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Abstract - A method for modeling inductors at high-
frequency operation is presented. The method is based on
analytical approaches which can predict turn inductances,
turn-to-turn and turn-to-core capacitances using physical
structure of windings. Turn inductances, turn-to-turn and
turn-to-core capacitances of coils are then introduced into
suitable lumped parameter equivalent circuits of inductors.
The overall inductance and stray capacitance can be ob-
tained through the use of the equivalent circuits. Both
single- and multiple-layer inductors are considered. The
method was tested with experimental measurements. The
accuracy of the results was good in most cases. The derived
expressions can be useful for the design of HF inductors
and can also be used for simulation purposes.

I. INTRODUCTION

At high frequencies, the behavior of inductors and trans-
formers is very different from their low frequency behav-
ior. Skin and proximity effects cause the winding para-
sitic resistances to increase with the operating frequency,
and the parasitic capacitances of the winding cannot be
neglected, either. Hence, the overall reactance can be sig-
nificantly affected by these phenomena. As a result, an
accurate prediction of the response of inductors that oper-
ate at frequencies above several hundred kilohertz, such as,
for instance, those used in high-frequency switching power
converters and in EMI filters, is crucial for the design of
such devices. The parasitic capacitances and resistances
are distributed parameters which are negligible at low fre-
quencies but play a role of increasing significance as the
operating frequency increases. The inductance itself is not
constant when the frequency changes. Thus, the theoret-
ical prediction of the frequency response of an inductor is
a difficult task.

The problem of high-frequency magnetic components
is widely discussed in the literature, but mainly the as-
pects related to the parasitic ac winding resistances and
losses in ferromagnetic cores have been addressed [1, 2, 3].
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Some results concerning the stray capacitance of single-
layer and multiple-layer coils are presented in [4, 5, 6].
More recently, a novel method suitable for the prediction
of the overall stray capacitance of inductors has been pre-
sented [7]. The prediction of the overall inductance of coils
is made through expressions based on simplified assump-
tions. These assumptions may not be satisfied in many
windings used for high-frequency applications.

The aim of this paper is to propose a new method for
deriving the overall inductance and stray capacitance of
a single- or multiple-layer inductor, and compare the the-
oretical and experimental results. The method is based
on a rigorous analytical approach used for the calculation
of the turn inductances, and on an analytical simplified
approach used for the calculation of the turn-to-turn and
turn-to-core capacitances. Only the specification of the coil
geometry is required. The lumped parameters obtained
using the proposed methods allow us to derive the overall
inductance and stray capacitance.

II. MODELS OF THE INDUCTOR

Inductor windings have distributed parasitic parameters,
which can be modeled in a simple way by a lumped pa-
rameter equivalent circuit shown in Fig. 1. It consists of
an inductance L, a series ac resistance of the coil R,., and
an overall stray capacitance Cs. In a more detailed model,
each turn of the coil could be replaced by a lumped param-
eter circuit similar to that of Fig. 1. In this case, the in-
ductance L should represent the self-inductance of the turn
itself plus the contributions of mutual inductances due to
all the other turns, whereas the shunt capacitance should
be given by the contributions from the turn-to-turn and/or
turn-to-core capacitances. The analysis is performed for
cylindrical inductors made of a uniformly wound single
wire.
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Figure 1: Basic lumped parameter circuit.

III. INDUCTANCE CALCULATION

Usually, the calculation of the inductance for a whole
winding is performed using some ready-to-use expressions.
These expressions have coefficients which are derived un-
der the assumption that layers of turns can be replaced
by a cylindrical shell in which the current is uniformly
distributed. The coefficients are tabulated as a function of
the winding geometry [8]. The approximation given by the
above mentioned expressions for the predicted inductance
may be poor in some cases, for instance when the number
of turns is small or when there is some distance between
turns. In order to improve the prediction of the inductance
of a single- or multiple-layer winding, the detailed lumped
parameter model can be used. The self- and mutual in-
ductances of all the turns are required in this case. The
overall inductance can be derived by means of a suitable
combination of the self- and mutual inductances between
turns.

