be calcu-
lated numerically. Internal resistance (parameters E and ai) does not affect mobility of

macromolecular coil. Adapted from Pokrovskii (2006).

Δ(t) =
ξ2

Z

t

Δt
=

6D0

Z
t.

The written relation defines the diffusion coefficient of the chain as

D = D0
ξ2

〈R2〉0
.

Referring to the definition of the intermediate scale (5.7), we write down the
diffusion coefficient in another form

D =
2
π2

D0χ. (5.19)

One can see that the diffusion coefficient of the macromolecule due to reptation
does not depend on the length of the ambient macromolecules

D ∼ M0
0 M −2. (5.20)

The reptation diffusion is connected with the local anisotropy of mobility
of particles, which can be confirmed by investigation of equations (3.37). As an
example, Fig. 11 contains the results for displacement of a macromolecule of
length M = 25Me (value of parameter χ = 0.04) due to numerical integration
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of equations (3.52) and (3.53) for different values of the coefficient of external
local anisotropy ae. The displacement as a function of the ratio t/τ ∗ follows the
dependence (5.5) in the case, if ae = 0. The non-zero values of the coefficient
of local anisotropy change the situation: mobility of the macromolecular coil
increases as can be seen in Fig. 11. The value ae = 0.3 gives the results
corresponding to the results of the Doi-Edwards model.

Coefficient of Self-Diffusion

The dependence of coefficient of self-diffusion on molecular weight shows the
existence of the two critical points. The first critical point, Mc ≈ 2Me, deter-
mines the transition between non-entangled and entangled systems. The po-
sition of the second transition point had been estimated empirically by Wang
(2003), who analysed data of various scholars on diffusion of macromolecules
and showed, that for both melts and solutions of linear polymers (with a few
exceptions, among them hydrogenated polybutadiene – hPB) there is a point
M ∗ = 10Me dividing regions of different dependences of self-diffusion coeffi-
cient on molecular weight, while in the region of higher molecular weights the
reptation law of diffusion (5.20) is firmly valid. It was also noted earlier (Tao
et al. 2000), that ‘if there is a non-universal crossover to an exponent of −2.0,
for hPB it occurs at or beyond M/Me ≈ 102, whereas for PS and PDMS it
might occur near M/Me ≈ 10.’ So, for the linear polymers, there is a point
about M ∗ = 10Me, as a rule, where the mechanisms of mobility change, while
the reptation mechanism of mobility dominates above the transition point
M ∗ = 10Me (or in the formulation, which has no exceptions: below the value
χ∗ = 0.1),1 and one can write for empirical dependence

D ∼
{

M −3, M < M ∗, weakly entangled systems

M −2, M > M ∗, strongly entangled systems
.

Relation (5.4) is used to describe the dependence in the region of lengths
below 2Me, whereas in the region above 2Me, the two mechanisms of the
displacement of the centre of mass of the macromolecule are optional, so that
the resulting coefficient of self-diffusion has to be defined as

D = Ddif + Drep.

1 Some other scholars (Lodge 1999; Tao et al. 2000) consider that the transition point

coincides with the entanglement point 2Me and find, considering the data for the whole
region above 2Me, the empirical law of molecular-weight dependence of self-diffusion coeffi-

cient with the index about −2.3 instead of non-amended reptation law (5.20). However, to
estimate a real empirical value of index in the reptation law of diffusion, one needs much

longer macromolecules and, in any case, one has to exclude the transition interval below
10Me. Note also that the measurements of diffusion of labelled chains in a melt matrix of

significantly higher molecular weight (tracer diffusion) show the index −2 (Wang 2003).
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The first and the second diffusion coefficients, Ddif and Drep are defined by
relations (5.11) and (5.20), respectively. The two competing mechanisms have
a different length dependence of the self-diffusion coefficient

D ∼
{

c−2δM −1−δ, non-reptation

c−2M −2, reptation
. (5.21)

One can see from the comparison of equations (5.10) and (5.19) that the
reptation motion of the macromolecules is revealed at the condition

χB � 1
2
π2. (5.22)

This relation determines a molecular weight M ∗ at which the mechanism
of diffusion changes. To determine the dynamic transition point M ∗, which
separates the strongly entangled (M > M ∗) and weekly entangled (M < M ∗)
systems, one considers the parameter B to be dependent on χ and, taking
equations (3.17) and (3.25) into account, finds a solution of the equation

χB(χ) =
1
2
π2. (5.23)

It is not difficult to solve this equation, taking empirical value δ = 2.4 into
account, and estimate the number value of the transition point between weakly
and strongly entangled systems as

χ∗ ≈ 0.1, M ∗ ≈ 10Me.

This is the point, above which the reptation mechanism of diffusion predom-
inates.

The results of estimation of coefficient of self-diffusion due to simulation for
macromolecules with different lengths are shown in Fig. 12. The introduction
of local anisotropy practically does not affect the coefficient of diffusion below
the transition point M ∗, the position of which depends on the coefficient of
local anisotropy. For strongly entangled systems (M > M ∗), the value of the
index −2 in the reptation law is connected only with the fact of confinement
of macromolecule, and does not depend on the value of the coefficient of local
anisotropy. At the particular value ae = 0.3, the simulation reproduces the
results of the conventional reptation-tube model (see equation (5.21)) and
corresponds to the typical empirical situation (M ∗ = 10Me).

5.2 Quasi-Elastic Neutron Scattering

The convincing confirmation of existence of intermediate length is given by
experimental results on the neutron scattering. To observe the scattering on a
single macromolecule in a system of entangled chains, the investigators have
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Figure 12. The coefficient of diffusion of a macromolecule.
Diffusion of a macromolecule of length 25Me among macromolecules with various lengths

M0 (left plot), and among macromolecules of the same length – self-diffusion (right plot) is
depicted. Each point is calculated as the ratio of asymptotic values of the displacement of

a macromolecule for large times (see the dependence in Fig. 11) to values of displacement
for the Rouse chain at the corresponding values of the parameter B and the values of the

parameter ψ = 0. The values of the parameters of local anisotropy are ae = 0.3, ae = 0
for the circles and ae = 0.1, ae = 0 for the squares. The slopes of the dashed lines on the
left plot are −2.4 for short macromolecules and 0 for long ones, so that the simulation

determines the point of transition between diffusive and reptation modes of motion. The
slopes of the dashed lines on the right plot are −2.4 for short macromolecules and −1

for long ones, so that the simulation gives the well-known dependence D ∼ M −2 for
coefficient of self-diffusion of macromolecules above the point of transition. The results

do not depend on the arbitrary number N of subchains, whereas it is taken N = 10 for
the sample calculations. All calculations are fulfilled at the step of integration h = 0.001,

and the number of realisations is 100 in each case. Adapted from Pokrovskii (2008).

taken blends of chemically identical deuterated and non-deuterated macro-
molecules (Daoud et al. 1975; Higgins and Roots 1985; Richter et al. 1990).
A small quantity of non-deuterated macromolecules among deuterated macro-
molecules determines scattering which can be considered to be scattering on
a single macromolecules.

5.2.1 The Scattering Function

An introduction to the theory of neutron scattering can be found, for instance,
in a books by Hansen and Donald (1986) and Higgins and Benoit (1994). The
scattering function for a single macromolecule is known for some models of
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polymer chain in dilute solutions (Gennes 1967; Dubuis-Violette and Gennes
1967; Akcasu and Gurol 1976) and in entangled systems (Gennes 1981; Ronca
1983; Kokorin and Pokrovskii 1990; Des Cloizeaux 1993; Wishnewski et al.
2002). We shall consider the entangled systems, using the mesoscopic model
of dynamics of macromolecule, which allows us to avoid some assumptions,
which were included in the previous calculations, and present a generalised
scattering function.

The neutron scattering on a single macromolecule is determined by the
dynamic structure function or scattering function

S(k, t) =
1

N + 1

∑

α,γ

〈exp[ik(rα(t) − rγ(0))]〉. (5.24)

The double sum is evaluated over all the Brownian particles of the macro-
molecule. In equation (5.24), k is the vector in the direction of the scattering,
having the length

k =
4π

λ
sin

θ

2
where λ is the wave-length of the initial beam and θ is the scattering angle.
To investigate the motion of the internal parts of a macromolecular coil, the
relation k〈R2〉1/2 � 1, or λ � 〈R2〉1/2 must be fulfilled. For typical macro-
molecules, it gives for the wave-length the value λ � 10−6 cm.

We are considering the scattering function (5.24) and can see that the
expansion of the expression

〈exp[ik(rα(t) − rγ(0))]〉 = 1 − 1
2

3∑

i=1

k2
i 〈(rα

i (t) − rγ
i (0))2〉 − · · · (5.25)

has real components only. Since the averaged values of the quantity (rα
i (t) −

rγ
i (0))2 do not depend on the label of co-ordinates i, expression (5.25) can be

written as

〈exp[ik(rα(t) − rγ(0))]〉 = exp

[
− 1

6
k2

3∑

i=1

〈(rα
i (t) − rγ

i (0))2〉
]

.

This is an exact relation in the case, if the averaging is fulfilled over a Gaussian
distribution function.

Hence, the scattering function (5.24) takes the form

S(k, t) =
1

N + 1

∑

α,γ

exp

[
− 1

6
k2

3∑

i=1

〈(rα
i (t) − rγ

i (0))2〉
]

. (5.26)

To evaluate the function, we omit the correlation between particles with dif-
ferent labels and consider the non-coherent scattering function
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Figure 13. The neutron scattering function.
The results for a macromolecule of the length M = 25Me (χ = 0.04, B = 429, ψ = 8.27).
The analytical results due to equation (5.26), in which Δα(t) is defined by (5.5) and (5.13),

are shown by dashed lines. The results of calculation of function (5.24) due to simulation
are shown for the above values of parameters B and ψ and for values ae = 0, ai = 0 by

solid lines and ae = 0.3, ai = 0.1 by open circles. The values of k〈R2〉1/2 are shown at
the curves. Adapted from the paper of Pokrovskii (2006).

S(k, t) =
1

N + 1

N∑

α=0

exp
(

− 1
6
k2Δα(t)

)
, (5.27)

where the mean square displacement Δα(t) = 〈[rα(t) − rα(0)]2〉 of the particle
α is determined by expression (5.13). We can easily see that all the properties
of function Δα(t) from Section 5.1.2 are reflected in the scattering function,
which is shown in Fig. 13 for some values of parameters. In particular, a
plateau is revealed on the plot of the scattering function.

5.2.2 An Estimation of Intermediate Length

The value of the scattering function in the plateau region is connected directly
with the intermediate length ξ

S(k, t) = exp
(

− 1
6
k2ξ2

)
,

τ

B
< t < τ. (5.28)
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Similar results are reported by Ronca (1983) and Des Cloizeaux (1993). Their
calculations were based on models, which contained the tube diameter d as an
introduced parameter. Though the tube diameter is an arbitrary parameter, it
appears, that this quantity is practically the same as the double intermediate
length

d2 =
6
5
(2ξ)2.

Though their theories appear to be not quite consistent, the final results
provide an estimate of the intermediate length.

The intermediate length is defined by equation (5.7) and, taking into ac-
count formulae (1.4) and (3.30), can be represented as

ξ2 ∼ c−2C−2
∞ (T ). (5.29)

This relation was confirmed by Kholodenko (1996) who started from detailed
picture of geometrically confined polymer chain and used more sophisticated
methods of calculation.

Results on neutron scattering by specially prepared samples (Higgins and
Roots 1985; Richter et al. 1990) reveal the plateau region. The beam of neu-
trons characterised by k in the range from 0.058 Å−1 till 0.135 Å−1 was used
by Richter et al. (1990). It gives the values of k〈R2〉1/2 from 5.8 to 13 for the
typical size of macromolecular coils. We can see that the actual values expose
the special time dependence revealing the intermediate length. The time de-
pendence of the observed scattering functions appears to be very similar to
the depicted scattering functions.

For an interpretation of the results and evaluation of the intermediate
length, Richter et al. (1990) have used the scattering function calculated by
Ronca (1983). Richter et al. (1993), Ewen and Richter (1995) and Ewen et
al. (1994) have found the typical values of the tube diameter at different
temperatures which are 35–50 Å for alternating poly(ethylen-propylene) and
65–70 Å for poly(dimethylsiloxane); the corresponding values of intermediate
length ξ are 16–23 Å and 30–32 Å. According to relation (5.29), the quan-
tity ξcC∞(T ) does not depend on the temperature. Nevertheless, Richter et
al. (1993), at investigating the temperature dependence of the intermediate
length in polyethylene-propylene melts, have found that the quantity ξcC∞(T )
increases slightly when the temperature increases. One ought to remember
that the written relations follow the simplest schematisation of the entangled
system.

The results of the investigations of Higgins and Roots (1985) and Richter
et al. (1990) confirm the existence of the dynamic intermediate length and
this is satisfactory from the point of view of all theories. However, it does not
mean that investigators confirm the reptation of long macromolecules. The
existence of an intermediate length is the effect of first order in respect of
co-ordinates in the equation of macromolecule dynamics, while the reptation
of a macromolecule is connected to terms of higher orders. Other arguments
are needed to confirm the reptation mobility.



Chapter 6
Linear Viscoelasticity

Abstract In the course-grained approximation, polymer solutions and melts
can be considered as a suspension of interacting Brownian particles, which
allow us to determine a general expression for the stress tensor, following a
method developed in the theory of liquids (Rice and Gray in Statistical me-
chanics of simple liquids (Wiley, New York), 1965; Gray in Physics of simple
liquids, ed by H.N.V Temperley (North Holland, Amsterdam, pp. 507–562),
1968). The general theory is specified to calculate dynamic modulus both for
dilute and concentrated polymer systems. The approach allows one correctly
to describe the linear viscoelastic behaviour of dilute polymer solutions over
a wide range of frequencies, if the effects of excluded volume, hydrodynamic
interaction, and internal viscosity are taken into account. As far as the very
concentrated solutions and melts of polymers – entangled polymers – are con-
cerned, the results for the linear approximation of macromolecular dynamics
are only available now. As one can anticipate, it is not sufficient for complete
description of relaxation processes in strongly entangled systems, though some
relations for terminal characteristics are obtained for these systems. Remark-
ably, the mesoscopic theory appears to be self-consistent for entangled sys-
tems: the relaxation time of the environment is equal to the relaxation time
of the entire system, which is calculated in this chapter. The intermediate
scale introduced in Chapter 5 appears here once more as connected with the
well-known length of a macromolecule between adjacent entanglements Me. It
casts a new light on the old terms and old theories. The pictures given earlier
by different theories appear to be consistent.

6.1 Stresses in the Flow System

6.1.1 The Stress Tensor

As before, we shall consider each macromolecule either in dilute or in concen-
trated solution to be schematically represented by a chain of N + 1 Brownian
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particles, so that a set of the equations for motion for the macromolecule can
be written as a set of coupled stochastic equations

m
d2rα

dt2
= F α + Gα + Kα + φα, α = 0, 1, . . . , N, (6.1)

where m is the mass of a Brownian particle associated with a piece of the
macromolecule of length M/(N + 1), rα are the co-ordinates of the Brown-
ian particles. The dissipative forces F α and Gα acting on the particles were
discussed in Chapter 2 for dilute solutions and in Chapter 3 for entangled
systems.

We consider n to be the number density of macromolecular coils in the
system, so that the system contains n(N + 1) Brownian particles in unit
volume. This number is sufficiently large to introduce macroscopic variables
for the suspension of Brownian particles, namely, the mean density

ρ(x, t) =
∑

a,α

m〈δ(x − raα)〉 = m(N + 1)n(x, t) (6.2)

and the mean density of the momentum

ρvj(x, t) =
∑

a,α

m〈uaα
j δ(x − raα)〉. (6.3)

The angle brackets denote averaging over the ensemble of the realisation of
random forces in the equations of motion of the particles. The sum in (6.2)
and (6.3) is evaluated over all the Brownian particles. The double index aα
consists of the label of a chain a and the label of a particle α in the chain.

The methods developed in the theory of liquids (Rice and Gray 1965,
Gray 1968) was used by Pokrovskii and Volkov (1978a) to determine the
stress tensor for the set of Brownian particles in this case. One can start with
the definition of the momentum density, given by (6.3), which is valid for an
arbitrary set of Brownian particles. Differentiating (6.3) with respect to time,
one finds

∂

∂t
ρvj = − ∂

∂xi

∑

a,α

m〈uaα
i uaα

j δ(x − raα)〉 +
∑

a,α

〈
m

duaα
j

dt
δ(x − raα)

〉
. (6.4)

The right-hand side of equation (6.4) has to be reduced to a divergent form.
To transform the second term, we use the dynamic equation (6.1), which ought
to be multiplied by δ(x − raα). After summing over all the particles of the
macromolecule and averaging, one uses the requirement that there is no mean
volume force, that is,

N∑

α=0

〈(F aα + φaα)δ(x − raα)〉 = 0, a = 1, 2, . . . , n. (6.5)
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So, for each macromolecular coil, one can write

m

N∑

α=0

〈
duaα

dt
δ(x − raα)

〉
=

N∑

α=0

〈(Kaα + Gaα)δ(x − raα)〉 , a = 1, 2, . . . , n.

Next, the formal expansion of the δ-function into a Taylor’s series about
the centre of mass qa of the ath macromolecule can be used, retaining only
the first two terms of the expansion

δ(x − raα) = δ(x − qa) − (raα
k − qa

k)
∂

∂xk
δ(x − qa).

So, the above formula is transformed into

− ∂

∂xk

N∑

α=0

〈(Kaα
j raα

k + Gaα
j raα

k )δ(x − qa)〉, a = 1, 2, . . . , n.

Here, the sum is conducted over all the particles in a given macromolecule.
Assuming that all the macromolecules are identical, and neglecting the statis-
tical dependence of the position of the centres of mass of the macromolecules
on the other co-ordinates, one obtains an expression for the second term on
the right-hand side of equation (6.4) in the divergent form

∑

a,α

〈
m

duaα
j

dt
δ(x − raα)

〉
= − ∂

∂xk
n

N∑

α=0

〈Kaα
j raα

k + Gaα
j raα

k 〉.

The first term on the right-hand side of (6.4) can also be rewritten in a
more convenient form. One uses the definition of the mean velocity vi and,
taking only the first term of the expansion of the δ-function into account, one
finds that

m
∑

a,α

〈uaα
j uaα

i δ(x − qa)〉 = nm

N∑

α=0

〈(uα
j − vj)(uα

i − vi)〉 + ρvivj .

Thus, an equation, which has the sense of a law of conservation of mo-
mentum has been obtained. There is an expression for the momentum flux
ρvivj − σij under the derivation symbol, which allows one to write down the
expression for the stress tensor

σkj = −n

N∑

α=0

[
m〈(uα

j − vj)(uα
k − vk)〉 + 〈Kα

k rα
j + Gα

k rα
j 〉

]
. (6.6)

The assumption that the particle velocities are described by the local-
equilibrium distribution yields
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σkj = −n(N + 1)Tδjk − n

N∑

α=0

〈Kα
j rα

k + Gα
j rα

k 〉. (6.7)

As was demonstrated by Pyshnograi (1994), the last term in (6.7) can be
written in symmetric form, if the continuum of Brownian particles is consid-
ered incompressible. In equation (6.7), the sum is evaluated over the particles
in a given macromolecule. The monomolecular approximation ensures that
the stress tensor of the system is the sum of the contributions of all the
macromolecules. In this form, the expression for the stresses is valid for any
dynamics of the chain. One can consider the system to be a dilute polymer
solution or a concentrated solution and melt of polymers. In any case the
system is considered as a suspension of interacting Brownian particles.

6.1.2 Oscillatory Deformation

Experimentally a variety of quantities are used to characterise linear viscoelas-
ticity (Ferry 1980). There is no need to consider all the characteristics of linear
viscoelastic response of polymers which are measured under different regimes
of deformation: in linear region, they are connected with each other. The study
of the reaction of the system in the simple case, when the velocity gradients
are independent of the co-ordinates and vary in accordance with the law

γik ∼ e−iωt

for different deformation frequencies ω, gives a clear picture of the phenomena
of linear viscoelasticity and yields important information about the relaxation
processes in the system. For this case, the expression for the stress tensor can
be written in the form

σik(t) = −pδik + 2η(ω)γik(t) (6.8)

which defines the complex viscosity coefficient – dynamic viscosity

η(ω) = η′(ω) + iη′ ′(ω).

Since the velocity gradient is related to the displacement gradient by the
expression ν12 = −iωλ12, it follows that, instead of the dynamic viscosity, the
use may be made of another characteristic – the dynamic modulus

G(ω) = G′(ω) − iG′ ′(ω) = −iωη(ω). (6.9)

The components of the above complex quantities are linked by the relation

G′ = ωη′ ′, G′ ′ = ωη′. (6.10)

Dynamic modulus is a convenient characteristic of viscoelasticity. To anal-
yse the results, it is convenient also to consider the asymptotic behaviour of
the dynamic modulus at high and low frequencies. In the latter case
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G(ω) = −iωη + ω2ν. (6.11)

The expansion determines the terminal quantities: the viscosity coefficient η
and the elasticity coefficient ν which, in their turn, determine the terminal
relaxation time and steady-state compliance, correspondingly,

τ =
ν

η
, Je =

ν

η2
. (6.12)

Both the dynamic modulus and the terminal quantities are characteristics of
viscoelasticity of a system and are subject of interest of experimentalists.

Note that the dynamic modulus is the Fourier-transform of the relaxation
modulus G(t)

G(ω) = −iω

∫ ∞

0

G(t)eiωt dt,

which is also often used to characterise viscoelastic behaviour on the system.

6.2 Macromolecules in a Viscous Liquid

The dilute polymer solution can be considered as a collection of non-interacting
macromolecular coils suspended in a viscous liquid, the stress tensor of which
is written as

σ0
ik = −pδik + 2ηsγik. (6.13)

The dynamics of a separate macromolecular coil in the viscous liquid, dis-
cussed in Chapter 2, allows one to determine the problem.

6.2.1 The Stress Tensor

To find the stress tensor, one can use equation (6.7), in which the elastic and
internal viscosity forces, according to equations (2.2) and (2.25), have the form

Kα
i = −2TμAαγrγ

i , Gα
j = −Gαγ(ṙγ

j − ωjlr
γ
l ).

This gives the expression for the stress tensor

σik = −nT (1 + N)δik

+ n

N∑

ν=0

[2μTAαγ 〈rα
i rγ

k 〉 − Tδik + Gαγ(〈ṙγ
krα

i 〉 − ωil〈rα
l rγ

k 〉)] .

Furthermore, it is convenient to switch to normal co-ordinates (1.13). We can
use the expressions for forces (2.26) to rewrite the expression for the stress
tensor in normal co-ordinates
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σik = −n(N + 1)Tδik

+ n

N∑

α=1

[
2μTλα〈ρα

i ρα
k 〉 − Tδik + ζϕα

(
〈ρ̇α

k ρα
i 〉 − ωkl〈ρα

l ρα
i 〉

)]
. (6.14)

Here the linear terms in respect to the coefficient of internal viscosity ϕα have
taken into account only. Averaging with respect to the velocity distribution
has been assumed here. One ought to add the stresses (6.13) of carrier viscous
liquid to stresses (6.14) to determine the stress tensor for the entire system,
that is for the dilute solution of the polymer.

Let us note that the extra stresses arise due to the differences in the rate of
diffusion wα of a Brownian particle and the averaged velocity of the medium
vα at the point where the particle is located. It results in the emergence of
forces

F α = −ζ(vα − wα).

Accordingly, the extra stresses after averaging can be written as

−nζ

N∑

α=0

〈(vα
i − wα

i )rα
k 〉 (6.15)

where the angle brackets denote averaging with respect to the distribution
function for the particle co-ordinates. One ought to determine the diffusion ve-
locity wα to arrive at expression (6.14) for the stress tensor. Expression (6.15)
was the starting point in the calculations of the extra stresses in dilute so-
lutions of polymer in works by Cerf (1958), Kirkwood and Riseman (1948),
Peterlin (1967), and Zimm (1956).

One can use equation (2.37) to obtain the other form of the stress tensor

σik = −nT (N + 1)δik + nζ
N∑

ν=1

1
2

[
1
τ ‖
ν

(
〈ρν

i ρν
k 〉 − 1

2μλν
δik

)
+ 2ϕν 〈ρν

i ρν
j 〉γjk

]

(6.16)
where the times of relaxation τ ⊥

ν and τ ‖
ν = (1 + ϕν)τ ⊥

ν were defined earlier by
expressions (2.30).

Note that the internal viscosity is a residual of internal relaxation pro-
cess in the case, when the slow deformation is considered. In a more general
case, the elastic and internal viscosity forces acting on the chain, according to
equations (2.2) and (2.28), can be written as

Kα
i = −2TμAαγrγ

i , Gα
i = −

∫ ∞

0

Gαγ(s)(uγ
i − ωijr

γ
j )t−sds. (6.17)

Then, equation (6.7) gives, instead of (6.14), the expression for the stress
tensor in normal co-ordinate
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σik(t) = −n(N + 1)Tδik + n

N∑

α=1

{
2μTλα〈ρα

i ρα
k 〉 − Tδik

+ ζ

∫ ∞

0

ϕα(s)
(

〈ρ̇α
i (t − s)ρα

k (t)〉 − ωil(t − s)〈ρα
l (t − s)ρα

k (t)〉
)
ds

}
.

(6.18)

The validity of the theory for the non-linear region is restricted by terms
of the second power with respect to the velocity gradient for non-steady-state
flow and by terms of the third order for steady-state flow, due to approxima-
tions described in Chapter 2, when the relaxation modes of a macromolecule
were being determined.

6.2.2 Dynamic Characteristics

Let us write down first of all the stress tensor for dilute solution (6.16) as a
function of the velocity gradients. We can use expressions (2.41) for moments,
in order to determine the stresses with accuracy within the first-order term
with respect to velocity gradients

σik = −pδik + 2ηsγik

+ 2nT

N∑

ν=1

[
1 − ϕν

1 + ϕν

∫ ∞

0

exp
(

− s

τ ‖
ν

)
γik(t − s)ds + ϕντ ⊥

ν γik

]
. (6.19)

This equation contains two sets of relaxation times, which are defined by
equations (2.30), that is,

τ ‖
α = τ ⊥

α (1 + ϕα), τ ⊥
α = τ1α

−zν , ϕα = ϕ1α
θ, α = 1, 2, . . . � N.

The exponents in the above expressions can be estimated beforehand from
the dependence of the limiting values of the characteristic viscosity at low
and high frequencies on the length of the macromolecule.

In the case of the oscillatory motion, equation (6.19) defines, in accor-
dance with equation (6.8), the complex shear viscosity η(ω) = η′ + iη′ ′ with
components

η′(ω) =ηs + nT

N∑

ν=1

τ ⊥
ν

[
ϕν +

1 − ϕν

1 + (τ ‖
νω)2

]
,

η′ ′(ω) =nT

N∑

ν=1

ω(τ ⊥
ν )2

1 + (τ ‖
νω)2

.

(6.20)

Figure 14 illustrates the dependence of the characteristic viscosity

[η] = lim
n→0

η − ηs

nT
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Figure 14. The components of characteristic viscosity.
The real and imaginary components of characteristic viscosity have been calculated ac-

cording to equations (6.20) for zν = 2, ϕ1 = 0.5, θ = 0.5. The dashed curves depicts the
alternation of the dependencies in the case when an internal relaxation process is taking

into account, whereas equations (6.28) are used at τ/2τ1 = 10−5.

as defined by equations (6.20) on the non-dimensional frequency τ1ω for some
values of the parameters zν, ϕ1 and θ which appeared in the formulae for
relaxation times, introduced previously.

Equations (6.20) are followed by the expression for the characteristic dy-
namic modulus, components of which are

G′ =nT

N∑

ν=1

(τ ⊥
ν ω)2

1 + (τ ‖
νω)2

,

G′ ′ =ηsω + nT

N∑

ν=1

τ ⊥
ν ω

[
ϕν +

(1 − ϕν)
1 + (τ ‖

νω)2

]
.

(6.21)

Figure 15 demonstrates a comparison of the characteristic modulus

[G] = lim
n→0

G − iηsω

nT
,

calculated according to equation (6.21), with the corresponding experimental
values. One can note, that for certain values of the maximum relaxation time
τ1 and certain values of the exponents zν and θ (whereas, in virtue of equa-
tion (6.27), θ = 2ν − 1), the theory satisfactorily reproduces the experimental
relations for polymer solutions at infinite dilution. We may note yet again
that the identifying constants are unambiguously determined by the limiting
values of the characteristic viscosity and can be estimated independently.

The results (6.20) and (6.21), which are valid in the first order with re-
spect to the coefficient of internal viscosity ϕ1, were found by Peterlin (1967).
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Figure 15. The components of characteristic dynamic modulus.
Frequency dependence of characteristic dynamic modulus for polystyrene solutions in
decalin (A) and in toluene (B). Experimental values due to Rossers et al. (1978) (see

also the last lines of Table 2) are shown by filled points (for the real part) and empty
points (for the imaginary part). The theoretical curves have been plotted for zν = 1.788,

θ = 0.788, τ1 = 2.5 × 10−3 s for case A and for zν = 1.5, θ = 0.5, τ1 = 8.35 × 10−4 s for
case B. Adapted from the paper of Pokrovskii and Tonkikh (1988).

A generalisation of the theory for the case of arbitrary values of internal vis-
cosity was done by Pokrovskii and Tonkikh (1988). We may note that the case
when ϕ1 = 0 and zν = 2, corresponds to an ideally flexible freely-draining
macromolecule, and reproduces the relations indicated by Rouse (1953).

Thus, one may conclude that, in the region of comparatively low frequen-
cies, the schematic representation of the macromolecule by a subchain, taking
into account intramolecular friction, the volume effects, and the hydrodynamic
interaction, make it possible to explain the dependence of the viscoelastic be-
haviour of dilute polymer solutions on the molecular weight, temperature,
and frequency. At low frequencies, the description becomes universal. In or-
der to describe the frequency dependence of the dynamic modulus at higher
frequencies, internal relaxation process has to be considered as was shown in
Section 6.2.4.

As an illustration, certain data characterising dilute polymer solutions are
presented in Table 2.

6.2.3 Initial Intrinsic Viscosity

In the study of the linear response, it is convenient to consider quantity inde-
pendent of concentration and viscosity – the characteristic (intrinsic) viscosity

[η] = lim
c→0

η − ηs

cηs
(6.22)
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TABLE 2. Characteristics of dilute polymer solutions

T ρs ηs M · 10−5 [η] τ1 · 104

System ◦C g cm−3 P cm3 g−1 s

Polystyrene in decalin∗ 16 0.8868 0.0295 8.6 76 0.35
Polystyrene in

di-2-ethyl-hexylphthalate∗ 22 0.9827 0.678 8.6 — 7.59
Polystyrene in

α-chloronaphthalene∗ 25 1.195 0.0315 8.6 197 1.26
Polystyrene in arochlor 1232∗ 25 1.269 0.142 8.6 183 3.98

Polystyrene in arochlor 1232∗ 25 1.269 0.142 4.1 111 1.2
1.4-Polybutadiene in

chloronaphthalene∗∗ 25 — 0.0312 2.2 200 0.26
1.4-Polybutadiene in

chloronaphthalene∗∗ 25 — 0.0312 9.1 510 2.75
1.4-Polybutadiene in decalin∗∗ 25 — 0.0245 9.1 510 2.14
Poly-α-methylstyrene in

α-chloronaphthalene∗∗∗ 25 — 0.0315 14.3 252 2.0
Poly-α-methylstyrene in decalin∗∗∗ 25 — 0.0245 14.3 135 0.79

Polystyrene in decalin∗∗∗∗ 15 0.887 0.0287 180 300 23
Polystyrene in toluene∗∗∗∗ 20 0.867 0.0059 180 3100 69

∗ Johnson et al. (1970); ∗∗ Osaki et al. (1972a); ∗∗∗ Osaki et al. (1972b); ∗∗∗∗ Rossers et

al. (1978).

where ηs is the viscosity of the solvent and c = nMN −1
A is the weight concen-

tration of the polymer (NA = Avogadro number).
The limit of the characteristic viscosity at low frequencies, according

to (6.20), is defined as

[η′]0 =
nT

cηs

N∑

α=1

τ ⊥
α =

nT

cηs
ζ(zν)τ1 (6.23)

where ζ(x) is Riemann’s zeta-function. This quantity makes it possible to
estimate the role of the volume effects and of the hydrodynamic interaction
in the dynamics of the macromolecule, which influence the dependence of
the quantity under discussion on the molecular weight (the length of the
macromolecule)

[η′]0 = KMzν−1. (6.24)

Theoretical estimates of the quantity zν − 1 are in the range from 0.5
(non-draining Gaussian coil), to 1.11 (draining coil with excluded-volume in-
teraction). A compilation of empirical values of K and of the power exponents
for different polymers and different solvents may be found in the literature
(Flory 1969, Tsvetkov et al. 1964). The empirical values of the exponent zν −1
do not exceed 0.9, which indicates significant impermeability of the macro-
molecular coil in a flow. We may note that once a relation of type (6.24)
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has been established for a certain polymer, it can be used to determine the
molecular weight of the polymer from the characteristic viscosity (Flory 1969,
Tsvetkov et al. 1964). If the value of the index zν is known, equation (6.23)
allows us to estimate the value of the largest relaxation time τ1.

For a non-draining coil, the characteristic viscosity defined by equa-
tion (6.23) can be expressed in the form

[η′]0 = Φ
〈S2〉3/2

M
(6.25)

where 〈S2〉 is the average square of the radius of inertia of the coil, while the
experimental value of the constant Φ (called the Flory constant) according to
Flory (1969)

Φ = (2.66 ± 0.1) × 1023 mol−1.

Equation (6.25) makes it possible in this case to interpret a dilute solution
of macromolecules as a suspension of solid non-deformable spheres with a
radius close to the mean square radius of inertia.

The initial characteristic viscosity defined by equation (6.23) is seen to be
independent of the characteristics of intramolecular friction, but this is a con-
sequence of the simplifying assumptions. It has been shown for a dumbbell (Al-
tukhov 1986) that, when account of the internal viscosity and the anisotropy
of the hydrodynamic interaction is taken simultaneously, the characteristics
of these quantities enter into the expression for a viscosity of type (6.23). This
result must be revealed also by the subchain model when account is taken of
the anisotropy of the hydrodynamic interaction.

6.2.4 On the Effect of Internal Viscosity

The characteristic viscosity (6.22) is of special interest in the study of the
influence of intramolecular friction on the dynamics of a macromolecule in a
viscous liquid. At ω → ∞, characteristic viscosity can be written as

[η′]∞ =
nT

cηs

N∑

α=1

τ ⊥
α ϕα =

nT

cηs
ζ(zν − θ)τ1ϕ1 (6.26)

where ζ(x) is Riemann’s zeta-function.
Experimental studies indicate (Cooke and Matheson 1976, Noordermeer

et al. 1975) that the limiting characteristic viscosity for a given polymer-
homologous series is independent of the length of macromolecule and the type
of solvent. Taking into account that τ1 ∼ Mzν , n ∼ M −1 and ϕ1 ∼ M −θ, one
can find the relation

θ − zν + 1 = 0 (6.27)

which follows from equation (6.26) and from the fact that the limiting char-
acteristic viscosity is independent of the length of macromolecule.
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The independence of the limiting characteristic viscosity on the type of
solvent means that ϕ1 is independent of the viscosity of the solvent, that is
the dimensional characteristic of the ‘internal’ friction of the macromolecule
ζϕ1 is proportional to the viscosity of the solvent and the “internal” friction is
not solely internal. The conclusion that the solvent contributes significantly to
the intramolecular viscosity was reported by Schrag (1991), and was dubbed
as the “solvent modification effect”.

The fact that the value of the characteristic viscosity at high frequencies
is not zero indicates the existence of intramolecular (taking into account the
solvent molecules) relaxation processes with relaxation times smaller than
the reciprocal of the frequency of the measurement. The true limiting value
is naturally zero and experiments sometimes reveal a step at a frequency ω
which indicates the occurrence of a relaxation process with a relaxation time
τ ∼ ω−1 which is compatible to the times of the deformation of a system.
This phenomenon may be described by including the relaxing intramolecular
viscosity, as it was done by Volkov and Pokrovskii (1978).

