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1  Charge & Coulomb's Law 
 
Charge is a property of matter.  There are two kinds of charge, positive “+” and negative “−”.  
An object can have positive charge, negative charge, or no charge at all.  A particle which has 
charge causes a force-per-charge-of-would-be-victim vector to exist at each point in the region of 
space around itself.  The infinite set of force-per-charge-of-would-be-victim vectors is called a 
vector field.  Any charged particle1 that finds itself in the region of space where the force-per-
charge-of-would-be-victim vector field exists will have a force exerted upon it by the force-per-
charge-of-would-be-victim field.  The force-per-charge-of-would-be-victim field is called the 
electric field.  The charged particle causing the electric field to exist is called the source charge2. 
 
The source charge causes an electric field which exerts a force on the victim charge.  The net 
effect is, that the source charge causes a force to be exerted on the victim.  While we have much 
to discuss about the electric field, for now, we focus on the net effect, which we state simply 
(neglecting the “middle man”, the electric field) as, “A charged particle exerts a force on another 
charged particle.”  This statement is Coulomb’s Law in its conceptual form.  The force is called 
the Coulomb force, a.k.a. the electrostatic force. 
 
Note that either charge can be viewed as the source charge and either can be viewed as the victim 
charge.  Identifying one charge as the victim charge is equivalent to establishing a point of view, 
similar to identifying an object whose motion or equilibrium is under study for purposes of 

applying Newton’s 2nd Law of motion, 
m
∑=

F
a

v

v
.  In Coulomb’s Law, the force exerted by one 

charged particle on the other is directed along the line connecting the two particles, and, away 
from the other particle if both particles have the same kind of charge (both positive, or, both 
negative) but, toward the other particle if the kind of charge differs (one positive and the other 
negative).  This fact is probably familiar to you as, “like charges repel and unlike attract.” 
 
The SI. unit of charge is the coulomb, abbreviated C.  One coulomb of charge is a lot of charge, 
so much that, two particles, each having a charge of +1 C and separated by a distance of 1 meter 
exert a force of 9109× N, that is, 9 billion newtons on each other. 
 
This brings us to the equation form of Coulomb’s Law which can be written to give the 
magnitude of the force exerted by one charged particle on another as 
 

2
21

r

qq
kF =                                                             (1-1) 

where: 

  k = 2

2
9

C
mN

1099.8
⋅× , a universal constant called the Coulomb constant, 

1q  is the charge of particle 1, 

                                                
1 A charged particle is a particle that has charge. 
2 A charged particle is often referred to simply as “a charge”. 
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2q  is the charge of particle 2, and 
 r  is the distance between the two particles. 

 

The user of the equation (we are still talking about equation 1-1, 2
21

r

qq
kF = ) is expected to 

establish the direction of the force by means of  “common sense” (the user’s understanding of 
what it means for like charges to repel and unlike charges to attract each other). 
 
While Coulomb’s Law in equation form is designed to be exact for point particles, it is also exact 
for spherically symmetric charge distributions (such as uniform balls of charge) as long as one 
uses the center-to-center distance for r . 

 
 
 
 
 
 
 
 
 
 
 

Coulomb’s Law is also a good approximation in the case of objects on which the charge is not 
spherically symmetric as long as the objects’ dimensions are small compared to the separation of 
the objects (the truer this is, the better the approximation).  Again, one uses the separation of the 
centers of the charge distributions in the Coulomb’s Law equation. 

 
Coulomb’s Law can be written in vector form as: 

 

122
21

12 r̂rrr
r

qq
k=F

v
                                                         (1-2) 

where: 

12F
v

 is the force “of 1 on 2”, that is, the force exerted by particle 1 on particle 2, 

 12r̂rrr  is a unit vector in the direction “from 1 to 2”, and 
  k, q

1
, and q

2
 are defined as before (the Coulomb constant, the charge on particle 1, and the 

charge on particle 2 respectively). 
 
Note the absence of the absolute value signs around q

1
 and q

2
.  A particle which has a certain 

amount, say, 5 coulombs of the negative kind of charge is said to have a charge of −5 coulombs 
and one with 5 coulombs of the positive kind of charge is said to have a charge of +5 coulombs) 
and indeed the plus and minus signs designating the kind of charge have the usual arithmetic 
meaning when the charges enter into equations.  For instance, if you create a composite object by 
combining an object that has a charge of q

1
 = +3 C with an object that has a charge of q

2
 = −5 C, 

then the composite object has a charge of 

. 
q

1 . 
q

2 

r 
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q = q
1
 + q

2
 

 
q = +3 C + (−5 C) 

 
q = −2 C 

 
Note that the arithmetic interpretation of the kind of charge in the vector form of Coulomb’s Law 
causes that equation to give the correct direction of the force for any combination of kinds of 
charge.  For instance, if one of the particles has positive charge and the other negative, then the 
value of the product q

1 
q

2
 in equation 1-2 

 

122
21

12 r̂rrr
r
qq

k=F
v

 

 
has a negative sign which we can associate with the unit vector.  Now 12r̂rrr−  is in the direction 

opposite “from 1 to 2” meaning it is in the direction “from 2 to 1.”  This means that 12F
v

, the 
force of 1 on 2, is directed toward particle 1.  This is consistent with our understanding that 

opposites attract.  Similarly, if q
1
 and q

2
 are both positive, or both negative in 122

21
12 r̂rrr

r
qq

k=F
v

 

then the value of the product q
1 
q

2
 is positive meaning that the direction of the force of 1 on 2 is 

12r̂rrr  (from 1 to 2), that is, away from 1, consistent with the fact that like charges repel. 
 
We’ve been talking about the force of 1 on 2.  Particle 2 exerts a force on particle 1 as well.  It is 

given by 212
21

21 r̂rrr
r

qq
k=F

v
.  The unit vector 21r̂rrr , pointing from 2 to 1, is just the negative of the 

unit vector pointing from 1 to 2: 

1221
ˆˆ rrrrrrrr −=  

 
If we make this substitution into our expression for the force exerted by particle 2 on particle 1, 
we obtain: 

)ˆ( 122
21

21 rrrr−=
r

qq
kF

v
 

 

122
21

21 r̂rrr
r

qq
k−=F

v
 

 
Comparing the right side with our expression for the force of 1 on 2 (namely, 

122
21

12 r̂rrr
r

qq
k=F

v
), we see that  

1221 FF
vv

−= . 
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So, according to Coulomb’s Law, if particle 1 is exerting a force 12F
v

 on particle 2, then 

particle 2 is, at the same time, exerting an equal but opposite force 12F
v

−  back on particle 2, 
which, as we know, by Newton’s 3rd Law, it must. 
 
In our macroscopic3 world we find that charge is not an inherent fixed property of an object 
but, rather, something that we can change.  Rub a neutral rubber rod with animal fur, for 
instance, and you’ll find that afterwards, the rod has some charge and the fur has the opposite 
kind of charge.  Ben Franklin defined the kind of charge that appears on the rubber rod to be 
negative charge and the other kind to be positive charge.  To provide some understanding of 
how the rod comes to have negative charge, we delve briefly into the atomic world and even 
the subatomic world. 
 
The stable matter with which we are familiar consists of protons, neutrons, and electrons.  
Neutrons are neutral, protons have a fixed amount of positive charge, and electrons have the 
same fixed amount of negative charge.  Unlike the rubber rod of our macroscopic world, you 
cannot give charge to the neutron and you can neither add charge to, nor remove charge from, 
either the proton or the electron.  Every proton has the same fixed amount of charge, namely 

C 1060.1 19−× .  Scientists have never been able to isolate any smaller amount of charge.  That 
amount of charge is given a name.  It is called the e, abbreviated e and pronounced “ee”.  The 
e is a non-SI unit of charge.  As stated C 1060.1e1 19−×= .  In units of e, the charge of a 

proton is 1 e (exactly) and the charge of an electron is −1 e.  For some reason, there is a 
tendency among humans to interpret the fact that the unit the e is equivalent to C 1060.1 19−×  
to mean that 1 e equals C 1060.1 19−×− .  This is wrong!  Rather,  
 

C 1060.1e1 19−×= . 
 
A typical neutral atom consists of a nucleus made up of neutrons and protons surrounded by 
orbiting electrons such that the number of electrons in orbit about the nucleus is equal to the 
number of protons in the nucleus.  Let’s see what this means in terms of an everyday object 
such as a polystyrene cup.  A typical polystyrene cup has a  mass of about 2 grams.  It consists 
of roughly: 23106× neutrons, 23106×  protons, and, when neutral, 23106×  electrons.  Thus, 
when neutral it has about 5101× C of positive charge and 5101× C of negative charge, for a 
total of 0 charge.  Now if you rub a polystyrene cup with animal fur you can give it a 
noticeable charge.  If you rub it all over with the fur on a dry day and then experimentally 
determine4 the charge on the cup, you will find it to be about C 105 8−×− .  This represents an 

                                                
3 Macroscopic means “of a size that we can see with the naked eye.”  It is to be contrasted with microscopic (you 
need a light microscope to see it), atomic (of or about the size of an atom), and subatomic (smaller than an atom, e.g. 
about the size of a nucleus of an atom). 
4 One way to experimentally determine the charge that comes to be on a polystyrene (Styrofoam) cup as a result of 
rubbing it with fur, is to hang two such cups, side by side, just barely touching, from the ceiling by means of some 
thread.  Rub each one with fur the same way so that you can assume the two cups to have one and the same charge.  
Let the cups hang freely.  They will repel each other and come to rest at a fixed separation.  Measure the separation 
of the two cups.  Do the equilibrium analysis to find the magnitude of the electrostatic force that each cup must exert 
on the other to maintain the observed separation.  Use the resulting value of force in Coulomb’s Law to calculate the 
charge q (assuming, as mentioned, q1=q2=q). 
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increase of about 0.00000000005 % in the number of electrons on the cup.  They were 
transferred from the fur to the cup.  We are talking about 10103×  electrons, which sure would 
be a lot of marbles but represents a minuscule fraction of the total number of electrons in the 
material of the cup. 
 
The main points of the preceding discussion are: 
 

• A typical neutral macroscopic object consists of incredibly huge amounts of both 
kinds of charge (about 50 million coulombs of each for every kilogram of matter), the 
same amount of each kind. 

• When we charge an object, we transfer a relatively minuscule amount of charge to or 
from that object. 

• A typical everyday amount of charge (such as the amount of charge on a clingy sock 
just out of the dryer) is 10-7 coulombs. 

• When we transfer charge from one object to another, we are actually moving charged 
particles, typically electrons, from one object to the other. 

 
One point that we did not make in the discussion above is that charge is conserved.  For instance, 
if, by rubbing a rubber rod with fur, we transfer a certain amount of negative charge to the rubber 
rod, then, the originally-neutral fur is left with the exact same amount of positive charge.  
Recalling the exact balance between the incredibly huge amount of negative charge and the 
incredibly huge amount of positive charge in any macroscopic object, we recognize that, in 
charging the rubber rod, the fur becomes positively charged not because it somehow gains 
positive charge, but, because it loses negative charge, meaning that the original incredibly huge 
amount of positive charge now (slightly) exceeds the (still incredibly huge) amount of negative 
charge remaining on and in the fur. 
 
 

Charging by Rubbing 
 

One might well wonder why rubbing a rubber rod with animal fur would cause electrons to be 
transferred from the fur to the rod.  If one could imagine some way that even one electron might, 
by chance, find its way from the fur to the rod, it would seem that, then, the rod would be 
negatively charged and the fur positively charged so that any electron that got free from the fur 
would be attracted back to the fur by the positive charge on it and repelled by the negative charge 
on the rod.  So why would any more charge ever be transferred from the fur to the rod?  The 
answer comes under the heading of “distance matters.”  In rubbing the rod with the fur you bring 
lots of fur molecules very close to rubber molecules.  In some cases, the outer electrons in the 
atoms of the fur come so close to nuclei of the atoms on the surface of the rubber that the force 
of attraction of these positive nuclei is greater than the force of attraction of the nucleus of the 
atom of which they are a part.  The net force is then toward the rod, the electrons in question 
experience an acceleration toward the rod that changes the velocity such that the electrons move 
to the rod.  Charging by rubbing depends strongly on the molecular structure of the materials in 
question.  One interesting aspect of the process is that the rubbing only causes lots of molecules 
in the fur to come very close to molecules in the rubber.  It is not as if the energy associated with 
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the rubbing motion is somehow given to the electrons causing them to jump from the fur to the 
rubber.  It should be noted that fur is not the only material that has a tendency to give up 
electrons and rubber is not the only material with a tendency to acquire them.  The phenomenon 
of charging by rubbing is called triboelectrification.  The following ordered list of the tendency 
of (a limited number of) materials to give up or accept electrons is called the triboelectric 
sequence: 
 
Increasing tendency to take on electrons  
Air    Rabbit Fur     Glass     Wool     Silk       Steel     Rubber    Polyester    Styrofoam   Vinyl    Teflon  

Increasing tendency to give up electrons 
 
The presence and position of air on the list suggests that it is easier to maintain a negative charge 
on objects in air than it is to maintain a positive charge on them. 
 
 

Conductors and Insulators 
 
Suppose you charge a rubber rod and then touch it to a neutral object.  Some charge, repelled by 
the negative charge on the rod, will be transferred to the originally-neutral object.  What happens 
to that charge then depends on the material of which the originally-neutral object consists.  In the 
case of some materials, the charge will stay on the spot where the originally neutral object is 
touched by the charged rod.  Such materials are referred to as insulators, materials through which 
charge cannot move, or, through which the movement of charge is very limited.  Examples of 
good insulators are quartz, glass, and air.  In the case of other materials, the charge, almost 
instantly spreads out all over the material in question, in response to the force of repulsion 
(recalling that force causes acceleration which leads to the movement) that each elementary 
particle of the charge exerts on every other elementary particle of charge.  Materials in which the 
charge is free to move about are referred to as conductors.  Examples of good conductors are 
metals and saltwater. 
 
When you put some charge on a conductor, it immediately spreads out all over the conductor.  
The larger the conductor, the more it spreads out.  In the case of a very large object, the charge 
can spread out so much that any chunk of the object has a negligible amount of charge and 
hence, behaves as if were neutral.  Near the surface of the earth, the earth itself is large enough to 
play such a role.  If we bury a good conductor such as a long copper rod or pipe, in the earth, and 
connect to it another good conductor such as a copper wire, which we might connect to another 
metal object, such as a cover plate for an electrical socket, above but near the surface of the 
earth, we can take advantage of the earth’s nature as a huge object made largely of conducting 
material.  If we touch a charged rubber rod to the metal cover plate just mentioned, and then 
withdraw the rod, the charge that is transferred to the metal plate spreads out over the earth to the 
extent that the cover plate is neutral.  We use the expression “the charge that was transferred to 
the cover plate has flowed into the earth.”  A conductor that is connected to the earth in the 
manner that the cover plate just discussed is connected, is called “ground.”  The act of touching a 
charged object to ground is referred to as grounding the object.  If the object itself is a conductor, 
grounding it (in the absence of other charged objects) causes it to become neutral. 
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Charging by Induction 
 
If you hold one side of a conductor in contact with ground and bring a charged object very near 
the other side of the conductor, and then, keeping the charged object close to the conductor 
without touching it, break the contact of the conductor with ground, you will find that the 
conductor is charged with the opposite kind of the charge that was originally on the charged 
object.  Here’s why.  When you bring the charged object near the conductor, it repels charge in 
the conductor right out of the conductor and into the earth.  Then, with those charges gone, if you 
break the path to ground, the conductor is stuck with the absence of those charged particles that 
were repelled into the ground.  Since the original charged object repels the same kind of charge 
that it has, the conductor is left with the opposite kind of charge. 
 
 
 
 

Polarization 
 
Let’s rub that rubber rod with fur again and bring the rubber rod near one end of a small strip of 
neutral aluminum foil.  We find that the foil is attracted to the rubber rod, even though the foil 
remains neutral.  Here’s why: 
 
The negatively charged rubber rod repels the free-to-move negative charge in the strip to the 
other end of the strip.  As a result, the near end of the aluminum strip is positively charged and 
the far end is negatively charged.  So, the rubber rod attracts the near end of the rod and repels 
the far end.  But, because the near end is nearer, the force of attraction is greater than the force of 
repulsion and the net force is toward the rod.  The separation of charge that occurs in the neutral 
strip of aluminum is called polarization, and, when the neutral aluminum strip is positive on one 
end and negative on the other, we say that it is polarized. 
 
Polarization takes place in the case of insulators as well, despite the fact that charge is not free to 
move about within an insulator.  Let’s bring a negatively-charged rod near one end of a piece of 
paper.  Every molecule in the paper has a positive part and a negative part.  The positive part is 
attracted to the rod and the negative part is repelled.  The effect is that each molecule in the paper 
is polarized and stretched.  Now, if every bit of positive charge gets pulled just a little bit closer 
to the rod and every bit of negative charge gets pushed a little farther away, the net effect in the 
bulk of the paper is to leave it neutral, but, at the ends there is a net charge.  On the near end, the 
repelled negative charge leaves the attracted positive charge all by itself, and, on the far end, the 
attracted positive charge leaves the repelled negative charge all by itself. 
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As in the case of the aluminum strip, the negative rubber rod attracts the near, positive, end and 
repels the far, negative, end, but, the near end is closer so the attractive force is greater, meaning 
that the net force on the strip of paper is attractive.  Again, the separation of the charge in the 
paper is called polarization and the fact that one end of the neutral strip of paper is negative and 
the other is positive means that the strip of paper is polarized. 
 
 

Rod 

Strip of Paper 
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2  The Electric Field: Description and Effect 
 
An electric field is an invisible entity1 which exists in the region around a charged particle.  It is 
caused to exist by the charged particle.  The effect of an electric field is to exert a force on any 
charged particle (other than the charged particle causing the electric field to exist) that finds itself 
at a point in space at which the electric field exists.  The electric field at an empty point in space 
is the force-per-charge-of-would-be-victim at that empty point in space.  The charged particle 
that is causing the electric field to exist is called a source charge.  The electric field exists in the 
region around the source charge whether or not there is a victim charged particle for the electric 
field to exert a force upon.  At every point in space where the electric field exists, it has both 
magnitude and direction.  Hence, the electric field is a vector at each point in space at which it 
exists.  We call the force-per-charge-of-would-be-victim vector at a particular point in space the 
“electric field” at that point.  We also call the infinite set of all such vectors, in the region around 
the source charge, the electric field of the source charge.  We use the symbol E

v
 to represent the 

electric field.  I am using the word “victim” for any particle upon which an electric field is 
exerting a force.  The electric field will only exert a force on a particle if that particle has charge. 
So all “victims” of an electric field have charge.  If there does happen to be a charged particle in 
an electric field, then that charged particle (the victim) will experience a force  
 

EF
vv

q=                                                                   (2-1) 
 

where q is the charge of the victim andE
v

is the electric field vector at the location of the victim.  
We can think of the electric field as a characteristic of space.  The force experienced by the 
victim charged particle is the product of a characteristic of the victim (its charge) and a 
characteristic of the point in space (the electric field) at which the victim happens to be. 
 
The electric field is not matter.  It is not “stuff.”  It is not charge.  It has no charge.  It neither 
attracts nor repels charged particles.  It cannot do that because its “victims”, the charged particles 
upon which the electric field exerts force, are within it.  To say that the electric field attracts or 
repels a charged particle would be analogous to saying that the water in the ocean attracts or 
repels a submarine that is submerged in the ocean.  Yes, the ocean water exerts an upward 
buoyant force on the submarine.  But, it neither attracts nor repels the submarine.  In like 
manner, the electric field never attracts nor repels any charged particles.  It is nonsense to say 
that it does. 
 
If you have two source charge particles, e.g. one at point A and another at point B, each creating 
its own electric field vector at one and the same point P, the actual electric field vector at point P 
is the vector sum of the two electric field vectors.  If you have a multitude of charged particles 
contributing to the electric field at point P, the electric field at point P is the vector sum of all the 
electric field vectors at P.  Thus, by means of a variety of source charge distributions, one can 
create a wide variety of electric field vector sets in some chosen region of space.  In the next 
chapter, we discuss the relation between the source charges that cause an electric field to exist, 
                                                
1 English rather than physics: An entity is something that exists.  I use the word “entity” here rather than “thing” or 
“substance” because either of these words would imply that we are talking about matter.  The electric field is not 
matter. 
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and the electric field itself.  In this chapter, we focus our attention on the relation between an 
existing electric field (with no concern for how it came to exist) and the effect of that electric 
field on any charged particle in the electric field.  To do so, it is important for you to be able to 
accept a given electric field as specified, without worrying about how the electric field is caused 
to exist in a region of space.  (The latter is an important topic which we deal with at length in the 
next chapter.) 
 

Suppose for instance that at a particular point in an empty region in space, let’s call it point P, 
there is an eastward-directed electric field of magnitude 0.32 N/C.  Remember, initially, we are 
talking about the electric field at an empty point in space.  Now, let’s imagine that we put a 
particle that has +2.0 coulombs of charge at point P.  The electric field at point P will exert a 
force on our 2.0 C victim: 

EF
vv

q=  
 

eastward)  
C

N
320(C 02 ..F =

v
 

 

Note that we are dealing with vectors so we did include both magnitude and direction when we 
substituted for E

v
.  Calculating the product on the right side of the equation, and including the 

direction in our final answer yields: 
 

eastward  N640.F =
v

 
 

We see that the force is in the same direction as the electric field.  Indeed, the point I want to 
make here is about the direction of the electric field:  The electric field at any location is defined 
to be in the direction of the force that the electric field would exert on a positively charged victim 
if there was a positively charged victim at that location. 
 
Told that there is an electric field in a given empty region in space and asked to determine its 
direction at the various points in space at which the electric exists, what you should do is to put a 
single positively-charged particle at each of the various points in the region in turn, and find out 
which way the force that the particle experiences at each location is directed.  Such a positively-
charged particle is called a positive test charge.  At each location you place it, the direction of the 
force experienced by the positive test charge is the direction of the electric field at that location. 
 
Having defined the electric field to be in the direction of the force that it would exert on a 
positive test charge, what does this mean for the case of a negative test charge?  Suppose that, in 
the example of the empty point in space at which there was a 0.32 N/C eastward electric field, 
we place a particle with charge −2.0 coulombs (instead of +2.0 coulombs as we did before).  This 
particle would experience a force: 

EF
vv

q=  
 

eastward) 
C

N
320(C 02 ..F −=

v
 

 

eastward  N640.F −=
v

 
 

A negative eastward force is a positive westward force of the same magnitude: 
 

  westwardN640.F =
v
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In fact, any time the victim particle has negative charge, the effect of the minus sign in the value 
of the charge q in the equation EF

vv
q=  is to make the force vector have the direction opposite 

that of the electric field vector.  So the force exerted by an electric field on a negatively charged 
particle that is at any location in that field, is always in the exact opposite direction to the 
direction of the electric field itself at that location. 
 
Let’s investigate this direction business for cases in which the direction is specified in terms of 
unit vectors.  Suppose that a Cartesian reference frame2 has been established in an empty region 
of space in which there is an electric field.  Further assume that the electric field at a particular 
point, call it point P, is: 

kkkk
C

kN
05.E =

v
 

 
Now suppose that a proton ( C1060.1 19−×=q ) is placed at point P.  What force would the 
electric field exert on the proton? 

EF
vv

q=  
 

kkkk
C

N
1005)C10601( 319 ××= − ..F

v
 

 
kkkk N1008 16−×= .F

v
 

 
The force on the proton is in the same direction as that of the electric field at the location at 
which the proton was placed (the electric field is in the +z direction and so is the force on the 
proton), as it must be for the case of a positive victim. 
 
If, in the preceding example, instead of a proton, an electron  ( C1060.1 19−×−=q )  is placed at 

point P,  recalling that in the example kkkk
C

kN
05.E =

v
, we have  

 
EF
vv

q=  
 

kkkk
C

N
1005)C10601( 319 ××−= − ..F

v
 

 
kkkk N1008 16−×−= .F

v
 

 
The negative sign is to be associated with the unit vector.  This means that the force has a 
magnitude of N1008 16−×.  and a direction of kkkk − .  The latter means that the force is in the –z 
direction which is the opposite direction to that of the electric field.  Again, this is as expected.  

                                                
2 A reference frame is a coordinate system. 
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The force exerted on a negatively charged particle by the electric field is always in the direction 
opposite to that of the electric field itself. 
 
In the context of the electric field as the set of all electric field vectors in a region of space, the 
simplest kind of an electric field is a uniform electric field.  A uniform electric field is one in 
which every electric field vector has one and the same magnitude and one and the same 
direction.  So, we have an infinite set of electric field vectors, one at every point in the region of 
space where the uniform electric field is said to exist, and every one of them has the same 
magnitude and direction as every other one.  A charged particle victim that is either released 
from rest within such an electric field, or launched with some initial velocity within such a field, 
will have one and the same force exerted upon it, no matter where it is in the electric field.  By 
Newton’s 2nd Law, this means that the particle will experience a constant acceleration.  If the 
particle is released from rest, or, if the initial velocity of the particle is in the same direction as, 
or the exact opposite direction to, the electric field, the particle will experience constant 
acceleration motion in one dimension.  If the initial velocity of the particle is in a direction that is 
not collinear3 with the electric field, then the particle will experience constant acceleration 
motion in two dimensions.  The reader should review these topics from Classical Physics I. 
 
 
 
Electric Field Diagrams 
 
Consider a region in space in which there is a uniform, eastward-directed field.  Suppose we 
want to depict this situation, as viewed from above, in a diagram.  At every point in the region of 
space where the electric field exists, there is an electric field vector.  Because the electric field is 
uniform, all the vectors are of the same magnitude and hence, we would draw all the arrows 
representing the electric field vectors, the same length.  Since the field is uniform and eastward, 
we would draw all the arrows so that they would be pointing eastward.  The problem is, it is not 
humanly possible to draw an arrow at every point on the region of a page used to depict a region 
of space in which there is an electric field.  Another difficulty (which does not crop up in the 
case of a uniform electric field but is generally an issue) is the that in using the convention that 
the length of a vector is representative of its magnitude, the arrows tend to run into each other 
and overlap. 
 
Physicists have adopted a set of conventions for depicting electric fields.  The result of the 
application of the conventions is known as an electric field diagram.  According to the 
convention, the drawer creates a set of curves or lines, with arrowheads, such that, at every point 
on each curve, the electric field is, at every point on the curve, directed tangent to the curve, in 
the direction agreeing with that depicted by the arrowhead on that curve.  Furthermore, the 
spacing of the lines4 in one region of the diagram as compared to other regions in the diagram is 
representative of the magnitude of the electric field relative to the magnitude at other locations in 

                                                
3 “Collinear” means “along the same line as”.  Two vectors that are collinear are either in one and the same direction 
or in exact opposite directions to each other. 
4 In geometry, a line is a straight line.  In physics, in the context of fields, lines can be curved or straight.  The notion 
of a curved line also arises in nautical terminology—the waterline of a ship or boat is curved.  Electric field lines can 
be curved or straight. 



Chapter 2  The Electric Field: Description and Effect 

14 

the same diagram.  The closer the lines are, the stronger the electric field they represent.  In the 
case of the uniform electric field in question, because the magnitude of the electric field is the 
same everywhere (which is what we mean by “uniform”), the line spacing must be the same 
everywhere.  Furthermore, because the electric field in this example has a single direction, 
namely eastward, the electric field lines will be straight lines, with arrowheads: 

NORTH 

EAST 

SOUTH 

WEST 
E 
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3  The Electric Field Due to one or more Point Char ges 
 
A charged particle (a.k.a. a point charge, a.k.a. a source charge) causes an electric field to exist in 
the region of space around itself.  This is Coulomb’s Law for the Electric Field in conceptual 
form.  The region of space around a charged particle is actually the rest of the universe.  In 
practice, the electric field at points in space that are far from the source charge is negligible 
because the electric field due to a point charge “dies off like one over r-squared.”  In other 
words, the electric field due to a point charge obeys an inverse square law, which means, that the 
electric field due to a point charge is proportional to the reciprocal of the square of the distance 
that the point in space, at which we wish to know the electric field, is from the point charge that 
is causing the electric field to exist.  In equation form, Coulomb’s Law for the magnitude of the 
electric field due to a point charge reads 
 

2r

qk
E =                                                                 (3-1) 

where 
E is the magnitude of the electric field at a point in space, 

k is the universal Coulomb constant 
2

2
9

C

mN
10998

⋅×= .k , 

q is the charge of the particle that we have been calling the point charge, and 
r is the distance that the point in space, at which we want to know E, is from the point charge 

that is causing E. 
 
Again, Coulomb’s Law is referred to as an inverse square law because of the way the magnitude 
of the electric field depends on the distance that the point of interest1 is from the source charge. 
 
Now let’s talk about direction.  Remember, the electric field at any point in space is a force-per-
charge-of-would-be-victim vector and as a vector, it always has direction.  We have already 
discussed the defining statement for the direction of the electric field:  The electric field at a 
point in space is in the direction of the force that the electric field would exert on a positive 
victim if there were a positive victim at that point in space.  This defining statement for the 
direction of the electric field is about the effect of the electric field.  We need to relate this to the 
cause of the electric field.  Let’s use some grade-school knowledge and common sense to find 
the direction of the electric field due to a positive source charge.  First, we just have to obtain an 
imaginary positive test charge.  I recommend that you keep one in your pocket at all times (when 
not in use) for just this kind of situation.  Place your positive test charge in the vicinity of the 
source charge, at the location at which you wish to know the direction of the electric field.  We 
know that like charges repel, so, our positive source charge repels our test charge.  This means 
that the source charge, the point charge that is causing the electric field under investigation to 
exist, exerts a force on the on the test charge that is directly away from the source charge.  Again, 
the electric field at any point is in the direction of the force that would be exerted on a positive 
test charge if that charge was at that point, so, the direction of the electric field is “directly away 
from the positive source charge.”  You get the same result no matter where, in the region of 

                                                
1 The point of interest is the point at which we wish to calculate the electric field due to the point charge. 
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space around the source charge, you put the positive test charge.  So, put your imaginary positive 
test charge back in your pocket.  It has done its job.  We know what we needed to know.  The 
electric field due to a positive source charge, at any point in the region of space around that 
positive source charge, is directed directly away from the positive source charge.  At every point 
in space, around the positive source charge, we have an electric field vector (a force-per-charge-
of-would-be-victim vector) pointing directly away from the positive source charge.  So, how do 
we draw the electric field diagram for that?  We are supposed to draw a set of lines or curves 
with arrowheads (NEVER OMIT THE ARROWHEADS!), such that, at every point on each line 
or curve, the electric field vector at that point is directed along the line or curve in the direction 
specified by the arrowhead or arrowheads on that line or curve.  Let’s give it a try. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The number of lines drawn extending out of the positive source charge is chosen arbitrarily, but, 
if there was another charged particle in the same diagram, I would need to have twice as many 
lines extending out of it.  That is to say that the line spacing has no absolute meaning overall, but 
it does have some relative meaning within a single electric field diagram.  Recall the convention 
that the closer together the electric field lines are, the stronger the electric field.  Note that in the 
case of a field diagram for a single source charge, the lines turn out to be closer together near the 
charged particle than they are farther away.  It turned out this way when we created the diagram 
to be consistent with the fact that the electric field is always directed directly away from the 
source charge.  The bunching of the lines close to the source charge (signifying that the electric 
field is strong there) is consistent with the inverse square dependence of the electric field 
magnitude on the distance of the point of interest from the source charge. 
 

There are a few of important points to be made here.  The first one is probably pretty obvious to 
you, but, just to make sure:  The electric field exists between the electric field lines—its 
existence there is implied by the lines that are drawn—we simply can’t draw lines everywhere 

E 
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that the electric field does exist without completely blackening every square inch of the diagram.  
Thus, a charged victim that finds itself at a position in between the lines will experience a force 
as depicted below for each of two different positively-charged victims. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The next point is a reminder that a negatively-charged particle that finds itself at a position at 
which an electric field exists, experiences a force in the direction exactly opposite that of the 
electric field at that position. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E 

F2 

F1 

E 
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The third and final point that should be made here is a reminder that the direction of the force 
experienced by a particle, is not, in general, the direction in which the particle moves.  To be 
sure, the expression “in general” implies that there are special circumstances in which the 
particle would move in the same direction as that of the electric field but these are indeed special.  
For a particle on which the force of the electric field is the only force acting, there is no way it 
will stay on one and the same electric field line (drawn or implied) unless that electric field line 
is straight (as in the case of the electric field due to a single particle).  Even in the case of straight 
field lines, the only way a particle will stay on one and the same electric field line is if the 
particle’s initial velocity is zero, or if the particle’s initial velocity is in the exact same direction 
as that of the straight electric field line.  The following diagram depicts a positively-charged 
particle, with an initial velocity directed in the +y direction.  The dashed line depicts the 
trajectory for the particle (for one set of initial velocity, charge, and mass values).  The source 
charge at the origin is fixed in position by forces not specified. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 vo 

x 
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Here is an example of a trajectory of a negatively-charged particle, again for one set of values of 
source charge, victim charge, victim mass, and victim initial velocity: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Again, the point here is that, in general, charged particles do not move along the electric field 
lines, rather, they experience a force along (or, in the case of negative particles, in the exact 
opposite direction to) the electric field lines. 
 
At this point, you should know enough about electric field diagrams to construct the electric field 
diagram due to a single negatively-charged particle.  Please do so and then compare your work 
with the following diagram: 
 

vo 
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Some General Statements that can be made about Electric Field Lines 
 
The following useful facts about electric field lines can be deduced from the definitions you have 
already been provided: 
 

1) Every electric field line begins either at infinity or at a positive source charge. 
 

2) Every electric field line ends either at infinity or at a negative source charge. 
 

3) Electric field lines never cross each other or themselves. 
 
 
Superposition 
 

If there is more than one source charge, each source charge contributes to the electric field at 
every point in the vicinity of the source charges.  The electric field at a point in space in the 
vicinity of the source charges is the vector sum of the electric field at that point due to each 
source charge.  For instance, suppose the set of source charges consists of two charged particles.  
The electric field at some point P will be the electric field vector at point P due to the first 
charged particle plus the electric field vector at point P due to the second particle.  The 
determination of the total electric field at point P is a vector addition problem because the two 
electric field vectors contributing to it are, as the name implies, vectors.. 
 

E 
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Suppose, for instance, that you were asked to find the magnitude and direction of the electric 
field vector2 at point P due to the two charges depicted in the diagram below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
given that charge q1 is at (0,0), q2 is at (11 cm, 0) and point P is at (11 cm, 6.0 cm).  The first 

thing that you would have to do is to find the direction and magnitude of 1E
v

 (the electric field 

vector due to q1) and the direction and magnitude of 2E
v

 (the electric field vector due to q1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Referring to the diagram above, the direction of 2E

v
 is “the –y direction” by inspection.  

                                                
2 We use the expression “the electric field vector at point P” for added clarity in distinguishing between the electric 
field as the infinite set of all electric field vectors and the electric field as the electric field vector at a particular point 
in space.  The reader is warned that it is common practice to use the expression “the electric field at point P” and the 
reader is expected to tell from the context, that it means “the electric field vector at point P”. 

q1 = −1.2 mC q2 = −1.2 mC 

P 

x 

y 

q1 = −1.2 mC q2 = −1.2 mC 

P 

x 

y 

E2 
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The angle θ specifying the direction of  1E
v

 can be determined by analyzing the shaded triangle 
in the following diagram. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Analysis of the shaded diagram will also give the distance r1 that point P is from charge q1.  The 
value of r1 can then be substituted into 

2
1

1
1

r

qk
E =  

 

to get the magnitude of 1E
v

.  Based on the given coordinates, the value of r2 is apparent by 
inspection and we can use it in  

2
2

2
2

r

qk
E =  

 

to get the magnitude of 2E
v

.  With the magnitude and direction for both 1E
v

 and 2E
v

, you follow 
the vector addition recipe to arrive at your answer: 

q1 = −1.2 mC q2 = −1.2 mC 

P 

y 

E1 

θ 

θ 

d12 = 11cm 

r2 = 6.0 cm r1  

The Vector Addition Recipe 
1. For each vector: 

a. Draw a vector component diagram. 

b. Analyze the vector component diagram to get the 

components of the vector. 

2. Add the x components to get the x component of the 

resultant. 

3. Add the y components to get the y component of the 

resultant. 

4. For the resultant:  

a. Draw a vector component diagram. 

b. Analyze the vector component diagram to get the 

magnitude and direction of the resultant. 
 

x 
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Coulomb’s Law for the Electric Field in Vector Equation Form 
 
The magnitude and direction information on Coulomb’s Law for the Electric Field can be 
combined in one equation.  Namely, 
 

rrrr̂
2r

kq=E
v

                                                                    (3-2) 

where: 
E
v

 is the electric field at an empty point in space3, call it point P, due to a point charge, 

 k  is the Coulomb constant 
2

2
9

C

mN
10998

⋅×. , 

q  is the charge of the charged particle (the point charge) that is causing the electric field to 
exist, 

r is the distance that point P is from the point charge that is causing the electric field, and 
rrrr̂   is a unit vector in the “from the point charge toward point P” direction. 

 

Note the absence of the absolute value signs about the q in the expression rrrr̂
2r

kq=E
v

.  (We did 

have them in the case of the expression 
2r

qk
E =  for the magnitude of the electric field.)  In the 

vector equation rrrr̂
2r

kq=E
v

, the sign indicating what kind of charge the source charge is, treated 

algebraically, automatically yields the correct direction for the electric field.  For example, if the 

charge is negative, after substituting the negative value of charge in rrrr̂
2r

kq=E
v

, the minus sign is 

associated with the unit vector, and, the direction rrrr̂−  of the resulting electric field vector at point 
P is the direction “from point P, toward the source charge.”  This is consistent with our 
understanding that a positive test charge, placed at point P, would experience a force directly 
toward the negative source charge (since opposites attract), and, the direction of the force on a 
positive test charge at a specific location is the direction of the electric field vector at that 
location. 
 
 

Self-Consistency 
 

In chapter 1 we said that the force that one charged particle, call it particle 1, exerts on another 
charged particle, particle 2, is given by equation 1-2: 
 

122
21

12 r̂rrr
r

qq
k=F

v
 

 

                                                
3 The point in space doesn’t really have to be empty.  We use the expression “empty point in space” to emphasize 
the fact that we don’t need a charged particle at the location at which we are calculating the electric field.  The point 
is, it can be empty. 
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In chapter 2, we said that the force exerted on a charged particle by an electric field is given by 
equation 2-1: 

EF
vv

q=  
 
In this chapter we said that the electric field at point P is given by equation 3-2: 
 

rrrr̂
2r

kq=E
v

 

 
If we call the source charge q1, (rather than q) we can write this latter equation as 
 

1P2
1 r̂rrr

r

kq
=E

v
 

 
where the subscripts on the unit vector make it clear that it is in the direction “from particle 1 
toward point P.” 
 
Substituting this expression into our force of the electric field equation written for the case of a 
victim q2 at point P ( EF

vv

2q= ) yields equation 1-2: 
 

122
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qq
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v
 

 
which is the expression for the Coulomb force exerted on charged particle 2 by charged 
particle 1 introduced back in Chapter 1—the expression without the “middleman” (the electric 
field). 
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4  Conductors and the Electric Field 
 
An ideal conductor is chock full of charged particles that are perfectly free to move around 
within the conductor.  Like all macroscopic samples of material, an ideal conductor consist of a 
huge amount of positive charge, and, when neutral, the same amount of negative charge.  When 
not neutral, there is a tiny fractional imbalance one way or the other.  In an ideal conductor, some 
appreciable fraction of the charge is completely free to move around within the conducting 
material.  The ideal (perfect) conductor is well-approximated by some materials familiar to you, 
in particular, metals. In some materials, it is positive charge that is free to move about, in some , 
it is negative, and, in others, it is both.  For our purposes, the observable effects of positive 
charge moving in one direction are so close to being indistinguishable from negative charge 
moving in the opposite direction that, we will typically treat the charge carriers as being positive 
without concern for what the actual charge carriers are1. 
 
Here, we make one point about conductors by means of an analogy. The analogy involves a lake 
full of fish.  Let the lake represent the conductor and the fish the charge carriers.  The fish are 
free to move around anywhere within the lake, but, and this is the point, they can’t, under 
ordinary circumstances, escape the lake.  They can go to every boundary of the body of water, 
you might even see some on the surface, but, they cannot leave the water.  This is similar to the 
charge carriers in a conductor surrounded by vacuum or an insulating medium such as air.  The 
charges can go everywhere in and on the conductor, but, they cannot leave the conductor. 
 
The facts we have presented on the nature of charge, electric fields, and conductors allow one to 
draw some definite conclusions about the electric field and unbalanced charge within the 
material of, and at or on the surface of, an ideal conductor.  Please try to reason out the answers 
to the following questions: 
 
1) Suppose you put a neutral ideal conducting solid sphere in a region of space in which there is, 
initially, a uniform electric field.  Describe (as specifically as possible) the electric field inside 
the conductor and the electric field at the surface of the conductor.  Describe the distribution of 
charge in and on the conductor. 
 
2) Repeat question 1 for the case of a non-uniform field. 
 
3) Suppose you put some charge on an initially-neutral, solid, perfectly-conducting sphere 
(where the sphere is not in a pre-existing electric field).  Describe the electric field inside the 
conductor, at the surface of the conductor, and outside the conductor as a result of the 
unbalanced charge.  Describe the distribution of the charge in and on the conductor. 
 
4) Repeat questions 1-3 for the case of a hollow perfectly-conducting spherical shell (with the 
interior being vacuum). 

                                                
1 We refer to this as the positive charge carrier model for charge movement.  We thoroughly exploit it in our 
analysis of circuits (in later chapters).  Such analysis leads to accurate results even though it is typically applied to 
circuits in which the nearly ideal conductors are metals, materials in which the charge carriers are electrons, which, 
as you know, are negatively charged. 
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5) How would your answers to questions 1-4 change if the conductor had some shape other than 
spherical? 
 
Here we provide the answers (preceded in each case, with the corresponding question). 
 
1) Suppose you put a neutral ideal conducting solid sphere in a region of space in which there is, 
initially, a uniform electric field.  Describe (as specifically as possible) the electric field inside 
the conductor and the electric field at the surface of the conductor.  Describe the distribution of 
charge in and on the conductor. 
 
 
Answer:  We start with a uniform electric field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
We put a solid, ideal conductor in it.  The electric field permeates everything, including the 
conductor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The charged particles in the conductor respond to the force exerted on them by the electric field.  
(The force causes acceleration, the acceleration of particles that are initially at rest causes them 
to acquire some velocity.  In short, they move.)  All this occurs in less than a microsecond.  The 
net effect is a redistribution of the charged particles. 
 

E 
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Now, get this!  The charged particles create their own electric field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The total electric field at any point in the conductor is the vector sum of the original electric field 
and the electric field due to the redistributed charged particles.  Since they are oppositely-
directed, the two contributions to the electric field inside the conductor tend to cancel each other.  
Now comes the profound part of the argument: the two contributions to the electric field at any 
point in the conductor exactly cancel.  We know they have to completely cancel because, if they 
didn’t, the free-to-move-charge in the conductor would move as a result of the force exerted on it 
by the electric field.  And the force on the charge is always in a direction that causes the charge 
to be redistributed to positions in which it will create its own electric field that tends to cancel the 
electric field that caused the charge to move.  The point is, that the charge will not stop 
responding to the electric field until the net electric field at every point in the conductor is zero. 
 
So far, in answer to the question, we have: The electric field is zero at all points inside the 
conductor, and, while the total charge is still zero, the charge has been redistributed as in the 
following diagram: 
 
 
 

E 
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Recall that we were also called upon to describe the electric field at the surface of the conductor.  
Note that the charge on the surface of the sphere will not only contribute to the electric field 
inside the conductor, it will also contribute to the electric field outside.  The net effect of all the 
contributions to the electric field in the near vicinity of the sphere is to cause the electric field to 
be normal to (perpendicular to) the surface of the sphere at all points where it meets the sphere. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
How is it that we are able to assert this without doing any calculations?  Here’s the argument: If 
the electric field at the surface had a component parallel to the surface, then the charged particles 
on the surface of the conductor would experience a force directed along the surface.  Since those 
particles are free to move anywhere in the conductor, they would be redistributed.  In their new 
positions, they would make their own contribution to the electric field in the surface and their 
contribution would cancel the electric field that caused the charge redistribution. 
 