A. Mutual Inductances Calculation

For the calculation of mutual inductances between the
turns of an air-core inductor, the following expression
(valid for circular coaxial turns) can be used [9]
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where the left-hand side represents the mutual inductance
between the j-th turn of the i-th layer and the k-th turn
of the h-th layer, R; and Rj are the turn radii of the
i-th and the h-th layers, respectively. d; is the dis-
tance between the planes containing the j-th and the k-th

turns (in the axial direction), ¥ is the angular coordinate
around the turn, and po is the permittivity of vacuum. A
cross-sectional view of a multiple-layer winding is shown
in Fig. 2. The integral in (1) is an elliptic one. It can be
solved through a numerical method or with the procedure
described in the Appendix.

In the model proposed, an inductor made of N; layers
with N; turns per layer has a total number of (IN;IV;)?
self- and mutual inductances. Not all the mutual induc-
tances are different from one another. In fact, M(; jy(n,x) =
Mn )(s,5) and, furthermore, in both single- and multiple-
layer coils, the periodicity of the geometrical structure re-
sults in a significant number of mutual inductances equal
to one another. More precisely, between turns belonging
to the same layer or to different layers, the mutual induc-
tances do not change if the turns are equally shifted in the
axial direction. Therefore, for a winding with N} layers
and N; turns per layer,

M)k = Mi,g4m)(h kot m) 2
where n is an integer, and

1<j+n<N 3
1§k+n§Nt

B.  Self-Inductances Calculation

Self-inductances are the same for turns belonging to the
same layer. They cannot be calculated using (1) with i = h
and j = k, but using the following expression [9]

8R; 7
M jy,5) = Li = po Ry (ln—’— —) )
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The turn radius R; is the same for all the turns of the same
layer. D, indicates the diameter of the wire.

C. Owerall Inductance

The global inductance can be derived under the assump-
tion that the current flowing in the coil is the same for all
turns. This assumption is true at low frequencies, yet it
is valid at higher frequencies if currents through parasitic
capacitances are negligible. The overall inductance is then

given by
N N: N; N,

L=Y"3"3"%" Mg jnm- (5)

i=1 j=1 h=1 k=1
For a single-layer winding, N; = 1. In this case, (2) and
(4) become

M5 1,545 = M1 jan) 1 j+b+n) (6)

Ma pa.gp = L (7
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Introducing (7) and (6) in (5), one obtains the overall in-
ductance

N: N,
L=3% % Mujpam=
j=1 k=1
Ne—1
= NtLy +2 Z (Vg — k)M(l,l)(l,k+1)- (8)
k=1

The calculation of the self-inductance L; can be carried
out by means of (4) with i = 1. Now, we have only N; —1
different mutual inductances which can be calculated as

Mayarsr) = Mg =

2 R2?cosv
5 dy
V/(kd)? + 2R3(1 - cos¥)

where d is the distance between planes containing adjacent
turns.

The presence of a ferromagnetic core strongly affects
self- and mutual inductances. An analytical approach is
very difficult in this case, numerical methods of field anal-
ysis or experimental formulae are usually employed. Also
the presence of a shield affects self- and mutual induc-
tances. In fact, at high frequencies, the eddy-currents in
the shield act as a magnetic screen thus decreasing the
overall coil inductance. Skin and proximity effects in the
wire slightly affect inductances if the ratio 2R; /D, is large
enough. The case of small values of this ratio (inductors for
high current applications) together with the other effects
mentioned above, will be examined in detail in a further
paper.

=k
=3/

(9)

IV. PARASITIC CAPACITANCE
CALCULATION

The total stray capacitance of inductors consists of the
following components:

1. the turn—to—turn capacitances between turns of the
same layer,

2. the turn-to-turn capacitances between turns of adja-
cent layers,

3. the turn-to-core capacitance, and the turn-to-shield
capacitance.