One uses expression (6.18) for the stress tensor in which the memory func-
tion can be chosen in the simplest way

ϕα(s) =
ϕα

τ
exp

(
− s

τ

)
,

where ϕα is a coefficient of the intramolecular viscosity which can be defined
by relation (2.27), for example. Then, we use the results of Chapter 4 for the
correlation functions to write down the stresses for oscillatory deformation
and to find an expression for the coefficient of dynamic viscosity

η(ω) = ηs + nT

N∑

α=1

(
τ ⊥
α − τ −

α

τ+
α − τ −

α

)2 [
τ+
α

τ ⊥
α

τ+
α [1 − iω(τ+

α − τ ⊥
α )]

1 − iωτ+
α

− τ+
α + τ −

α

τ ⊥
α

τ ⊥
α − τ+

α

τ ⊥
α − τ −

α

τ0
α[1 − iω(τ0

α − τ ⊥
α )]

1 − iωτ0
α

+
τ −
α

τ ⊥
α

(
τ ⊥
α − τ+

α

τ ⊥
α − τ −

α

)2
τ −
α [1 − iω(τ −

α − τ ⊥
α )]

1 − iωτ −
α

]
, (6.28)

where the relaxation times are defined by

2τ ±
α = τα ±

(
τ2
α − 2ττ ⊥

α

)1/2

, τ ⊥
α =

τ1

αzν
,

τα =
τ

2
+ τ ⊥

α (1 + ϕα), τ0
α =

2τ −
α τ+

α

τ+
α + τ −

α
.

(6.29)

In the case, when one neglects the relaxation time of the intramolecular
process,

τα → τ ‖
α = τ ⊥

α (1 + ϕα),
τ+
α → τ ‖

α, τ −
α → 0, τ0

α → 0
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and expressions (6.28) reduce to the equation for dynamic viscosity

η(ω) = ηs + nT

N∑

α=1

τ ⊥
α

1 − iω(τ ‖
α − τ ⊥

α )
1 − iωτ ‖

α
(6.30)

which has the components (6.20).
Figure 14 illustrates the dependence of the viscosity on the frequency, while

taking into account the intramolecular relaxation process with a relaxation
time τ according to expression (6.28). It may be hoped that the study of
intramolecular relaxation processes from a phenomenological point of view will
promote the establishment of the detailed mechanism of the rapid relaxation
processes in polymers, although there is no doubt that more detailed models
of the macromolecule studied, for example, by Gotlib et al. (1986), Priss and
Popov (1971), Priss and Gamlitski (1983) must be used at high frequencies.
These models make it possible to describe the small-scale motions of the chain.

6.3 Macromolecules in a Viscoelastic Liquid

One of the first attempts to find a molecular interpretation of viscoelastic be-
haviour of entangled polymers was connected with investigation of the dynam-
ics of a macromolecule in a form of generalised Rouse dynamics (Pokrovskii
and Volkov 1978a; Ronca 1983; Hess 1986). It formally means that, instead of
assumption that the environment of the macromolecule is a viscous medium,
Brownian particles of the chain are considered moving in a viscoelastic liquid
with the stress tensor

σ0
ij = −pδij + 2

∫ ∞

0

ηs(s)γij(t − s)ds. (6.31)

The generalised Rouse dynamics is proved to be not sufficient for consistent
explanation of viscoelastic behaviour of entangled polymers, but appears to
be interesting from methodological point of view.

6.3.1 The Stress Tensor

To obtain the expression for the stress tensor for the set of Brownian particles
suspended in a viscoelastic liquid, we use equation (6.7), in which the elastic
and internal viscosity forces are specified in Section 3.2

Kα
i = −2TμAaγrα

i , Gα
i = 0.

It is convenient to write the stress tensor (6.7) in terms of normal co-
ordinates:

σik(t) = −n(N + 1)Tδik + nT

N∑

α=1

(2μλα〈ρα
i ρα

k 〉 − δik) . (6.32)
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Expression (4.17) for non-equilibrium moments allows us to determine the
stress tensor for a dilute suspension of macromolecular coils in the linear
viscoelastic liquid

σik = −pδik + 2
∫ ∞

0

(
η(s) + nT

N∑

α=1

2μλαμα(s)Mα(s)

)
γik(t − s)ds. (6.33)

Expressions (4.28) and (4.29) allow us to write the functions

μν(t) = T+
ν exp

(
− t

2τ+
ν

)
− T −

ν exp
(

− t

2τ −
ν

)
− R(t),

Mν(t) =
1

2μλν

[
T+

ν exp
(

− t

2τ+
ν

)
− T −

ν exp
(

− t

2τ −
ν

)]
,

where

T ±
ν =

τR
ν (1 + B) − τ ∓

ν

τ+
ν − τ −

ν
.

In accordance with definitions (4.26) the relaxation times are defined as

2τ ±
ν = τν ±

√
τ2
ν − 2ττR

ν , τν =
τ

2
+ τR

ν (1 + B), τR
ν =

τ ∗

α2
.

In equation (6.33), the stresses in the moving viscoelastic liquid (6.31)
are added to the stresses in the continuum of Brownian particles. When the
equations of motion are formulated, we have to take into account the presence
of the two interacting and interpenetrating continuous media formed by the
viscoelastic liquid carrier and the interacting Brownian particles that model
the macromolecules. However, the contribution of the carrier in the case of a
concentrated solution is slight, and we shall ignore it henceforth.

6.3.2 Dynamic Characteristics

We are studying the simple case, when the viscoelastic carrier liquid is char-
acterised by the dynamic viscosity

ηs(ω) = ηs +
ηsB

1 − iωτ
(6.34)

where ηs and τ are the coefficient of viscosity and the relaxation time of
the carrier liquid. The equation of dynamics of a single macromolecule in a
viscoelastic liquid has the form (3.11) in which, for this case, the memory
functions are determined by the transforms

β[ω] = ζ +
ζB

1 − iωτ
, ϕ[ω] = 0.

In this case, expression (6.33) for an oscillatory shear gradient gives the
dynamic modulus of the system
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G(ω) = Gs(ω) − nT

N∑

ν=1

iωL {μ2
ν(s)}

where L {μ2
ν(s)} is the Laplace transform of the functions μ2

ν(s).
When calculating the Laplace transform, one finds an enhancement of the

dynamic modulus due to the macromolecular coils in the viscoelastic liquid

G(ω) = nT

N∑

α=1

[
(T+

α )2
−iωτ+

α

1 − iωτ+
α

− 2T+
α T −

α

−iωτ0
α

1 − iωτ0
α

+ (T −
α )2

−iωτ −
α

1 − iωτ −
α

]
.

(6.35)
The dynamic modulus of the suspension of non-interacting macromolecular
coils is determined by three sets of relaxation times

τ+
α , τ −

α , τ0
α =

2τ+
α τ −

α

τ+
α + τ −

α
≈ 2τ −

α . (6.36)

Further on we shall consider the case of large values of parameter B,
when the first terms in the expansion of the relaxation times in powers of the
quantity 1/B are

τ+
α ≈ τR

αB(1 + χα2)
[
1 − 2χα2

B(1 + χα2)2

]
, (6.37)

τ −
α ≈ 2τ ∗χ

1 + χα2
, χ =

τ

2τ ∗B
. (6.38)

At large values of B, the whole set of relaxation times can be divided into
two sets: large relaxation times τ+

α and small relaxation times τ −
α and τ0

α,
while the times τ+

α are B times the largest times from the set τ −
α and τ0

α.
One can see that the frequency dependence of the dynamic modulus is

determined by two parameters B and χ

G(ω) = nTf(ωτ ∗, B, χ).

Before we discuss the frequency dependencies of the dynamic modulus, which
are shown in Fig. 16 for typical values of parameters, we shall find expressions
for the characteristic quantities at B 	 1. The latter assumption allows us to
use expressions (6.36)–(6.38) and to define

T+
ν ≈ τR

ν B

τ+
ν − τ −

ν
, T+

ν ≈ τR
ν Bχα2

τ+
ν − τ −

ν
.

Expressions for viscosity η, elasticity ν and the real value of the dynamic
modulus on the intermediate plateau, when τ+

α 	 1
ω 	 τ −

α , follow from
formula (6.35)
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Figure 16. Macromolecules in a viscoelastic liquid.
The real and the imaginary components of dynamical modulus of a dilute suspension of
macromolecules in a viscoelastic liquid are calculated at values of B shown at the curves

and at χ = 1. Adapted from the paper of Pokrovskii and Volkov (1978a).

η = nTτ ∗B

N∑

α=1

1
α2(1 + χα2)

,

ν = nT (τ ∗B)2
N∑

α=1

1
α4

,

Ge = nT

N∑

α=1

1
(1 + χα2)2

.

The replacement of the sums by integrals allows us to estimate the char-
acteristic quantities at N → ∞. One can find that the elasticity does not
depend on the parameter χ

ν =
π4

90
nT (τ ∗B)2. (6.39)

The viscosity and dynamic modulus value for the plateau can be estimated
at large and small values of χ
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η ≈ π4

90
nTτ ∗Bχ−1, Ge ≈ π4

90
nTχ−2, χ 	 1,

η ≈
(

π2

6
− π

2
χ1/2

)
nTτ ∗B, Ge ≈ π

4
nTχ−1/2, χ � 1.

(6.40)

Now, we can try to relate the above results to the experimental data on
the viscoelasticity of concentrated solutions of polymers. For the systems of
long macromolecules, the estimated values of parameter χ are small. Having
used expressions (6.40) for this case, one can evaluate the terminal relaxation
time of the system

τ̄ =
ν

η
=

π2

15
τ ∗B, (6.41)

which, due to the requirement of assumed self-consistency, ought to coin-
cide with the given relaxation time τ . This requirement, in virtue of defini-
tion (6.38), determines the self-consistent value of the parameter

χ =
τ

2τ ∗B
=

π2

30
≈ 0.33. (6.42)

In the alternative case of large values of χ one can use the upper line of
equation (6.40) to calculate the terminal relaxation time of the system, which
coincides with the given relaxation time in order of magnitude

τ̄ =
ν

η
=

τ

2
.

The suspension of dilute macromolecular coils in a viscoelastic liquid is
suitable for the interpretation of results on the viscoelasticity of concentrated
systems with macromolecules, which are not long (M ≈ Me). This case was
carefully investigated by Leonov (1994). He has confirmed the possibility of a
self-consistent description for a system of very short macromolecules.

6.4 Entangled Macromolecules

Investigation of viscoelastic behaviour of linear polymer solutions and melts
shows that there are universal laws for dependencies of the terminal char-
acteristics on the length of macromolecules, which allows to interpret these
phenomena on the base of behaviour of a single macromolecule in the system
of entangled macromolecules (Ferry 1980, Doi and Edwards 1986). The va-
lidity of the mesoscopic approach itself rests essentially on the fundamental
experimental fact that quantities that characterise the behaviour of a poly-
mer system have a well-defined unambiguous dependence on the length of the
macromolecule.

The dependence of the characteristics on molecular weight was used for
the classification of the systems (Ferry 1980; Graessley 1974; Watanabe 1999).
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The law for coefficient of viscosity, which was unambiguously established by
Fox and Flory (1948) for polystyrene and polyisibutilene and confirmed for
many polymer system investigated later (Berry and Fox 1968, Ferry 1980),
determines the first critical point Mc ≈ 2Me separating entangled and non-
entangled systems of linear polymers

η ∼
{

M, non-entangled systems, M < Mc,

M3.4, entangled systems, M > Mc.
(6.43)

While the law with index 3.4 for viscosity is valid in the whole region above
Mc, the dependence of terminal relaxation time is different for weakly and
strongly entangled systems (Ferry 1980) and determines the second critical
point M ∗

τ ∼
{

M4.4, weakly entangled systems, M < M ∗,

M3.4, strongly entangled systems, M > M ∗.
(6.44)

The data for melts of different polymers collected by Ferry (1980, p. 379,
Table 13-III) allows us to estimate the second critical point1 M ∗. Assuming
that Mc = 2Me, one has

M ∗ ≈ (4.6–12.0)Me.

The critical value of molecular weight can be identified with the transition
point between weakly and strongly entangled systems, the position of which
was estimated in Sections 4.2.3 and 5.1.2 as

M ∗ ≈ 10Me.

The difference in the molecular-weight dependence of the terminal relaxation
time can be attributed to the change of the mechanisms (diffusive and repta-
tion, correspondingly) of conformational relaxation in these systems. Further
on in this section, we shall calculate dynamic modulus and discuss character-
istic quantities both for weakly and strongly entangled systems.

6.4.1 The Stress Tensor

To calculate the characteristics of viscoelasticity in the framework of meso-
scopic approach, one can start with the system of entangled macromolecules,
considered as a dilute suspension of chains with internal viscoelasticity moving
in viscoelastic medium, while the elastic and internal viscosity forces, accord-
ing to equations (3.4)–(3.6) and (3.8), have the form

Kα
i = −2TμAaγrα

i , Gα
i = −Gαγ

∫ ∞

0

ϕ(s)(uγ
i − ωijr

γ
j )t−sds.

1 To avoid many subscripts, instead of Ferry’s symbol M ′
c for the second critical point,

I use the symbol M ∗.
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For calculation, it is convenient to write the stress tensor (6.7) in terms of
normal co-ordinates in the following form:

σik(t) = −n(N + 1)Tδik + nT

N∑

α=1

{
2μλα〈ρα

i ρα
k 〉 − δik

+
1
T

∫ ∞

0

ϕ(s)
(

〈ρ̇α
i (t − s)ρα

k (t)〉 − ωil(t − s)〈ρα
l (t − s)ρα

k (t)〉
)
ds

}
.

(6.45)

The contribution of the carrier segment liquid in the case of a concen-
trated solution is slight, and we shall ignore it henceforth. The contri-
bution of separate macromolecules, which is presented by the terms un-
der the sum in the above equation, can be divided into two parts. The
first terms describe external frictions due to connectivity of the particles,
while the integral terms present stresses due to intramolecular resistance
of the coils. The last can be interpreted, remembering the speculation in
Section 3.3.3, as stresses emerging at orientation of separate Kuhn seg-
ments in dense medium among the other segments. Let us note that expres-
sion (6.45) can be considered as a generalisation of the known (Cerf 1958,
Peterlin 1967) expressions for stress in dilute solutions of polymers with in-
ternal viscosity. Indeed, if ϕ(s) ∼ δ(s), expression (6.45) for the stress tensor
reduces to (6.14).

The expression (6.45) for the stress tensor can be applied to both weakly
and strongly entangled systems, but, let us note, that the macromolecular dy-
namics is different in these cases. We use the expression (6.45) to calculate the
stress tensor for entangled systems in linear approximation of macromolecular
dynamics. Using expressions for moments (4.17), (4.20) and (4.21) one obtains

σik(t) = −pδik + 2nT

N∑

α=1

{∫ ∞

0

2μλαμα(s)Mα(s)γik(t − s)ds

+
1

2T

∫ ∞

0

ϕ(s)
∫ ∞

0

[
μα(u + s)Ṁα(u)

+ μ̇α(u)Mα(u + s)
]
γik(t − s − u)du ds

}
. (6.46)

The mesoscopic analysis, similar to truly phenomenological analysis, in-
cludes some mesoscopic parameters in final expressions for the stress tensor
and for viscoelastic characteristics and assumes the necessity of investigation
on the base of more specified models of the system. Some theories were based
on the image of the structure of polymer systems as a network with tem-
porary knots (entanglements) (Ferry et al. 1955; Lodge 1956; Chompff and
Duiser 1966; Chompff and Prins 1968). Those attempts helped us to under-
stand some features of polymer dynamics. A recent work by Schieber et al.
(2003) gives us an example of a very detailed picture of flowing entangled
polymer system.
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6.4.2 Dynamic Modulus and Relaxation Branches

There are plenty of measurements of dynamic modulus of nearly monodisperse
polymers starting with pioneering works of Onogi et al. (1970) and Vinogradov
et al. (1972a). The more recent examples of the similar dependencies can be
found in papers by Baumgaertel et al. (1990, 1992) for polybutadiene and for
polystyrene and in paper by Pakula et al. (1996) for polyisoprene.

To calculate the dynamic modulus, we turn to the expression for the
stress tensor (6.46) and refer to the definition of equilibrium moments in
Section 4.1.2, while memory functions are specified by their transforms as

β[ω] = ζ +
ζB

1 − iωτ
, ϕ[ω] =

ζE

1 − iωτ
. (6.47)

It means, according to the speculations in Chapter 3 that the environment
of the chosen macromolecule is considered a viscoelastic medium, and, in
addition, the internal resistance or the internal viscosity is taken into account.
The latter was not considered in the previous section.

We are calculating dynamic modulus and characteristic quantities for en-
tangled systems, when the linear approximation of dynamic equation is used.

The Case of Low Frequencies

To begin with, let us consider the simple case, when ζ can be neglected in
comparison to ζB in equations (6.47), which can be done, if one considers low-
frequency properties of the systems with long macromolecules – the strongly
entangled systems. In this case, according to (4.32) and (4.33), we have

μα(s) =
BτR

α

τα
exp

(
− s

2τα

)
− BτR

α

τα
R(s),

Mα(s) =
1

2μλα

[
(B + E)τR

α

τα
exp

(
− s

2τα

)
+

τ

2τα
R(s)

]
,

μ̇α(s) = − BτR
α

τα

1
2τα

exp
(

− s

2τα

)
+

2BτR
α

τα
δ(s),

Ṁα(s) = − 1
2μλα

[
(B + E)τR

α

τα

1
2τα

exp
(

− s

2τα

)
+

τ

τα
δ(s)

]

where τR
α = τ ∗/α2 are the Rouse relaxation times and

τα =
τ

2
+ τR

α (B + E).

Under oscillatory motion, the stress tensor (6.46) gives us an expression
for the dynamic modulus
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G(ω) = nT
∑

α

(τR
α )2B(B + E)

τα

×
[

−iω

1 − iωτα
+

−iω2EτR
α

2τα + τ − 2iωττα
− −iω2EτR

α

(2τα + τ − 2iωττα)(1 − iωτα)

]
.

We can introduce a new set of relaxation times

τ ∗
α =

2ττα

2τα + τ
(6.48)

and, after some rearrangement, write an expression for the dynamic modulus
in the standard form

G(ω) = nT
∑

α

(
τR
α

τα

)2

B

(
B

−iωτα

1 − iωτα
+ E

τα

τ

−iωτ ∗
α

1 − iωτ ∗
α

)
, (6.49)

where for small α and large B, we have

τα 	 τ ∗
α, τ ∗

α ≈ τ.

One can, thus, see that, at low frequencies, the viscoelastic behaviour of
the system is determined by two sets of relaxation times, or, we can say
also, by two relaxation branches. The first term in (6.49) is determined by
relaxation of conformation of the macromolecule. The second term in (6.49),
as will be shown in the next chapter, is connected with orientational relaxation
processes.

Note that the first and the second terms in (6.49) at ω → ∞ have the orders
of magnitudes nTψ−2 and nTχ−1, respectively. The ratio of the quantities is
very small for systems of long macromolecules, so that the contribution of the
first, conformation branch to the linear viscoelasticity is negligibly small at
χ � χ∗. Note also that, for strongly entangled systems, at χ � χ∗ or M 	
M ∗, as it was shown in Section 4.2.3, conformational relaxation cannot be
occurred via the diffusive mechanism (considered here), but via the reptation
mechanism, so that the first term in equation (6.49) ought to be replaced by
other term, for example, in the form

nT

π/χ∑

α=1

−iω pατ rep
α

1 − iωτ rep
α

, τ rep
α =

π2

χ

τ ∗

α0.5
.

Though the reptation relaxation times are defined by equation (4.37), the
weights pα of the contributions of separate relaxation processes remain un-
known, and in fact, the replacement is forbidden, so that we prefer, as an
initial approximation, to consider evaluation of dynamic modulus without
any modification.
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The Case of Higher Frequencies

To extend the theory for higher frequencies, we have to consider the general
case, when the micro-viscoelasticity is given by (6.47). Using equations (4.28)
and (4.29), after some rearrangement, one can find the dynamic modulus

G(ω) = nT (−iω)
5∑

a=1

∑

α

p
(a)
α τ

(a)
α

1 − iωτ
(a)
α

(6.50)

where the times of relaxation and the corresponding weights are given by the
following expressions

τ (1)
α = τ+

α =
1
2

(
τα +

(
τ2
α − 2ττR

α

)1/2
)

,

τ (2)
α =

2ττ+
α

τ + 2τ+
α

, τ (3)
α =

2τ+
α τ −

α

τ+
α + τ −

α
, τ (4)

α =
2ττ −

α

τ + 2τ −
α

,

τ (5)
α = τ −

α =
1
2

(
τα −

(
τ2
α − 2ττR

α

)1/2
)

,

p(1)
α = T+

α S+
α

(
1 − 2EτR

α

2τ+
α − τ

)
,

p(2)
α = S+

α

EτR
α

τ
+ T+

α S+
α

2EτR
α

2τ+
α − τ

− (T+
α S−

α + T −
α S+

α )
2EτR

α

2τ −
α − τ

,

p(3)
α = (T+

α S−
α + T −

α S+
α )

(
EτR

α

2τ+
α − τ

+
EτR

α

2τ −
α − τ

− 1
)

,

p(4)
α = −S−

α

EτR
α

τ
+ T −

α S−
α

2EτR
α

2τ −
α − τ

− (T+
α S−

α + T −
α S+

α )
EτR

α

2τ+
α − τ

,

p(5)
α = T −

α S−
α

(
1 − 2EτR

α

2τ −
α − τ

)
.

Expression (6.50) for the dynamic modulus includes now five relaxation
branches and generalises formula (6.49) for higher frequencies.

The situation is illustrated in Fig. 17, which contains experimental values
of dynamic shear modulus for polystyrenes with different molecular weights
and theoretical dependences calculated according to equation (6.50) and pre-
sented by the solid lines. This comparison illustrates insufficiency of linear
approximation for macromolecule dynamics to describe the effects of linear
viscoelasticity of entangled systems. For polymers with the length M > 10Me

– strongly entangled systems, the most essential contribution is given by the
second relaxation branch, that is the orientation relaxation branch with relax-
ation times close to τ , which determines terminal characteristics (see the next
section). The largest conformational relaxation times, contribution of which
are shown by the dashed lines, have appeared to be unrealistically large for
strongly entangled systems in linear approximation of macromolecular dy-
namics. It was shown (see Section 4.2.2) that introduction of local anisotropy
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Figure 17. Dynamic modulus of typical polymers.
The experimental points (taken from the review by Watanabe 1999) are due to the

measurements of Schausberger et al. (1985) for polystyrenes. The numbers indicate the
lengths of macromolecules 10−3 · M . The reference temperature is T = 180◦ C, G′

e =

2 × 105 Pa. The length between entanglement is Me = 16000, so that the theoretical
dependences, shown by the solid lines, are calculated for the numbers of entanglements

per macromolecule Z = 2.125, 3.813, 7.813, 18.25, 47.31, 158.75, which induce, according
to relations (3.17), (3.25) and (3.29), the corresponding values of parameters χ, B, and

E. The separate contributions from the conformational relaxation branches are shown by
dashed lines.

of mobility helps one to improve the situation: the largest relaxation times de-
crease when the coefficient of local anisotropy increases. However, one can see
that the contribution of the conformation reptation branch into dynamic mod-
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ulus appears to be negligible for the high-molecular-weight polymers in the
region of low frequencies, so that, whichever mechanism of conformational re-
laxation is realised, the second branch gives a good approximation of terminal
quantities for the strongly-entangled systems. The remaining branches merge
and form a group of slow relaxation times. The absence of non-linear terms
in the macromolecular dynamics affects also the behaviour in the transition
region about M ≈ 10Me. The difference between theoretical and empirical
results for polymers with length M < 10Me – weakly entangled systems, can
be also connected, in particular, by polydispersity of polymers, which is larger
for low-molecular weight samples, than for high-molecular weight ones.

One can see that the approximation of the theory, based on the linear
dynamics of a macromolecule, is not adequate for strongly entangled systems.
One has to introduce local anisotropy in the model of the modified Cerf-Rouse
modes or use the model of reptating macromolecule (Doi and Edwards 1986)
to get the necessary corrections (as we do in Chapters 4 and 5, considering
relaxation and diffusion of macromolecules in entangled systems). The more
consequent theory can be formulated on the base of non-linear dynamic equa-
tions (3.31), (3.34) and (3.35).

6.4.3 Self-Consistency of the Mesoscopic Approach

One can notice that the dissipative terms in the dynamic equation (3.11)
(taken for the case of zero velocity gradients, νij = 0) have the form of the
resistance force (D.3) for a particle moving in a viscoelastic liquid, while the
memory functions are (with approximation to the numerical factor) fading
memory functions of the viscoelastic liquid. The macromolecule can be con-
sidered as moving in a viscoelastic continuum. In the case of choice of memory
functions (3.15), the medium has a single relaxation time and is characterised
by the dynamic modulus

Gs(ω) =
−iωηs

1 − iωτ
, Ge = lim

ω→∞
G(ω) =

ηs

τ

where τ is the correlation time introduced in (3.15), and ηs is a constant.
One can say that the written dynamic modulus characterises the micro-
viscoelasticity.

On the other hand, the properties of the system as a whole can be cal-
culated and the macroscopic dynamic modulus can be determined. Here the
question of the relation between the postulated micro-viscoelasticity and the
resulting macro-viscoelasticity appears. The answer requires a properly for-
mulated self-consistency condition. Simple speculations show that equality
of the micro- and macro-viscoelasticity cannot be obtained. Nevertheless, it
is natural to require the equality of relaxation times of micro- and macro-
viscoelasticities. It will be shown in this section that this condition can be
satisfied.
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First, we shall consider in detail the characteristic quantities: the viscos-
ity coefficient η and the elasticity coefficient ν, defined by expansion (6.11),
and the value of the dynamic modulus on the plateau Ge. The latter can be
calculated as the limiting value of the modulus at frequencies satisfying the
relation

τ −
α < ω−1 < τ +̂

α ≈ τ.

The estimation of the main terms of expansion of dynamic modulus (6.49)
determine the expressions for the terminal quantities

Ge = nT

N∑

α=1

2χα2 + ψ(χα2 + 1 + ψ)
2χα2(χα2 + 1 + ψ)2

,

η = nTτ ∗B

N∑

α=1

(
1

α2(χα2 + 1 + ψ)
+

ψ

α2(2χα2 + 1 + ψ)

)
,

ν = nT (τ ∗B)2
N∑

α=1

2χψ(χα2 + 1 + ψ)
α2(2χα2 + 1 + ψ)

.

A preliminary estimate of χ which, according to (5.8), can be interpreted
as the ratio of the square of the tube diameter (2ξ)2 to the mean square end-
to-end distance 〈R2〉0, shows that χ � 1 for strongly entangled systems. For
large N, this enables us to replace summation by integration and, according to
the rules of Appendix G, to obtain expressions for the characteristic quantities

Ge = nT

[
π2

12
ψ

χ(1 + ψ)
+

π

8
2 − ψ

(1 + ψ)3/2
χ−1/2

]
,

η = nTτ ∗B

[
π2

6
− π

2

(
χ

1 + ψ

)1/2
]

, (6.51)

ν = nT (τ ∗B)2
[

π2

3
χψ

1 + ψ
− π

2

(
2χ

1 + ψ

)3/2

2ψ

]
.

These expressions are valid for arbitrary ψ and small χ. We can then
distinguish between two cases, namely: for systems consisting of very long
molecules in the almost complete absence of the solvent (strongly entangled
systems) we have ψ 	 1, whereas ψ � 1 for a concentrated system consisting
of not very long macromolecules (weakly entangled systems). In the latter
case expressions (6.51) at ψ = 0 are identical to expressions (6.39) and (6.40).
Here, we shall consider the former case, when ψ 	 1 and find from (6.51) the
zeroth-order terms in power of ψ−1.

Ge =
π2

12
nTχ−1, η =

π2

6
nTτ ∗B, ν =

π2

3
nT (τ ∗B)2χ. (6.52)

One can note that the relaxation times of the second branch are very close
to each other, so that the frequency dependence of the modulus could be
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approximated by a expression with the single relaxation time determined by
the relation

τ̄ =
η

Ge
= 2τ ∗Bχ = τ.

The relaxation time that we have determined may be referred to as the
terminal viscoelastic relaxation time; it is equal to the relaxation time which
was introduced to characterise the medium surrounding the chosen macro-
molecule. Thus, for ψ → ∞, the theory is self-consistent and this confirms
the statement of Section 3.1.1 that chains of Brownian particles are moving
independently in a liquid made of interacting Kuhn segments.

The condition of self-consistency, as a requirement of the identity of the
times of relaxation of macro- and micro-viscoelasticity, gives the following
relation for the first-order terms in power of ψ−1 of expansion of (6.51)

ψ =
4π2

9
1
χ

. (6.53)

This relation is practically identical to relation (5.17).
Equation (6.52) and the experimental data allow us to estimate the pa-

rameters of the theory χ and τ ∗B which can be also estimated directly by
other methods discussed in Chapter 5. So, the consistency of the theory can
be tested.

6.4.4 Modulus of Elasticity and the Intermediate Length

Initially, the elasticity of concentrated polymer systems was ascribed to the
existence of a network in the system formed by long macromolecules with
junction sites (Ferry 1980). The sites were assumed to exist for an appreciable
time, so that, for observable times which are less than the lifetime of the site,
the entangled system appears to be elastic. Equation (1.44) was used to esti-
mate the number density of sites in the system. The number of entanglements
for a single macromolecule Z = M/Me can be calculated according to the
modified formula

Ge = nT
M

Me
(6.54)

where n is the density of the number of macromolecules and T is temperature
in energy unit.

The length of a macromolecule between adjacent entanglements Me is used
as an individual characteristic of a polymer system. Table 1 contains values
of Me for certain polymer systems. The more complete list of estimates of the
quantity Me can be found in work by Aharoni (1983, 1986). One can compare
expressions (6.52) and (6.54) for the value of the modulus on the plateau to
see that the length of a macromolecule between adjacent entanglements Me

is closely connected with one of the parameters of the theory

χ =
π2

12
Me

M
. (6.55)
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We should note, recalling the interpretation of χ as the ratio of the doubled
intermediate length to the size of the coil discussed previously (formula (5.8)),
that the length Me, determined in the usual way, is actually related to the
intermediate length ξ. Expression (6.52) can be rewritten in a form which is
identical to the relation by Doi and Edwards (1986)

Ge =
2
3
nT

〈R2〉
(2ξ)2

.

Note that the squared diameter of the Doi-Edwards tube relates to our inter-
mediate length as follows

d2 =
6
5
(2ξ)2. (6.56)

The intermediate length (tube diameter) 2ξ can be estimated from the mod-
ulus with the aid of the above equations. Comparison of values of the in-
termediate length found from dynamic modulus and from neutron-scattering
experiments was presented by Ewen and Richter (1995). They found the val-
ues to be close to each other, though there is a difference in the temperature
dependence of the values of intermediate length found by different methods.

Although a network is not present in a concentrated solution, there exists
a characteristic length, which had earlier been assumed the distance between
neighbouring network sites. The characteristic length is a dynamic one. There
are no temporary knots in a polymer system, though there is a character-
istic time, which is the lifetime of the frozen large-scale conformation of a
macromolecule in the system. So, the conceptions of intermediate length and
characteristic time are based on deeper ideas and are reflected in the theory.

6.4.5 Concentration and Macromolecular Length Dependencies

Thus in the mesoscopic approximation or, in other words, in the mean-field
approximation, the dynamic shear modulus of the melt or the concentrated
solution of the polymer (strongly entangled systems) is represented by a func-
tion of a small number of parameters

G(ω) = nTf(τ ∗ω, B, χ). (6.57)

In this case, one assumes that B 	 1, and, hence, it follows that τ > τ ∗,
which fact imposes certain restrictions on χ, so that 1/B < χ � 1. For these
values of B and χ, the theory is found to be self-consistent for ψ 	 1, so
that once again, as was shown in Section 6.4.3, the formulae for the dynamic
modulus lead to expressions for the characteristic quantities

η =
π2

6
nTτ ∗B, τ = 2τ ∗Bχ,

ν =
π2

3
nT (τ ∗B)2χ, Ge =

π2

12
nTχ−1.

(6.58)
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Experiments reveal that the dynamic modulus and the characteristic quan-
tities (6.58) depend on the polymer concentration c and length M of the
macromolecule (Ferry 1980), and these dependencies are implied through the
parameters of the theory.

In accordance with equations (1.33) and (4.25) we can write

n ∼ c

M
, τ ∗ ∼ ζ0M

2C∞
T

(6.59)

where ζ0 is the monomer friction coefficient and C∞ is a quantity connected
with the temperature dependence of the size of a macromolecular coil (see
Section 1.1). The values of parameter C∞, which reflects the thermodynamic
rigidity of the macromolecule, are given for different polymers in tables of the
monographs by Flory (1969) and by Tsvetkov et al. (1964).

The mesoscopic parameters χ and B, as was shown earlier in Section 3.3.4,
can be written as functions of a single argument, which can now be rewritten
as

n〈R2〉3/2 ∼ C3/2
∞ cM1/2. (6.60)

This allows one to write the dependencies of the characteristic quantities on
the concentration of polymer and on the thermodynamic rigidity, if the de-
pendence on molecular weight of the macromolecule, for example, is known.
With help of the result of Section 3.3.4 (see formulae (3.30)), one can obtain
for the strongly entangled systems

η ∼ ζ0C
3δ+1

∞ c2δ+1Mδ+1, ν ∼ ζ2
0C3δ−1

∞ c4δ−1M2δ+2,

Ge ∼ TC3
∞c3M0, τ ∼ 1

T
ζ0C

3δ−2
∞ c2δ−2Mδ+1.

(6.61)

These equations allow one to establish various relations between the char-
acteristic quantities, while the only index δ ought to be evaluated empirically.
The data obtained for almost monodisperse samples of polymer melts of dif-
ferent molecular weight allows one to evaluate for high molecular weights
δ = 2.4 (Berry and Fox 1968, Ferry 1980). Empirical estimate corresponds to
the coarse theoretical estimation in Section 3.3.2, according to which δ = 2
or δ = 3. The molecular-weight dependencies of other quantities in (6.61) are
typical for high-molecular-weight polymers: Ge ∼ M0, the dependence of η
and of τ on the length of a macromolecule is the same (Ferry 1980).2.

2 The reptation-tube model, being used for interpretation of viscoelastic behaviour of the

system, has allowed to obtain (Doi and Edwards 1986) the relation for terminal character-
istics

η ∼ M3, τ ∼ M0
0 M3.

The small deviation of the derived value of the index 3 from the empirical value 3.4 (see
equations (6.43) and (6.44)) gave rise to the hopes that some improvements of the model

could bring the correct results, at least, for strongly entangled systems. However, it ap-
peared that the results delivered by the model far from empirical results (6.43) and (6.44)

more, than one could earlier imagine (Altukhov et al. 2004). To appreciate these results
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At the comparison of concentration dependencies of the characteristic
quantities (6.61) with experimental determinations, one has to remember that
effect of excluded volume was not taken into account in equations (6.61),
which allow us to say only about qualitative correspondence. The behaviour
of the initial viscosity is the most widely studied (Poh and Ong 1984,
Takahashi et al. 1985). The concentration dependence of the viscosity co-
efficient in the “melt-like” region can be represented by a power law (Phillies
1995). The index can be found to be approximately 2δ + 1, in accordance
with (6.61). There are some differences in the behaviour of polymer solutions,
which are connected with different behaviour of macromolecular coils at dilu-
tion.

One should note once again that the above discussion and expressions are
valid only for very long macromolecules and in the limit of very high concen-
trations. For semi-dilute solutions, the analysis should also include another
non-dimensional parameter (see Sections 1.5 and 1.6), but then the results
would become more complicated.

6.4.6 Frequency–Temperature Superposition

The dependence of the characteristic quantities (6.58) on temperature is
mainly determined by the monomer friction coefficient ζ0, which depends on
temperature, concentration, and (for small M) of molecule length (Berry and
Fox 1968). The dependencies were recently discussed by Tsenoglou (2001).
The monomer friction coefficient ζ0 is a material characteristic of the system,
its value is strongly determined by chemical structure of macromolecule as
was shown for polybutadiene by Allal et al. (2002).

The value of the coefficient of friction is connected with relative motion
of small portions of the macromolecule, so that its temperature dependence
is similar to that found for low-molecular-weight liquids, and can be written
in the following form at temperatures much higher than the glass transition
point

ζ0 ∼ exp
U

T
(6.62)

where U is the activation energy that depends on the molecular weight (for
small M), on the concentration, and also on the temperature, if the tem-
perature range in which the viscosity is considered is large. Near the glass
transition point Tg, we have

properly, one has to consider the terminal relaxation time, distinguishing the probe macro-

molecule (with molecular weight or length M) and the neighbouring macromolecules (with
the length M0), even if all of them are equal. The reptation relaxation time, derived by

Doi and Edwards, does not depend on the length of neighbouring macromolecules, which
strongly contradicts to empirical evidence (see Section 6.5.3, equation (6.78)). The numer-

ous attempts to improve the situation were controversial, so that there is a strong conviction
that the Doi-Edwards model does not provide the first or even zero approximation to the
theory of viscoelasticity of entangled system, though the reptation motion itself exists and

influences effects of viscoelasticity as will be discussed later in this chapter and in Chapter 9.
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ζ0 ∼ exp
[

A

fg − α(T − Tg)

]
(6.63)

where A is an individual parameter, fg is the volume fraction of free volume,
and α is the expansion coefficient of the liquid. Quantities A and fg are prac-
tically independent of the concentration and molecular weight, so that the
dependence of ζ0 on c and M is determined by the dependence of Tg on these
quantities.