About the charge distribution: The object started out neutral and no charge has left or entered the 
conductor from the outside world so it is still neutral.  But we do see a separation of the two 
different kinds of charge.  Something that we have depicted but not discussed is the assertion that 
all the charge resides on the surface.  (In the picture above, there is positive charge on the right 
surface of the sphere and an equal amount of negative charge on the left side.)  How do we know 
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that all charge must be on the surface?  Assume that there was a positive point charge at some 
location within the conductor: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The electric field of that point charge would cause the free-to-move charge in the conductor to 
move, and it would keep moving as long as there was an electric field.  So where would the 
charge move in order to cancel out the electric field of the positive point charge.  You can try any 
arrangement of charge that you want to, around that positive point charge, but, if it is stipulated 
that there be a net positive charge at that location, there is no way to cancel out the electric field 
of that positive charge.  So the situation doesn’t even occur.  If it did happen, the particle would 
repel the conductor’s free-to-move-positive charge away from the stipulated positive charge, so 
that (excluding the stipulated positive charge under consideration) the conductor would have a 
net negative charge at that location, an amount of negative charge exactly equal to the originally-
stipulated positive charge.  Taking the positive charge into account as well, the point, after the 
redistribution of charge, would be neutral.  The point of our argument is that, under static 
conditions, there can be no net charge inside the material of a perfect conductor.  Even if you 
assume there to be some, it would soon be neutralized by the nearly instantaneous charge 
redistribution that it would cause. 
 
Next question: 
 
2) Repeat question 1 for the case of a non-uniform field. 
 
Answer:  Here is a depiction of an example of a non-uniform field: 
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If we put a solid, perfectly-conducting sphere in it we get: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The same arguments lead to the same conclusions.  When, after less than a microsecond, the new 
static conditions are achieved:  There can be no electric field inside the conductor or else the 
free-to-move-charges in it would still be moving around within the volume of the conductor.  
There can be no unbalanced charge within the volume of the conductor or else there would be an 
electric field inside the conductor.  Hence, any locally unbalanced charge (overall, the initially-
neutral sphere remains neutral) must be on the surface.  The electric field has to be normal to the 
surface of the sphere or else the free-to-move-charge at the surface would still be moving around 
on the surface.  The only thing that is different in this case, as compared to the initially-uniform 
electric field case, is the way the charge is distributed on the surface.  We see that the negative 
charge is more bunched up than the positive charge in the case at hand.  In the initially-uniform 
electric field case, the positive charge distribution was the mirror image of the negative charge 
distribution. 
 
Next Question: 
 
3) Suppose you put some charge on an initially-neutral, solid, perfectly-conducting sphere 
(where the sphere is not in a pre-existing electric field).  Describe the electric field inside the 
conductor, at the surface of the conductor, and outside the conductor as a result of the 
unbalanced charge.  Describe the distribution of the charge in and on the conductor. 
 
Again, we assume that we have waited long enough (less than a microsecond) for static 
conditions to have been achieved.  There can be no charge within the bulk of the conductor or 
else there would be an electric field in the conductor and there can’t be an electric field in the 
conductor or else the conductor’s free-to-move charge would move and static conditions would 
not be prevailing.  So, all the unbalanced charge must be on the surface.  It can’t be bunched up 
more at any location on the surface than it is at any other location on the surface or else the 

E 
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charge on the edge of the bunch would be repelled by the bunch and it would move, again in 
violation of our stipulation that we have waited until charge stopped moving.  So, the charge 
must be distributed uniformly over the surface of the sphere.  Inside the sphere there is no 
electric field.  Where the outside electric field meets the surface of the sphere, the electric field 
must be normal to the surface of the sphere.  Otherwise, the electric field at the surface would 
have a vector component parallel to the surface which would cause charge to move along the 
surface, again in violation of our static conditions stipulations.  Now, electric field lines that are 
perpendicular to the surface of a sphere lie on lines that pass through the center of the sphere.  
Hence, outside the sphere, the electric field lines form the same pattern as the pattern that would 
be formed by a point charge at the location of the center of the sphere (with the sphere gone).  
Furthermore, if you go so far away from the sphere that the sphere “looks like” a point, the 
electric field will be the same as that due to a point charge at the location of the center of the 
sphere.  Given that outside the sphere, it has the same pattern as the field due to a point charge at 
the center of the sphere, the only way it can match up with the point charge field at a great 
distance from the sphere, is if it is identical to the point charge field everywhere that it exists.  
So, outside the sphere, the electric field is indistinguishable from the electric field due to the 
same amount of charge that you put on the sphere, all concentrated at the location of the center 
of the sphere (with the sphere gone). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next question: 
 
4) How would your answers to questions 1-4 change if the conductor had some shape other than 
spherical? 
 

E 
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In all three cases we have considered so far, the interior of the sphere has played no role.  It is 
initially neutral and it is neutral after the sphere is placed in a pre-existing electric field or some 
charge is placed on it.  Nothing would change if we removed all that neutral material making up 
the bulk of the conductor, leaving nothing but a hollow shell of a sphere.  Hence all the results 
that we found for the solid sphere apply to the hollow sphere.  In particular, the electric field at 
all points inside an empty hollow perfectly-conducting spherical shell is, under all conditions, 
zero. 
 
Last question: 
 
5) How would your answers to questions 1-4 change if the conductor had some shape other than 
spherical? 
 
For a solid perfect conductor, the electric field and the charge everywhere inside would have to 
be zero for the same reasons discussed above.  Furthermore, the electric field would have to be 
normal to the surface for the same reasons as before.  Again, it would not make any difference if 
we hollow out the conductor by removing a bunch of neutral material.  The only things that 
would be different for a non-spherical conductor are the way the charge would be distributed on 
the surface, and, the outside electric field.  In particular, if you put some charge on a perfectly-
conducting object that is not a sphere, the electric field in the vicinity of the object will not be the 
same as the electric field due to a point charge at the center of the object (although the difference 
would be negligible at great enough distances from the object). 
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5  Work Done by the Electric Field, and, the Electr ic Potential 
 
When a charged particle moves from one position in an electric field to another position in that 
same electric field, the electric field does work on the particle.  The work done is conservative, 
hence, we can define a potential energy for the case of the force exerted by an electric field.  This 
allows us to use the concepts of work, energy, and the conservation of energy, in the analysis of 
physical processes involving charged particles and electric fields. 
 
We have defined the work done on a particle by a force, to be the force-along-the-path times the 
length of the path, with the stipulation that when the component of the force along the path is 
different on different segments of the path, one has to divide up the path into segments on each 
of which the force-along-the-path has one value for the whole segment, calculate the work done 
on each segment, and add up the results. 
 
Let’s investigate the work done by the electric field on a charged particle as it moves in the 
electric field in the rather simple case of a uniform electric field.  For instance, let’s calculate the 
work done on a positively-charged particle of charge q as it moves from point P1 to point P3  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
along the path: “From P1 straight to point P2 and from there, straight to P3.”  Note that we are 
not told what it is that makes the particle move.  We don’t care about that in this problem.  
Perhaps the charged particle is on the end of a quartz rod (quartz is a good insulator) and a 
person who is holding the rod by the other end moves the rod so the charged particle moves as 
specified. 
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Along the first part of the path, from P1 to P2 
, the force on the charged particle is perpendicular 

to the path. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The force has no component along the path so it does no work on the charged particle at all as 
the charged particle moves from point P1 to point P2. 
 

012 =W  
 

From P2, the particle goes straight to P3. 
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On that segment of the path (from P2 to P3 ) the force is in exactly the same direction as the 
direction in which the particle is going. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As such, the work is just the magnitude of the force times the length of the path segment: 
 

bF=23W  

 
The magnitude of the force is the charge of the particle times the magnitude of the electric field 
F = qE, so, 

bEq=23W  

 
Thus, the work done on the charged particle by the electric field, as the particle moves from 
point P1 to P3 along the specified path is 
 

2312123 WWW +=  

 
bEq+= 0123W  
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Now let’s calculate the work done on the charged particle if it undergoes the same displacement 
(from P1 to P3 ) but does so by moving along the direct path, straight from P1 to P3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The force on a positively-charged particle being in the same direction as the electric field, the 
force vector makes an angle θ with the path direction and the expression 

→
⋅= rrrr

�
F
r

W  
for the work becomes 
 

θcos13 cF=W  

 
θcos13 cEq=W  

 

b 

a 

E 

P2 P3 

P1 

c 

F 

θ 



Chapter 5  Work Done by the Electric Field, and, the Electric Potential 

37 

Analyzing the shaded triangle in the following diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

we find that 
c

b=θcos .  Substituting this into our expression for the work ( θcos13 cqE=W ) 

yields 

c

b
cEq=13W  

 
 
 

 
This is the same result we got for the work done on the charged particle by the electric field as 
the particle moved between the same two points (from P1 to P3 ) along the other path (P1 to P2 to 
P3 ).  As it turns out, the work done is the same no matter what path the particle takes on its way 
from P1 to P3.  I don’t want to take the time to prove that here but I would like to investigate one 
more path (not so much to get the result, but rather, to review an important point about how to 
calculate work).  Referring to the diagram: 
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let’s calculate the work done on a particle with charge q, by the electric field, as the particle 
moves from P1 to P3 along the path “from P1 straight to P4 

, from P4 straight to P5 
, and from P5 

straight to P3.”   On P1 to P4 
, the force is in the exact same direction as the direction in which 

the particle moves along the path, so, 
)(14 dbF +=W  

 
)(14 dbqE +=W  

 
From point P4 to P5 

, the force exerted on the charged particle by the electric field is at right 
angles to the path, so, the force does no work on the charged particle on segment P4 to P5 

. 
 

045 =W  
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On the segment from P5 to P3, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
the force is in the exact opposite direction to the direction in which the particle moves.  This 
means that the work done by the force of the electric field on the charged particle as the particle 
moves form P5 to P3 is the negative of the magnitude of the force times the length of the path 
segment.  Thus 

dF−=53W  

 
dqE−=53W  

and 

5345141453 WWWW ++=  

 
)(0)(1453 dEqdbqE −+++=W  

 
 
 
 

As advertised, we obtain the same result for the work done on the particle as it moves from P1 to 
P3 along “P1 to P4 to P5 to P3” as we did on the other two paths. 
 

Whenever the work done on a particle by a force acting on that particle, when that particle moves 
from point P1 to point P3 , is the same no matter what path the particle takes on the way from P1 
to P3, we can define a potential energy function for the force.  The potential energy function is an 
assignment of a value of potential energy to every point in space.  Such an assignment allows us 
to calculate the work done on the particle by the force when the particle moves from point P1 to 
point P3 simply by subtracting the value of the potential energy of the particle at P1 from the 
value of the potential energy of the particle at P3 and taking the negative of the result.  In other 
words, the work done on the particle by the force of the electric field when the particle goes from 
one point to another is just the negative of the change in the potential energy of the particle. 
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In determining the potential energy function for the case of a particle of charge q in a uniform 
electric field E

v
, (an infinite set of vectors, each pointing in one and the same direction and each 

having one and the same magnitude E ) we rely heavily on your understanding of the near-
earth’s-surface gravitational potential energy.  Near the surface of the earth, we said back in 
volume 1 of this book, there is a uniform gravitational field,  (a force-per-mass-vector-field ) in 
the downward direction.  A particle of mass m in that field has a force “mg downward” exerted 
upon it at any location in the vicinity of the surface of the earth.  For that case, the potential 
energy of a particle of mass m is given by mgy where mg is the magnitude of the downward 
force and y is the height that the particle is above an arbitrarily-chosen reference level.  For ease 
of comparison with the case of the electric field, we now describe the reference level for 
gravitational potential energy as a plane, perpendicular to the gravitational field gggg

v
, the force-per-

mass vector field, and we describe the variable y as the “upfield” distance  (the distance in the 
direction opposite that of the gravitational field ) that the particle is from the reference plane.  
(So, we’re calling the direction in which the gravitational field points, the direction you know to 
be downward, the “downfield” direction.) 
 
Now let’s switch over to the case of the uniform electric field.  As in the case of the near-earth’s 
surface gravitational field, the force exerted on its victim by a uniform electric field has one and 
the same magnitude and direction at any point in space.  Of course, in the electric field case, the 
force is qE rather than mg and the characteristic of the victim that matters is the charge q rather 
than the mass m.  We call the direction in which the electric field points, the “downfield” 
direction, and the opposite direction, the “upfield” direction.  Now we arbitrarily define a plane 
that is perpendicular to the electric field to be the reference plane for the electric potential energy 
of a particle of charge q in the electric field.  If we call d the distance that the charged particle is 
away from the plane in the upfield direction, then the potential energy of the particle with charge 
q is given by 

U = q E d 
where: 

U is the electric potential energy of the charged particle, 
q is the charge of the particle, 
E is the magnitude of every electric field vector making up the uniform electric field, and 
d is the “upfield” distance that the particle is from the U = 0 reference plane. 
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Let’s make sure this expression for the potential energy function gives the result we obtained 
previously for the work done on a particle with charge q, by the uniform electric field depicted in 
the following diagram, when the particle moves from P1 to P3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As you can see, I have chosen (for my own convenience) to define the reference plane to be at 
the most downfield position relevant to the problem.  With that choice, the particle of charge q, 
when it is at P1 has potential energy q E b (since point P1 is a distance b “upfield” from the 
reference plane) and, when it is at P3, the particle of charge q has potential energy 0 since P3 is 
on the reference plane. 
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This is indeed the result we got (for the work done by the electric field on the particle with 
charge q as that particle was moved from P1 to P3 ) the other three ways that we calculated this 
work. 
 

bEq=13W  

E 

P3 

P1 
b 

The reference plane 
viewed edge on.  
All points on this 
plane are at d = 0. 

Positive direction for measurements of d, the upfield 
distance that a point is from the reference plane. 
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The Electric Potential Energy per Charge 
 
The expression for the work that we found above had the form “the charge of the victim times 
other stuff.”  Likewise, the potential energy of the victim (see above) has the form “the charge of 
the victim times other stuff.”  In both cases the “other stuff” consisted of quantities 
characterizing the electric field and positions in space.  This turns out to be a general result:  The 
electric potential energy of a charged particle (victim) in any electric field (not just a uniform 
electric field ) can be expressed as the product of the charge of the victim, and, quantities used to 
characterize the electric field in the region of space in which the particle finds itself.  As such, we 
can always divide the potential energy of the victim by the charge of the victim to obtain what 
can be called the electric potential energy per charge for the point in space at which the victim 
finds itself.  No matter what the charge of the victim is, the potential energy of the victim divided 
by the charge of the victim always yields the same value for the potential-energy-per-charge-of-
would-be-victim.  This is because the potential-energy-per-charge-of-would-be-victim is a 
characteristic of the point in space at which the victim finds itself, not a characteristic of the 
victim.  This means that we can specify values of potential-energy-per-charge-of-would-be-
victim (which we will use the symbol V to represent) for all the points in a region of space in 
which there is an electric field, without even having a victim in mind.  Then, once you find a 
victim, the potential energy of the victim at a particular point in space is just 
 

U = qV                                                           (5-1) 
where: 

U is the electric potential energy of the victim (the charged particle in the electric field ), 
q is the charge of the victim, and, 
V is the electric-potential-energy-per-charge-of-would-be-victim (also known more simply 

as the electric potential ) of the point in space at which the victim finds itself. 
 

Okay, I spilled the beans in the variable list, “potential-energy-per-charge-of-would-be-victim” is 
just too much of a mouthful, we call it the electric potential.  Now, for the potential energy U to 
come out in Joules in the expression U = qV, what with q having units of coulombs, the electric 
potential V must have units of J/C.  The concept of electric potential is such an important one 
that we give its combination unit (J/C) a name.   The name of the unit is the volt, abbreviated V.   
 

1 volt = 1 
coulomb

joule
 

 

(Please write “volts” for the units if there is concern that the abbreviation V for the unit will be 
confused with the variable name V.)  For the case of a uniform electric field, our expression 
U = q  E  d for the electric potential energy of a victim with charge q, upon division by q, yields, 
for the electric potential at a point of interest in a uniform electric field, 
 

V = E  d                                                           (5-2) 
where: 

V  is the electric potential at the point of interest, for the case of a uniform electric field, 
E is the magnitude of every electric field vector in the region of space where the uniform 

electric field exists, and, 
d is the upfield distance that the point of interest is from the (arbitrarily-chosen) reference 

plane. 
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6  The Electric Potential Due to One or More Point Charges 
 
 
The electric potential due to a point charge is given by 
 

r

qk
V =                                                                    (6-1) 

where 
V is the electric potential due to the point charge, 

k = 2

2
9

C

Nm
1099.8 ×  is the Coulomb constant, 

q is the charge of the particle (the source charge, a.k.a. the point charge) causing the electric 
field for which the electric potential applies, and, 

r is the distance that the point of interest is from the point charge. 
 

In the case of a non-uniform electric field (such as the electric field due to a point charge), the 
electric potential method for calculating the work done on a charged particle is much easier than 
direct application of the force-along-the-path times the length of the path.  Suppose, for instance, 
a particle of charge q ′  is fixed at the origin and we need to find the work done by the electric 
field of that particle on a victim of charge q as the victim moves along the x axis from x1 to x2.  
We can’t simply calculate the work as 
 

)( 12 xxF −⋅  
 

even though the force is in the same direction as the displacement, because the force F takes on a 
different value at every different point on the x axis from x = x1 to x = x2.  So, we need to do an 
integral: 
 

dxFd =W  
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Compare this with the following solution to the same problem (a particle of charge q ′  is fixed at 
the origin and we need to find the work done by the electric field of that particle on a victim of 
charge q as the victim moves along the x axis from x1 to x2): 
 

U∆−=W  
 

Vq∆−=W  
 

)( 12 VVq −−=W  
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The electric potential energy of a particle, used in conjunction with the principle of the 
conservation of mechanical energy, is a powerful problem-solving tool.  The following example 
makes this evident: 
 








 ′
−

′
−=

12 x

qqk

x

qqk
W  








 ′
−

′
−=

12 x

qqk

x

qqk
W  



Chapter 6  The Electric Potential Due to One or More Point Charges 

45 

Example 
 

A particle of charge 0.180 µC is fixed in space by unspecified means.  A particle of charge 
−0.0950 µC and mass 0.130 grams is 0.885 cm away from the first particle and moving 
directly away from the first particle with a speed of 15.0 m/s.  How far away from the first 
particle does the second particle get? 

 
This is a conservation of energy problem.  As required for all conservation of energy problems, 
we start with a before and after diagram: 
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Superposition in the Case of the Electric Potential 
 
When there is more than one charged particle contributing to the electric potential at a point in 
space, the electric potential at that point is the sum of the contributions due to the individual 
charged particles.  The electric potential at a point in space, due to a set of several charged 
particles, is easier to calculate than the electric field due to the same set of charged particles is.  
This is true because the sum of electric potential contributions is an ordinary arithmetic sum, 
whereas, the sum of electric field contributions is a vector sum. 
 
 
 
Example 
 

Find a formula that gives the electric potential at any point (x,y) on the x-y plane, due to a 

pair of particles: one of charge –q at 






− 0,
2

d
 and the other of charge +q at 








0,

2

d
.   

 
Solution:  We establish a point P at an arbitrary position (x,y) on the x-y plain and determine 
the distance that point P is from each of the charged particles.  In the following diagram, I use 
the symbol r+ to represent the distance that point P is from the positively-charged particle, and r− 
to represent the distance that point P is from the negatively-charged particle. 
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Analysis of the shaded 
triangle in the diagram 
at right gives us r+ . 
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Analysis of the shaded 
triangle in the diagram 
at right gives us r− . 
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With the distances that point P is from each of the charged particles in hand, we are ready to 
determine the potential: 
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7  Equipotential Surfaces, Conductors, and Voltage 
 
 
Consider a region of space in which there exists an electric field.  Focus your attention on a 
specific point in that electric field, call it point A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Imagine placing a positive test charge at point A.  (Assume that, by means not specified, you can 
move the test charge anywhere you want to.)  Please think about the answer to the following 
question before reading on:  Is it possible for you to move the test charge around in the electric 
field in such a manner that the electric field does no work on the test charge? 
 
If we move the positive test charge in the “downfield” direction (toward the upper left corner of 
the diagram), there will be a positive amount of work (force-along-the-path times the length of 
the path) done on the test charge.  And, if we move the positive test charge in the “upfield” 
direction there will be a negative amount of work done on it.  But, if we move the positive test 
charge at right angles to the electric field, no work is done on it.  That is, if we choose a path for 
the positive test charge such that every infinitesimal displacement of the particle is normal to the 
electric field at the location of the particle when it (the particle) undergoes said infinitesimal 
displacement, then the work done on the test charge by the electric field, is zero.  The set of all 
points that can be reached by such paths makes up an infinitesimally thin shell, a surface, which 
is everywhere perpendicular to the electric field.  In moving a test charge along the surface from 
one point (call it point A) to another point (call it point B) on the surface, the work done is zero 
because the electric field is perpendicular to the path at all points along the path.  Let’s 
(momentarily) call the kind of surface we have been discussing a “zero-work surface.”  We have 
constructed the surface by means of force-along-the-path times the length-of-the-path work 
considerations.  But the work done by the electric field when a test charge is moved from point A 
on the surface to point B on the surface must also turn out to be zero if we calculate it as the 

E 
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negative of the change in the potential energy of the test charge.  Let’s do that and see where it 
leads us.  We know that the work W = 0. 
 
Also 

U∆−=W  
 

)( AB UU −−=W  
 
In terms of the electric potential V,  U = qV so the work can be expressed as 
 

)( AB qVqV −−=W  
 

)( AB VVq −−=W  
 

Given that W = 0, this means that 
 

)(0 AB VVq −−=  
 

0AB =−VV  
 

AB VV =  
 
This is true for any point B on the entire “zero-work” surface.  This means that every point on 
the entire surface is at the same value of electric potential.  Thus a “zero-work” surface is also an 
equipotential surface.  Indeed, this is the name (equipotential surface) that physicists use for such 
a surface.  An equipotential surface is typically labeled with the corresponding potential value 
(VA  in the case at hand).  In the following diagram, the dashed curve represents the equipotential 
surface viewed edge on. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E 

A 

VA 
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Summarizing: 
 

• An equipotential surface is an imaginary surface on which every point has one and the 
same value of electric potential. 

• An equipotential surface is everywhere perpendicular to the electric field that it 
characterizes. 

• The work done by the electric field on a particle when it is moved from one point on an 
equipotential surface to another point on the same equipotential surface is always zero. 

 
 
Perfect Conductors and the Electric Potential 
 
Please recall what you know about perfect conductors and the electric field.  Namely, that 
everywhere inside and on a perfect conductor, the electric field is zero.  This goes for solid 
conductors as well as hollow, empty shells of perfectly conducting material.  This means that the 
work done by the electric field on a test charge that is moved from one point in or on a perfect 
conductor (consider this to be a thought experiment) to another point in or on the same 
conductor, is zero.  This means that the difference in the electric potential between any two 
points1 in or on a perfect conductor must be zero.  This means that the electric potential at every 
point in and on a perfect conductor must have one and the same value.  Note that the value is not, 
in general, zero. 
 
 
Some Electric Potential Jargon 
 
When we talk about the electric potential in the context of a perfect conductor (or an object that 
approximates a perfect conductor), because every point in and on the conductor has the same 
value of electric potential, we typically call that value the electric potential of the conductor.  We 
also use expressions such as, “the conductor is at a potential of 25 volts,” meaning that the value 
of electric potential at every point in and on the conductor is 25 volts with respect to infinity 
(meaning that the zero of electric potential is at an infinite distance from the conductor) and/or 
with respect to “ground” (meaning that the potential of the earth is the zero of electric potential). 
 
 
Electric Potential Difference, a.k.a. Voltage 
 
In general, what is at issue when one talks about conductors and electric potential is not the value 
of the electric potential of a conductor, but rather, the electric potential difference between one 
conductor and another. 
 
 
 
 

                                                
1 The “difference in the electric potential between points A and B” is the value of the electric potential at B minus 
the value of the electric potential at point A. 
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Example 
 
A hollow metal sphere is at a potential that is 472 volts higher than that of a nearby metal plate.  
A particle of charge 2e is released from rest at the surface of the sphere.  It subsequently strikes 
the plate.  With what kinetic energy does the charged particle strike the plate?  (Assume that the 
only force acting on the particle is that due to the electric field corresponding to the given 
information.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Given VS  – VP  =  ∆V  =  472 volts.) 
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Note that in the solution to the example problem, we never needed to know the value of the 
electric potential of either the sphere or the plate, only the difference between the two potentials. 
 
There is a device which can be used to measure the potential difference between two points in 
space.  The device is called a voltmeter.  A typical voltmeter consists of a box with two wires 
extending from it.  On the end of each wire is a short metal wand called a probe.  Each wire and 
each probe, except for the tip of the probe, is covered with insulating material.  The box displays, 
either by means of a digital readout or the position of a needle, the potential difference between 
the two wires.  In typical use, one presses the metal tip of one probe against a conductor of 
interest and holds the tip there.  That causes that probe and wire to be at the same potential as the 
conductor.  One presses the tip of the other probe against another conductor.  This causes that 
probe and wire to be at the potential of the second conductor.  With each probe in contact with a 
conductor, the voltmeter continually displays the potential difference between the two 
conductors. 
 
Based on the SI units of measurement, the electric potential difference between two points in 
space goes by another name, namely, voltage.  Voltage means electric potential difference which 
means, the difference between the electric-potential-energy-per-charge-of-would-be-victim at 
one point in space and the electric-potential-energy-per-charge-of-would-be-victim at another 
point in space.  While voltage literally means potential difference, the word is also, quite often 
used to mean electric potential itself, where, one particular conductor or point in space is defined 
to be the zero of potential.  If no conductor or point in space has been defined to be the zero of 
electric potential, then it is understood that “infinity” is considered to be at the zero of electric 
potential.  So, if you read that a metal object is at a potential of 230 volts (when no conductor or 
point in space has been identified as the zero of electric potential), you can interpret the 
statement to mean the same thing as a statement that the electric potential of the metal object is 
230 volts higher than the electric potential at any point that is an infinite distance away from the 
object. 
 
As you move on in your study of physics, onward to your study and work with electric circuits, it 
is important to keep in mind that voltage, in a circuit, is the difference in the value of a 
characteristic (the electric potential) of one conductor, and the value of the same characteristic 
(electric potential) of another conductor. 
 
 
 
Analogy Between Voltage and Altitude 
 
One can draw a pretty good analogy between voltage (electric potential) and altitude.  Consider a 
particular altitude above the surface of the earth (measured, for instance, from sea level).  The 
value of the altitude characterizes a point in space or a set of points in space.  In fact, the set of 
all points in space that are at the same altitude above the surface of the earth forms an 
“equi-altitude” surface.  On a local scale, we can think of that “equi-altitude” surface as a plane.  
On a global scale, looking at the big picture, we recognize it to be a spheroidal shell.  Flocks of 
birds can be at that altitude and when they are, we attribute the altitude to the flock of birds.  We 
say that the flock of birds has such and such an altitude.  But, whether or not the flock of birds is 
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there, the altitude exists.  Regarding a particular altitude, we can have birds and air and clouds 
moving or flowing through space at that altitude, but the altitude itself just exists—it doesn’t 
flow or go anywhere.  This is like the voltage in a circuit.  The voltage in a circuit exists.  The 
voltage characterizes a conductor in a circuit.  Charged particles can move and flow in and 
through a conductor that is at that voltage, but, the voltage doesn’t flow or go anywhere, any 
more than altitude flows or goes anywhere. 
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8  Capacitors, Dielectrics, and Energy in Capacitor s 
 
Capacitance is a characteristic of a conducting object.  Capacitance is also a characteristic of a 
pair of conducting objects. 
 
Let’s start with the capacitance of a single conducting object, isolated from its surroundings.  
Assume the object to be neutral.  Now put some positive charge on the object.  The electric 
potential of the object is no longer zero.  Put some more charge on the object and the object will 
have a higher value of electric potential.  What’s interesting is, no matter how much, or how little 
charge you put on the object, the ratio of the amount of charge q on the object to the resulting 
electric potential V of the object has one and the same value. 
 

V

q
 has same value for any value of q. 

 
You double the charge, and, the electric potential doubles.  You reduce the amount of charge to 
one tenth of what it was, and, the electric potential becomes one tenth of what it was.  The actual 
value of the unchanging ratio is called the capacitance C of the object. 
 

V

q
C =                                                                   (8-1) 

where: 
C is the capacitance of a single conductor, isolated (distant from) its surroundings,  
q is the charge on the conductor, and, 
V is the electric potential of the conductor relative to the electric potential at infinity (the 

position defined for us to be our zero level of electric potential). 
 
The capacitance of a conducting object is a property that an object has even if it has no charge at 
all.  It depends on the size and shape of the object. 
 
The more positive charge you need to add to an object to raise the potential of that object 1 volt, 
the greater the capacitance of the object.  In fact, if you define q1 to be the amount of charge you 
must add to a particular conducting object to increase the electric potential of that object by one 

volt, then the capacitance of the object is 
 volt1

1q
. 

 
 
The Capacitance of a Spherical Conductor 
 
Consider a sphere (either an empty spherical shell or a solid sphere) of radius R made out of a 
perfectly-conducting material.  Suppose that the sphere has a positive charge q and that it is 
isolated from its surroundings.  We have already covered the fact that the electric field of the 
charged sphere, from an infinite distance away, all the way to the surface of the sphere, is 
indistinguishable from the electric field due to a point charge q at the position of the center of the 
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sphere; and; everywhere inside the surface of the sphere, the electric field is zero.  Thus, outside 
the sphere, the electric potential must be identical to the electric potential due to a point charge at 
the center of the sphere (instead of the sphere).  Working your way in from infinity, however, as 
you pass the surface of the sphere, the electric potential no longer changes.  Whatever the value 
of electric potential at the surface of the sphere, that is the value of electric potential at every 
point inside the sphere. 
 
This means that the electric potential of the sphere is equal to the electric potential that would be 
caused by a point charge (all by itself) at a point in space a distance R from the point charge 
(where R is the radius of the sphere). 
 
 
 
 
 
 
 
 
 
 
 
 

Thus, 
R

kq
V =  is the electric potential of a conducting sphere of radius R and charge q. 

 

Solving this expression for 
V

q
 yields: 

 

k

R

V

q =  

 

Since, by definition, the capacitance 
V

q
C = , we have: 

 

k

R
C =                                                                  (8-2) 

 
 
The capacitance of a conducting sphere is directly proportional to the radius of the sphere.  The 
bigger the sphere, the more charge you have to put on it to raise its potential one volt (in other 
words, the bigger the capacitance of the sphere).  This is true of conducting objects in general.  
Since all the unbalanced charge on a conductor resides on the surface of the conductor, it really 
has to do with the amount of surface area of the object.  The more surface area, the more room 
the charge has to spread out and, therefore, the more charge you have to put on the object to raise 
its potential one volt (in other words, the bigger the capacitance of the object). 

R 

P 

q 

The value of the electric potential here is 
the same as the value of the electric 
potential at every point in and on a 
conducting sphere of radius R and 
charge q. 
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Consider, for instance, a typical paper clip.  It only takes an amount of charge on the order of a 
pC (picocoulomb, 12101 −×  coulombs) to raise the potential of a paper clip 10 volts. 
 
 
 
Units 
 

The unit of capacitance is the coulomb-per-volt, 
V
C

.  That combination unit is given a name, the 

farad, abbreviated F. 
 

V
C

 1F 1 =  

 
 
 
The Capacitance of a Pair of Conducting Objects 
 
So far, we’ve been talking about the capacitance of a conducting object that is isolated from its 
surroundings.  You put some charge on such an object, and, as a result, the object takes on a 
certain value of electric potential.  The charge-to-potential ratio is called the capacitance of the 
object.  But get this, if the conductor is near another conductor when you put the charge on it, the 
conductor takes on a different value of electric potential (compared to the value it takes on when 
it is far from all other conductors) for the exact same amount of charge.  This means that just 
being in the vicinity of another conductor changes the effective capacitance1 of the conductor in 
question.  In fact, if you put some charge on an isolated conductor, and then bring another 
conductor into the vicinity of the first conductor, the electric potential of the first conductor will 
change, meaning, its effective capacitance changes.  Let’s investigate a particular case to see 
how this comes about. 
 
Consider a conducting sphere with a certain amount of charge, q, on it.  Suppose that, initially, 
the sphere is far from its surroundings and, as a result of the charge on it, it is at a potential V. 
 
Let’s take a moment to review what we mean when we say that the sphere is at a potential V.  
Imagine, that you take a test charge qT from a great distance away from the sphere and take it to 
the surface of the sphere.  Then you will have changed the potential energy of the test charge 
from zero to qTV.  To do that, you have to do an amount of work qTV on the test charge.  We’re 
assuming that the test charge was initially at rest and is finally at rest.  You have to push the 
charge onto the sphere.  You apply a force over a distance to give that particle the potential 
energy qTV.  You do positive work on it.  The electric field of the sphere exerts a force on the test 

                                                
1 By definition, the capacitance of a single conducting object is the charge-to-voltage ratio when the object is 
isolated (far away from) its surroundings.  When it is near another conductor, we generally talk about the 
capacitance of the pair of conductors (as we do later in this chapter) rather than what I have been calling the 
“effective capacitance” of one of the conductors. 
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charge in the opposite direction to the direction in which you are moving the test charge.  The 
electric field does a negative amount of work on the test charge such that the total work, the 
work done by you plus the work done by the electric field, is zero (as it must be since the kinetic 
energy of the test charge does not change).  But I want you to focus your attention on the amount 
of work that you must do, pushing the test charge in the same direction in which it is going, to 
bring the test charge from infinity to the surface of the sphere.  That amount of work is qTV  
because qTV is the amount by which you increase the potential energy of the charged particle.  If 
you were to repeat the experiment under different circumstances and you found that you did not 
have to do as much work to bring the test charge from infinity to the surface of the sphere, then 
you would know that the sphere is at a lower potential than it was the first time. 
 
Now, we are ready to explore the case that will illustrate that the charge-to-voltage ratio of the 
conducting object depends on whether or not there is another conductor in the vicinity. Let’s 
bring an identical conducting sphere near one side of the first sphere.  The first sphere still has 
the same amount of charge q on it that it always had, and, the second sphere is neutral.  The 
question is, “Is the potential of the original sphere still the same as what it was when it was all 
alone?”  Let’s test it by bringing a charge in from an infinite distance on the opposite side of the 
first sphere (as opposed to the side to which the second sphere now resides).  Experimentally we 
find that it takes less work to bring the test charge to the original sphere than it did before, 
meaning that the original sphere now has a lower value of electric potential.  How can that be?  
Well, when we brought the second sphere in close to the original sphere, the second sphere 
became polarized.  (Despite the fact that it is neutral, it is a conductor so the balanced charge in it 
is free to move around.)  The original sphere, having positive charge q, attracts the negative 
charge in the second sphere and repels the positive charge.  The near side of the second sphere 
winds up with a negative charge and the far side, with the same amount of positive charge.  (The 
second sphere remains neutral overall.)  Now the negative charge on the near side of the second 
sphere attracts the (unbalanced) positive charge on the original sphere to it.  So the charge on the 
original sphere, instead of being spread out uniformly over the surface as it was before the 
second sphere was introduced, is bunched up on the side of the original sphere that is closer to 
the second sphere.  This leaves the other side of the original sphere, if not neutral, at least less 
charged than it was before.  As a result, it takes less work to bring the positive test charge in 
from infinity to that side of the original sphere.  As mentioned, this means that the electric 
potential of the original sphere must be lower than it was before the second sphere was brought 
into the picture.  Since it still has the same charge that it always had, the new, lower potential, 
means that the original sphere has a greater charge-to-potential ratio, and hence a greater 
effective capacitance. 
 
In practice, rather than call the charge-to-potential ratio of a conductor that is near another 
conductor, the “effective capacitance” of the first conductor, we define a capacitance for the pair 
of conductors.  Consider a pair of conductors, separated by vacuum or insulating material, with a 
given position relative to each other.  We call such a configuration a capacitor.  Start with both 
conductors being neutral.  Take some charge from one conductor and put it on the other.  The 
amount of charge moved from one conductor to the other is called the charge of the capacitor.  
(Contrast this with the actual total charge of the device which is still zero.)  As a result of the 
repositioning of the charge, there is a potential difference between the two conductors.  This 
potential difference is called the voltage of the capacitor, or, more often, the voltage across the 
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capacitor.  The ratio of the amount of charge moved from one conductor to the other, to, the 
resulting potential difference of the capacitor, is the capacitance of the capacitor (the pair of 
conductors separated by vacuum or insulator). 
 

V

q
C =                                                                  (8-3) 

where: 
C is the capacitance of a capacitor, a pair of conductors separated by vacuum or an 

insulating material,  
q is the “charge on the capacitor,” the amount of charge that has been moved from one 

initially neutral conductor to the other.  One conductor of the capacitor actually has an 
amount of charge q on it and the other actually has an amount of charge –q on it. 

V is the electric potential difference between the conductors.  It is known as the voltage of 
the capacitor.  It is also known as the voltage across the capacitor. 

 
Note that this equation (equation 8-3) is identical in appearance to equation 8-1, but, that the 
symbols have different meanings here than they did in equation 8-1. 
 
A two-conductor capacitor plays an important role as a component in electric circuits.  The 
simplest kind of capacitor is the parallel-plate capacitor.  It consists of two identical sheets of 
conducting material (called plates), arranged such that the two sheets are parallel to each other.  
In the simplest version of the parallel-plate capacitor, the two plates are separated by vacuum. 
 
 
 
 
 
 
 
 
 
 
The capacitance of such a capacitor is given by 
 

d

A
C oe=  

where: 
C is the capacitance of the parallel-plate capacitor whose plates are separated by vacuum, 
d is the distance between the plates, 
A is the area of one face of one of the plates, 
eo  is a universal constant called the permittivity of free space.  eo is closely related to the 

Coulomb constant k.  In fact,  
o4

1

eπ
=k .  Thus, 

2

2
12

o mN

C
1085.8

⋅
×= −e .  Our equation 

for the capacitance can be expressed in terms of the Coulomb constant k as 
d

A

k
C

π4

1= , 

but, it is more conventional to express the capacitance in terms of eo. 

d 

Area A 

One of two wires used for moving charge onto 
and off of the plates of the capacitor. 
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This equation for the capacitance is an approximate formula.  It is a good approximation as long 
as the plate separation d is small compared to a representative plate dimension (the diameter in 
the case of circular plates, the smaller edge length in the case of  rectangular plates).  The 
derivation of the formula is based on the assumption that the electric field, in the region between 
the plates is uniform, and the electric field outside that region is zero.  In fact, the electric field is 
not uniform in the vicinity of the edges of the plates.  As long as the region in which the electric 
field is not well-approximated by a uniform electric field is small compared to the region in 
which it is, our formula for the capacitance is good. 
 
 
 
 
 
 
 
 
 
The Effect of Insulating Material Between the Plates of a Capacitor 
 
To get at the effect of insulating material, rather than vacuum, between the plates of a capacitor, I 

need to at least outline the derivation of the formula 
d

A
C oe= .   Keep in mind that the 

capacitance is the charge-per-voltage of the capacitor.  Suppose that we move charge q from one 
initially-neutral plate to the other.  We assume that the electric field is uniform between the 
plates of the capacitor and zero elsewhere. 
 
 
 
 
 
 
 
 
 
 
By means that you will learn about later in this book we establish that the value of the electric 
field (valid everywhere between the plates) is given by: 
 

oeA

q
E =                                                              (8-4) 

 
Also, we know that the work done on a test charge qT by the electric field when the test charge is 
moved from the higher-potential plate to the lower-potential plate is the same whether we 
calculate it as force-along the path times the length of the path, or, as the negative of the change 

E 

E 

q 

-q 

V  (the potential difference 
between the plates, a.k.a. 
the voltage across the 
capacitor) 
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in the potential energy.  This results in a relation between the electric field and the electric 
potential as follows: 
 

W calculated as force times distance = W calculated as minus change in potential energy 
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Using equation 8-4 (
oeA

q
E = ) to replace the E in dEV =  with 

oeA

q
 gives us: 

 

d
A

q
V

oe
=  

 

Solving this for q/V yields 
 

d

A

V

q
oe=  

 
for the charge-to-voltage ratio.  Since the capacitance is the charge-to-voltage ratio, this means 
 

d

A
C oe=  

 

which is what we set out to derive. 
 
Okay now, here’s the deal on having an insulator between the plates:  Consider a capacitor that is 
identical in all respects to the one we just dealt with, except that there is an insulating material 
between the plates, rather than vacuum.  Further suppose that the capacitor has the same amount 
of charge q on it as the vacuum-between-the-plates capacitor had on it.  The presence of the 
insulator between the plates results in a weaker electric field between the plates.  This means 
that a test charge moved from one plate to another would have less work done on it by the 
electric field, meaning that it would experience a smaller change in potential energy, meaning the 
electric potential difference between the plates is smaller.  So, with the same charge, but a 
smaller potential difference, the charge-to-voltage ratio (that is, the capacitance of the capacitor) 
must be bigger. 
 
The presence of the insulating material makes the capacitance bigger.  The part of the preceding 
argument that still needs explaining is that part about the insulating material weakening the 
electric field.  Why does the insulating material make the field weaker?  Here’s the answer: 
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Starting with vacuum between the plates, 
 
 
 
 
 
 
 
 
 
 
we insert some insulating material: 
 
 
 
 
 
 
 
 
 
 
The original electric field polarizes the insulating material: 
 
 
 
 
 
 
 
 
 
 
 
The displaced charge creates an electric field of its own, in the direction opposite that of the 
original electric field: 
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The net electric field, being at each point in space, the vector sum of the two contributions to it, 
is in the same direction as the original electric field, but weaker than the original electric field: 
 
 
 
 
 
 
 
 
 
This is what we wanted to show.  The presence of the insulating material makes for a weaker 
electric field (for the same charge on the capacitor), meaning a smaller potential difference, 
meaning a bigger charge-to-voltage ratio, meaning a bigger capacitance.  How much bigger 
depends on how much the insulator is polarized which depends on what kind of material the 
insulator consists of.  An insulating material, when placed between the plates of a capacitor is 
called a dielectric.   The net effect of using a dielectric instead of vacuum between the plates is to 
multiply the capacitance by a factor known as the dielectric constant.  Each dielectric is 
characterized by a unitless dielectric constant specific to the material of which the dielectric is 
made.  The capacitance of a parallel-plate capacitor which has a dielectric in between the plates, 
rather than vacuum, is just the dielectric constant κ  times the capacitance of the same capacitor 
with vacuum in between the plates. 
 

d

A
C oeκ=                                                               (8-5) 

where: 
C is the capacitance of the parallel-plate capacitor whose plates are separated by an 

insulating material, 
κ is the dielectric constant characterizing the insulating material between the plates, 
d is the distance between the plates, 
A is the area of one face of one of the plates, and 
eo  is a universal constant called the permittivity of free space.  

 
Calling the dielectric constant for vacuum 1 (exactly one), we can consider this equation to apply 
to all parallel-plate capacitors.  Some dielectric constants of materials used in manufactured 
capacitors are provided in the following table: 
 

Substance Dielectric 
Constant 

Air 1.00 
Aluminum Oxide (a corrosion product 
found in many electrolytic capacitors) 

7 

Mica 3-8 
Titanium Dioxide 114 

Vacuum 1 (exactly) 
Waxed Paper 2.5-3.5 

E 

q 

-q 
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Energy Stored in a Capacitor 
 
Moving charge from one initially-neutral capacitor plate to the other is called charging the 
capacitor.  When you charge a capacitor, you are storing energy in that capacitor.  Providing a 
conducting path for the charge to go back to the plate it came from is called discharging the 
capacitor.  If you discharge the capacitor through an electric motor, you can definitely have that 
charge do some work on the surroundings.  So, how much energy is stored in a charged 
capacitor?  Imagine the charging process.  You use some force to move some charge over a 
distance from one plate to another.  At first, it doesn’t take much force because both plates are 
neutral.  But the more charge that you have already relocated, the harder it is to move more 
charge.  Think about it.  If you are moving positive charge, you are pulling positive charge from 
a negatively charged plate and pushing it onto a positively charged plate.  The total amount of 
work you do in moving the charge is the amount of energy you store in the capacitor.  Let’s 
calculate that amount of work. 
 
