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Abstract: The assumption of discrete radiation energy in

Planck’s 1901 radiation law, conflicted with Planck’s belief in

radiation of continuous waves. To reconcile his quantum

hypothesis with his conception of wave radiation, he avoided the

conclusion that radiation energy must be made of particles, and

postulated that radiation is a transition between the energy levels

of an oscillator. Furthermore, ignoring the symmetry between

emission and absorption, he maintained that the absorption of

radiation energy is continuous.

Under these assumptions, Planck derived in 1912, a second

radiation law in which zero point energy appears.

We show that Planck’s derivation of his 1912 radiation law only

recovers the Zero Point Energy that he unknowingly assumed in

his model from the start.

Furthermore, the distribution law of Planck’s 1912 radiation law

is, in fact, the approximated Boson Statistics of Planck’s 1901

radiation law.

Our main result is that Planck’s ZPE radiation law is equivalent

to the combined three assumptions of Zero Point Energy



Gauge Institute Journal Vol.1 No 3, August 2005, H. Vic Dannon

2

Hypothesis, the Quantum Law, and the approximated Boson

Statistics distribution law.

The validity of Planck’s 1912 radiation law, and the existence of

Planck’s Zero Point Energy are doubtful.

Introduction: In 1893, Wien reasoned that the radiation-energy

density per unit volume at frequencies between , and   of

an ideal radiator (black body) is
3

4( , ) ( )u T d d
c T
     .

Radiation measurements indicated to Wien that  should be of

the form
2

1

C
TC e



 ,

with some constants 1C , and 2C .

On the other hand,

( , )u T d N d    ,

where N is the number of radiating oscillators (per unit volume)

at frequencies between , and   , and  is the average

radiation energy of an oscillator between these frequencies.

Rayleigh computed N as the number of standing waves (per

unit volume) in the modes between , and   ,

2
3

8N d d
c

   .

The radiation energy of the oscillators  is distributed with

Boltzman probability density
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( ) kTf e


 


 ,

where  is determined from the condition that the total

probability is 1.

Rayleigh assumed that  may take any value between 0, and .

Then, the Boltzman distribution ( )f  is continuous.

The condition

0

( ) 1f d






 


 






determines

1
kT

 .

Thus,

0 0

( ) kTf d e d kT
kT

  

 

  


    
 


    

 


 

    .

Consequently, the Rayleigh-Jeans

2
3

8( , )u T kT
c
  ,

disagrees with Wien’s law, and with the measurements that

( , ) 0u T  for large radiation frequencies.

Wien’s approximated law requires that  will depend linearly

on 

a  ,

and the failure of the Rayleigh-Jeans argument suggests

assuming that  may take only discrete values h, 2h,

3h,…That is,
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,n nh  .

Then, the Boltzman distribution ,( )nf  is discrete,

,( )
hn
kT

nf e


 


 .

The condition

,
1

( ) 1v n
n

f 






determines

1
h
kTe





 .

Thus,

, ,
1 1

( ) (1 )
h nh
kT kT

n n
n n

f e nh e
 

     
  

 

    .

The series
1

h
n

kT

n

e
 


 converges uniformly to 1

1 e
h
kT



, and can be

differentiated term by term with respect to 1
kT

 . That is,

2
1 1

1
1 (1 )

h
nh nh

h h
n n

d d e h
nh e e

d d e e


 

 




 

 
 

 
 

  
   .

Therefore,

12(1 )
(1 )

1

h
h

h h
kT

e h h
e

e
e




  

 





  



.

Then, Planck’s 1901 radiation law

3
3

8( , )
1

h
kT

hu T
c

e


 


fits the measurements better than Wien’s law.
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The assumption of discrete radiation energy, conflicted with

Planck’s belief in radiation of continuous waves. To reconcile his

quantum hypothesis with his conception of wave radiation, he

avoided the conclusion that radiation energy must be made of

particles, and postulated that radiation is a transition between the

energy levels of an oscillator. Furthermore, ignoring the

symmetry between emission and absorption, he maintained that

the absorption of radiation energy is continuous.

Under these assumptions, Planck derived a second radiation law

in which zero point energy appears. We proceed to examine

Planck’s derivation of his 1912 radiation law.

How Planck obtained Zero point energy: Planck’s 1912

oscillator model assumes a probability p for the oscillator to

radiate, and a probability 1q p  to not radiate. He assumes

energy of 1
2

 with probability ,1p ,

energy of 3
2

 with probability ,2 ,1p p q   ,

……………………………………………….

energy of 2 1
2

n  with probability 1
, ,1

n
np p q  

 ,

………………………………………………..

Since ,1 ,12
,1 ,2 ,11 ... (1 ...)

1
p p

p p p q q
q p

 
    

 

        


,

we have
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,1p p  , and 1
,

n
np p q  

 .

Therefore, the oscillator’s average entropy is

 ,1 ,1 ,2 ,2ln ln ...s k p p p p      

 2 2ln ln ln ...kp p q p q q p q          

   2 2ln 1 ... ( ln ) 1 2 3 ...kp p q q kp q q q q               

 21( ln ) ( ln ) 1 . ..
1

dkp p kp q q q q
q dq      
 

    


1 1( ln ) ( ln )
1 1

dkp p kp q q
q dq q    
  

 
 

2

1 1( ln ) ( ln )
1 (1 )

kp p kp q q
q q    
 

 
 

1ln ln(1 )pk p k p
p


 



  

1 1 1ln ln lnp p pk p p
p p p

  
 

  

       
 

1 1 1 1
ln ( 1)ln( 1)k

p p p p   

 
    

 
, (1)

The average radiation energy of an oscillator is

,1 ,2 ,3 ,4

1 3 5 7
...