We note that, since the parameters B and χ are practically independent
of temperature, the shape of the curves showing G/nT as a function of the
non-dimensional frequency τ ∗ω does not change as the temperature increases,
so that we can make a superposition using a reduction coefficient obtained
from the temperature dependence of the viscosity.

To determine the procedure for the reduction, we shall write down the
dynamic modulus at two different temperatures, one of which is a reference
temperature Tref and the other is an arbitrary temperature T ,

G(ω, Tref) = nT0f(τ ∗
Tref

ω, B, χ),
G(ω, T ) = nTf(τ ∗

T ω, B, χ).

One can consider the parameters B and χ to be independent of the tem-
perature and change the argument in the first line in such a way as to exclude
the non-dimensional function. Then we write down the rule for reduction as

G(aTω, Tref) =
ρTref Tref

ρT T
G(ω, T ), (6.64)

where the shift coefficient is given by

aT =
τ ∗

T

τ ∗
Tref

=
Tref (C3δ

∞ ρ2δ+1)Tref

T (C3δ
∞ ρ2δ+1)T

ηT

ηTref

. (6.65)

The above expressions confirm the known (Ferry 1980) method of reduc-
ing the dynamic modulus measured at different temperatures to an arbitrarily
chosen standard temperature Tref , while offering a relatively insignificant im-
provement on the usual shift coefficient

aT =
Tref ρTref ηT

T ρT ηTref

.

6.5 Dilute Blends of Linear Polymers

The change in the stress produced by the small amount of macromolecules of
another kind is, clearly, determined by the dynamics of the non-interacting
impurity macromolecules among the macromolecules of another length, so
that this case is of particular interest from the standpoint of the theory of the
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viscoelasticity of linear polymers. By studying a mixture of two polymers, one
of which is present in much smaller amounts, – a dilute blend, one has a unique
opportunity to obtain direct information about the dynamics of a chosen
single macromolecule among the neighbouring macromolecules (Pokrovskii
and Kokorin 1984).

6.5.1 Relaxation of Probe Macromolecule

Consider a system consisting of linear polymer with molecular weight M0 and
a small additive of a similar polymer with another molecular weight M . We
shall assume that the amount of the additive is so small that its molecules do
not interact with each other. The matrix is characterised by two characteris-
tic length: Me – the length of macromolecule between adjacent entanglements
and M ∗ ≈ 10Me – the critical length dividing weakly (macromolecules of the
matrix do not reptate) and strongly (macromolecules of the matrix do reptate)
entangled systems. To uncover which mechanism of diffusion and relaxation
of a probe macromolecules of the additive is realised, one can consider, fol-
lowing the speculations in Sections 4.2.3 and 5.1.2, the competition between
the diffusive and reptation mechanisms of motion of a macromolecule of the
additive to obtain the condition for realisation of reptation mechanism

2χ(Z)B(Z0) > π2, (6.66)

where Z0 and Z are the lengths of macromolecules of the matrix and the
additive, respectively, in units of Me. The function χ(Z0, Z) and B(Z0) are
given by equations (3.17) and (3.25). Taking these equation into account, one
can find from equation (6.66) that the lengths of the macromolecules of the
matrix and the macromolecule of the additive in the point, where the mech-
anism of relaxation of macromolecules of the additive changes, are connected
by relation

M

Me
=

1
3 · 21+δ

(
M0

Me

)δ

. (6.67)

If δ = 2.5, this relation reduces to equation

M

Me
= 0.03

(
M0

Me

)2.5

, (6.68)

which is identity at M = M0 ≈ 10Me, in accordance with the results of
Section 5.1.2.

Equation (6.68) determines a critical length M ∗, above which macro-
molecules of the additive do not reptate. The dependence of M ∗/Me on
M0/Me, according to the above equation at δ = 2.5, is depicted in Fig. 18
by solid line. For the matrix of short macromolecules, when M0 < 10Me,
the transition point is situated in the short-length region, so that the macro-
molecules of the additive, which are shorter than M0 but longer than M ∗,
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Figure 18. Alternative modes of motion of a macromolecule.
The realisation of a certain mode of motion of a macromolecule among other macro-
molecules depends on the lengths of both diffusing macromolecule and macromolecules

of the environment. The solid line M ∗ divides the dilute blends into those, in which
macromolecules of the additive can reptate, and those, where no reptation occurs. The

dashed line marks the systems with macromolecules of equal lengths.

do not reptate. However, if the matrix consists of macromolecules, for which
M0 > 10Me, there is a region between 10Me and M ∗ in which a probe macro-
molecules of the additive reptate. However, the macromolecules of additive
longer that M ∗ do not reptate in the matrix of shorter macromolecules with
M0 > 10Me. One has to discuss two cases: non-reptating and reptating macro-
molecules.

6.5.2 Characteristic Quantities

The considered system contains n0 macromolecules of the matrix and n macro-
molecules of the additive per unit volume and can be characterised by dynamic
modulus G(ω). The medium, in which the macromolecules of the additive
move, is a system consisting of a linear polymer of molecular weight M0,
which is characterised by the modulus G0(ω) = −iωη0(ω). The change of dy-
namic modulus, taking into account the fact that some of the macromolecules
of the matrix have been replaced by impurity macromolecules, can be written
as

G(ω) − G0(ω) = n

(
g(ω) − M

M0
g0(ω)

)
(6.69)

where g(ω) and g0(ω) are the contributions to the dynamic modulus, respec-
tively, from a single macromolecule of the impurity and the matrix, which can
be easily found from the derived expressions. We shall consider the case of
low frequencies, for which the dynamic modulus can be written in the form
of the expansion given by (6.11), and introduce the characteristic quantities
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[η] = lim
c→0

η − η0

cη0
, [ν] = lim

c→0

ν − ν0

cν0
, (6.70)

which are apparently functions of the length (or molecular weight) of the
macromolecules of the matrix and the additive. The index 0 refers to the
matrix and c is the impurity concentration.

To calculate the characteristic quantities both for the matrix and for the
additive, we use equation (6.39), if ψ � 1, or (6.52), if ψ 	 1. We shall
assume that the macromolecules of the matrix are long enough, so that one
can write, taking also relations (6.69) into account, for coefficients of viscosity
and elasticity

η0 =
π2

6
n0Tτ ∗

0 B, ν0 =

⎧
⎨

⎩

π4

90 n0T (τ ∗
0 B)2, M0 < 10Me,

π2

3 n0T (τ ∗
0 B)2χ0, M0 > 10Me.

(6.71)

To choose a formulae for calculation the contributions of macromolecules of
the additive, one have to estimate value of ψ, which, according to equa-
tion (3.29) depends on both macromolecules of the matrix and macromolecules
of the additive. One can consider that the conditions of reptation correspond
also to the big values of ψ, which is realised at M < M ∗, and the case
M > M ∗ corresponds to the small values of ψ, so that one can write expres-
sions for coefficients of viscosity and elasticity of the system of independent
macromolecules of the additive suspended in the matrix as

η =
π2

6
nTτ ∗B, ν =

⎧
⎨

⎩

π4

90 nT (τ ∗B)2, M > M ∗,

π2

3 nT (τ ∗B)2χ, M < M ∗.
(6.72)

In equations (6.71) and (6.72), the quantities B and τ ∗
0 are considered as

functions of M0, and the characteristic relaxation time of the macromolecules
of the additive τ ∗ as a function of M .

Taking all this into account, one can find increments of viscosity and elas-
ticity in the form

η − η0 =
π2

6
nTτ ∗B

(
1 − M0

M

)
,

νb − ν0 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π4

90 nT (τ ∗B)2
(
1 − M3

0
M3

)
, M0 < 10Me, M > M0,

π2

3 nT (τ ∗B)2 Me
M

(
1 − M2

0
M2

)
, M0 > 10Me, M < M ∗,

π4

90 nT (τ ∗B)2
(
1 − 30

π2
MeM2

0
M3

)
, M0 > 10Me, M > M ∗.

(6.73)

Using the above relations and equations (6.58), one finds that for M 	 M0

[η] ∼ M −1
0 M, [ν] ∼

⎧
⎪⎪⎨

⎪⎪⎩

M −3
0 M3, M0 < 10Me,

M −2
0 M2, M0 > 10Me, M < M ∗,

M −2
0 M3, M0 > 10Me, M > M ∗.

(6.74)
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On the other hand, when M � M0 (this condition excludes the case M0 <
10Me) the characteristic quantities are negative and are independent of the
length of the matrix and of the impurity macromolecules

[η] ∼ M0
0 M0, [ν] ∼

{
M0

0 M0, M0 < 10Me,

M −1
0 M0, M0 > 10Me.

(6.75)

Results (6.74) and (6.75) do not depend upon any choice of the dependence
of B on the length (molecular weight) of the macromolecule.

The viscoelastic behaviour of dilute blends of polymers of different length
and narrow molecular weight distributions was investigated experimentally for
polybutadiene by Yanovski et al. (1982) and by Jackson and Winter (1995)
and for polystyrene by Watanabe and Kotaka (1984) and Watanabe et al.
(1985) (the results can be found in the work by Jackson and Winter (1995)).
The results for polybutadiene were approximated by Pokrovskii and Kokorin
(1984) by the dependencies

[η] ∼ M −0.8
0 M0.5, [ν] ∼ M

−(1.8→2.2)
0 M1.3→3.0. (6.76)

The comparison of the theoretical formulas (6.74) with the experimental
ones (6.76) shows the consistency of the results, though the absolute values of
indexes in formula for characteristic viscosity has appeared to be less that the-
oretical value 1. Unfortunately, the accuracy of original empirical data (in fact,
the required linear dependence of quantities on concentration had never been
reached in the work by Yanovski et al. 1982) does not allow one to say whether
there are any certain deviations from relations (6.74) or not. If relations (6.76)
are confirmed, it could mean that there are some unaccounted issues (intra-
chain hydrodynamic interaction, for example), which would decrease in values
of the index. Apparently, one needs in extra experimental data for different
polymer systems in both weakly and strongly entangled states to analyse the
situation in more details. Nevertheless, the above results confirm that the
contribution of the orientational relaxation branch of a macromolecule in an
entangled system dominates over the contribution of the reptation relaxation
branch in phenomena of linear viscoelasticity. Otherwise, by considering the
competing mechanism of relaxation – the reptation of the macromolecules,
one would apparently have, following Daoud and Gennes (1979), instead of
relation (6.74), the other expression for characteristic viscosity of blends for
M 	 M0

[η] ∼ M −3
0 M3 (6.77)

which deviates from empirical evidence (6.76) more than relations (6.74).

6.5.3 Terminal Relaxation Time

It was assumed that the quantity B is a function of M0, but, luckily, one does
not need in expression for explicit dependence to obtain the final results (6.74)
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and (6.75) for characteristic quantities for dilute blends of linear polymers.
However, the dependence of the quantity B on M0 can be recovered due
to empirical data. To estimate this dependence, one can consider terminal
relaxation time

τ =
ν − ν0

η − η0

and use equations (6.73) to obtain for M > M ∗

τ ∼
{

B(M0)M2, M0 < 10Me,

B(M0)M2, M0 > 10Me.
(6.78)

The first line is valid for the case when matrix is a weakly entangled matrix,
the second line – a strongly entangled matrix.

Watanabe (1999, p. 1354) has deducted that, according to experimental
data for polystyrene/polystyrene blends, when the matrix is a weakly entan-
gled system, terminal time of relaxation depends on the lengths of macro-
molecules as

τ ∼ M3
0 M2, (6.79)

while also for polystyrene/polystyrene blends, Montfort et al. (1984) found
different values of indexes (2.3 instead of 3 and 1.9 instead of 2); the difference
is discussed by Watanabe (1999, p. 1356). No empirical relation, similar to
relation (6.79), is available for strongly entangled matrices, but, as it can be
seen in plots of the paper (Watanabe 1999), that the value of the first index
are less that 3 in this case. It is possible that situation is different for weakly
and strongly entangled matrices, so that values of the index in formula (6.79)
could be different for these two types of systems.

The comparing formulae (6.78) and (6.79) allows one to estimate the de-
pendence of coefficient of enhancement on the lengths of macromolecules as

B ∼ M3
0 , (6.80)

that is δ = 3, in contrast with previous estimate of index as 2.4. The last value
of the index, as discussed in the end of the previous subsection, is followed
the suggestion that hydrodynamic interaction inside macromolecular coils is
ignored. One cannot exclude that this index could be greater, but, in this
case, value of the second index in equation (6.79) must be less.

The empirical result (6.80) does not correspond to the reliable results
for monodisperse (M0 = M) system well. Indeed, taking result (6.80) into
account, the terminal relaxation time (6.58) can be written as

τ ∼
{

M5, M < 10Me,

M4, M > 10Me.
(6.81)

To provide the validity of empirical dependencies of viscosity and terminal
relaxation time on the molecular length (relations (6.43) and (6.44)), the sum
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of the two indexes in equations (6.81) must have value 4.4 in the case, when
the matrix is a weakly entangled system, and value 3.4, when the matrix is a
strongly entangled system with macromolecular length M between 10Me and
M ∗.

6.5.4 A Final Remark

The investigation of viscoelasticity of dilute blends confirms that the reptation
dynamics does not determine correctly the terminal quantities characterising
viscoelasticity of linear polymers. The reason for this, as has already been
noted, that the reptation effect is an effect due to terms of order higher than
the first in the equation of motion of the macromolecule, and it is actually
the first-order terms that dominate the relaxation phenomena. Attempts to
describe viscoelasticity without the leading linear terms lead to a distorted
picture, so that one begins to understand the lack of success of the reptation
model in the description of the viscoelasticity of polymers. Reptation is im-
portant and have to be included when one considers the non-linear effects in
viscoelasticity.



Chapter 7
Equations of Relaxation

Abstract The discussion of relaxation and diffusion of macromolecules in
very concentrated solutions and melts of polymers showed that the basic
equations of macromolecular dynamics reflect the linear behaviour of a macro-
molecule among the other macromolecules, so that one can proceed further.
Considering the non-linear effects of viscoelasticity, one have to take into
account the local anisotropy of mobility of every particle of the chains, in-
troduced in the basic dynamic equations of a macromolecule in Chapter 3,
and induced anisotropy of the surrounding, which will be introduced in this
chapter. In the spirit of mesoscopic theory we assume that the anisotropy is
connected with the averaged orientation of segments of macromolecules, so
that the equation of dynamics of the macromolecule retains its form. Eventu-
ally, the non-linear relaxation equations for two sets of internal variables are
formulated. The first set of variables describes the form of the macromolecu-
lar coil – the conformational variables, the second one describes the internal
stresses connected mainly with the orientation of segments.

7.1 Normal-Modes Form of Dynamic Equation

7.1.1 Transition to the Normal Modes

According to speculations in Chapter 3 (see Section 3.2), the standard equa-
tion of macromolecular dynamics can be written in the form

m
d2rα

i

dt2
= −ζ(ṙα

i − νijr
α
j ) + Fα

i + Gα
i − 2μTAαγrγ

i + φγ
i (t). (7.1)

The external resistance force of a particle in equation (7.1) is split into two
terms, the first of which is equal to ζ(uγ

j − νjlr
γ
l ) – the resistance in a cor-

responding ‘monomer’ liquid, and the second one, Fα
i , is connected with the

neighbouring macromolecules and satisfies the equation, which can be written
in the simplest covariant form (see Section 8.4 and Appendix D).
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τ

(
dFα

i

dt
− ωilF

α
l

)
+ Fα

i = −ζBHαγ
ij (uγ

j − νjlr
γ
l ). (7.2)

Similarly, the internal resistance force Gα
i satisfies the covariant-form equation

τ

(
dGα

i

dt
− ωilG

α
l

)
+ Gα

i = −ζEGαγ
ij (uγ

j − ωjlr
γ
l ). (7.3)

The matrices Hαγ
ij and Gαγ

ij describe the mutual influences of the particles of
the chain and depend not only on the direction of particle motion in com-
parison with direction of chain in the vicinity of the particle labelled α (the
local anisotropy) (see equation (3.13)), but also on the mean anisotropy of
the medium (the global anisotropy).

Equations (7.2) and (7.3) determine the covariant expressions for the exter-
nal and internal resistance forces, which, in linear approximation, can be writ-
ten as expressions (3.6) and (3.7), respectively. We may notice that to obtain
a more general linear form of equations for forces, the terms γilF

α
l and γilG

α
l

multiplied by arbitrary constants which, nevertheless, could depend on the
mode number, should be added to the left-hand side of equations (7.2)
and (7.3) respectively. Then, after having calculated the results, the arbitrary
quantities can be estimated on the basis of certain requirements (Pyshnograi
1997). However, further on we shall proceed with expressions (7.2) and (7.3),
for simplicity’s sake.

It is convenient to introduce the normal co-ordinates, using the transfor-
mation (1.13). In terms of the new variables

rα
i = Qαγργ

i , ψα
i = Qαγψγ

i , Fα
i = QαγΓ γ

i , Gα
i = QαγT γ

i

and one can rewrite the set of equations (7.1), (7.2), and (7.3) in the form

d
dt

ρα
i = ψα

i ,

m
d
dt

ψα
i = −ζ(ψα

i − νijρ
α
j ) + Γα

i + Tα
i − 2μTλαρα

i + ξα
i ,

τ

(
d
dt

Γα
i − ωilΓα

l

)
+ Γα

i = −ζBHαν
ij (ψν

j − νjlρ
ν
l ),

τ

(
d
dt

Tα
i − ωilT

α
l

)
+ Tα

i = −ζEG αν
ij (ψν

j − ωjlρ
ν
l ),

(7.4)

where
Hαν

ij = QμαHμγ
ij Qγν , G αν

ij = QμαGμγ
ij Qγν . (7.5)

We reproduce the procedure used in Section 3.4 and consider the stochastic
forces ξα

i in the above system of equations as the sum of two independent
processes

ξα
i (t) = ξ̄α

i (t) + ξ̃α
i (t).
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It is convenient to introduce a variable ϕα
i = Γα

i + Tα
i + ξ̃α

i (t), to write the
dynamic equations (7.4) in more compact form

d
dt

ρα
i =ψα

i ,

m
d
dt

ψα
i = − ζ(ψα

i − νijρ
α
j ) + ϕα

i − 2μTλαρα
i + ξ̄α

i ,

τ

(
dϕα

i

dt
− ωilϕ

α
l

)
= − ϕα

i − ζBHαν
ij (ψν

j − νjlρ
ν
l )

− ζEG αν
ij (ψν

j − ωjlρ
ν
l ) + σα

i (t).

(7.6)

The stochastic process σα
i (t) is related to the random force ξ̃γ

i (see details
in Section 3.4). Both ξ̄α

i and σα
i (t) are assumed to be independent Gaussian

processes.
The set of stochastic equations given by (7.6) is equivalent (in the linear

case) to (3.4)–(3.7) with the memory functions defined in Section 3.3.1 but,
in contrast to the latter case, set (7.6) is written as a set of Markov stochastic
equations. This enables us to determine the variables that describe the col-
lective motion of the set of macromolecules. In this particular approximation,
the interaction between neighbouring macromolecules ensures that the phase
variables of the elementary motion are the position co-ordinate, the velocity,
and the external random force. The set of elementary modes describes the
dynamics of the entire set of entangled macromolecules.

We note once more that the Markovian representation of the equation of
macromolecular dynamics cannot be made for any arbitrary case, but only for
some simple approximations of the memory functions. The above system de-
scribes the situation when the medium is characterised by the only relaxation
time, but generalisation for few relaxation times is possible.

7.1.2 Anisotropy of Particle Mobility

The quantities (7.5) can be determined in some simple cases. In the simplest
case, when no hydrodynamic interaction is assumed, one uses equation (3.8)
with matrix (3.10) and, omitting the diffusive normal mode with the label 0,
has

Hαν
ij = δανδij , G αν

ij = δανδij . (7.7)

A more complicated cases take into account global and local anisotropy.

Global Anisotropy

The system of entangled macromolecules becomes anisotropic when velocity
gradients are applied, and one can assume that each Brownian particle of
the chain moves in the anisotropic medium. The expressions for the discussed
quantities (7.5) for case, when one can neglect the hydrodynamic interaction
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and consider the particles of the chain moving in anisotropic medium1 can be
written as

Hαν
ij = δανβij , G αν

ij = δανεij , (7.8)

where βij and εij are tensor functions of the anisotropy tensor aij which is
discussed later. In linear approximation, the functions have the simple form

βik = δik − 3βa′
ik − κallδik,

εik = δik − 3εa′
ik − νallδik

(7.9)

where the notation for the deviator of the tensor of anisotropy is used

a′
ik = aik − 1

3
allδik.

The linear approximation (7.9) is insufficient to describe the variation
of the friction coefficient at large velocity gradients. In this case, approxi-
mation (7.9) can be generalised (Pokrovskii and Pyshnograi 1990, 1991) to
become

βik = (δik + 3βa′
ik + κallδik)−1,

εik = (δik + 3εa′
ik + νallδik)−1. (7.10)

With accuracy up to the first-order terms in respect of the tensor of anisotropy,
expressions (7.9) and (7.10) coincide. Of course, one can use any other approx-
imation that is consistent with (7.9).

The tensor of local anisotropy aik is assumed to be determined by orienta-
tion of the segments of macromolecules which, according to the stress optical
law (see Chapter 10), is proportional to the stress tensor, so that

aij ∼ σij . (7.11)

In the simplest cases it can be reduced to the tensor of deformation of macro-
molecular coils

aij =

(∑
ν

〈ρν
i ρν

j 〉
/∑

ν

〈ρν
kρν

k 〉0

)
− 1

3
δij .

In this case, the friction coefficient of the Brownian particle changes, if the
form of the macromolecular coils, described by the terms with parameters β
and ε, changes or the volume of the macromolecular coil, described by the
terms with parameters κ and ν, changes.

1 Expressions for the resistance coefficients of a particles in an anisotropic liquid can be
found in papers by Tskhai and Pokrovskii (1985) and by Pokrovskii and Tskhai (1986).
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Local Anisotropy

The situation is getting considerably complicated, if one takes local anisotropy
into account. The mobility of a particle along the axis of a macromolecule is
considered to be bigger than that in the perpendicular direction, so that the
entire macromolecule can move easier along its contour. Introduction of the
local anisotropy of mobility in Chapter 3 (equations (3.12) and (3.13)) allows
us to specify the extra forces of external and internal resistance and define
the quantities (7.5) as

Hαν
ij = QμαHμγ

ij Qγν , G αν
ij = QμαGμγ

ij Qγν ,

Hαγ
ij = δαγ

(
δij − 3

2
ae

(
eα

i eα
j − 1

3
δij

))
,

Gαγ
ij =

1
N

{
(N + 1)δαγ

[
δij − 3

2
ai

(
eα

i eα
j − 1

3
δij

)]

−
[
δij − 3

2
ai

(
eγ

i eγ
j − 1

3
δij

)]}
,

(7.12)

where ae and ai are measures of local anisotropy. Every internal particle of
the chain can be ascribed by the direction vector

eα =
rα+1 − rα−1

|rα+1 − rα−1| , α = 1, . . . , N − 1,

while the zeroth and the last particles having no direction, so that there are
N − 1 vectors for a chain. It is convenient formally to consider the product of
components of vectors e0 and eN to be defined as

e0
i e

0
j = eN

i eN
j =

1
3
δij .

While introducing of the global anisotropy, the equation for the macro-
molecular dynamics remains linear in co-ordinates and velocities, the intro-
duction of the local anisotropy makes it non-linear in co-ordinates. Both global
and local anisotropy are needed to describe the non-linear effects of the relax-
ation phenomena in the mesoscopic approximation.

7.2 Equations for the Non-Equilibrium Moments

The dynamics of the macromolecule in the form of a set of differential equa-
tions of the first order is convenient for derivation of relaxation equations
(Volkov and Vinogradov 1984, 1985; Volkov 1990). As a starting point, we
use equations (7.6) and consider m = 0 in this system, so that the second
equation allows us to define
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ϕα
k = ζ(ψα

k − νkjρ
α
j ) + 2μTλαρα

k + ξ̄α
k (7.13)

and to rewrite the system of equations (7.6) as

d
dt

ρα
i = ψα

i ,

d
dt

ψα
i = 0,

τ
d
dt

ϕα
i = τωilϕ

α
l − ζ(ψα

i − νijρ
α
j ) − 2μTλαρα

i

− ζBαν
ij (ψν

j − νjlρ
ν
l ) − ζG αν

ij (ψν
j − ωjlρ

ν
l ) + ξ̄α

i + σα
i .

These equations allow one to find relaxation equation for different mo-
ments, if the quantities Bαν

ij and G αν
ij are given. We consider here that the

quantities are independent on the co-ordinates; the more complicated case,
when these quantities depend on the co-ordinates of particles, is left for other
researchers. It is convenient in this section to omit the mode label and write
down the above equations in the form

dρi

dt
= ψi,

d
dt

ψi = 0, (7.14)

dϕi

dt
= κijρj + λijψj + ωijϕj +

1
τ

(ξ̄α
i + σα

i ),

where

κij =
ζ

τ

(
− 1

2τR
δij + νij + Bilνlj + Eilωlj

)
,

λij = − ζ

τ
(δij + Bij + Eij) , (7.15)

Bij = Bβij , Eij = Eεij , τR =
ζ

4μTλ
.

Further on we shall use the following symbols for the moments of the
considered variables

rik = 〈ρiρk 〉, nik = 〈ρiϕk 〉,
yik = 〈ρiψk 〉, mik = 〈ψiϕk 〉,
zik = 〈ψiψk 〉, lik = 〈ϕiϕk 〉.

The moments can be found as solutions of the set of equations, which are
followed by set (7.14)
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drik

dt
= yik + yki,

dyik

dt
= zik,

dzik

dt
= 0,

dnik

dt
= mik + κkjrji + λkjyij + ωkjnij +

1
τ

〈ρi(ξ̄α
i + σα

i )〉,

dmik

dt
= κkjyji + λkjzji + ωkjmij +

1
τ

〈ψi(ξ̄α
i + σα

i )〉,

dlik
dt

= κijnjk + κkjnji + λijmjk + λkjmji + ωijljk + ωkj lji

+
1
τ

〈ϕi(ξ̄α
i + σα

i (t)) + ϕk(ξ̄α
i + σα

i )〉.

To determine the average quantities, which contain the random forces in
the above-written equations, one can consider the equilibrium situation. The
unknown terms can be evaluated through the equilibrium values of moments,
which can be used to rewrite the equations for the moments. Finally, the set of
relaxation equations has the form of the above-written equations, where the
terms with random forces and the terms containing the product of velocity
gradient and an equilibrium moment are omitted. Instead of moments, the
differences in the moments and their equilibrium values, such as rik − r0

ik

instead of rik, for instance, ought to be written, so that one has

drik

dt
= yik + yki,

dyik

dt
= zik,

dzik

dt
= 0,

dnik

dt
= mik − m0

ik + κkjrji − κ0
kjr

0
ji + λkjyij + ωkjnij ,

dmik

dt
= κkjyji + ωkjmij ,

dlik
dt

= κijnjk − κ0
ijn

0
jk + κkjnji − κ0

kjn
0
ji + λijmjk + λkjmji

+ ωij ljk + ωkj lji

(7.16)

where κ0
ij = − ζ

τ
1

2τR δij is the value of κij given by (7.15) at zero velocity
gradients. The fact that some of the equilibrium moments are equal to zero,
as shown below, has already been taken into account in equations (7.16).

The system of equations (7.16) determines the unknown quantities as func-
tions of time and the parameters of the problem: ζ, B, E, and the parameters
of anisotropy. To find a solution, one uses the equilibrium values of moments,
three of which are found in Section 4.1.2
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r0
ik =

1
2μλ

δik, z0
ik =

T

m
δik, y0

ik = 0. (7.17)

The others are contained in the following relations, which are consequences of
relation (7.13)

nik = n0
ik + ζ(yik − νkjrji) +

ζ

2τR
(rik − r0

ik),

mik = m0
ik + ζ(zik − νkjyji) +

ζ

2τR
yki, (7.18)

lik = l0ik + ζ(mki − νkjnji) +
ζ

2τR
(nki − n0

ki).

One can note that, with help of the one of the above relations, the fourth
equation in the set (7.16) can be written as

dnik

dt
= ζzik − ζνkjyji +

ζ

2τR
yki + κkjrji − κ0

kjr
0
ji + λkjyij + ωkjnij .

From the other side, after having differentiated the first of equations (7.18),
one has

dnik

dt
= ζ(zik − νkj(yji + yij)) +

ζ

2τR
(yik + yki).

These equations are followed by the relation
( τ

2τR
δkj + δkj + Bkj + Ekj

)
yij

= − 1
2τR

(rik − r0
ik) +

( τ

2τR
δkl + δkl + Bkl + Ekl

)
ωljrji + Bklγljrji

+ τνkjyij + τωkjyji +
τ

ζ
ωkjn

0
ji +

τ

2τR
ωkjr

0
ji, (7.19)

where terms containing velocity gradients in the second power are already
excluded.

The equation (7.19) has to be considered as an equation for the quantity
yik. When the velocity gradients are absent,

yik = − 1
2τ♦

(rik − r0
ik), τ♦ =

τ

2
+ τR (1 + B + E) . (7.20)

The symbol ♦ is used here to show the place of label of relaxation times which
are identical to relaxation times (4.26). Then, one can see that the last four
terms in (7.19) can be neglected and the last equation allows us to find the
relation

yik = − 1
2τ♦

(rij − r0
ij)bjk + ωkjrji +

BτR

τ♦
rijγjlclk, (7.21)

where the following notations are used



7.3 Relaxation of the Macromolecular Conformation 143

bik = τ♦

(
τ

2
δik + BτR

(
βik +

E

B
εik

))−1

,

cik = βijbjk,

βik = (δjk + κallδjk + 3βa′
jk)−1,

εik = (δjk + νallδjk + 3εa′
jk)−1.

(7.22)

Now one can find the quantity yik + yki and then, according to the first
equation from (7.16), write down the relaxation equation for the moment rij

drik

dt
− ωijrjk − ωkjrji − BτR

τ♦
(rijγjlclk + rkjγjlcli)

= − 1
2τ♦

((
rij − r0

ij

)
bjk +

(
rkj − r0

ij

)
bji

)
. (7.23)

We remind the reader that the equations are valid for the case when m → 0,
ζ → 0, ζB �= 0, ζE �= 0.

7.3 Relaxation of the Macromolecular Conformation

The mean size and form of the macromolecular coil is characterised by the set
of the tensors 〈ρα

i ρα
j 〉, α = 1, 2, . . . , N . To describe relaxation of macromolec-

ular coil, it is convenient to use the non-dimensional tensor variables

xα
ij = 〈ρα

i ρα
j 〉/〈ρα

l ρα
l 〉0.

We have to take into account that there are two competing mechanisms of
conformational relaxation, whereas it is clear that only one of them is re-
alised for a given system with a certain values of parameters B, χ and ψ.
After having compared the relaxation times of the two competing mecha-
nisms (Section 4.2.3), we ought to conclude that there is a certain value of
the parameter χ∗ ≈ 0.1 at which the mechanism of relaxation changes. So, we
have to consider two cases.

7.3.1 Diffusive Relaxation

The relaxation equation for conformation of macromolecule follows directly
from the relation (7.23) of the previous section

dxα
ik

dt
− νijx

α
jk − νkjx

α
ji +

EτR
α

τα
(xα

ijγjlclk + xα
kjγjlcli)

= − 1
2τα

[(
xα

ij − 1
3
δij

)
bjk +

(
xα

kj − 1
3
δkj

)
bji

]
, (7.24)

where the notations of the previous chapters are used for relaxation times
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τα =
τ

2
+ BτR

α (1 + E/B), τR
α = τ ∗/α2.

We consider the situations when the values of parameter ψ are small, in
other terms

χ∗ < χ < 0.5, ψ � 1,

so that the first term in the expression for the relaxation time τα in the above-
written formula can be neglected

τα = BτR
α , α = 1, 2, . . . � (1/χ)

1
2 .

This relation allows us to write relations (7.22) as

bik ≈ β−1
ik , cik ≈ δik

and simplify the relaxation equation (7.24) as

dxα
ik

dt
− νijx

α
jk − νkjx

α
ji = − 1

2τα

[(
xα

ij − 1
3
δij

)
bjk +

(
xα

kj − 1
3
δkj

)
bji

]
.

(7.25)
Let us note that one can neglect the effect of anisotropic environment and
have obtained the simpler linear form of relaxation equation

dxα
ik

dt
− νijx

α
jk − νkjx

α
ji = − 1

τα

(
xα

ik − 1
3
δik

)
. (7.26)

A solution of equation (7.25) for a steady case at small velocity gradients
can be easily found as an expansion in series in powers of velocity gradient. Up
to the second-order terms with respect to velocity gradients, equation (7.26)
immediately gives

xα
ik =

1
3
δik +

2
3
BτR

αγik +
2
3
(BτR

α )2(ωilγlk + ωklγli) +
4
3
(BτR

α )2γilγlk. (7.27)

Now it is not difficult to calculate the amendment to formula (7.27) due to
effect of anisotropy. At small velocity gradients, the tensor of anisotropy aik is
small, so that according to formulae (7.10) and (7.22), in linear approximation

bik ≈ δik + 3βaik.

Then, the solution of equation (7.25) with approximation up to the terms of
the second order in velocity gradients has the form

xα
ik =

1
3
δik +

2
3
BτR

αγik +
2
3
(BτR

α )2(ωilγlk + ωklγli)

+
4
3
(BτR

α )2γilγlk − BβτR
α (ailγlk + aklγli). (7.28)

One can see that relations (7.27) and (7.28) up to the first term coincides
with relation (4.47) which is valid for small values of α, namely, α2 � 1/χ.
We have to consider this relation to be a condition of applicability of the
equation (7.24).
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7.3.2 Reptation Relaxation

Equations of the previous subsection describe relaxation of large-scale con-
formation of the macromolecule due to diffusive motion of particles through
the sea of segments, which is valid, as we considered in Chapters 4 and 5, for
weakly entangled systems. For highly entangled system, when

χ < χ∗ � 1,

relaxation of the macromolecular coil is realised through reptation instead of
the more slow mechanism of rearrangement of all the entangled chains.

One has no results for this case derived consequently from the basic equa-
tions (7.6) with local anisotropy. Instead, to find conformational relaxation
equation, we shall use the Doi-Edwards model, which approximate the large-
scale conformational changes of the macromolecule due to reptation. The
mechanism of relaxation in the Doi-Edwards model was studied thoroughly
(Doi and Edwards 1986; Öttinger and Beris 1999), which allows us to write
down the simplest equation for the conformational relaxation for the strongly
entangled systems

dxα
ik

dt
− νijx

α
jk − νkjx

α
ji = − 1

2τ rep
α

[(
xα

ij − 1
3
δij

)
bjk +

(
xα

kj − 1
3
δkj

)
bji

]
.

(7.29)
We assume in the above equation, that anisotropy of environment is possible.
If one neglect the latter, the relaxation equation takes the simpler form

dxα
ik

dt
− νijx

α
jk − νkjx

α
ji = − 1

τ rep
α

(
xα

ij − 1
3
δij

)
. (7.30)

One can compare equations (7.29) and (7.30) with equations (7.25) and
(7.26) to see that the only difference between this and previous case is the
difference in relaxation times, which for the strongly entangled systems, ac-
cording to formula (4.37), are

τ rep
α =

π2

χ
τR
α , τR

α = τ ∗/α2. (7.31)

However, the effect of anisotropy of the environment is expressed differently.
One can see from formula (5.17), that the parameter ψ is big in the case of
strongly entangled system (χ < χ∗), so that, according to equation (7.22),

bik ≈ ε−1
ik .

For a steady-state case, equations (7.29) and (7.30) allow one at small
velocity gradients to obtain a solution as an expansion in series in powers of
velocity gradient. Up to the first-order terms with respect to velocity gradients,
equation (7.30) immediately gives
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xα
ik =

1
3
δik +

2
3

π2

χ
τR
αγik, bik ≈ δik + 3εaik.

Then, the solution of equation (7.29) with approximation up to the terms of
the second order in velocity gradients has the form

xα
ik =

1
3
δik +

2
3

π2

χ
τR
αγik +

2
3

(
π2

χ
τR
α

)2

(ωijγjk + ωkjγji)

+
4
3

(
π2

χ
τR
α

)2

γilγlk − π2

χ
ετR

α (ailγlk + aklγli), (7.32)

where one can use the relation

π2

χ
=

E

B

in the case of the strongly entangled system at χ � χ∗.