In this derivation, I am going to use a lower case q to represent the variable amount of charge on 
the capacitor plate (it increases as we charge the capacitor), and an upper case Q to represent the 
final amount of charge.  Similarly, I choose to use a lower case v to represent the variable 
amount of voltage across the capacitor (it too increases as we charge the capacitor), and the 
upper case V to represent the final voltage across the capacitor.  Let U represent the energy 
stored in the capacitor: 

dqdU v=  
 

but the voltage across the capacitor is related to the charge of the capacitor by C = q  /v which, 
solved for v is v = q/c, so: 
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Using C = Q/V, we can also express the energy stored in the capacitor as QVU
2

1= , or  

 

2

2

1
CVU =                                                               (8-6) 
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9  Electric Current, EMF, Ohm's Law 
 
We now begin our study of electric circuits.  A circuit is a closed conducting path through which 
charge flows.  In circuits, charge goes around in loops.  The charge flow rate is called electric 
current.  A circuit consists of circuit elements connected together by wires.  A capacitor is an 
example of a circuit element with which you are already familiar.  We introduce some more 
circuit elements in this chapter.  In analyzing circuits, we treat the wires as perfect conductors 
and the circuit elements as ideal circuit elements.  There is a great deal of variety in the 
complexity of circuits.  A computer is a complicated circuit.  A flashlight is a simple circuit. 
 
The kind of circuit elements that you will be dealing with in this course are two-terminal circuit 
elements.  There are several different kinds of two-terminal circuit elements but they all have 
some things in common.  A two-terminal circuit element is a device with two ends, each of 
which is a conductor.  The two conductors are called terminals.  The terminals can have many 
different forms.  Some are wires, some are metal plates, some are metal buttons, and some are 
metal posts.  One connects wires to the terminals to make a circuit element part of a circuit. 
 
An important two-terminal circuit element is a seat of EMF1.  You can think of a seat of EMF as 
an ideal battery or as an ideal power supply.  What it does is to maintain a constant potential 
difference (a.k.a. a constant voltage) between its terminals.  One uses either the constant name E 
(script E) or the constant name V to represent that potential difference. 
 
To achieve a potential difference E between its terminals, a seat of EMF, when it first comes into 
existence, has to move some charge (we treat the movement of charge as the movement of 
positive charge) from one terminal to the other.  The “one terminal” is left with a net negative 
charge and “the other” acquires a net positive charge.  The seat of EMF moves charge until the 
positive terminal is at a potential E higher than the negative terminal.  Note that the seat of EMF 
does not produce charge, it just pushes existing charge around.  If you connect an isolated wire to 
the positive terminal, then it is going to be at the same potential as the positive terminal, and, 
because the charge on the positive terminal will spread out over the wire, the seat of EMF is 
going to have to move some more charge from the lower-potential terminal to maintain the 
potential difference.  One rarely talks about the charge on either terminal of a seat of EMF or on 
a wire connected to either terminal.  A typical seat of EMF maintains a potential difference 
between its terminals on the order of 10 volts and the amount of charge that has to be moved, 
from one wire whose dimensions are similar to that of a paper clip, to another of the same sort, is 
on the order of a pC ( C101 12−× ).  Also, the charge pileup is almost instantaneous, so, by the time 
you finish connecting a wire to a terminal, that wire already has the charge we are talking about.  
In general, we don’t know how much charge is on the positive terminal and whatever wire might 
be connected to it, and we don’t care.  It is minuscule.  But, it is enough for the potential 
difference between the terminals to be the rated voltage of the seat of EMF. 
 

                                                
1 The reason for the name “seat of EMF” is of historical interest only.  EMF stands for electromotive force.  You 
would be better off calling it “ee em eff” and thinking of a so-called seat of EMF as a “maintainer of a constant 
potential difference”. 
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You’ll recall that electric potential is something that is used to characterize an electric field.  In 
causing there to be a potential difference between its terminals and between any pair of wires 
that might be connected to its terminals, the seat of EMF creates an electric field.  The electric 
field depends on the arrangement of the wires that are connected to the terminals of the seat of 
EMF.  The electric field is another quantity that we rarely discuss in analyzing circuits.  We can 
typically find out what we need to find out from the value of the potential difference E that the 
seat of EMF maintains between its terminals.  But, the electric field does exist, and, in circuits, 
the electric field of the charge on the wires connected to the seat of EMF is what causes charge 
to flow in a circuit, and charge flow in a circuit is a huge part of what a circuit is all about. 
 
We use the symbol 
 
 
 
 
to represent a seat of EMF in a circuit diagram (a.k.a. a schematic diagram of a circuit) where the 
two collinear line segments represent the terminals of the seat of EMF, the one connected to the 
shorter of the parallel line segments being the negative, lower-potential, terminal; and; the one 
connected to the longer of the parallel line segments being the positive, higher-potential, 
terminal. 
 
The other circuit element that I want to introduce in this chapter is the resistor.  A resistor is a 
poor conductor.  The resistance of a resistor is a measure of how poor a conductor the resistor is.  
The bigger the value of resistance, the more poorly the circuit element allows charge to flow 
through itself.  Resistors come in many forms.  The filament of a light bulb is a resistor.  A 
toaster element (the part that glows red when the toaster is on) is a resistor.  Humans 
manufacture small ceramic cylinders (with a coating of carbon and a wire sticking out each end) 
to have certain values of resistance.  Each one has its value of resistance indicated on the resistor 
itself.  The symbol 
 
 
 
is used to represent a resistor in a circuit diagram.  The symbol R is typically used to represent 
the value of the resistance of a resistor. 
 
We are now ready to consider the following simple circuit: 
 
 
 
 
 
 
 
 
 
 

    

E R 

wire (conductor) 

wire (conductor) 

Resistor Seat of EMF 
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Here it is again without so many labels: 
 
 
 
 
 
 
 
 
 
 
 
The upper wire (conductor) has one value of electric potential (call it VHI  

) and the lower wire has 
another value of electric potential (call it VLOW ) such that the difference VHI − VLOW  is E. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to maintain the potential difference E between the two conductors, the seat of EMF 
causes there to be a minuscule amount of positive charge on the upper wire and the same amount 
of negative charge on the lower wire.  This charge separation causes an electric field in the 
resistor. 
 
 
 
 
 
 
 
 
 
 
 

E R 

E R 

VHI 

VLO 

VHI − VLOW  = E 

E R 

VHI 

VLO 

E 
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(We carry out this argument in the positive charge carrier model.  While it makes no difference 
for the circuit, as a point of fact, it is actually negatively charged particles moving in the opposite 
direction.  The effect is the same.) 

 
It is important to realize that every part of the circuit is chock full of both kinds of charge.  The 
wire, the resistor, everything is incredibly crowded with both positive and negative charge.  One 
kind of charge can move against the background of the other.  Now the electric field in the 
resistor pushes the positive charge in the resistor in the direction from the higher-potential 
terminal toward the lower-potential terminal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pushing positive charge onto the lower-potential wire would tend to raise the potential of the 
lower-potential wire and leave the upper end of the resistor with a negative charge.  I say 
“would” because any tendency for a change in the relative potential of the two wires is 
immediately compensated for by the seat of EMF.  Remember, that’s what the seat of EMF does, 
it maintains a constant potential difference between the wires.  To do so in the case at hand, the 
seat of EMF must pull some positive charges from the lower-potential wire and push them onto 
the higher-potential wire.  Also, any tendency of the upper end of the resistor to become negative 
immediately results in an attractive force on the positive charge in the higher-potential wire.  So 
that positive charge moves down into the resistor in the place of the charge that just moved along 
the resistor toward the lower-potential wire.  The net effect is a continual movement of charge, 
clockwise around the loop, as we view it in the diagram, with the net amount of charge in any 
short section of the circuit never changing.  Pick a spot anywhere in the circuit.  Just as fast as 
positive charge moves out of that spot, more positive charge from a neighboring spot moves in.  
What we have is this whole crowded mass of positive charge carriers moving clockwise around 
the loop, all because of the electric field in the resistor, and the EMF’s “insistence” on 
maintaining a constant potential difference between the wires.  
 

E R 

VHI 

VLO 

E 
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Now draw a dotted line across the path of the circuit, at any point in the circuit, as indicated 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
The rate at which charge crosses that line is the charge flow rate at that point (the point at which 
you drew the dotted line) in the circuit.  The charge flow rate, how many coulombs-of-charge-
per-second are crossing that line is called the electric current at that point.  In the case at hand, 
because the whole circuit consists of a single loop, the current is the same at every point in the 
circuit—it doesn’t matter where you “draw the line.”  The symbol that one typically uses to 
represent the value of the current is I.   
 
In analyzing a circuit, if the current variable is not already defined for you, you should define it 
by drawing an arrow on the circuit and labeling it I or I with a subscript. 
 
 
 
 
 
 
 
 
 
 
The units for current are coulombs per second (C/s).  That combination of units is given a name, 
the ampere, abbreviated A. 
 

s

C
 1A 1 =  

 
Now about that resistor:  In our positive charge carrier model, the charged particles that are free to 
move in the resistor experience a force exerted on them by the electric field, in the direction of the 
electric field.  As a result, they experience acceleration.  But, the background material making up 
the substance of which the charge carriers are a part, exerts a velocity-dependent retarding force 
on the charge carriers.  The faster they go, the bigger the retarding force.  Upon completion of the 
circuit (making that final wire-to-terminal connection), the charge carriers in the resistor, almost 
instantaneously, reach a terminal velocity at which the retarding force on a given charge carrier is 

Dotted Line 

E R 

VHI 

VLO 

E 

E R 

I 
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just as great as the force exerted by the electric field on that charge carrier.  The value of the 
terminal velocity, along with the number-of-charge-carriers-per-volume in the resistor, and the 
cross-sectional area of the poorly-conducting material making up the resistor, determine the 
charge flow rate, the current, in the resistor.  In the simple circuit under consideration, the charge 
flow rate in the resistor is the charge flow rate everywhere in the circuit. 
 
The value of the terminal velocity itself depends on how strong the electric field is, and, on the 
nature of the retarding force.  The nature of the retarding force depends on what kind of material 
the resistor is made of.  One kind of material will result in a bigger terminal velocity for the same 
electric field as another kind of material.  Even with one kind of material, there’s the question of 
how the retarding force depends on the velocity.  Is it proportional to the square of the velocity, 
the log of the velocity, or what?  Experiment shows that in an important subset of materials, over 
certain ranges of the terminal velocity, the retarding force is proportional to the velocity itself.  
Such materials are said to obey Ohm’s law and are referred to as ohmic materials. 
 
 
Consider the resistor in the simple circuit we have been dealing with. 
 
 
 
 
 
 
 
If you double the voltage across the resistor (by using a seat of EMF that maintains twice the 
potential difference between its terminals as the original seat of EMF) then you double the 
electric field in the resistor.  This doubles the force exerted on each charge carrier.  This means 
that, at the terminal velocity of any charge carrier, the retarding force has to be twice as great.  
(Since, upon making that final circuit connection, the velocity of the charge carriers increases 
until the retarding force on each charge carrier is equal in magnitude to the applied force.)  In an 
ohmic material, if the retarding force is twice as great, then the velocity is twice as great.  If the 
velocity is twice as great, then the charge flow rate, the electric current, is twice as great.  So, 
doubling the voltage across the resistor doubles the current.  Indeed, for a resistor that obeys 
Ohm’s Law, the current in a resistor is directly proportional to the voltage across the resistor. 
 
Summarizing:  When you put a voltage across a resistor, there is a current in that resistor.  The 
ratio of the voltage to the current is called the resistance of the resistor. 
 

I

V
R =  

 
This definition of resistance is consistent with our understanding that the resistance of a resistor 
is a measure of how lousy a conductor it is.  Check it out.  If, for a given voltage across the 
resistor, you get a tiny little current (meaning the resistor is a very poor conductor), the value of 

resistance 
I

V
R =  with that small value of current in the denominator, is very big.  If, on the 

E R 
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other hand, for the same voltage, you get a big current (meaning the resistor is a good 

conductor), then the value of resistance 
I

V
R =  is small. 

 
If the material of which the resistor is made obeys Ohm’s Law, then the resistance R is a 

constant, meaning that its value is the same for different voltages.  The relation 
I

V
R =  is 

typically written in the form IRV = . 
 
 
 
 
 
 
 
 
 
 
Units of Resistance 
 
Given that the resistance of a resistor is defined as the ratio of the voltage across that resistor to 
the resulting current in that resistor, 
 

I

V
R =  

 

it is evident that the unit of resistance is the volt per ampere, 
A

V
.  This combination unit is given 

a name.  We call it the ohm, abbreviated Ω, the Greek letter upper-case omega. 
 
 

ampere

volt
11 =Ω

Ohm’s Law:  The resistance R, in the expression IRV = , is a constant. 
 
Ohm’s Law is good for resistors made of certain materials (called ohmic 
materials) over a limited range of voltages. 
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10  Resistivity, Power 
 

In the last chapter we discussed resistors that conform to Ohm’s Law.  From the discussion, one 
could deduce that the resistance of such a resistor depends on the nature of the material of which 
the resistor is made and on the size and shape of the resistor.  In fact, for resistors made out of a 
single kind of material, in the shape of a wire1 with a terminal at each end,  
 
 
 
 
 
 
 
 
 
 
the resistance is given by: 

A

L
R r=                                                               (10-1) 

where: 
R is the resistance of the resistor as measured between the ends, 
r is the resistivity of the substance of which the resistor is made, 
A is the cross-sectional area of the wire-shaped resistor, and 
L is the length of the resistor. 

 
The values of resistivity for several common materials are provided in the following table: 
 

Material Resistivity rrrr  

Silver 1.6 ×10
−8

 Ω⋅m 

Copper 1.7 ×10
−8

 Ω⋅m 

Gold 2.4 ×10
−8

 Ω⋅m 

Aluminum 3 ×10
−8

 Ω⋅m 

Tungsten 5.6 ×10
−8

 Ω⋅m 

Nichrome 5.5 ×10
−6

 Ω⋅m 

Seawater 0.25 Ω⋅m 

Rubber 1 ×10
13

 Ω⋅m 

Glass 1 ×10
10

  to  1 ×10
14 Ω⋅m 

Quartz 5×10
15

 to 7.5×10
17 Ω⋅m 

 

                                                
1 The resistor can have any shape such that one linear dimension can be identified as the length of the resistor, and, 
such that the intersection of a plane perpendicular to the length of the resistor, at any position along the length of the 
resistor, has one and the same area (the cross-sectional area of the resistor).  I am calling the shape “the shape of a 
wire” for ease in identification of what we mean by the “along-the-length” dimension. 

Cross-sectional Area  A 

Length  L 
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In the expression 
A

L
R r= , the resistivity r depends on the charge carrier2 density, that is, the 

number-of-charge-carriers-per-volume.  The more charge carriers per volume, the smaller the 
resistance, since, for a given velocity of the charge carriers, more of them will be passing any 
point along the length of the resistor every second, for a given voltage across the resistor.  The 
resistivity also depends on the retarding force factor.  We said that the retarding force on each 
charge carrier is proportional to the velocity of that charge carrier. 
 

Retarding Force  =  − (factor) times (charge carrier velocity) 
 
(The minus sign is there because the retarding force is in the direction opposite that of the 
charge-carrier velocity.)  The bigger the retarding force factor, the greater the resistivity of the 
material for which the factor applies. 
 
The charge carrier density and the retarding force factor determine the value of r.  The effect of 

r on the resistance is evident in the expression 
A

L
R r= .  The bigger r is, the greater the  

resistance. 
 

Why the factor of L in 
A

L
R r= ?  It’s saying that the greater the length of the single-substance 

resistor in the shape of a wire, the greater the resistance of the resistor, all other things being 
equal (same substance, same cross-sectional area).  It means, for instance, that if you have two 
resistors, identical in all respects except that one is twice as long as the other, and you put the 
same voltage across each of the resistors, you’ll get half the current in the longer resistor.  Why 
is that? 
 
To get at the answer, we need to consider the electric field inside the wire-shaped resistor when 
we have a voltage V across the resistor.  The thing is, the electric field inside the resistor is 
directed along the length of the resistor, and, it has the same magnitude everywhere along the 
length of the resistor.  Evidence for this can be obtained by means of simple voltage 
measurements.  Use a voltmeter to measure the potential difference ∆V between two points on 
the resistor that are separated by a certain distance ∆x, say 2 mm (measured along the length of 
the resistor) for instance.  It turns out that no matter where along the length you pick the pair of 
points (separated from each other by the ∆x), you always get the same voltage reading.  Imagine 
(this part is a thought experiment) moving a positive test charge qT that distance ∆x along the 
resistor from high potential toward low potential.  No matter where along the length of the 
resistor you do that, the work done (by the electric field characterized by the potential) qT ∆V 
(calculated as the negative of the change of the potential energy of the test charge) is the same.  
The work, calculated as force times distance, is qT E∆x.  For that to be the same at every point 
along the length of the resistor, the electric field E has to have the same value everywhere along 
the length of the resistor.  Furthermore, setting the two expressions for the work equal to each 
other yields: 

                                                
2 A charge carrier is a particle that has charge and is free to move about within the material of which it is a part. 
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x

V
E

VqxEq TT

∆
∆=

∆=∆
 

E being constant thus means that 
x

V

∆
∆

 is constant which means that a graph of V vs. x is a 

straight line with slope 
x

V

∆
∆

.  But, in calculating that slope, since it is a straight line, we don’t 

have to use a tiny little ∆x.  We can use the entire length of the resistor and the corresponding 
potential difference, which is the voltage V across the resistor.  Thus, 
 

L

V
E =  

where: 
E is the magnitude of the electric field everywhere in the single-substance wire-shaped 

resistor, 
V is the voltage across the resistor, and 
L is the length of the resistor. 

 

This result (
L

V
E = ) is profound in and of itself, but, if you recall, we were working on 

answering the question about why the resistance R, of a single-substance wire-shaped resistor, is 
proportional to the length of the resistor.   We are almost there.  The resistance is the ratio of the 

voltage across the resistor to the current in it.  According to 
L

V
E = , the longer the resistor, the 

weaker the electric field in the resistor for a given voltage across it.  A weaker E results in a 
smaller terminal velocity for the charge carriers in the resistor, which results in a smaller current.  
Thus, the longer the resistor, the smaller the current; and; the smaller the current, the greater the 
voltage-to-current ratio; meaning, the greater the resistance. 
 

The next resistance-affecting characteristic in 
A

L
R r=  that I want to discuss is the area A.  Why 

should that affect the resistance the way it does?  Its presence in the denominator means that the 
bigger the cross-sectional area of the wire-shaped resistor, the smaller the resistance.  Why is 
that? 
 
If we compare two different resistors made of the same material and having the same length (but 
different cross-sectional areas) both having the same voltage across them, they will have the 

same electric field 
L

V
E =  in them.  As a result, the charge carriers will have the same velocity v.  

In an amount of time ∆t, 
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v

L
t

tvL

=∆

∆=
 

 
all the free-to-move charge carriers in either resistor will flow out the lower potential end of the 
resistor (while the same amount of charge flows in the higher potential end).  This time ∆t is the 
same for the two different resistors because both resistors have the same length, and the charge 
carriers in them have the same v.  The number of charge carriers in either resistor is proportional 
to the volume of the resistor.  Since the volume is given by volume = L A, the number of charge 
carriers in either resistor is proportional to the cross-sectional area A of the resistor.  Since the 
number of charge carriers in either resistor, divided by the time ∆t is the current in that resistor, 
this means that the current is proportional to the area. 
 
If the current is proportional to the area, then the resistance, being the ratio of the voltage to the 
current, must be inversely proportional to the area.  And so ends our explanation regarding the 
presence of the A in the denominator in the expression 
 

A

L
R r=  

 
 
 
 
 
 
 
Power 
 
You were introduced to power in Volume I of this book.  It is the rate at which work is done.  It 
is the rate at which energy is transferred.  And, it is the rate at which energy is transformed from 
one form of energy into another form of energy. 
 
In a case in which the power is the rate that energy is transformed from one form to another, the 
amount of energy that is transformed from time 0 to time t: 
 

• if the power is constant, is simply the power times the duration of the time interval:  
 

Energy = P t 
 

• if the power is a function of time, letting t′ be the time variable that changes from 0 to t, 
is: 

∫=
t

dt't'P
0

)(Energy  
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The Power of a Resistor 
 
In a resistor across which there is a voltage V, energy is transformed from electric potential 
energy into thermal energy.  A particle of charge q, passing through the resistor, loses an amount 
of potential energy qV but it does not gain any kinetic energy.  As it passes through the resistor, 
the electric field in the resistor does an amount of work qV on the charged particle, but, at a same 
time, the retarding force exerted on the charged particle by the background material of the 
resistor, does the negative of that same amount of work.  The retarding force, like friction, is a 
non-conservative force.  It is exerted on the charge carrier when the charge carrier collides with 
impurities and ions (especially at sites of defects and imperfections in the structure of the 
material).  During those collisions, the charge carriers impart energy to the ions with which they 
collide.  This gives the ions vibrational energy which manifests itself, on a macroscopic scale, 
(early in the process) as an increase in temperature.  Some of the thermal energy is continually 
transferred to the surroundings.  Under steady state conditions, arrived at after the resistor has 
heated up, thermal energy is transferred to the surroundings at the same rate that it is being 
transformed from electrical potential energy in the resistor. 
 
The rate at which electric potential energy is converted to thermal energy in the resistor is the 
power of the resistor (a.k.a. the power dissipated3 by the resistor).  It is the rate at which the 
energy is being delivered to the resistor.  The energy conversion that occurs in the resistor is 
sometimes referred to as the dissipation of energy.  One says that the resistor power is the rate at 
which energy is dissipated in the resistor.  It’s pretty easy to arrive at an expression  for the 
power of a resistor in terms of circuit quantities.  Each time a coulomb of charge passes through 
a resistor that has a voltage V across it, an amount of energy equal to one coulomb times V is 
converted to thermal energy.  The current I is the number of coulombs-per-second passing 
through the resistor.  Hence V times I is the number of joules-per-second converted to thermal 
energy.  That’s the power of the resistor.  In short, 
 
 

P = IV 
 

where: 
 

P is the power of the resistor.  It is the rate at which the resistor is converting electrical 
potential energy into thermal energy. 

 

I is the current in the resistor.  It is the rate at which charge is flowing through the resistor. 
 

V is the voltage across the resistor.  It is the amount by which the value of electric potential 
(the electric potential energy per charge) at one terminal of the resistor exceeds that at the 
other terminal. 

 
 
 

                                                
3 To be dissipated means to be dispersed or broken up and sent in all different directions. 
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The Power of a Seat of EMF 
 
In a typical circuit, a seat of EMF causes positive charge carriers (in our positive-charge-carrier 
model) to go from a lower-potential conductor, through itself, to a higher-potential conductor.  
The electric field of the conductors exerts a force on the charge carriers in the direction opposite 
to the direction in which they are going.  The charged particles gain electric potential energy.  
Where does that energy come from? 
 
In the case of a battery, the energy comes from chemical potential energy stored in the battery 
and released in chemical reactions that occur as the battery moves charge from one terminal to 
the other.  In the case of a power supply, the power supply, when plugged into a wall outlet and 
turned on, becomes part of a huge circuit including transmission wires extending all the way 
back to a power plant.  At the power plant, depending on the kind of power plant, kinetic energy 
of moving water, or thermal energy used to make steam to turn turbines, or chemical potential 
energy stored in wood, coal, or oil; is converted to electric potential energy.  Whether it is part of 
a battery, or a part of a power supply, the seat of EMF converts energy into electric potential 
energy.  It keeps one of its terminals at a potential E higher than the other terminal.  Each time it 
moves a coulomb of charge from the lower potential terminal to the higher potential terminal, it 
increases the potential energy of that charge by one coulomb times E.  Since the current I is the 
number of coulombs per second that the seat of EMF moves from one terminal to the other, the 
power, the rate at which the seat of EMF delivers energy to the circuit, is given by: 
 

EIP =  
 
Recall that it is common to use the symbol V (as well as E ) to represent the voltage across a seat 
of EMF.  If you use V, then the power of the seat of EMF is given by: 
 

IVP =  
where: 

P is the rate at which a seat of EMF delivers energy to a circuit, 
I is the current in the seat of EMF (the rate at which charge flows through the seat of 

EMF), and 
V is the voltage across the seat of EMF. 

 
This is the same expression as the expression for the power of a resistor. 
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11  Resistors in Series and Parallel; Measuring I &  V 
 
The analysis of a circuit involves the determination of the voltage across, and the current through, 
circuit elements in that circuit.  A method that I call “the method of ever simpler circuits” can be 
used to simplify the analysis of many circuits that have more than one resistor.  The method 
involves the replacement of a combination of resistors with a single resistor, carefully chosen so 
that the replacement does not change the voltage across, nor the current through, the other circuit 
elements in the circuit.  The resulting circuit is easier to analyze, and, the results of its analysis 
apply to the original circuit.  Because the single carefully-chosen resistor has the same effect on 
the rest of the circuit as the original combination of resistors, we call the single resistor the 
equivalent resistance of the combination, or, simply, the equivalent resistor. 
 
 
Resistors in Series 
 

One combination of resistors that can be replaced with a single effective resistor is a series 
combination of resistors.  Two two-terminal circuit elements in a circuit are in series with each 
other when one end of one is connected with one end of the other with nothing else connected to 
the connection1.  For instance, R1 and R2 in the following circuit are in series with each other. 
 
 
 
 
 
 
 
 
From our viewpoint, the right end of R1 is connected to the left end of R2 and nothing else is 
connected to the point in the circuit where they are connected. 
 
R1 and R2 in the following circuit are also in series with each other: 
 
 
 
 
 
 
 
 
 
 
                                                
1 Here we have described adjacent resistors that are in series.  Non-adjacent two-terminal circuit elements are also in 
series with each other if each is in series with a third two-terminal circuit element.  In this definition, in addition to 
an ordinary two-terminal circuit element such as a seat of EMF or a resistor, a two-terminal combination of circuit 
elements is considered to be a two-terminal circuit element. 

2R1R

V

R1 R2 

R3 

V 
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But, R1 and R2 in the following circuit, are not in series with each other: 
 
 
 
 
 
 
 
 
 
 
 
 
 
While it is true that the right end of R1 is connected to the left end of R2, it is not true that 
“nothing else is connected to the connection.”  Indeed, the left end of R3 is connected to the point 
in the circuit at which R1 and R2 are connected to each other. 
 
That’s enough examples about whether or not resistors are in series with each other.  In 
implementing the method of ever simpler circuits, the plan is to replace a combination of 
resistors that are in series with each other with a single, well-chosen equivalent resistor.  The 
question is, what value must the resistance of the single resistor be in order for it to be equivalent 
to the set of series resistors it replaces?  For now, we simply give you the result.  The derivation 
will be provided in the next chapter. 
 
 
The equivalent resistance of resistors in series is simply the sum of the resistances. 
 

...321S +++= RRRR  

 
 
 
 
 

3R

1R

V

2R
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Resistors in Parallel 
 
Circuit elements are in parallel with each other if they are connected together (by nothing but 
“perfect” conductor) at both ends.  So, for instance,  R2 and R3 in the following circuit: 
 
 
 
 
 
 
 
 
 
 
 
are in parallel with each other. 
 
On the other hand, R1 and R3 in the following circuit 
 
 
 
 
 
 
 
 
 
 
 
 
are not in parallel with each other. 
 
Resistors R2 and R3 in the following circuit are in parallel with each other: 
 
 
 
 
 
 
 
 
 
 
 
 
 

3R

1R

V

2R

R1 R2 

R3 

V 

R1 

R2 

R3 

V 
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But, none of the resistors in the following circuit are in parallel with each other: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
whereas R1 and R3 in the following circuit are in parallel with each other: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So what is the equivalent resistor for resistors in parallel?  Here we provide the result.  We save 
the derivation for the next chapter. 
 
 
The equivalent resistance of resistors in parallel is the reciprocal of the sum of the reciprocals of 
the resistances of the resistors making up the parallel combination: 
 

...
111

1

321

+++
=

RRR

RP  

 
 
 

R1 

R2 

R3 

V 
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Example 
 
Find the voltage across, and the current through each of the circuit elements in the diagram 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
Solution 
 
First we add some notation to the diagram to define our variables (do not omit this step): 
 
 
 
 
 
 
 
 
 
 
 
The + and – signs on the resistors (indicating the high potential side and the low potential side of 
each resistor), are an important part of the definition of the voltages.  If you are given values, and 
the value you calculate for V1 turns out to be positive, e.g. +5.0 volts, then the reader of your 
solution knows that the potential of the left end of R1 is 5.0 volts higher than that of the right end.  
But, if the value that you calculate for V1 is negative, e.g. −5.0 volts, then the reader knows that 
the potential of the left end of R1 is 5.0 volts lower than that of the right end. 
 
The “+” and “–” labels on the resistors must be consistent with the current direction.  In fact, one 
first draws and labels the current arrows, and then puts the “+” on the end of the resister that the 
current enters (and the “–” on the other end). 
 
Next we draw a sequence of circuits.  Each new diagram includes an equivalent resistor in place 
of one series combination or one parallel combination.  (Do not omit any diagrams, and, do not 
replace anything more than a single series combination or a single parallel combination of 
resistors in any one step.)  As you draw each circuit, calculate the value of the equivalent 
resistance. 

25Ω  

12volts 

42Ω  

58Ω  

I 

I1 

I3 

V1 V2 

V3 

+ + 

+ 

− − 

− 

R1= 25Ω  

V=12volts 

R2= 42Ω  

R3= 58Ω  1 
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2112 RRR +=  
 

Ω+Ω= 422512R  
 

Ω= 6712R  
 

 
 
 
 
 
 
 
 
 
 

312

123 11
1

RR

R
+

=  

 

Ω
+

Ω

=

58

1

67

1
1

123R  

 

Ω= 131123 .R  

R123 

V 
I 

3 

I1 

R3 

V 
I 

I3 

V12 
+ − 

− V3 + 

R12 

2 

I 

I1 

I3 

V1 V2 

V3 

+ + 

+ 

− − 

− 

R1= 25Ω  

V=12volts 

R2= 42Ω  

R3= 58Ω  

1 

First, we copy 
the diagram 
from the 
preceding 
page. 

Next, we replace 
the series 
combination of 
R 1 and R 2 with 
the equivalent 
resistor R 12. 
 

Finally, we 
replace the 
parallel 
combination of R12 
and R 3 with the 
equivalent resistor 
R 123. 



Chapter 11  Resistors in Series and Parallel; Measuring I & V 

84 

Now we analyze the simplest circuit, the one I have labeled “3” above. 
 
 
 
 
 
 
 
 
 
 
 
 
One of the most common mistakes that folks make in analyzing circuits is using any old voltage 
in V =IR.  You have to use the voltage across the resistor.  In analyzing circuit 3, however, we 
can use the one voltage in the diagram because the voltage across the seat of EMF is the voltage 
across the resistor.  The terminals of the resistor are connected to the same two conductors that 
the terminals of the seat of EMF are connected to.  Thus, 
 

123IRV =  

 

123R

V
I =  

 

Ω
=

131

 volts12

.
I  

 
A3860.=I  

 
At this point, we’ve got two of the answers.  The voltage across the seat of EMF was asked for, 
but it is also given, so we don’t have to show any work for it.  And now we have the current 
through the seat of EMF. 
 

V = 12 volts 
I = 0.39 amperes 

 
Note that the arrow labeled I in our diagram is part of our answer.  It tells the reader what I 
means, including the direction of current flow for a positive value of I. 
 

R123 = 31.1 Ω 

V = 12 volts 
I 

3 
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Our next step, is to take the information that we have learned here, to our next more complicated 
circuit.  That would be the one I labeled “2” above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are only two wires (conductors) in this circuit.  I am going to highlight them in order to 
make my next point: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Highlighting the conductors makes it obvious that the voltage across R12 is the same as the 
voltage across the seat of EMF because, in both cases, the voltage is the potential difference 
between one and the same pair of conductors.  Likewise, the voltage across R3 is the same as the 
voltage across the seat of EMF.  Hence, we have, 
 

V12 = V 
 

V12 = 12 volts 
 
and, 
 

V3 = V 
 

V3 = 12 volts. 
 
 

R3 = 58 Ω 

I = 0.386 A 

I1 

I3 

V12 
+ − 

− V3 + 

R12 = 67 Ω 

2 

V = 12 volts 

R3 = 58 Ω 

I = 0.386 A 

I1 

I3 

V12 
+ − 

− V3 + 

R12 = 67 Ω 

2 

V = 12 volts 
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The last value is one of our answers.  We were supposed to find V3.  Now that we know the 
voltage across R3, we can use it in V =I  R to get I3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For resistor R3, we have: 

333 RIV =  

 

3

3
3 R

V
I =  

 

Ω
=

58

 volts12
3I  

 

Ω
=

58

 volts12
3I  

 
A 20703 .=I  

 
 
The voltage and current through resistor R3 are answers to the problem: 
 

V3 = 12 volts 
I3 = 0.21 amperes 

 

R3 = 58 Ω 

I = 0.386 A 

I1 

I3 

+ − 

− 
V3 = 12 volts 
+ 

R12 = 67 Ω 

2 

V = 12 volts 

V12 = 12 volts 



Chapter 11  Resistors in Series and Parallel; Measuring I & V 

87 

Now let’s get the current through R12.  I’ve labeled that current I1 in diagram 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For resistor R12, we have: 
 

12112 RIV =  
 

12

12
1 R

V
I =  

 

Ω
=

67

 volts12
1I  

 
A 17901 .=I  

 
Now it is time to take what we have learned here up to the next more complicated circuit (which 
is the original circuit). 
 
 
 
 
 
 
 
 

R3 = 58 Ω 

I = 0.386 A 

I1 

I3 

+ − 

− 
V3 = 12 volts 
+ 

R12 = 67 Ω 

2 

V = 12 volts 

V12 = 12 volts 

I 

I1 

I3 

V1 V2 

V3 

+ + 

+ 

− − 

− 

R1= 25Ω  

V=12volts 

R2= 42Ω  

R3= 58Ω  1 
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I copy that here with the values of the current included: 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is clear from this diagram that the current I1 that we just found (the current through R12) is the 
current through R1, and, it is the current through R2. 
 

I2 = I1 
 

I2 = 0.179A 
 
These are answers to the problem. 
 
With the current through R1 known, we can now solve for V1: 
 

111 RIV =  
 

)25(A  17901 Ω= .V  
 
 volts541 .=V  

 
Thus, our answers for resistor R1 are: 
 

 volts541 .=V  
I1 = 0.18 amperes 

 
 
And, with the current through R2 known, we can solve for V2: 
 

222 RIV =  
 

)42(A  17902 Ω= .V  
 
 volts572 .=V  

1 

I1 = 0.179A 

V1 V2 

V3 

+ + 

+ 

− − 

− 

R1= 25Ω  

V=12volts 

R2= 42Ω  

R3= 58Ω  

I3 = 0.207A 

I = 0.386 A 
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Thus, our answers for resistor R2 are: 
 

 volts572 .=V  
I2 = 0.18 amperes 

 
 
 
 
How to Connect a Voltmeter in a Circuit 
 
As discussed earlier in this book, a voltmeter is a device used for measuring the potential 
difference between two different points in space.  In a circuit, we use it to measure the potential 
difference between two conductors (wires) in the circuit.  When you do that, the voltmeter 
becomes a two-terminal circuit element of the circuit.  The ideal voltmeter, as a circuit element, 
can be considered to be a resistor with infinite resistance.  As such, it has no effect on the circuit.  
This is good.  We don’t want the measuring device to change the value of that which you are 
trying to measure. 
 
A voltmeter consists of a box with two wires coming out of it.  Typically, each wire ends in a 
metal-tipped wand (called a probe) or some kind of metal clip.  The box has a gauge on it which 
displays the potential difference between the two wires.  Touch the tip of one wire to one point in 
the circuit and the tip of the other wire to another point in the circuit (being sure to establish 
good metal-to-metal contact at both points) and the voltmeter will display the potential 
difference (the voltage) between those two points in the circuit. 
 
A typical manner of depicting a voltmeter in a circuit is to draw it as 
 
 
 
 
 
To connect a voltmeter to measure the voltage across R1 in the following circuit: 
 
 
 
 
 
 
 
 
 
 
 
 
 

or 
V 

R1 

R2 

R3 

V 

V 
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hook it up as indicated in the following diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
As far as its role as a circuit element (a side effect), the ideal voltmeter has as much effect on the 
circuit it is used on, as the air around the circuit has. 
 
 
 
 
How to Connect an Ammeter in a Circuit 
 
The ammeter, a device used to measure current, is a totally different beast.  The ideal ammeter 
acts like a perfectly-conducting piece of wire that monitors the charge flow through itself.  
Connecting it in a circuit as you would a voltmeter (don’t do it!) will drastically change the 
circuit (and could cause damage to the meter). 
 
A typical manner of depicting an ammeter in a circuit is to draw it as 
 
 
 
 
 
To connect an ammeter to measure the current in R1 in the following circuit: 
 
 
 
 
 
 
 
 

V R1 

R2 

R3 

V 

or 
A A 

R1 

R2 

R3 

V 
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You have to first break the circuit, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and then connect the ammeter in series with the circuit element whose current you wish to 
measure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remember, to measure current with an ammeter, some disassembly is required! 
 
 
 
 

R1 

R2 

R3 

V 

R1 

R2 

R3 

V 

A 
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12  Kirchoff’s Rules, Terminal Voltage 
 
There are two circuit-analysis laws that are so simple that you may consider them “statements of 
the obvious” and yet so powerful as to facilitate the analysis of circuits of great complexity.  The 
laws are known as Kirchoff’s Laws.  The first one, known both as “Kirchoff’s Voltage Law” and 
“The Loop Rule” states that, starting on a conductor1, if you drag the tip of your finger around 
any loop in the circuit back to the original conductor, the sum of the voltage changes experienced 
by your fingertip will be zero.  (To avoid electrocution, please think of the finger dragging in an 
actual circuit as a thought experiment.) 
 
 
Kirchoff’s Voltage Law (a.k.a. the Loop Rule) 
 
To convey the idea behind Kirchoff’s Voltage Law, I provide an analogy.  Imagine that you are 
exploring a six-story mansion that has 20 staircases.  Suppose that you start out on the first floor.  
As you wander around the mansion, you sometimes go up stairs and sometimes go down stairs.  
Each time you go up stairs, you experience a positive change in your elevation.  Each time you 
go down stairs, you experience a negative change in your elevation.  No matter how convoluted 
the path of your explorations might be, if you again find yourself on the first floor of the 
mansion, you can rest assured that the algebraic sum of all your elevation changes is zero. 
 
To relate the analogy to a circuit, it is best to view the circuit as a bunch of conductors connected 
by circuit elements (rather than the other way around as we usually view a circuit).  Each 
conductor in the circuit is at a different value of electric potential (just as each floor in the 
mansion is at a different value of elevation).  You start with your fingertip on a particular 
conductor in the circuit, analogous to starting on a particular floor of the mansion.  The 
conductor is at a particular potential.  You probably don’t know the value of that potential any 
more than you know the elevation that the first floor of the mansion is above sea level.  You 
don’t need that information.  Now, as you drag your finger around the loop, as long as you stay 
on the same conductor, your fingertip will stay at the same potential.  But, as you drag your 
fingertip from that conductor, through a circuit element, to the next conductor on your path, the 
potential of your fingertip will change by an amount equal to the voltage across the circuit 
element (the potential difference between the two conductors).  This is analogous to climbing or 
descending a flight of stairs and experiencing a change in elevation equal to the elevation 
difference between the two floors. 
 
If you drag your fingertip around the circuit in a loop, back to the original conductor, your finger 
is again at the potential of that conductor.  As such, the sum of the changes in electric potential 
experienced by your finger on its traversal of the loop must be zero.  This is analogous to stating 
that if you start on one floor of the mansion, and, after wandering through the mansion, up and 

                                                
1 Circuits consist of circuit elements and wires, I am calling the wires “conductors.”  More specifically, a conductor 
in a circuit is any wire segment, together will all other wire segments connected directly to the wire segment (with 
no intervening circuit elements). 
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down staircases, you end up on the same floor of the mansion, your total elevation change is 
zero. 
 
In dragging your finger around a closed loop of a circuit (in any direction you want, regardless of 
the current direction) and adding each of the voltage changes to a running total, the critical issue 
is the algebraic sign of each voltage change.  In the following example we show the steps that 
you need to take to get those signs right, and to prove to the reader of your solution that they are 
correct. 
 
 
Example 
 
Find the current through each of the resistors in the following circuit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Before we get started, let’s define some variable names: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each two-terminal circuit element has one terminal that is at a higher potential than the other 
terminal.  The next thing we want to do is to label each higher potential terminal with a “+” and 
each lower-potential terminal with a “−”.    We start with the seats of EMF.  They are trivial.  By 
definition, the longer parallel line segment, in the symbol used to depict a seat of EMF, is at the 
higher potential. 

222 Ω 

27 volts 

18 volts 

15 volts 

560 Ω 

R1 = 222 Ω 

V2 = 27 volts 

V3 = 18 volts 

V1 = 15 volts 

R2 = 560 Ω 
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Next we define a current variable for each “leg” of the circuit.  A “leg” of the circuit extends 
from a point in the circuit where three or more wires are joined (called a junction) to the next 
junction.  All the circuit elements in any one leg of the circuit are in series with each other, so, 
they all have the same current through them. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note:  In defining your current variables, the direction in which you draw the arrow in a 
particular leg of the circuit, is just a guess.  Don’t spend a lot of time on your guess.  It doesn’t 
matter.  If the current is actually in the direction opposite that in which your arrow points, you 
will simply get a negative value for the current variable.  The reader of your solution is 
responsible for looking at your diagram to see how you have defined the current direction and 
interpreting the algebraic sign of the current value accordingly. 
 
Now, by definition, the current is the direction in which positive charge carriers are flowing.  
The charge carriers lose electric potential energy when they go through a resistor, so, they go 
from a higher-potential conductor, to a lower-potential conductor when they go through a 
resistor.  That means that the end of the resistor at which the current enters the resistor is the 
higher potential terminal (+), and, the end at which the current exits the resistor is the lower-
potential terminal (−) of the resistor. 

R1 = 222 Ω 

V2 = 27 volts 

V3 = 18 volts 

V1 = 15 volts 

R2 = 560 Ω 

+ 
− + 

− 

+ − 

I1 R1 = 222 Ω 

V2 = 27 volts 

V3 = 18 volts 

V1 = 15 volts 

R2 = 560 Ω 

+ 
− + 

− 

+ − 

I3 

I2 
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Now let’s define some variable names for the resistor voltages: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that the + and – signs on the resistors are important parts of our definitions of VR1 and VR2.  
If, for instance, we calculate VR1 to have a positive value, then, that means that the left (as we 
view it) end of VR1 is at a higher potential than the right end (as indicated in our diagram).  If VR1 
turns out to be negative, that means that the left end of R1 is actually at a lower potential than the 
right end.  We do not have to do any more work if VR1 turns out to be negative.  It is incumbent 
upon the reader of our solution to look at our circuit diagram to see what the algebraic sign of 
our value for VR1 means. 
 
With all the circuit element terminals labeled “+” for “higher potential” or “–” for “lower 
potential,” we are now ready to apply the Loop Rule.  I’m going to draw two loops with 
arrowheads.  The loop that one draws is not supposed to be a vague indicator of direction but a 
specific statement that says, “Start at this point in the circuit.  Go around this loop in this 
direction, and, end at this point in the circuit.”  Also, the starting point and the ending point 
should be the same.  In particular, they must be on the same conductor.  (Never start the loop on 

a circuit element.)   In the following diagram are the two loops, one labeled 1O  and the other 

labeled 2O . 
 