A method for the calculation of the overall stray ca-
pacitance has been proposed in [7]. A brief review with
some rearrangements of this method is reported here. The
proposed method exploits winding symmetries in order to
introduce basic cells for the calculation of the turn-to-turn
capacitances. In Fig. 3, a basic cell ABCD related to
the turn-to-turn capacitance of a multiple-layer winding is
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Figure 2: Cross-sectional view of a multiple-layer winding.
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shown. The lines of the electric field E that get out from
each turn fully surrounded by other conductors go to these
conductors. No line can go either to other conductors or to
infinity under the assumption that the conductors of the
coil (turns, core, and shield) are close enough one to the
others. Furthermore, because of symmetries in the winding
geometry, all the turn-to-turn capacitances between adja-
cent turns must be equal. The elementary capacitance dC
between two opposite corresponding elementary surfaces,
dS, of two adjacent conductors can be expressed as

ds
dC =¢ — (10)
z
where € = €,¢p is the permittivity of a homogeneous

medium and z is the length of a line of the electric field
connecting two opposite elementary surfaces. The length
2 is not constant, but it is a function of the location of
the elementary surface which, in turn, can be related to an
angular coordinate 6.

V. TURN-TO-TURN CAPACITANCE

The basic cell suitable for the calculation of the turn-to-
turn capacitances include a portion of the perimeter of the
turn cross-section which corresponds to an angle of 7/3 rad
as shown in Fig. 3. Hence, in order to obtain the turn-to-
turn capacitance, the elementary capacitance given by (10)
must be integrated over the angle /3.

In the basic cell, the lines of the electric field cross three
regions: the insulating coatings of either turn and the air
gap between them. The elementary capacitance dC be-
tween adjacent turns is, therefore, equivalent to the capac-
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Figure 3: A basic cell ABC'D used for the calculation of
the turn-to-turn capacitance.

itance of a series combination of three elementary capaci-
tors, each with a homogeneous dielectric material:

1. The insulating coating of a turn.
2. The air gap.
3. The insulating coating of an adjacent turn.

We are neglecting the presence of possible insulation be-
tween layers.

If the thickness of the insulating coating s is much lower
than the outer diameter of the wire including insulation,
D,, we can approximate the paths of the electric field in the
insulator by the insulator thickness s as shown in Fig. 4. It
is more difficult to predict the paths of the electric field in
the air gap between adjacent turns. The shortest possible
paths are used for the calculation of the air-gap capaci-
tance. These paths are segments parallel to the line that
connects the centerlines of the turns under consideration.
One of these segments is depicted in Fig. 4. This approx-
imation can be considered as a conservative one for the
design of HF inductors.

From the elementary capacitances of both the insulating
coatings and the air gap, an equivalent elementary capac-
itance can be derived. Integration of this capacitance over
the basic cell gives an expression for the turn-to-turn ca-
pacitance which is derived in the Appendix of [7]. The re-
sulting expression seems not to be of practical use. There-
fore, a simplified approach which leads to a more easy-
to-use expression for the turn-to-turn capacitance is also
provided by [7]. In the simplified approach, the basic cell is
partitioned into three parts. Suitable border lines between
the differents parts have been proposed. They are selected
by means of an angle 8* which is defined as the angle at

Figure 4: Assumed path z(8) of an electric field line.

which the elementary capacitance of the air gap equals the
series combination of the elementary capacitances of the
coatings. In each part, the series combination of the three
elementary capacitances is approximated with the series
combination of just the coating capacitances, or with the
elementary capacitance of the air gap alone.

A. Capacitance of the Insulating Coatings

In Ref. [7], an expression for the coating capacitance was
calculated starting from the capacitance of an elementary
cylindrical shell of the insulating coatings. The following
expression was obtained

_ 2e600%

C. = (1)

ln%j
where [; is the turn length. However, under the assumption
of small thickness s of the coatings, we do not introduce a
significant error if we approximate the capacitance of the
cylindrical shell with the capacitance of a parallel plane
capacitor

Gréoe*Dalt

s

Ce= (12)
where D, = (D, + D.)/2 is the average diameter of the
insulating coating shell. In the part of the basic cell corre-
sponding to |¢9] < ¥* in which the elementary capacitance
of the air gap is larger, the equivalent capacitance is ap-
proximated by the series combination of just the coating
capacitances. It is given by