7.4 Relaxation of Orientational Variables

We can notice that, apart from the deformation of the coil, the stresses (6.7)
are determined by the forces of internal viscosity which satisfy equation (7.3)
or, in normal form, it is the last equation from set (7.4). It is convenient to
consider quantities

uν
ik = − 1

3T
〈ρν

kT ν
i 〉, wν

ik = − 1
3T

〈ψν
kT ν

i 〉, vν
ik = − 1

3T
〈ϕν

kT ν
i 〉

as variables that describe the situation. In fact, one needs in the equations for
the first set of variables only, but to get them, the two other sets of variables
has to be also included into consideration.

We use the last equation from (7.4) and equations (7.14) to obtain the
equation of relaxation for above-defined quantities. After the procedure, which
is quite similar to that used in Section 7.2, we write down

d
dt

uα
ik − ωilu

α
lk +

1
τ

uα
ik = wα

ik +
1

3T

ζ

τ
Eij(yα

kj − ωjlr
α
kl),

d
dt

wα
ik − ωilw

α
lk +

1
τ

wα
ik =

1
3T

ζ

τ
Eijωjly

α
lk,

dvα
ik

dt
− ωilv

α
lk +

1
τ

vα
ik = κkju

α
ij + λkjw

α
ij + ωkjv

α
ij

+
1

3T

ζ

τ
Eij(mα

jk − mα
jk(0) − ωjln

α
lk).

(7.33)

One can use the relations, which follow equation (7.13), that is
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vα
ik = ζ(wα

ik − νkju
α
ij) + 2μTλαuα

ik,

dvα
ik

dt
= ζ

(
dwα

ik

dt
− νkj

duα
ij

dt

)
+ 2μTλα

duα
ik

dt

to exclude the variable vν
ik and to obtain the relation

− 1
2τR

uα
ik +

( τ

2τR
ωkj + νkj + Bklνlj + Eklωlj

)
uα

ij

−
( τ

2τR
δkj + δkj + Bkj + Ekj

)
wα

ij + τωkjw
α
ij + τνkjw

α
ij

=
ζ

3T

(
− 1

ζ
Eij(mα

jk − mα
jk(0) + ωjln

α
lk) + Eijωjly

α
lk

− νkjEkly
α
il +

1
2τR

Eij(yα
kj − ωjlr

α
kl)

)
.

Here terms containing velocity gradients in the second power are already ex-
cluded.

One can see that in zeroth approximation

wα
ik = − 1

2τα
uα

ki, τα =
τ

2
+ τR

α (1 + B + E) . (7.34)

In the second iteration, some of the terms in the above relation can be ne-
glected, so that this relation is followed

wα
ik = − 1

2τα
bkju

α
ji + ωkj uα

ji +
BτR

α

τα
ekjγjlu

α
li. (7.35)

Now one can return to the first equation from the set (7.33) and, also
using equation (7.21), obtain the equation of relaxation of the orientational
variables

duα
ik

dt
− ωiju

α
jk − ωkju

α
ji

= −
(

1
τ

δij +
1

2τα
bij

)
uα

jk − EτR
α

ττα

[(
xα

ij − 1
3
δij

)
djk − 2BτR

αxα
ilγljfjk

]

+
BτR

α

τα
eijγjlu

α
lk. (7.36)

In equation (7.35) and (7.36), in line with the previously introduced auxiliary
quantities (7.22), we use the notation

eik = bijβjk, dik = bijεkj , fik = cijεkj . (7.37)

Equation (7.36) contains terms with velocity gradients, which cause devi-
ation of the internal parameter from its equilibrium value and terms which
determine the approach to the equilibrium. We can see that the relaxation of
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quantity uα
ik depends on the quantity xα

ik which is in turn determined by the
relaxation equation (7.25) for weakly entangled systems or equation (7.29) for
strongly entangled systems. Equation (7.36) can be simplified for these two
limiting cases for which, according to equation (4.45), one can write asymp-
totic expressions for relaxation time

τν =

{
τR
αB, ψ � 1, ν2 � 1

χ ,

τR
αE, ψ 	 1, ν2 � ψ

χ .

7.4.1 Weakly Entangled Systems

For the weakly entangled systems (ψ � 1), coefficients (7.22) and (7.37) can
be approximated as

bik ≈ β−1
ik , cik ≈ δik, eik ≈ δik, dik ≈ β−1

ij εkj , fik ≈ εik

and the equation of relaxation (7.36) reduces to

duα
ik

dt
− ωiju

α
jk − ωkju

α
ji

= −
(

1
τ

δij +
1

2τα
bij

)
uα

jk − 1
τ

E

B

[(
xα

ij − 1
3
δij

)
djk − 2BτR

αxα
ilγljfjk

]

+ γilu
α
lk. (7.38)

In steady state, the quantity uα
ik can be calculated as an expansion in

powers of velocity gradients. Up to the accuracy to the second order, equa-
tion (7.38) is followed by the relation

uα
ik = − E

B

τ ∗
α

τ

[(
xα

ij − 1
3
δij

)
djk − 2BτR

αxα
ilγljfjk

]

+ τ ∗
α

(
ωiju

α
jk + ωkju

α
ji + γilu

α
lk

)
,

where

dik ≈ δik − 3(ε − β)aik, fik ≈ δik − 3εaik, τ ∗
α =

2ττα

2τα + τ
.

One uses equation (7.28) for xα
ij to be convinced that the expansion begins

with the second-order terms

uα
ik = − 2

3
EB(τR

α )2(ωijγjk + ωkjγji) − E (β + ε)τR
α (aijγjk + akjγji) . (7.39)

7.4.2 Strongly Entangled Systems

In the opposite case (ψ 	 1), coefficients (7.22) and (7.37) can be approxi-
mated as
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bik ≈ ε−1
ik , cik ≈ βilε

−1
lk , eik ≈ ε−1

ij βjk, dik ≈ δik, fik ≈ ε−1
il βlkεkj ,

so that we can obtain from equation (7.36), at τα = EτR
α , the simpler form of

the relaxation equation

duα
ik

dt
− ωiju

α
jk − ωkju

α
ji

= − 1
τ

uα
ik − 1

τ

(
xα

ik − 1
3
δik − 2BτR

αxα
ilγljfjk

)
+

B

E
eijγjlu

α
lk. (7.40)

To calculate the quantity uα
ik in steady state as an expansion in powers

of velocity gradients, one can use the relation that is following from equa-
tion (7.40)

uα
ik = −xα

ik +
1
3
δik +2BτR

αxα
ilγljfjk +τ(ωiju

α
jk +ωkju

α
ji)+

B

E
τeijγjlu

α
lk, (7.41)

where
fik ≈ δik − 3βaik, eik ≈ δik + 3(ε − β)aik.

Now, one has to rely on the reptation mechanism of changing conformation
and use equations (7.32) to find the expansion of the quantity uα

ik. In the first-
order approximation, one can obtain

uα
ik =

2
3

(
B − π2

χ

)
τR
αγik ≈ 2

3
BτR

αγik. (7.42)

We believe that for sufficiently long macromolecules, we can neglect the second
term π2/χ as compared with B, so that from equations (7.32) and (7.41) one
has

uα
ik =

2
3
BτR

αγik +

[
2
3
BτR

ατ − 2
3

(
π2

χ
τR
α

)2
]

(ωijγjk + ωkjγji)

+

[
2
3

B2

E
τR
ατ +

4
3
B

π2

χ
τR
ατR

α − 4
3

(
π2

χ
τR
α

)2
]

γijγjk

+
(

π2

χ
ε − Bβ

)
τR
α (aijγjk + akjγji). (7.43)

One can see that dependence of the steady-state values of the moments on the
anisotropy coefficients appears in terms of the second order, as was assumed
previously.

7.5 Relaxation of the Segment Orientation

7.5.1 Rubber Elasticity and Mean Orientation of Segments

It is impossible, apparently, to discuss the phenomena of elasticity, optical
anisotropy and dielectric permittivity of polymer without referring to mo-
tion of the Kuhn’s segments. Indeed, for example, from the time of classical
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achievement of Werner Kuhn (the 20–30 years of the last century), it is well
known that the elastic stresses in polymers are connected with stochastic ro-
tation of segments. With help of the known (Flory 1969) connection of the
tensor of mean orientation of segments of a chain with the end-to-end distance
R of a chain

〈eiek 〉 − 1
3
δik =

3
5(zl)2

(
RiRk − 1

3
R2δik

)
(7.44)

the results of Section 1.7 can be easily reformulated, so that, for a network in
the equilibrium situation, the stress tensor can be easily written as

σik = −pδik + 5νzT

(
〈eiek 〉 − 1

3
δik

)
, (7.45)

where ν is a number of chains in the volume unit, z is a number of Kuhn
segments in each chain. We have assumed for simplicity, that all segments are
in a similar situation.

Considering the entangled systems in the coarse-grained approximation,
we forget about segments: the theory contains the effective elastic forces be-
tween the fictious adjacent particles, and the stress tensor (equation (6.7))
can be expressed through the variables xα

il and uα
ik in the form

σik = −pδik + 3nT
∑

ν

(
xν

ik − 1
3
δik + uν

ik

)
. (7.46)

However, in this case, the stresses in entangled systems can also be related
to the tensor of mean orientation of the segments with a relation similar to
equation (7.45), but with other coefficient of proportionality, because we deal
with non-equilibrium situation in this case. In this way one can correspond the
two expressions for the stress tensor to each other and relate the introduced
variables xα

il and uα
ik to the tensor of mean orientation of the segments

〈eiek 〉 − 1
3
δik =

k

z

N∑
α=1

(
uα

ik + xα
ik − 1

3
δik

)
, (7.47)

where z is number of segments in a macromolecules and k is a numerical
parameter.

The relaxation of orientation of segments is intrisinsigly included in the
theory from the very beginning. Indeed, in Chapter 3, discussing the main
assumption of the theory, we assumed that there is an underlying relaxation
process, which is described by relaxation equation (3.14), that is

d〈eiek 〉
dt

= − 1
τ

(
〈eiek 〉 − 1

3
δik

)
. (7.48)

One can guess that this relaxation process describe the relaxation of mean
orientation of segments with the relaxation time τ . It is remarkable that for
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the strongly entangled systems, there are relaxation variables uα
ik, each of

them relaxing with the rate 1/τ , as can be seen from equations (7.40). When
the conformational variables are fixed, equations (7.40) and (7.47) are followed
in linear approximation by relaxation equation

d〈eiek 〉
dt

= − 1
τ

(
〈eiek 〉 − 1

3
δik

)
+

π2

9
k

z
B

τ ∗

τ
γik, (7.49)

which is a generalisation of equation (7.48). In this case of large internal
resistance, when ψ 	 1, variables uα

ik can be directly corresponded to the ori-
entation of Kuhn segments. A value of the parameter k in equation (7.49) can
be estimated due to the stress-optical law. It is known that for polymer sys-
tems the tensor of dielectric permittivity is proportional to the stress tensor,
while coefficient of proportionality (the stress-optical coefficient) is universal
for polymer of given chemical structure and can be found independently (see
Chapter 10). One can admit optical anisotropy of the system is determined
by the mean orientation of the segments. This allows us to determine the
unknown parameter as k = 3/5.

In the steady state, one can find the mean orientation of segments from
equation (7.49)

〈eiek 〉 =
1
3
δik +

π2

15
1
z
τ ∗Bγik. (7.50)

One can see that the velocity gradients directly affect the mean orientation
of segments, while the effect of the disturbed conformation of macromolecules
(the end-to-end distance) can be neglected here in comparison with the latter.

One can apply formula (7.44) to every subchain of the macromolecule,
assuming that every subchain of the macromolecule is in the situation of
equilibrium. Perhaps, it is possible to reach such a division of a macromolecule
in subchains that the distribution of orientation of segment is the equilibrium
one, though the entangled system is in deformed state, but the problem about
distribution of orientation of the interacting, connected in chains, segments
apparently is not solved yet.

7.5.2 Elementary Theory of Dielectric Relaxation

The relative permittivity tensor for the system εik is defined (see, for example,
Born and Wolf 1970; Landau et al. 1987) by the relation

εikEk = Ei + 4πPi (7.51)

where Ek is the average electric field strength acting in the medium and Pi

is the polarisation per unit volume of the system expressed in terms of the
polarisabilities of the constituent elements of the system. According to con-
ventional opinion (Riande and Siaz 1992; Adachi and Kotaka 1993; Watanabe
2001), polarisibility of a system of macromolecules, each of them is assumed



152 7 Equations of Relaxation

to consist of z Kuhn segments with electric dipoles μ aligned in the direction
of the segment axis (type-A dipole), is connected with mean orientation of
segments 〈ek 〉 as

Pk = nzμ〈ek 〉, (7.52)

where n is the number density of macromolecules. We consider here that the
applied electric field Ei acts directly on separate dipoles, omitting discussion
of the relationship between external and internal fields, which can be found
elsewhere (Fröhlich 1958; Havriliak 1990).

The segments are connected in chains, but one can consider each segment
to be in a similar situation and regard the mean orientation of segments as a
mean orientation of a single segment. In linear approximation, one can imagine
that each segment is rotating in the medium as in an isotropic liquid, so that
one can adjust the result for the motion of an ellipsoid in the electric field Ei

(Pokrovskii 1978, p. 80) and write the relaxation equation

d〈ek 〉
dt

= − 1
3τ

〈ek 〉 +
1
6τ

μ

T
(Ek − 〈ekej 〉Ej). (7.53)

We have taken into account here, according to the conventional theory
(Pokrovskii 1978), that the relaxation time of the first-order moment is three
times bigger than the relaxation time of the moment of the second order in
equation (7.49). A solution of equation (7.53) can be written in the form

〈ek 〉 =
1
6τ

μ

T

∫ ∞

0

exp
(

− 1
3τ

s

)
(Ek − 〈ekej 〉Ej)t−s ds. (7.54)

It is known that, in equilibrium situation, the segment mean orientation
is linked with the end-to-end distance as a characteristic of the whole macro-
molecule or separate subchain (see relation (7.44)), so that, if deviation from
equilibrium is small, the relaxation of mean orientation of segments follows
the conformational relaxation as it is described by the coarse-grained co-
ordinates. The statement is assumingly valid for macromolecules in dilute
solutions. The result for dielectric relaxation can be presented in terms of
relaxation of the end-to-end distance or, considering the subchain model, in
terms of the coarse-grained conformational co-ordinates (Zimm 1956). The
situation appears to be more complicated in a condense system of strongly
entangled macromolecules; the relaxation of the mean orientation of segments
appears to be independent on conformational relaxation, and one has to con-
sider relaxation equation (7.53) independently to obtain a result for dielectric
relaxation of entangled systems.

One can consider the oscillating amplitude of the field E ∼ exp(−iω),
while assuming that the second-order moment does not depend on the field,
to have from equation (7.54)

〈ek 〉 =
1
2

μ

T

Ek − 〈ekej 〉Ej

1 − i3τω
(7.55)
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and, using the above equations, together with equation (7.50) and (7.51), to
write the tensor of dielectric permittivity for a polar system under steady-state
flow

εik = 1 + 2πnz
μ2

T

1
1 − i3τω

(
2
3
δik − π2

15
1
z
τ ∗Bγik

)
. (7.56)

When velocity gradient is absent, the above formula looks like any other for-
mula for dielectric permittivity for a system with the only relaxation process,
which is used for estimation of dielectric relaxation time.

A frequency dependence of complex dielectric permittivity of polar poly-
mer reveals two sets or two branches of relaxation processes (Adachi and
Kotaka 1993), which correspond to the two branches of conformational re-
laxation, described in Section 4.2.4. The available empirical data on the
molecular-weight dependencies are consistent with formulae (4.41) and (4.42).
It was revealed for undiluted polyisoprene and poly(d, l-lactic acid) that
the terminal (slow) dielectric relaxation time depends strongly on molecular
weight of polymers (Adachi and Kotaka 1993; Ren et al. 2003). Two relax-
ation branches were discovered for cis-polyisoprene melts in experiments by
Imanishi et al. (1988) and Fodor and Hill (1994). The fast relaxation times
do not depend on the length of the macromolecule, while the slow relaxation
times do. For the latter, Imanishi et al. (1988) have found

τα ∼
{

M2, M < Me

M4.0±0.2, M > Me

.

This is exactly the molecular-weight dependence of conformational relaxation
times of polymer in non-entangled state and for the region of diffusive mobility
(see equation (4.41), weakly-entangled system).

Comparison of the dielectric and viscoelastic relaxation times, which, ac-
cording to the above speculations, obey a simple relation τn = 3τ , has at-
tracted special attention of scholars (Watanabe et al. 1996; Ren et al. 2003).
According to Watanabe et al. (1996), the ratio of the two longest relaxation
times from alternative measurements is 2–3 for dilute solutions of polyisobu-
tilene, while it is close to unity for undiluted (M ≈ 10Me) solutions. For
undiluted polyisoprene and poly(d, l-lactic acid), it was found (Ren et al.
2003) that the relaxation time for the dielectric normal mode coincides ap-
proximately with the terminal viscoelastic relaxation time. This evidence is
consistent with the above speculations and confirms that both dielectric and
stress relaxation are closely related to motion of separate Kuhn’s segments.
However, there is a need in a more detailed theory: experiment shows the
existence of many relaxation times for both dielectric and viscoelastic relax-
ation, while the relaxation spectrum for the latter is much broader that for
the former.



Chapter 8
Relaxation Processes
in the Phenomenological Theory

Abstract This chapter contains an outline of the phenomenological theory of
flow and deformation as a consequence of the conservation laws and the prin-
ciples of non-equilibrium thermodynamics. We exploit the concept of internal
thermodynamic variables that describe the deviation of a state of the system
from equilibrium. This concept has a long history beginning with the pioneer-
ing work of Mandelstam and Leontovich (Zh. Exper. Theor. Fiziki 7:438–449,
1937) and has appeared to be useful in description of a deformable viscoelas-
tic continuum (Coleman and Gurtin in J. Chem. Phys. 47:597–613, 1967;
Pokrovskii in Polym. Mech. 6(5):693–702, 1970; Wood in The thermodynam-
ics of fluid systems (Calendron, Oxford), 1975; Maugin in Thermomechanics
of nonlinear irreversible processes (World Scientific, Singapore), 1999). The
purpose of the chapter is to show how relaxation processes are included in the
phenomenological theory of flow. The principles of the formulation of the phe-
nomenological theory of viscoelasticity for any real materials are clear. In this
sense, one can postulate a general phenomenological theory of viscoelastic-
ity, which includes all known particular cases, among them those constitutive
equations that are formulated on the basis of macromolecular dynamics in
the previous and in the subsequent chapters. Principles of the theory, which
allows classify the various phenomenological constitutive equations proposed
for a viscoelastic medium, are discussed but no attempt is made to review
available constitutive equations.

8.1 The Laws of Conservation of Momentum and
Angular Momentum

The general form of transfer equations for a medium of arbitrary structure,
including melts and solutions of polymers, is established on the basis of con-
servation laws of mass, momentum, angular momentum and energy (Landau
and Lifshitz 1987a, Shliomis 1966).
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A continuous medium is characterised by its mean density, a function of
co-ordinates and time

ρ = ρ(x, t).

The motion of a continuous medium is described by its velocity vector v,
which is a certain mean macroscopic velocity and has three components –
functions of the co-ordinates and time –

vi = vi(x, t), i = 1, 2, 3.

The law of conservation of mass can be written in the form of the continuity
equation

∂ρ

∂t
+ div ρv = 0 (8.1)

where ρv is the flux of mass density. Here and further on, the density of some
quantity means the amount of this quantity in the volume unit of the medium.

The law of conservation of momentum can be written as

∂(ρvi)
∂t

+
∂Π ik

∂xk
= σi

where Πik = ρvivk −σik is the tensor flux of momentum density, which consists
of the convective flux and the stress tensor; σi is the density of the external
forces that act on the fluid.

We can use the above relations to rewrite the law of conservation of mo-
mentum density in the form

ρ

(
∂vi

∂t
+ vj

∂vi

∂xj

)
=

∂σik

∂xk
+ σi. (8.2)

The law of conservation of the angular momentum for the medium can
be written under an assumption that there is an internal angular momentum,
the density of which Sij obeys the law

∂Sij

∂t
+

∂(vlSij)
∂xl

+
∂gijl

∂xl
= Gij (8.3)

where Gij is the density of force torque which acts on the inner elements
of the system, and gijl is the density of the non-convective flux of angular
momentum.

No assumption was stated when equation (8.3) was written down. Without
any assumption we can also formulate the law of conservation of the total
angular momentum

∂

∂t
(Jik + Sik) +

∂Gikl

∂xl
= Nik + xiσk − xkσi (8.4)

where Jik = −ρ(xivk −xkvi) is the density of the external angular momentum,
Gikl is the flux of the total angular momentum, and Nik is the torque density
from the external volume forces.



8.1 The Laws of Conservation of Momentum and Angular Momentum 157

The definition of the density of external angular momentum can be used
to express, with the help of equations (8.1) and (8.2), the rate of change of
the external angular momentum through the stress tensor σik

∂Jik

∂t
+

∂

∂xl
(vlJik) = σki − σik − ∂

∂xl
(xiσkl − xkσil) − xiσk + xkσi. (8.5)

After summing equations (8.3) and (8.5), we obtain

∂(Jik + Sik)
∂t

+
∂

∂xl

[
(Jik + Sik)vl + xiσkl − xkσil) + gikl

]

= Gik − σik + σki − xiσk + xkσi.

The last equation can be compared to (8.4), which determined the relations

Gikl = (Jik + Sik)vl + (xiσkl − xkσil) + gikl,

Gik = Nik + σik − σki.

Then, equations (8.3) and (8.4) can be written in the form

∂(Jik + Sik)
∂t

+
∂

∂xl

[
(Jik + Sik)vl + xiσkl − xkσil + gikl

]

= Nik − xiσk + xkσi, (8.6)
∂Sik

∂t
+

∂

∂xl
(vlSik + gikl) = Nik + σik − σki. (8.7)

The set of motion equations (8.1), (8.2), (8.6) and (8.7) contains the un-
known quantities σik and gikl, which will be determined later.

Before we come to further determinations of the unknown quantities, we
shall estimate here the effect of the internal angular momentum on the motion
of the liquid. Let a be the characteristic size of internal structural elements,
then Sik ≈ ρav, σik ≈ ηv/a, where η is the viscosity coefficient. An estimate
of the characteristic relaxation time of the balance of the internal and external
rotation follows from equation (8.7)

τ ≈ ρ
a2

η
.

For a polymer solution, η ≈ 10−2 P s, ρ ≈ 1 g/cm3, and the size of macro-
molecular coil is a ≈ 10−5 cm, which allow us to estimate the relaxation time
τ ≈ 10−10 s. Processes with relaxation times so small are not essential when
compared to other relaxation processes in polymer solutions.

For times which are much bigger than the relaxation time, the internal
and external rotation are balanced, so equation (8.7) is followed by

σik − σki = −Nik. (8.8)
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In this case, the stress tensor is non-symmetric, if there is an external force
torque. The law of conservation of angular momentum follows from the law
of conservation of momentum.

So, we shall further assume, that the internal and external rotation are
balanced in polymer solutions and the stress tensor is symmetric, when there
is no external force torque.

8.2 The Law of Conservation of Energy and the Balance
of Entropy

We assume that there are no internal sources of energy in the liquid, so that
the change of the energy density E is connected with fluxes through the surface
of the volume. The law of the conservation of energy can be written in the
form

∂E

∂t
+ div q = 0 (8.9)

where q is the flux of energy density.
The law of the conservation of energy is also known as the first principle of

thermodynamics. To formulate the motion equation of a liquid, it is necessary
to use the second principle of thermodynamics also, which can be written as
the equation for the change of the entropy s for unit mass.

The balance equation for the entropy density has the form

∂(ρs)
∂t

+ div (vρs + H) = Σ

where H is the non-convective flux of entropy density, Σ is the non-negative
quantity of emerging of entropy – entropy production. This equation can be
rewritten in another form

ρ

(
∂s

∂t
+ vi

∂s

∂xi

)
+ div H = Σ . (8.10)

For systems, which are in a state of equilibrium, there is only convective
transfer of entropy. This is the case of an ideal fluid, for which

∂s

∂t
+ vi

∂s

∂xi
= 0. (8.11)

The entropy arises in systems, which can be considered as systems that
are locally in equilibrium. The increase of entropy can be connected with heat
production in units of volume of fluid or, in other words, with the dissipation
of energy Φ.

ρ

(
∂s

∂t
+ vi

∂s

∂xi

)
=

Φ
T

. (8.12)
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Non-equality can be written for the case when we cannot consider the
system as to be locally in equilibrium.

ρ

(
∂s

∂t
+ vi

∂s

∂xi

)
>

Φ
T

.

In this general case, equation (8.10) is valid.
So as there is a thermodynamic relation between entropy and internal

energy, the unknown quantities q, H in equations (8.9) and (8.10) can be
connected with each other and also can be determined production of entropy
Σ through other quantities. The density of total energy E in equation (8.9)
can be represented as a sum of the kinetic energy and the thermodynamic
total energy of the resting volume

E =
1
2
ρv2 + E0. (8.13)

In equilibrium situations, the quantity E0 is internal thermic energy E0 = ρε,
which is directly connected with entropy s per unit of mass by relation

dE0 = ρT ds + w dρ (8.14)

where ε is internal energy per unit of mass, w = ε + p/ρ is the enthalpy for
unit mass. This relation (8.14) is followed directly from known (Landau and
Lifshitz, 1969) thermodynamic relation, which connects change of internal
energy ε for unit mass with specific volume v and entropy s

dε = T ds − pdv. (8.15)

In non-equilibrium situations, local states of the deformed system are de-
scribed by some internal thermodynamic variables ξα, where the label α is
used for the number of a variable and its tensor indices. All the equilibrium
values of the internal variables are functions of two thermodynamic variables:
for example, density and entropy

ξα
e = ξα

e (s, ρ).

The deviation of the thermodynamic system from the equilibrium state is
described by the differences ξα − ξα

e which are noted as ξα henceforth.
In non-equilibrium situations, the quantity E0 includes also potential of

internal variables (Wood 1975, Maugin 1999, Pokrovskii 2005), so that the
differential of this function has the form

dE0 = ρT ds + w dρ + Ξα dξα (8.16)

where the thermodynamic force has appeared:

Ξα =
(

∂E0

∂ξα

)
s,ρ

= −T

(
∂(ρs)
∂ξα

)
T,ρ

> 0.
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The quantities T, w and Ξα are functions of the variables s, ρ, ξα. At equi-
librium, when there is no external fields, all the ξα = 0, while the quantities
T and w take their equilibrium values. The external field affects the internal
variables, which determine the state of the system.

Now, taking relations (8.13) and (8.16) into account, we are ready to write
down the rate of change of the density of the total energy of the moving fluid

∂E

∂t
= ρvi

∂vi

∂t
+ ρT

∂s

∂t
+

(
w +

v2

2

)
∂ρ

∂t
+ Ξα

∂ξα

∂t
.

We can use equations (8.1), (8.2) and (8.10) to transform the above ex-
pression to the equation which has the form of the law of the conservation of
energy

∂E

∂t
+

∂

∂xk

[
ρvk

(
w +

v2

2

)
− vi(σik + pδik) + THk

]

= TΣ − (σik + pδik)νik + Hi∇iT +
dξα

dt
Ξα (8.17)

where, as before, νik = ∂vi

∂xk
is a tensor of the velocity gradient.

Comparison of equations (8.9) and (8.17) determines

qk = ρvk

(
w +

v2

2

)
− vi(σik + pδik) + THk,

Σ =
1
T

(
(σik + pδik)νik − Hi∇iT − dξα

dt
Ξα

)
.

(8.18)

Internal variables ξα are introduced in relation (8.16) formally. However,
the success of the theory depends on the proper choice of the internal variables
for the considered case. Consideration of models usually helps to recognise
which quantities describe the deviation of the system from its equilibrium
state and which can be used as internal variables. A set of internal variables
were identified in Chapter 2 for dilute polymer solutions and in Chapter 7 for
polymer melts.1

8.3 Thermodynamic Fluxes and Relaxation Processes

The laws of conservation determine the equations of fluid motion which, how-
ever, contain a few unknown quantities discussed below.

1 Note, that a set of internal variables with labels, which take a continuous set of values, can
be considered. Grmela (1985) and Jongschaap (1991) have generalised the above-written

relations for this case. They showed that the values of the distribution function itself W (ρ, t)
in the problem of dynamics of dumbbells (see Appendix F), for example, can be considered
as a set of internal variables, whereas the arguments of the function play the role of the

label α with a continuous set of values ρ.
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Expression for production of entropy (8.18) can be now compared with the
general results of non-equilibrium thermodynamics, which are known for both
non-stationary and stationary cases. It is obvious, that last term in the right-
hand side of relation (8.18) corresponds to a non-stationary case and includes
the equation of change of internal variables that is relaxation equation. The
first two terms in formula (8.18) correspond to a stationary case and should
be considered as the products of thermodynamic fluxes and thermodynamic
forces (it is possible with any multipliers). When the internal variables are
absent, we should write a relation between the fluxes and forces in the form

σij + pδij = fij(νjs, ∇lT ),
−Hi = Hi(νjs, ∇lT ).

At small gradients, the right parts of these relations can be expanded in a
power series. In linear approximation of a parity for the anisotropic environ-
ment one gets

σik + pδik = ηikjsνjs + Likj ∇jT,

−Hi = L̄ijsγjs + Aij ∇jT.

Here one can take advantage of the Onsager principle, that is equate factors
at cross members.

In situations when internal relaxation processes cannot be neglected, it is
necessary to include in consideration relaxation equation for internal variables,
and we write down

σij + pδij = fij(νjs, ∇lT, ξγ),
−Hi = Hi(νjs, ∇lT, ξγ), (8.19)

− dξα

dt
= gα(νjs, ∇lT, ξγ).

One can note that the diffusion of the internal variables, i.e. the diffusion of
structural elements at non-homogeneous distribution of the values of internal
variables, is neglected here. Otherwise, the quantities ∂2ξα

∂xi∂xl
must be added

to the set of arguments of the right-hand side functions in (8.19). We shall
not discuss this situation henceforth.

It is known, that thermodynamic forces are functions of internal variables
(not speaking about other thermodynamic variables)

Ξα = Ξα(ξγ), (8.20)

so that relations (8.19) can be understood in such a way, that the quantities

1
T

(σik + pδik), − 1
T

Hi, − 1
T

dξα

dt

are functions of the thermodynamics forces

νik, ∇iT, Ξα.
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The application of general thermodynamic theory can be considered, first,
in linear approximation. In practice, it is sufficient for the most part of ap-
plications. We can use our usual notations for symmetric and antisymmetric
tensors of the velocity gradients

γij =
1
2
(νij + νji), ωij =

1
2
(νij + νji)

and divide the stress tensor into symmetric and antisymmetric parts, to write
the fluxes as quasi-linear function of the forces

1
2
(σik + σki + 2pδik) = ηikjsγjs + Kikjsωjs + Likj ∇jT + Mikαξα,

1
2
(σik − σki) = K̄ikjsγjs + Nikjsωjs + C̄ikj ∇jT + D̄ikαξα,

−Hi = L̄ijsγjs + Cijsωjs + Aij ∇jT + Giαξα,

− dξα

dt
= M̄αjsγjs + Dαjsωjs + Ḡαi∇iT + Pαγξγ .

(8.21)

The matrix coefficients in (8.21) depend on the thermodynamic variables,
which, in the case under discussion, are pressure p or density ρ (we can chose
any of them, so as there exist an equation of state, connecting these variables),
temperature T and internal variables ξα. The coefficients can be expanded
into series near equilibrium values of internal variables. Zero-order terms of
expansions of the components of the matrices in a series of powers of the
internal variables are connected due to the Onsager principle (Landau and
Lifshitz 1969) by some relations

K̄0
jsik = K0

ikjs, C̄0
ikj = −C0

jik, L̄0
jik = −L0

ikj .

The bars over letters denote matrices, which are obtained from the original
matrices (without bars) by simple transformation. Note once more that these
relations are valid for equilibrium values. Further on we shall be interested
in non-linear relations, so we consider all matrices to depend on the internal
variables.

In the simple case when all the internal variables are scalar quantities,
the state of the system is isotropic, all the matrix coefficients in (8.21) are
expressed in unit matrices, and the relations (8.21) take the simpler form,
which can be easily written for every given set of internal variables.

In rheological terms, equations (8.20) and (8.21) make up a set of consti-
tutive relations of the system. Together with equations (8.1), (8.2) and (8.10),
they determine the equations of motion of the system.

We should pay special attention to the last relation in (8.20), which is a
relaxation equation for the variable ξα. One can find examples of relaxation
equations in Section 2.7 for dilute solutions of polymers and in Chapter 7
for concentrated solutions and melts of polymers. The presence of internal
variables and equations for their change are specific features of the liquids we
consider in this monograph.
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8.4 The Principle of Relativity for Slow Motions

The form of the above-written relations (8.21) can be specified more by ap-
plying some restrictions which follow from the assumption that the motion
of structural elements of medium does not change very rapidly, so that the
following relation is valid

uρa

η
� 1. (8.22)

Here, a is the characteristic size of the structural element, ρ is the density,
which is approximately equal to 1 g/cm3, η is the effective viscosity coefficient
of the medium which is 10−2–10 P s, and u is the characteristic velocity of
motion of the particle, which is not more than the mean thermal velocity
(T/m)1/2. It is easy to see that, at room temperature and with the above
values of the parameters, condition (8.22) is valid if a � 10−7–10−6 cm.

As is well known, the equations of mechanics are covariant with the Galileo
transform. This can be also said about relations (8.19) and (8.21). In the case,
when the motions of the internal particles are slow (in the sense discussed
above), we can state that a stronger principle is valid. It says that all the
processes run in the same way and, consequently, should be described by
similar equations in all the co-ordinate frames which are connected to each
other by the transform

xi = aikx′
k + ci (8.23)

where an orthogonal tensor aik and a vector ci are arbitrary functions of time.
In contrast to the Galileo principle, the above principle, which is also called
the principle of material objectivity (Coleman and Nolle 1961), is valid for
the cases when the forces of inertia can be neglected.

Let us consider the restriction imposed on the form of the transfer equa-
tions by the discussed principle. It is easy to see that, when transformation
(8.23) is applied to the co-ordinates, the tensor of velocity gradients trans-
forms as

νik = ailakjν
′
lj + ȧilakl.

The superscript point denotes differentiation with respect to time.
The symmetrical tensor of velocity gradient transforms as a tensor, which

does not depend on time
γik = ailakjγ

′
lj . (8.24)

The antisymmetrical tensor transforms in the following way

ωik = ailakjω
′
lj + ȧilakl. (8.25)

Let us now turn to the internal variables. We can consider that one of
the internal variables is a tensor of arbitrary rank and transforms as the co-
ordinates do, that is, contravariantly

ξik···l = aijaks · · · alnξ′
js···n.
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Differentiating the tensor with respect to time, we find that

dξik···l
dt

= ȧijapjξpk···l + ȧkjapjξip···l + · · · + ȧljapjξik···p + aijaks · · · aln

dξ′
js···n
dt

.

We can define the expression ȧilakl from (8.25) to rewrite the last expression
in the form

dξik···l
dt

− ωipξpk···l − ωkmξim···l − · · · − ωlnξik···n

= aijaks · · · aln

(
dξ′

is···n
dt

− ω′
jqξ

′
qs···n − ω′

sqξ
′
jq···n − · · · − ω′

nqξ
′
js···q

)
.

We can see that the combination

Dξik···l
Dt

=
dξik···l

dt
− ωipξpk···l − ωkmξim···l − · · · − ωlnξik···n (8.26)

transforms as a tensor, which is independent of time. Expression (8.26) is
called the Jaumann derivative of tensor ξik···l with respect to time.

There are plenty of covariant derivatives of the tensor ξik···l among which
the Jaumann derivative has the simplest form. Indeed, expressions (8.24) and
(8.25) are followed by the relation

ȧilakl = ωik + κγik − aisakj(ω′
sj + κγ′

sj)

where κ is the arbitrary constant. We can use this relation to introduce deriva-
tives, which are generalisations of (8.26).

Covariant tensors can be considered in a similar way.

8.5 Constitutive Relations for Non-Linear Viscoelastic
Fluids

One can now return to the set of transfer equations (8.20) and (8.21), to
which the discussed principle of covariance can be applied. The new form of
the equations which is covariant under transformation (8.23) is written as
follows

1
2
(σik + σki + 2pδik) = ηikjsγjs + Likj ∇jT + Mikαξα,

1
2
(σik − σki) = D̄ikαξα,

−Hi = L̄ijsγjs + Aij ∇jT + Giαξα,

Dξα

Dt
= M̄αjsγjs + Ḡαi∇iT + Pαγξγ ,

(8.27)
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where the Jaumann derivative is noted as

Dξα

Dt
=

dξα

dt
+ Dαjsωjs.