I1 R1 = 222 Ω 

V2 = 27 volts 

V3 = 18 volts 

V1 = 15 volts 

R2 = 560 Ω 

+ 
− + 

− 

+ − 

I3 

I2 

+ + − − 

I1 R1 = 222 Ω 

V2 = 27 volts 

V3 = 18 volts 

V1 = 15 volts 

R2 = 560 Ω 

+ 
− + 

− 

+ − 

I3 

I2 

+ + − − 
VR1  VR2  
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Now we write KVL 1O  to tell the reader that we are applying the Loop Rule (Kirchoff’s Voltage 

Law) using loop 1O , and transcribe the loop equation from the circuit diagram: 
 

KVL 1O  
+ V 1 – V R1 + V2 = 0 

 
The equation is obtained by dragging your fingertip around the exact loop indicated and 
recording the voltage changes experienced by your fingertip, and then, remembering to write 
“= 0.”  Starting at the point on the circuit closest to the tail of the loop 1 arrow, as we drag our 
finger around the loop, we first traverse the seat of EMF, V1.  In traversing V1 we go from lower 
potential (−) to higher potential (+).  That means that the finger experiences a positive change in 
potential, hence, V1 enters the equation with a positive sign.  Next we come to resistor R1.  In 
traversing R1 we go from higher potential (+) to lower potential (−).  That’s a negative change in 
potential.  Hence, VR1 enters our loop equation with a negative sign.  As we continue our way 
about the loop we come to the seat of EMF V2 and go from lower potential (−) to higher potential 
(+) as we traverse it.  Thus, V2 enters the loop equation with a positive sign.  Finally, we arrive 
back at the starting point.  That means that it is time to write “ = 0.” 
 
We transcribe the second loop equation in the same fashion: 
 

KVL 2O  

− V 2 + V R2 – V3 = 0 
 
With these two equations in hand, and knowing that V R1 = I1R1 and VR2 = I2 R2, the solution to the 
example problem is straightforward.  (We leave it as an exercise for the reader.)  It is now time 
to move on to Kirchoff’s other law. 
 
 
 

I1 R1 = 222 Ω 

V2 = 27 volts 

V3 = 18 volts 

V1 = 15 volts 

R2 = 560 Ω 

+ 
− + 

− 

+ − 

I3 

I2 

+ + − − 
VR1  VR2  

1 2 
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Kirchoff’s Current Law (a.k.a. the Junction Rule) 
 
Kirchoff’s junction rule is a simple statement of the fact that charge does not pile up at a 
junction.  (Recall that a junction is a point in a circuit where three or more wires are joined 
together.)  I’m going to state it two ways and ask you to pick the one you prefer and use that one.  
One way of stating it is to say that the net current into a junction is zero.  Check out the circuit 
from the example problem: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this copy of the diagram of that circuit, I put a dot at the junction at which I wish to apply 
Kirchoff’s Current Law, and, I labeled that junction “A.” 
 
Note that there are three legs of the circuit attached to junction A.  In one of them, current I1 
flows toward the junction.  In another, current I2 flows toward the junction.  In the third leg, 
current I3 flows away from the junction.  A current away from the junction counts as the negative 
of that value of current, toward the junction.  So, in applying Kirchoff’s Current Law in the form, 
“The net current into any junction is zero,” to junction A yields 
 
KCL A 

I1 + I2 – I3 =  0 
 
Note the negative sign in front of I3.  A current of – I3 into junction A is the same thing as a 
current of I3 out of that junction, which is exactly what we have. 
 
The other way of stating Kirchoff’s Current Law is, “The current flowing into a junction is equal 
to the current flowing out of that junction.”  In this form, in applying Kirchoff’s Current Law to 
junction A in the circuit above, one would write: 
 
KCL A 

I1 + I2 =  I3 
 
Obviously, the two results are the same. 
 

I1 R1 = 222 Ω 

V2 = 27 volts 

V3 = 18 volts 

V1 = 15 volts 

R2 = 560 Ω 

+ 
− + 

− 

+ − 

I3 

I2 

+ + − − 
VR1  VR2  

A 
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Terminal Voltage – A More Realistic Model for a Battery or DC Electrical Power 
Source 
 
Our model for a battery up to this point has been a seat of EMF.  I said that a seat of EMF can be 
considered to be an ideal battery.  This model for a battery is good as long as the battery is fairly 
new and unused and the current through it is small.  Small compared to what?  How small?  
Well, small enough so that the voltage across the battery when it is in the circuit is about the 
same as it is when it is not in any circuit.  How close to being the same?  That depends on how 
accurate you want your results to be.  The voltage across a battery decreases when you connect 
the battery in a circuit.  If it decreases by five percent and you calculate values based on the 
voltage across the battery when it is in no circuit, your results will probably be about 5% off. 
 
A better model for a battery is an ideal seat of EMF in series with a resistor.  A battery behaves 
very much as if it consisted of a seat of EMF in series with a resistor, but, you can never separate 
the seat of EMF from the resistor, and if you open up a battery you will never find a resistor in 
there.  Think of a battery as a black box containing a seat of EMF and a resistor.  The resistor in 
this model is called the internal resistance of the  
battery. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The point at which the seat of EMF is connected to the internal resistance of the battery is 
inaccessible.  The potential difference between the terminals of the battery is called the terminal 
voltage of the battery.  When the battery is not part of a circuit, the terminal voltage is equal to 
the EMF.  You can deduce this from the fact that when the battery is not part of a circuit, there 
can be no current through the resistor.  If there is no current through the resistor than the two 
terminals of the resistor must be at one and the same value of electric potential.  Thus, in the 
diagram above, the right end of the resistor is at the same potential as the high-potential terminal 
of the seat of EMF. 
 
Now, let’s put the battery in a circuit: 

Battery 

Lower-Potential (−) 
Battery Terminal 

Higher-Potential (+) 
Battery Terminal 

Seat of EMF Internal Resistance 
of the Battery 

E 
r 
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I’ve indicated the two points A and B on the circuit for communication purposes.  The terminal 
voltage is the voltage from A to B (VAB  

).  If you trace the circuit, with your fingertip, from A to 
B, the terminal voltage (how much higher the potential is at B than it is at A) is just the sum of 
the voltage changes your finger experiences along the path.  (Note that this time, we are not 
going all the way around a loop.  We do not wind up on the same conductor upon which we 
started.  So, the sum of the voltage changes from A to B is not zero.)  To sum the voltage 
changes from A to B, I will mark the terminals of the components between A and B with “+” for 
higher potential and “−” for lower potential. 
 
First the seat of EMF:  That’s trivial.  The shorter side of the EMF symbol is the lower potential 
(−) side and the longer side is the higher potential (+) side. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now, for the internal resistance of the battery:  The end of the internal resistance r that the 
current enters is the higher-potential (+) end, and, the end that it exits is the lower-potential (−) 
end. 

Battery 

E r 

R 

I A B 

Battery 

E r 

R 

I A B 
+ − 
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Note that I have also defined, in the preceding diagram, the variable Vr for the voltage across the 
internal resistance of the battery.  Remember, to get the terminal voltage VAB of the battery, all 
we have to do is to sum the potential changes that our fingertip would experience if we were to 
drag it from A to B in the circuit.  (This is definitely a thought experiment because we can’t get 
our fingertip inside the battery.) 
 

VAB = E – Vr 
VAB = E – Ir 

 
Note that, in the second line, I used the definition of resistance (V=I  R) in the form Vr = Ir, to 
replace Vr with Ir. 
 
We have been consistent, in this book, with the convention that a double subscript such as AB 
can be read “A to B” meaning, in the case at hand, that VAB is the sum of the potential changes 
from A to B (rather than the other way around), in other words, that VAB is how much higher the 
electric potential at point B is than the electric potential at point A.  Still, there are some books 
out there that take VAB (all by itself) to mean the voltage of A with respect to B (which is the 
negative of what we mean by it).  So, for folks that may have used a different convention than 
you use, it is a good idea to diagrammatically define exactly what you mean by VAB.  Putting a 
voltmeter, labeled to indicate that it reads VAB, and labeled to indicate which terminal is its “+” 
terminal and which is its “−” terminal is a good way to do this. 
 
 
 
 
 
 
 
 
 
 
 

+ 

Battery 

E r 

R 

I A B 
+ − − 

Vr 

A B 
+ 

Battery 

E r 

R 

I 
+ − − 

Vr 

VAB + − 
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13  RC Circuits 
 
Suppose you connect a capacitor across a battery, and wait until the capacitor is charged to the 
extent that the voltage across the capacitor is equal to the EMF V0 of the battery.  Further 
suppose that you remove the capacitor from the battery.  You now have a capacitor with voltage 
V0 and charge q0, where q0 = C V0. 
 
 
 
 

 
The capacitor is said to be charged.  Now suppose that you connect the capacitor in series with 
an open switch and a resistor as depicted below. 
 

 
 
 
 
 
 
 

The capacitor remains charged as long as the switch remains open.  Now suppose that, at a clock 
reading we shall call time zero, you close the switch. 
 
 
 
 
 
 
 
 

 
From time 0 on, the circuit is: 

 
 
 
 
 
 
 
 
 

The potential across the resistor is now the same as the potential across the capacitor.  This 
results in current through the resistor: 

 

+  + 
−  − C q0 , V0 

C 

R 

R 

C 

C R 

+  + 
−  − 

q0 , V0 

+  + 
−  − 

q0 , V0 

+  + 
−  − 

q , V 
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Positive charge flows from the upper plate of the capacitor, down through the resistor to the 
lower plate of the capacitor.  The capacitor is said to be discharging.  As the charge on the 
capacitor decreases; according to q = CV,  which can be written V = q/C, the voltage across the 
capacitor decreases.  But, as is clear from the diagram, the voltage across the capacitor is the 
voltage across the resistor.  What we are saying is that the voltage across the resistor decreases.  
According to V = I  R, which can be written as I = V/R, this means that the current through the 
resistor decreases.  So, the capacitor continues to discharge at an ever-decreasing rate.  
Eventually, the charge on the capacitor decreases to a negligible value, essentially zero, and the 
current dies down to a negligible value, essentially zero.  Of interest is how the various 
quantities, the voltage across both circuit elements, the charge on the capacitor, and the current 
through the resistor depend on the time t.  Let’s apply the loop rule to the circuit while the 
capacitor is discharging: 
 
 
 
 
 
 
 
 
 
 

+V – VR = 0 
 

Using q = CV expressed as 
C

q
V =  and VR = I  R, we obtain 

 

0=− IR
C

q
 . 

 
I is the charge flow rate through the resistor, which is equivalent to the rate at which charge is 
being depleted from the capacitor (since the charge flowing through the resistor comes from the 
capacitor).  Thus I is the negative of the rate of change of the charge on the capacitor: 

 

dt

dq
I −=  

 

C R 
+  + 
−  − 

V 

I 

+ 
  VR 
− 

1 

KVL    1 
 

I C R 
+  + 
−  − 

q , V 
+ 
 
− 
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Substituting this (
dt

dq
I −= ) into our loop rule equation ( 0=− IR

C

q
) yields: 

 

0=+ R
dt

dq

C

q
 

 

q
RCdt

dq 1−=  

 

Thus q(t) is a function whose derivative with respect to time is itself, times the constant 
RC

1− .  

The function is essentially its own derivative.  This brings e 

t
 to mind.  The way to get that 

constant (
RC

1− ) to appear when we take the derivative of q(t) with respect to t is to include it in 

the exponent.  Try
t

RCeqtq
1

o)(
−

= .  Now, when you apply the chain rule for the function of a 

function you get 
t

RCeq
RCdt

dq 1

o

1 −
−=  meaning that 

t
RCeq

RCdt

dq 1

o

1 −
−= which is just what we 

wanted.  Let’s check the units.  R was defined as 
I

V
 meaning the ohm is a volt per ampere.  And 

C was defined as 
V

q
 meaning that the farad is a coulomb per volt.  So the units of RC: 

 

[ ] s
C/s

C

A

C

V

C

A

V ====RC         (where the C here stands for coulombs). 

 

So the exponent in 
t

RCe
1−

 is unitless.  That works.  We can’t raise e to something that has units.  

Now, about that qo out front in 
t

RCeqq
1

o

−
= .  The exponential evaluates to a unitless quantity.  So 

we need to put the qo there to get units of charge.  If you plug the value 0 in for the time in 

t
RCeqq
1

o

−
=   you get q = qo.  Thus, qo is the initial value of the charge. 

 
One final point:  The product RC is called the “RC time constant.”  The symbol τ is often used to 
represent that time constant.  In other words,  
 

τ = RC                                                               (13-1) 
 

where τ is also referred to as the RC time constant.  In terms of τ, our expression for q becomes: 
 

τ
t

eqq
−

= o  
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Note that when t = τ, we have 
 

1
o

−= eqq  

 

o

1
q

e
q =  

 

e

1
 is .368 so τ is the time it takes for q to become 36.8% of its original value. 

 
With our expression for q in hand, it is easy to get the expression for the voltage across the 
capacitor (which is the same as the voltage across the resistor, VC = VR ) which we have been 

calling V.  Substituting our expression 
t

RCeqq
1

o

−
=  into the defining equation for capacitance 

q = CV solved for V, 

C

q
V =  

yields: 
t

RCe
C

q
V

1
o

−
=  

 
But if q0 is the charge on the capacitor at time 0, then qo = CV0 where V0 is the voltage across the 
capacitor at time 0 or: 

0
0 V

C

q =  . 

 

Substituting V0 for 
C

qo  in 
t

RCe
C

q
V

1
o

−
=  above yields: 

  

RC

t
eVV

−
= 0                                                          (13-2) 

 
 

for both the voltage across the capacitor and the voltage across the resistor.  From, the defining 
equation for resistance: 
 

V = I  R , 
 

we can write: 
 

 

R

V
I =  

 



Chapter 13  RC Circuits 

105 

Substituting our expression RC

t
eV

−

0  in for V turns this equation 






 =
R

V
I  into: 

 

R

eV
I

RC

t−

= 0  

 

But, 
R

V0  is just I0 (from V0 = I0 R solved for I0), the current at the time 0, so: 

RC

t
eII

−
= 0                                                               (13-3) 

 

Summarizing, we note that all three of the quantities, V, I, and q decrease exponentially with 
time. 
 
 
 
 
 
Charging Circuit 
 
 
Consider the following circuit, containing an initially-uncharged capacitor, and 
 
 
 
 
 
 
 
 

 
annotated to indicate that the switch is closed at time 0 at which point the circuit becomes: 
 
 

 
 
 
 
 
 
 

Let’s think about what will happen as time elapses.  With no charge on the capacitor, the voltage 
across it is zero, meaning the potential of the right terminal of the resistor is the same as the 
potential of the lower-potential terminal of the seat of EMF.  Since the left end of the resistor is 
connected to the higher-potential terminal of the seat of EMF, this means that at time 0, the 

R 

C,  q0 = 0 

R 

C,  q0 = 0 

E 

E 

t=0 

+   
−   

+   
−   
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voltage across the resistor is equivalent to the EMF E of the seat of EMF.  Thus, there will be a 
rightward current through the resistor. 

 
 
 
 
 
 
 
 
 
The positive charge flowing through the resistor has to come from someplace.  Where does it 
come from?  Answer: The bottom plate of the capacitor.  Also, charge can’t flow through an 
ideal capacitor.  So where does it go?  It piles up on the top plate of the capacitor. 
 
 
 
 
 
 
 
 
 
 
The capacitor is becoming charged.  As it does, the voltage across the capacitor increases, 
meaning the potential of the right terminal of the resistor increases (relative to the lower-
potential terminal of the seat of EMF).    The potential of the left terminal (also relative to the 
lower-potential terminal of the seat of EMF) remains constant, as dictated by the seat of EMF.  
This means that the voltage across the resistor continually decreases.  This, in turn; from VR = I  R, 
written as I = VR/R, means that the current continually decreases.  This occurs until there is so 
much charge on the capacitor that Vc = E, meaning that VR = 0 so I = 0. 
 
Recapping our conceptual discussion: 
 
 At time 0, we close the switch: 
 

• The charge on the capacitor starts off at 0 and builds up to q = CE  where E  is the 
EMF voltage. 

 

• The capacitor voltage starts off at 0 and builds up to the EMF voltage E. 

• The current starts off at 
R

I
E=0  and decreases to 0. 

R 

C E 

I 

+         −   VR 
+   
−   

R 

C E 
+  + 
−  − 

I 

+         −   VR 

q, VC 
+   
−   



Chapter 13  RC Circuits 

107 

Okay, we have a qualitative understanding of what happens.  Let’s see if we can obtain formulas 
for VR, I, VC , and q as functions of time.  Here’s the circuit: 
 

 
 
 
 
 
 
 
 

We apply the loop rule: 
 
 
 
 
 
 
 
 
 

 
 
 
 

+E – VR – VC = 0 
 
 

and the definitions of resistance and capacitance: 
 

 
 
 
 

to obtain:  
 

0=−−
C

q
IRE  

 

E=+
C

q
IR  

 
 

(qo = 0) 

R 

C E 
+  + 
−  − 

I 

+         −   VR 

q, VC 
+   
−   

R 

C E 
+  + 
−  − 

I 

+         −   VR 

q, VC 
+   
−   

1 

KVL    1 
 

VR = IR 

C

q
V

VCq

C

C

=

=
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Then we use the fact that the current is equal to the rate at which charge is building up on the 

capacitor,  
dt

dq
I = ,  to get:  

E=+
C

q
R

dt

dq
 

 

RRC

q

dt

dq E=+  

 
 
This is interesting.  This is the same equation that we had before, except that we have the 
constant E /  R on the right instead of 0.   
 
For this equation, I’m simply going to provide and discuss the solution, rather than show you 
how to solve the differential equation.  The charge function of time that solves this equation is:  
 

)(1 RC

t
eCq

−
−= E  

 

Please substitute it into the differential equation 






 =+
RRC

q

dt

dq E
 and verify that it leads to an 

identity. 
 

Now let’s check to make sure that )(1 RC

t
eCq

−
−= E  is consistent with our conceptual 

understanding.  At time zero (t = 0), our expression )(1)( RC

t
eCtq

−
−= E  evaluates to:  

 
 

0)0(

11

1

1)0(

)(

)(

)(
0

0

=

−=

−=

−=
−

q

C

eC

eCq RC

E

E

E

 

 
 
Excellent.  This is consistent with the fact that the capacitor starts out uncharged. 
 

Now, what does our charge function )(1)( RC

t
eCtq

−
−= E  say about what happens to the charge 

of the capacitor in the limit as t goes to infinity?  
 



Chapter 13  RC Circuits 

109 

 

E

E

E

E

E

E

E

Ctq

C
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∞→

−

∞→

−
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)(lim
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1
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)(
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Well, this makes sense.  Our conceptual understanding was that the capacitor would keep 
charging until the voltage across the capacitor was equal to the voltage across the seat of EMF.  
From the definition of capacitance, when the capacitor voltage is E, its charge is indeed CE.  The 
formula yields the expected result for )(lim tq

t ∞→
. 

 
Once we have q(t) it is pretty easy to get the other circuit quantities.  For instance, from the 
definition of capacitance: 
 

q = CVC , 
 

we have VC = q/C which, with )(1 RC

t
eCq

−
−= E  evaluates to: 

 

)(1C
RC

t
eV

−
−= E                                                      (13-4) 

 
Our original loop equation read: 
 

E – VR – VC = 0 
 

So: 
 

VR = E – VC 
 

which, with )(1C
RC

t
eV

−
−= E  can be written as:  

 

VR = E – )(1 RC

t
e

−
−E  
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VR = E – E + RC

t
e

−
E  

 

VR =  RC

t
e

−
E  
 

From our definition of resistance:  
 

VR =  I  R 
 

R

V
I R=  

with VR = RC

t
e

−
E , this can be expressed as: 

 

I = RC

t
e

R

−E
 

 

At time 0, this evaluates to E /R meaning that E /R can be interpreted as the current at time 0 
allowing us to write our function I(t) as  
 

I = RC

t
eI

−
0  

 
Our formula has the current starting out at its maximum value and decreasing exponentially with 
time, as anticipated based on our conceptual understanding of the circuit.  Note that this is the 
same formula that we got for the current in the discharging-capacitor circuit.  In both cases, the 

current dies off exponentially.  The reasons differ, but the effect (I = RC

t
eI

−
0 ) is the same: 

 
 
 
 
 
 
 
 
 
 
In the discharging-capacitor circuit, the current 
dies off because the capacitor runs out of 
charge. 

 
 
 
 
 
 
 
 
 
In the charging-capacitor circuit, the current 
dies off because the capacitor voltage 
counteracts the effect of the seat of EMF, and, 
because that capacitor voltage builds up to E as 
the capacitor charges. 
 

 
 

I C R 
+  + 
−  − 

q , V 
+ 
 
− 

R 

C E 
+  + 
−  − 

I 

+         −   VR 

q, VC 
+   
−   
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14  Capacitors in Series & Parallel 
 
The method of ever-simpler circuits that we used for circuits with more than one resistor can also 
be used for circuits having more than one capacitor.  The idea is to  replace a combination circuit 
element consisting of more than one capacitor with a single equivalent capacitor.  The equivalent 
capacitor should be equivalent in the sense that, with the same potential across it, it will have the 
same charge as the combination circuit element. 
 
Capacitors in Series 
 
Let’s start with a case in which the combination circuit element consists of two capacitors in 
series with each other: 
 
 
 
 
 
 
 
 
 
 
We consider the two capacitors to be a two-terminal combination circuit element: 
 
 
 
 
 
 
 
 
 
 
The voltage across the combination circuit element is clearly the EMF voltage V since, for both 
the seat of EMF and the combination circuit element, we’re talking about the potential difference 
between the same two conductors: 
 
 
 
 
 
 
 
 

V 

C2 

C1 

V 

C2 

C1 

V 

C2 

C1 
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The voltage across each individual capacitor is, however, not known. 
 
But consider this: After that last wire is connected in the circuit, the charging process (which 
takes essentially no time at all) can be understood to proceed as follows (where, for ease of 
understanding, we describe things that occur simultaneously as if they occurred sequentially): 
 
The seat of EMF pulls some positive charge from the bottom plate of the lower capacitor and 
pushes it onto the top plate of the upper capacitor. 
 
 
 
 
 
 
 
 
 
 
 
The key point about this movement of charge is that the amount of positive charge on the top 
plate of the upper capacitor is exactly equal to the amount of negative charge on the bottom plate 
of the lower capacitor (because that’s where the positive charge came from!) 
 
Now, the positive charge on the upper plate of the top capacitor repels the positive charge 
(remember, every neutral object consists of huge amounts of both kinds of charge, and, in our 
positive-charge-carrier convention, the positive charges are free to move) on the bottom plate of 
the upper capacitor and that charge has a conducting path to the top plate of the lower capacitor, 
to which it (the positive charge) is attracted by the negative charge on the bottom plate of the 
lower capacitor. 
 
The final result is that both capacitors have one and the same charge q: 
 
 
 
 
 
 
 
 
 
 
 
 

V 

C2 

C1 
+  + 

−  − 

V 

C2 

C1 
+  + 

−  − 

−  − 

+  + 

q 

q 
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which in turn causes capacitor C1 to have voltage 
1

1 C

q
V =  and capacitor C2 to have voltage 

2
2 C

q
V = . 

 
 
 
 
 
 
 
 
 
 
By the loop rule, 
 
 
 
 
 
 
 
 
 
 
 
 
 

021 =−− VVV  
 

21 VVV +=  
 

21 C

q

C

q
V +=  

 









+=

21

11

CC
qV  

 

V

CC

q

21

11
1

+
=  

 
 

V 

C1 ,  V1 
+  + 

−  − 

−  − 

+  + 

q 

q C2 ,  V2 

V 

C1 ,  V1 
+  + 

−  − 

−  − 

+  + 

q 

q C2 ,  V2 

+ 
− 

1 

KVL   1 
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So, what we’re saying is, that when you put a voltage V across the two-terminal circuit element 
 
 
 
 
 
 
 
 
 
 

an amount of charge V

CC

q

21

11
1

+
=  is moved from the bottom terminal of the combination 

circuit element, around the  circuit, to the top terminal.  Then charge stops moving.  Recall that 

we defined the capacitance of a capacitor to be the ratio 
V

q
 of the charge on the capacitor to the 

corresponding voltage across the capacitor.    
V

q
 for our two-terminal combination circuit 

element is thus the equivalent capacitance of the two terminal circuit element.  Solving  

V

CC

q

21

11
1

+
=  for the ratio 

V

q
 yields 

21

11
1

CC
V

q

+
=  so our equivalent capacitance for two 

capacitors in series is 

21

S 11
1

CC

C
+

=  

 
 
 
 
 
 
 
 
By logical induction, we can extend this argument to cover any number of capacitors in series 
with each other, obtaining: 

K+++
=

321

S 111
1

CCC

C                                                 (14-1) 

 
As far as making things easy to remember, it’s just too bad the way things work out sometimes.  
This expression is mathematically identical to the expression for resistors in parallel.  But, this 
expression is for capacitors in series. 

C2 

C1 

, 

C2 

C1 

= 
21

S 11
1

CC

C
+

=  
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Capacitors in Parallel 
 
Suppose we put a voltage V across a combination circuit element consisting of a pair of 
capacitors in parallel with each other: 
 
 
 
 
 
 
 
 
 
 
It is clear from the diagram that the voltage across each capacitor is just the EMF V since the 
voltage across every component in the circuit is the potential difference between the same two 
conductors. 
 
 
 
 
 
 
 
 
 
 
So what happens (almost instantaneously) when we make that final connection?  Answer: The 
seat of EMF pulls charge off the bottom plates of the two capacitors and pushes it onto the top 
plates until the charge on C1 is VCq 11 = and the charge on C2 is VCq 22 = . 
 
 
 
 
 
 
 
 
 
To do that, the seat of EMF has to move a total charge of 
 

q = q1 + q2 
 
q = C1 V + C2 V 
 
q = (C1  + C2 ) V 

V 

V C2 C1 

V C2 , V C1 
, V 

+  + 
−  − 

+  + 
−  − q2 q1 

C2 , V C1 
, V 
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Solving the last equation, q = (C1  + C2 ) V, for the equivalent capacitance CP, defined as q/V, 
yields: 
 

21 CC
V

q +=  

 
CP = C1  + C2 

 
 
In other words: 
 
 
 
 
 
 
 
 
 
 
So, the equivalent capacitance of capacitors in parallel is simply the sum of the individual 
capacitances.  (This is the way resistors in series combine.)  By means of inductive reasoning, 
the result can be extended to any number of capacitors, yielding: 
 

CP = C1  + C2  + C3 + …                                                (14-2) 
 
 
Concluding Remarks 
 
The facts that the voltage is the same for capacitors in parallel and the charge is the same for 
capacitors in series are important, but, if you look at these as two more things that you have to 
commit to memory then you are not going about your study of physics the right way.  You need 
to be able to “see” that the charge on capacitors in series has to be the same because the charge 
on one capacitor comes from its (originally-neutral) neighbor.  You need to be able to “see” that 
the voltage across capacitors in parallel has to be the same because, for each capacitor, the 
voltage is the potential difference between the same two conductors. 

C2 C1 = CP = C1  + C2 
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15  Magnetic Field Intro: Effects 
 

We now begin our study of magnetism, and, analogous to the way in which we began our study 
of electricity, we start by discussing the effect of a given magnetic field without first explaining 
how such a magnetic field might be caused to exist.  We delve into the causes of magnetic fields 
in subsequent chapters. 
 

A magnetic field is a vector field.  That is, it is an infinite set of vectors, one at each point in the 
region of space where the magnetic field exists.  We use the expression “magnetic field” to 
designate both the infinite set of vectors, and, when one is talking about the magnetic field at a 
point in space, the one magnetic field vector at that point in space.  We use the symbol B

v
 to 

represent the magnetic field.  The most basic effect of a magnetic field is to exert a torque on an 
object that has a property known as magnetic dipole moment, and, that finds itself in the 
magnetic field.  A particle or object that has a non-zero value of magnetic dipole moment is 
called a magnetic dipole.  A magnetic dipole is a bar magnet.  The value of the magnitude of the 
magnetic dipole moment of an object is a measure of how strong a bar magnet it is.   A magnetic 
dipole has two ends, known as poles—a north pole and a south pole.  Magnetic dipole moment is 
a property of matter which has direction.  We can define the direction, of the magnetic dipole 
moment of an object, by considering the object to be an arrow whose north pole is the arrowhead 
and whose south pole is the tail.  The direction in which the arrow is pointing is the direction of 
the magnetic dipole moment of the object.  The unit of magnetic dipole moment is the A⋅m2 
(ampere meter-squared)1.  While magnetic compass needles come in a variety of magnetic dipole 
moments, a representative value for the magnetic dipole moment of a compass needle is .1 A⋅m2.  
 

Again, the most basic effect of a magnetic field is to exert a torque on a magnetic dipole that 
finds itself in the magnetic field.  The magnetic field vector at a given point in space, is the 
maximum possible torque-per-magnetic-dipole-moment-of-would-be-victim that the magnetic 
field would/will exert on any magnetic dipole (victim) that might find itself at the point in 
question.  I have to say “maximum possible” because the torque exerted on the magnetic dipole 
depends not only on the magnitude of the magnetic field at the point in space, and, the magnitude 
of the magnetic dipole moment of the victim; but; it also depends on the orientation of the 
magnetic dipole relative to the direction of the magnetic field vector.  In fact: 
 

B�τ vvv ×=                                                                  (15-1) 
where: τv  is the torque exerted on the magnetic dipole (the bar magnet) by the magnetic field, �v  is the magnetic dipole moment of the magnetic dipole (the bar magnet, the victim), and 

B
v

 is the magnetic field vector at the location in space at which the magnetic dipole is. 
                                                
1 Magnetic dipole moment magnitudeµ is a fundamental property of matter, as fundamental as mass m and 

charge q.  For the elementary particle known as the electron: m = 9.11 × 10−31 kg, q = 1.60 × 10−19 C, 
and µ = 9.27 × 10−24 A2⋅m.  Calling the unit of magnetic dipole moment the A⋅m2 is about as illuminating as calling 

the unit of mass the N⋅s/m2, or calling the unit of charge the A⋅s (both of which are correct).  It would be nice if there 
was a name for the unit of magnetic dipole moment in the SI system of units, but there isn’t.  There is a non-SI unit 

of magnetic dipole moment.  It is called the Bohr magneton, abbreviated B
� .  In units of Bohr magnetons, the 

magnetic moment of the electron is B
�1 . 
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For the cross product of any two vectors, the magnitude of the cross product is the product of the 
magnitudes of the two vectors, times the sine of the angle the two vectors form when placed tail 
to tail.  In the case of B�τ vvv ×= , this means: 
 

θµτ sinB====  
 
In the SI system of units, torque has units of N⋅m (newton-meters).  For the units on the right 
side of θµτ sinB=  to work out to be N⋅m, what with µ  having units of electric dipole moment 

(A⋅m2) and sinθ  having no units at all, B must have units of torque-per-magnetic-dipole-moment, 

namely, 2mA

mN

⋅
⋅

.  That combination unit is given a name.  It is called the tesla, abbreviated T. 

 

1 T = 1 2mA

mN

⋅
⋅

 

 
Example 15-1 
 
Consider a magnetic dipole having a magnetic dipole moment µ = 0.045 A⋅m2, oriented so that it 
makes an angle of 23° with the direction of a uniform magnetic field of magnitude 5.0 × 10−5 T 
as depicted below.  Find the torque exerted on the magnetic dipole, by the magnetic field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Recall that the arrowhead represents the north pole of the bar magnet that a magnetic dipole is.  
The direction of the torque is such that it tends to cause the magnetic dipole to point in the 
direction of the magnetic field.  For the case depicted above, that would be clockwise as viewed 
from the vantage point of the creator of the diagram. The magnitude of the torque for such a case 
can be calculated as follows: 

θµτ sinB=  
 

(((( ))))(((( )))) o52 23sinT1005mA 045 −−−−××××⋅⋅⋅⋅==== ..τ  
 

τ = 8.8 × 10−7A⋅m2⋅T 

B 

θ 

µ 
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Recalling that a tesla is a 2mA

mN

⋅
⋅

 we have: 

 

τ = 8.8 × 10−7 A⋅m2⋅ 2mA

mN

⋅
⋅

 

 
τ = 8.8 × 10−7 N⋅m 

 
 

Thus, the torque on the magnetic dipole is 8.8 × 10−7 N⋅m clockwise, as viewed from the vantage 
point of the creator of the diagram. 
 
 
 
Example 15-2 
 
A particle having a magnetic dipole moment �v = 0.025 A⋅m2 iiii − 0.035 A⋅m2 jjjj + 0.015 A⋅m2 kkkk 

is at a point in space where the magnetic field B
v

= 2.3 mT iiii + 5.3 mT jjjj − 3.6 mT kkkk. 
Find the torque exerted on the particle by the magnetic field. 
 

B�τ vvv ××××====  
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The Magnetic Force Exerted Upon a Magnetic Dipole 
 
A uniform magnetic field exerts no force on a bar magnet that is in the magnetic field.  You 
should probably pause here for a moment and let that sink in.  A uniform magnetic field exerts 
no force on a bar magnet that is in that magnetic field. 
 
You have probably had some experience with bar magnets.  You know that like poles repel and 
unlike poles attract.  And, from your study of the electric field, you have probably (correctly) 
hypothesized that in the field point of view, the way we see this is that one bar magnet (call it the 
source magnet) creates a magnetic field in the region of space around itself, and, that if there is 
another bar magnet in that region of space, it will be affected by the magnetic field it is in.  We 
have already discussed the fact that the victim bar magnet will experience a torque.  But you 
know, from your experience with bar magnets, that it will also experience a force.  How can that 
be when I just stated that a uniform magnetic field exerts no force on a bar magnet?  Yes, of 
course.  The magnetic field of the source magnet must be non-uniform.  Enough about the nature 
of the magnetic field of a bar magnet.  I’m supposed to save that for an upcoming chapter.  
Suffice it to say that it is non-uniform and to focus our attention on the effect of a non-uniform 
field on a bar magnet that finds itself in that magnetic field. 
 
First of all, a non-uniform magnetic field will exert a torque on a magnetic dipole (a bar magnet) 
just as before ( B�τ vvv ×= ).  But, a non-uniform magnetic field (one for which the magnitude, 
and/or direction, depends on position) also exerts a force on a magnetic dipole.  The force is 
given by: 
 

)(B B�F
vvv

⋅⋅⋅⋅∇∇∇∇====                                                    (15-2) 
 

where 

BF
v

 is the force exerted by the magnetic field B
v

 on a particle having a magnetic dipole 
moment �v , 

 �v  is the magnetic dipole of the “victim”, and, 

 B
v

 is the magnetic field at the position in space where the victim finds itself.  To evaluate 
the force, one must know B

v
 as a function of x, y, and z (whereas �v  is a constant). 

Note that after you take the gradient of B� vv ⋅⋅⋅⋅ , you have to evaluate the result at the values of x, y, 
and z corresponding to the location of the victim. 

 
Just to make sure that you know how to use this equation, please note that if �v  and B

v
 are 

expressed in iiii, jjjj, kkkk notation, so that they appear as kkkkjjjjiiii zyx µµµ ++++++++====�v  and 

kkkkjjjjiiii zyx BBB ++++++++====B
v

 respectively, then: 

 
)()( kkkkjjjjiiiikkkkjjjjiiii zyxzyx BBB ++++++++⋅⋅⋅⋅++++++++====⋅⋅⋅⋅ µµµB� vv
 

 

zzyyxx BBB µµµ ++++++++====⋅⋅⋅⋅ B� vv
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And the gradient of B� vv ⋅⋅⋅⋅  (which by equation 15-2 is the force we seek) is given by 
 

kkkkjjjjiiii
zyx ∂∂∂∂
⋅⋅⋅⋅∂∂∂∂++++

∂∂∂∂
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)()()(
)(

B�B�B�
B� vvvvvv
vv

 

 
where derivatives in this equation can (using zzyyxx BBB µµµ ++++++++====⋅⋅⋅⋅ B� vv

 from just above) can be 

expressed as: 
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x ∂∂∂∂
∂∂∂∂++++

∂∂∂∂
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∂∂∂∂
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∂∂∂∂

⋅⋅⋅⋅∂∂∂∂ µµµ)( B� vv

; 

 
where we have taken advantage of the fact that the components of the magnetic dipole moment 
of the victim are not functions of position.  Also note that the derivatives are all partial 
derivatives.  Partial derivatives are the easy kind in the sense that, when, for instance, you take 
the derivative with respect to x, you are to treat y and z as if they were constants.  Finally, it is 
important to realize that, after you take the derivatives, you have to plug the values of x, y, and z 
corresponding to the location of the magnetic dipole (the victim), into the given expression for 
the force. 
 
 
 
 
Example 15-3 
 

There exists, in a region of space, a magnetic field, given in terms of Cartesian unit vectors 
by: 

jjjjiiii 22
6

22
6 x

mT10825
y

mT10825
yxyx ++++

⋅⋅⋅⋅××××++++
++++

⋅⋅⋅⋅××××−−−−==== −−−−−−−− ..B
v

 

 
A particle is in the region of space where the magnetic field exists.  The particle has a 
magnetic dipole moment given by: 
 

iiii2mA145 ⋅⋅⋅⋅==== .�v  
 
The particle is at (0.110 m, 0, 0). 
 
Find the force exerted on the particle by the magnetic field.
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Solution:  First, we sketch the configuration: 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
Substituting the given �v  and B

v
, into our expression for the force yields: 

 
)(B B�F

vvv
⋅⋅⋅⋅∇∇∇∇====  
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Recalling that we have to evaluate this expression at the location of the victim, a location that 
was given as (0.110 m, 0, 0), we find that: 
 

µ x 

y 

B 
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Characteristics of the Earth’s Magnetic Field 
 
We live in a magnetic field produced by the earth.  Both its magnitude and its direction are 
different at different locations on the surface of the earth.  Furthermore, at any given location, the 
earth’s magnetic field varies from year to year in both magnitude and direction.  Still, on the 
geographical scale of a college campus, and, on a time scale measured in days, the earth’s 
magnetic field is approximately uniform and constant. 
 
To align your index finger with the magnetic field of the earth on the Saint Anselm College 
campus, first point in the horizontal direction 15.4° West of North2.  Then tilt your arm 
downward so that you are pointing in a direction that is 68.9° below the horizontal.  (Yes!  Can 
you believe it?  It’s mostly downward!)  You are now pointing your finger in the direction of the 
earth’s magnetic field.  The magnitude of the magnetic field, on the Saint Anselm College 
campus, is 5.37 × 10  

−
 

5 T.  In other words: 
 

The Earth’s Magnetic Field on the Saint Anselm College Campus in 2005 
Characteristic Value Rate of Change 
Declination −15.4° +0.075°/year 
Inclination (Dip Angle)   68.9° −0.095°/year 
Magnitude 5.37 × 10  

−
 

5 T −0.012 × 10  

−
 

5 T/year 
Horizontal Component 1.93 × 10  

−
 

5 T +0.004 × 10  

−
 

5 T/year 
Vertical Component 5.01 × 10  

−
 

5 T −0.014 × 10  

−
 

5 T/year 
 
A compass needle is a tiny bar magnet that is constrained to rotate about a vertical axis.  The 
earth’s magnetic field exerts a torque on the compass needle that tends to make the compass 
needle point in the direction of the horizontal component of the earth’s magnetic field, a 
direction we call “magnetic north”.  Recall that when we talk about which way a bar magnet 
(such as a compass needle) is pointing, we imagine there to be an arrowhead at its north pole. 

                                                
2 The values of the earth’s magnetic field presented here were obtained from the (United States) National 
Geophysical Data Center (NGDC) geomagnetism web site at http://www.ngdc.noaa.gov/seg/geomag/geomag.shtml.  
I used the magnetic field values calculator at the site to obtain the presented values.  I used latitude 42° 59’ 7”, 
longitude 71° 30’ 20” (the location of my office in the Goulet Science Center, obtained from a topographic map) and 
date February 21, 2005 as input values.  Check out the web site.  It provides some interesting insight into the earth’s 
magnetic field. 
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16  Magnetic Field: More Effects 
 
The electric field and the magnetic field are not the same thing.  An electric dipole with positive 
charge on one end and negative charge on the other is not the same thing as a magnetic dipole 
having a north and a south pole.  More specifically: An object can have positive charge but it 
can’t have “northness”. 
 
On the other hand, electricity and magnetism are not unrelated.  In fact, under certain 
circumstances, a magnetic field will exert a force on a charged particle that has no magnetic 
dipole moment.  Here we consider the effect of a magnetic field on such a charged particle. 
 
FACT:   A magnetic field exerts no force on a charged particle that is at rest in the magnetic 
field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FACT:   A magnetic field exerts no force on a charged particle that is moving along the line 
along which the magnetic field, at the location of the particle, lies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B 

+ q F = 0 

B 

+ q 

F = 0 

+ q 
v 

v 

F = 0 
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FACT:   A magnetic field does exert a  force on a charged particle that is in the magnetic field, 
and, is moving, as long as the velocity of the particle is not along the line, along which, the 
magnetic field is directed.  The force in such a case is given by: 
 

BF
vvv

××××==== vvvvq                                                                  (16-1) 
 
Note that the cross product yields a vector that is perpendicular to each of the multiplicands.  
Thus the force exerted on a moving charged particle by the magnetic field within which it finds 
itself, is always perpendicular to both its own velocity, and the magnetic field vector at the 
particle’s location. 
 
Consider a positively-charged particle moving with velocity v at angle θ in the x-y plane of a 
Cartesian coordinate system in which there is a uniform magnetic field in the +x direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To get the magnitude of the cross product B

vv ××××vvvv  that appears in BF
vvv

××××==== vvvvq  we are supposed to 

establish the angle that vvvv
v

 and B
v

 make with each other when they are placed tail to tail.  Then 

the magnitude B
vv ××××vvvv  is just the absolute value of the product of the magnitudes of the vectors 

times the sine of the angle in between them.  Let’s put the two vectors tail to tail and establish 
that angle.  Note that the magnetic field as a whole is an infinite set of vectors in the +x direction.  
So, of course, the magnetic field vector B

v
 at the location of the particle, is in the +x direction. 

 
 
 
 
 
 
Clearly the angle between the two vectors is just the angle θ that was specified in the problem.  
Hence, 

θsinBv====×××× B
vv

vvvv  , 

 

B 

q 

v 

+ 
θ 

v 
θ 

B 
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x 
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so, starting with our given expression for F
v

, we have: 
 

BF
vvv

××××==== vvvvq  
 

BF
vvv

××××==== vvvvq  

 

θsinBqv====F
v

 

 
Okay, now let’s talk about the direction of BF

vvv
××××==== vvvvq .  We get the direction of B

vv ××××vvvv  and then 

we think.  The charge q is a scalar.  If q is positive, then, when we multiply the vector B
vv ××××vvvv  by q 

(to get F
v

), we get a vector in the same direction as that of B
vv ××××vvvv .  So, whatever we get (using the 

right-hand rule for the cross product) for the direction of B
vv ××××vvvv  is the direction of BF

vvv
××××==== vvvvq .   

But, if q is negative, then, when we multiply the vector B
vv ××××vvvv  by q (to get F

v
), we get a vector in 

opposite direction to that of B
vv ××××vvvv .  So, once we get the direction of B

vv ××××vvvv  by means of the right-
hand rule for the cross product of two vectors, we have to realize that (because the charge is 
negative) the direction of BF

vvv
××××==== vvvvq  is opposite the direction that we found for B

vv ××××vvvv . 
 
Let’s do it.  To get the direction of the cross product vector B

vv ××××vvvv  (which appears in 
BF
vvv

××××==== vvvvq ), draw the vectors  vvvv
v

 and B
v

 tail to tail. 
 
 
 
 
 
 
extend the fingers of your right hand so that they are pointing directly away from your right 
elbow.  Extend your thumb so that it is at right angles to your fingers.  

 
 
 
 
 
 
 
 
 

Now, keeping your fingers aligned with your forearm, align your fingers with the first vector 
appearing in the cross product B

vv ××××vvvv , namely vvvv
v

. 
 
 
 
 
 
 

v 

B 

v 

B 
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Now rotate your hand, as necessary, about an imaginary axis extending along your forearm and 
along your middle finger, until your hand is oriented such that, if you were to close your fingers, 
they would point in the direction of the second vector. 
 