2 2 2 2
p p p p               

 2 31
1 3 5 7 ...

2
p q q q       

    2 3 21
1 ... 2 1 2 3 ...

2
p q q q q q q            

 2 31 1
2 1 ...

2 1
d

p q q q q
q dq    
 


 

      

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1 1 1
2

2 1
d

p q
p dq q 
 


 

   


2

1 1 1
2

2 (1 )
p q

p q 
 


 

   


1 1
(1 )

2
p

p



 

   
 



1 1
2p


 

  
 

 . (2)

Therefore, s in terms of  is

1 1 1 1ln ln
2 2 2 2

s k    


   
   

                    
           

. (3)

Finally, using 1s
T








 , we obtain Planck’s 1912 radiation law:

1
2

1kTe
 

  



  . (4)

The Zero Point Energy of 1
2

 is the mid-energy that was

assumed with probability p. Planck’s derivation only recovers

the ZPE that he assumed at the start.

Characterization of Planck’s 1912 radiation law. The

distribution law of Planck’s 1912 radiation law is, in fact, the

approximated Boson Statistics of Planck’s 1901 radiation law.

Planck’s 1901 model [ref. 3], can be reworked to obtain his 1912

law, provided that the approximated Boson statistics is assumed.
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Our main result is that Planck’s ZPE radiation law is equivalent

to the combined assumptions of Zero point energy Hypothesis,

the quantum law, and the approximated Boson Statistics

distribution law.

We prove:

The Radiation Law of equation (4)

1
2

1kTe
 


  



 

is equivalent to the three combined assumptions per mode in

[ , ] d

ZPE Hypothesis: Each radiator has zero point energy 1
2

 ,

Quantum Law: Energy is radiated in multiples of   ,

Approximated Bosons Statistics: P quanta can be distributed

among N radiators in approximately W
P N
P NN 
 


1

1
b g

b g
!

! !
ways.

( )

Equation (4) mandates the quantum radiation law   ,

because the negation of the quantum radiation law implies the

negation of equation (4).

Equation (4) implies zero point energy of / 2 , since for T  0,

/ 2  .

We want to show that (4) implies the approximated bosons

statistics assumption. From
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1 1
2 2

1 1

kT

kT kT

e

e e








  


 


  

 

  , (5)

we have

1 1 1ln ln
2 2

k
T

 

  

 
  

            
     

. (6)

That is,

1 1ln ln
2 2

s k  

  

  
  

            
     

. (7)

Integrating (7), the average entropy of a radiator per mode in

[ , ] d is

1 1 1 1
ln ln

2 2 2 2
s k    


   

   
   

                    
        

. (8)

We assume P energy-quanta   distributed between N

radiators at frequency . Each of the radiators has zero point

energy 1 1
2 2   , included in his average radiation energy  .

Therefore, the balance of radiation energy at frequency  is

1
2

P N N         . (9)

Substituting this into (8),

1 ln 1 lnP P P Ps k
N N N N
   


   

            
     

. (10)

Therefore, the total entropy of the N radiators per mode in

[ , ] d is

    ( ) ln( ) ln ln lnNS N s k P N P N N P P N
                 . (11)
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Using Sterling’s formula ln ! lnM M M M  ,

  ln ! ln ! ln !NS k P N P N N N P P
               

 !
ln

! !
P N

k
P N
 

 


 . (12)

That is, the P quanta can be distributed among the N radiators

in

 !
! !N

P N
W

P N

 

 


 (13)

ways.

As Planck comments [ref.3], equation (13) approximates well the

formula  
 

1 !
! 1 !N

P N
W

P N
 




of the bosons statistics.

( )

Conversely, assume P quanta of energy   , that are

distributed between N radiators at frequency  in

 !
! !N

P N
W

N P

 

 




ways. The average entropy of a radiator per mode in [ , ] d

is

    !1 1
ln ln ! ln ! ln !

! !
P N

s k k P N N P
N N P N

 
    

   


    

Using Sterling’s formula ln ! lnM M M M  ,

 1
( ) ln( ) ln lnk P N P N N N P P

N        


    

    1
( ) ln( ) ln ln lnk P N P N N P P N

N        


     
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1 ln 1 ln
P P P P

k
N N N N
   

   

            
     

,

which is equation (10).

Assuming zero point energy 1 1
2 2   for each of the radiators,

we obtain the balance equation (9)

1
2

P N N         .

Plugging (9) into (10), we obtain equation (8). Differentiating (8)

with respect to  we get (7), from which we conclude (6), and

(5), which is Planck’s radiation law with ZPE.

Doubts over ZPE in the Radiation Law. Comparing

equations (2) and (4), we have

1 1 1 1
2 21kTp e




  


 .

That is,

1 kTp e








.

Consequently, at large frequencies Planck’s ZPE is assumed to

be present almost certainly.

This casts uncertainty on the validity of Planck’s Zero Point

Energy.

The energy density of Planck’s 1901 radiation law yields total

energy density
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5
2 4

3 3
0 0

8 8
( ) ( , ) ( )

15( )
1

h
kT

h
u T u T d d kT

c hc
e

 


 

  
   

 

 

  


  ,

which is Stephan-Boltzman radiation law.

The addition of Zero Point Energy of 1
2

h in Planck’s 1912

radiation law, adds to the total energy density

2
3

0

8 1( )
2

h d
c





   




 .

This consequence of Planck’s 1912 radiation law has been given

names such as “photon self-energy”, “vacuum polarization”,

“vacuum fluctuations”, and “mass renormalization”, but no-one

understands what unobservable infinite zero point energy means.

Consequently, the validity of Planck’s 1912 radiation law, and

the existence of Planck’s Zero Point Energy are doubtful.
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