For every given tensor ξα, this expression can be compared to (8.26) which de-
termines the matrix Dαjs and, consequently, in linear approximation, matrix
D̄ikα in relations (8.27).

The set of relations (8.27) determines the fluxes as quasi-linear functions
of forces. The coefficients in (8.27) are unknown functions of the thermody-
namic variables and internal variables. We should pay special attention to the
fourth relation in (8.27) which is a relaxation equation for variable ξα. The
viscoelastic behaviour of the system is determined essentially by the relaxation
processes. If the relaxation processes are absent (all the ξα = 0), equations
(8.27) turn into constitutive equations for a viscous fluid.

One can see that the equations of motion for a viscoelastic fluid can always
be written, when a set of internal relaxation variables is given, however, a set
of internal variables cannot be determined in the frame of phenomenologi-
cal theory and equations (8.27) cannot be specified any more without extra
assumptions.

As an example, we shall consider a simpler case of the isothermal motion of
a liquid without the external volume forces and without the external volume
force torque, so that equations (8.27) acquire the form

σik + pδik = ηikjsγjs + Mikαξα,

− Dξα

Dt
= M̄αjsγjs + Pαγξγ .

(8.28)

The set of internal variables ξγ is usually determined when considering
a particular system in more detail. For concentrated solutions and melts of
polymers, for example, a set of relaxation equation for internal variables were
determined in the previous chapter. One can see that all the internal variables
for the entangled systems are tensors of the second rank, while, to describe
viscoelasticity of weakly entangled systems, one needs in a set of conforma-
tional variables xα

ik which characterise the deviations of the form and size of
macromolecular coils from the equilibrium values. To describe behaviour of
strongly entangled systems, one needs both in the set of conformational vari-
ables and in the other set of orientational variables uα

ik which are connected
with the mean orientation of the segments of the macromolecules.

To simplify the situation, one can keep only one internal variables with
the smallest number from each set, that is x1

ik and u1
ik. It allows one to spec-

ify equations (8.28) for this case and to write a set of constitutive equations
for two internal variables – the symmetric tensors of second rank. The par-
ticular case of general equations are equations (9.24)–(9.27) – constitutive
equations for strongly entangled system of linear polymer. For a weakly entan-
gled system, one can keep a single internal variable to obtain an approximate
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description of viscoelastic behaviour of the system. To consider this case in
more details, we specify equations (8.28) for a single internal variable – the
symmetric tensor of the second rank and rewrite relations (8.28) as follows

σik + pδik = ηikjsγjs + Mikjsξjs,

− Dξij

Dt
= M̄ijlsγls + Pijlsξls.

(8.29)

In a more general case, we do not know the dependencies of the matrices
in (8.29) on the internal variable, so one can rewrite relations (8.29) in the
form

σik + pδik = ηikjsγjs + σ̄ik(ξpq),

− Dξij

Dt
= M̄ijls(ξpq)γls + φij(ξpq).

(8.30)

The tensor functions in (8.30) can be written in a general form, according
to the rules described, for example, for the arbitrary tensor function in the
book by Green and Adkins (1960)

σ̄ik = σ0δik + σ1ξik + σ2ξilξlj ,

φik = φ0δik + φ1ξik + φ2ξilξlk

(8.31)

where the coefficients σi and φi (i = 0, 1, 2) are functions of the three invari-
ants of the tensor ξil

I1 =
3∑

i=1

ξii, I2 =
1
2

∑
i,j

(ξijξji − ξiiξjj), I3 = |ξij |.

The relations (8.30) and (8.31) make up a general form for a non-linear
single-mode constitutive relation. To specify the constitutive equation for a
given system, one ought to determine the unknown function in (8.31) relying
on experimental evidence. A particular form of relation (8.30) and (8.31),
called canonical form (Leonov 1992), embraces many empirical constitutive
equations (Kwon and Leonov 1995). One can obtain the canonical form of
constitutive relation (Leonov 1992), if one neglects the viscosity term in the
stress tensor (8.30), which is quite reasonable for polymer melts, and put an
additional assumption on matrix M̄

M̄ijls = − 1
2
κ(ξilδjs + ξjsδil + ξisδjl + ξjlδis)

where κ is a numerical parameter, usually taken as ±1 or 0. One can look at
equations (9.48) and (9.49) in the next chapter as particular case of system
(8.30) and (8.31) as well.

Let us note that, according to Godunov and Romenskii (1972) and Leonov
(1976), the internal variable ξij can be considered to be a second-rank tensor
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of the recoverable strain. This statement changes neither definition (8.16) of
the thermodynamic force Ξls, nor the form of equations (8.30), but it does
specify the form of the unknown functions and matrices in (8.30). In this case,
a form of matrix Mikjs can be determined, taking the relation between the
stress tensor and the strain tensor (given by formula (B.7) of Appendix B)
into account. Some simplification can be also achieved, because one has for
an incompressible continuum an extra condition

|ξij | = 1.

In this case, one has only two invariants of the internal tensor, which makes the
general relations for the tensor functions simpler. However, it does not mean
that the final relations will be simpler. We can see later (see Section 9.3.5)
that there is a relation between the recoverable strain and the deformation
of macromolecular coil (see formula (9.75)), so a transfer from one formalism
to the other can be performed and the results of the two approaches can be
compared.

8.6 Different Forms of Constitutive Relation

All the constitutive relation that we have discussed in this chapter include
some relaxation equations for the internal tensor variables which ought to
be considered to be independent variables in the system of equations for the
dynamics of a viscoelastic liquid.

However, in the earlier times, the constitutive relation for a viscoelastic
liquid were formulated when the equations for relaxation processes could not
be written down in an explicit form. In these cases the constitutive relation was
formulated as relation between the stress tensor and the kinetic characteristics
of the deformation of the medium (Astarita and Marrucci 1974).

In this section, we shall show that the constitutive relation with internal
variables is followed by two types of constitutive relations which do not include
internal variables. For the sake of simplicity, we shall consider the simplest set
of equations

σik + pδik = 3
η

τ

(
ξik − 1

3
δik

)
, (8.32)

dξik

dt
− νijξjk − νkjξji = − 1

τ

(
ξik − 1

3
δik

)
(8.33)

where the coefficient of viscosity η and the time of relaxation τ are functions
of the invariants of the internal tensor variable ξik.

Indeed, we can obtain a relation between the stress tensor and the velocity
gradient tensor if we exclude tensor ξij from the set of equations (8.32)–(8.33).
This can be done in two different ways.
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Firstly, from equation (8.32), we can define the tensor ξij which can be
inserted into the second equation of (8.33). As a result, we obtain a differential
equation for the extra stresses

dτik

dt
− νijτjk − νkjτji = − 1

τ
(τik − 2ηγik), τik = σik + pδik. (8.34)

The quantities τ and η in equation (8.34) depend on the invariants of
the tensor τik in accordance with equation (8.32). We ought to note that the
behaviour of a non-linear viscoelastic liquid in a non-steady state would be
different, if a dependence of the material parameters τ and η on the tensor
velocity gradients or on the stress tensor is assumed. This is a point which is
sometimes ignored. In any case, if τ and η are constant, equation (8.34) belongs
to the class of equations introduced and investigated by Oldroyd (1950).

The linear case of relation (8.34) is the Maxwell equation (see, Landau
and Lifshitz 1987b, p. 36).

d(σik + pδik)
dt

+
1
τ

(σik + pδik) = 2
η

τ
γik (8.35)

where, as before, τ is the relaxation time, and η is the coefficient of shear
viscosity. There are different generalisations of equations (8.34) and (8.35)
(Astarita and Marrucci 1974).

On the other hand, we can imagine that a solution of equation (8.33) can
be found. Below, the solution is written for uniform flow with accuracy up to
the second-order terms with respect to the velocity gradient

ξik =
1
3
δik +

∫ ∞

0

exp
(

− s

τ

)
γij(t − s)ds

+
∫ ∞

0

exp
(

− s

τ

) ∫ ∞

0

exp
(

− u

τ

)

× [νij(t − s)γjk(t − s − u) − νkj(t − s)γji(t − s − u)] du ds.

Then, the solutions should be inserted into equation (8.32), which deter-
mines the stress tensor as a function of the tensor of the velocity gradient in
the previous moments of time. The linear term has the form

σij = −pδij + 2
η

τ

∫ ∞

0

exp
(

− s

τ

)
γik(t − s)ds. (8.36)

A generalisation of (8.36) for the case of many relaxation processes can
easily be found. In the simplest case of uniform motion one has

σik = −pδik + 2
∫ ∞

0

η(s)γik(t − s)ds. (8.37)

The memory function η(s) can be calculated if a set of internal variables are
given.
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In general case, the stress tensor ought to be written as

σik + pδik = Y ∞
s=0[νjk(t − s), γlm(t)]. (8.38)

Instead of velocity gradients, displacement gradients can be used in rela-
tion (8.38). In this form, relations of the kind (8.38) are established on the
basis of the phenomenological theory of so-called simple materials (Coleman
and Nolle 1961). To put the theory into practice, function (8.38) should be,
for example, represented by an expansion into a series of repeated integrals, so
that, in the simplest case, one has the first-order constitutive relation (8.37).
Let us note that the first person who used functional relations of form (8.38)
for the description of the behaviour of viscoelastic materials was Boltzmann
(see Ferry 1980).

Another form of the relation for slow motions can be obtained from equa-
tion (8.38). We can expand the velocity gradients in (8.38) into series in powers
of time near the moment t. The zeroth terms of the expansion determine a vis-
cous liquid. The next terms take viscoelasticity into account. This description
is local in time.

One can see that there are several forms for the representation of the
constitutive relation of a viscoelastic liquid. Of course, we ought to say that
all the types of constitutive relation we discussed in this section are equivalent.
We can use any of them to describe the flow of viscoelastic liquids. However,
the description of the flow of a liquid in terms of the internal variables allows
one to use additional information, if it is available, about microstructure of
the material, and, in fact, appears to be the simplest one for derivation and
calculation. We believe that the form, which includes the internal variables,
reflects a deeper penetration into the mechanisms of the viscoelastic behaviour
of materials. From this point of view, all the representations of deformed
material can be unified and classified.



Chapter 9
Non-Linear Effects of Viscoelasticity

Abstract Now we are in a position to formulate a system of constitutive
equations for polymer systems on the basis of the mesoscopic approach, de-
scribed in the previous chapters, to investigate non-linear behaviour of poly-
meric liquids. In the first section, the known results for dilute polymer so-
lutions are described. The other sections contain derivation of constitutive
equations for entangled systems, while the weakly (2Me < M < M ∗) and
strongly (2Me < M ∗ < M) entangled systems are considered separately. In
the latter case, the reptation motion of macromolecules emerges. Though the
reptation motion practically does not contributes to terminal properties of
linear viscoelasticity of strongly entangled system, it has to be included in
the consideration at higher velocity gradients to obtain the correct depen-
dencies of non-linear effects on the length of the macromolecules. One can
demonstrate how different non-linearities can be explained in terms of macro-
molecular dynamics. Simplifications of the many-modes constitutive equations
will be considered in Sections 3. The simplest form of constitutive equations
appears to be the well-known Vinogradov equation. Despite of essential sim-
plification, the reduced forms of constitutive equation allow one to describe
the non-linear effects for simple flows: shear and elongation.

9.1 Dilute Polymer Solutions

Comparison with experimental data demonstrates that the bead-spring model
allows one to describe correctly linear viscoelastic behaviour of dilute polymer
solutions in wide range of frequencies (see Section 6.2.2), if the effects of
excluded volume, hydrodynamic interaction, and internal viscosity are taken
into account. The validity of the theory for non-linear region is restricted by
the terms of the second power with respect to velocity gradient for non-steady-
state flow and by the terms of the third order for steady-state flow due to
approximations taken in Chapter 2, when relaxation modes of macromolecule
were being determined.

V.N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics,
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9.1.1 Constitutive Relations

Many-Mode Approximation

The set of constitutive equations for the dilute polymer solution consists of
the definition of the stress tensor (6.16), which is expressed in terms of the
second-order moments of co-ordinates, and the set of relaxation equations
(2.39) for the moments. The usage of a special notation for the ratio, namely

xν
ik =

〈ρν
i ρν

k 〉
〈ρνρν 〉0

=
2
3
μλν 〈ρα

i ρν
k 〉,

allows us to write down these equations in more compact form

σik = −pδik + 2ηsγik

+ 3nT

N∑

ν=1

[
1

1 + ϕν

(
xν

ik − 1
3
δik

)
+ τ ⊥

ν ϕν(γijx
ν
jk + γkjx

ν
ji)

]
, (9.1)

dxν
ik

dt
− ωijx

ν
jk − ωkjx

ν
ji

= − 1
τ ‖
ν

(
xν

ik − 1
3
δik

)
+ (1 − ϕν)(γijx

ν
jk + γkjx

ν
ji) (9.2)

where τ ‖
ν = (1+ϕν)τ ⊥

ν and τ ⊥
α = τα is an orientational relaxation time of the

mode α of the macromolecular coils.
In some cases, if we consider, for example, the slow motion of a solution of

very long macromolecules, the effect of internal viscosity is negligible, so that
the set of constitutive equations can be simplified and written as

σik = −pδik + 2ηsγik + 3nT

N∑

ν=1

(
xν

ik − 1
3
δik

)
, (9.3)

dxν
ik

dt
= − 1

τν

(
xν

ik − 1
3
δik

)
+ νijx

ν
jk + νkjx

ν
ji. (9.4)

For the steady-state case, both equations (9.1)–(9.2) and (9.3)–(9.4) are
followed by the steady-state form of the stress tensor

σik = −pδik + 2ηsγik + 3nT

N∑

ν=1

τν

(
νijx

ν
jk + νkjx

ν
ji

)
. (9.5)

This equation makes it possible to calculate stresses for low velocity gradients
to within third-order terms in the velocity gradient if one knows the moments
to within second-order terms in the velocity gradients. Due to the approxima-
tions, used earlier in Chapter 2, the results are applicable for small extensions
of the macromolecular coil and hence for low velocity gradients: the results for
the moments are valid to within second-order terms in the velocity gradients.
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Single-Mode Approximation

We can see that a set of constitutive equations for dilute polymer solutions
contains a large number of relaxation equations. It is clear that the relaxation
processes with the largest relaxation times are essential to describe the slowly
changing motion of solutions. In the simplest approximation, we can use the
only relaxation variable, which can be the gyration tensor 〈SiSj 〉, defined by
(4.48), or we can assume the macromolecule to be schematised by a subchain
model with two particles. The last case, which is considered in Appendix F in
more detail, is a particular case of equations (9.3) and (9.4), which is followed
at N = 1, λ1 = 2,

σik = −pδik + 2ηsγik + 3
η − ηs

τ

(
ξik − 1

3
δik

)
, (9.6)

dξik

dt
= − 1

τ

(
ξik − 1

3
δik

)
+ νijξjk + νkjξji. (9.7)

The following notations are used in the equations written above

ξik = x1
ik, η = ηs +

3
2
nζ.

Equations (9.6) and (9.7) make up the simplest set of constitutive equa-
tions for dilute polymer solutions, which, after excluding the internal variables
ξij , can be written in the form of a differential equation that has the form
of the two-constant contra-variant equation investigated by Oldroyd (1950)
(Section 8.6).

Note once again that equations (9.6) and (9.7) determines the stresses for
the completely idealised macromolecules (without internal viscosity, hydro-
dynamic interaction and volume effects) in dilute solutions. To remedy the
unrealistic behaviour of constitutive equations (9.6) and (9.7), some modifi-
cations were proposed (Rallison and Hinch 1988; Hinch 1994).

The expressions for the stress tensor together with the equations for the
moments considered as additional variables, the continuity equation, and the
equation of motion constitute the basis of the dynamics of dilute polymer
solutions. This system of equations may be used to investigate the flow of
dilute solutions in various experimental situations. Certain simple cases were
examined in order to demonstrate applicability of the expressions obtained
to dilute solutions, to indicate the range of their applicability, and to specify
the expressions for quantities ϕν , which were introduced previously as phe-
nomenological constants.

9.1.2 Non-Linear Effects in Simple Shear Flow

We shall consider the case of shear stress when one of the components of the
velocity gradient tensor has been specified and is constant, namely ν12 �= 0.



174 9 Non-Linear Effects of Viscoelasticity

In order to achieve such a flow, it is necessary that the stresses applied to
the system should be not only the shear stress σ12, as in the case of a linear
viscous liquid, but also normal stresses, so that the stress tensor is

∥∥∥∥∥∥

σ11 σ12 0
σ21 σ22 0
0 0 σ33

∥∥∥∥∥∥
.

The shear stress σ12 and the differences between the normal stresses σ11–σ22

and σ22–σ33 are usually measured in the experiment.
For the specified in this way motion, equation (9.2) defines, as was shown

in Section 2.7.2, the non-zero components of the second-order moments

xν
11 =

1
3

[
1 + (2 + ϕν)(τνν12)2

]
,

xν
22 =

1
3

[
1 − ϕν(τνν12)2

]
,

xν
33 =

1
3
,

xν
12 =

1
3
τνν12,

(9.8)

where, in accordance with (2.27) and (2.30), for high molecular weights

ϕα = ϕ1α
θ, ϕ1 ∼ M −θ, 0 < θ < 1,

τα = τ1α
−zν , τ1 ∼ Mzν , 1.5 < z < 2.1.

According to the theoretical estimate of the exponent, zν varies from 1.5
(non-draining Gaussian coil) to 2.11 (draining coil with volume interactions).

Then, equation (9.5) defines the non-zero components of the stress tensor,
which makes it possible to formulate expressions for the shear viscosity and
the differences between the normal stresses:

η = nT

N∑

ν=1

τν

[
1 − ϕν(τνν12)2

]
, (9.9)

σ11 − σ22 = nT

N∑

ν=1

(τνν12)2, (9.10)

σ22 − σ33 = 0. (9.11)

It follows from equations (9.9) that the viscosity (or, what amounts to the
same thing, the characteristic viscosity) is independent of the velocity gradient
for flexible chains (ϕ1 = 0). For chains with an internal viscosity, the viscosity
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diminishes with increase in the velocity gradient; the nature of the variation
may be estimated. Using the known dependences of the relaxation times and
coefficient of internal viscosity on molecular weight and mode label, one can
obtain

η − η0 ∼ M3zν−θ−1ν2
12.

From empirical equation (6.27), according to which θ = zν −1, the dependence
of the viscosity on the molecular weight can be estimated as follows

η − η0 ∼ M2zνν2
12. (9.12)

The dependence of the first difference of normal stresses on the molecular
weight follows from equation (9.10)

σ11 − σ22 ∼ M2zν−1. (9.13)

In another way, this expression was obtained by Öttinger (1989b).
Experimental data and analysis of the shear-dependent viscosity for di-

lute solutions of polyethelene oxide in water can be found in work by
Kalashnikov (1994). These data show that the deviations in reduced vis-
cosity (9.12) at constant shear rate from initial (at ν12 → 0) values are
the more, the more is the molecular weight of the polymer. Other empiri-
cal estimates of the exponent zν in equation (9.12) for solutions in which the
coils are nearly unperturbed yield the exponent 2zν ≈ 3 (Lohmander 1964;
Tsvetkov et al. 1964).

We may note that it has been shown for the dumbbell (Altukhov 1986) (see
Appendix F) that the combined allowance for the internal viscosity and the
anisotropy of the hydrodynamic interaction leads to the appearance of a non-
zero second difference between the normal stresses σ22–σ33. Since the internal
viscosity may be estimated, for example, from dynamic measurements, this
effect may serve to estimate the anisotropy of the hydrodynamic interaction
in a molecular coil.

9.1.3 Non-Steady-State Shear Flow

In this section we shall continue to investigate shear motion, while, in contrast
to the previous section, we shall assume that the velocity gradient depends
on the time but, as before, does not depend on the space coordinate. We shall
consider a simple case of ideally flexible chains, for which the stress tensor
and relaxation equations are defined by equations (9.3) and (9.4).

For simple shear, equation (9.4) is followed by the set of equations for the
components of the second-order moment

dx11

dt
= − 1

τ

(
x11 − 1

3

)
+ 2ν12x12,

dx22

dt
= − 1

τ

(
x22 − 1

3

)
,
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dx33

dt
= − 1

τ

(
x33 − 1

3

)
, (9.14)

dx12

dt
= − 1

τ
x12 + ν12x22,

dx13

dt
= − 1

τ
x13 + ν12x23,

dx23

dt
= − 1

τ
x23.

Here and henceforth in this section, the label of mode is omitted for sim-
plicity. Consider the case when the motion with a given constant velocity
gradient ν12 begins at time t = 0. Under the given initial conditions, the set
of equations (9.14) has the solution

x11 =
1
3

[
1 + 2τ2

(
1 − t

τ
exp

(
− t

τ

)
− exp

(
− t

τ

))
ν2
12

]
,

x12 =
1
3
τ

[
1 − exp

(
− t

τ

)]
ν12,

x22 = x33 =
1
3
; x13 = x23 = 0.

Now, we can determine, according to equation (9.3), the non-zero compo-
nents of the stress tensor

σ11(t) = −p + 2nT

N∑

α=1

τ2
α

[
1 − t

τα
exp

(
− t

τα

)
− exp

(
− t

τα

)]
ν2
12,

σ12(t) = η0ν12 + nT

N∑

α=1

τα

[
1 − exp

(
− t

τα

)]
ν12,

σ22(t) = σ33(t) = −p,

σ13(t) = σ23(t) = 0.

(9.15)

These expressions describe the establishment of stresses for given uniform
shear motion.

9.1.4 Non-Linear Effects in Oscillatory Shear Motion

From the methodical point of view, it is very interesting to consider the non-
linear terms of the stresses under oscillatory shear velocity gradients, which
it is convenient to write in the complex form
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ν12 ∼ e−iωt.

Akers and Williams (1969), calculating non-linear terms, noticed that the
stresses are real quantities, which are determined through real quantities.
That is why we ought to remember that formulae always contain the real
parts of complex quantities, so that one has to bear in mind that νik means
1
2 (νik + ν̄ik), where the operation of complex conjugation is denoted by the
bar above the symbol.

Assuming that the flow is described by the set of equations (9.3) and
(9.4), one can use equations (9.14) for arbitrary time dependence of velocity
gradient, to obtain for oscillatory simple shear the solution in the form

x11 =
1
3

[
1 +

τ2|ν12|2
1 + ω2τ2

+
1
2

(
τ2ν2

12

(1 − iωt)(1 − 2iωt)
+

τ2ν̄2
12

(1 + iωt)(1 + 2iωt)

)]
,

x12 =
1
6

(
τν12

1 − iωt
+

τ ν̄12

1 + iωt

)
,

x22 = x33 =
1
3
,

x12 = x23 = 0.

Since all non-oscillatory terms in the solution are now omitted, we shall
determine the non-zero components of the stress tensor according to equation
(9.3)

σ12 = ηs
1
2
(ν12 + ν̄12)

+ nT
∑

α

[
τα

1 + ω2τ2
α

1
2
(ν12 + ν̄12) +

ωτ2
α

1 + ω2τ2
α

i

2
(ν12 − ν̄12)

]
, (9.16)

σ11 = −p + nT
∑

α

[
τ2
α|ν12|2

1 + ω2τ2
α

+
τ2
α(1 − 2ω2τ2

α) 1
2 (ν2

12 + ν̄2
12) + 3ωτ3

α
i
2 (ν2

12 − ν̄2
12)

1 + 5ω2τ2
α + 4ω4τ4

α

]
, (9.17)

σ22 = σ33 = −p.

Expression (9.16) determines the non-linear dynamic viscosity and dynam-
ical modulus. The first difference of the normal stresses σ11–σ22, defined by
expressions (9.17), oscillate with a frequency twice that of velocity gradients
(Akers and Williams 1969).
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9.2 Many-Mode Description of Entangled Systems

9.2.1 Constitutive Relations

Stress Tensor

The expression for the stress tensor (6.7) allows us to investigate the non-linear
with respect to velocity gradient effects. We use the normal co-ordinates (1.13)
to write equation (6.7) in the form

σik = −n(N + 1)Tδik + n
∑

ν

(
2μTλνxν

ik − Tδik − 〈ρν
kT ν

i 〉
)

where T ν
k = QνγGγ

k is the transformed force of the internal viscosity de-
termined by equation (7.4). It is convenient to use the macroscopic mean
quantities

xα
ij =

2
3
μλα〈ρα

i ρα
j 〉, uα

ij = − 1
3T

〈ρα
j Tα

i 〉 (9.18)

to write the stress tensor in the more compact form

σik = −pδik + 3nT
∑

ν

(
xν

ik − 1
3
δik + uν

ik

)
. (9.19)

The pressure p includes both the partial pressure of the gas of Brownian
particles n(N +1)T and the partial pressure of the carrier “monomer” liquid.
We shall assume that the viscosity of the “monomer” liquid can be neglected.
The variables xν

ik in equation (9.19) characterise the mean size and shape
of the macromolecular coils in a deformed system. The other variables uν

ik

are associated mainly with orientation of small rigid parts of macromolecules
(Kuhn segments). As a consequence of the mesoscopic approach, the stress
tensor (9.19) of a system is determined as a sum of the contributions of all the
macromolecules, which in this case can be expressed by simple multiplication
by the number of macromolecules n. The macroscopic internal variables xν

ik

and uν
ik can be found as solutions of relaxation equations which have been

established in Chapter 7. However, there are two distinctive cases, which have
to be considered separately.

Relaxation Equations for Weakly Entangled Systems

In the cases, when concentration of solution is not very high or melt consists
of short macromolecules, the values of parameter χ ascend above the critical
one χ∗ ≈ 0.1. It is also implies the small values of the parameter ψ, that is

χ∗ < χ < 0.3, ψ � 1.

The internal variables are governed by relaxation equations (7.25) and (7.38)
which are valid for the small mode numbers α2 � 1/χ and can be rewritten
in the form
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dxα
ik

dt
− νijx

α
jk − νkjx

α
ji

= − 1
2τα

((
xα

ij − 1
3
δij

)
bjk +

(
xα

kj − 1
3
δkj

)
bji

)
, (9.20)

duα
ik

dt
− ωiju

α
jk − ωkju

α
ji

= −
(

1
τ

δij +
1

2τα
bij

)
uα

jk − 1
τ

E

B

[(
xα

ij − 1
3
δij

)
djk − 2BτR

αxα
ilγljfjk

]

+ γilu
α
lk (9.21)

where the set of relaxation times is defined as

τ, τα = B τR
α , τR

α =
τ ∗

α2
, α = 1, 2, . . . �

(
1
χ

)1/2

. (9.22)

In this case, the auxiliary quantities bik, dik and fik are defined, in limits of
applicability of the equations (α2 � 1/χ, ψ � 1), in terms of the anisotropy
tensors βjl and εkl as

bik = β−1
ik , dik = β−1

ij εkj , fik = εik. (9.23)

Relaxation Equations for Strongly Entangled Systems

This is a case, when the parameter χ has values less than a certain critical
value χ∗, while additionally one requires that values of the parameter ψ are
big, that is

χ < χ∗ < 0.3, ψ > 1.

The internal variables for this case are governed by relaxation equations (7.29)
and (7.40) which are valid for the small mode numbers α2 � ψ/χ. This is a
case of very concentrated solutions and melts of polymers. Keeping only the
zero-order terms with respect to the ratio B/E, the set of relaxation equations
for the internal variables can be written in the simpler form

dxα
ik

dt
− νijx

α
jk − νkjx

α
ji

= − 1
2τ rep

α

((
xα

ij − 1
3
δij

)
bjk +

(
xα

kj − 1
3
δkj

)
bji

)
, (9.24)

duα
ik

dt
− ωiju

α
jk − ωkju

α
ji

= − 1
τ

uα
ik − 1

τ

(
xα

ik − 1
3
δik − 2BτR

αxα
ilγljfjk

)
+

B

E
eijγjlu

α
lk, (9.25)

where the set of relaxation times is defined as
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τ, τ rep
α =

π2

χ
τR
α , τR

α =
τ ∗

α2
, α = 1, 2, . . . �

(
ψ

χ

)1/2

. (9.26)

The auxiliary quantities bik, eik and fik are introduced in Chapter 7 to take
into account the effect of the induced anisotropy of medium on the dynamics
of a single macromolecule in the system. In limits of applicability of the above
equations (α2 � ψ/χ, ψ 	 1), the quantities are defined in terms of the
anisotropy tensors βjl and εkl as

bik = ε−1
ik , eik = ε−1

ij βjk, fik = ε−1
ij βjlεkl. (9.27)

Let us remind that equation (9.24), describing the relaxation of macro-
molecular conformation, can be considered only as an assumed results of accu-
rate derivation of the relaxation equation from the macromolecular dynamics.

Tensor of Anisotropy

Thus, two sets of constitutive relations are formulated. The systems of equa-
tions both (9.19)–(9.22), applicable to the weakly entangled systems, and
(9.19) and (9.24)–(9.26), applicable to the strongly entangled systems, in-
clude, through equations (9.23) and (9.27), the tensors of global anisotropy

βik = (δjk + κallδjk + 3βa′
jk)−1, εik = (δjk + νallδjk + 3εa′

jk)−1,

aij =
∑

ν

(
xν

ij − 1
3
δij + uν

ij

)
, a′

ij = aij − 1
3
allδij .

The set of equations both for weakly and strongly entangled systems con-
tains only two relaxation branches and describe viscoelastic behaviour in the
region of small frequencies (One can look at Fig. 17 to be convinced that
essential contributions to the modulus are given by the first and the second
branches in the region of small frequencies). These sets of equations are the
basic constitutive relations which allow us to develop a reliable theory of
non-linear effects in viscoelasticity of non-dilute polymer systems following
the works by Pokrovskii and Pyshnograi (1990, 1991) and Pyshnograi (1994,
1996).

9.2.2 Linear Approximation

To calculate characteristics of linear viscoelasticity, one can consider linear
approximation of constitutive relations derived in the previous section. The
expression (9.19) for stress tensor has linear form in internal variables xν

ik

and uν
ik, so that one has to separate linear terms in relaxation equations for

the internal variables. This has to be considered separately for weakly and
strongly entangled system.
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Weakly Entangled Systems

In the cases, when
χ∗ < χ < 0.3, ψ < 1,

the relaxation equations (9.20) and (9.21) reduce to the simpler form

dxα
ik

dt
= − 1

τα

(
xα

ik − 1
3
δik

)
+

2
3
γik,

duα
ik

dt
= − 1

τ ∗
α

uα
ik − 1

τ
ψ

(
xα

ik − 1
3
δik − 2

3
BτR

αγik

) (9.28)

where the set of relaxation times is defined as

τ, τ ∗
α =

2ττα

τ + 2τα
, τα = B τR

α , τR
α =

τ ∗

α2
, α = 1, 2, . . . �

(
1
χ

)1/2

.

Equations (9.28) have the following solutions for oscillatory motion

xα
ik =

1
3
δik +

2
3

τα

1 − iωτα
γik,

uα
ik =

2
3

1
τ

ψ

(
B τR

α − τα

1 − iωτα

)
τ ∗
α

1 − iωτ ∗
α

γik.

Then, one can make use of the expression (9.19) for the stress tensor to
obtain the coefficient of dynamic modulus

G(ω) = nT

1/
√

χ∑

α

[
iωτα

1 − iωτα
+

1
τ

ψ

(
B τR

α − iωτα

1 − iωτα

)
τ ∗
α

1 − iωτ ∗
α

]
.

This expression can be written in standard form

G(ω) = nT ×
1/

√
χ∑

α

[(
1 + ψ

τατ ∗
α

τ(τ ∗
α − τα)

)
−iωτα

1 − iωτα

+
1
τ

ψ

(
B τR

α − τατ ∗
α

τ ∗
α − τα

)
−iωτ ∗

α

1 − iωτ ∗
α

]
. (9.29)

The terms of the first and the second orders give the coefficients of viscosity
and elasticity

η = nT

1/
√

χ∑

α

(
τα − ψ

τατ ∗
α

τ

)
≈ π2

6
nTτ ∗B, (9.30)

ν = nT

1/
√

χ∑

α

(
τ2
α − ψ

τατ ∗
α

τ
(τ ∗

α + τα)
)

≈ π4

90
nT (τ ∗B)2. (9.31)
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Value of the dynamic modulus on the plateau can be found as Ge =
limω→∞ G(ω) which gives

Ge = nT

1/
√

χ∑

α

1 ≈ nTχ− 1
2 . (9.32)

It is natural that estimates (9.30)–(9.32) practically coincide with estimates
(6.39) and (6.40), at χ � 1, for corresponding quantities for a system of
macromolecules in viscoelastic liquid.

Strongly Entangled Systems

In the cases, when
χ < χ∗ ≈ 0.1, ψ > 1,

the internal variables are governed by relaxation equations (9.24) and (9.25)
which are valid for the small mode numbers α2 � ψ/χ. Keeping only the zero-
order terms with respect to velocity gradient, the set of relaxation equations
for the internal variables can be written in the simpler form

dxα
ik

dt
= − 1

τ rep
α

(
xα

ik − 1
3
δik

)
+

2
3
γik,

duα
ik

dt
= − 1

τ
uα

ik − 1
τ

(
xα

ik − 1
3
δik − 2

3
BτR

αγik

) (9.33)

where the set of relaxation times is defined as

τ, τ rep
α =

π2

χ
τR
α , τR

α =
τ ∗

α2
, α = 1, 2, . . . �

(
ψ

χ

)1/2

.

Equations (9.33) have the following solutions for oscillatory motion

xα
ik =

1
3
δik +

2
3

τ rep
α

1 − iωτ rep
α

γik,

uα
ik =

2
3

(
B τR

α − τ rep
α

1 − iωτ rep
α

)
1

1 − iωτ
γik.

Then, one can make use of the expression (9.19) for the stress tensor to
obtain the dynamic modulus

G(ω) = nT

π/χ∑

α=1

[
−iωτ rep

α

1 − iωτ rep
α

+
(

B τR
α − τ rep

α

1 − iωτ rep
α

)
−iω

1 − iωτ

]
. (9.34)

This expression, after some transformations, can be written in the standard
form
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G(ω) = nT

π/χ∑

α=1

[(
1 +

τ rep
α

τ − τ rep
α

)
−iωτ rep

α

1 − iωτ rep
α

+
(

B τR
α

τ
− τ rep

α

τ − τ rep
α

)
−iωτ

1 − iωτ

]
.

(9.35)
This equation, also as equation (6.49) gives description of the frequency de-
pendency of dynamic modulus at low frequencies (the terminal zone). Both in
equation (6.49) and (9.35), the second terms present the contribution from the
orientational relaxation branch, while the first ones present the contribution
from the conformational relaxation due to the different mechanisms: diffusive
and reptational.

The terms of the first and the second orders in expansion of expression
(9.34) or (9.35) in powers of −iω determine the coefficients of viscosity and
elasticity

η = nT

π/χ∑

α=1

B τR
α =

π2

6
nTτ ∗B,

ν = nT

π/χ∑

α=1

(B ττR
α − ττ rep

α ) = nT

(
π2

3
(Bτ ∗)2χ − π4

3
B(τ ∗)2

)
.

(9.36)

One can see that the last terms in the last relations can be omitted in com-
parison with the other, so that this equations reduce to equations (6.52), that
is

η =
π2

6
nTτ ∗B, ν =

π2

3
nT (Bτ ∗)2χ. (9.37)

Value of the dynamic modulus on the plateau can be found as
Ge = limω→∞ G(ω) which gives

Ge = nT

π/χ∑

α=1

(
1 +

B τR
α

τ

)
≈ nT

(
π

χ
+

π2

12
1
χ

)
. (9.38)

The contribution from the first term (reptation branch) has the same order of
magnitude as the contribution from the second term at very high frequencies.
However, one has to take into account that, due to distribution of relaxation
times, the limit value of the first term is reached at higher frequencies than
the limit value of the second term. At lower frequencies the plateau value of
the dynamic modulus is determined by the second term and coincides with
expression (6.52).

One can see that introduction of the reptation mechanism of conforma-
tional relaxation, instead of diffusive mechanism, does not affect the values
of the terminal quantities, but, one can expect, improves the situation in the
region of the minima of the loss modulus G′ ′: reptation branch fill the gap be-
tween the orientational and the second conformational branches of relaxation
times. Thus, the description with help of two relaxation branches is valid in
the terminal zone and for higher frequencies close to it.
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9.2.3 Steady-State Simple Shear Flow

To demonstrate the consistency of constitutive relations with experimental
evidence for entangled systems, some particular cases, when the velocity gra-
dients are known and can be assumed to be independent of time, have been
investigated (Pyshnograi and Pokrovskii, 1988; Pyshnograi, 1994, 1996; Al-
tukhov and Pyshnograi, 1995, 1996). We shall consider here steady-state shear
flow of both weakly entangled system and strongly entangled system. The
stress tensor is given by equation (9.19), that is

σik = −pδik + 3nT
∑

ν

(
xν

ik − 1
3
δik + uν

ik

)
.