 
 
 
 
 
 
 
The direction in which your right thumb is now pointing is the direction of B

vv ××××vvvv .  We depict a 
vector in that direction by means of an ×××× with a circle around it.  That symbol is supposed to 
represent the tail feathers of an arrow that is pointing away from you. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let’s not forget about that q in the expression BF

vvv
××××==== vvvvq .  In the case at hand, the charged 

particle under consideration is positive.  In other words q is positive.  So, BF
vvv

××××==== vvvvq  is in the 

same direction as B
vv ××××vvvv .   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

v 

B 

This thumb is pointing 
straight into the page, 
directly away from you! 
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A magnetic field will also interact with a current-carrying conductor.  We focus our attention on 
the case of a straight current-carrying wire segment in a magnetic field: 
 
 
 
FACT:  Given a straight, current carrying conductor in a magnetic field, the magnetic field exerts 
no force on the wire segment if the wire segment lies along the line along which the magnetic 
field is directed.  (Note: The circuit used to cause the current in the wire must exist, but, is not 
shown in the following diagram.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FACT:  A magnetic field exerts a force on a current-carrying wire segment that is in the 
magnetic field, as long as the wire is not collinear with the magnetic field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B 

F = 0 

B 

I 

I 
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The force exerted on a straight current-carrying wire segment, by the (uniform) magnetic field in 
which the wire is located, is given by 
 

BLF
vvv

××××==== I                                                                  (16-2) 
where: 

F
v

 is the force exerted on the wire-segment-with-current by the magnetic field the wire is in, 
I  is the current in the wire, 
L
v

 is a vector whose magnitude is the length of that segment of the wire which is actually in 
the magnetic field, and, whose direction is the direction of the current (which depends 
both on how the wire segment is oriented and how it is connected in the (not-shown) 
circuit.) 

B
v

 is the magnetic field vector.  The magnetic field must be uniform along the entire length 
of the wire for this formula to apply, so, B

v
, is the magnetic field vector at each and every 

point along the length of the wire. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that in the preceding diagram, F

v
 is directed into the page as determined from BLF

vvv
××××==== I  

by means of the right-hand rule for the cross product of two vectors. 

B I 

L 

F
v

 ×××× 
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Effect of a Uniform Magnetic Field on a Current Loop 
 
Consider a rectangular loop of wire.  Suppose the loop to be in a uniform magnetic field as 
depicted in the following diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that, to keep things simple, we are not showing the circuitry that causes the current in the 
loop and we are not showing the cause of the magnetic field.  Also, the magnetic field exists 
throughout the region of space in which the loop finds itself.  We have not shown the full extent 
of either the magnetic field lines depicted, or, the magnetic field itself. 
 
Each segment of the loop has a force exerted on it by the magnetic field the loop is in.  Let’s 
consider the front and back segments first: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Because both segments have the same length, both segments make the same angle with the same 
magnetic field, and both segments have the same current; the force BLF

vvv
××××==== I  will be of the 

same magnitude in each.  (If you write the magnitude as θsinILBF ==== , you know the 
magnitudes are the same as long as you know that for any angle θ ,  sin(θ ) = sin(180°- θ ). )  
Using the right-hand rule for the cross product to get the direction, we find that each force is 
directed perpendicular to the segment upon which it acts, and, away from the center of the 
rectangle: 

B I 

B I 

Front Segment 

Back Segment 
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The two forces, FFRONT and FBACK are equal in magnitude, collinear, and opposite in direction.  
About the only effect they could have would be to stretch the loop.  Assuming the material of the 
loop is rigid enough not to stretch, the net effect of the two forces is no effect at all.  So, we can 
forget about them and focus our attention on the left and right segments in the diagram. 
 
Both the left segment and the right segment are at right angles to the magnetic field.  They are 
also of the same length and carry the same current.  For each, the magnitude of BLF

vvv
××××==== I  is 

just IwB where w is the width of the loop and hence the length of both the left segment and the 
right segment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the right-hand rule for the cross product of two vectors, applied to the expression 

BLF
vvv

××××==== I  for the force exerted on a wire segment by a magnetic field, we find that the force 
F = IwB on the right segment is upward and the force F = IwB on the left segment is downward. 
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The two forces are equal (both have magnitude F = IwB ) and opposite in direction, but, they are 
not collinear.  As such, they will  exert a net torque on the loop.  We can calculate the torque 
about the central axis: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
by extending the lines of action of the forces and identifying the moment arms: 
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The torque provided by each force is r

zzzz
F.  Both torques are counterclockwise as viewed in the 

diagram.  Since they are both in the same direction, the magnitude of the sum of the torques is 
just the sum of the magnitudes of the two torques, meaning that the magnitude of the total torque 
is just τ = 2 r

zzzz
F.  We can get an expression for 2r

zzzz
 by recognizing, in the diagram, that 2 r

zzzz
 is 

just the distance across the bottom of the triangle in the front of the diagram: 
 
 
 
 
 
 
 
 
and defining the angle θ, in the diagram, to be the angle between the plane of the loop and the 
vertical. 
 
 
 
 
 
 
 
 
 
From the diagram, it is clear that  2r

zzzz
 = l  sinθ .  

I 

F=IwB 

r
zzzz
 

r
zzzz
 

F=IwB 

2r
zzzz
 

Length l 

2r
zzzz
 

Length l 

θ 
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Thus the magnetic field exerts a torque of magnitude 
 

FrTTTT====τ  

 
[[[[ ]]]] )()(sin IwBθτ l====  

on the current loop. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The expression for the torque can be written more concisely by first reordering the multiplicands 
so that the expression appears as  
 

θτ sinwBIl====  
 

 

and then recognizing that the product l w is just the area A of the loop.  Replacing l w with A 
yields: 
 

θτ sinBAI====  
 

 

Torque is something that has direction, and, you might recognize that sinθ appearing in the 
preceding expression as something that can result from a cross product.  Indeed, if we define an 
area vector to have a magnitude equal to the area of the loop,  
 
 

wl====A
v

 

 
 

and, a direction perpendicular to the plane of the loop, 
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we can write the torque as a cross product.  First note that the area vector as I have defined it in 
words to this point, could point in the exact opposite direction to the one depicted in the diagram.  
If, however, we additionally stipulate that the area vector is directed in accord with the right-
hand rule for something curly something straight, with the loop current being the something 
curly and the area vector the something straight (and we do so stipulate) , then the direction of 
the area vector is uniquely determined to be the direction depicted in the diagram. 
 
Now, if we slide that area vector over to the right front corner of the loop, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
it becomes more evident (you may have already noticed it) that the angle between the area vector  
A
v

and the magnetic field vector B
v

, is the same θ  defined earlier and depicted in the diagram 
just above. 
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This allows us to write our expression for the torque θτ sinIAB====  counterclockwise as viewed 
in the diagram, as: 
 

BAτ vvv ××××==== I  
 

Check it out.  The magnitude of the cross product BA
vv

××××  is just θsinAB , meaning that our new 

expression yields the same magnitude θτ sinBAI====  for the torque as we had before.  
Furthermore, the right-hand rule for the cross product of two vectors yields the torque direction 
depicted in the following diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Recalling that the sense of rotation associated with an axial vector is determined by the right-
hand rule for something curly, something straight, we point the thumb of our cupped right hand 
in the direction of the torque vector and note that our fingers curl around counterclockwise, as 
viewed in the diagram. 
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Okay, we’re almost there.  So far, we have the fact that if you put a loop of wire carrying a 
current I in it, in a uniform magnetic field B

v
, with the loop oriented such that the area vector A

v
 

of the current loop makes an angle θ with the magnetic field vector, then, the magnetic field 
exerts a torque  
 

BAτ vvv ××××==== I  
on the loop. 
 
This is identical to what happens to a magnetic dipole when you put it in a uniform magnetic 
field.  It experiences a torque B�τ vvv ××××==== .  In fact, if we identify the product A

v
I  as the magnetic 

dipole moment of the current loop,  then the expressions for the torque are completely identical: 
 
 

B�τ vvv ××××====                                                               (16-3) 
where: 
 τ

v
 is the torque exerted on the victim.  The victim can be either a particle that has an 

inherent magnetic dipole moment, or, a current loop. 
 �v   is the magnetic dipole moment of the victim.  If the victim is a particle, �v is simply the 

magnitude and direction of the inherent magnetic dipole moment of the particle.  If the 
victim is a current loop, then A� vv

I==== where I is the current in the loop and A
v

 is the area 
vector of the loop, a vector whose magnitude is the area of the loop and whose direction 
is the direction in which your right thumb points when you curl the fingers of your right 
hand around the loop in the direction of the current.  (See the discussion below for the 
case in which the victim is actually a coil of wire rather than a single loop.) 

 
B
v

  is the magnetic field vector at the location of the victim.  
 
 

B I 

θ 

A = l w 
τ < 
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A single loop of wire can be thought of as a coil of wire that is wrapped around once.  If the wire 
is wrapped around N times, rather than once, then the coil is said to have N turns or N windings.  
Each winding makes a contribution of A

v
I  to the magnetic dipole moment of the current loop.  

The contribution from all the loops is in one and the same direction.  So, the magnetic moment of 
a current-carrying coil of wire is: 
 

A� vv
IN====                                                               (16-4) 

 

where: 
 �v  is the magnetic moment of the coil of wire. 

 
N is the number of times the wire was wrapped around to form the coil.  N is called the 

number of windings.  N is also known as the number of turns. 
 
 I is the current in the coil.  The coil consists of one long wire wrapped around many 

times, so, there is only one current in the wire.  We call that one current the current in 
the coil.  

 
A
v

 is the area vector of the loop or coil.  It’s magnitude is the area of the plane shape whose 
perimeter is the loop or coil.  It’s direction is the direction your extended right thumb 
would point if you curled the fingers of your right hand around the loop in the direction 
of the current. 

 
 
 
 
Some Generalizations Regarding the Effect of a Uniform Magnetic Field on a Current Loop: 
 
We investigated the effect of a uniform magnetic field on a current loop.  A magnetic field will 
exert a torque on a current loop whether or not the magnetic field is uniform.  Since a current 
loop has some spatial extent (it is not a point particle), using a single value-plus-direction for 
B
v

 in B�τ vvv ××××====  will yield an approximation to the torque.  It is a good approximation as long as 
the magnetic field is close to being uniform in the region of space occupied by the coil. 
 
We investigated the case of a rectangular loop.  The result for the torque exerted on the current-
carrying loop or coil is valid for any plane loop or coil, whether it be circular, oval, or 
rectangular1. 

                                                
1 We have not proved this to be the case.  We simply it here, without proof. 
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17  Magnetic Field: Causes 
 
This chapter is about magnetism but let’s think back to our introduction to charge for a moment.  
We talked about the electric field before saying much about what caused it.  We said the electric 
field exerts a force on a particle that has charge.  Later we found out that charged particles play 
not only the role of “victim” to the electric field but, that charged particles cause electric fields to 
exist. 
 
Now we have been talking about the magnetic field.  We have said that the magnetic field exerts 
a torque on a particle that has magnetic dipole moment.  You might guess that a particle that has 
magnetic dipole moment would cause a magnetic field.  You’d be right!  A particle that has the 
physical property known as magnetic dipole moment, causes a magnetic field to exist in the 
region of space around it.  A magnetic field can be caused to exist by a particle having magnetic 
dipole moment or a distribution of particles having magnetic dipole moment. 
 
The magnetic field at point P, an empty point in space in the vicinity of a particle that has a 
magnetic dipole moment, due to that particle-with-magnetic-dipole-moment, is given by 
 

3
o ˆ)ˆ(3

4 r

�rr�
B

vv
v −−−−⋅⋅⋅⋅====

π
µ

                                                  (17-1) 

where 
 

A

mT
104 7

o

⋅⋅⋅⋅××××==== −−−−πµ  is a universal constant which goes by the name of  “the magnetic 

permeability of free space.”  This value is to be taken as exact.  (Do not treat the “4” as a 
value known to only one significant digit.) 

 
B
v

 is the magnetic field vector at point P, where P is an empty point in space a distance r 
away from the particle-with-magnetic-dipole-moment that is causing B

v
. 

 �v  is the magnetic dipole moment of the particle that is causing the magnetic field. 
 
r̂  is a unit vector in the direction “from the particle, toward point P”.  Defining r

v
 to be the 

position vector of point P relative to the location of the particle-with-magnetic-dipole-

moment, rr ˆr====v so 
r

r
r

v

====ˆ . 

r is the distance that point P is from the particle-with-magnetic-dipole-moment. 
 
 
A particle-with-magnetic-dipole-moment is called a magnetic dipole.  Note that the magnetic 

field due to a magnetic dipole dies off like 3

1

r
. 
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Example 
 
A particle is at the origin of a Cartesian coordinate system.  The magnetic dipole moment of the 
particle is jjjj2mA01 ⋅⋅⋅⋅. .  Find the magnetic field vector, due to the particle, at (3.0 cm, 4.0 cm). 
 
 
 
Solution 
 
I’m going to start with a diagram of the configuration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that I do not know the direction of B in advance, so, I have drawn B

v
 on the diagram in a 

fairly arbitrary direction.  I did want to put B
v

 on there to make it more evident that we are 
dealing with the magnetic field at point P, caused by the particle at the origin.  Also, I 
intentionally drew B

v
 in a direction other than that of r

v
, to avoid conveying the false impression 

that B
v

 is necessarily in the direction of r
v

.  (At some points, it is, but those points are the 
exception. In general, B

v
 is not in the same direction as r

v
.  As we shall soon see,  for the case at 

hand, it turns out that B
v

 is not in the same direction as r
v

.) 
 
Given x = 0.030 and y =0.040 m, the position vector, for point P is jjjjiiii m0400m0300 ..r ++++====v

. 
The magnitude of r

v
is given by: 

 

m050

)m040()m030( 22

22

.

..

====

++++====

++++====

r

r

yxr

 

 
The unit vector r̂  is thus given by: 
 

r 

P 

µ 

B 

y 

x 



Chapter 17  Magnetic Field: Causes 

141 

jjjjiiii

jjjjiiii

800600ˆ

m0500

m0400m0300
ˆ

ˆ

..r

.
..

r

r
r

++++====

++++====

====
r

v

 

 
Substituting what we have into our expression forB

v
 we find: 
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So ends our solution to the sample problem.  Here’s a magnetic field diagram of the magnetic 
field due to a particle that has a magnetic dipole moment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B 
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The Magnetic Field Due to a Loop or Coil 
 
We discovered in the last chapter that, as a victim to a magnetic field, a current loop or a current-
carrying coil behaves as if it were a particle with a magnetic dipole moment  
 

A� vv
NI====  

 
where: �v  is the magnetic moment of the coil of wire. 

N is the number of windings, a.k.a. the number of turns. (N = 1 in the case of a loop.) 
 I is the current in the coil.  
A
v

 is the area vector of the loop or coil.  It’s magnitude is the area of the plane shape whose 
perimeter is the loop or coil.  It’s direction is the direction your extended right thumb 
would point if you curled the fingers of your right hand around the loop in the direction 
of the current. 

 
You might guess that if a coil of wire responds to a magnetic field as if it were a particle with a 
magnetic dipole moment, then perhaps it can also behave as a source of magnetic field lines and 
create the same kind of magnetic field that a particle with a magnetic dipole moment produces.  
Indeed it does.  As compared to a particle like the electron that has a magnetic dipole moment 
but itself has no extent in space, a loop or coil of wire does have extent in space.  The magnetic 
field very near the loop or coil is more complicated than a dipole field, but, at points whose 
distance from the loop or coil are large compared to the diameter of the coil, the magnetic field 
of the loop or coil is the dipole magnetic field 
 

3
o ˆ)ˆ(3

4 r

�rr�
B

vv
v −−−−⋅⋅⋅⋅====

π
µ

 

 
In the case of a loop or coil, the �v  that appears in this equation is A� vv

NI==== . 
 
 
A Bar Magnet 
 
An atom is made of a nucleus containing neutrons and protons; and; electrons in orbit about the 
nucleus.  Each of these elementary particles has a magnetic moment.  The magnetic moment1 of 
the electron is 224 mA10289 ⋅⋅⋅⋅×××× −−−−. , the magnetic moment of the proton is 226 mA10411 ⋅⋅⋅⋅×××× −−−−. , and, 

the magnetic moment of the neutron is 227 mA10669 ⋅⋅⋅⋅×××× −−−−. .  When these particles combine to form 
atoms, they each contribute to the magnetic field of the atom.  In addition to these contributions 
to the magnetic field, the protons move in loops within the nucleus and the electrons move in 
loops about the nucleus.  A charged particle that is moving in a loop is a current loop and such 
current loops contribute to the overall magnetic field of the atom.  In many atoms the various 
contributions to the magnetic field cancel each other out in such a manner that the overall 
                                                
1 I got the magnetic moment values from the U.S. National Institute of Standards and Technology (NIST) 
www.nist.gov web site and rounded them to three significant figures. 
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magnetic field is essentially zero.  In some atoms, such as iron, cobalt, and neodymium, the 
various contributions to the magnetic field do not cancel out.  In such cases, the observed total 
magnetic field of the atom is a dipole magnetic field, and, the atom behaves as a magnetic dipole.  
Substances consisting of such atoms are referred to as ferromagnetic materials. 
 
Consider an iron rod or bar that is not a magnet.  The bar was formed from molten iron.  As the 
iron cooled, seed crystals formed at various locations within the iron.  At the start of 
crystallization, the iron atoms forming the seed crystal tend to align with each other, south pole 
to north pole.  The magnetic field of the seed crystal causes neighboring iron atoms to align with 
the seed crystal magnetic dipole moment so that when they crystallize and become part of the 
growing crystal they also align south pole to north pole.  The contributions of the atoms making 
up the crystal to the magnetic field of the crystal tend to add together constructively to form a 
relatively large magnetic field.  There is a multitude of sites at which crystals begin to form and 
at each site, in the absence of an external magnetic field, the seed crystal is aligned in a random 
direction.  As the crystals grow, they collectively form a multitude of microscopic bar magnets.  
When the iron bar is completely solidified it consists of a multitude of microscopic bar magnets 
called domains.  Because they are aligned in random directions, their magnetic fields cancel each 
other out.  Put the iron rod or bar in a magnetic field and the magnetic field will cause the 
microscopic bar magnets, the domains, in the iron to line up with each other to an extent that 
depends on the strength of the magnetic field.  This turns the iron rod or bar into a magnet.  
Remove the rod or bar from the magnetic field and local forces on the domains cause them to 
revert back toward their original orientations.  They do not achieve their original orientations and 
the iron is remains at least weakly magnetized, an effect known as hysteresis. 
 
Getting back to the cooling process, if we allow the molten iron to crystallize within an external 
magnetic field, the seed crystals, will all tend to line up with the external magnetic field, and 
hence, with each other.  When the iron is completely solidified, you have a permanent magnet. 
 
So a bar magnet consists of a bunch of microscopic bar magnets which themselves consist of a 
bunch of atoms each of which has a magnetic dipole moment because it consists of particles that 
each have a magnetic dipole moment and in some cases have charge and move in a loop within 
the atom. 
 
The magnetic field of a bar magnet is thus the superposition (vector sum at each point in space) 
of a whole lot of magnetic dipole fields.  As such, at distances large compared to the length of 
the magnet, the magnetic field of a bar magnet is a magnetic dipole field.  As such, we can 
assign, based on measurements, a magnetic dipole vector �v  to the bar magnet as a whole, and 
compute its magnetic field (valid for distances large compared to the length of the magnet) as 
 
 

3
o ˆ)ˆ(3

4 r

�rr�
B

vv
v −−−−⋅⋅⋅⋅====

π
µ

 

 



Chapter 17  Magnetic Field: Causes 

144 

The Dipole-Dipole Force 
 
The magnetic field produced by one bar magnet will exert a torque on another bar magnet.  
Because the magnetic field due to a magnetic dipole is non-uniform (you can see in 

3
o ˆ)ˆ(3

4 r

�rr�
B

vv
v −−−−⋅⋅⋅⋅====

π
µ

 that it dies off like 3

1

r
), it also exerts a force on another bar magnet. 

 
We are now in a position to say something quantitative about the force that one bar magnet 
exerts on another.  Consider an object that is at the origin of a Cartesian coordinate system.  
Suppose that object to have a magnetic dipole moment given by iiii11 µ====�v .  Clearly we’re talking 
about a magnet pointing (treating the magnet as an arrow with its head at the north pole of the 
magnet) in the +x direction.  Lets find the force that that magnet would exert on another one at 
(x,0,0) given that the magnetic dipole moment of the second magnet is iiii22 µ−−−−====�v .  The second 
magnet is pointing back toward the origin, so we are talking about two magnets whose north 
poles are facing each other.  Knowing that like poles repel, you should be able to anticipate that 
the second magnet will experience a force in the +x direction.  The magnetic field produced by 
the first magnet is given (for any point in space, as long as the distance to that point, from the 
origin, is large compared to the size of the magnet) by 
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The force on the second particle is given by: 
 

)( 12 B�F
vvv

⋅⋅⋅⋅∇∇∇∇====  
 
evaluated at the position of magnet 2, namely at (x,0,0).  Substituting the given iiii22 µ−−−−====�v in for 

the magnetic dipole of particle 2, and, the expression just above for 1B
v

, we obtain: 
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Now, if you substitute kkkkjjjjiiii zyx ++++++++====r
v

 and 222 zyxr ++++++++==== , take the gradient, and then 

(after taking the gradient) evaluate the result at (x,0,0), you find that 
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So, when like poles are facing each other, two magnets repel each other with a force that dies off 

like 4

1

r
 where r is the distance between the magnets (measure it center to center), the x in the 

case that we investigated. 
 
 
 
 

 
The Magnetic Field Due to a Long Straight Current-Carrying Wire 
 
A current-carrying conductor causes a magnetic field.  You are already aware of this because we 
have already discussed the fact that a current in a loop or coil behaves as a magnetic dipole, and, 
you know that a magnetic dipole creates a magnetic field in the region of space around it.  As it 
turns out, a wire with a current in it doesn’t have to be wrapped around in the shape of a loop or 
coil to produce a magnetic field.  In fact, experimentally, we find that a straight wire segment 
creates a magnetic field in the region of space around it.  The magnitude of the magnetic field 
due to a long straight wire, valid for any point whose distance from the wire is small compared to 
the length of the wire and whose distance from either end of the straight wire segment in 
question is large compared to the distance from the wire, is given by 
 

r
B o I

π
µ
2

=                                                            (17-2) 

where 
 

µ0 is a constant referred to as the magnetic permeability of free space, 
 

 I is the current in the wire segment, and, 
 

r is the distance that the point in question is from the long straight wire segment.  The 
equation gives the magnitude of the magnetic field at any specified point P.  The symbol 
r represents the distance that point P is from the wire. 

 
The direction of the magnetic field due to a long, straight, current-carrying wire, at some empty 
point in space, call it point P, is always perpendicular to both the wire and the imaginary line 
segment that extends from point P, straight to (and thus perpendicular to), the current-carrying 
wire. 
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Consider the case of a long straight wire carrying current straight at you.  The magnetic field at a 
few points is depicted in the diagram below (where the empty points in space in question are 
labeled P1, P2, and P3.) 
 
 
 
 
 
 
 
 
 
 
 
 
While the magnetic field vector at any point in space is, of course, directed along a straight line, 
the overall pattern of the magnetic field lines in the vicinity of a long straight wire segment, in a 
plane perpendicular to the wire segment, forms circles around the wire.  The magnetic field lines 
are directed tangent to the circles, and, the direction is given by the right hand rule for something 
curly something straight.  The magnetic field line pattern is the something curly and the current 
in the straight wire is the something straight.  Point your right thumb in the direction of the 
current and the fingers of your cupped right hand curl around in the direction of the magnetic 
field lines. 
 
 
 
 
 
 

 

P1 

P2 

P3 

I 

B1 

B3 

B2 

I 

B 



Chapter 18  Faraday's Law, Lenz's Law 

147 

18  Faraday's Law, Lenz's Law 
 
Do you remember Archimedes’s Principle?  We were able to say something simple, specific, and 
useful about a complicated phenomenon.  The gross idea was that a submerged object, being 
pressed upon on every surface element in contact with the fluid, by the fluid, experiences a net 
upward force because the pressure in a fluid increases with depth.  The infinite sum, over all the 
surface area elements of the object in contact with the fluid, of the force, of magnitude pressure-
times-the-area, and direction, normal to and into the area element, resulted in an upward force 
that we called the buoyant force.  The thing is, we were able to prove that the buoyant force is 
equal in magnitude to the weight of that amount of fluid that would be where the object is if the 
object wasn’t there.  Thus we can arrive at a value for the buoyant force without having to even 
think about the vector integration of pressure-related force that causes it. 
 
We are about to encounter another complicated phenomenon which can be characterized in a 
fruitful fashion by a relatively simple rule.  I’m going to convey the idea to you by means of a 
few specific processes, and then sum it up by stating the simple rule. 
 
Consider a gold1 ring and a bar magnet in the hands of a person.  The person is holding the ring 
so that it encircles the bar magnet.  She is holding the magnet, north end up. 
 
 
 
 
 
 
 
 

There is a magnetic field, due to the bar magnet, within the bar magnet, and in the region of 
space around it. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                
1 Any conductive material will do here.  I chose gold arbitrarily. 

N 

S 

N 

S 



Chapter 18  Faraday's Law, Lenz's Law 

148 

 
It is important to note that the magnetic field lines are most densely packed inside the bar 
magnet. 
 
Now suppose that the person, holding the magnet at rest in one hand, moves the loop upward.  I 
want to focus on what is going on while she is moving it upward.  As she moves the loop 
upward, she is moving it roughly along the direction of the magnetic file lines, but, and this is 
actually the important part, that loop will also be cutting through some magnetic field lines.  
Consider an instant in time when the loop is above the magnet, and moving upward: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From above, the scene looks like:  
 
 
 
 
 
 
 
 
 
 
 
 
where it is important to realize that none of those magnetic field lines begin on the magnet or end 
at the tip of the arrow depicted, rather, they extend out of the magnet toward us, flower out and 
over, back down away from us, and then they loop around to enter the south pole of the magnet 
from which the extend back up through the magnet toward us.  In fact, no magnetic field line 
ever begins or ends anywhere.  They all form closed loops.  This is a manifestation of the fact 
that there is no such thing as magnetic charge.  (There are no magnetic monopoles.)
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Here’s where we’re going with this:  The motion of the ring relative to the magnet is going to 
cause a current in the ring.  Here’s how:  The ring is neutral, but, it is chock full of charged 
particles that are free to move around within the gold.  [I’m going to discuss it in our positive 
charge carrier model but you can verify that you get the same result if the charge carriers are 
negative (recalling that our current is in the direction opposite that in which negative charge 
carriers are moving.)]  Pick any short segment of the ring and get the direction of the force 
exerted on the charge carriers of that segment using BF

vvv
××××==== vvvvq  and the right-hand rule for the 

cross product of two vectors.  In the view from above, all we can see is the horizontal component 
of the magnetic field vectors in the vicinity of the moving ring but that’s just dandy; the vertical 
component, being parallel to the ring’s velocity (and hence parallel to the velocity of the charge 
in the ring), makes no contribution to B

vv ××××vvvv .  Now, pick your segment of the ring.  Make your 
fingers point away from your elbow, and, in the direction of the first vector (the velocity vector) 
in B

vv ××××vvvv , namely,  “out of the page”.  Now, keeping your fingers pointing both away from your 
elbow, and, out of the page, rotate your forearm as necessary so that your palm is facing in the 
direction of B

v
 (at the location of the segment you are working on), meaning that if you were to 

close your fingers, they would point in the direction of B
v

.  Your extended thumb is now 
pointing in the direction of the force exerted on the positive charge carriers in the ring segment 
you chose.  No matter what ring segment you pick, the force is always in that direction which 
tends to push the positive charge carriers counterclockwise around the ring!  The result is a 
counterclockwise (as viewed from above) current in the ring. 
 
Suppose that, starting with the ring encircling the magnet, the person who was holding the ring 
and the magnet moved the magnet downward rather than moving the ring upward.  She holds the 
ring stationary, and moves the magnet.  I said earlier that a charged particle at rest in a magnetic 
field has no force exerted on it by the magnetic field.  But we were talking about stationary 
magnetic fields at the time.  Now we are talking about the magnetic field of a magnet that is 
moving.  Since the magnet responsible for it is moving, the magnetic field itself must be moving.  
Will that result in a force on the charges in the ring (and hence a current in the ring)?  This brings 
us to a consideration of relative motion.  To us, the two processes (person moves ring upward 
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while holding magnet at rest, vs. person moves magnet downward while holding ring at rest) are 
different.  But that is just because we are so used to viewing things from the earth’s reference 
frame.  In the grand scheme of things, there is no such thing as an object being absolutely at rest, 
and there is no such thing an object being absolutely in motion with a specified constant velocity.  
All motion is relative.  So, let’s take this experiment into outer space where we won’t all have 
one and the same favorite reference frame.  Abigail, Beatrice, and Cecelia are all out for a space 
walk.  Abigail has a gold ring.  She is holding it out in front of her so that it is oriented the same 
way as the belt she is wearing around her waist.  Beatrice is some distance away from Abigail, 
but, from Cecelia’s point of view, the two of them are moving toward each other along lines that 
are parallel to each other, such that, at some time in the future, Abigail and Beatrice will be face 
to face at a position right in front of Cecelia.   Furthermore, Cecelia sees each of the other 
spacewalkers approaching her respective closest point of approach, at one and the same speed.  
Beatrice has a bar magnet.  She has positioned it directly in front of herself, aligned the same 
way she is, with its north pole closer to her head and its south pole closer to her feet.  Beatrice is 
not holding on to her magnet.  Because of the absence of gravity, the magnet stays right in front 
of her, just as she positioned it.  At this point, Beatrice sees Abigail “feetward” of herself, and 
Abigail sees Beatrice “headward” of herself.  The distance between the magnet and the ring is 
decreasing at a rate we shall call v.  Abigail and Beatrice come together and we find that the ring 
encircles the magnet and then, a little later, the relative positions of the ring and the magnet are 
as they were in the on-earth process we discussed earlier: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Of course, based on the way I described the process, there is motion, the distance between the 
ring and the magnet is now increasing at a rate v  (see footnote2).  The question is, what is 
“really” moving? 
 

                                                
2 Actually, the current induced to flow in the ring turns the ring into a magnetic dipole, and, at the instant depicted, 
the ring and the bar magnet are exerting an attractive force on each other which will of course cause each to 
experience an acceleration.  For the purposes of our discussion, we are considering the masses of the magnet, and, 
the mass of the ring-plus-Abigail (since Abigail is holding the ring) to be so great and the force to be so small that 
the accelerations are so small as to be negligible.  
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Let each participant view the process from the reference frame in which she is at rest.  Abigail, 
who is holding the ring, sees the magnet “flying away from” the ring: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Beatrice, on the other hand, with the magnet at rest in front of her, sees the ring “flying away 
from” the magnet: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, Cecelia sees the ring and the magnet “flying away from” each other! 
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So the question is, “Who’s right?”  And the answer is, everybody!  There is no preferred inertial 
reference frame.  There is no experiment that can be done to show that one of the reference 
frames is actually at rest and the others are actually moving.  The fact that there is no preferred 
inertial frame is one of Einstein’s two postulates upon which his special theory of relativity is 
based3.  So, Abigail’s, Beatrice’s, and Cecelia’s viewpoints are all equally valid.  In the earth-
bound process that we discussed, we showed that from Beatrice’s viewpoint (moving ring), there 
will be a current induced to flow in the ring (counterclockwise as viewed by anybody looking at 
the magnet end-on, with the north end closer to the viewer).  As such, there will be the same 
current in the ring, in the same direction around the ring, if we view the process from Abigail’s 
perspective, in which the magnet is moving relative to the ring.  And, there will be the same 
current in the ring, in the same direction around the ring, if we view the process from Cecelia’s 
perspective, in which the magnet and the ring are both moving away from each other.  It doesn’t 
matter which object is moving, all that matters is the relative motion. 
 
Getting back down to earth:  Remember that person holding the magnet and the ring?  When she 
moved the ring upward, there was a current in the ring.  Now we have established that if, instead 
of moving the ring, she moves the magnet downward, at the same speed, she will get the same 
current in the ring.  Based on what caused that current, that BF

vvv
××××==== vvvvq  force on the charged 

particles in the ring, you should be able to surmise that the current will depend on things like the 
velocity of the ring relative to the magnet, the strength of the magnetic field, and the relative 
orientation of the velocity vector and the magnetic field.  You should also be able to come up 
with the idea that the current depends on the resistance of the ring. 
 
Michael Faraday came up with a very fruitful way of looking at the phenomenon we are 
discussing and I will convey his idea to you by means of the example we have been working 
with. 
 
 

                                                
3 The other postulate is that the speed of light is the same in all inertial reference frames. 
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Looking at the diagrams of that ring moving relative to the magnet again, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
we can describe what’s happening by saying that the ring is “cutting through” magnetic field 
lines (or, equivalently, by saying that the magnetic field lines are “cutting through” the ring).  
What Faraday recognized was that, in conceptual terms, by the ring cutting through magnetic 
field lines (or vice versa depending on your point of view), what was happening was, that the 
number of magnetic field lines encircled by the loop was changing.  In the diagrams above, each 
time the ring “cuts through” one more field line, the number of field lines encircled by the loop 
decreases by one.  The rate at which the ring “cuts through” magnetic field lines (or the magnetic 
field lines cut through the ring) is determined by the same things that determine the force on the 
charged particles making up the ring (relative speed between ring and magnetic field, strength of 
magnetic field, relative orientation of velocity of ring and magnetic field) such that, the greater 
the rate at which the ring “cuts through” magnetic field lines (or the greater the rate at which 
magnetic field lines cut through the ring), the greater the force on the charged particles and hence 
the greater the current.  Faraday expressed this in a manner that is easier to analyze.  He said that 
the current is determined by the rate at which the number of magnetic field lines encircled by the 
loop is changing.  In fact, Faraday was able to write this statement in equation form.  Before I 
show you that, I have to be a lot more specific about what I mean by “the number of magnetic 
field lines.” 
 
I’m going to call the statement I have just attributed to Faraday, the conceptual form of 
Faraday’s Law.  In other words, Faradays Law, in conceptual form is: A changing number of 
magnetic field lines through a closed loop or coil causes a current in that loop or coil, and, the 
faster the number is changing, the greater the current. 
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Our field line concept is essentially a diagrammatic scheme used to convey some information 
about the direction and the relative strength of a field.  We have used it both for the electric field 
and the magnetic field.  What I say here about the number of field lines can be applied to both, 
but, since we are presently concerned with the magnetic field, I will talk about it in terms of the 
magnetic field.  Conceptually, the number of field lines encircled by a loop is going to depend on 
how closely packed the field lines are, how big the loop is, and to what degree the loop is 
oriented “face-on” to the field lines.  (Clearly, if the loop is oriented edge-on to the field lines, it 
will encircle none of them.)  Now, diagrammatically, how closely packed the field lines are is 
representative of how strong the magnetic field is.  The more closely-packed the field lines, the 
greater the value of B.  Imagine that someone has created a beautiful, three-dimensional, 
magnetic field diagram.  Now if you view the field lines end-on, e.g. such that the magnetic field 
lines are directed right at you, and depict a cross section of “what you see” in a two-dimensional 
diagram, you would get something like this. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is a graphical representation of the magnitude of that component of the magnetic field 
which is directed straight at you.  



Chapter 18  Faraday's Law, Lenz's Law 

155 

Suppose the scale of the diagram to be given by (1µT⋅m2) n where n is the magnetic field line 
density, the number-of-magnetic-field-lines-per-area, directed through the plane represented by 
the page, straight at you.  Let’s use a square, one centimeter on a side, to sample the field at a 
position near the center, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I count 19 field lines that are clearly in the square centimeter and four that are touching it, I’m 
going to count two of those four for an estimated 21 field lines in one square centimeter.  Thus, 
in that region, 
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Let’s make it more clear what the number of lines represents by replacing n with 

A

Lines of Number
 and solving the expression nB � T)0.1(====  for the number of lines. 
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So the number of lines through a loop encircling a plane region of area A is proportional to BA, 
with the constant of proportionality being the reciprocal of our scale factor for the field diagram.  
The simple product BA is really only good if the magnetic field lines are “hitting” the area 
encircled by the loop “head on,” and, if the magnetic field is single-valued over the whole area.  
We can take care of the “which way the loop is facing” issue by replacing BA with AB

vv
⋅⋅⋅⋅  where 

A
v

, the area vector, is a vector whose magnitude is the area of the plane region encircled by the 
loop and whose direction is perpendicular to the plane of the loop.  There are actually two 
directions that are perpendicular to the loop.  One is the opposite of the other.  In practice, one 
picks one of the two directions arbitrarily, but, picking a direction for the area vector establishes 
a positive direction for the current around the loop.  The positive direction for the current is the 
direction around the loop that makes the current direction and the area vector direction, together, 
conform to the right-hand rule for something curly something straight.  We take care of the 
possible variation of the magnetic field over the region enclosed by the loop, by cutting that 

plane region up into an infinite number of infinitesimal area elements dA, calculating dAB ⋅⋅⋅⋅
v

 for 

each area element, and adding up all the results.  The final result is the integral ∫∫∫∫ ⋅⋅⋅⋅ dAB
v

.  You 

won’t be held responsible for using the calculus algorithms for analyzing such an integral, but, 

you are responsible for knowing what ∫∫∫∫ ⋅⋅⋅⋅ dAB
v

 means.  It is the infinite sum you get when you 

subdivide the area enclosed by the loop up into an infinite number of infinitesimal area elements, 
and, for each area element, dot the magnetic field vector at the location of that area element into 
the area vector of that area element, and add up all the resulting dot products.  You also need to 
know that, in the special case of a magnetic field that is constant in both magnitude and 

direction over the entire area enclosed by the loop,  ∫∫∫∫ ⋅⋅⋅⋅ dAB
v

 is just AB
vv

⋅⋅⋅⋅ . 

 
Using a generic “constant” for the reciprocal of the field diagram scale factor yields 
 

∫∫∫∫ ⋅⋅⋅⋅==== dAB
v

)(constantLines of Number  
 

for the number of field lines encircled by the loop or coil.  The quantity ∫∫∫∫ ⋅⋅⋅⋅ dAB
v

 is called the 

magnetic flux through the plane region enclosed by the loop.  Note that the flux is directly 
proportional to the number of magnetic field lines through the loop. 
 
The magnetic flux is given the name ΦB (the Greek letter upper case phi).   
 

∫∫∫∫ ⋅⋅⋅⋅==== dAB
v

B

Φ
 

The expression yields 2mT⋅⋅⋅⋅  as the units of magnetic flux.  This combination of units is given a 
name: the Weber, abbreviated Wb. 

2mTWb1 ⋅⋅⋅⋅====  
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Faraday’s Law, the one that says that the current induced to flow in a loop or coil is proportional 
to the rate of change in the number of magnetic field lines encircled by the loop or coil, can be 
written in terms of the flux as: 
 
 

dt

d Φ
R

N
I B−−−−====  

 
where: 

    N is the number of windings or turns making up the closed coil of wire.  N = 1 for a single 
loop. 

    R is the resistance of the loop or coil. 

dt

d Φ B  is the rate of change in the flux through the loop. 

 
The derivative of a function with respect to time is often abbreviated as the function itself with a 
dot over it.  In other words, 
 

dt

d ΦΦ B
B ====⋅⋅⋅⋅

 

 
Using this notation in our expression for the current in Faradays Law of induction we have: 
 

B

⋅⋅⋅⋅−−−−==== Φ
R

N
I  

 
Faraday’s Law is usually expressed in terms of an EMF rather than a current.  I’m going to use a 
specific case study to develop the idea which is of general applicability.  Consider a coil of 
ideally-conducting wire in series with a resistor.  For closure of the loop, the resistor is to be 
considered part of the loop (and hence is the resistance of the loop), but, we have a negligible 
number of magnetic field lines cutting through the resistor itself.  Suppose there to be an 
increasing magnetic flux directed upward through the coil. 
 
 
 
 
 
 
 
 
 
 

B increasing 

R 
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By Faraday’s Law of Induction, there will be a current B

⋅⋅⋅⋅−−−−==== Φ
R

N
I  induced to flow in the coil.   

The induced current will flow around and around the coil, then out the top of the coil and down 
through the resistor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
But, for a resistor to have a current flowing through it, there must be a potential difference V = I  R 
between the terminals of the resistor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Recognizing that, in the case at hand, the I in V = I  R is the B

⋅⋅⋅⋅−−−−==== Φ
R

N
I  resulting from the 

changing magnetic flux through the coil, we have 
 

R
Φ

R

N
V 
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
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⋅⋅⋅⋅

B  

 

which we can write as 
 

B

⋅⋅⋅⋅−−−−==== ΦNV  
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Where there is a voltage across a resistor, there is an electric field in the resistor.  What exactly 
causes that electric field?  The answer is, the changing flux through the coil.  More specifically, 
the magnetic field lines cutting through the coil as they must be doing to cause a change in the 
number of field lines through the coil.  The field lines through the coil causes a force on the 
charge carriers in the coil.  In our positive charge carrier model, this causes positive charge 
carriers in the coil all to surge toward the top of the resistor, leaving an absence of same on the 
bottom of the resistor.  It only takes a minuscule amount of charge to cause an appreciable 
electric field in the resistor.  A dynamic equilibrium is reached in which the changing magnetic 
field force on the charged particle becomes unable to push any more charge to the top terminal of 
the resistor than is forced through the resistor by the electric field in the resistor.  The changing 
magnetic field can’t push more charge there because of the repulsion of the charge that is already 
there.  The changing magnetic field force in the coil maintains the potential difference across the 
resistor in spite of the fact that charge carriers keep “falling” through the resistor.  This should 
sound familiar.  A seat of EMF does the same thing.  It maintains a constant potential difference 
between two conductors (such as the terminals of the resistor in the case at hand).  The coil with 
the changing flux through it is acting like a seat of EMF.  One says that the changing flux 
induces an EMF in the coil, calls that Faraday’s Law of Induction, and writes: 
 

B

⋅⋅⋅⋅−−−−==== ΦNE  

where:  
    E  is the EMF induced in the loop. 
    N is the number of windings or turns making up the coil of wire.  

   B

⋅⋅⋅⋅Φ  is the rate of change in the flux through the loop. 
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Lenz’s Law 
 
Faraday’s Law of Induction, has the direction of the current built into it.  One arbitrarily 
establishes the direction of the area vector of the loop.  This determines, via the right-hand rule 
for something curly something straight, the positive direction for the current.  Then the algebraic 

sign of the result of BΦ
R

N
I &−−−−====  determines whether the current is really in that direction (“+”) or 

in the opposite direction (“−”).  This is tough to keep track of.  I advise using Faraday’s Law in 
the form  

BΦ
R

N
I &====  

 
to get the magnitude of the current, and, using Lenz’s Law to get the direction. 
 
The current induced to flow in the loop or coil, by the changing flux through the loop or coil, 
produces a magnetic field of its own.  I call that magnetic field BPIN for “the magnetic field 
produced by the induced current.”  At points inside the loop or coil, BPIN is related to the induced 
current itself by the right hand rule for something curly something straight.  Lenz’s Law states 
that BPIN is in that direction which tends to keep the number of magnetic field lines what it was.   
 
 
 
Consider, for instance, a horizontal loop.   
 

Suppose there are magnetic field lines directed upward through the loop, and, that they are 
increasing in number.  By Faraday’s Law, the changing number of field lines through the 
loop will induce a current to flow in the loop.  By Ampere’s Law, a current in the loop will 
produce a magnetic field (BPIN).  By Lenz’s Law, BPIN will be downward to cancel out some 
of the newly-appearing upward magnetic field lines, in a futile attempt to keep the number 
of magnetic field lines directed upward through the loop, what it was.  By the right-hand 
rule for something curly something straight, to produce a downward-directed magnetic 
field line inside the loop, the induced current must be clockwise, around the loop, as 
viewed from above. 
 