Cppe = Lo = Erc09" Dl

2 28 (13)
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B. Capacitance of the Air Gap

In the side parts of the basic cell corresponding to ¥* <
|9] € w/6 where the elementary capacitance of the air gap
is smaller, the equivalent capacitance can be approximated
by the capacitance of the air gap alone. Introducing in (10)
the assumed path as a function of §

z(8) = D,(1 — cosb) (14)
and the expression for an elementary surface dS, one can
obtain the elementary air-gap capacitance

_dS D,
ng(e) = Eo;(—e—)- = 6021’(9)d9
B 1D, _ I,
= O35, = cost) L~ O3 = oty 0 (1)

Integrating this equation in the parts of the basic cell where
the elementary capacitance of the air gap is smaller than
the other elementary capacitances, one obtains

w/6 60lt
= —_— b
Cug 2_/, 2(1 — cosf) d

n/6 1
= [ g

= €l [cot (%) - 3.732} .

C. Total Capacitance of the Basic Cell

The total capacitance of the basic cell is obtained by
adding the contributions from its parts

(16)

Cit = Ciie + Cyy

D %* 9*
= eoly |€&p — b +cot [ = | —3.732 (17)
2s 2
where 6* is given by
. 2s
#* = arccos (1 erDa> . (18)

In this paper, 6* is derived using (12) instead of (11) as in

7).

VI. TUuUrN-TO-CORE CAPACITANCE

A similar approach can also be used to calculate the turn-
to-core and/or the turn-to-shield capacitances. Now we
are neglecting the presence of a possible insulation between
the first layer and the core. Assuming that the core is a
conductor plane of symmetry as depicted in Fig. 5, the
path lengths of the electric field lines between a turn and

Figure 5: Assumed path of the electric field line between
a turn and a conductive core.

the plane conductor are one half the path lengths between
adjacent turns. The turn-to-core basic cell considered for
the calculation of the capacitance should be wider than
the turn-to-turn basic cell. In fact, a portion of the turn
cross-section perimeter which corresponds to an angle of
7 /2 is included in the turn-to-core basic cell, as it can be
seen from Fig. 2. Nevertheless, as a first approximation all
the basic cells can be assumed identical. Therefore,

Cie = 2Cy. (19)

VII.

In order to determine the stray capacitance of a winding as
depicted in Fig. 1, a network consisting of lumped capac-
itors is solved. A network of lumped capacitors obtained
for a single-layer coil wound on a conductive core is shown
in Fig. 6. The simplest case concerns a single-layer winding
of n turns with no core and/or shield. For this winding,
the total stray capacitance is given by the equivalent ca-
pacitance of n — 1 turn-to-turn capacitances in series

_ Cy
P p—1"

OVERALL STRAY CAPACITANCE

(20)

Unfortunately, in this case the assumptions made in the
previous sections are not well satisfied and, therefore, the
accuracy of (20) is not very good. It decreases with increas-
ing number of turns and increasing length-to-diameter ra-
tio of the winding. A better approach to the calculation
of the stray capacitance of single-layer coreless inductors
is presented in [10].

For a single-layer coil consisting of n turns wound on
a conductive core, a lumped capacitor network similar to
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Figure 6: Lumped capacitor network for a single-layer coil
with conductive core.

that depicted in Fig. 6 must be solved. The equivalent ca-
pacitance between the first and the last turn of the winding
does not depend on the number of turns when it equals or
exceeds 10. It is given by

Cs, =1.366 Cy, for n >10. (21)
A more detailed derivation of (21) is provided in [7].

For two-layer coreless coils, under the assumptions that
the outer layer is wound in the opposite direction of the

inner one, the stray capacitance is given by

Cs = 1.618Cy, for n > 10. (22)
Under the previous assumptions, and when also a conduc-
tive core or shield is present, the overall stray capacitance

of a two-layer coil is given by

Cs =1.83Cy, for n>10. (23)

It can be seen that two-layer coils are affected by a higher
stray capacitance than single-layer coils. They are also
affected by a higher resistance at high-frequency opera-
tion [3]. Thus, in general, using multiple-layer coils is not
a good practice for inductors designed for high-frequency
operation.