For the case of small velocity gradients, the variables xα
ik and uα

jk can be found
in the form of an expansion in powers of velocity gradients. The first terms
are defined by equations (7.28) and (7.39) for the case of weakly entangled
systems (χ > χ∗ ≈ 0.1) and by equations (7.32) and (7.43) for the case of
strongly entangled systems (χ < χ∗ ≈ 0.1).

Further on, we shall consider the case of shear stress when one of the
components of the velocity gradient tensor has been specified and is constant,
namely ν12 �= 0. This situation occurs in experimental studies of polymer
solutions (Ferry 1980). In order to achieve such a flow, it is necessary that the
stresses applied to the system should be not only the shear stress σ12, as in
the case of a linear viscous liquid, but also normal stresses, so that the stress
tensor is ∥∥∥∥∥∥

σ11 σ12 0
σ21 σ22 0
0 0 σ33

∥∥∥∥∥∥
.

The shear stress σ12 and the differences between the normal stresses σ11 − σ22

and σ22 − σ33 are usually measured in the experiment (Meissner et al. 1989).
The results of calculation of the stresses up to the third-order terms with
respect to the velocity gradient will be demonstrated further on. For simplicity,
we shall neglect the effect of anisotropy of the environment when the case of
strongly entangled systems will be considered.

Shear Viscosity

In steady-state shear, when the only component of the velocity gradient tensor
differs from zero is ν12, equation (9.19) is followed by

σ0
12 = η0ν12, η0 =

π2

6
nTBτ ∗, χ < 0.5. (9.39)

The third-order terms in shear stress give us the expression for the effective
shear viscosity



9.2 Many-Mode Description of Entangled Systems 185

η = η0 ×

⎧
⎨

⎩
1 −

(
2π4

315 ψ + 2π2

15 χ + 52π4

4725 β + 4π4

945 κ
)
(Bτ ∗ν12)

2
, χ > χ∗,

1 −
(
4χ2 − π2

15
χ
B − 2π6

315
1

(χB)2

)
(Bτ ∗ν12)

2
, χ < χ∗.

(9.40)

One can see that two factors lead to non-linear effects in shear, namely, the
relaxation response of the surrounding (χ and ψ) and the effects associated
with the change in dimensions and the shape of the macromolecular coils (β
and κ). Though comparative influence of these effects does not investigated
enough, one can suggest that the influence of χ and ψ is small as compared
with the influence of the other parameters at χ > χ∗, while at χ < χ∗ the
change of the environment (β and κ) can be neglected. The first term in the
parentheses in (9.40) at χ < χ∗ dominates for the long macromolecules. The
above relation, in agreement with the experimental evidence (Schreiber et al.
1963; Ito and Shishido 1972), shows that the deviation of the behaviour of
the system from Newtonian starts at the shear stress which is the lesser, the
larger the length of the macromolecule is. For very long macromolecules the
deviation does not depend on the length of the macromolecules.

Normal Stresses

Calculation of terms of the second order reveals that normal stresses are

σ11 + p =

⎧
⎨

⎩
nT

(
π4

45 + π2

6 χ − π4

90 β
)
(Bτ ∗ν12)2, χ > χ∗,

nT
(

π6

90
1

Bχ + π2

6 χB
E + π2

3 χ
)
(Bτ ∗ν12)2, χ < χ∗,

σ22 + p =

⎧
⎨

⎩
−nT

(
π2

6 χ + π4

90 β
)
(Bτ ∗ν12)2, χ > χ∗,

nT
(

π6

90
1

Bχ + π2

6 χB
E − π2

3 χ
)
(Bτ ∗ν12)2, χ < χ∗,

σ33 + p = 0.

(9.41)

Specific characteristics of viscoelastic medium are differences of the normal
stresses

σ11 − σ22 =

{
nT

(
π4

45 + π2

3 χ
)
(Bτ ∗ν12)2, χ > χ∗,

nT 2π2

3 χ (Bτ ∗ν12)2, χ < χ∗,

σ22 − σ33 =

⎧
⎨

⎩
−nT

(
π2

6 χ + π4

90 β
)
(Bτ ∗ν12)2, χ > χ∗,

nT
(

π6

90
1

Bχ + π2

6 χB
E − π2

3 χ
)
(Bτ ∗ν12)2, χ < χ∗.

(9.42)

The ratio of the first difference of the normal stresses σ11 −σ22 to the square
of the shear stress is an important characteristic quantity. The expressions for
the steady-state modulus in the region of low velocity gradients are defined
as
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2σ2
12

σ11 − σ22
=

{ 5
2nT

(
1 − 15

π2 χ
)
, χ > χ∗,

π2

12 nTχ−1, χ < χ∗.
(9.43)

For the weakly entangled system, the steady-state modulus depends on the
molecular weight of polymer as M −1, while for strongly entangled system, the
steady-state modulus does not depend on the molecular weight of polymer,
which is consistent with typical experimental data for concentrated polymer
systems (Graessley 1974). The expression for the modulus is exactly the same
as for the plateau value of the dynamic modulus (equations (6.52) and (6.58))

Expressions (9.42) lead to the following relation for the ratio of the normal
stresses differences

σ22 − σ33

σ11 − σ22
=

{ − 15
2π2 χ − 1

2β, χ > χ∗,

π4

60
1

χ2B + B
4E − 1

2 , χ < χ∗.
(9.44)

This ratio depends on the molecular weight of polymer M and predicted to be
negative for typical values of parameters. For the strongly entangled systems,
according to equations (3.30), B ∼ M δ, χ ∼ M −1, so that the ratio (9.44)
approaches −1/2 for very long macromolecules. According to experimental
evidence, the second difference of the normal stresses σ22 − σ33 is negative
and less than the first. The ratio has generally been reported to be in the
range of −0.15 to −0.3 (Brown et al. 1995), though Faitelson (1995) found
the values of the quantity for polybutadiene with narrow molecular-weight
distribution to lie in the range from −0.3 to −0.45. It would be desirable to
measure the ratio of differences of the normal stresses for well-characterised
systems to test the validity of relation (9.44).

9.3 Single-Mode Description of Entangled System

Notwithstanding the simplifying assumptions in the dynamics of macro-
molecules, the sets of constitutive relations derived in Section 9.2.1 for polymer
systems, are rather cumbersome. Now, it is expedient to employ additional
assumptions to obtain reasonable approximations to many-mode constitutive
relations. It can be seen that the constitutive equations are valid for the small
mode numbers α, in fact, the first few modes determines main contribution
to viscoelasticity. The very form of dependence of the dynamical modulus in
Fig. 17 in Chapter 6 suggests to try to use the first modes to describe low-
frequency viscoelastic behaviour. So, one can reduce the number of modes to
minimum, while two cases have to be considered separately.

It is clear that at transition from many modes to a single mode, weight
coefficients for mode contributions into the stress tensor have to be introduced.
One has to require correspondence of some specified quantities to the same
ones calculated within the many-mode theory. The procedure eliminates the
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arbitrariness to the choice of the weights. One can see that the following form
of the stress tensor

σik = −pδik +
π2

2
nT

(
x1

ik − 1
3
δik + u1

ik

)
(9.45)

provides the correct form for initial coefficient of viscosity both for the weakly
and strongly entangled systems.

9.3.1 Weakly Entangled Systems

Constitutive Relations

First, we refer to constitutive relations (9.19)–(9.22) which describe the be-
haviour of the system with moderate concentration of polymer and/or the
systems with shorter macromolecules, when the characteristic parameters of
the system are satisfied to conditions

χ∗ < χ < 0.5, ψ < 1.

Every mode contains two relaxation processes, described by the relaxation
equations (9.20) and (9.21). One can retain one relaxation equation from
each relaxation branch only, so that the two relaxation equations have to be
considered

dx1
ik

dt
− νijx

1
jk − νkjx

1
ji

= − 1
2τ1

[(
x1

ij − 1
3
δij

)
bjk +

(
x1

kj − 1
3
δkj

)
bji

]
, (9.46)

du1
ik

dt
− ωiju

1
jk − ωkju

1
ji

= −
(

1
τ

δij +
1

2τ1
bij

)
u1

jk − 1
τ

ψ

[(
x1

ij − 1
3
δij

)
djk − 2BτR

1 x1
ilγljfjk

]

+ γilu
1
lk, (9.47)

where the relaxation time τ1 = τ ∗B and the auxiliary quantities are

bik = β−1
ik , dik = β−1

ij εkj , fik = εik,

βik = [(1 − κ + (κ − β)all)δik + 3βaik]−1,

εik = [(1 − ν + (ν − ε)all)δik + 3εaik]−1, aik = x1
ik − 1

3
δij + u1

ij .

The relaxation equations (9.46) and (9.47) describe the joint non-linear re-
laxation of the two variables which appear to be weakly connected with each
other through the term with the small quantity ψ in equation (9.47).
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It is convenient to introduce new variables, so that expression (9.45) for
the stress tensor can be written in the form

σik = −pδik + 3
η0

τ0

(
ξik − 1

3
δik

)
, ξik = x1

ik + u1
ij , (9.48)

where one retains the previous definitions of the shear viscosity η0 and define
the relaxation time τ0 as

η0 =
π2

6
nTτ ∗B, τ0 = τ ∗B.

The set of relaxation equations in the single-mode approach (9.46) and
(9.47) can be written in different approximations. One can see, that in zero
approximation (ψ = 0), the relaxation equations (9.46) and (9.47) appear
to be independent. The expansion of the quantity u1

ik in powers of velocity
gradient begins with terms of the second order (see equation (7.39)), so that,
according to equation (9.47), the variable u1

ik is not perturbed in the first and
second approximations at all and, consequently, can be omitted at ψ = 0. In
virtue of ψ � 1, the second variable has to considered to be small in any case
and can be neglected with comparison to the first variable, so that the system
of equations can be written in a simpler way. In the simplest case, relaxation
equation (9.46) in terms of the new variables ξjk can be rewritten as

dξik

dt
− νijξjk − νkjξji = − 1

τ0
[1 + (κ − β)(ξss − 1)]

(
ξik − 1

3
δik

)

− 1
τ0

3β

(
ξij − 1

3
δij

) (
ξjk − 1

3
δjk

)
. (9.49)

One may note that the system of constitutive relations (9.48)–(9.49), which
were derived and investigated by Pyshnograi et al. (1994), Pyshnograi (1996),
Altukhov and Pyshnograi (1996), is a particular case of a set of the phe-
nomenological constitutive equations (8.30)–(8.31).

Steady-State Simple Shear Flow

The expressions for stresses in simple shear flow are followed constitutive
relations (9.48)–(9.49). With accuracy up to the third-order terms with respect
to velocity gradient ν12 one has

σ12 = ην12,
η

η0
= 1 − 1

3
(2κ + 7β)(τ0ν12)2,

σ11 − σ22 = 2η0τ0ν
2
12 = 2

τ0

η0
σ2

12,

σ22 − σ33 = −βη0τ0ν
2
12 = −β

τ0

η0
σ2

12.

(9.50)
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In the region of the higher velocity gradient, the viscosity coefficient η and the
coefficients of normal stresses as functions of velocity gradients were calculated
(Golovicheva et al. 2000) for different values of the parameters β and κ. The
relations for simple shear flows are typical for polymer solutions of moderate
concentration.

Constitutive relations (9.48)–(9.49) determine certain amendments to
known expressions for flow of viscous liquid through the long channels. The
results are available (Erenburg and Pokrovskii 1981; Altukhov and Pyshnograi
1996) for flow between parallel planes with the gap h and for flow through a
round tube with the radius R, correspondingly

Q =
A

12η0
h3

(
1 +

1
20

(
Ahτ0

η0

)2

(2κ + 7β)

)
,

Q =
πA

8η0
R4

(
1 +

1
6

(
ARτ0

η0

)2

(2κ + β)

)
.

In these expressions, Q is the volume rate and A = p/L is gradient of pressure
along the channels.

One can concluded that the constitutive relations (9.48)–(9.49) do indeed
approximate the behaviour of systems containing long macromolecules.

9.3.2 Strongly Entangled Systems

Constitutive Relations

In this case, when
χ < χ∗ < 1, ψ > 1,

the expression (9.45) for the stress tensor can be used in the previous form

σik = −pδik +
π2

2
nT

(
x1

ik − 1
3
δik + u1

ik

)
. (9.51)

Now, one can refer to constitutive relations (9.19) and (9.24)–(9.26) and, as
in previous case, one can keep one relaxation equation from each relaxation
branch only, so that one has two relaxation equations in the following form
to be considered

dx1
ik

dt
− νijx

1
jk − νkjx

1
ji

= − 1
2τ rep

1

[(
x1

ij − 1
3
δij

)
bjk +

(
x1

kj − 1
3
δkj

)
bji

]
, (9.52)

du1
ik

dt
− ωiju

1
jk − ωkju

1
ji

= − 1
τ

u1
ik − 1

τ

(
x1

ik − 1
3
δik − 2Bτ ∗x1

ilγljfjk

)
+

B

E
eijγjlu

1
lk (9.53)
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where the auxiliary quantities are

bik = ε−1
ik , eik = ε−1

ij βjk, fik = ε−1
ij βjlεlk,

βik = [(1 − κ + (κ − β)all)δik + 3βaik]−1,

εik = [(1 − ν + (ν − ε)all)δik + 3εaik]−1, aik = x1
ik − 1

3
δij + u1

ij .

In linear case, the dependence of the tensors βik and εik on the anisotropy
tensor can be neglected, and all the above quantities become the unit matrixes.

Equations (9.52) and (9.53) describe the non-linear relaxation processes,
which are featured, in particular, by the anisotropy of relaxation which means
that in a deformed system, different components of the tensors x1

ik and u1
ik

relax at different rates. The change of the second variables depends on the
first one, so that the two variables of each mode are closely connected with
each other.

One considers the anisotropy of environment to give a small contribution
to the terms of the second order and higher with respect to velocity gradient,
so that it can be neglected for the beginning, and relaxation equations (9.52)
and (9.53) take simpler forms

dx1
ik

dt
− νijx

1
jk − νkjx

1
ji = − 1

τ rep
1

(
x1

ij − 1
3
δij

)
, (9.54)

du1
ik

dt
− ωiju

1
jk − ωkju

1
ji

= − 1
τ

u1
ik − 1

τ

(
x1

ik − 1
3
δik − 2Bτ ∗x1

ilγlk

)
+

B

E
γilu

1
lk. (9.55)

The set of equations (9.51)–(9.53) or (9.51) and (9.54)–(9.55) makes up the
set of constitutive equations of strongly entangled system in the single-mode
approximation.

Linear Viscoelasticity

In linear case, one can rewrite the relaxation equations (9.54)–(9.55) in the
form

dx1
ik

dt
= − 1

τ rep
1

(
x1

ik − 1
3
δik

)
+

2
3
γik,

du1
ik

dt
= − 1

τ
u1

ik − 1
τ

(
x1

ik − 1
3
δik − 2

3
τ ∗Bγik

)
.

(9.56)

These equations have the following solutions for oscillatory motion
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x1
ik =

1
3
δik +

2
3

τ rep
1

1 − iωτ rep
1

γik,

u1
ik =

2
3

(
τ ∗B − τ rep

1

1 − iωτ rep
1

)
1

1 − iωτ
γik.

Then, one can make use of the expression for the stress tensor from (9.51),
to obtain the coefficient of dynamic viscosity

η(ω) =
π2

6
nT

[
τ rep
1

1 − iωτ rep
1

+
(

τ ∗B − τ rep
1

1 − iωτ rep
1

)
1

1 − iωτ

]
. (9.57)

At ω = 0, this expression reduces to the steady-state viscosity coefficient

η =
π2

6
nTτ ∗B.

Expression (9.57) leads to an expression for the dynamic modulus G(ω) =
−iωη(ω), from which the value on the plateau can be found

Ge = lim
ω→∞

G(ω) =
π2

6
nT

(
τ ∗B

τ
+ 1

)
≈ π2

12
nTχ−1.

Thus, one can see that the single-mode approximation allows us to describe
linear viscoelastic behaviour, while the characteristic quantities are the same
quantities that were derived in Chapter 6. To consider non-linear effects, one
must refer to equations (9.52) and (9.53) and retain the dependence of the
relaxation equations on the anisotropy tensor.

9.3.3 Vinogradov Constitutive Relation

It is important to have a simple but reliable constitutive relations to inves-
tigate flows of polymer liquids in different appliances of complex geometrical
forms. Now we can take one more step to simplify the set of constitutive equa-
tions (9.48)–(9.49), which approximate the behaviour of polymer liquid in the
region of the applicability of the relation: χ∗ < χ < 0.5, ψ < 1. Let us note
that these conditions define the systems, which can easily flow in the devices.

One can assume that the anisotropy of the relaxation process can be ne-
glected. This means that, in relaxation equation (9.49), we equate to zero
the parameter β, but retain the parameter κ, so that the set of constitutive
equations can be rewritten as follows

σij = −pδij + 3
η

τ

(
ξij − 1

3
δij

)
,

dξij

dt
− νilξlj − νjlξli = − 1

τ

(
ξij − 1

3
δij

)
, τ =

τ0

1 + κ(ξss − 1)
.

(9.58)
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The relaxation time τ can be considered to be a function of the first
invariant of the tensor of additional stresses

D = 3(ξss − 1) =
τ0

η0
(σss + 3p). (9.59)

The quantity η in set (9.58) represents the shear viscosity coefficient and
depends on the invariant of the anisotropy tensor in the same way as the
relaxation time

η

η0
=

τ

τ0
=

(
1 +

1
3
κD

)−1

= φ(D). (9.60)

The suffix zero signifies the initial values of the relevant quantities (at D → 0).
One can see that the set of constitutive equations (9.58)–(9.60) contains

two rheological parameters: the initial shear viscosity η0 and the initial relax-
ation time τ0, as well as a single non-dimensional parameter κ.

In this and in the next sections, we shall demonstrate the consequences of
the simplified description for shear and extension motions in order to under-
stand the applicability of the approach. We shall deal with uniform steady-
state motions for which we have, from (9.58), the expression for the stress
tensor

σij + pδij = 3η(νilξlj + νjlξli). (9.61)

For the simple shear flow, the only one component of the velocity gradient
tensor differs from zero, namely, ν12 �= 0. The shear stress and the differences
of the normal stresses are defined by equation (9.61) as

σ12 = ην12,

σ11 − σ22 = 2ητν2
12, (9.62)

σ22 − σ33 = 0.

The first equation of the set (9.62) confirms that η is the coefficient of
shear viscosity, which can be estimated according to the rule

η =
σ12

ν12
. (9.63)

We may note that the function φ(D), which is introduced by relation (9.60),
can be excluded from expressions (9.62) which leads to a relation between
normal and shear stresses

σ11 − σ22 = 2
τ0

η0
σ2

12. (9.64)

This relation can be used to estimate the value of the shear modulus η0/τ0.
Measurement of the first difference of normal stresses allows us to evaluate
the relaxation time

τ =
σ11 − σ22

2σ12ν12
. (9.65)
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TABLE 3. Characteristics of the sample systems

System T c η0
τ0

· 10−4 η0 τ0 No. on
oC % dyn cm−2 P s Fig. 19

Polyisobutylene 22 100 4.8 1.7 · 107 354 1
M = 7 · 104 ∗ 40 100 4.6 3.46 · 106 77.8 2

Blend of 62% low
density polyethylene

and 38% high
density polyethylene∗∗ 170 100 3.1 1.41 · 106 45 3

Low density

polyethylene∗∗ 170 100 5.6 4.2 · 105 7.5 4

Solution of poly-

acrylamide in the
mixture glycerine–

water (1:1)∗∗∗ 25 1.5 0.038 1.8 · 104 47 5

Solution of poly
(ethylene oxide) in

the mixture
glycerine–water (1:2) +

11% isopropanol∗∗∗ 25 3.0 0.02 1 · 104 50 6

∗ Fikhman et al. (1970); ∗∗ Weinberger and Goddard (1974)
∗∗∗ Pokrovskii et al. (1973)

Equations (9.63)–(9.65) were used, in fact, to evaluate the shear viscosity
coefficient and the relaxation times which reveal the nature of dependence on
the velocity gradient ν12 or shear stress σ12 (Isayev 1973). It is convenient to
consider the shear viscosity coefficient and the relaxation time as a generalised
function of the first invariant of the tensor of additional stresses

D =
τ0

η0
(σss + 3p) = 2

(
τ0

η0
σ12

)2

= 2Γ 2. (9.66)

It is remarkable that the dependencies of the non-dimensional quantities η/η0

and τ/τ0 on the non-dimensional argument τ0ν12 or (τ0/η0)σ12 are universal.
The dependencies are not essentially effected by the temperature, the molecu-
lar weight, and the concentration and chemical nature of the polymers (Isayev
1973).

Despite the apparent deficiency of description (9.58) when applied to a real
system, we may note that the set of constitutive equations (9.58)–(9.60) repre-
sent qualitatively the behaviour of concentrated polymer solutions and melts
under shear. The set of equations include two material constants which are the
individual characteristics of the system, namely, the initial shear viscosity and
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the initial relaxation time, which depend on the temperature, the molecular
weight of polymer, and its concentration in the system. As an illustration, the
estimation of the material constants for some systems are shown in Table 3.
The returning to the fuller approximation (equations (9.48)–(9.49)) improves
the description, as has been shown by Pyshnograi et al. (1994).

The constitutive equations (9.58)–(9.60) were derived as a consequent sim-
plification of general equations, discussed in Section 9.2.1, so that one can
conclude which assumptions have to be introduced to obtain the equations.
We may note that, before this consequent derivation, the considered con-
stitutive equations (9.58)–(9.60) were formulated (Vinogradov et al. 1972b;
Phan-Thien and Tanner 1977) and used for the investigation of simple
(Pokrovskii and Kruchinin 1980) and complex (Altukhov et al. 1986; Erenburg
and Pokrovskii 1981) flows of polymeric liquids. The constitution equations
named in honour of one of the pioneer investigator of polymer rheology G.V.
Vinogradov.

It is important to note that the constitutive equation (9.58)–(9.60) belong
to the class of the rare equations which are Hadamard and dissipative stable
(Kwon and Leonov 1995).

9.3.4 Relation between Shear and Elongational Viscosities

Consider the case of applying the system (9.58)–(9.60) to description of uni-
axial deformation with the constant elongational velocity gradient ν11. The
elongational viscosity coefficient λ is determined as the ratio of the extensional
stress σ to the elongational velocity gradient. We shall calculate, according to
Pokrovskii and Kruchinin (1980), the ratio between the coefficients of elonga-
tional and shear viscosity, namely, the quantity λ/η for a polymer liquid.1

For uniform uniaxial elongational deformation along axis 1, the tensor of
the velocity gradients, taking into account the condition of incompressibility,
can be written in the form

νik =

∥∥∥∥∥∥∥∥

ν11 0 0

0 − 1
2ν11 0

0 0 − 1
2ν11

∥∥∥∥∥∥∥∥
.

If we exclude the pressure from the relation for the stresses (9.58) un-
der the considered uniaxial deformation, we can obtain an expression for the
extensional stress

σ = 3
η

τ
(ξ11 − ξ22) = 3η(2ξ11 − ξ22)ν11 (9.67)

where, in a steady-state case,

1 The earlier history of the investigation of elongational flow can be found in the monograph
by Petrie (1979).
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Figure 19. The ratio of elongational to shear viscosities

.

The theoretical dependence of the ratio of elongational to shear viscosity coefficients on

the invariant of the additional stress tensor is calculated according to equation (9.71) and
depicted by the dashed curve. The solid curves represent experimental data for systems

listed in Table 3. Adapted from the paper of Pokrovskii and Kruchinin (1980).

ξii =
1
3

(
1 +

2τνii

1 − 2τν11

)
, i = 1, 2, 3. (9.68)

The above formulae determine the elongational viscosity coefficient

λ =
3η

1 − τν11 − 2(τν11)2
. (9.69)

The viscosity coefficients η and λ are functions of the first invariant of the
tensor of additional stresses

D =
τ0

η0
(σii + 3p).

When relations (9.67) and (9.68) are used, the invariant can be expressed in
terms of the elongational velocity gradient or extensional stress

D = 2
λ

η
(τν11)2 = 2

η

λ

(
τ0

η0
σ

)2

. (9.70)

By eliminating the velocity gradient from relations (9.69) and (9.70) we
can obtain an expression for the ratio of the coefficients of elongational and
shear viscosity

λ

η
= 3 +

5
4
D +

(
3
2
D +

9
16

D2

)1/2

. (9.71)
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The ratio of the coefficients is a function of the invariant D which, for shear
motion, has the form

D = 2
(

τ0

η0
σ12

)2

. (9.72)

The expression for D in the case of uniaxial deformation is easily obtained
from equations (9.70) and (9.71)

D = − 3
2

− 1
2

τ0

η0
σ +

1
2

(
9 + 6

τ0

η0
σ + 9

(
τ0

η0
σ

)2
)1/2

. (9.73)

It should be noted that, when deriving this expression, we assumed that η
and λ are functions of the invariant D, but we did not use a specific form of
this function.

The applicability of relation (9.71) to a real polymer system was discussed
in works by Pokrovskii et al. (1973); Pokrovskii and Kruchinin (1980); Pyshno-
grai et al. (1994). Figure 19 represents the experimental values of the ratio λ/η
depending on the invariant D for the polymer systems, listed in Table 3, in
comparison with the universal theoretical curve calculated according to equa-
tion (9.71). The experimental results can be seen to have a definite scatter
relative to the theoretical curve; this can be ascribed to both natural exper-
imental errors and the necessity of improving the theoretical calculation by
appealing to the fuller set of constitutive relations (9.48)–(9.49). In the former
case a variation of β in (9.49) leads to a set of λ/η vs D curves (Pyshnograi
et al. 1994).

However, the observed consistency of the experimental and theoretical
appraisals can be considered as surprisingly satisfactory. Both these results
and the results of the previous section point to the possibility of employing the
Vinogradov constitutive equations (9.58)–(9.60) for qualitative investigations
of non-uniform flows of polymer liquids.

9.3.5 Recoverable Strain

One of the prominent features of polymeric liquids is the property to recover
partially the pre-deformation state. Such behaviour is analogous to a rubber
band snapping back when released after stretching. This is a consequence of
the relaxation of macromolecular coils in the system: every deformed macro-
molecular coil tends to recover its pre-deformed equilibrium form. In the con-
sidered theory, the form and dimensions of the deformed macromolecular coil
are connected with the internal variables xα

ij which have to be considered
when the tensor of recoverable strain is to be calculated. Further on, we shall
consider the simplest case, when the form and dimensions of macromolecular
coils are determined by the only internal tensor ξij . In this case, the behaviour
of the polymer liquid is considered to describe by one of the constitutive equa-
tions (9.48)–(9.49) or (9.58).
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To determine the tensor of recoverable strains, we have to equate the
stress tensor for a deformed polymer network (given in the simplest case by
equation (1.43)) with the elastic part of the stress tensor for a polymer liquid,
given in the general case by equation (9.19) or, in the simplified case by
equation (9.48). The latter case leads to the relation

Gλijλkj = 3
η0

τ0
ξik −

(
η0

τ0
− G

)
δik (9.74)

where G is the shear modulus and λij is the tensor of recoverable displace-
ment, such that Λik = λijλkj is the tensor of recoverable strains. The latter
quantities are discussed in Appendix B.

To determine the shear modulus and the tensor of recoverable strains,
we calculate the determinants of the left-hand and right-hand sides of equa-
tion (9.74). Taking into account the incompressibility of the polymer liquid,
i.e. relation |λijλkj | = 1, we obtain

G3 = 27
(

η0

τ0

)3
[
Ξ3 − 1

3

(
1 − Gτ0

η0

)
Ξ2 +

1
9

(
1 − Gτ0

η0

)2

Ξ1

]

where the invariants of the tensor ξij are introduced as follows

Ξ1 =
3∑

i=1

ξii, Ξ2 =
1
2

∑

i,j

(ξijξji − ξiiξjj), Ξ3 = |ξij |.

We consider these invariants independent of each other, so that we can de-
termine the shear modulus and the tensor of recoverable strains

G = 3|ξls|1/3 η0

τ0
, λijλkj = δik + |ξls| −1/3

(
ξik − 1

3
δik

)
. (9.75)

As the expansion of the invariants into series with respect to the velocity gra-
dients do not contain terms of even order, one can directly see the correctness
of the above expressions with accuracy at least up to third-order terms with
respect to the velocity gradient.

As an example, we shall consider simple shear when ν12 �= 0, and
find components of the tensor of the recoverable displacement gradients
λ12, λ11, λ22, λ33; the components of the tensor ξil are calculated from the
relaxation equations (9.49) or (9.58). In this case the matrix of the deforma-
tion tensor is determined as follows

Λ =

∥∥∥∥∥∥∥∥

λ2
11 + λ2

12 λ22λ12 0

λ22λ12 λ2
22 0

0 0 λ2
33

∥∥∥∥∥∥∥∥
. (9.76)

Further on we shall consider the simple case when the relaxation equation
is given by equation (9.58) and we shall assume the shear motion to be a
steady-state one. So, we have the expressions
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ξ11 =
1
3
(1 + 2Γ 2), ξ12 =

1
3
Γ , ξ22 = ξ33 =

1
3
,

ξ13 = ξ23 = 0
(9.77)

where Γ = τν12 = τ0
η0

σ12.

Now, equations (9.75) allow us to calculate the shear modulus and the
deformation tensor. With approximation up to the third-order terms with
respect to the velocity gradient, we obtain

G =
η0

τ0

(
1 +

1
3
Γ 2

)
, (9.78)

Λ =

∥∥∥∥∥∥∥∥∥∥

1 + 5
3Γ 2 Γ

(
1 − 1

3Γ 2
)

0

Γ
(
1 − 1

3Γ 2
)

1 − 1
3Γ 2 0

0 0 1 − 1
3Γ 2

∥∥∥∥∥∥∥∥∥∥

. (9.79)

After comparing expressions (9.76) and (9.79), we obtain the components
of the recoverable displacement tensor

λ11 = 1 +
1
3
Γ 2, λ22 = λ33 = 1 − 1

6
Γ 2, λ12 = Γ

(
1 − 1

6
Γ 2

)
. (9.80)

In accordance with the experimental data (Ferry 1980), the shear mod-
ulus increases as the velocity gradient increases and the recoverable shear
deformation λ12 deviates from proportionality to the velocity gradient.

We may note here that the sets of constitutive equations (9.48)–(9.49)
or (9.58) can be reformulated, taking into account the established connec-
tion between the internal variable ξij and the recoverable deformation tensor
(equation (9.75)), so that the constitutive equations would include the ten-
sor of recoverable deformation as an internal variable. In fact, such constitu-
tive equations were obtained independently (Godunov and Romenskii 1972;
Leonov 1976; Prokunin 1989). Therefore, two interpretations of the internal
variables and two formalisms are equivalent, but, nevertheless, one of them
appears to be simpler.



Chapter 10
Optical Anisotropy

Abstract Macromolecular coils are deformed in flow, while optically aniso-
tropic parts (and segments) of the macromolecules are oriented by flow, so
that polymers and their solutions become optically anisotropic. This is true
for a macromolecule whether it is in a viscous liquid or is surrounded by other
chains. The optical anisotropy of a system appears to be directly connected
with the mean orientation of segments and, thus, it provides the most direct
observation of the relaxation of the segments, both in dilute and in concen-
trated solutions of polymers. The results of the theory for dilute solutions
provide an instrument for the investigation of the structure and properties of
a macromolecule. In application to very concentrated solutions, the optical
anisotropy provides the important means for the investigation of slow relax-
ation processes. The evidence can be decisive for understanding the mecha-
nism of the relaxation.

10.1 The Relative Permittivity Tensor

In order to examine the optical anisotropy, we begin with the relative permit-
tivity tensor for the system εik, which is defined (see, for example, Born and
Wolf 1970; Landau et al. 1987) by the relation

εikEk = Ei + 4πPi (10.1)

where Ek is the average electric field strength acting in the medium and Pi

is the polarisation per unit volume of the system expressed in terms of the
polarisabilities of the constituent elements of the system.

One can make use of the heuristic model mentioned previously, in Sec-
tion 1.1: each macromolecule consists of z segments and is surrounded by
solvent molecules. It is not essential now to know whether the segments in the
chain are connected or independent; the results of this section are applicable
in both cases.

When considering the system consisting of solvent molecules and segments,
the simple old-fashion (Vleck 1932; Fröhlich 1958) speculations allow us to
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determine the relative permittivity tensor of polymeric system in terms of
the mean orientation of anisotropic segments of the macromolecules. The sol-
vent molecules have an isotropic polarisability α, while the segment has an
anisotropic polarisability αik. In the co-ordinate system connected with the
segment, the anisotropy tensor is assumed to be diagonal. In any other co-
ordinate system, the polarisability tensor of the segment has the form

αik = ciscksαss

where cis is the cosine of the angle between the ith axis of the laboratory
system and the sth axis of the molecule. One can assume that the segment
has axial symmetry, so that α22 = α33, and introduce the unit vector e in
direction of the axis. It allows us to rewrite the expression for the polarisability
tensor of the segment in the form

αik = ᾱδik + (α11 − α22)
(

eiek − 1
3
δik

)
(10.2)

where ᾱ = (α11 + α22 + α33)/3. In case that is more general, we have to
introduce two unit vectors e‖ and e⊥ – along the direction of the axis of the
segment and in perpendicular direction, respectively. In this case

αik = ᾱδik + (α11 − α33)
(

e‖
ie

‖
k − 1

3
δik

)
+ (α22 − α33)

(
e⊥
i e⊥

k − 1
3
δik

)
. (10.3)

The time of relaxation of the mean orientation of the lateral vector e⊥ is
considered to be much less than the time of relaxation of the mean orientation
of the axial vector e‖, so that the last term in (10.3) can be neglected for rather
low frequencies and one can continue with the simpler case (10.2).

The true molecular field F acting both on the segment and on molecules
of solvent differs from the average field E because the scale of the dimensions
of the segments is molecular. Each solvent molecule makes an isotropic con-
tribution to the polarisability vector; the contribution of each segment of the
macromolecule is anisotropic and is expressed by the formula

βs = csickiαiiFk =
[
ᾱδsk + Δα

(
esek − 1

3
δsk

)]
Fk, Δα = α11 − α22.

By taking into account all the molecules and segments and by designating
with nz and ns the densities of the number of segments and of the number of
solvent molecules (n being the density of the number of macromolecules), we
obtain, after averaging with respect to the orientations of the segments,

Pj = (nzᾱδjk + nzΔαsjk + nsαδjk)Fk (10.4)

where a symbol has been introduced for the mean values of the directing
cosines of the segment relative to the laboratory co-ordinate system – the
orientation tensor
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sjk = 〈ejek 〉 − 1
3
δjk.

The internal field Fk is assumed to be the same for the segments and the
solvent molecules.

Next, use is made of the simple hypothesis that all the positions of the
molecules and segments are equally probable, and, following tradition, we
shall formulate an expression for the internal field as a field within a spherical
cavity (Vleck 1932; Fröhlich 1958)

Fi = Ei +
4π

3
Pi. (10.5)

The internal field can be eliminated from relations (10.4) and (10.5), so
that we have a set of equations for the components of the vector of polarisation

(Aδsj + assj)Pj = −(Bδsj + bssj)Ej

where the following notations are introduced

A =
4π

3
(nzᾱ + nsα) − 1, a =

4π

3
nzΔα,

B = nzᾱ + nsα, b = nzΔα.

The written set of equations has a simple solution for the components of the
polarisation vector. We use them to write, in accordance to equation (10.1),
the relative permittivity tensor

εik = δik +
4π

D

[
−A2Bδik + (AaB − A2b)sik +

1
2
a2Bsjlsjlδik

+ (Aab − a2B)silsik +
1
2
a2bsjlsjlsik − a2bsijsjlslk

]
,

D = A3 − 1
2
Aa2siksik + a3|sik |.

In the case when there is no preferred orientation, that is sik = 0, the
considered system is isotropic and is characterised by the relative permittivity
constant

ε0 = 1 + 4π
nzᾱ + nsα

1 − 4π
3 (nzᾱ + nsα)

from which one can find the relations

4π

3
(nzᾱ + nsα) =

ε0 − 1
ε0 + 2

, A = − 3
ε0 + 2

.