Suppose there are magnetic field lines directed upward through the loop, and, that they are 
decreasing in number.  By Faraday’s Law, the changing number of field lines through the 
loop will induce a current to flow in the loop.  By Ampere’s Law, a current in the loop will 
produce a magnetic field (BPIN).  By Lenz’s Law, BPIN will be upward to make up for the 
departure of upward-directed magnetic field lines, in a futile attempt to keep the number of 
magnetic field lines directed upward through the loop, what it was.  By the right-hand rule 
for something curly something straight, to produce an upward-directed magnetic field line 
inside the loop, the induced current must be counterclockwise, around the loop, as viewed 
from above. 
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19  Induction, Transformers, and Generators 
 
 
In this chapter we provide examples chosen to further familiarize you with Faraday’s Law of 
Induction and Lenz’s Law.  The last example is the generator, the device used in the world’s 
power plants to convert mechanical energy into electrical energy. 
 
Example 19-1 
 
A straight wire carries a current due north.  Due east of the straight wire, at the same elevation as 
the straight wire, is a horizontal loop of wire.  The current in the straight wire is increasing.  
Which way does the current, induced to flow in the loop by the changing magnetic field of the 
straight wire, flow around the loop? 
 
Solution 
 
I’m going to draw the given situation from a few different viewpoints, just to help you get used 
to visualizing this kind of situation.  As viewed from above-and-to-the-southeast, the 
configuration (aside from the fact that magnetic field lines are invisible) appears as: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where I included a sheet of paper in the diagram to help you visualize things. 
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Here’s a view of the same configuration from the south, looking due north: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Both diagrams make it clear that we have an increasing number of downward-directed magnetic 
field lines through the loop.  It is important to keep in mind that a field diagram is a 
diagrammatic manner of conveying information about an infinite set of vectors.  There is no such 
thing as a curved vector.  A vector is always directed along a straight line.  The magnetic field 
vector is tangent to the magnetic field lines characterizing that vector.  At the location of the 
loop, every magnetic field vector depicted in the diagram above is straight downward.  While it 
is okay to say that we have an increasing number of magnetic field lines directed downward 
through the loop, please keep in mind that the field lines characterize vectors.   
 
 
In presenting my solution to the example question, “What is the direction of the current induced 
to flow in a horizontal loop that is due east of a straight wire carrying an increasing current due 
north?” I wouldn’t draw either one of the diagrams above.  The first one takes too long to draw 
and there is no good way to show the direction of the current in the loop in the second one.  The 
view from above is the most convenient one: 
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In this view (in which the downward direction is into the page) it is easy to see that what we have 
is an increasing number of downward-directed magnetic field lines through the loop (more 
specifically, through the region enclosed by the loop).  In its futile attempt to keep the number of 
magnetic field lines directed downward through the loop the same as what it was,PINB

v
 must be 

directed upward in order to cancel out the newly-appearing downward-directed magnetic field 
lines.  [Recall the sequence: The changing number of magnetic field lines induces (by Faraday’s 
Law) a current in the loop.  That current produces (by Ampere’s Law) a magnetic field (PINB

v

 ) of 

its own.  Lenz’s Law relates the end product ( PINB
v

 ) to the original change (decreasing number 

of downward-through-the-loop magnetic field lines).]  
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Interesting.  We know the direction of the magnetic field produced by the induced current before 
we even known the direction of the induced current itself.  So, what must the direction of the 
induced current be in order to produce an upward-directed magnetic field (PINB

v
).  Well, by the 

right-hand rule for something curly something straight, the current must be counterclockwise, as 
viewed from above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hey.  That’s the answer to the question.  We’re done with that example.  Here’s another one: 
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Example 19-2 
 
A person is moving a bar magnet, aligned north pole up, out from under a coil of wire, as 
depicted below.  Which way does the induced current flow through the resistor? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The magnetic field of the bar magnet extends upward through the coil. 
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As the magnet moves out from under the coil, it takes its magnetic field with it.  So, as regards 
the coil, what we have is a decreasing number of upward-directed magnetic field lines through 
the coil.  By Faraday’s Law, this induces a current in the coil.  By Ampere’s Law, the current  
produces a magnetic field, PINB

v
.  By Lenz’s Law PINB

v
 is upward, to make up for the departing  

upward-directed magnetic field lines through the coil. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So, what is the direction of the current that is causing PINB

v
?  The right-hand rule will tell us that.  

Point the thumb of your cupped right hand in the direction of PINB
v

 .  Your fingers will then be  
curled around (counterclockwise as viewed from above) in the direction of the current.  
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Because of the way the coil is wound, such a current will exit the coil at the top and flow 
downward through the resistor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
That’s the answer to the question posed in the example.  (Which way does the current flow 
through the resistor?)  
 
 

R 

N 

S 

v 

UP 

DOWN 

BPIN 

I 

I 

I 



Chapter 19  Induction, Transformers, and Generators 

168 

Example 19-3 The Transformer 
 
When you put two coils of wire near each other, such that when you create a magnetic field by 
using a seat of EMF to cause a current to flow in one coil, that magnetic field extends through 
the region encircled by the other coil, you create a transformer.  Let’s call the coil in which you 
initially cause the current to flow, the primary coil, and the other one, the secondary coil. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If you cause the current in the primary coil to be changing, then the magnetic field produced by 
that coil is changing.  Thus, the flux through the secondary coil is changing, and, by Faraday’s 
Law of Induction, a current will be induced to flow in the secondary coil.  One way to cause the 
current in the primary coil to be changing would be to put a switch in the primary circuit (the 
circuit in which the primary coil is wired) and to repeatedly open and close it. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Okay, enough preamble, here’s the question:  What is the direction of the transient1 current 
induced to flow in the circuit above when the switch is closed? 

                                                
1 (This footnote is about the English language rather than physics.)  Transient means existing for a short time 
interval. 
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Solution to Example 19-3: 
 
 
 
 
 
 
 
 
 
 
 
 
Upon closing the switch, the current in the primary circuit very quickly builds up to E /r.  While 
the time that it takes for the current to build up to E /r  is very short, it is during this time interval 
that the current is changing.  Hence, it is on this time interval that we must focus our attention in 
order to answer the question about which way the current briefly flows through resistor R in the 
secondary circuit.  The current in the primary causes a magnetic field.  Because the current is 
increasing, the magnetic field vector at each point in space is increasing in magnitude. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The increasing magnetic field causes upward-directed magnetic field lines in the region encircled 
by the secondary coil.  There were no magnetic field lines through that coil before the switch was 
closed, so clearly, what we have here is an increasing number of upward-directed magnetic field 
lines through the secondary coil.  By Faraday’s Law this will induce a current in the coil.  By 
Ampere’s law, the current induced to flow in the secondary will produce a magnetic field of its 
own, one that I like to call PINB

v
 for “The Magnetic field Produced by the Induced Current.”  By 

Lenz’s Law, PINB
v

 must be downward to cancel out some of the newly-appearing upward-

directed magnetic field lines through the secondary.  (I hope it is clear that what I call the 
magnetic field lines through the secondary, are the magnetic field lines passing through the 
region encircled by the secondary coil.) 
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Okay.  Now the question is, which way must the current be flowing around the coil in order to 
create the downward-directed magnetic field PINB

v
 that we have deduced it does create.  As 

usual, the right-hand rule for something curly something straight reveals the answer.  We point 
the thumb of the cupped right hand in the direction of PINB

v
 and cannot fail to note that the 

fingers curl around in a direction that can best be described as “clockwise as viewed from 
above.” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Because of the way the secondary coil is wound, such a current will exit the secondary at the top 
of the coil and flow downward through resistor R.  This is the answer to the question posed in the 
example. 
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An Electric Generator 
 
Consider a magnet that is caused to rotate in the vicinity of a coil of wire as depicted below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
As a result of the rotating magnet, the number and direction of the magnetic field lines through 
the coil is continually changing.  This induces a current in the coil, which, as it turns out, is also 
changing.  Check it out in the case of magnet that is, from our viewpoint, rotating clockwise.  In 
the orientation of the rotating magnet depicted here: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
as the magnet rotates, the number of its magnetic field lines extending downward through the 
coil is decreasing.  In accord with Faraday’s Law, this induces a current in the coil which, in 
accord with Ampere’s Law, produces a magnetic field of its own.  By Lenz’s Law, the field 
( PINB
v

) produced by the induced current must be downward to make up for the loss of downward-

directed magnetic field lines through the coil.  To produce PINB
v

 downward, the induced current 

must be clockwise, as viewed from above.  Based on the way the wire is wrapped and the coil is 
connected in the circuit, a current that is clockwise, as viewed from above, in the coil, exits the 
coil at the top of the coil and flows downward through the resistor. 
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In the orientation depicted here: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
we have an increasing number of upward-directed magnetic field lines through the coil.  To 
“fight” that, the induced current produces a downward PINB

v
 to cancel out some of the newly-

appearing upward-directed magnetic field lines.  To produce PINB
v

 downward, the induced 

current must be clockwise, as viewed from above, in the coil.  Such a current exits the coil at the 
top of the coil and flows downward through the resistor. 
 
 
In the orientation of the rotating magnet depicted here: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the number of upward-directed magnetic field lines directed through the coil is decreasing.  The 
induced current produces an upward PINB

v
 to make up for the departing upward-directed 

magnetic field lines through the coil.  To do so, the current must be counterclockwise, as viewed 
from above, in the coil.  Such a current flows upward through the resistor. 
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In the orientation of the rotating magnet depicted here: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
we have an increasing number of downward-directed magnetic field lines through the coil.  To 
“fight” that, the induced current produces an upward PINB

v
 to  cancel out some of the newly-

appearing downward-directed magnetic field lines.  To produce PINB
v

 upward, the induced current 

must be counterclockwise, as viewed from above, in the coil.  Because of the way the coil is wound, 
such a current exits the coil at the bottom of the coil and flows upward through the resistor. 
 
As the magnet continues to rotate clockwise, the next orientation it achieves is our starting point 
and the process repeats itself over and over again. 
 
Recapping and extrapolating, the current through the resistor in the series of diagrams above, is: 
 

downward, downward, upward, upward, downward, downward, , upward, upward, … 
 
For half of each rotation, the current is downward, and for the other half of each rotation, the 
current is upward.  In quantifying this behavior, one focuses on the EMF induced in the coil: 
 
 
 
 
 
 
 
 
 
 

UP 
BPIN 

I 
I 

BPIN 

I 
I 

UP 

E 

+ 

− 



Chapter 19  Induction, Transformers, and Generators 

174 

The EMF across the coil varies sinusoidally with time as: 
 

)2sin(MAX tfEE π====  
where: 

 E  which stands for EMF, is the time-varying electric potential difference between the 
terminals of a coil in close proximity to a magnet that is rotating relative to the coil as 
depicted in the diagrams above.  This potential difference is caused to exist, and to vary the 
way it does, by the changing magnetic flux through the coil. 

E MAX is the maximum value of the EMF of the coil. 
f is the frequency of oscillations of the EMF across the coil.  It is exactly equal to the 

rotation rate of the magnet expressed in rotations per second, a unit that is equivalent to 
hertz. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The device that we have been discussing (coil-plus-rotating magnet) is called a generator, or 
more specifically, an electric generator.  A generator is a seat of EMF that causes there to be a 
potential difference between its terminals that varies sinusoidally with time.  The schematic 
representation of such a time-varying seat of EMF is: 
 
 
 
 
 
 
It takes work to spin the magnet.  The magnetic field caused by the current induced to flow in the 
coil exerts a torque on the magnet that always tends to slow it down.  So, to keep the magnet 
spinning, one must continually exert a torque on the magnet in the direction in which it is 
spinning.  The generator is the main component of any electrical power plant.  It converts 
mechanical energy to electrical energy.  The kind of power plant you are dealing with is 
determined by what your power company uses to spin the magnet.  If moving water is used to 
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spin the magnet, we call the power plant a hydroelectric plant.  If a steam turbine is used to spin 
the magnet, then the power plant is designated by its method of heating and vaporizing water.  
For instance, if one heats and vaporizes the water by means of burning coal, one calls the power 
plant a coal-fired power plant.  If one heats and vaporizes the water by means of a nuclear 
reactor, one calls the power plant a nuclear power plant. 
 
Consider a “device which causes a potential difference between its terminals that varies 
sinusoidally with time” in a simple circuit: 
 
 
 
 
 
 
 
 
 
The time-varying seat of EMF causes a potential difference across the resistor, in this simple 
circuit, equal, at any instant in time, to the voltage across the time-varying seat of EMF.  As a 

result, a current flows through the resistor.  The current is given by 
R

V
I ====  , our defining 

equation for resistance, solved for the current I.  Because the algebraic sign of the potential 
difference across the resistor is continually alternating, the direction of the current in the resistor 
is continually alternating.  Such a current is called an alternating current (AC).  It has become 
traditional to use the abbreviation AC to the extent that we do so in a redundant fashion, often 
referring to an alternating current as an AC current.  (When we need to distinguish it from AC, 
we call the “one-way” kind of current that, say, a battery causes in a circuit, direct current, 
abbreviated DC.)  
 
A device that causes current to flow through a resistor, whether that current is alternating or not, 
is delivering energy to the resistor at a rate that we call power.  The power delivered to a resistor 
can be expressed as P=IV where I is the current through the resistor and V is the voltage across 
the resistor.  Using the defining equation of resistance, V=I  R, the power can be expressed as 
P=I   

2R.  A “device which causes a potential difference between its terminals that varies 
sinusoidally with time”, what I have been referring to as a “time-varying seat of EMF” is 
typically referred to as an AC power source.  An AC power source is typically referred to in 
terms of the frequency of oscillations, and, the voltage that a DC power source, an ordinary seat 
of EMF, would have to maintain across its terminals to cause the same average power in any 
resistor that might be connected across the terminals of the AC power Source.  The voltage in 
question is typically referred to as ERMS or VRMS where the reasoning behind the name of the 
subscript will become evident shortly. 

 
Since the power delivered by an ordinary seat of EMF is a constant, its average power is the 
value it always has. 
 

R 
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Here’s the fictitious circuit 
 
 
 
 
 
 
 
 
that would cause the same resistor power as the AC power source in question.  The average 
power (which is just the power in the case of a DC circuit) is given by AVGP = IERMS, which, by 

means of our defining equation of resistance solved for I, I=V/R, (where the voltage across the 

resistor is, by inspection, ERMS) can be written 
R

P
2
RMS

AVG

E
==== .  So far, this is old stuff, with an 

unexplained name for the EMF voltage. 
 
Now let’s consider the AC circuit: 
 
 
 
 
 
 
 
 

The power is 
R

t

R

t

R
P

22
MAX

2
MAX

2 )]2[sin()]2sin([ fEfEE ππ
============  .  The average power over any 

long time interval will simply be the total energy delivered to the resistor during that time 
interval, divided by the time interval.  Because of the way the power function repeats itself, the 
average power during any long time interval will just be the number N of periods of oscillation in 
that time interval times the energy delivered during one period, all divided by (the number of 
periods times one period T   ). 
 
Let a long time interval ∆t = N⋅T, where T is the period of oscillations.  
Energy(∆t) = N⋅Energy(T) 
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Thus, the average power over any time interval is just the average over one period 
f
1====T .  Let’s 

go ahead and get an expression for that.  First we’ll find the energy delivered to the resistor in 
one period of the oscillations of the EMF. 
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We use the trigonometric identity )2cos(
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Recalling that our average power is the energy delivered to the resistor in one period T, divided 
by one period T we see that: 
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Okay, remember what we were doing?  We wanted to find the value of the DC EMF, which I 
called RMSE , that would deliver the same average power to the resistor as our actual time-varying 

seat of EMF.  For our DC seat of EMF we had: 
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and now, for our AC power source, we have: 
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Setting the two expressions equal to each other we obtain: 
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Now we are in a position to explain why we called the equivalent EMF, RMSE .  In our expression 

R
P

2
MAX

AVG 2

1 E==== , we can consider 
2

2
MAXE

 to be the average value of the square of our time-

varying EMF )2sin(MAX tfEE π==== .  Another name for “average” is “mean” so we can consider  

2

2
MAXE

 to be the mean value of 2E .  On the right side of our expression for our equivalent EMF, 

MAXRMS
2

1
EE ==== , we have the square root of 

2

2
MAXE

, that is, we have the square root of the mean  
 

of the square of the EMF E.   And indeed the subscript “RMS” stands for “root mean squared.”  
RMS values are convenient for circuits consisting of resistors and AC power sources in that, one 
can analyze such circuits using RMS values the same way one analyzes DC circuits. 
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More on the Transformer 
 

When the primary coil of a transformer is driven by an AC power source, it creates a magnetic 
field which varies sinusoidally in such a manner as to cause a sinusoidal EMF, of the same 
frequency as the source, to be induced in the secondary coil.  The RMS value of the EMF 
induced in the secondary coil is directly proportional to the RMS value of the sinusoidal 
potential difference imposed across the primary.  The constant of proportionality is the ratio of 
the number of turns in the secondary to the number of turns in the primary. 
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When the number of windings in the secondary coil is greater than the number of windings in 
the primary coil, the transformer is said to be a step-up transformer and the secondary voltage is 
greater than the primary voltage.  When the number of windings in the secondary coil is less than 
the number of windings in the primary coil, the transformer is said to be a step-down transformer 
and the secondary voltage is less than the primary voltage. 
 
 
The Electrical Power in Your House 
 

When you plug your toaster into a wall outlet, you bring the prongs of the plug into contact with 
two conductors between which there is a time-varying potential difference characterized as 
115 volts 60 Hz AC.  The 60 Hz is the frequency of oscillations of the potential difference 
resulting from a magnet completing 60 rotations per second, back at the power plant.  A step-up 
transformer is used near the power plant to step the power plant output up to a high voltage.  
Transmission lines at a very high potential, with respect to each other, provide a conducting path 
to a transformer near your home where the voltage is stepped down.  Power lines at a much 
lower potential provide the conducting path to the wires in your home.  115 volts is the RMS 
value of the potential difference between the two conductors in each pair of slots in your wall 

outlets.  Since MAXRMS
2

1
EE ==== , we have RMSMAX 2 EE ==== , so volts)115(2MAX ====E , or 

volts163MAX ====E .  Thus,  
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which can be written as, 
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20  Electric and Magnetic Fields in Motion 
 
 
It’s time to consider another viewpoint for some of the interactions that we have been studying.  
Much like we can describe the force exerted on one charged particle by another, either in terms 
of action at a distance, or by stating that one charged particle creates an electric field, and, its 
electric field is what exerts a force on the other charged particle; we can look at the interaction 
between a magnetic field and a charged particle, and the interaction of an electric field with a 
particle that has a magnetic dipole moment, in a new way. 
 
For instance, consider the case of a charged particle that is moving in the vicinity of a moving 
bar magnet as depicted in the following diagram: 
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Let the magnitudes of the two velocities add up to v, meaning that v is the magnitude of the 
velocity of the particle and the magnet relative to each other.  You might want to imagine this 
arrangement to be in outer space because I’m going to ask you to jump around between three 
different reference frames, each of which is moving at a different constant velocity relative to the 
other two.  There’s the reference frame who’s point of view is depicted above, in which each of 
the objects is moving relative to the other.  There’s the particle’s reference frame in which the 
particle is at rest and the magnet is moving past it at speed v.  And, there’s the magnet’s 
reference frame, in which the magnet is at rest and the particle is moving past it at speed v.  Let’s 
start off in the magnet’s reference frame (but, remember, its all one and the same situation—its 
just that we’re going to view it from different reference frames): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When we view the situation from the reference frame of the magnet, what we see (as depicted 
just above) is a charged particle moving in a stationary magnetic field.  We have already studied 
the fact that a magnetic field exerts a force BF

vvv
××××==== vvvvq  on a charged particle moving in that 

magnetic field.  Now let’s look at the same phenomenon from the point of view of the charged 
particle. 
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Surely we aren’t going to change the force exerted on the charged particle by the magnetic field 
of the magnet just by looking at the situation from a different reference frame.  In fact we’ve 
already addressed this issue.  What I said was that it is the relative motion between the magnet 
and the charged particle that matters.  Whether the charged particle is moving through magnetic 
field lines, or, the magnetic field lines, due to their motion, are “cutting through” the particle, the 
particle experiences a force.  Now here’s the new viewpoint on this situation:  What we say is, 
that the magnetic field doesn’t really exert a force on the charged particle, but rather, that by 
“cutting through” the point at which the particle is located, the magnetic field creates an electric 
field at that location, and it is the electric field that exerts the force on the charged particle. 
 
What I’ve done here is to introduce a “middleman” to describe the same phenomenon in a 
slightly different way.  In terms of the phenomena that we have studied to date, there is no way 
to tell whether the magnetic field actually does create an electric field to exert a force on a 
moving charged particle, or, it directly exerts a force on the charged particle itself.  The result is 
the same, a charged particle moving in a magnetic field experiences a force.  Based on our 
understanding of Newton’s 2nd Law, we deduce that there is a force on the particle, but, there is 
no way to tell whether the force is exerted on the particle directly by the magnetic field, or, that 
the motion of the magnetic field creates an electric field, which does the exerting.  The 
introduction of this “middleman” electric field, at this stage, probably seems like a violation of 
the philosophical principle known as Occam’s razor1, which physicists use to determine which of 
two equally-accurate descriptions of nature should be accepted into that body of knowledge 
known as physics.  The principle demands that one accept the simpler description.  Indeed, this 
“middleman” electric field does complicate the description, but, as we shall see later in this 
chapter, there is evidence for its existence.  So, let’s start looking at things from this point of 
view. 
 
Things quickly get pretty amazing.  Recall that the electric field vector is something that exists at 
a point in space whether or not there is a victim charged particle for it to exert force on.  So what 
we’re saying is, if you “look at” the field of a bar magnet from a reference frame at rest with 
respect to the bar magnet, all you “see” is a magnetic field.  But, if you “look at” the field of the 
same bar magnet from a reference frame that is moving relative to the magnet, what you “see” is 
a moving magnetic field, and, an electric field ! 
  
Suppose you are considering a point in space under which a magnet is moving.  Suppose you 
can’t see the magnet.  What we have, at the point in question, is a changing magnetic field.  The 
name that we give to the phenomenon that we have been discussing is, “Faraday’s Law of 
Induction.”  What we say is, that a changing magnetic field causes an electric field.  Of course, 
you’ve already heard of Faraday’s Law of Induction.  We said that Faraday’s Law of Induction is 
the statement that a changing flux through a loop or coil will induce a current in that coil.  With 
the introduction of our “middleman” electric field, we are now saying the same thing and more.  
A changing flux through a loop or coil will indeed induce a current in that coil because it will 

                                                
1 I’ve heard the Occam’s Razor analogy explained two ways:  The first explanation was that Occam’s razor, 
positioned edge up, is a very narrow elevated sidewalk.  You put a bunch of competing, accurate, hypotheses on the 
razor, and the one that is able to stay on the narrow surface, owing to its simplicity and compactness, is the one that 
becomes a law or principle of physics.  The second explanation was that Occam’s razor is a sharp-edged tool used to 
cut away all the unnecessary parts of a good hypothesis until nothing is left but a law of physics. 
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produce an electric field in the loop or coil, an electric field that will push charged particles 
around loop or coil such that their motion is the charge flow we call current2.  In fact, if you need 
to determine the direction of the electric field produced by a changing magnetic field, just 
imagine there to be a loop surrounding the changing magnetic field.  The direction of the current 
that would flow in that fictitious loop is the direction of the electric field. 
 
So, what I’m saying is, that Faraday’s Law boils down to the statement that a changing magnetic 
field causes an electric field.  Let’s review exactly what we mean by changing in this context.  
Much like the statement “Work is force times distance,” is a convenient mnemonic3 but a 
woefully incomplete and possibly misleading definition of work, the statement that a changing 
magnetic field causes an electric field is a convenient mnemonic but an incomplete and possibly 
misleading statement of Faraday’s Law.   So, what do we mean by “changing” in this context?  
Here’s the deal: whatever changing of the magnetic field at a particular point in space would 
cause a force on a positive test charge if it were at that point in space, would cause an electric 
field at that point in space.  Furthermore, that electric field would be in the same direction as the 
force that would be experienced by the test charge, and, that electric field would have a 
magnitude equal to the magnitude of: the magnitude of the force on the test charge divided by 
the charge of the test charge.  Let’s investigate a couple of cases.  We are going to look at a 
point P in the reference frame in which point P is at rest.  From our point of view, point P is a 
fixed point in space. 
 
 
CASE 1: A non-rotating bar magnet is moving straight at point P, north pole first, such that point 
P is on the extended axis of symmetry of the bar magnet. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now that’s ironic.  There will be no electric field induced at point P.  Think about it.  I mean 
suppose there was a charged particle at rest relative to point P, at point P.  As viewed from the 
rest frame of the magnet, the charged particle would be approaching the magnet along a 
magnetic field line.  We all know that won’t result in a force on the charged particle.  It has to be 

                                                
2 Recall that, technically, current is the rate of charge flow.  Still, the charge flow itself is commonly referred to as 
current. 
3 A mnemonic is a device that helps you remember something. 
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crossing some magnetic field lines in order to have a force exerted on it by the magnetic field.  
So, the magnetic field would not exert a force on a positive test charge if that test charge were at 
point P, and, at rest relative to point P.  This means that the magnetic field of the bar magnet 
would not be causing an electric field at point P.  This is weird.  The magnetic field at point P is 
getting stronger.  Hey, that’s an ongoing change.  All the same, there is no electric field induced 
at point P.  We need magnetic field lines “cutting through” point P to cause an electric field at 
point P.  Despite the ongoing change, we don’t have any “cutting through” going on here, so 
there is no electric field induced at point P. 
 
 
CASE 2: A uniform magnetic field is moving in a direction transverse to the direction of the 
magnetic field, through point P. 
 
Let’s assume we have a huge bar magnet and point P is near the face of the north pole of the 
magnet, far from any edges.  In that region, near the face of the pole, far from any edges, the 
magnetic field is, to a good approximation, uniform.  Here we just show the upper tip of the bar 
magnet and a small portion of its magnetic field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have a little bit more irony here.  Neither the magnitude nor the direction of the magnetic 
field at point P is changing with time, yet, clearly we have an electric field induced at point P.  
Check it out.  Suppose there was a positive test charge at P and at rest relative to point P.  
Relative to the magnet, and more importantly, relative to the magnetic field of the magnet, the 
test charge would be moving rightward.  It would indeed be crossing some magnetic field lines 
so it would indeed experience a force BF

vvv
××××==== vvvvq .  By the right-hand rule for the cross product, 

applied to BF
vvv

××××==== vvvvq  where vvvv
v

 is the velocity of the charged particle relative to the magnetic 
field, the force would be directed out of the page, straight at you.  Putting the test charge back in 
my pocket, what this means is, there is an electric field at P, which, in the diagram, would be 
directed out of the page, straight at you.  Returning to the rest frame of point P, what we have is 
some magnetic field lines cutting through the position of point P, and, that is exactly what we 
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need to cause an electric field at point P.  In fact, what we really mean when we say that “a 
changing magnetic field causes an electric field” is that magnetic field lines that are dynamically 
“cutting through,” a point in space will cause an electric field at that point in space.  Another way 
of putting it would be to say that the velocity of a magnetic field vector at P must have a 
transverse-to-the-magnetic-field-vector component in order for an electric field to be induced at 
point P. 
 
 
CASE 3  The superposition of a uniform magnetic field that is moving in a direction transverse 
to the direction of the magnetic field, through point P, and, a stationary magnetic field that is 
equal and opposite to the one just mentioned. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Again, we are just showing a small fraction of each magnet.  The total magnetic field is not only 
constant, it is zero!  The superposition of the two magnetic fields is no field at all.  And yet, 
because there are magnetic field lines moving transversely through point P, there is an electric 
field induced at point P.  As in the last case, the electric field is directed out of the page, straight 
at you. 
 
Before moving on, I want to write down an expression for the electric field vector at a point in 
space due to relative motion between that point and the magnetic field at that point (what we 
have just been talking about and what is typically referred to as the electric field due to a 
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changing magnetic field).  I’ll do so by imagining there to be a positive test charge “attached” to 
point P and viewing the situation from the point of view in which the magnetic field is at rest.   
 
 
 
 
 
 
 
 
 
 
 
 
A positive test charge q “attached” to point P would experience a force given by: 
 

BF
vvv

××××==== vvvvq  
 
Now we are saying that this force is actually due to an electric field caused by the relative motion 
between the charged particle and the magnetic field.  In this case, 
 

EF
vv

q====  
 
Of course we are talking about the same force from two different viewpoints.  In order for both 
viewpoints to give the same result we must have: 
 

BE
vvv

××××==== vvvv                                                              (20-1) 
where: 
 

 E
v

 is the electric field at an empty point in space due to the motion of that point relative to a 
magnetic field vector that exists at that point in space, 

 
  vvvv
v

 is the velocity of the empty point in space relative to the magnetic field vector, and, 
 
 B
v

 is the magnetic field vector. 
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Now let’s consider the effect that an electric field has on a particle having a magnetic dipole 
moment.  I’m going to refer to such a particle as a magnetic dipole.  Consider a magnetic dipole 
in the vicinity of a long line of charge that is uniformly distributed along the line. 
 
 
 
 
 
 
 
 
 
 
Please consider the line of charge to extend much farther in both directions than I have depicted 
it to, so that we don’t have to deal with the non-uniform nature of its electric field near the ends.  
With that understanding, we can depict the electric field of the line of charge as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The electric field of the line of  charge exerts no torque on the magnetic dipole. 
 
 Now, consider a different situation involving the same two objects, a situation in which the two 
objects are moving in opposite directions parallel to the line of charge: 
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Again we’ll let v  be the speed of the line and the magnetic dipole relative to each other and we 
will be jumping back and forth between reference frames.  As viewed from the reference frame 
in which the magnetic dipole is at rest, the line of charge is moving.   
 
 
 
 
 
 
 
 
 
 
 
 
The moving line of positive charge is an electric current in the direction in which the line is 
moving. 
 
 
 
 
 
 
 
According to Ampere’s Law, a current causes a magnetic field.  We have learned that a straight 
current causes a magnetic field that extends in loops around the current in accord with the right-
hand rule for something curly something straight with the current being the something straight.  
Thus, in the vicinity of our magnetic dipole, we have magnetic field lines directed as depicted in 
the following diagram: 
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Now we see that our magnetic dipole is in a magnetic field.  A magnetic field exerts a torque on 
a magnetic dipole in the magnetic field.  So, our magnetic dipole experiences a torque.  By the 
right hand rule for the cross product of two vectors, applied to B�τ vvv ××××==== ,  the axial torque vector 
is in the direction depicted in the following diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
Of course, you can get the sense of rotation associated with that torque by means of the right-
hand rule for something curly something straight.  Point your right thumb in the direction of the 
torque vector and your fingers will curl around in the way that torque tends to spin the magnetic 
dipole (counterclockwise when viewing the torque vector “tip-on”).  Note that, as always, the 
torque tends to align the magnetic dipole with the magnetic field it is in.  So far, we have been 
viewing things the way we always have.  Moving charge is current.  Current causes a magnetic 
field.  A magnetic field exerts a torque.  Now let’s view this situation in the same reference 
frame, but, from a different point of view. 
 
Again, we have a line of charge moving near a particle that has a magnetic dipole moment. 
 
 
 
 
 
 
 
 
 
 
This time, let’s focus our attention on the electric field of the line of charge. 
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The magnetic dipole finds itself at a point in space through which electric field vectors are 
moving, transverse to the direction in which the electric field vectors point.  Let’s jump 
momentarily into the reference frame in which the line of charge is at rest and see what the 
situation looks like from that reference frame. 
 
 
 
 
 
 
 
 
 
 
Remember, we know the end result:  The magnetic dipole experiences torque which is directed 
up and to the left in the diagram.  Can we describe this in terms of an interaction between the 
magnetic dipole and the electric field?  The answer is yes.  We can say, that:  An electric field 
exerts a torque on a particle that has a magnetic dipole moment as long as that particle is moving 
so that it is crossing electric field lines, and, as long as its magnetic dipole moment �v

 is not 

collinear with E
vv ××××vvvv , where vvvv

v
 is the velocity of the particle and E

v
 is the electric field vector at 

the location of the particle.  This is a bit of a mouthful and indeed, unlike the case of a charged 
particle moving in a magnetic field, this statement is almost never made without “the 
middleman.”  In the case at hand, the “middleman” is the magnetic field. 
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We view the situation in the rest frame of the magnetic dipole. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this reference frame we see electric field lines moving transversely through the position of the 
magnetic dipole.  Despite the fact that the electric field is changing in neither magnitude nor 
direction at the location of the particle, we refer to this transverse motion of the electric field 
through the position of the particle as a changing electric field at the location of the particle.  We 
say that a changing electric field causes a magnetic field, and it is the magnetic field so produced 
that causes the torque.  The magnetic field exists whether or not there is a victim magnetic dipole 
for it to exert a torque on.  What we’re saying is, that a line of charge, viewed from the reference 
frame in which the line of charge is at rest, causes there to be an electric field, and only an 
electric field in the region of space around it.  But, if you “look at” that same line of charge from 
a reference frame that is moving relative to the line of charge, what you see is both a magnetic 
field and an electric field. 
 
Let’s consider a point in space.  Call it point P.  Regarding the direction, by analogy with the 
force on a charged particle moving relative to the magnetic field it is in, we use the point of view 
in which point P is moving in an electric field. 
 
 
 
 
 
 
 
 
From our earlier considerations (we considered a line of charge, moving relative to a magnetic 
dipole, to be a current) we know that the magnetic field at point P is into the page in the diagram 
above.  Now, by the right-hand rule for the cross product of two vectors, applied to E

vv ××××vvvv , we 
note that the direction of E

vv ××××vvvv , is out of the page in the diagram above.  So, if we adopt the 
point of view in which the electric field E

v
 is at rest and the point at which we might place a test 

dipole is moving through electric field lines at velocity vvvv
v

, we can say that the magnetic field that 
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would be experienced by our test dipole, is in the direction E
vv ××××−−−− vvvv .  In fact, the magnetic field at 

point P is given by 
EB
vvv

××××−−−−==== vvvvooeµ                                                              (20-2) 

where 
B
v

 is the magnetic field, at an empty point in space, due to the motion of that point relative to 
an electric field vector that exists at that point in space, 

 
A

mT
104 7

o

⋅⋅⋅⋅××××==== −−−−πµ  is the magnetic permeability of free space, 

 2

2
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o mN

C
10858

⋅⋅⋅⋅
××××==== −−−−.e  is the electric permitivity of free space, 

vvvv
v

 is the velocity of the empty point in space relative to the magnetic field vector, and, 
E
v

 is the electric field vector. 
 
This business of transverse electric field motion, relative to a point in space, causing a magnetic 
field at that point in space, is usually, rather loosely, stated as, “A changing electric field causes a 
magnetic field,” and referred to as Maxwell’s extension to Ampere’s Law (where Ampere’s Law 
is the one that says a current will cause a magnetic field).  In the example I just used to develop 
this principle for you, we had an electric field causing a magnetic field at point P despite the fact 
that the electric field at P was constant in both magnitude and direction.  How could that be?  
Well, we did have electric field vectors moving transversely through P, and that’s sufficient to 
cause a magnetic field at P.  (By “moving transversely,” I mean that the velocity of the electric 
field vectors was perpendicular to the direction of the electric field vectors.) 
 
Returning to the example that we have been studying, let’s put a very long stationary sheath or 
pipe around the line of charge and put the same magnitude of linear density of charge (the same 
as is on the line of charge) on it, but, make it negative charge. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Please consider both the line of charge and the sheath of charge to be much longer than depicted.  
Consider them both to extend left and right as far as you can imagine.  Every meter of our long 
object consisting of the line of charge plus its sheath, is neutral, because we have just as much 
negative charge on a meter of the sheath as we have positive charge on a meter of the line.   
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Thus, the electric field at the location of point P (the location of the test magnetic dipole in the 
diagram) is zero.  But, the line of charge is moving leftward while the sheath is stationary.  As a 
result, we have outward-directed electric field lines (only) moving leftward through point P.  
Using the right-hand rule for the cross product of two vectors applied to EB

vvv
××××−−−−==== vvvvooeµ  with vvvv

v
 

being the rightward velocity of point P relative to the upward directed electric field at point P, 
we get “out of the page” for the direction of E

vv ××××vvvv  meaning that B
v

 is “into the page” consistent 
with our understanding of the magnetic field line pattern formed by a straight (leftward) current.  
Indeed what we have in this example is a model for a neutral current-carrying conductor such as 
a copper wire connected across a power supply. 
 
Okay.  Here comes the main point of this chapter. 
 
We’ve said that a magnetic field vector moving transversely through a point in space will cause 
an electric field BE

vvv
××××==== vvvv  at that point in space, and, that an electric field vector moving 

transversely through a point in space will cause a magnetic field EB
vvv

××××−−−−==== vvvvooeµ  at that point in 

space.  First, an admission to the reader.  The word “cause” in this context is not really 
appropriate because there is never any time delay.  I used it to avoid falling into a diction 
quagmire.  In reality, whenever we have a magnetic field vector moving transversely through a 
point there exists, simultaneously, an electric field BE

vvv
××××==== vvvv  at that point in space, and, 

whenever we have an electric field vector moving transversely through a point in space, there 
exists, simultaneously, a magnetic field EB

vvv
××××−−−−==== vvvvooeµ  at that point in space.   

 
Consider the following circuit.  Assume that we are looking down on the circuit from above, 
meaning that into the page, is downward, and out of the page, is upward. 
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I want you to focus your attention on the rightmost wire of that circuit.  As soon as someone 
closes that switch we are going to get a current through that wire and that current is going to 
produce a magnetic field.  You can look at the cause of the magnetic field in terms of Ampere’s 
Law or in terms of Maxwell’s extension to Ampere’s Law, the cause is not the issue here.  We 
get a current, and, by means of the right-hand rule for something curly something straight, with 
the current being the something straight, and our knowledge that straight currents cause magnetic 
fields that make loops around the current, we can deduce that there will be an upward-directed 
magnetic field at points to the right of the wire.  In steady state, we understand that the upward-
directed magnetic field vectors will be everywhere to the right of the wire with the magnitude of 
the magnetic field vector being smaller the greater the distance the point in question is from the 
wire.  Now the question is, how long does it take for the magnetic field to become established at 
some point a specified distance to the right of the wire.  Does the magnetic field appear instantly 
at every point to the right of the wire or does it take time?  James Clerk Maxwell decided to 
explore the possibility that it takes time, in other words, that the magnetic fields develop in the 
vicinity of the wire and move rightward with a finite velocity.  To keep the drawing uncluttered 
I’m going to show just one of the infinite number of magnetic field lines moving rightward at 
some unknown velocity (and it is this velocity that I am curious about) as the magnetic field due 
to the wire becomes established in the universe. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Again, what I’m saying is that, as the magnetic field builds up, what we have, are rightward-
moving upward-directed magnetic field lines due to the current that just began flowing.  Well, as 
a magnetic field vector moves through whatever location it is moving through, it causes an 
electric field BE

vvv
××××==== vvvv  (where vvvv

v
 is the velocity of the point in space relative to the magnetic 

field—since we see the magnetic field moving rightward, the point in space must be moving 
leftward relative to the magnetic field at that point in space.) 
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At any point P through which the magnetic field vector passes, an electric field exists consistent 
with BE

vvv
××××==== vvvv .  What this amounts to is that we have both a magnetic field and an electric field 

moving rightward through space.  But we said that an electric field moving transversely through 
space “causes” a magnetic field.  More specifically we said that it is always accompanied by a 
magnetic field given by EB

vvv
××××−−−−==== vvvvooeµ  (where again, the vector vvvv

v
 is the velocity of the point in 

space relative to the magnetic field vector—it’s got the same magnitude as the velocity vector in 
the diagram, but, if the electric field vector is moving rightward relative to the point in space, 
then, the point in space is moving leftward relative to the electric field vector).  Now we’ve 
argued around in a circle.  The current “causes” the magnetic field and its movement through 
space “causes” an electric field whose movement through space “causes” the magnetic field.  
Again, the word “causes” here should really be interpreted as “exists simultaneously with.”  Still, 
we have two explanations for the existence of one and the same magnetic field and the two 
explanations must be consistent with each other.  For that to be the case, if we take our 
expression for the magnetic field “caused” by the motion of the electric field, 
 

EB
vvv

××××−−−−==== vvvvooeµ  

 
and substitute into it, our expression BE

vvv
××××==== vvvv  for the electric field “caused” by the motion of 

the magnetic field, we must obtain the same B
v

 that, in this circular argument, is “causing” itself.  
Lets try it.  Substituting BE

vvv
××××==== vvvv  into EB

vvv
××××−−−−==== vvvvooeµ , we obtain: 

 
)(oo BB

vvvv
××××××××−−−−==== vvvvvvvveµ  

 
All right.  Always keeping in mind that the vvvv

v
 is the velocity of the point in space relative to the 

field, meaning it has the same speed as the field relative to the wire, but it is directed leftward in 
the diagram rather than rightward, and noting that vvvv

v
 is perpendicular to both B

v
 and B

vv ××××vvvv , 
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meaning that the magnitude of the cross product, in each case, is just the product of the 
magnitudes of the multiplicand vectors, we obtain: 
 

BB
vv

2
oo veµ====  

 
Again, it is one and the same B

v
 on both sides, so, the only way this equation can be true is if 

2
oo veµ  is exactly equal to 1.  Let’s see where that leads us: 
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Wow.  That’s the speed of light! 
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Faraday’s Law and Maxwell’s Extension to Ampere’s Law, and, the Imaginary Loop 
 
Here we give an argument similar to the one we gave in our discussion of a changing number of 
magnetic field lines through a conducting loop, but, this time, instead of a conducting loop in 
which current is induced, we deal with an imaginary loop in which an electric field is induced.  
Then we give a similar argument for the case of a changing number of electric field lines through 
another imaginary loop. 
 
Suppose we have an increasing number of downward-directed magnetic field lines through an 
imaginary loop.  Viewed from above the situation appears as: 
 
 
 
 
 
 
 
 
 
 
The big idea here is that you can’t have an increasing number of downward-directed field lines 
through the region encircled by the imaginary loop without having, either, downward-directed 
magnetic field lines moving transversely and inward through the loop into the region encircled 
by the loop, or, upward-directed magnetic field lines moving transversely and outward through 
the loop out of the region encircled by the loop.  Either way you have magnetic field lines cutting 
through the loop and with each magnetic field cutting through the loop there has to be an 
associated electric field tangent to the loop.  Our technical expression for the “number of 
magnetic field lines through the loop” is the magnetic flux, given, in the case of a uniform (but 
time-varying) magnetic field by 

AB
Φ

B

rr

⋅⋅⋅⋅====                                                               (20-3) 
 
where A is the area of the region encircled by the loop.  The average magnitude of the electric 
field vector at any point in the loop is given by 
 

B2

1 ⋅⋅⋅⋅====
Φ

r
E

π
                                                           (20-4) 

 

where B

⋅⋅⋅⋅Φ
 is, of course, the time derivative of the magnetic flux, that is, the rate of change of the 

magnetic flux through the region encircled by the loop. 
 
 
Now here’s an important piece of information regarding direction that we derived earlier in this 
chapter but never explicitly stated: 
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When you have an electric field vector and its associated magnetic field vector (the one pair 
appearing in both BE

vvv
××××==== vvvv  and EB

vvv
××××−−−−==== vvvvooeµ ), both fields are moving in the same direction 

as the direction of the vector BE
vv

×××× . 
 
Suppose that, in the case at hand, the number of magnetic field lines downward through the loop 
is increasing because we have downward magnetic field lines moving inward through the loop, 
into the region encircled by the loop.  Let’s look at one such field line in the act of crossing the 
loop. 
 