COMPARISON OF PREDICTED
AND MEASURED RESULTS

VIIL

The results given by the proposed method have been com-
pared with those measured for several inductors. Some
illustrative examples are given in this section. As a first
example the inductance of four single-layer coils for EMI
filtering applications was calculated and compared with
experimental measurements. All the coils were made with
a single wire having a diameter D, = 1.4 mm. The radius
of the turns was R = 39.75 mm in all cases with the ex-
ception of the 80-turn coil for which R = 40.6 mm. The

inductances predicted by the method proposed in Section
ITI-C along with the values measured at 1 kHz are reported
in the Table I.

Table I. Calculated and Measured Inductances

N; d Calculated | Measured
(turns) | (mm) L(pH) L(uH)

38 1.84 83.9 84.1

47 2.66 85.2 85.6

50 3.01 83.6 84.7

80 1.66 243.4 244.6

The comparison of the calculated and measured results
shows a good agreement.

As an example for the prediction of the stray capaci-
tance, a single-layer winding inductor with a powder iron
core for high-frequency power converters was considered.
The coil had 95 circular turns of R; = 7.15 mm diameter.
The wire had an outer diameter D, = 0.495 mm with an
inner diameter of the conductor D, = 0.45 mm (coating
thickness s = 0.0225 mm.) The dielectric constant of the
coating material was €, = 3.5. From (18), one obtains

2 x 0.0225 ) 3

§ = o LX)
arceos (1 35 % 0.4725

= (.2338 rad = 13.4°.
Substituting this into (17) yields

(24)

Cy =885 x 1072 x 7 x 14.3 x 107°
0.4725 x 0.2338 0.2338
2 % 0.0225 ( ) B 3'732} B
= 5.318 pF.
Substitution of Cy; = 5.318 pF into (21) gives

3.5 x

(25)

Cs = 1.366 x 5.318 = 7.26 pF. (26)

Using this value, the calculated self-resonant frequency
of the inductor, which had an inductance L = 75 pH
at 100 Hz, was 6.8 MHz. The self-resonant frequency
measured with an HP4194A impedance/gain-phase ana-
lyzer was 6.2 MHz. The corresponding total stray capaci-
tance was 8.78 pF. The error in determining the first self-
resonant frequency fs1 was

Afa 6.8 — 6.2

sl

x 100% = x 100% = 9.68%. (27

Therefore, the error of determining the self-capacitance
was

AC, % 100% 7.26 - 8.78

C, = g7z < 10%=

—17.3%. (28)

300



IX. CONCLUSIONS

A method for predicting the inductance and the stray ca-
pacitance of inductor windings has been proposed herein.
The derived equations can be used for designing and mod-
eling inductors which operates at high frequencies. The ex-
pression for the inductance is derived analytically through
all self- and mutual inductances of turns. The expression
for the stray capacitance is obtained with a simplified an-
alytical approach and is simple enough so that a pocket
calculator can be used. The proposed approach is also
suitable for predicting the first self-resonant frequency of
both single- and multiple-layer inductors. Physical insight
into the influence of the number of layers and the number
of turns per layer on the inductor parameters is provided.
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APPENDIX

The elliptic integral in (1) can be calculated without much
difficulties through usual numerical integration procedures.
Alternatively, it can be reduced to the form

o/ [ (2 -¢) o - 2r0)] @)

M jy(hk) =

where ARR
2= _2__#__5 (30)
dj,k + (R; + Rh)
The functions I; and I are the Legendre’s elliptic integrals
of the first and second kinds. They are built-in functions
in the main mathematical libraries and are also available
in the format of tables or graphs in many mathematical

handbooks [11]. They are given by
1
o= /0 V1 - cZsen?y ¢
T (2n -1 n
=2 [”Z( @)t ) ¢ ]
w1 )2
= / V1 - c?sen?y dip =
— 1! o
Z ( (2n)! > (2n — 1)] ) (32)

n=1

(31)

and

-5 i-
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