The written relations define the relative permittivity tensor for the system,
which is formulated below to within second-order terms in the orientation
tensor
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εik = ε0δik + 4πnzΔα

(
ε0 + 2

3

)2

sik

+
1
2

[
1 − ε0 + 4π

(
ε0 + 2

3

)3
]

(4πnzΔα)2
(

ε0 + 2
3

)2

sjlsljδik

+
1
3
(4πnzΔα)2

(
ε0 + 2

3

)3

silslk. (10.6)

One can see that, to a first approximation, as it is well known (Vleck
1932; Fröhlich 1958), allowance for the internal field by the Lorentz procedure
is equivalent to multiplication by the factor

(
ε0 + 2

3

)2

.

In conformity with the significance of the terms employed by investigators
of anisotropy (Tsvetkov et al. 1964), the effects associated with the first-order
terms in equation (10.6) may be called the effects of intrinsic anisotropy, while
the second-order effects may be referred to as the effects of mutual interaction.
In the second approximation, the principal axes of the relative permittivity
tensor do not coincide, generally speaking, with the principal axes of the
orientation tensor. It is readily seen that interesting situations may arise when
Δα < 0; in this case, the coefficients of the first- and second-order terms have
different signs.

Let us note that the contribution from anisotropy due to the difference
in the isotropic part of the polarisability between segments and solvents
molecules, ᾱ − α0, ought to be added to expression (10.6). This is a first-
order term in the orientational tensor (Tsvetkov et al. 1964). We shall not
consider this contribution to the anisotropy, as it is not so important for the
very concentrated solutions under consideration.

10.2 The Permittivity Tensor for Polymer Systems

Now, we have to return to the subchain model of macromolecule, which was
used to calculate the stresses in the polymeric system, and express the tensor
of the mean orientation of the segments of the macromolecule in terms of the
subchain model.

Equation (10.6), formulated in the previous section, defines the relative
permittivity tensor in terms of the mean orientation of certain uniformly
distributed anisotropic elements, which we shall interpret here as the Kuhn
segments of the model of the macromolecule described in Section 1.1. We
shall now discuss the characteristic features of a polymer systems, in which
the segments of the macromolecule are not independently distributed but are
concentrated in macromolecular coils.
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10.2.1 Dilute Solutions

In the equilibrium situation, at a given end-to-end distance R of a macro-
molecule, the tensor of mean orientation of segments of a chain is determined
(Flory 1969) as

〈eiek 〉 − 1
3
δik =

3
5(zl)2

(
RiRk − 1

3
R2δik

)
. (10.7)

As before, we shall consider each macromolecule to be divided into N sub-
chains and assume that every subchain of the macromolecule is in the equilib-
rium. So, using the above formula relating the tensor of the mean orientation
of the segments of the macromolecules 〈ejek 〉 to the distance between the ends
of the subchains, we arrive from relation (10.6), taken in the first approxima-
tion, at Zimm’s (1956) expression for the relative permittivity tensor

εik = ε0δik + nΓ
(

〈rα
i Aαγrγ

k 〉 − 1
3

〈rα
j Aαγrγ

j 〉δik

)
(10.8)

where n is the density of the number of macromolecules in the solution, and
the matrix A has the form specified by formula (1.8), while the coefficient
of the anisotropy of the macromolecular coil Γ , for the macromolecule as a
freely-jointed chain of Kuhn segments, is given by the following expression

Γ = 4πΔα

(
ε0 + 2

3

)2 3N

5zl2

where z is the number of Kuhn segments in the macromolecule, and Δα is
the anisotropy of the polarisability of a Kuhn segment.

The anisotropy of the coil has been calculated for other models of the
macromolecule. Expressions for the anisotropy coefficient are known in the
case where the macromolecule has been represented schematically by a con-
tinuous thread (the persistence length model) (Gotlib 1964; Zgaevskii and
Pokrovskii 1970) and also in the case where the microstructure of the macro-
molecules has been specified. In the latter case, the anisotropy coefficient of
the macromolecule is expressed in terms of the bond polarisabilities and other
microcharacteristics of the macromolecule (Flory 1969).

When account is taken of the excluded volume effects, one has also to
take into account the possible effect of the shielding of the inner segments
of the macromolecular coil, the latter effect being the greater the longer the
macromolecule, so that the expression for the anisotropy coefficient, which has
to be covariant in relation to subdivisions into subchain, assumes the form

Γ = 4πΔα

(
ε0 + 2

3

)2 3N2ν

5〈R2〉 . (10.9)

The dependence of the polarisability coefficient on the length of the macro-
molecule follows from equation (10.9) as
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Γ ∼ M −2ν .

Expression (10.8) for the relative permittivity tensor in terms of the normal
co-ordinates introduced by means of equations (1.13), assumes the form

εik = ε0δik + nΓ
N∑

α=1

λα

(
〈ρα

i ρα
k 〉 − 1

3
〈ρα

j ρα
j 〉δik

)

or in terms of the ratios xν
ik = 〈ρν

i ρν
k 〉/〈ρνρν 〉0

εik = ε0δik +
3nΓ
2μ

N∑
α=1

(
xα

ik − 1
3
xα

jjδik

)
. (10.10)

The last equation can be compared with equations (9.1) and (9.3) for
the stresses in dilute solutions. On can see that, when internal viscosity is
neglected (ϕν = 0), there is a relation between the permittivity tensor and
stress tensor in the form

εij − ε0δij = 2n̄C (σij + pδij − 2ηsγij),

C =
Γ

4n̄μT
=

2π

45n̄T
(ε0 + 2)2Δα (10.11)

where n̄ is an isotropic value of the refractive index (n̄2 = ε0) and C is the
stress-optical coefficient, which is universally expressed through the segment
anisotropy Δα. The stress-optical law (10.11) reflects the fact that both the
stresses and the optical anisotropy of a polymer solution under motion are
determined by the mean orientation of segments of the chains.

Expression (10.10) for the relative permittivity tensor is valid only to a
first approximation as regards the orientation of the segments and describes
the anisotropy of the system associated with the intrinsic anisotropy of the
segments. Apart from it, it was assumed that distribution of orientation of
the segments inside every subchain are considered to be in equilibrium though
under deformation. However, this expression has appeared to be very well ap-
plicable to dilute polymer solutions at low frequencies and small velocity gradi-
ent (Tsvetkov et al. 1964; Janeschitz-Kriegl 1983). In more general situations,
one has to take into account that the mean orientation of segments under de-
formation of the macromolecular coil deviates from equilibrium value (10.7).
One can believe that the stress-optical law (10.11) is valid in this case, so
that an expression for the permittivity tensor can be found as combination
of equations (9.1) and (10.11), whereby the internal viscosity is taking into
account. However, an independent calculation of the tensor of orientation and
the permittivity tensor in non-equilibrium situations is much desirable.

10.2.2 Entangled Systems

The situation is different for very concentrated polymer solutions. Though
equation (10.6) is applicable for this case, formula (10.7) is not valid neither
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for the entire macromolecule nor for a separate subchain. The subchain of a
macromolecule in the deformed entangled system is not in equilibrium even
in the first approximation, and the problem about distribution of orientation
of the interacting, connected in chains, segments apparently is not solved yet.

In this situation, which is also discussed in Section 7.5, we refer to exper-
imental evidence according to which components of the relative permittivity
tensor are strongly related to components of the stress tensor. It is usually
stated (Doi and Edwards 1986) that the stress-optical law, that is propor-
tionality between the tensor of relative permittivity and the stress tensor, is
valid for an entangled polymer system, though one can see (for example, in
some plots of the paper by Kannon and Kornfield (1994)) deviations from
the stress-optical law in the region of very low frequencies for some samples.
In linear approximation for the region of low frequencies, one can write the
following relation

εij − ε0δij = 2n̄C (σij + pδij) (10.12)

where n̄ is a value of the refractive index (n̄2 = ε0) and C is the stress-optical
coefficient, which is assumed to be universally expressed through the segment
anisotropy Δα by formula (10.11). Relation (10.12) reflects the fact that both
the stresses and the optical anisotropy of a polymeric liquid under motion are
determined by the mean orientation of the interacting segments. One can use
expression (9.19) for the stress tensor to write

εij = ε0δij + 6nT n̄C

N∑
α=1

{
xα

ij − 1
3
δij + uα

ij

}
. (10.13)

One admits that the relative permittivity tensor of the system is deter-
mined by the mean orientation of the segments, so that we consider expres-
sion (10.13) to be equivalent to the first-order terms of relation (10.6) and,
at comparison, obtain the expression for the mean orientation of segments of
macromolecules in an entangled system

〈eiek 〉 − 1
3
δik =

3
5z

N∑
α=1

{
xα

ij − 1
3
δij + uα

ij

}
(10.14)

where z is number of segments in a macromolecules. The set of the variables
xα

ij = 〈ρα
i ρα

k 〉
〈ρα

i ρα
k 〉0

represents the conformation of the macromolecular coil, while
the variables uα

ij are mainly connected with the mean orientation of the seg-
ments sij . The variables xα

ij and uα
ij appear to be independent from each other

and can be found as a solutions of the relaxation equations (7.25) and (7.38)
for weakly entangled systems and equations (7.29) and (7.40) for strongly
entangled systems.

Relaxation equations for the mean orientation can be restored (see also
Section 7.5). In the case of strongly entangled system, in linear approximation,
assuming that E/B � B, we have
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d〈eiek 〉
dt

= − 1
τ

(
〈eiek 〉 − 1

3
δik

)
+

π2

15
1
z
B

τ ∗

τ
γik. (10.15)

One can see that, in this approximation, disturbed conformation of macro-
molecules does not affect the mean orientation of segments in the steady state,
that can be found from equation (10.15) as

〈eiek 〉 =
1
3
δik +

π2

15
1
z
τ ∗Bγik. (10.16)

In contrast to the case of dilute polymer solutions (relation (10.7)), mean
orientation of segments does not depend (to the first approximation) on the
large-scale conformation of the macromolecule. However, an independent cal-
culation of the tensor of orientation in non-equilibrium situations is much
desirable.

10.3 Optical Birefringence

The value of the refractive index n of light in the anisotropic medium depends
on the direction of propagation s and on the direction of the polarisation of
the light. For the given relative permittivity tensor εjl, the refractive index
can be determined from the relation (Born and Wolf 1970; Landau et al. 1987)

εjlEl = n2[Ej − sj(s · E)]. (10.17)

It follows from (10.17) that the refractive index for an isotropic medium
is determined by the permittivity constant only

n2 = ε0.

In the case of an anisotropic system, it is convenient to consider particular
cases. Further on, expressions for characteristics of optical birefringence in
two typical cases will be shown.

Methods for the experimental estimation of birefringence can be found
in the monograph by Tsvetkov et al. (1964), Janeschitz-Kriegl (1983) and in
papers by Lodge and Schrag (1984), Inoue et al. (1991), and Kannon and
Kornfield (1994).

10.3.1 Simple Elongation

In the simplest cases, the optical anisotropy of polymer systems is studied
under the conditions of simple elongation, when the elongation velocity gra-
dient ν11 is given. The system investigated then becomes, generally speaking,
a “triaxial dielectric crystal” with components of the relative permittivity
tensor
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∥∥∥∥∥∥∥
ε11 0 0
0 ε22 0
0 0 ε33

∥∥∥∥∥∥∥
.

For a system under elongational deformation along direction 1, for a beam
of light propagating in direction 3, according to (10.17) one obtains different
refractive indices for different polarisation of the beam, so that, for polarisa-
tion in directions 1 and 2, one has a difference of refractive indices

Δn =
1
2n̄

(ε11 − ε22) (10.18)

where n̄ is the average refractive index. This relation is written on the assump-
tion that the difference between refractive indices is small, so that non-linear
terms are omitted.

10.3.2 Simple Shear

For a system undergoing simple shear, when the velocity gradient ν12 �= 0,
the relative permittivity tensor is non-diagonal

∥∥∥∥∥∥∥
ε11 ε12 0
ε12 ε22 0
0 0 ε33

∥∥∥∥∥∥∥
.

However, the tensor can be turned to diagonal form by rotating the co-
ordinate frame round axis 3 by an angle χ (the extinction angle), defined by
the formula

tan 2χ =
2ε12

ε11 − ε22
. (10.19)

The differences between the refractive indices (the extent of double re-
fraction) in the different principal directions can be determined from equa-
tion (10.17). For a beam propagated in direction 3, we find that

Δn =
1
2n̄

√
(ε11 − ε22)2 + 4ε2

12. (10.20)

This relation as well as relation (10.18) is valid in linear approximation
and can be therefore rewritten as

Δn =
1
n̄

ε12, (10.21)

while the extinction angle χ = π/4.
A little bit more complicated situation appears, if one considers a beam

propagating across the flow in direction characterised by the unit vector

s1 = sin θ, s2 = cos θ, s3 = 0.
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This experimental situation is described, for example, in the work of Brown et
al. (1995). It is convenient to choose the electric vector of the beam in plane
(1–2) or in direction 3, whereas the differences between the refractive indices
can be easily found from equation (10.17)

Δn =
1
2n̄

(
ε11ε22 − ε2

12 − ε22ε33(1 − sin2 θ) − ε11ε33(1 − cos2 θ)
ε22(1 − sin2 θ) − ε11(1 − cos2 θ) − 2ε12 sin θ cos θ

− 2ε12ε33 sin θ cos θ

ε22(1 − sin2 θ) − ε11(1 − cos2 θ) − 2ε12 sin θ cos θ

)
.

For θ = 0, this formula reduces to

Δn =
1
2n̄

(
ε11 − ε33 − ε2

12

ε22

)
.

10.3.3 Oscillatory Deformation

One frequently deals with the linear effects of anisotropy which are induced
by oscillatory velocity gradients or by oscillatory strains

uik(t) = −iωγik(t) ∼ e−iωt.

In this case, it is convenient to characterise the behaviour of the system
by the dynamo-optical coefficient

S(ω) = S′(ω) + iS′ ′(ω)

due to Lodge and Schrag (1984), or by the strain-optical coefficient

O(ω) = O′(ω) − iO′ ′(ω)

due to Inoue et al. (1991). These quantities are introduced by relations

εik = ε0δik + 4n̄S(ω)γik,

εik = ε0δik + 4n̄O(ω)uik.
(10.22)

It is easy to find, from the above-written formulae, that the components
of dynamic characteristics are connected by relations

O′(ω) = ωS′ ′(ω), O′ ′(ω) = ωS′(ω). (10.23)

Relations (10.22) are quite similar to the definitions of dynamic visco-
sity η(ω) and dynamic modulus G(ω), so that relations (10.23) are similar
to the relations between the components of dynamic modulus and dynamic
viscosity (equations (6.10)).

Dynamo-optical and strain-optical coefficients can be estimated from mea-
surements of birefringence Δn under elongational flow or shear flow, corre-
spondingly
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Δn = 3S(ω)ν11 = 3O(ω)u11, (10.24)
Δn = 2S(ω)ν12 = 2O(ω)u12. (10.25)

Note that a frequency-dependent stress-optical coefficient C(ω) can be
introduced by comparing the stress tensor and the relative permittivity tensor

εij − ε0δij = 2n̄C(ω)(σij + pδij)

where

C(ω) =
S(ω)
η(ω)

=
O(ω)
G(ω)

.

10.4 Anisotropy in a Simple Steady-State Shear Flow

Let us consider the anisotropy of polymer system undergoing simple steady-
state shear. This situation can be realised experimentally in a simple way
(Tsvetkov et al. 1964). The quantity measured in experiment are the birefrin-
gence Δn and the extinction angle χ which are defined by formulae (10.19) and
(10.20), correspondingly, through components of the relative permittivity ten-
sor.

10.4.1 Dilute Solutions

One can turn to equation (10.10) to find the components of the relative per-
mittivity tensor. Using expressions for the moments (2.42), one determines the
gradient dependence of the quantities for dilute polymer solutions to within
second-order terms

Δn =2CnT

N∑
ν=1

τ ⊥
ν ν12,

tan 2χ =
1

2Aν12
, χ =

π

4
− Aν12

(10.26)

where two non-dimensional quantities, the stress-optical coefficient C and the
characteristic angle A, have been introduced as

C =
Γ

4n̄μT
=

2π

45n̄T
(ε0 + 2)2Δα, (10.27)

A =
1
2

N∑
ν=1

(1 + ϕν)(τ ⊥
ν )2 ·

(
N∑

ν=1

τ ⊥
ν

)−1

. (10.28)

We can see from equation (10.27) that the stress-optical coefficient depends
neither on the molecular weight of the polymer nor on the number of subchains
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and is proportional to the polarisability of the Kuhn segment Δα. The stress-
optical coefficient can be estimated by investigation of the shear motion of
a very dilute polymer solution, as the ratio of the characteristic extent of
double refraction [Δn] to the initial characteristic (intrinsic) viscosity defined
by equation (6.23)

2C =
[Δn]
[η]0

, [Δn] = lim
c→0

ν12→0

n1 − n2

cηsν12
. (10.29)

As far as the characteristic angle (10.28) is concerned, taking into account
the dependence of the relaxation time and of the internal viscosity on the
number of the mode (formulae (2.27) and (2.31)), one can write, with the aid
of the zeta-function ζ(x),

A =
1
2

τ1

ζ(zν)
[ζ(2zν) + ϕ1ζ(2zν − θ)] .

The first term of the expression is proportional to the solvent viscosity ηs

and the second to the internal viscosity (kinetic rigidity) of the macromolecule,
so that measurement of the anisotropy of solutions in different solvents makes
it possible to estimate the quantity

τ1ϕ1 ∼ Mzν−θ.

The experimental results (Tsvetkov et al. 1964) for macromolecules of different
lengths shows that

τ1ϕ1 ∼ M1→1.2

and one can write an approximate empirical relation

θ − zν + 1 = 0. (10.30)

An independent empirical confirmation of this relation was discussed in Sec-
tion 6.2.4. The relation was mention in Section 2.5 and used at the choice
of specific values of the parameters for calculation of dynamic properties of
dilute solutions in Section 6.2.2.

Of course, all the derived relations are valid for velocity gradients which
are not too large. Otherwise, second-order terms of equation (10.6) should be
taken into account, when equation (10.10) is being written, which complicates
the situation. We may note that very interesting phenomena may occur, for
example, at high velocity gradients. If Γ < 0, the so-called anomalous de-
pendencies (discovered in Tsvetkov’s laboratory and discussed, in particular,
by Gotlib and Svetlov 1964a, 1964b) of the extent of double refraction and
of the extinction angle on the velocity gradient are observed in experiments,
indicating that the principal axes of the tensor of the average orientation of
optical anisotropy do not coincide. In order to interpret these phenomena,
one has to turn firstly to equations of type (10.6) for the relative permittivity
tensor that are non-linear as regards orientation.
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10.4.2 Entangled Systems

Now we refer to formula (10.13) for the relative permittivity tensor to de-
termine the characteristic quantities in this case of strongly entangled linear
polymers. We use expansions (7.32) and (7.43) for the internal variables to
obtain the expression for the components of the tensor through velocity gra-
dients

ε12 =
π2

3
nT n̄C τ ∗B ν12,

ε22 − ε11 =
2π2

3
nT n̄C ττ ∗B ν2

12.

Then we can write the characteristic quantities

Δn =
π2

3
nT C τ ∗B ν12, tan χ =

1
τν12

. (10.31)

Of course, these relations are trivial consequences of the stress-optical law
(equation (10.12)). However, it is important that these relations would be
tested to confirm whether or not there is any deviations in the low-frequency
region for a polymer system with different lengths of macromolecules and to
estimate the dependence of the largest relaxation time on the length of the
macromolecule. In fact, this is the most important thing to understand the
details of the slow relaxation behaviour of macromolecules in concentrated
solutions and melts.

10.5 Oscillatory Birefringence

10.5.1 Dilute Solutions

One can turn to discussion of the dynamo-optical coefficient, defined by
equation (10.22). The expression for the relative permittivity tensor (10.10)
and equation (2.41) for the moments allow one to write

S(ω) = nTC
N∑

α=1

τ ⊥
α

1 − iωτ ‖
α

.

The stress-optical coefficient C is defined by equation (10.27) and the relax-
ation times τ ⊥

α and τ ‖
α are defined by relations (2.30). One can see that the

dynamo-optical coefficient of dilute polymer solutions depends on the non-
dimensional frequency τ1ω, the measure of internal viscosity ϕ1 and indices
zν and θ

S(ω) = nTCτ1f(τ1ω, ϕ1, zν, θ).

For the components of dynamo-optical coefficient, one can find the equa-
tions, established by Thurston and Peterlin (1967),
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S′(ω) = nTC

N∑
α=1

τ ⊥
α

1 + (τ ‖
αω)2

,

S′ ′(ω) = nTC

N∑
α=1

(1 + ϕα)
(τ ⊥

α )2ω
1 + (τ ‖

αω)2
.

(10.32)

One can see that, in the case when the intramolecular viscosity is neglected
(ϕ1 = 0), the frequency dependence of the components of the dynamo-optical
coefficient (10.32) agrees with the analogous dependence of the shear viscosity
(see equation (6.20) and Fig. 14). The stress-optical law can be written in the
form

S′(ω)
η′(ω) − ηs

= C,
S′ ′(ω)
η′ ′(ω)

= C. (10.33)

Pokrovskii and Kokorin (1987) extended the results to the more general
case where the internal viscosity parameter assume arbitrary values and the
excluded-volume effects are taken into account.

Of course, equations (10.32) and (10.33) are valid in linear approxima-
tion for velocity gradients which are not too large and for low frequencies. Is
the stress-optical law valid, at the higher frequencies, when the intramolecu-
lar relaxation processes have to be taken into account? Deviations from the
stress-optical law can emerge, if one assumes the equilibrium distribution of
segment orientation, when the expression for the relative permittivity tensor
was written, whereas the internal viscosity in dynamic viscosity is included
in proper way. At correct consideration, the deviations from the stress-optical
law do not appear in the theory. At very high frequencies, the real part of
the dynamo-optical coefficient is zero, while the real part of dynamic viscos-
ity remains finite. By investigating optical anisotropy and stresses at high
frequencies, one can estimate from the experimental data the importance of
intramolecular relaxation processes in the dynamics of the macromolecule.

The work by Lodge et al. (1982) contains the experimental data on the
frequency dependencies of the dynamo-optical coefficient for infinitely dilute
solutions of polymer, which are represented as frequency dependence of the
magnitude and the phase angle, respectively

Sm =
(
(S′)2 + (S′ ′)2

)1/2

, tan θs =
S′ ′

S′ .

10.5.2 Entangled Systems

The strain-optical coefficient O(ω), defined by equation (10.22), can be cor-
responded to dynamic modulus calculated in Section 6.4.2. Taking all the
previous speculations into account, an expression for the strain-optical coeffi-
cient can be written in general way as

O(ω) = nT

6∑
a=1

N∑
α=1

(−iω)
Ca p

(a)
α τ

(a)
α

1 − iωτ
(a)
α

(10.34)
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where the times of relaxation τ
(1)
α , τ

(2)
α , τ

(3)
α , τ

(4)
α , τ

(5)
α , τ

(6)
α and the corre-

sponding weights p
(1)
α , p

(2)
α , p

(3)
α , p

(4)
α , p

(5)
α , p

(6)
α are the same as calculated

for dynamic modulus in Sections 6.4.2, while the stress-optical coefficients
C1, C2, C3, C4, C5, C6 are assume can be different for different relaxation
branches. It is possible that the different relaxation branches are connected
with different types of motion and are characterised with different values of
the stress-optical coefficient. The stress-optical coefficients are proportional
to the polarisability of the structural units of the macromolecule, which can be
different for different types of motion of the chain (Gao and Weiner 1994). The
strain-optical coefficient of entangled system depends on the non-dimensional
frequency τ ∗ω and on the non-dimensional parameters

O(ω) = nT f(C1, C2, C3, C4, C5, B, χ, τ ∗ω).

The contributions into dynamic modulus and, consequently, into strain-optical
coefficient from the high-frequency branches are discussed in Section 6.4.2. In
the case, when the all stress-optical coefficients are equal, a graphs for the
components the strain-optical coefficient have the same form as the graph for
the components of the dynamic modulus, which, for example, are shown in
Fig. 17. In general case, expression (10.34) allows us to describe different types
of the frequency dependence of the strain-optical coefficient and this can gives
an explanation to the “curious behaviour” of the strain-optical coefficient of
polymer solutions and melts. In fact, considering strain-optical coefficient in
a great range of frequencies, scholars have to admit that the stress-optical
coefficient C depends either on frequency or is different for different relax-
ation branches, to explain experimental data (Inoue et al. 1991; Okamoto et
al. 1995). We cannot discuss comparison between the experimental and theo-
retical curves any more, because it is an illustration of a phenomenon which
ought to be investigated carefully.

In application to very concentrated solutions, the optical anisotropy pro-
vides the important means for the investigation of slow relaxation processes.
It is important to confirm whether or not there is any deviations from the
stress-optical law in the low-frequency region for a polymer melt with dif-
ferent lengths of macromolecules. In fact, this is the most important thing
to understand the details of the slow relaxation behaviour of macromolecules
in concentrated solutions and melts. The evidence can be decisive for under-
standing the mechanism of the relaxation.



Conclusion

The mesoscopic approach gives an amazingly consistent picture of the differ-
ent relaxation phenomena in very concentrated solutions and melts of linear
polymers. It is not surprising: the developed theory is a sort of phenomeno-
logical (mesoscopic) description, which allows one to get a consistent inter-
pretation of experimental data connected with dynamic behaviour of linear
macromolecules in both weakly and strongly entangled polymer systems in
terms of a few phenomenological (or better, mesoscopic) parameters: it does
not require any specific hypotheses.

The approach is based fundamentally on a basic picture of thermal motion
of macromolecules in entangled polymer systems. The simple representation of
the macromolecules, as chains of Brownian particles, allows us to explain the
peculiarities of diffusion and relaxation of macromolecules both in weakly and
strongly entangled systems – the peculiarities, which puzzled investigators for
long times. The consequent analysis in the frame of the formal mesoscopic the-
ory justifies the suggestion about localisation of a macromolecule in the tube,
assumed by Edwards (1967a), and about reptation motion of macromolecules,
guessed by de Gennes (1971), while restricting the regions of emerging these
effects to the region of the systems of long macromolecules – strongly entan-
gled systems. The formal mesoscopic theory justifies intuitive introduction
of an internal intermediate length – a tube – into the consideration, though
defines the radius of the tube more precisely in terms of the fundamental
parameters. The motion of any Brownian particle of the chain in the system
of strongly entangled macromolecules is confined. A very long macromolecule
appears, in fact, to behave exactly as if confined in a tube, though no other
restrictions than mesoscopic dynamic equations exist (Chapter 5). The anal-
ysis justifies the very existence of reptation mobility in the strongly entangled
systems, but discovers that the role of the reptation mechanism in interpre-
tation of viscoelasticity was exaggerated. Conformational relaxation in the
strongly entangled systems is realised through the reptation mechanism of
motion of the macromolecule inside the tube, but it is not only relaxation
process. The reptation relaxation exists but practically does not affect lin-
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ear viscoelasticity and optical birefringence at low frequencies (Chapters 6
and 10). However, the phenomena of diffusion of long macromolecules can-
not be understood without taking into account the reptation mobility. At
M > 10Me, the reptation mechanism of displacement predominates (Chap-
ter 5). The analysis of the non-linear effects of viscoelasticity also confirms
that the reptation relaxation has to be included in consideration to explain
correctly the observed dependencies of rheological characteristics on molecular
weight of polymer (Chapter 9).

Apart of empirical justification, the mesoscopic effective-field approach
itself is needed in proper microscopic justification. One can anticipate that
the more detailed theories could be very helpful in understanding the ther-
mal behaviour of macromolecules and explaining the introduced mesoscopic
parameters. One can imagine that a theory of a deeper level based on the
heuristic model of rigid, connected in chains and interacting with each other,
segments, we can say microscopic theory as compared with the exploited meso-
scopic approach, could help elucidate the meaning of mesoscopic parameters
and bring answers to some questions, in particular, to give us a description of
a few relaxation branches, including orientation and reptation branches. The
peculiarities of dynamics of macromolecules can be also deduced from geo-
metrical and topological aspects of macromolecular dynamics (Kholodenko
1996), so that the parameters of the theory eventually could be linked with
details of structure of entangled systems. One can believe that the developing
methods (Schweizer 1989a, 1989b; Vilgis and Genz 1994; Guenza 1999; Rosti-
ashvili et al. 1999; Fatkullin et al. 2000) can be helpful to bring a microscopic
justification of the mesoscopic approach to the entangled systems, which will
help to formulate the correct answer for the problem.

Although the microscopic theory remains to be the real foundation of the
theory of relaxation phenomena in polymer systems, the mesoscopic approach
has and will not lose its value. It will help to understand the laws of diffusion
and relaxation of polymers of various architecture. The information about
the microstructure and microdynamics of the material can be incorporated in
the form of constitutive relation, thus, allowing to relate different linear and
non-linear effects of viscoelasticity to the composition and chemical structure
of polymer liquid.



Appendices

A The Random Walk Problem

The conformation of a macromolecule consisting of N independent subchains
(or segments) can be considered as the result of a random walk of a Brownian
particle after N independent steps (Flory 1953).

One can assume that the displacement r of the particle is random and a
probability distribution function

f(r),
∫ ∞

− ∞

f(r)dr = 1

exists, so that f(r)dr is the probability that the particle is displaced to a
distance r and is in the volume dr.

Since the space is isotropic, we consider the distribution function to be a
spherically symmetrical one, so that

f(r)dr = f(r)r2 sin θ dr dθ dφ.

The mean square one-step displacement is written as

b2 =
∫

f(r)r2dr = 4π

∫ ∞

0

f(r)r4 dr.

The situation can be simplified by proposing that the one-step displace-
ment is constant and equal to b, so that the probability distribution function
takes the form

f(r) =
1

2πb
δ(r2 − b2), 4π

∫ ∞

0

f(r)r2 dr = 1.

It is easy to see that the function is normalised to unity and the mean
square displacement is equal to b2. Indeed
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∫ − ∞

∞
δ(r2 − b2)dr = 4π

∫ ∞

0

δ(r2 − b2)r2 dr

= 2π

∫ ∞

0

δ(r2 − b2)r dr2 = 2π

∫ ∞

0

δ(x − b2)
√

xdx = 2πb,

1
2πb

∫ ∞

− ∞
δ(r2 − b2)r2 dr =

2
b

∫ ∞

0

δ(r2 − b2)r4 dr

=
1
b

∫ ∞

0

δ(r2 − b2)r3 dr2 =
1
b

∫ ∞

0

δ(x − b2)x3/2 dx = b2.

Now, one can calculate a mean displacement R of the particle after N steps

R =
N∑

α=1

rα.

First of all, we can write down the probability distribution function for R

WN (R) =
∫ ∞

− ∞
δ

(
N∑

α=1

rα
i − R

)
f(r1)f(r2) · · · f(rN )dr1dr2 · · · drN .

Remembering the representation of the δ-function

δ

(
N∑

α=1

rα
i − R

)
=

1
(2π)3

∫ ∞

− ∞
exp

[
iq

(
R −

N∑
α=1

rα

)]
dq,

we rewrite distribution function in the form

WN (R) =
1

(2π)3

∫ ∞

− ∞

[∫ ∞

− ∞
f(r) exp(−iqr)dr

]N

exp(iqR)dq.

It is convenient to calculate separately the integral inside the square brack-
ets. Subsequent transformations determine the expression∫ ∞

− ∞
f(r) exp(−iqr)dr =

1
2πb

∫ ∞

− ∞
δ(r2 − b2) exp(−iqr)dr

=
1

2πb

∫ ∞

0

∫ 2π

0

∫ π

0

δ(r2 − b2)e−iqr cos θr2 sin θ dθ dφ dr

=
1
b

∫ ∞

0

∫ −1

1

δ(r2 − b2)e−iqr cos θr2d cos θ dr

=
1
b

∫ ∞

0

δ(r2 − b2)r2 eiqr − e−iqr

iqr
dr

=
2
b

∫ ∞

0

δ(r2 − b2)r2 sin qr

qr
dr =

1
bq

sin bq.

One can be interested in the situation when the one-step distance is small
but the number of steps is large, so that we can calculate distribution function
under the conditions
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bq � 1, N → ∞.

In this case
(

1
bq

sin bq

)N

≈
(

1 − 1
6
b2q2

)N

≈ exp
(

− 1
6
b2q2N

)
.

Therefore, the distribution function takes the form

WN (R) =
1

(2π)3

∫ ∞

− ∞
exp

(
iqR − Nq2b2

6

)
dq. (A.1)

To calculate the integral, we divide the expression (A.1) into real and
imaginary parts, taking into account that

eiqR = cos qR + i sin qR.

The imaginary part of (A.1) is equal to zero identically. The calculation
of the real part determines the distribution function

WN (R) =
(

3
2πNb2

)3/2

exp
(

− 3R2

2Nb2

)
. (A.2)

The mean square displacement for N steps can easily be calculated with
the help of (A.2)

〈R2〉 =
∫

WN (R)R2dR = Nb2.

Now the distribution function (A.2) can be represented in the form 1.5.
As has been noted already, the results are valid under the assumption of

the independence of the separate steps and at large N.

B Equilibrium Deformation of a Non-Linear Elastic
Body

In an equilibrium state, the stress tensor is determined by the form and the
volume of a deformed body. To determine the stress tensor of the deformed
body at arbitrary (not small) deformation, we follow the method demon-
strated by Landau and Lifshitz (1987b) for the calculation of the stress tensor
for small deformation.

Thermodynamic Relations for a Deformed Body

Let us denote the Cartesian co-ordinates of an arbitrary point of the body
before deformation as x0

i . The co-ordinates of the same point after deformation
xk are functions of the original co-ordinates
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xk = xk(x0).

In the case of arbitrary deformation, one can determine the relations between
some small quantities in deformed and non-deformed states, namely, the re-
lations for the co-ordinate, length and volume, respectively

dxi =
∂xi

∂x0
k

dx0
k = λik dx0

k,

(dl)2 = λikλil dx0
k dx0

l , (B.1)
dV = |λ|dV0.

The last relation can easily be checked if the original volume dV0 is taken as
the volume of a parallelepiped whose sides are situated along the co-ordinate
axes

dV0 = dx0
1dx0

2dx0
3.

The tensor of the displacement gradients

λij =
∂xi

∂x0
j

appears in (B.1). One can notice that, when the body as a whole is rotated
round a point at some angle, the displacement gradient tensor appears to be
unequal to zero. So, this tensor cannot be a measure of the body’s deforma-
tion. It is convenient, following Murnaghan (1954), to choose the symmetrical
tensor Λkj = λijλik as a measure of arbitrary deformation.

Let us introduce the stress tensor σik referred to the deformed body, so
that the force per unit of the deformed volume can be written as follows

Fi =
∂σik

∂xk
. (B.2)

Now, one can define the work done at the virtual transfer between two
deformed states of the body as

δRdV =
∂σik

∂xk
δxi dV =

∂σik

∂x0
j

λ−1
jk δxi dV.

The last relation can be integrated over a volume. We shall assume that
the stresses disappear on the borders of the integrating volume and, after
some simple transformation, obtain

∫
V

δR dV = −
∫

V

σikλ−1
jk δλij dV.

This relation determines the work per unit of deformed body

dR = − 1
2
λ−1

ji σikλ−1
sk dΛjs. (B.3)
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The strain tensor Λjs describes both a change of form and a change of
volume of a body. It is convenient to separate these parts by introducing a
strain tensor λ′

ij such that the determinator of matrix |λ′
ij | = 1. Then we can

write

λij =
(

V

V0

)1/3

λ′
ij , Λik =

(
V

V0

)2/3

λ′
liλ

′
lk,

dΛik =
2
3

1
V0

(
V

V0

)−1/3

Λ′
ik dV +

(
V

V0

)2/3

dΛ′
ik.

(B.4)

We can note that the change of volume during the deformation of a body
is usually small, so we can assume further that the original strain tensor can
be used instead of the newly introduced one.

Then, the relation (B.3) can be rewritten in the form

dR =
1
V

pdV − 1
2
λ−1

ji σikλ−1
sk dΛjs (B.5)

where the notation for isotropic pressure is introduced.

p = − 1
3
σjj .

The free energy F of the body depends on the deformation and is deter-
mined (Landau and Lifshitz 1969) by the general expression

dF = −S dT − V dR. (B.6)

This relation together with expressions (B.3) and (B.5) determines the
stress tensor and pressure in the deformed body

σik =
2
V

λkjλis

(
∂F

∂Λsj

)
T

, p = −
(

∂F

∂V

)
T

. (B.7)

Free Energy and Stress Tensor of Deformed Body

The free energy of the deformed isotropic body depends on the strain tensor,
it is a function of three invariants of the strain tensor. The volume of the
deformed body

V = V0|Λik |3/2

can be taken as one of the invariants. The others can be defined as

I1 = Λii − 3; I2 = Λ2
ii − ΛikΛik.