 
 
 
 
 
 
 
Now, our new BE

vv
××××  direction rule is that the transverse velocity of B

v
 (and E

v
 for that matter) is 

in the same direction as the direction of the vector you get when you take the cross product 
BE
vv

×××× .  For the cross product to be leftward in the diagram above, E
v

 must be pointing toward 
the top of the page: 
 
 
 
 
 
 
 
 
 
You can check it out for some more magnetic field vectors moving into the region encircled by 
the loop from other positions about the loop.  And, you can check it assuming the reason that the 
magnetic field downward through the loop is increasing is because upward directed magnetic 
field lines are moving out (through the loop) of the region encircled by the loop.  In all cases 
you’ll find, consistent with what we just found for one E

v
 vector, that the electric field vectors 

form a circular pattern directed counterclockwise about the loop, as viewed from above.  Note 
that if we imagine the loop to be a conducting loop, that our result is also consistent with Lenz’s 
Law. 
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Now consider the case of an increasing number of downward-directed electric field lines through 
an imaginary loop.  Viewed from above the situation appears as: 
 
 
 
 
 
 
 
 
 

We can’t get an increasing number of downward-directed electric field lines through the region 
encircled by the loop without some of them moving through the loop.  In cutting through the 
loop, the electric field must have a magnetic field (tangent to the loop) associated with it.  The 
technical name for the number of electric field lines through the loop is the electric flux through 
the loop, given, for a uniform electric field by: 
 

AEE
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⋅=Φ                                                               (20-5) 
 

where A is the area of the region encircled by the loop.  In the case of a uniform electric field, the 
magnitude of the induced magnetic field vector, at every point on the loop, is given by: 
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                                                              (20-6) 

 

The direction can be obtained by means of our BE
vv

××××  direction rule.  For example, by assuming 
thatE

v
is increasing because electric field lines are moving into the region encircled by the loop, 

for one electric field vector in the act of crossing the loop, we have: 
 
 
 
 
 
 
 
 

For Ev  to be inward for any downward-directed electric field vector crossing the loop from 
outside to inside, 
 
 
 
 
 
 
 
 

the magnetic field vectors must form a clockwise (as viewed from above) pattern about the loop.  

E increasing 

E  
vE 

E  
vE 

B  



Chapter 21  The Nature of Electromagnetic Waves 

200 

21  The Nature of Electromagnetic Waves 
 
When we left off talking about the following circuit: 
 
 
 
 
 
 
 
 
 
 
 
 
we had recently closed the switch and the wire was creating a magnetic field which was 
expanding outward.  The boundary between that part of the universe in which the magnetic field 
is already established and that part of the universe in which the magnetic field has not yet been 
established is moving outward at the speed of light, c = 3.00 × 108 m/s.  Between that boundary 
and the wire we have a region in which there exists a steady unmoving magnetic field.  Note that 
it was the act of creating the current that caused the magnetic field “edge” that is moving at the 
speed of light.  In changing from a no-current situation to one in which there was current in the 
wire, charged particles in the wire went from no net velocity in the along-the-wire 
direction to a net velocity along the wire, meaning, that the charged particles were 
accelerated.  In other words, accelerated charged particles cause light.  We can 
also cause light by means of the angular acceleration of particles having a 
magnetic dipole moment, but, the short answer to the question about what causes 
light, is, accelerated charged particles. 
 
Here’s a simple circuit that one might use to intentionally cause light: 
 
 
 
 
 
 
 
 
 
 
The vertical arrangement of wires on the right is referred to as a dipole antenna.  
As the AC power source alternately causes charge to surge upward in both parts of 
the antenna, and then downward, the dipole antenna creates electric and magnetic 
fields that oscillate sinusoidally in both time and space.  The fields propagate 
through space away from the antenna at the speed of light. 
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The charged particles oscillating up and down in the antenna causes waves of electric and 
magnetic fields known as light.  The frequency of the waves is the same as the frequency of 
oscillations of the particles which is determined by the frequency of the power source.  The 
speed of the waves is the speed of light c = 3.00 × 108 m/s, because the waves are light.  For any 
kind of wave, the frequency, wavelength, and wave speed are related by: 
 

fv λ====  
 

which, in the case of light reads: 
 

fλ====c  
 
Here’s a quick pictorial review of some properties of waves.  In the case of light, we have 
electric and magnetic fields oscillating in synchronization with each other.  It is customary to 
characterize the waves in terms of the electric field.  I’ll do that here, but, one should keep in 
mind that the magnetic field oscillates and moves in the same manner that the electric field does, 
but, at right angles to the electric field. 
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The intensity of a wave is proportional to its amplitude, so, in the case of light: 
 

2
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The frequency of light is determined by the frequency of oscillations of the charged particles 
constituting the source of the light.  How we categorize light depends on the frequency of the 
light.  In order of increasing frequency, we refer to light as: radio waves, microwaves, infrared 
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radiation, visible light, ultraviolet light, X rays, and gamma rays.  They are all the same thing—
electric and magnetic fields that are oscillating in time and space.  I am using the word light in a 
generic sense.  It refers to waves of any one of these various frequencies of oscillations of 
electric and magnetic fields.  In this context, if I want to talk about light whose frequency falls in 
the range to which our eyes are sensitive, I refer to it as visible light.  Another name for light is 
electromagnetic radiation.  The entire set of the different frequencies of light is referred to as the 
electromagnetic spectrum.  The following table indicates the way in which humans categorize 
the various frequencies of light in the electromagnetic spectrum.  While I do give definite values, 
boundaries separating one frequency from the next are not well defined and hence, should be 
treated as approximate values. 
 

Kind of Light Frequency Wavelength 
Radio Waves < 300 MHz > 1 m 
Microwaves 300 - 750 000 MHz . 4 mm - 1 m 
Infrared 750 GHz - 430 THz 700 nm- .4 mm 
Visible 430 - 750 THz 400 - 700 nm 
Ultraviolet 750 - 6 000 THz 5 - 400 nm 
X rays 6 000 - 50 000 000 THz  .006 - 5 nm 
Gamma Rays > 50 000 000 THz < .006 nm 

 
Note that the visible regime is but a tiny slice of the overall electromagnetic spectrum.  Within it, 
red light is the long-wavelength, low-frequency visible light, and, blue/violet light is the short-
wavelength high-frequency visible light.  AM radio stations broadcast in the kHz range and FM 
stations broadcast in the MHz range.  For instance, setting your AM dial to 100 makes your radio 
sensitive to radio waves of frequency 100 kHz and wavelength 3 000 m.  Setting your FM dial to 
100 makes your radio sensitive to radio waves of frequency 100 MHz and wavelength 3 m. 
 
We call the superposition of the changing electric and magnetic field vectors, with other 
changing electric and magnetic field vectors, interference.  Many of the phenomena involving 
light are understood in terms of interference.  When light interacts with matter, its electric and 
magnetic fields exert forces on the charged particles that make up matter.  (Both the electric and 
magnetic fields associated with light, at a given instant, exert a force on a charged particle in one 
and the same direction.  That direction is the same direction as the electric field if the particle is 
positive, and in the opposite direction if it is negative.   In the case of the magnetic field, the 
force results from the relative motion between the particle and the magnetic field.  Because the, 
magnetic field force is in the same direction as that of the electric field force, and the electric 
field force is easier to keep track of, it has become customary to talk about the interaction of 
electric fields with matter in terms of the interaction of the electric field with matter.  I will 
follow that custom.  Please keep in mind that the magnetic field, always at right angles to the 
electric field in light, simultaneously with the electric field, exerts a force in the same direction 
that the electric field does.)  As a result, the charged particles accelerate, and, as a result, produce 
their own electric and magnetic fields.  Because there is no time delay between the exertion of 
the force and the resulting acceleration, the newly produced electric and magnetic field vectors 
superpose with the very electric and magnetic field vectors causing the acceleration.  Because the 
mass of an electron is approximately 1/2000 of the mass of a proton, the acceleration 
experienced by an electron is 2000 times greater than that experienced by a proton subject to the 
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same force.  Hence, the interaction of light with matter, can often be explained in terms of the 
interaction of light with the electrons in matter. 
 
How the electrons in matter interact with light, is largely determined by the degree to which the 
electrons are bound in the matter.  As a rather bizarre example of how a large number of 
complicated interactions can combine to form a simple total effect, the mix of attractive and 
repulsive 1/r  

2 Coulomb forces exerted on the electron in a solid material by the protons and 
electrons on all sides of it, results in a net force on the electron that is well modeled by the force 
that would be exerted on a particle “tied” to its equilibrium position by a spring.  Hence the 
electron acts like a “mass on a spring.”  As such, it can undergo simple harmonic motion like a 
mass on the end of a spring.  The way light interacts with the electrons can thus be said to 
depend on the frequency of the light and the force constant of the effective spring.  If we limit 
our discussion to visible light, the degree to which the electrons are bound (the spring constant) 
determines how the light interacts with the matter.  In the case of what we would consider 
opaque light-absorbing matter such as flat black paint, the electron accelerations result in 
destructive interference of the incoming light with the light produced by the electrons.  Light 
doesn’t go through, nor is much reflected off the material.  In the case of shiny metal surfaces, 
the electrons that the light interacts with are virtually free.  The light emitted by these electrons 
as a result of the acceleration caused by the light, interferes constructively with the light in a very 
specific backward direction and destructively in forward directions.  Hence, the light does not get 
through the metal, but, it is reflected off in a manner referred to as plane mirror reflection.  In the 
case of a transparent medium such as glass, the light given off by the electrons interferes with the 
incoming light in such a manner as to cause constructive interference in specific forward and 
backward directions.  But, the constructive interference in the forward direction is such that the 
pattern of electric and magnetic waves formed by all the interference taken as a whole, moves 
more slowly through the glass than light moves through vacuum.  We say that the speed of light 
in a transparent medium is less than the speed of light in vacuum.  The ratio of the speed of light 
in vacuum to the speed of light in a transparent medium, is called the index of refraction, n, of 
that transparent medium. 

v
c

n ====  

where: 
 n is the index of refraction of a transparent medium, 
 c = 3.00 × 108 m/s is the speed of light in vacuum, and, 
v  is the speed of light in the transparent medium. 

 
Because the speed of light never exceeds the-speed-of-light-in-vacuum, the index of refraction is 
always greater than or equal to 1 (equal when the medium is, or behaves as, vacuum).  Some 
values for the index of refraction of light for a few transparent media are: 
 

Medium Index of Refraction 
Vacuum 1 

Air 1.00 
Water 1.33 

Glass (Depends on the kind of 
glass.  Here is one typical value.) 

1.5 
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The kind of interaction of light with matter with which we are most familiar is called diffuse 
reflection.  It is the light that is diffusely reflecting off a person that enters your eyes when you 
are looking at that person.  The electron motion produces light that interferes destructively with 
the incoming light in the forward direction (the direction in which the incoming light is 
traveling), so, essentially none gets through but, for a particular frequency range, for all 
backward directions, very little destructive interference occurs.  When the object is illuminated 
by a mix of all visible frequencies (white light), the frequency of the reflected light depends on 
the force constant of the effective spring that is binding the electrons to the material of which 
they are a part.  The frequency reflected (in all backward directions) corresponds to what we call 
the color of the object.
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22  Huygens’ Principle and 2-Slit Interference 
 
Huygens’ Principle states that, to explain what the intensity distribution of the light at some 
forward position of a wavefront is, one can treat the wavefront, as it exists at one instant in time 
as an infinite set of point sources of light.  Before we can get a handle on  exactly what that 
means, we need to get a handle on some of the terminology.  Furthermore, “getting” Huygens’ 
Principle is a matter of  “seeing” the picture.  As such, we need to become familiar with some of 
the diagrammatic conventions that physicists use to characterize light. 
 
Note: Huygens’ principle can be applied to all frequencies of electromagnetic radiation1.  As I 
talk about it here, I am going to have visible light in mind. 
 
Here’s one way of depicting a portion of a beam of light traveling rightward through space, at an 
instant in time: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each “sheet” in the diagram characterizes the electric (vertical arrows) and magnetic (horizontal 
arrows) fields at the instant in time depicted.  On each sheet, we use the field diagram convention 
with which you are already familiar—the stronger the field, the more densely packed the field 
lines in the diagram. 
 
Considering time frozen, we see that the electric and magnetic fields at the back of the beam are 
strong.  In fact, they are at their maximum.  If we allow our attention to move forward along the 
beam from there, we note that the electric field is upward-directed and weaker, the further 
forward we move, until we get to sheet 5 (counting forward from the rear) where the electric 
field is zero.  Just forward of that, the electric field is weak and downward, and as we move 
forward, it gets stronger for a while, until it maxes out.  Forward of that, we find it downward but 
getting weaker until we get to the front where the electric field is again zero. 

                                                
1 In fact, Huygens’ Principle can be applied to all kinds of waves (not just electromagnetic waves). 
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At the same instant in time, we find the magnetic field to be rightward (as viewed from someone 
facing in the direction in which the beam is traveling) and maximal at the back of the beam 
segment depicted, at the instant in time depicted.  From there, its variation with position is just 
like that of the electric field, except that for the beam depicted, the magnetic field points 
rightward or leftward (rather than upward or downward).  So starting from the rear, as we move 
our attention forward, the magnetic field starts out strong and rightward, and gets weaker and 
weaker until it is zero at sheet five.  From there it starts building up and pointing leftward, and 
does so up until sheet 10 where it is maximal leftward.  From sheet 10 forward, the magnetic 
field is pointing leftward and getting weaker, until we get to the front of the beam, where it is 
zero. 
 
While I have drawn the electric field such that the electric field oscillations occur vertically, we 
should not consider this to be true in general.  Define a rotation axis containing the arrow at the 
front of the depiction of the beam segment.  A rotation about that axis through any angle would 
still be an appropriate diagram.  For instance, a rotation of 90° would result in a diagram 
characterizing light whose electric field varies leftward and rightward (as viewed from behind).  
Any direction perpendicular to the direction in which the light is traveling can be a direction 
along which the electric field is oscillating.  For any tiny length of the beam segment, however, 
the electric field oscillations do occur in a particular direction, such that the electric field vectors 
are pointing in either that direction or the opposite direction.  Because there are only two choices, 
we can call one direction positive, and the other negative, and, using this convention, make a 
graph of the component of the electric field along a particular direction perpendicular to the 
direction of travel, versus our position along the length of the beam segment.  For the beam 
segment depicted, oscillations of the electric field are occurring along what I call the upward 
direction (so a positive value of the upward component to the electric field means the electric 
field is indeed upward, whereas a negative value of the upward component to the electric field 
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meansE
v

is actually downward).  The diagram after next, depicts the electric field variation with 
position along the length of the beam segment, but just on one thin horizontal slice of the beam: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is a simpler diagram with less information which is, perhaps, easier to interpret, but, also, 
perhaps, easier to misinterpret.  It may for instance, be more readily apparent to you that what we 

are depicting (as we were in the other diagram) is just 
4

3
 of a wavelength of the wave.  On the 

other hand, the diagram is more abstract—the length of the electric field vectors does not 
represent extent through space, but rather, the magnitude of the electric field at the tail of the 
arrow.  As mentioned, the set of locations of the tails of the arrows, namely the horizontal plane, 
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is the only place the diagram is giving information.  It is generally assumed that the electric field 
has the same pattern for some distance above and below the plane on which it is specified in the 
diagram.  Note the absence of the magnetic field.  It is up to the reader to know that; as part of 
the light, there is a magnetic field wherever there is an electric field; and; that, the greater the 
electric field, the greater the magnetic field; and; that the magnetic field is perpendicular both to 
the direction in which the light is going, and, to the electric field.  (Recall that the direction of the 
magnetic field is such that the vector BE

vv
××××  is in the same direction as the velocity of the wave.)  

What is perhaps the most common graphical representation of a wave traveling to the right, 
characterizes the electric and magnetic fields along but a single line extending along the center of 
the beam in the direction of travel.  An example of such a line would be the line along the center 
of the plane in the following copy of the diagram we have been working with: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An example of an electric field depiction, on a single line along the direction of travel, would be: 
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It is important to keep in mind that the arrows are characterizing the electric field at points on the 
one line, and, it’s the length of the arrow that indicates the strength of the electric field at the tail 
of the arrow, not the spacing between arrows. 
 
The simplicity of this field-on-a-line diagram allows for the inclusion of the magnetic field 
vectors in the same diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If one connects the tips of the arrows in this kind of diagram, the meaning of those Electric Field 
vs. Position sinusoidal curves presented in the last chapter becomes more evident: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Huygens’ Principle involves wavefronts.  A wavefront is the part of a wave which is at a surface 
that is everywhere perpendicular to the direction in which the wave is traveling.  If such surfaces 
are planes, the wave is called a plane wave.  The kind of wave we have been depicting is a plane 
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wave.  The set of fields on any one of the gray “sheets” on in the diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
is a part of a wavefront.  It is customary to focus our attention on wavefronts at which the electric 
and magnetic fields are a maximum in one direction.  The rearmost sheet in the diagram above 
represents such a wavefront. 
 
In the following diagram, you see black lines on the top of each sheet representing maximum-
upward-directed-electric-field wavefronts. 
 
 
 
 
 
 
 
 
 
And, in the following, each such wavefront is marked with a black dot: 
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A common method of depicting wavefronts, corresponds to a view from above, of the preceding 
electric field sheet diagram which I copy here: 
 
 
 
 
 
 
 
 
 
Such a wavefront diagram appears as: 
 
 
 
 
 
 
 
 
 
 
 
More commonly, you’ll see more of them packed closer together.  The idea is that the 
wavefronts look like a bird’s eye view of waves in the ocean. 
 
 
 
 
 
 
 
 
 
Note that the distance between adjacent maximum-field wavefronts, as depicted here, is one 
wavelength. 
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Again, Huygens’ Principle states that, for determining the future light intensity at positions 
forward of a wavefront, one can treat the wavefront as an infinite set of point sources of light.  A 
point source creates spherical wavefronts centered on the point source.  We limit our discussion 
to the light emitted in the forward direction on the basis that light propogating backward from a 
wavefront (in the absense of any matter for the light to interact with at the wavefront) is not 
physical.  Huygen’s Principle applied to a plane wave propagating forward through vacuum is 
not particularly useful, but, it will help to convey an understanding of Huygens’ Principle.  So, 
we do that here.  Depicted below is a wavefront diagram for a particular instant in time.  I 
arbitrarily pick one wavefront, call it the “designated wavefront,” to serve as “infinite set of point 
sources” which should serve to replace the the wavefronts ahead of it (the designated wavefront) 
as they move away from it.  The designated wavefront position will be “fed by” the wavefronts 
behind it, which will continue their forward movement toward the designated wavefront position. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I am not going to try to depict an infinite set of points, rather, I will convey the idea behind 
Huygens’ principle by means of a finite set of points which I depict as black dots in the following 
diagram.

The Designated Wavefront 
(chosen arbitrarily) 
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Now I provide a series of diagrams, representing successive instants in time, one period apart 
from each other.  In one period, each wavefront travels one wavelength, the distance between the 
wavefronts depicted.  This goes for the waves emanating from the “point sources” as well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Designated Wavefront 
(chosen arbitrarily) 

The Designated Wavefront 
(chosen arbitrarily) 
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The preceding series of diagrams does show the plane wavefronts being replaced by new ones.  
Hey, you probably can’t even tell that I deleted the original lines.  Still, beyond the wavefront 
patterns, the diagrams should not be taken too literally.  We really need to add the total electric 
field at any given point in space due to all the “point sources” that contribute to it.  If we assume 
the electric field to be along a line perpendicular to the page, the sum at any point can indeed be 
a simple algebraic sum, but, it will involve negative as well as positive values.  The simple 
diagrams above do not show any of the negative contributions.  Done correctly, taking the 
decreasing magnitude of the electric field with distance into account, the application of the 
principle yields results that agree with experiment, not only in the gross features, but in the 
details as well. 
 
 
Two-Slit Interference 
 
When you shine plane-wave visible light through a mask with two parallel slits cut into it, onto a 
screen, under certain circumstances (which we shall discuss) you see, on the screen, an extended 
pattern of bright and dark bands where you might expect to see two bright lines surrounded by 
darkness which we might call the shadow of the mask. 
 
I use the kind of double slit mask that students make in a double-slit laboratory exercise to 
convey what we mean by a mask with a double slit in it. We obtain rectangular pieces of thin 
plate glass of about the size depicted in the following diagram: 
 
 
 
 
 
 
 
 
 
 
 
Prior to the laboratory session, we spray paint each mask with flat black spray paint which is 
given ample time to dry.  Each student is given a razor-blade knife, a metal ruler, and a painted 
piece of glass that looks like this: 
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The students use the ruler and knife to etch two parallel lines in the paint.  After they are done 
their masks looks like this: 
 

 
 
 
 
 
 
 
 
 
The double slit is illuminated with light from a laser.  The laser beam hits the mask “head on”.  
More specifically, the direction in which the light is traveling is at right angles to the surface of 
the mask.  Such light is said to be normally incident upon the mask.  (Recall that the word 
“normal” means “at right angles to.”  Make sure you know what we mean by the statement that 
light is normally incident upon a mask with a double slit in it.) 
 

 
 
 
 
 
 
 
 
 
On a white paper screen behind the mask, aligned the same way the mask is, the students see a 
pattern of bright and dark bands distributed horizontally over the face of the screen.  The bright 
bands are typically referred to as fringes.  In cases (unlike the laboratory exercise under 
discussion) where the width of each fringe is small compared to its height, the fringes are often 
referred to as lines. 
 
Huygens’ Principle helps us understand this phenomenon.  The phenomenon is an interference 
phenomenon.  Aside from the need for the slits to be close enough together for the beam to “hit” 
both slits at the same time, the slits, for reasons that will soon be clear, must be close to each 
other.  In analyzing the phenomenon here, I am going to “zoom in” on the small piece of the 
mask outlined in the following diagram: 
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Forward ↑  

Rightward → ← Leftward 
 

Mask with Double Slit 

Incoming Plane Waves of Light 

Screen 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I’m going to call the direction in which the light is traveling, on its way to the mask (which is 
into the page in the diagram above) the forward direction.  Now, I am going to depict the entire 
situation as viewed from above from above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Upward ↑  

← Leftward Rightward → 
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Incoming Plane Waves of Light 

Treating the interface of each slit as a point source in accord with Huygens’ Principle, and 
representing the intersections of the spherical wavefronts with the plane of the page, we have: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Because there are only two point-like sources, we can take this diagram a lot more literally than 
our diagram for plane waves moving through space with no obstructions.  The line and circle 
segments representing the wavefronts correspond to points in space where, at the instant in 
question, the electric field is maximum in one particular direction.  While the direction can be 
any direction perpendicular to the direction in which the waves are traveling, to make the 
discussion easier, lets assume that the electric field oscillations are vertical (into and out of the 
page) and that the wavefronts represent points in space at which, at the instant in question, the 
electric field is maximum upward.  At those points in space forward of the source, the electric 
field due to each point-like source varies periodically from upward and maximum (call it Emax , 
see footnote2), to zero, to downward and maximum (−Emax), back to zero, and back to maximum 
upward (Emax), with a frequency that we call the frequency of the light waves.  At those points in 
space forward of the source, the total electric field is the sum of the contribution to the electric 
field from the left slit and the contribution to the electric field from the right slit.  Thus, for the 
instant depicted in the diagram, where the wavefronts cross, we have both contributions at a 
maximum in one and the same direction.  So the total electric field at such points is, at the instant 
in question, twice that due to either source.  As time elapses, the electric field varies at such 
points, from 2 Emax to 0 to −2 Emax to 0, and back to 2 Emax; repeatedly.  The intensity of the light 
at such a position is 4 times what the intensity due to either slit alone would be.  The 
superposition of the time-varying electric fields is called interference, and when the various 

                                                
2 At any position through which the light under discussion travels, the electric field of that light varies sinusoidally 
with time.  I’m using the symbol Emax to represent the amplitude of the oscillations due to one source at such a point.  
This amplitude is different at different locations, both because of diminishment with distance from the source, and, 
because both of the point-like sources under discussion here are actually infinite sets of point sources themselves.  
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contributions add together to form an electric field that varies with an amplitude that is bigger 
than the electric field due to any individual contributor, we call the interference constructive. 
 
Note that the points where the wavefronts cross, lie on, or very near, straight lines extending out 
from the midpoint between the slits: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
The big deal is, that at every point on those lines (except “too” close to the slits) the electric field 
is oscillating with an amplitude of 2 Emax.  If we were to let time continually elapse, you would 
see those crossing points continually being created near the slits, moving onto the lines and 
outward along the lines toward the screen.  At every point on the lines (except “too” close to the 
slits), the interference is always constructive at every instant in time.  For instance, for the same 
instant depicted in the diagram above, consider the electric field on the wavefronts midway 
between the wavefronts depicted.  On these “midway between” wavefronts, the electric field is 
maximum downward.  I am going to redraw the wavefront diagram above, minus the maximum-
upward (electric field vector) wavefronts, but with the maximum-downward wavefronts 
(depicted with dashed lines).  Again, this diagram is for the same instant in time characterized by 
the diagram above.  Also, I am going to leave those same straight lines along which the 
constructive interference is occurring, on the diagram.  
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Note that, indeed, (except for “too close” to the slits), the maxima (wavefront crossing points) for 
the maximum-downward-electric-field vector wavefronts, occur along the exact same lines that 
the maximum-upward-electric-field vector wavefronts occurred along.  Again, I want to stress 
that the amplitude of oscillations is maximal (2 Emax) at every point on each of those lines—at 
points on the lines other than where the wavefronts are crossing, it is just that the electric field is 
at different stages of those maximum-amplitude oscillations. 
 
Where the lines consisting of points of maximal constructive interference intersect the screen, we 
see a bright fringe.  How about the dark fringes?  Those result at points in space where the 
electric field from one slit always cancels the electric field from the other slit.  We can find such 
points by depicting the maximum-upward-electric-field wavefronts from one slit at a particular 
instant, while, on the same diagram, depicting the maximum-downward-electric-field wavefronts 
from the other slit.  Where they cross, we have perfect cancellation, not just for the instant 
depicted, but, for all time.
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Here we show maximum-downward-electric-field wavefronts from the left slit interfering with 
maximum-upward-electric-field wavefronts from the right slit: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Again, except for very close to the slits, the points of intersection of the oppositely-directed 
electric field wavefronts, the points of destructive interference, lie on lines (not the same lines as 
before) extending outward from the point on the mask that is midway between the slits:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Along these lines, the interference is always completely destructive.  Where they intersect the 
screen, we see dark (unilluminated) fringes. 
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If we put these lines on which destructive interference always occurs on the diagram with the 
lines along which constructive interference always occurs, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
we see that the angles at which destructive interference always occurs are apparently midway 
between the angles at which constructive interference always occurs. 
 
Okay, it’s time to get quantitative.  It’s probably pretty obvious to you that the pattern depends 
on the wavelength of the light and the spacing between the slits.  What we need to do to put an 
end to this chapter is to find a mathematical relationship between the angles at which the maxima 
(bright light) and minima (darkness, a.k.a. zero light) occur.  I am going to use the symbol θ  to 
represent the angle that whichever maximum or minimum we are focusing on at the time, occurs.  
We number the maxima 0, 1, 2, … working out from the middle in both directions as indicated 
on the diagram above.  The minima are labeled 1, 2, 3  (there is no “0” minimum), also working 
out from the middle.  To avoid clutter, I have not labeled the minima in the diagram.  If 
necessary, use those numbers as subscripts on the angle θ  to distinguish one angle at which a 
maximum occurs from another, and, to distinguish one angle at which a minimum occurs from 
another.  If it is not clear from the context, the superscripts MAX  and MIN may also be needed.  The 
angle of a particular maximum or minimum to the left is always the same as the angle of the 
corresponding maximum or minimum to the right, so we don’t need to differentiate between left 
and right. 
 
The two slits represent a special pair of sources.  What’s special about such a pair of sources is 
that the two sources are exactly in synchronization with each other.  That is, for instance, when 
one is producing a maximum-upward electric field vector, so is the other.  We say that the two 
sources are in phase with each other.  Another thing that is special about the sources is that, 
because we consider each slit to be the same size as the other, and the light from the source to be 
of one and the same intensity across the face of the beam, the amplitude of the oscillations is the 
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Incoming Plane Waves of Wavelength λ 

d 

θθθθ    
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same for each.  This is why we get total cancellation along the lines on which the minima occur.  
By inspection of the diagram, it is clear that, to get to any point on the line in the straight-ahead 
direction, the distance that the light from one slit travels is the same as the distance that light 
from the other slit travels.  As such, at any point along the center line (the line extending from 
the midpoint between the two slits, straight ahead) whenever a crest (maximum upward electric 
field) arrives from one slit, a crest arrives from the other slit; and; whenever a trough (maximum 
downward electric field) arrives from one slit, a trough arrives from the other slit.  Thus, on the 
centerline, the interference is always constructive.  So, we have one quantitative result already, a 
maximum (constructive interference, bright fringe) occurs at θ  = 0°. 
 
Let’s define the center-to-center slit spacing to be d, and, the wavelength of the incoming plane 
waves to be λ.  We’ll work on finding an expression for the angle θ  at which the first maximum 
occurs, first. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lets redraw the diagram with a little less clutter to see what’s going on. 
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I removed some of the spherical wavefronts and labeled the wavefronts from the left slit L1, L2, 
L3, and L4 corresponding to the order in which they came from the left slit.  Similarly, wavefronts 
from the right slit are labeled R1, R2, R3, and R4 corresponding to the order in which they came 
from the right slit.  Furthermore, I have indicated the distance l  from the left slit to one point 
(point P) on the line of maxima, and, the distance r  from the right slit to the same point P on the 
line of maxima. 
 
Look at the diagram and note that, although R1 and L1 originate from their respective slits at one 
and the same instant, as do R2 and L2, it is R2 and L1 that arrive at point P together.  By the time 
it arrives at point P, L1 has been traveling for a greater amount of time than R2 has, but, L1 
arrives at point P at the same time as R2 does because it (L2) has a greater distance to travel.  This 
is the whole key to constructive interference.  At any point illuminated by two in-phase sources 
there will be constructive interference if the point is the same distance from both sources, or, 
when the distance is different, if that difference is one wavelength, two wavelengths, three 
wavelengths, or, for that matter, any integer number of wavelengths.  If the path difference is an 
integer number of wavelengths, then, whatever part of the wave is arriving from one source, the 
same part of the wave will be arriving from the other source.  So, for instance, crest arrives with 
crest, and trough arrives with trough.  Defining 
 

 ∆ s = l – r 
 

we have: 
 

                                                                     ∆ s = mλ        ( m = 0, 1, 2, … ) 
 
as our condition for constructive interference. 
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Now I provide the diagram we have been working with, without the wavefronts, so that we can 
do the geometry needed to relate ∆ s to the angle θ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First I want to draw a line segment perpendicular to our line of maximum interference, ending on 
the right slit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The new line segment breaks up the path of length l into a part identical in length to the one of 
length r, and a part whose length is the path-length difference ∆€s.  The new line segment also 
forms a triangle, the one that is shaded in the diagram.  Using plane geometry, I have identified 
the angle labeled θ in the small triangle as the same angle θ that the line of maximal constructive 
interference makes with the straight-ahead direction.  I need to blow up that triangle so that we 
can analyze it:
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Okay, now we make an approximation.  See angle φ  in the shaded triangle?  It is approximately 
equal to 90°.  Indeed, the farther point P is from the slits, the closer φ  is to 90°.  All we need is 
for the distance from the slits to point P to be large compared to the distance between the slits.  
In practice, this is realized in an actual double-slit experiment.  The distance to point P is 
typically thousands to millions of times greater than the distance between the slits.  The 
approximation in question is thus, typically, a fantastic approximation.  Treating φ as a right 
angle makes the shaded triangle a right triangle, meaning that the path difference can be 
expressed as: 
 

θsinds ====∆  
 
This is the relation we’ve been looking for.  Combining it with the fact that the path difference 
has to be an integer number of wavelengths for interference maxima we have: 
 

mλ = d sinθ           ( m = 0, 1, 2, … )                      (22-1) 
 
as the condition for maximum constructive interference. 
 
For perfectly destructive interference, the path difference must be half a wavelength or, half a 
wavelength more than any integer number of wavelengths.  So, for interference minima we have: 
 

 (m + ½) λ = d sinθ        ( m = 0, 1, 2, … )                      (22-2) 
 
The value of the integer m is referred to as the order of interference.  Thus, the first maximum to 
either side of the straight-ahead direction is referred to as the first order maximum, the next one 
is called the second order maximum, etc. 
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23  Single-Slit Diffraction  
 
 
Single-slit diffraction is another interference phenomenon.  If, instead of creating a mask with 
two slits, we create a mask with one slit, and then illuminate it, we find, under certain conditions, 
that we again get a pattern of light and dark bands.  It is not the same pattern that you get for 
two-slit interference, but, it’s quite different from the single bright line in the straight-ahead 
direction that you might expect.  Here’s how it comes about.  Firstly, here’s the setup: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Again, we get a bright fringe in the straight-ahead position on the screen.  From there, working 
out to either side, we get bands that alternate between dark and bright.  The first maximum to the 
right or left of the central maximum is not nearly as bright as the central maximum.  And each 
maximum after that is less bright than the maximum preceding it.  As far as the analysis goes, I 
want to start with the minima.   Consider an imaginary line extending out from the midpoint of 
the slit all the way to the screen. 
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So now the question is, “Under what conditions will there be completely destructive interference 
along a line such as the one depicted to be at angle θ above?”  To get at the answer, we first 
divide the slit in half.  I’m going to enlarge the mask so that you can see what I mean. 
 
 
 
 
 
 
 
 
 
Now I imagine dividing side A up into an infinite number of pieces and side B up the same way.  
When the slit is illuminated by the light, each piece becomes a point source.  Consider the first 
point source (counting from the left) on side A and the first point source (again counting from 
the left) on side B.  These two point sources are a distance w/2 apart, where w is the width of the 
slit.  If the light from these two point sources (which are in phase with each other because they 
are really both part of the same incoming plane wave), interferes completely destructively, at 
some angle θ with respect to the straight-ahead direction, then the light from the second point 
source on side A and the second point source on side B will also interfere with each other 
completely destructively because these two point sources are also w/2 apart.  The same goes for 
the third-from-the-left point sources on both sides, the fourth, the fifth, and so on, ad infinitum.  
So, all we need is to establish the condition that makes the light from the leftmost point source 
on side A (overall, the leftmost point of the slit) interfere completely destructively with the 
leftmost point source on side B (overall, essentially the midpoint of the slit).  So, consider any 
point P on a proposed line of minima.   
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The distance between the two point sources is w/2.  From the analysis done for the case of two-

slit interference, we know that this results in a path difference θsin
2

w====−−−− rl .  And, as you 

know, the condition for completely destructive interference is that the path difference is half a 
wavelength, or, any integer number of wavelengths plus a half a wavelength.  So, we have a 
minima along any angle θ (less than 90°) such that: 
 

                                                             θλ sin
22

1 w
m ====







 ++++        ( m = 0, 1, 2, … ) 

 
Now we turn our attention to the question of diffraction maxima.  I should warn you that this 
analysis takes an unexpected turn.  We do the exact same thing that we did to locate the minima, 
except that we set the path difference l - r equal to an integer number of wavelengths (instead of 
a half a wavelength plus an integer number of wavelengths).  This means that the path to point P 
from the leftmost point on side A (position A1) of the slit, differs by an integer number of 
wavelengths, from the path to point P from the leftmost point on side B (position B1).   This will 
also hold true for the path from A2 vs. the path from B2.  It will hold true for the path from A3 vs. 
the path from B3 as well.  Indeed, it will hold true for any pair of corresponding points, one from 
side A and one point from side B.  So, at point P, we have maximally constructive interference 
for every pair of corresponding points along the width of the slit.  There is, however, a problem.  
While, for any pair of points, the oscillations at P will be maximal, that means that P is at an 
angle that will make the amplitude of the oscillations of the electric field due to the pair of points 
maximal.  But the electric field due to the pair of points will still be oscillating, e.g. from max up, 
to 0, to max down, to 0, and back to max up.  And, these oscillations will not be in 
synchronization with the maximal oscillations due to other pairs of points.  So, the grand total 
will not necessarily correspond to an intensity maximum.  The big difference between this case 
and the minima case is that, in contrast to the time varying maximal oscillations just discussed, 
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when a pair of contributions results in an electric field amplitude of zero, the electric field due to 
the pair is always zero.  It is constant at zero.  And, when every pair in an infinite sum of pairs 
contributes zero to the sum, at every instant in time, the result is zero.  In fact, in our attempt to 
locate the angles at which maxima will occur, we have actually found some more minima.  We 
can see this if we sum the contributions in a different order. 
 
Consider the following diagram in which each half of the slit has itself been divided up into two 
parts: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the path difference between “A1 to P” and “B1 to P”, is one wavelength, then the path 
difference between “ 1A to P” and  “ 1A′′′′  to P” must be half a wavelength.  This yields completely 

destructive interference.  Likewise for the path difference between “ 1B to P” and “ 1B′′′′  to P”.  So, 
for each half of the slit (with each half itself being divided in half) we can do the same kind of 
pair-wise sum that we did for the whole slit before.  And, we get the same result—an infinite 
number of zero contributions to the electric field at P.  All we have really done is to treat each 
half of the slit the way we treated the original slit.  For the entire slit we found 
 

                                                   θλ sin
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 +                  (m = 0,1,2,…) 

 
Here we get the same result but with w itself replaced by w/2 (since we are dealing with half the 
slit at a time.)  So now we have: 
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Let’s abandon our search for maxima, at least for now, and see where we are in terms of our 
search for minima.  From our consideration of the entire slit divided into two parts, we have   

θλ sin
22

1 w
m =







 +   which can be written as ( ) θλ sin12 wm =+  meaning that we have a 

minimum when: 
...,5,3,1sin λλλθ =w  

 
From our consideration of each half divided into two parts (for a total of four parts) we have 

θλ sin
42

1 w
m =







 +  which can be written ( ) θλ sin24 wm =+   meaning that we have a minimum 

when: 
...,14,10,6,2sin λλλλθ =w  

If we cut each of the four parts of the slit in half so we have four pairs of two parts, each 
8

w
 in 

width, we find minima at θλ sin
82

1 w
m =







 +  which can be written ( ) θλ sin48 wm =+   

meaning that we have a minimum when: 
...,28,20,12,4sin λλλλθ =w  

 
If we continue this process of splitting each part of the slit in two and finding the minima for 
each adjacent pair, ad infinitum, we eventually find that we get a minimum when θsinw  is 
equal to any integer number of wavelengths. 
 

...,4,3,2,1sin λλλλθ =w  
 

a result which write as 
 

θλ sinwm =            (m = 1, 2, 3, …)                               (23-1) 
 
We still haven’t found any maxima.  The only analytical way to determine the angles at which 
maxima occur is to do a full-fledged derivation of the intensity of the light as a function of 
position, and then mathematically solve for the maxima.  While, this is not really as hard as it 
sounds, let’s save that for an optics course and suffice it to say that, experimentally, we find 
maxima approximately midway between the minima.  This includes the straight-ahead (0°) 
direction. 
 
 
Conditions Under Which Single-Slit Diffraction and Two-Slit Interference Occurs 
 
To see the kinds of interference patterns that we have been talking about in this and the 
preceding chapter, certain conditions need to be met.  For instance, in order to see one set of 
bright fringes in the two-slit interference experiment we need monochromatic light.  Translated 
literally, from the Latin, monochromatic means one-color.  Monochromatic light is single-
frequency light.  Strictly monochromatic light is an idealization.  In practice, light that is 
classified as being essentially monochromatic, actually consists of an infinite set of frequencies 
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that are all very close to the nominal frequency of the light.  We refer to the set of frequencies as 
a band of frequencies.  If all the frequencies in the set are indeed very close to the nominal 
frequency of the light, we refer to the light as narrow-band radiation. 
 
If you illuminate a single or double slit with light consisting of several discrete (individual) 
wavelengths of light, you get a mix of several interference/diffraction patterns.  If you illuminate 
a single or double slit with a continuum of different frequencies, you find that minima from one 
wavelength of light are “filled in” by maxima and/or intermediate-amplitude oscillations of other 
amplitudes of light.  Depending on the slit width and (in the case of two-slit interference) slit 
separation, and the wavelength of the light, you may see a spectrum of colors on the screen. 
 
In order for the kind of interference that we have been talking about to occur, the light must be 
coherent.  The light must be temporally coherent (coherent with respect to time).  While it 
applies to any part of a wave, I am going to talk about it in terms of crests.  In temporally 
coherent light, one wave crest is part of the same wave that the preceding wave crest is a part of.  
In light having a great deal of temporal coherence this holds true for thousands of crests in a row.  
In light with very little temporal coherence this may hold true for only one or two crests in a row.  
Another way of stating it is to say that light that consists of a bunch of little wave pulses is 
temporally incoherent and light consisting of long continuous waves is temporally coherent.  The 
long continuous wave can be called a “wave train”.  In terms of wave trains, light that is 
temporally incoherent consists of lots of short wave trains, whereas light that is temporally 
coherent consists of a relatively small number of long wave trains.  Since the kinds of 
interference we have been talking about involves one part of a wave passing through a slit or slits 
in a mask, interfering with a part of the same wave passing through the same mask at a later 
time.  In order for the latter to indeed be part of the same wave, the light must consist of long 
wave trains, in other words, it must be temporally coherent.  Now, if the wave crest following a 
given wave crest is not part of the same wave, the distance from one wave crest to the next will 
be different for different crests.  This means the wavelengths are different and hence the 
frequencies are different.  Thus the light is not monochromatic.  Under the opposite 
circumstances, the light is monochromatic.  So, monochromatic light is temporally coherent. 
 
The other condition is that the light must be spatially coherent.  In the context of light that is 
normally incident on plane masks, this means that the wavefronts must be plane and they must 
have extent transverse to the direction in which the light is traveling.  In the case of two-slit 
interference for instance, spatial coherence means that the light at one slit really is in phase with 
the light at the other slit.  In the case of single-slit diffraction, spatial coherence means that light 
passing through the right half of the slit is in phase with light passing through the left half of the 
slit. 
 



Chapter 24  Thin Film Interference 

234 

24  Thin Film Interference 
 
As the name and context imply, thin-film interference is another interference phenomenon 
involving light.  Here’s the picture, as viewed from above: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Involved are three transparent media: medium 1, medium 2, and medium 3, of index of refraction 
n1 , n2 , and n3 , respectively.  The phenomenon occurs whether or not n1 = n3 , but, n2 must be 
different from n1 and n3.  Medium 2 is the “thin film.”  For thin-film interference to occur, the 
thickness of medium 2 must be on the order of the wavelength of the light.  (The actual 
maximum thickness for which thin-film interference can occur depends on the coherence of the 
light.)   
 
Here’s the deal:  Under most circumstances, when light encounters a smooth interface between 
two transparent media, some of the light goes through (transmitted light) and some of the light 
bounces off (reflected light).  In the thin-film arrangement of three transparent media depicted 
above, for certain thicknesses of the thin film (medium 2) all the light can be reflected, and, for 
certain other thicknesses, all the light can be transmitted.  You see this phenomenon when 
looking at soap bubbles, and sometimes when looking at puddles in the road (when there is a thin 
layer of oil on top of the water).  Humans take advantage of the phenomenon by putting a thin 
coating of a transparent substance on lenses such as camera lenses and binocular lenses, a layer 
of just the right thickness for maximum transmission. 
 
Based on the situations in which it occurs, it should be clear that we do not need monochromatic 
light to make thin-film interference happen.  However, I am going to discuss it in terms of 
monochromatic light to get the idea across.  Once you understand it in terms of monochromatic 
light, you can apply it to white light (a mixture of all the visible frequencies) to answer questions 
such as, “What wavelength of incoming white light will experience maximum reflection?”  The 
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answer helps one understand the rainbow of colors you might see on the surface of a puddle in 
broad daylight.  You put a clear layer of gasoline on top of a clear puddle of water and thin-film 
interference results in maximal constructive interference of the reflected light, at certain 
wavelengths. 
 