The first of the expressions in (B.7) can now be rewritten as follows

σik =
2
V

λkjλis

(
∂F

∂I1

∂I1

∂Λsj
+

∂F

∂I2

∂I2

∂Λsj
+

∂F

∂V

∂V

∂Λsj

)
. (B.8)
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The derivatives of the invariants with respect to the components of the
strain tensor can easily be calculated

∂I1

∂Λsj
= δsj ,

∂I2

∂Λsj
= 2(Λqqδslδjl − Λsj),

∂V

∂Λsj
=

3
2
(V0V )1/2Asj

where Asj is the algebraic additive to components s, j of the matrix of the
strain tensor.

So, one needs to know the three undefined functions of the three invariants
of the strain tensor

C1 =
1
V

∂F

∂I1
, C2 =

2
V

∂F

∂I2
, p = − ∂F

∂V

to determine, according to expression (B.8), the stress tensor for an elas-
tic body

σik = −pδik + 2C1λijλkj + 2C2(λisλksλjlλjl − λisλkjλisλlj). (B.9)

Quantities C1 and C2 are functions of the two invariants of the stress
tensor I1 and I2 for incompressible material.

C The Tensor of Hydrodynamic Interaction

To determine the perturbation of fluid velocity under the influence of volume
forces σ, we shall begin with the equations of motion of a viscous liquid at
low Reynolds numbers (Landau and Lifshitz 1987a)

ηs∇2v − ∇p + σ = 0, div v = 0, (C.1)

where ηs is coefficient of viscosity, p is pressure, v = v(x, t) is the velocity
and σi is the density of the outer forces.

Henceforth, it is convenient to use the Fourier transforms of the velocity,
pressure and volume force, correspondingly

v(k) =
∫

v(x) exp ikxdx,

p(k) =
∫

p(x) exp ikxdx, (C.2)

σ(k) =
∫

σ(x) exp ikxdx

which obey a set of equations

−ηsk
2v(k) − ikp(k) + σ(k) = 0, kv(k) = 0. (C.3)

It is easy to see that the solution of the last set of equations takes the form
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p(k) = −i
kσ(k)

k2
,

vi(k) =
1

ηsk2

(
δij − kikj

k2

)
σj(k).

The last relation determines the velocity as a function of co-ordinate

v(x) =
∫

dx′H(x − x′)σ(x′) (C.4)

where H is a tensor of the second rank with components

Hij(r) =
1

(2π)3ηs

∫
dk

k2

(
δij − kikj

k2

)
exp(−ikr) (C.5)

which, after the calculation of the integral, can be rewritten as

Hij(r) =
1

8πηsr

(
δij +

rirj

r2

)
. (C.6)

Let us note that the only assumption used here is that of slow motion: it
was assumed that the Reynolds number is small.

For a suspension of Brownian particles which are far from each other, the
volume force can be represented as a sum of point influences

σ(x) = −
∑
α

F α(xα)δ(x − xα) (C.7)

where F α(xα) is the resistance force acting on the particle. It is easy to see
that, in this case, expression (C.4) is followed by formula (2.5) where the
tensor of hydrodynamic interaction is defined by (2.6).

D Resistance Force of a Particle in a Viscoelastic Fluid

Let us find the resistance force acting on a spherical particle of radius a which
moves slowly with velocity u in an incompressible viscoelastic fluid. It means
that the Reynolds number of the problem is small, the convective terms are
negligibly small, and the equations of fluid motion are

ρ
∂vi

∂t
=

∂σij

∂xj
,

∂vi

∂xi
= 0,

σij = −pδij + 2
∫ ∞

0

η(s)γij(t − s)ds, γij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

) (D.1)

where ρ is a constant density, v = v(x, t) is the velocity of the liquid and σi

is the density of the outer forces.
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A fading memory function η(s) can be represented as a sum of exponential
functions

η(s) =
∑
α

ηα

τα
exp

(
− t

τα

)
.

The coefficients of partial viscosity ηα and relaxation times τα are the char-
acteristics of the liquid.

It is convenient to apply the Fourier transforms of the variables

vi(ω) =
∫ ∞

− ∞
vi(t)eiωt dt,

p(ω) =
∫ ∞

− ∞
p(t)eiωt dt

to transform the equations of motion (D.1) to the form

iωpvi(ω) +
∂p(ω)
∂xj

= η[ω]
∂2vi

∂xi∂xj
,

∂vi

∂xi
= 0 (D.2)

where
η[ω] =

∫ ∞

0

η(t)eiωt dt.

It can be easily seen that, if we consider η[ω] as a constant viscosity co-
efficient, the written equations are identical to the equations of motion of a
viscous liquid. The solution of the problem of motion of a sphere in a viscous
liquid is well known, so that the resistance force in our problem can be written
as follows

F (ω) = −6πaη[ω]u(ω)

or

F (t) = −6πa

∫ ∞

0

η(s)u(t − s)ds. (D.3)

These results are valid for an arbitrary memory function η(s), which can
be represented as the sum of exponential functions. In the simplest case

η(s) =
η

τ
exp

(
− t

τ

)
, η[ω] =

η

1 − iωτ
, (D.4)

F (t) = − ζ

τ

∫ ∞

0

exp
(

− s

τ

)
u(t − s)ds (D.5)

where ζ = 6πaη is the friction coefficient of a sphere in a viscous liquid.
One can note that the resistance force (D.5) is a solution of the linear

equation

τ
dFi

dt
= −Fi − ζui. (D.6)
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To extend result (D.5) to non-linear cases, it is convenient to begin with
equation (D.6). The derivative with respect to time ought to be replaced by
the Yaumann derivative (see, Section 8.4), so that, in the simplest case, the
covariant equation for the resistance force has the form

dFi

dt
− ωilFl +

1
τ

Fi = − ζ

τ
uj . (D.7)

A matrix satisfying the following equations

dCij

dt
= −Cikωkj ,

dC−1
ij

dt
= −C−1

lj ωil (D.8)

has to be introduced, in order to write the solution of equation (D.7) as

Fi = − ζ

τ

∫ ∞

0

C−1
ik (t)Ckj(t − s) exp

(
− s

τ

)
uj(t − s)ds. (D.9)

Indeed, the last equation can be differentiated with respect to time to
obtain equation (D.7) consequently

dFi

dt
= − ζ

τ

∫ ∞

0

exp
(

− s

τ

) d
dt

[
C−1

ik (t)Ckj(t − s)uj(t − s)
]
ds

= − ζ

τ

∫ ∞

0

exp
(

− s

τ

)dC−1
ik (t)
dt

Ckj(t − s)uj(t − s)ds

− ζ

τ

∫ ∞

0

exp
(

− s

τ

)
C−1

ik (t)
d
ds

[Ckl(t − s)ul(t − s)] ds

= ωiq
ζ

τ

∫ ∞

0

exp
(

− s

τ

)
C−1

qk (t)Ckj(t − s)uj(t − s)ds

− ζ

τ
ui(t) − ζ

τ2

∫ ∞

0

exp
(

− s

τ

)
C−1

ik (t)Ckl(t − s)ul(t − s)ds

= ωiqFq − ζ

τ
ui − 1

τ
Fi.

At low velocity gradients, expression (D.9) can be expanded in a series in
powers of the antisymmetrical gradient ωij . The first term of the series has
the form of (D.5).

E Resistance Coefficient of a Particle in Non-Local Fluid

The motion of a spherical particle in a non-local fluid was considered by
Pokrovskii and Pyshnograi (1988). We reproduce the calculation of the resis-
tant coefficient here.

We consider the viscous liquid to be incompressible and the motion of the
particle to be slow. It means that the Reynolds number of the problem is
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small, the convective terms are negligibly small, and the equations of motion
of the fluid can be written as follows

ρ
∂vi

∂t
=

∂σij

∂xj
+ σi,

∂vi

∂xi
= 0,

σij(r) = −pδij + 2
∫

η(r − r′)γij(r′)dr′, γij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

) (E.1)

where ρ is a constant density, v = v(x, t) is the velocity of the liquid and
σi is the density of the outer forces. The stress tensor σij defines non-local
incompressible viscous fluid and contains a decreasing influence function η(r),
which can be represented as a sum of exponential functions. Integrating over
the whole volume is assumed in (E.1).

As well as for the local viscous fluid (Landau and Lifshitz 1987a), we
consider the spherical particle to be immovable and to be situated at the
beginning of the co-ordinate frame, so that the flux of the fluid moves around
the particle with constant velocity u at infinity.

The equation of motion of the fluid takes the form

∂

∂rj
σij = 0 at |r| > a. (E.2)

It is convenient to rewrite the equation of motion as follows

∂

∂rj
σij = −fi(r). (E.3)

Here an induced force fi(r) is introduced such that equation (E.2) can be
determined for all values of the variable r. We shall assume that fi(r) = 0 for
|r| > a.

The force acting on the particle can be calculated by integrating over the
surface of the sphere or over the volume of the sphere

Fi = −
∫

S

σij(r)nj dS = −
∫

V

∂

∂rj
σij dr.

Taking equation (E.3) into account, the expression for the force can be
rewritten as

Fi =
∫

V

fi(r)dr. (E.4)

Then, we turn to the Fourier transforms of the quantities, which can be
defined, for example, as

fi(k) =
∫

exp(−ikr)fi(r)dr.

So the equations of motion (E.1) and (E.3) for a non-local fluid take the
form
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ip(k)ki + kjη(k)
(
vi(k)kj + vj(k)ki

)
= fi(k), kivi(k) = 0

or
k2η(k)vi(k) = −ip(k)ki + fi(k), kivi(k) = 0.

The pressure in the last relations can be excluded so that we have an
equation for the Fourier transform of velocity

k2η(k)vi(k) =
(

δij − kikj

k2

)
fj(k)

which has a solution

vi(k) =
1

k2η(k)

(
δij − kikj

k2

)
fj(k). (E.5)

The mean velocity of the fluid taken over the surface of the sphere is equal
to the velocity of the sphere. In the system of co-ordinates, where the liquid
is immovable at infinity we have

1
4πa2

∫
vi(r)δ(r − a)dr = −ui. (E.6)

Relation (E.6) is followed by the relation for the Fourier transform of
velocity

1
(2π)3

∫
sin ka

ak
vi(k)dk = −ui. (E.7)

Then, we can return to expression (E.5) for the velocity transform and can
rewrite relation (E.7) as

−ui =
1

(2π)3

∫ (
δij − kikj

k2

)
sin ka

η(k)ak3
fi(k)dk.

To calculate the integral, it is convenient to refer to polar co-ordinates and
write

−ui =
1

3πa

3
8π2

∫
(δij − ΩiΩj)dΩ

∫ ∞

0

sin ka

k

fi(kΩ)
η(kΩ)

dk

where Ωi = ki/k is the direct cosine of vector k, and dΩ is the differential of
the surface of the sphere of unit radius.

Since the value of the integral does not change when we replace k by −k,
we can also write

−ui =
1

6πa

3
8π

∫
(δij − ΩiΩj)dΩ

1
π

∫ +∞

− ∞

sin ka

k

fi(kΩ)
η(kΩ)

dk.

The last integral can be calculated with the use of the Cauchy theorem
about integral values. It results in
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−ui =
1

6πa

1
8π

∫
(δij − ΩiΩj)

fi(k = 0)
η(k = 0)

dΩ

or, eventually,

−ui =
1

6πη(k = 0)a
fi(k = 0).

So, since fi(k = 0) = Fi, we obtain the following formula for the force
acting on a spherical particle in a non-local viscous fluid

Fi = −6πη(k = 0)aui = −6πa

∫
η(r)dr ui. (E.8)

F Dynamics of Suspension of Dumbbells

In the simplest case, at N = 1, the considered subchain model of a macro-
molecule reduces to the dumbbell model consisting of two Brownian particles
connected with an elastic force. It can be called relaxator as well. The re-
laxator is the simplest model of a macromolecule. Moreover, the dynamics
of a macromolecule in normal co-ordinates is equivalent to the dynamics of
a set of independent relaxators with various coefficients of elasticity and in-
ternal viscosity. In this way, one can consider a dilute solution of polymer
as a suspension of independent relaxators which can be considered here to
be identical for simplicity. The latter model is especially convenient for the
qualitative analysis of the effects in polymer solutions under motion.

Beginning with pioneering works by Kuhn and Kuhn (1945), the relaxator
attracted the attention of researchers (Bird et al. 1987b). Further, on, we shall
consider the results concerning the dynamics of the dilute suspension of the
dumbbell while the hydrodynamic interaction between particles inside each
dumbbell is taken into account in correct form.

The Dynamics of a Dumbbell in a Flow

Equation (1.10) is followed by the expression for elastic forces acting on the
zeroth and first particles of the dumbbell

∥∥∥∥K0

K1

∥∥∥∥ = −2μT

∥∥∥∥r0 − r1

r1 − r0

∥∥∥∥ . (F.1)

We shall assume that the dumbbell is situated in the stream of viscous fluid
characterised by the mean velocity gradient tensor νij . According to (2.8), the
resistance force for every particle of the dumbbell can be written as

Fα
i = −ζBαγ

il (uγ
l − νljr

γ
j ). (F.2)

Here and henceforth in this appendix, Greek labels take the values 0 and 1.
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The matrix of the hydrodynamic resistance for two particles can exactly
be determined based on results of Section 2.2. The components of the matrix
are as follows

B00
ij = B11

ij =
1

1 − l2
δij +

3l2

(1 − l2)(1 − 4l2)
eiej ,

B01
ij = B10

ij = − l

1 − l2
δij − l(1 + 2l2)

(1 − l2)(1 − 4l2)
eiej

(F.3)

where e is the unit vector in the direction from the first particle to the zeroth
one

e =
r0 − r1

|r0 − r1| .

The parameter of the hydrodynamic interaction is determined by the ra-
dius of the particle and by the distance between the particles

l =
ζ

8πη0|r0 − r1| =
3a

4|r0 − r1| .

We shall also consider intramolecular viscosity. According to equation
(2.20), we can write the resistance force in the form

∥∥∥∥∥
G0

i

G1
i

∥∥∥∥∥ = − λ

2

∥∥∥∥∥
(u0

j − u1
j )ejei

(u1
j − u0

j )ejei

∥∥∥∥∥ . (F.4)

Further on, we can ignore the inertia forces and introduce instead of the
stochastic thermal forces, the mean diffusion forces for each of the particles
of the dumbbell

−T

∥∥∥∥∥
∂ ln W
∂r0

∂ ln W
∂r1

∥∥∥∥∥ . (F.5)

In this situation every particle is characterised by the mean diffusion velocity
in the co-ordinate space

wα = 〈uα〉.
Now we can write down the balance of all the forces acting on each particle

of the dumbbell

−ζB00
ji (w0

i − νilr
0
l ) − ζB01

ji (w1
i − νilr

1
l )

− λ

2
ejei(w0

i − w1
i ) − 2μT (r0

j − r1
j ) − T

∂ lnW

∂r0
j

= 0,

−ζB10
ji (w0

i − νilr
0
l ) − ζB11

ji (w1
i − νilr

1
l )

− λ

2
ejei(w1

i − w0
i ) − 2μT (r1

j − r0
j ) − T

∂ lnW

∂r1
j

= 0.

(F.6)
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The Modes of Motion of the Dumbbell

Transformation (1.14) and (1.16) determine the normal co-ordinates of the
dumbbell

ρ0 =
1√
2
(r0 + r1), ρ =

1√
2
(r0 − r1),

ψ0 =
1√
2
(w0 + w1), ψ =

1√
2
(w0 − w1).

(F.7)

To transform the set of equations (F.6), it is also necessary to take into
account that

∂

∂r0
=

1√
2

(
∂

∂ρ0
+

∂

∂ρ

)
,

∂

∂r1
=

1√
2

(
∂

∂ρ0
− ∂

∂ρ

)
.

Then the set of equations (F.6) can be rewritten in normal co-ordinates

− ζ

(
1

1 + l
δij − l

(1 + l)(1 + 2l)
ejei

)
(ψ0

i − νilρ
0
l ) − T

∂ ln W

∂ρ0
j

= 0, (F.8)

− ζ

(
1

1 − l
δij +

l

(1 − l)(1 − 2l)
ejei

)
(ψi − νilρl)

− λejeiψi − 4μTρj − T
∂ lnW

∂ρj
= 0. (F.9)

Relation (F.8) determines the mean velocity of the centre of mass of the
dumbbell

ψ0
j = νjlρ

0
l −

[
(1 + l)δji + lejei

]T

ζ

∂ lnW

∂ρ0
i

. (F.10)

To obtain the velocity of the relaxation mode, we shall transform vector
equation (F.9). By multiplying it by the unit vector in two optional different
ways (scalar and vector), we obtain the relations

ψjej =
1

1 + (1 − 2l)γ
νilρiel − 4μT

ζ

1 − 2l

1 + (1 − 2l)γ
ρ

− T

ζ

1 − 2l

1 + (1 − 2l)γ
ei

∂ ln W

∂ρi
,

ψjek − ψkej = νjlρlek − νklρlej − T

ζ
(1 − l)

(
ek

∂ ln W

∂ρj
− ej

∂ lnW

∂ρk

)

where the coefficient of relative internal viscosity γ = λ/ζ is introduced.
These relations define the velocity of the relative motion of the particles

of the dumbbell
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ψj = νjlρl − (1 − 2l)γ
1 + (1 − 2l)γ

νileielρj − 4μT

ζ

1 − 2l

1 + (1 − 2l)γ
ρj

−
[
(1 − l)δji − l + (1 − l)(1 − 2l)γ

1 + (1 − 2l)γ
ejei

]
T

ζ

∂ lnW

∂ρi
. (F.11)

One can see that the relaxation mode does not depend on the diffusion
mode and can be considered separately, whereas the diffusion mode cannot.

Diffusion Equation

The equation for distribution function W (t, ρ0, ρ) has the form

∂W

∂t
+

3∑
j=1

(
∂(ψ0

j W )
∂ρ0

j

+
∂(ψjW )

∂ρj

)
= 0 (F.12)

where velocities ψ0
j and ψj are defined by relations (F.10) and (F.11).

To separate space diffusion, we represent the distribution function as

W (t, ρ0, ρ) = n(t, q) W (t, ρ), q =
1
2
(r0 + r1) =

1√
2
ρ0,

where q is the centre of mass of the dumbbell particles.
The distribution function W (t, ρ) is a function normalised to unity, so that

the number density function n(t, q) can be calculated as

n(t, q) =
∫

W (t, ρ0, ρ)dρ.

The mean value of a quantity A(ρ) depends on co-ordinate q and has to be
calculated according to the rule

〈A(ρ)〉 =
1
n

∫
A(ρ)W (t, ρ0, ρ)dρ.

After having integrated equation (F.12), one can obtain the equation of
diffusion

∂n

∂t
− T

ζ

∂2

∂qi∂qj
[(1 + 〈l〉)δij + 〈leiej 〉]n = 0. (F.13)

In the case of non-homogeneous flows, equation (F.13) determines the
effects of orientation on the diffusion of the particles. One can notice that the
equation for the diffusion of the centre of mass of the dumbbell, that is an
equation for W (t, ρ0), cannot be written down separately, without reference
to the equation for relaxation mode W (t, ρ).

In the case when mean values 〈l〉 and 〈leiej 〉 do not depend on co-ordinates,
equation (F.13) is reduced to the known diffusion equation
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∂n

∂t
− Dij

∂2n

∂qi∂qj
= 0 (F.14)

with the anisotropic diffusion coefficient

Dij =
T

2ζ
[(1 + 〈l〉)δij + 〈leiej 〉]. (F.15)

One can use the relations (1.23) to obtain the mean diffusion coefficient of
the centre of mass of the relaxators in equilibrium (Öttinger 1989a)

Dij =
T

2ζ

(
1 +

√
6
π

a

b

)
δij . (F.16)

Distribution Function

Equations (F.12) and (F.13) are followed an equation for the distribution
function of the distance between the centres of resistance of the relaxator

∂W

∂t
+

3∑
j=1

∂(ψjW )
∂ρj

= 0 (F.17)

where velocity ψj is determined by relation (F.11).
For the cases, when hydrodynamic interaction is neglected, that is l = 0,

the equation for distribution function was found by Pokrovskii (1978) and was
confirmed later by Schieber (1992)

∂W

∂t
− T

ζ

∂2W

(∂ρi)2
+

T

ζ

γ

1 + γ

(
2ρi

ρjρj

∂W

∂ρi
+ esej

∂2W

∂ρj∂ρs

)

− 4μT

ζ

1
1 + γ

(
3W + ρj

∂W

∂ρj

)
+ νjsρs

∂W

∂ρj

− γ

1 + γ
eseiνsi

(
3W + ρj

∂W

∂ρj

)
= 0. (F.18)

Exact solutions of equation (F.18) can be found in some particular cases.
For example, if the tensor of velocity gradients is symmetrical, equation (F.18)
has an exact simple solution

W = C(γik) exp [−2μ(ρjρj − 2τγikρiρk)] . (F.19)

When there are no velocity gradients, the solution of equation (F.18) nor-
malised with respect to unity has the form

W (ρ) =
(

2μ

π

) 3
2

exp(−2μρρ). (F.20)
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In the case of low velocity gradients, the time-independent distribution
function may be found in the form of an expansion in terms of the invariant
combinations of vector ρ and the symmetrical and anti-symmetrical velocity-
gradient tensors γik and ωik. In the steady-state case, one has, to within the
second-order terms in the velocity gradients,

W = W0

{
1 + 4μτγikρiρk + 8(μτ)2γikγsjρiρkρsρj

− τ2γikγik − 64G(μτ)2γsiωskρiρk

}
(F.21)

where W0 is defined by equation (F.20) and the following notation for the
relaxation time has been introduced

τ =
ζ

8Tμ
(F.22)

which is the characteristic relaxation time of the dumbbell.
In equation (F.21), the coefficient of the last term G depends on the scalar

ρjρj and the internal viscosity. It is not difficult to find the relations for two
asymptotic cases

G =

{ 1
8μ , γ = 0,

ρ2

6 + ρ2

9γ (5 − 4μρ2) + ρ2

27γ2 [35 − 112μρ2 + 48(μρ2)2], γ 
 1.
(F.23)

Let us note that in the particular case when the macromolecule has no
internal viscosity, equation (F.18) is followed by the equation

∂W

∂t
− T

ζ

∂2W

(∂ρi)2
+ νikρk

∂W

∂ρi
− 2μλαT

ζ

(
3W + ρi

∂W

∂ρi

)
= 0. (F.24)

This particular form of diffusion equation was used in earlier works (Cerf
1958; Peterlin 1967; Zimm 1956).

In the steady-state case, the solution of equation (F.24) for simple shear
(ν12 �= 0) was deduced by Peterlin (see Zimm 1956).

W = C exp
{

− 2μ

1 + (τν12)2
[
ρjρj − 2τν12ρ1ρ2 + 2(τν12ρ2)2 + (τν12ρ3)2

]}
.

The first terms of the expansion of the written functions are identical to
expression (F.21) taken for the appropriate cases.

Equation (F.18) and equations that are more general which can be ob-
tained in the case when l �= 0, can be used to calculate mean quantities
〈l〉, 〈leiej 〉 and others in non-equilibrium situations, which is needed to con-
sider macroscopic phenomena.
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Equations of Relaxation

The distribution function (F.21) considered in the previous section makes it
possible to calculate the moments in the stationary case, for example the
second-order moments

〈eiek 〉 =
∫

Weiek {dρ}, 〈ρiρk 〉 =
∫

Wρiρk {dρ}

as expansions in powers of velocity gradient.
In general, it is more convenient to determine the moments from equations

which can be derived directly from the diffusion equation (F.18). For example,
on multiplying equation (F.18) by ρiρk and integrating with respect to all the
variables, we find the relaxation equation

d〈ρiρk 〉
dt

= − 1
τ

3
2μλ

(
〈eiek 〉 − 1

3
δik

)
− 1

τ ′

(
〈ρiρk 〉 − 3

2μλ
〈eiek 〉

)

+ νij 〈ρjρk 〉 + νkj 〈ρjρi〉 − 2γ

1 + γ
〈ρiρkejes〉νjs. (F.25)

Two relaxation times appear here: the first time τ, defined by equa-
tion (F.22), refers to the orientation processes; the second time

τ ′ = (1 + γ) · τ (F.26)

refers to the deformation processes.
Indeed, by multiplying equation (F.18) by ρ2 and integrating with respect

to all the variables, or, by carrying out a direct summation of equation (F.25)
with identical indices, we find

d〈ρ2〉
dt

= − 1
τ ′

(
〈ρ2〉 − 3

2μλ

)
+

2
1 + γ

〈ρsρj 〉γsj . (F.27)

This equation describes only the deformation of the macromolecular coil and
therefore τ ′ is the relaxation time of the deformation process. In order to
isolate the orientation process, we now formulate the moments in the form

〈ρiρk 〉 = 〈ρ2〉〈eiek 〉, 〈ρiρkejes〉 = 〈ρ2〉 〈eiekejes〉.

Then, equation (F.25) gives rise to the relaxation equation for the orien-
tation process

d〈eiek 〉
dt

= − 1
τ

(
〈eiek 〉 − 1

3
δik

)
+ νij 〈ejek 〉

+ νkj 〈ejei〉 − 2γ

1 + γ
〈eiekejes〉γjs. (F.28)
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Thus τ is the relaxation time for the orientation process and τ ′ is the
relaxation time for the deformation process.

We may note that, for a nonzero internal viscosity, the system of equations
for the moments is found to be open: the equations for the second-order mo-
ments contain the fourth-order moments, etc. This situation is encountered
in the theory of the relaxation of the suspension of rigid particles (Pokrovskii
1978). Incidentally, for γ → ∞, equation (F.28) becomes identical to the relax-
ation equation for the orientation of infinitely extended ellipsoids of rotation
(Pokrovskii 1978, p. 58).

In contrast to the situation described above, the system (F.25) for the
moments is closed for the case, when the internal viscosity may be neglected.
This factor makes it possible to find the moments in the form of a series
expansion for small values of the internal viscosity and the velocity gradients.

Second-Order Moments of Co-Ordinates

We use the expansion of the distribution function (F.21) and the relaxation
equations (F.25) and (F.28) to calculate the second-order moments of co-
ordinates in steady-state and non-steady-state cases in the form of a series
expansion for low values of the velocity gradients. Calculations are simple
but tedious. As a first step of calculations, we demonstrate the mean values
of the products of different variables or moment of equilibrium distribution
functions. They are defined, for example, as

〈ρiρk 〉0 =
∫

W0ρiρk {dρ}, 〈eiek 〉0 =
∫

W0
ρiρk

ρρ
{dρ}

and are calculated with the help of function (F.20)

〈ρiρk 〉0 =
1

2μλ
δik,

〈eiek 〉0 =
1
3
δik,

〈ρiρkρsρj 〉0 =
1

4(μλ)2
(δαβδγε)iksj ,

〈eiekesej 〉0 =
1
15

(δαβδγε)iksj ,

〈eiekρsρj 〉0 =
1

10μλ
(δαβδγε)iksj ,

〈ρiρkρsρjρlρm〉0 =
1

8(μλ)3
(δαβδγεδμν)iksjlm,

〈eiekρsρjρlρm〉0 =
1

28(μλ)2
(δαβδγεδμν)iksjlm,

〈eiekesejρlρm〉0 =
1

70μλ
(δαβδγεδμν)iksjlm,
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〈eiekesejelem〉0 =
1

105
(δαβδγεδμν)iksjlm,

〈ρiρkρsρjρlρmρpρq 〉0 =
1

16(μλ)4
(δαβδγεδμνδσκ)iksjlmpq.

In these formulae, an expression of the form (δαβδγε)iksj means the sum of the
similar terms in which the Greek labels inside the brackets take subsequently
all the Latin labels outside the brackets. Identical terms are taken into account
only once, so, for example, the last formula contains 105 terms and the formula
before the last contains 15 terms.

In the steady-state case, the expansion assumes the form

〈ρiρk 〉 =
1
4μ

{
δik + 2τγik + 2τ2 [2γijγjk + (1 + Z)(ωijγjk + ωkjγji)]

}

(F.29)

where

Z =

⎧⎨
⎩

2
5 γ, γ � 1,

4
27

(
9 − 42

γ + 245
γ2

)
, γ 
 1.

One may assume that Z is a monotonically increasing function of γ which,
if necessary, may be fitted to any kind of convenient function.

In the non-steady-state case, the second-order moments of co-ordinates
are calculated as solutions of equations (F.25) and (F.28). We assume that
the velocity gradient and, consequently, the moments do not depend on space
co-ordinates. To find the solutions, we multiply equation (F.25) by exp( t

τ ′ ),
equation (F.28) by exp( t

τ ), and integrate over time from t → −∞. After some
transformation, we obtain

〈ρiρk 〉 =
1

2μλ
δik +

∫ ∞

0

exp
(

− s

τ ′

)
(νij 〈ρjρk 〉 + νkj 〈ρjρi〉) ds

− 1
τ

3
2μλ

γ

1 + γ

∫ ∞

0

exp
(

− s

τ ′

) (
〈eiek 〉 − 1

3
δik

)
ds

− 2γ

1 + γ

∫ ∞

0

exp
(

− s

τ ′

)
〈eiekρjρs〉γjsds,

〈eiek 〉 =
1
3
δik +

∫ ∞

0

exp
(

− s

τ

)
(νij 〈ejek 〉 + νkj 〈ejei〉 − 2νjs〈eiekejes〉)ds.

The moments and velocity gradients in the integrands are taken at the
point t − s.

Now we can use the equilibrium moments, shown in the beginning of this
section, to find the first terms of the expansion of the moments as a series of
repeated integrals
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〈eiek 〉 =
1
3
δik +

2
5

∫ ∞

0

exp
(

− s

τ

)
γik(t − s)ds, (F.30)

〈ρiρk 〉 =
1

2μλ
δik +

5 + 3γ

5μλ(1 + γ)

∫ ∞

0

exp
(

− s

τ ′

)
γik(t − s)ds

− 1
τ

1
2μλ

γ

1 + γ

∫ ∞

0

exp
(

− s

τ ′

) ∫ ∞

0

exp
(

− u

τ

)
γik(t − s − u)du ds.

(F.31)

The Stress Tensor

The results for the case, when hydrodynamic interaction is taken into account
(Altukhov 1986) are rather cumbersome. So, we consider here the more simple
case, when hydrodynamic interaction is neglected but internal viscosity is
retained. The results were obtained by Pokrovskii and Chuprinka (1973) (see
also Pokrovskii 1978).

When the elastic force and the force of internal viscosity are defined, at
N = 1, the expression for the stress tensor directly follows relation (6.7)

σik = − nTδik + 2ηsγik +
1
2
nζ

[
1
τ ′

(
〈ρiρk 〉 − 3

4μ
〈ekei〉

)

+
1
τ

3
4μ

(
〈eiek 〉 − 1

3
δik

)
+

2γ

1 + γ
〈ρkρiejes〉γjs

]
. (F.32)

This equation contains two relaxation times: orientational and deformational,
correspondingly

τ =
ζ

8μT
, τ ′ = (1 + γ) · τ. (F.33)

One can consider relations (F.25), (F.28), and (F.32) as a constitutive set
of equations which determine non-linear stresses in a suspension of relaxators.
From the macroscopic point of view moments 〈ρiρk 〉, 〈ekei〉 and others in
equations (F.25), (F.28), and (F.32) are thermodynamic internal variables.
One can see, that at proper choice of thermodynamic forces, a set of relations
(F.25), (F.28), and (F.32) in linear approximation with respect to fluxes are
a particular case of relations (8.28). Though the set is not closed, solutions
can be found for small velocity gradients and/or for small internal viscosity.

The thermodynamic consistency of the theory was considered by Schieber
and Öttinger (1994). Following the methods of Grmela (1985) and Jongschaap
(1991), they considered the distribution function W (t, ρ), determined by equa-
tion (F.18) to be a set of internal variables, while co-ordinate ρ serves as a
label, which takes a continuous set of values, and have demonstrated that
equations (F.18) and (F.32) are thermodynamically consistent. It is an im-
portant result, because there were some disagreements in the works concerning
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the method of calculation of the stresses. Eventually, their result confirms the
method used in Chapter 6 for the calculation of stresses.

We can use expressions (F.25) and (F.28) for moments, in order to deter-
mine the stresses with accuracy within the first-order term with respect to
velocity gradients

σik = − pδik + 2ηsγik

+
2
5
nT

τ

1 + γ

[
1
τ ′ (5 + 3γ)

∫ ∞

0

exp
(

− s

τ ′

)
γik(t − s)ds

− 3γ

ττ ′

∫ ∞

0

exp
(

− s

τ ′

) ∫ ∞

0

exp
(

− s

τ ′

)
γik(t − s − u)du ds

+
3γ

τ

∫ ∞

0

exp
(

− s

τ

)
γik(t − s)ds + 2γγik

]
. (F.34)

The constitutive equation (F.34) contains two relaxation times, which are
defined by equations (F.33).

The study of the reaction of the system in the simple case when the velocity
gradients are independent of the co-ordinates, and vary in accordance with
the law

γik ∼ e−iωt

for different deformation frequencies ω, yields important information about
the relaxation processes in the system.

In this case, equation (F.34) defines, as was shown by Pokrovskii and
Chuprinka (1973), the stresses in a dilute solution of a polymers in terms of
a linear approximation

σik = −pδik + 2η(ω)γik

where η(ω) is the complex shear viscosity with components

η′(ω) = ηs + nT
τ

1 + γ

1
5

[
2γ +

3(1 + γ)
1 + (τω)2

+
2

1 + (τ ′ω)2

]
,

η′ ′(ω) = nTτ2ω
1
5

[
3

1 + (τω)2
+

2
1 + (τ ′ω)2

]
.

(F.35)

It is interesting for us to understand the effect of the non-averaged hy-
drodynamic interaction on the stresses in a suspension of the dumbbell under
deformation. The simple, but somewhat tedious calculations (Altukhov 1986),
for the considered case determine the stresses at simple shear
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σ12 = ην12, η = ηs + nTτ

[
1 +

16
5

h2

(
1 +

2
3γ

)
γ3

(1 + γ)3

]
,

σ11 − σ33 = 2nT

[
1 − 2

3γ
+

16
105

h2

(
14γ

(1 + γ)2
+

γ3

(1 + γ)3

+
6γ2

(1 + γ)3

)]
(τν12)2,

σ22 − σ33 = − 8
35

nTh2 γ3

(1 + γ)3

(
25
3

− 8
γ

)
(τν12)2

(F.36)

where n is the number density of the dumbbells, γ = λ/ζ is the coefficient of
the internal viscosity, and τ = ζ/8Tμ is the relaxation time.

Results (F.36) are valid with approximation to the term of second order
with respect to the parameter of hydrodynamic interaction

h =
(

27
32

a2

〈|r0 − r1|2〉0

)1/2

.

The expressions (F.36), calculated at the exact hydrodynamic interaction,
contain the terms, which disappear, if the hydrodynamic interaction is aver-
aged beforehand. It can, thus, be believed that, if hydrodynamic interaction
is taken accurately, extra terms will also appear for the subchain model.

G Estimation of Some Series

We shall estimate the sums of the form

N∑
α=1

f(α, χ).

So as the upper limit N in the sums, which need to be estimated, is large,
one can approximate it by infinity. In simple cases one comes to the known
zeta-function

ζ(x) =
∞∑

α=1

1
αx

.

We use values of the zeta-function, to estimate the following sums

N∑
α=1

1
α2

=
π2

6
,

N∑
α=1

1
α4

=
π4

90
,

N∑
α=1

1
α6

=
π6

945
.

The more complicated sums depend on parameter χ which is considered to
be small. This allows one to approximate the sums by integrals. For example,



240 Appendices

N∑
α=1

1
1 + χα2

=
∫ ∞

0

χ− 1
2 dx

1 + x2
=

π

2
χ− 1

2 .

Estimates of the most important sums are listed below

N∑
α=1

1
1 + χα2

=
π

2
χ− 1

2 , (G.1)

N∑
α=1

1
(1 + χα2)2

=
π

4
χ− 1

2 , (G.2)

N∑
α=1

1
(1 + χα2)3

=
3π

16
χ− 1

2 , (G.3)

N∑
α=1

α2

(1 + χα2)2
=

π

4
χ− 3

2 , (G.4)

N∑
α=1

1
α2(1 + χα2)

=
π2

6
− π

2
χ

1
2 , (G.5)

N∑
α=1

1
α2(1 + χα2)2

=
π2

6
− 3π

4
χ

1
2 , (G.6)

N∑
α=1

1
α4(1 + χα2)

=
π4

90
− π2

6
χ +

π

2
χ

3
2 . (G.7)
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