Based on your experience with soap bubbles and puddle surfaces, you know that the light does 
not have to be normally incident upon the interface between transparent media in order for thin-
film interference to occur.  However, the analysis is easier for the case of normal incidence, so, 
in this chapter, I am going to limit our analysis to the case of normal incidence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here’s the gross idea: In going through a thin transparent film, light encounters two interfaces, 
the n1 abutting n2 interface, and, the n2 abutting n3 interface.  At each interface, some of the light 
gets through and some is reflected.  We can say all that we need to say about thin-film 
interference, just by talking about the reflected light.  The thing is, light reflected off the second 
interface interferes with light reflected off the first interface.  The reflected light can be thought 
of as being from two sources at two different locations, one source being the n1 abutting n2 
interface, and the other being the n2 abutting n3 interface.  But, there is a fixed phase difference 
between the light from the two sources because the light was originally part of one and the same 
source of incoming light.  The light reflected from the second interface travels farther, to arrive 
back at the same backward position, than the light reflected from the first interface does.  If you 
figure, that, when that extra distance is one wavelength, the interference of reflected light is 
constructive, and that, when that extra distance is half a wavelength, the interference of reflected 
light is destructive, then you’ve got the right idea, but, there are two “complications” that need to 
be taken into account. 
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The first complication has to do with phase reversal upon reflection.  Consider a single interface 
(forget about the thin film for a moment) between two transparent medium.  Assume light to be 
incident upon the interface.  Call the index of refraction of the medium in which the light is 
initially traveling, n1, and call the index of refraction of the medium in which the transmitted 
light travels, n2.  Experimentally we find that if n2 > n1 , then the reflected light is phase reversed, 
but, that if n2 < n1 , the reflected light experiences no phase change at all. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Regarding what we mean by phase reversal:  Think of a crest of a wave hitting the interface.  
More specifically, let the electric field be oscillating along the vertical (into and out of the page 
in the diagram) so that at the instant under consideration, we have a forward-moving maximum 
upward-directed electric field vector at the location of the interface.  An infinitesimal time dt 
later, we will find a forward-moving maximum-upward electric field vector at a point v2 dt 
forward of the interface.  If n2 > n1 (phase reversal condition met), then, at the same instant in 
time (dt after the forward-moving maximum upward-directed electric field vector hits the 
interface) we have a maximum downward-directed electric field vector, traveling backward, at a 
point v1 dt behind the interface.  This is what we mean by phase reversal.  An incoming electric 
field vector pointing in one direction, bounces off the interface as an electric field vector pointing 
in the opposite direction.  If there is no phase reversal, then, at the specified instant in time, we 
would have a maximum upward-directed electric field vector, traveling backward, at a pointv1 dt 
behind the interface.  With no phase reversal, an electric field vector pointing in one direction, 
bounces off the interface as an electric field vector pointing in the same direction. 
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Now back to the thin-film setup: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Recall that to get back to some specified point in space, light reflecting off the second interface 
(between medium 2 and medium 3) travels farther than the light reflecting off the first interface 
(between medium 1 and medium 2).  Before, we hypothesized that if the path difference was a 
half a wavelength, the light from the two “sources” would interfere destructively, but, that if it 
was a full wavelength, the interference would be constructive.  Now, if there is no phase reversal 
from either surface (because n2 < n1 and n3 < n2), or, if there is phase reversal from both surfaces 
(because n2 > n1 and n3 > n2) then our original hypothesis is still viable.  But, if we have phase 
reversal at one of the interfaces but not the other (n2 > n1 but n3 < n2, or, n3 > n2 but n2 < n1), then 
the situation is reversed.  A path difference of one wavelength would result in a crest interfering 
with a “crest that upon reflection turned into a trough” meaning that a path difference of one 
wavelength would result in destructive interference.  And, a path difference of half a wavelength 
would result in a crest interfering with a “trough that upon reflection turned into a crest” meaning 
that a path difference of half a wavelength would result in constructive interference.  Okay, we 
have addressed the phase reversal issue.  We have one more complication to deal with.  The 
thing is, the light that bounces off the second interface, not only travels a greater distance, but, it 
travels at a different speed while it is traveling that extra distance because it is in a different 
medium.  Let’s see how this complication plays out. 
 
The phenomenon holds true for every part of the wave.  I focus the attention on crests, just 
because I find them easier to keep track of.  For now, I also want to focus attention on the no-
phase-reversal constructive interference case.  Consider an instant when a crest of the forward-
traveling incoming wave hits the first interface.  The crest of the transmitted wave travels 
through the interface, proceeds through the second medium at speed v 2 =  c/n2, bounces off the 
interface with the third medium, and travels back through the second medium, completing its 

Incoming Plane Waves of Monochromatic Light 

n1 

n2 

n3 

Forward ↑ 

Rightward → ← Leftward 
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round trip (of distance two times the thickness of the second medium) through the second 
medium in time: 
 

2
2

)(2

v
thickness

t ====  

 
Now, while that is going on, the next crest from the incoming wave is traveling forward at speed 
v 1 =  c/n1.  It arrives at the same interface (between medium 1 and medium 2) at time 
 

1

1
1 v

λ====t  

 
where λ1 is the wavelength of the light while it is traveling in medium 1.  (Remember, the source 
establishes the frequency of the light and that never changes, but, from v  = λ f, the wavelength 
depends on the speed of the wave in the medium in which the light is traveling.)  For 
constructive interference (under no phase-reversal conditions), we must have 
 

t1 = t2 
 
which, from the expressions for t1 and t2 above, can be written as: 
 

21

1 )(2

vv
thickness====

λ
 

 
Substituting v 1 = λ 1f  and v 2 = λ 2f yields: 

 

ff 21

1 )(2

λλ
λ thickness====  

 
)(22 thickness====λ  

 
I’m going to leave the result in this form because twice the thickness of the thin film is the path 
difference.  So the equation is saying that, under no-phase-reversal conditions, there will be 
constructive interference of the light reflected from the two interfaces, when the wavelength that 
the light has in the material of which the thin film consists, is equal to the path difference.  Of 
course, if the path difference is 2λ 2, 3λ 2, 4λ 2, etc. we will also get constructive interference.  We 
can write this as: 

)(22 thicknessm ====λ             (m = 1,2,3,…)                                (24-1) 
where: 

m is an integer, 
λ 2 is the in-the-thin-film wavelength of the light, and, 
thickness is the thickness of the thin film. 
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This condition is also appropriate for the case of maximal constructive interference when phase 
reversal occurs at both interfaces.  But, this condition yields completely destructive interference 
of reflected light when there is phase reversal at one interface but not the other.  
 
The in-the-film wavelength λ 2 of the light can be expressed most simply in terms of the 
wavelength λ 1 of the light in the medium in which it is originally traveling, by setting the two 
expressions for the frequency equal to each other.  From v 1 = λ 1f  we have f =v 1/λ 1.  but from 

n1 = c /v 1 we have v 1 = c/n1.  Replacing v 1 in f =v 1/λ 1 with c/n1 yields 
11λn

c====f .  In a similar 

manner, we find that f  can be expressed as 
22λn

c====f .  Setting the two expressions for f equal to 

each other yields: 

2211 λλ n

c

n

c ====  

 

which can be written as: 
 

1
2

1
2 λλ

n

n====                                                           (24-2) 

 
To get a maximum when we have phase reversal at one, and only one, interface, we need the 
path difference (twice the thickness) to be half a wavelength-in-the-film, 

 
)(222

1 thickness====λ  

 
or that, plus, an integer number of full wavelengths-in-the-film: 
 

)(2)( 22
1 thicknessm ====++++ λ                  (m = 1,2,3,…)                            (24-3) 

 
This is also the condition for completely destructive interference for the case of no phase 
reversal, or, phase reversal at both interfaces.  This is exactly what we want for a camera lens 
that is to be used in air (n1 = 1.00).  Consider a clear plastic medium of index of refraction 
n2 = 1.3.  Now consider the wavelength that light from the middle of the visible spectrum (green 
light) would have in that medium.  Put a coating of the plastic, one quarter as thick as that 
wavelength is long, on a lens made of glass having an index of refraction n3 = 1.5 .  (Note that we 
have phase reversal at both interfaces.)  With that coating, the lens reflects none of the light of 
the specified wavelength that is normally incident on the lens (and a reduced amount of light of 
nearby wavelengths).  That is, it transmits more of the light than it would without the coating.  
This is the desired effect. 
 
 



Chapter 25  Polarization 

240 

25  Polarization 
 
The polarization direction of light refers to the two directions or one of the two directions in 
which the electric field is oscillating.  For the case of completely polarized light there are always 
two directions that could be called the polarization direction.  If a single direction is specified, 
then, that direction, and the exact opposite direction, are both the directions of polarization.  Still, 
specifying one direction completely specifies the direction of polarization.  For instance for light 
that is traveling straight downward near the surface of the earth, if the polarization direction is 
said to be a compass heading of 15°, that unambiguously means that the electric field oscillates 
so that it is at times pointing in the direction with a compass heading of 15°, and at times 
pointing in the direction with a compass heading of 195° (15° west of south). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Randomly polarized light, a.k.a. unpolarized light, has electric field oscillations in each and 
every direction perpendicular to the direction in which the light is traveling.  Such light is often 
depicted, as viewed from behind, (where forward is the direction in which the light is traveling) 
as: 
 
 
 
 
 
 
 
 
 

East 

North 

West 

South 

15° 
E 

E 

v 

Unpolarized Light, a.k.a. 
Randomly Polarized Light 
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Vertically polarized light traveling horizontally away from you is typically depicted as: 
 
 
 
 
 
 
 
 
where the direction in which the light is traveling is “into the page” and upward is “toward the 
top of the page.”  At a particular position through which the light is traveling, starting at an 
instant when the electric field vector at that position is upward and maximum, the electric field 
will decrease to zero, then be downward and increasing, reach a maximum downward, then be 
downward and decreasing, become zero, then be upward and increasing, then reach a maximum 
upward, and repeat, continually.  The diagram depicting the polarization indicates the directions 
that the electric field does point, at some time during its oscillations.  It in no way is meant to 
imply that the electric field is pointing in two directions at the same time. 
 
Light that is traveling horizontally away from you that is polarized at 30° with respect to the 
vertical could be either: 
 
 
 
 
 
 
 
 
 
 
 
or 
 
 
 
 
 
 
 
 
 
 
 
 

Vertically Polarized Light 

30° 

30° 
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If you encounter such an ambiguous specification of polarization in a problem statement then the 
answer is the same for either case, so, it doesn’t matter which of the two possible polarization 
directions you pick.  Pick one arbitrarily and work with it. 
 
Light that is traveling horizontally away from you and is polarized at 30° clockwise from the 
vertical is, however, unambiguously: 
 
 
 
 
 
 
 
 
 
 
 
Polarizers 
 
A plastic material is manufactured in the form of flat sheets that polarize light that travels 
through them.  A sample of such a flat sheet is called a polarizer.  In use, one typically causes 
light to travel toward a polarizer along a direction that is perpendicular to the polarizer.  In other 
words, one causes the light to be normally incident upon the polarizer. 
 
Schematically, one typically depicts a polarizer by means of a rectangle or a circle filled with 
parallel line segments. 
 
 
 
 
 
 
 
 
 
 
The orientation of the lines is referred to as the polarization direction of the polarizer.  The effect 
of a polarizer is to transmit light that is polarized in the same direction as that of the polarizer, 
and to block (absorb or reflect) light that is polarized at right angles to the direction of the 
polarizer. 
 
The polarization direction of the rectangular polarizer depicted above is vertical.  So, it lets 
vertically-polarized light through and blocks horizontally-polarized light. 
 
The polarization direction of the circle-shaped sample of polarizing material depicted above is 
horizontal.  So, it lets horizontally-polarized light through and blocks vertically-polarized light. 

30° 
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When unpolarized light (a.k.a. randomly-polarized light) is normally incident on any polarizer, 
half the light gets through.  So, if the intensity of the incoming light is I0, then the intensity of the 
light that gets through, call it I1, is given by: 
 

02
1

1 II ====                                                                   (25-1) 

 
In completely unpolarized light, the electric field vectors are oscillating in every direction that is 
perpendicular to the direction in which the light is traveling.  But all the electric field vectors are, 
as the name implies, vectors.  As such, we can break every single one of them up into a 
component along the direction of polarization of the polarizer and a component that is 
perpendicular to the polarization direction of the polarizer.  A polarizer will let every component 
that is along the direction of polarization of the polarizer through, and block every component 
that is perpendicular to the polarization direction.  In completely unpolarized light, no matter 
what the direction of polarization of the polarizer is, if you break up all the electric field vectors 
into components parallel to and perpendicular to the polarizer’s polarization direction, and add 
all the parallel components together, and then separately add all the perpendicular components 
together, the two results will have the same magnitude.  This means that we can view completely 
unpolarized light as being made up of two halves: half polarized parallel to the polarizer’s 
polarization direction, and half polarized perpendicular to the polarizer’s polarization direction.  
The half that is polarized parallel to the polarizer’s polarization direction gets through the 
polarizer, and the other half doesn’t. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note how the effect of a polarizer on the intensity of normally-incident unpolarized light does 
not depend on the orientation of the polarizer.  You get the same intensity 02

1
1 II ====  of light 

getting through the polarizer, no matter what the direction of polarization of the polarizer is.  
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Now suppose that we have some light that, for whatever reason, is already polarized.  When 
polarized light is normally incident on a polarizer, the intensity of the light that gets through does 
depend on the direction of polarization of the polarizer (relative to that of the incoming light).  
Suppose for instance, that the incoming light, 
 
 
 
 
 
 
 
 
 
 
is polarized at an angle θ  with respect to the polarization direction of a polarizer upon which the 
light is normally incident: 
 
 
 
 
 
 
 
 
Before it hits the polarizer, the light’s electric-field-oscillations-amplitude vector, 
 
 
 
 
 
 
can be broken up into a component parallel to the polarizer’s polarization direction and a 
component perpendicular to the polarizer’s polarization direction. 
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The parallel component E||||

 = E cosθθθθ  gets through the polarizer, the perpendicular component 
does not. 
 
Now the intensity of polarized light is proportional to the square of the amplitude of the 
oscillations of the electric field.  So, we can express the intensity of the incoming light as 
 

I0 = (constant) E  

2
 

 
and the intensity of the light that gets through as: 
  

I1 = (constant) E|

2
 

 
I1 = (constant) (E cosθ )2

 
 

I1 = (constant) E
2
 (cosθ )2

 
 

I1 = I0 (cosθ )2                                                        (25-2) 
 

Summarizing: 
 
 

    

θ 
E||||

 = E cosθθθθ 

E ETTTT
 = E sinθθθθ 
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has an intensity I1 = I0 (cosθ  )2. 
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26  Geometric Optics, Reflection 
 
We now turn to a branch of optics referred to as geometric optics and also referred to as ray 
optics.  It applies in cases where the dimensions of the objects (and apertures) with which the 
light interacts are so large as to render diffraction effects negligible.  In geometric optics we treat 
light as being made up of an infinite set of narrow beams of light, called light rays, or simply 
rays, traveling through vacuum or transparent media along straight line paths.  Where a ray of 
light encounters the surface of a mirror, or the interface between the transparent medium in 
which it (the light) is traveling and another transparent medium, the ray makes an abrupt change 
in direction, after which, it travels along a new straight line path. 
 
In the geometric optics model of light, we see light emitted by sources of light because the light 
enters our eyes.  Consider for instance, a candle. 
 
 
 
 
 
 
 
 
 
 
 
Every point of the flame of the candle emits rays of light in every direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
While the preceding diagram conveys the idea in the statement preceding the diagram, the 
diagram is not the complete picture.  To get a more complete picture of what’s going on, what I 
want you to do is to look at the diagram provided, form a picture of it in your mind, and, to the 
picture in your mind, add the following embellishments: 
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  1. First off, I need you to imagine it to be a real candle extending in three dimensions.  Our set 

of rays depicted as arrows whose tips are all on a circle becomes a set of rays depicted as 
arrows whose tips all end on a sphere.  Thus, in addition to rays going (at various angles) 
upward, downward and to the sides, you’ve got rays proceeding (at various angles) away 
from you and toward you. 

 

  2.  Now I need you to add more rays to the picture in your mind.  I included 16 rays in the 
diagram.  In three dimensions, you should have about 120 rays in the picture in your mind.  I 
need you to bump that up to infinity.  

 

  3. In the original diagram, I showed rays coming only from the tip of the flame.  At this point, 
we have an infinite number of rays coming from the tip of the flame.  I need you to picture 
that to be the case for each point of the flame, not just the tip of the flame.  In the interest of 
simplicity, in the picture in your mind, let the flame of the candle be an opaque solid rather 
than gaseous, so that we can treat all our rays as coming from points on the surface of the 
flame.  Neglect any rays that are in any way directed into the flame itself (don’t include 
them in the picture in your mind). Upon completion of this step, you should have, in the 
picture in your mind, an infinite number of rays coming from each of the infinite number of 
points making up the surface of the flame.  

 

  4.  For this next part, we need to establish the setting.  I’m concerned that you might be reading 
this in a room in which lit candles are forbidden.  If so, please relocate the candle in the 
picture in your mind to the dining room table in your home, or, replace the candle with a 
fake electric-powered candle such as you might see in a home around Christmastime.  Now I 
need you to extend each of the rays in the picture in your mind all the way out to the point 
where they bump into something.  Please end each ray at the point where it bumps into 
something.  (A ray that bumps into a non-shiny surface, bounces off in all directions [diffuse 
reflection]. Thus, each ray that bumps into a non-shiny surface, creates an infinite set of rays 
coming from the point of impact.  A ray bumping into perfectly shiny surfaces continues as 
a single ray in one particular, new, direction [specular reflection].  To avoid clutter, let’s 
omit all the reflected rays from the picture in your mind.) 

 
If you have carried out steps 1-4 above, then you have the picture, in your mind, of the geometric 
optics model of the light given off by a light-emitting object.  When  you are in a room with a 
candle such as the one we have been discussing, you can tell where it is (in what direction and 
how far away—you might not be able to give very accurate values, but you can tell where it is) 
by looking at it.  When you look at it, an infinite number of rays, from each part of the surface of 
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the flame, is entering your eyes.  What is amazing is how few rays you need to determine where, 
for instance, the tip of the flame is.  Of the infinite number of rays available to you, you only 
need two!  Consider what you can find out from a single ray entering your eye: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From just one of the infinite number of rays, you can deduce the direction that the tip of the 
flame is in, relative to you.   In other words, you can say that the tip of the flame lies somewhere 
on the line segment that both contains the ray that enters your eye, and, that ends at the location 
of your eye. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From one other ray, ray 2 in the diagram 
at right, you can deduce that the tip of the 
flame must lie somewhere back along 
one other line. 
 
 
 
 

1 

From ray 1, you can 
tell that the tip of the 
flame is somewhere 
back along this line. 

1 
2 
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There is only one point in space that is both “somewhere back along line 1” and “somewhere 
back along line 2.”  That one point is, of course, the point where the two lines cross.  The eye-
brain system is an amazing system.  When you look at something, your eye-brain system 
automatically carries out the “trace back and find the intersection” process to determine how far 
away that something is.  Again, you might not be able to tell me how many centimeters away the 
candle, for instance, is, but you must know how far away it is because you would know about 
how hard to throw something to hit the candle1. 
 
This business of tracing rays back to see where they come from is known as ray tracing and is 
what geometric optics is all about.   
 
At this point I want to return our attention to the candle to provide you with a little bit more 
insight into the practice of ray tracing.  Suppose that when you were determining the location of 
the tip of the flame of the candle, you already had some additional information about the candle.  
For instance, assume:  You know that the rays are coming from the upper extremity of the 
candle; you know that the bottom of the candle is on the plane of the surface of your dining room 
table; and you know that the candle is vertical.  We’ll also assume that the candle is so skinny 
that we are not interested in its horizontal extent in space, so, we can think of it as a skinny line 
segment with a top (the tip of the candle) and a bottom, the point on the candle that is at table 
level.  The intersection of the plane of the table surface with the plane of the two rays is a line, 
and, based on the information we have, the bottom of the candle is on that line. 
 

                                                
1 Note: Throwing things at lit candles is a dangerous practice in which I urge you not to engage. 

From ray 1, you can 
tell that the tip of the 
flame is somewhere 
back along this line. 

From ray 2, you can 
tell that the tip of the 
flame is somewhere 
back along this line. 

1 

2 
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Taken together with the information gleaned from the rays, we can draw in the entire (skinny) 
candle, on our diagram, and from the diagram, determine such things as the candle’s height, 
position, and orientation (whether it is upside down [inverted] or right side up [erect]).  In adding 
the candle to the diagram, I am going to draw it as an arrow.  Besides the fact that it is 
conventional to draw objects in ray tracing diagrams as arrows, we use an arrow to represent the 
candle to avoid conveying the impression that, from the limited facts we have at our disposal, we 
have been able to learn more about the candle (diameter, flame height, etc) than is possible.  (We 
can only determine the height, position, and orientation.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 

2 

From ray 1, you can 
tell that the tip of the 
flame is somewhere 
back along this line. 

From ray 2, you can 
tell that the tip of the 
flame is somewhere 
back along this line. 

1 

2 

Reliable, but undisclosed, sources tell us that 
the bottom of the candle is on this line, and 
that the candle is vertical. 



Chapter 26  Geometric Optics, Reflection 

251 

The trace-back method for locating the tip of the candle flame works for any two rays, from 
among the infinite number of rays emitted by the tip of the candle flame.  All the rays come from 
the same point and they all travel along different straight line paths.  As such, the rays are said to 
diverge from the tip of the candle flame.  The trace-back method allows us to determine the point 
from which the rays are diverging. 
 
By means of lenses and mirrors, we can redirect rays of light, infinite numbers of them at a time, 
in such a manner as to fool the eye-brain system that is using the trace-back method into 
perceiving the point from which the rays are diverging as being someplace other than where the 
object is.  To do so, one simply has to redirect the rays so that they are diverging from 
someplace other than their point of origin.  The point, other than their point of origin, from which 
the rays diverge (because of the redirection of rays by mirrors and/or lenses) is called the image 
of the point on the object from which the light actually originates. 
 
 
 
The Law of Reflection 
 
I have mentioned specular reflection.  In specular reflection, a ray of light traveling along one 
straight line path, hits a smooth shiny surface and continues along a new straight line path.  The 
adoption of the new path, at the smooth shiny surface, by the incoming ray is called reflection.  
Where the ray travels along the new path, we call the ray, the reflected ray.  The smooth shiny 
surface is typically called a mirror.  The law of reflection, derived originally directly from 
experimental evidence and, by Huygens, from the principle now known as Huygens’ principle, 
states that the angle that the reflected ray makes with an imaginary line that is perpendicular to 
the mirror, and, passes through the point where the incoming ray hits the mirror, is equal to the 
angle that the incoming ray makes with the same imaginary line.  The point where the incoming 
ray hits the mirror is called the point of incidence.  The imaginary line that is perpendicular to the 
surface of the mirror and passes through the point of incidence is called the normal.  The angle 
that the incoming ray makes with the normal is called the angle of incidence θI.  The angle that 
the reflected ray makes with the normal is called the angle of reflection θR.  In terms of this 
jargon, the law of reflection can be stated as:  The angle of reflection θR is equal to the angle of 
incidence θI . 
 
 
 
 
 
 
 The Normal 

θR 

θI 

The Law of Reflection 
states that θR = θI . 

Reflected Ray 

Incident Ray 
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Geometric Optics Applied to a Plane Mirror 
 
Let’s apply our ray-tracing methods to the case of an object in front of a plane mirror in order to 
determine the position of that object.  Here’s the configuration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have an object of height h a distance o  from the plane of the mirror.  Our object is 
represented by an arrow.  The tail of the arrow is on a reference line that is perpendicular to the 
plane of the mirror.  I am calling the reference line “the principal axis of the mirror.”  The plane 
of the mirror is the infinite plane that contains the surface of the mirror. 
 
We use the method of principal rays to determine the position of the image of the object.  In the 
method of principal rays, we consider only a few incident rays for which the reflected rays are 
particularly easy to determine.  Experimentally, we find that the position of the image is 
independent of the size of the mirror, so we consider the mirror to be as large as it needs to be for 
the principal rays to hit it.  In particular, if a principal ray appears to miss the mirror in our 
diagram, we show the ray as reflecting off the plane of the mirror nevertheless.  Our Principal 
Ray I for the case at hand is one that approaches the plane of the mirror along a line that is 
parallel to the principal axis of the mirror. 
 
 
 
 

Mirror 

The Plane of the Mirror 

h 

Object of height h 

The Principal Axis 
of the Mirror 

o 

h 

o 

I 
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According to the law of reflection, Principal Ray I is reflected straight back on itself as depicted 
in the following diagram: 
 

 
 
 
 
 
 
 
 
 
 
 
 
Using the trace-back method we know that the tip of the object lies somewhere along this line. 
 

Principal Ray II hits the mirror right where the principal axis of the mirror intersects the mirror.  
In accord with the Law of Reflection, with, for the ray in question, the principal axis of the 
mirror being the normal, the reflected ray makes the same angle with the principal axis of the 
mirror as the incident ray does. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tracing back the second reflected ray to the point where it intersects the first reflected ray trace-
back line yields the position of the image of the tip of the arrow.  I have drawn the shaft of the 
image of the arrow in so that it is perpendicular to the principal axis of the mirror.  The question 
is, what is the image height h

′
 and what is the distance of the image from the plane of the mirror?  

Well, the image height h
′
 is the distance between the same two parallel lines that the object 

height h is.  So, h
′
 = h.  From the geometric fact that vertical angles are equal, we have θ 

′
 in the 

diagram above being equal to θR which we know to be equal to θI  from the law of reflection.  

Thus the right triangle of side h
′
 and angle θ 

′
 is congruent to the triangle of height h and angle 

θI .  Hence, since corresponding sides of congruent triangles are equal, we have i = o.  That is to 
say that the image distance, from the plane of the mirror, is equal to the object distance. 

h 
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27  Refraction, Dispersion, Internal Reflection 
 

When we talked about thin film interference, we said that when light encounters a smooth 
interface between two transparent media, some of the light gets through, and some bounces off.  
There we limited the discussion to the case of normal incidence.  (Recall that normal means 
perpendicular to and normal incidence is the case where the direction in which the light is 
traveling is perpendicular to the interface.)  Now we consider the case in which light shining on 
the smooth interface between two transparent media, is not normally incident upon the interface.  
Here’s a “clean” depiction of what I’m talking about: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
and here’s one that’s all cluttered up with labels providing terminology that you need to know: 
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in Accord with the 
Law of Reflection 



Chapter 27  Refraction, Dispersion, Internal Reflection 

255 

 
As in the case of normal incidence, some of the light is reflected and some of it is transmitted 
through the interface.  Here we focus our attention on the light that gets through. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Experimentally we find that the light that gets through travels along a different straight line path 
than that which the incoming ray is on.  As such, the transmitted ray, makes an angle θ2 with the 
normal, that is different from the angle θ1 that the incident ray makes with the normal. 
 
The adoption of a new path by the transmitted ray, at the interface between two transparent 
media is referred to as refraction.  The transmitted ray is typically referred to as the refracted 
ray.  And, the angle θ2 that the refracted ray makes with the normal is called the angle of 
refraction.  Experimentally, we find that the angle of refraction θ2 is related to the angle of 
incidence θ1 by Snell’s Law: 
 

2211 sinsin θθ nn =                                                         (27-1) 
 

where: 
 

n1 is the index of refraction of the first medium, the medium in which the light is traveling 
before it gets to the interface, 

 

θ1 is the angle that the incident ray (the ray in the first medium) makes with the normal,  
 

n2 is the index of refraction of the second medium, the medium in which the light is traveling 
after it gets to the interface, and,  

 

θ2 is the angle that the refracted ray (the ray in the second medium) makes with the normal. 
 
 

n1 

n2 

θ2 
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Dispersion 
 
On each side of the equation form of Snell’s law we have an index of refraction.  The index of 
refraction has the same meaning as it did when we talked about it in the context of thin film 
interference.  It applies to a given medium.  It is the ratio of the speed of light in that medium to 
the speed of light in vacuum.  At that time, I mentioned that different materials have different 
indices of refraction, and in fact, provided you with the following table: 
 

Medium Index of Refraction 
Vacuum 1 

Air 1.00 
Water 1.33 

Glass (Depends on the kind of 
glass.  Here is one typical value.) 

1.5 

 
What I didn’t mention back then is that there is a slight dependence of the index of refraction on 
the wavelength of the visible light, such that, the shorter the wavelength of the light, the greater 
the index of refraction.  For instance, a particular kind of glass might have an index of refraction 
of 1.49 for light of wavelength 695 nm (red light), but an index of refraction that is greater than 
that for shorter wavelengths, including an index of refraction of 1.51 for light of wavelength 
705 nm (blue light).  The effect in the case of a ray of white light traveling in air and 
encountering an interface between air and glass, is to cause the different wavelengths of the light 
making up the white light to refract at different angles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This phenomena of white light being separated into its constituent wavelengths because of the 
dependence of the index of refraction on wavelength, is called dispersion. 
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Total Internal Reflection 
 
In the case where the index of refraction of the first medium is greater than the index of 
refraction of the second medium, the angle of refraction is greater than the angle of incidence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For such a case, look what happens when we increase the angle of incidence, θ1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The angle of refraction gets bigger… 

n1 > n2 
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until eventually it (the angle of refraction) gets to be 90°.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It can’t get any bigger than that, because, beyond that, the light is not going through the 
interface.  An angle of refraction greater than 90° has no meaning.  But, note that we still have 
room to increase the angle of incidence.  What happens if we continue to increase the angle of 
incidence?  Well, indeed, no light gets through the interface.  But, remember at the beginning of 
this chapter where we talked about how, when light is incident on the interface between two 
transparent media, some of the light gets through and some of it is reflected?  Well, I haven’t 
been including the reflected ray on our diagrams because we have been focusing our attention on 
the transmitted ray, but, it is always there.  The thing is, at angles of incidence bigger then the 
angle that makes the angle of refraction 90°, the reflected ray is all there is.  The phenomenon, in 
which there is no transmitted light at all, just reflected light, is known as total internal reflection.  
The angle of incidence that makes the angle of refraction 90° is known as the critical angle.  At 
any angle of incidence greater than the critical angle, the light experiences total internal 
reflection.  Note that the phenomenon of total internal reflection only occurs when the light is 
initially in the medium with the bigger index of refraction. 
 
Let’s investigate this phenomenon mathematically.  Starting with Snell’s Law: 
 

2211 sinsin θθ nn =  
 
solved for the sine of the angle of refraction: 
 

1
2

1
2 sinsin θθ

n

n====  

 

we note that, since it was stipulated that n1 > n2, the ratio n1/ n2 is greater than 1.  The sinθ1 is 
always less than 1, but, if θ1 is big enough, sinθ1 can be so close to 1 that the right-hand side of 

n1 > n2 
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the equation 1
2

1
2 sinsin θθ

n

n====  is greater than 1.  In that case, there is no θ2 that will solve the 

equation because there is no angle whose sine is greater than 1.  This is consistent with the 
experimental fact that, at angles of incidence greater than the critical angle, no light gets through 
the interface.  Let’s solve for the critical angle.  At the critical angle, the angle of refraction θ2 is 
90°.  Lets plug that into the equation we have been working with and solve for θ1: 

 

1
2

1
2 sinsin θθ

n

n====  

evaluated at θ2 = 90° yields: 

1
2

1o sin90sin θ
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n====  
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This is such a special angle of incidence that we not only give it a name (as mentioned, it is 
called the critical angle), but, we give it its own symbol.  The critical angle, that angle of 
incidence beyond which there is no transmitted light, is designated θ

C 
, and, as we just found, can 

be expressed as: 
 

1

21sinC n

n−−−−====θ                                                             (27-2) 
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28  Thin Lenses: Ray Tracing 
 
A lens is a piece of transparent material whose surfaces have been shaped so that, when the lens 
is in another transparent material (call it medium 0), light traveling in medium 0, upon passing 
through the lens, is redirected to create an image of the light source.  Medium 0 is typically air, 
and lenses are typically made of glass or plastic.  In this chapter we focus on a particular class of 
lenses, a class known as thin spherical lenses.  Each surface of a thin spherical lens is a tiny 
fraction of a spherical surface.  For instance, consider the two spheres: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A piece of glass in the shape of the intersection of these two spherical volumes would be a thin 
spherical lens.  The intersection of two spherical surfaces is a circle.  That circle would be the 
rim of the lens.  Viewed face on, the outline of a thin spherical lens is a circle. 
 
 
 
 
 
 
 
The plane in which that circle lies is called the plane of the lens.  Viewing the lens edge-on, the 
plane of the lens looks like a line. 
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Each surface of a thin spherical lens has a radius of curvature.  The radius of curvature of a 
surface of a thin spherical lens is the radius of the sphere of which that surface is a part.  
Designating one surface of the lens as the front surface of the lens and one surface as the back 
surface, in the following diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
we can identify R1 as the radius of curvature of the front surface of the lens and R2 as the radius 
of curvature of the back surface of the lens. 
 
The defining characteristic of a lens is a quantity called the focal length of the lens.  At this 
point, I’m going to tell you how you can calculate a value for the focal length of a lens, based on 
the physical characteristics of the lens, before I even tell you what focal length means.  (Don’t 
worry, though, we’ll get to the definition soon.)  The lens-maker’s equation gives the reciprocal 
of the focal length in terms of the physical characteristics of the lens (and the medium in which 
the lens finds itself): 
 

The Lens-maker’s Equation:              



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                                                   (28-1) 

 
where: 
 

f is the focal length of the lens, 
 

n  is the index of refraction of the material of which the lens is made,  
 

no is the index of refraction of the medium surrounding the lens (no is typically 1.00 because 
the medium surrounding the lens is typically air),  

 

R1 is the radius of curvature of one of the surfaces of the lens, and,  
 

R2 is the radius of curvature of the other surface of the lens. 
 

R2 R1 

The Front Surface 
of the Lens 
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Before we move on from the lens-maker’s equation, I need to tell you about an algebraic sign 
convention for the R values.  There are two kinds of spherical lens surfaces.  One is the “curved 
out” kind possessed by any lens that is the intersection of two spheres.  (This is the kind of lens 
that we have been talking about.)  Such a lens is referred to as a convex lens (a.k.a. a converging 
lens) and each (“curved out”) surface is referred to as a convex surface.  The radius of curvature 
R for a convex surface is, by convention, positive. 
 
The other kind of lens surface is part of a sphere that does not enclose the lens itself.  Such a 
surface is said to be “curved in” and is called a concave surface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By convention, the absolute value of R for a concave surface is still the radius of the sphere of 
whose surface coincides with that of the lens.  But, the quantity R contains additional 
information in the form of a minus sign used to designate the fact that the surface of the lens is 
concave.  R is still called the radius of curvature of the surface of the lens despite the fact that 
there is no such thing as a sphere whose radius is actually negative. 
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Concave Lens 
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Summarizing, our convention for the radius of curvature of the surface of a lens is: 
 

Surface of Lens Algebraic Sign of Radius of Curvature R 
 
 
       Convex 
 
 

+ 
 
 
       Concave 
 
 

−−−− 

 
 
So, what does a lens do?  It refracts light at both surfaces.  What’s special about a lens is the 
effect that it has on an infinite set of rays, collectively.  We can characterize the operational 
effect of a lens in terms of the effect that it has on incoming rays that are all parallel to the 
principal axis of the lens.  (The principal axis of a lens is an imaginary line that is perpendicular 
to the plane of the lens and passes through the center of the lens.)  A converging lens causes all 
such rays to pass through single point on the other side of the lens.  That point is the focal point 
F of the lens.  It’s distance from the lens is called the focal length f of the lens. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that in the diagram, we show the rays of light undergoing an abrupt change in direction at 
the plane of the lens.  This is called the thin lens approximation and we will be using it in all our 
dealings with lenses.  You know that the light is refracted twice in passing through a lens, once at 
the interface where it enters the lens medium, and again where it exits the lens medium.  The two 
refractions together cause the incoming rays to travel in the directions in which they do travel.  
The thin lens approximation treats the pair of refractions as a single refraction occurring at the 
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plane of the lens.  The thin lens approximation is good as long as the thickness of the lens is 
small compared to the focal length, the object distance, and the image distance. 
 
Rays parallel to the principal axis of the lens that enter the lens from the opposite direction 
(opposite the direction of the rays discussed above) will also be caused to converge to a focal 
point on the other side of the lens.  The two focal points are one and the same distance f   from 
the plane of the lens. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The two phenomena discussed above are reversible in the sense that rays of light coming from a 
point source, at either focal point, will result in parallel rays on the other side of the lens.  Here 
we show that situation for the case of a point source at one of the focal points: 
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and here we show it for the case of a point source at the other focal point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The important thing about this is that, any ray that passes through the focal point on its way to 
the lens is, after passing through the lens, going to be parallel to the principal axis of the lens. 
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In the case of a diverging lens, incoming parallel rays are caused to diverge: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
so that they travel along lines which trace-back shows, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
all pass through one and the same point.  That is, on passing through the lens, the 
once-parallel rays diverge as if they originated from a point.  That point is known as the focal 
point of the diverging lens.  The distance from the plane of the lens to the focal point is the 
magnitude of the focal length of the lens.  But, by convention, the focal length of a diverging lens 
is negative.  In other words, the focal length of a diverging lens is the negative of the distance 
from the plane of the lens to the focal point. 
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As in the case of the converging lens, there is another focal point on the other side of the lens, the 
same distance from the plane of the lens as the focal point discussed above: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This effect is reversible in that any ray that is traveling through space on one side of the lens, and 
is headed directly toward the focal point on the other side of the lens, will, upon passing through 
the lens, become parallel to the principal axis of the lens.
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Our plan here is to use the facts about what a lens does to incoming rays of light that are parallel 
to the principal axis of a lens or are heading directly toward or away from a focal point, to 
determine where a lens will from an image of an object.  Before we do that, I need to tell you one 
more thing about both kinds of thin spherical lenses.  This last fact is a reminder that our whole 
discussion is an approximation that hinges on the fact that the lenses we are dealing with are 
indeed thin.  Here’s the new fact:  Any ray that is headed directly toward the center of a lens 
goes straight through. The justification is, that at the center of the lens, the two surfaces of the 
lens are parallel.  So, to the extent that they are parallel in a small region about the center of the 
lens, it is as if the light is passing through a thin piece of plate glass (or any transparent medium 
shaped like plate glass.)  When light in air, is incident at some angle of incidence other than 0°, 
on plate glass, after it gets through both air/glass interfaces, the ray is parallel to the incoming 
ray.  The amount by which the outgoing ray is shifted sideways, relative to the incoming ray, 
depends on how thick the plate is—the thinner the plate, the closer the outgoing ray is to being 
collinear with the incoming ray.  In the thin lens approximation, we treat the outgoing ray as 
being exactly collinear with the incoming ray. 
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Using Ray Tracing Diagrams 
 
Given an object of height h, the object position o, and the focal length f  of the lens with respect 
to which the object position is given, you need to be able to diagrammatically determine: where 
the image of that object will be formed by the lens, how big the image is, whether the image is 
erect (right side up) or inverted (upside down), and whether the image is real or virtual (these 
terms will be defined soon).   Here’s how you do that for the case of a diverging lens of specified 
focal length with the object distance o  > f : 
 
Draw the plane of the lens and the principal axis of the lens.  Draw the lens, but think of it as an 
icon, just telling you what kind of lens you are dealing with.  As you proceed with the diagram 
be careful not to show rays changing direction at the surface of your icon.  Also, make sure you 
draw a diverging lens if the focal length is negative.  Measure off the distance |f | to both sides 
of the plane of the lens and draw the focal points.  Measure off the object distance o  from the 
plane of the lens, and, the height h of the object.  Draw in the object. 
 
 
 
 
 
 
 
 
 
 
 
 
 
We determine the position of the image of the tip of the arrow by means of three principal rays.  
The three principal rays are rays on which the effect of the lens is easy to determine based on our 
understanding of what a lens does to incoming rays that are traveling toward the center of the 
lens, incoming rays that are traveling toward or away from a focal point, and incoming rays that 
are traveling directly toward the center of the lens.  Lets start with the easy one, Principal Ray I.  
It leaves the tip of the arrow and heads directly toward the center of the lens.  It goes straight 
through. 
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Next comes Principal Ray II.  It comes in parallel to the principal axis of the lens, and, at the 
plane of the lens, jumps on a diverging line, which, if traced back, passes through the focal point 
on the same side of the lens as the object.  Note the need for trace-back. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the case of a diverging lens, Principal Ray III is the ray that, as it approaches the lens, is 
headed straight for the focal point on the other side of the lens.  At the plane of the lens, 
Principal Ray III jumps onto a path that is parallel to the principal axis of the lens. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that, after passing through the lens, all three rays are diverging from each other.  Trace-
back yields the apparent point of origin of the rays, the image of the tip of the arrow.  It is at the 
location where the three lines cross.  (In practice, using a ruler and pencil, due to human error, 
the lines will cross at three different points.  Consider these to be the vertices of a triangle and 
draw the tip of the arrow at what you judge to be the geometric center of the triangle.)  Having 
located the image of the tip of the arrow, draw the shaft of the image of the arrow, showing that 
it extends from point of intersection, to the principal axis of the lens, and, that it is perpendicular 
to the principal axis of the lens. 
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Measurements with a ruler yield the image height h

′
 and the magnitude of the image distance | i  |.   

The image is said to be a virtual image.  A virtual image of a point, is a point from which rays 
appear to come, as determined by trace back, but, through which the rays do not all, actually 
pass. By convention, the image distance is negative when the image is on the same side of the 
lens as the object.  A negative image distance also signifies a virtual image.  Note that the image 
is erect.  By convention, an erect image has a positive image height h

′
.  The magnification M is 

given by: 

h

h
M

′′′′
====  

 

By convention, a positive value of M means the image is erect (right side up). 
 
For the case of a converging lens, Principal Ray I is identical to the corresponding ray for the 
diverging lens.  It starts out headed straight for the center of the lens, and, it goes straight 
through.  Principal Ray II starts out the same way Principal Ray II did for the diverging lens—it 
comes in parallel to the principal axis of the lens—but, starting at the plane of the lens, rather 
than diverging, it is caused to converge to the extent that it passes through the focal point on the 
other side of the lens. 
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Principal Ray III , for a converging lens (with the object farther from the lens than the focal point 
is), passes through the focal point on the same side of the lens (the side of the lens the object is 
on) and then, when it gets to the plane of the lens, comes out parallel to the principal axis of the 
lens. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If you position yourself so that the rays, having passed through the lens, are coming at you, and, 
you are far enough away from the lens, you will again see the rays diverging from a point.  But 
this time, all the rays actually go through that point.  That is, the lens converges the rays to a 
point, and they don’t start diverging again until after they pass through that point.  That point is 
the image of the tip of the arrow.  It is a real image.  You can tell because if you trace back the 
lines the rays are traveling along, you come to a point through which all the rays actually travel.  
Identifying the crossing point as the tip of the arrow, we draw the shaft and head of the arrow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This time, the image is inverted.  We can measure the length of the image and the distance of the 
image from the plane of the mirror.  By convention, the image height is negative when the image 
is inverted, and, the image distance is positive when the image is on the side of the lens opposite 
that of the object.  The magnification M is again given by 
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h

h
M

′′′′
====                                                                     (28-2) 

 
which, with h

′
 being negative, turns out to be negative itself.  This is consistent with the 

convention that a negative magnification means the image is inverted. 
 
Principal Ray III is different for the converging lens when the object is closer to the plane of the 
lens than the focal point is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Principal Ray III, like every principal ray, starts at the tip of the object and travels toward the 
plane of the lens.  In the case at hand, on its way to the plane of lens, Principal Ray III travels 
along a line that, if traced back, passes through the focal point on the same side of the lens as the 
object. 
 
This concludes our discussion of the determination of image features and position by means of 
ray tracing.  In closing this chapter, I summarize the algebraic sign conventions, in the form of a 
table: 
 

Physical Quantity Symbol Sign Convention 

focal length f 
+ for converging lens 
− for diverging lens 

image distance i 
+ for real image (on opposite side of lens as object) 
− for virtual image (on same side of lens as object) 

image height h
′
 

+ for erect image 
− for inverted image 

magnification M 
+ for erect image 
− for inverted image 
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III  
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29  Thin Lenses: Lens Equation, Optical Power 
 
From the thin lens ray-tracing methods developed in the last chapter, we can derive algebraic 
expressions relating quantities such as object distance, focal length, image distance, and 
magnification. 
 
Consider for instance the case of a converging lens with an object more distant from the plane of  
the lens than the focal point is.  Here’s the diagram from the last chapter.  In this copy, I have 
shaded two triangles in order to call your attention to them.  Also, I have labeled the sides of 
those two triangles with their lengths. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By inspection, the two shaded triangles are similar to each other.  As such, the ratios of 
corresponding sides are equal.  Thus: 
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Recall the conventions stated in the last chapter: 
 

Physical Quantity Symbol Sign Convention 

focal length f 
+ for converging lens 
− for diverging lens 

image distance i 
+ for real image 
− for virtual image 

image height h
′
 

+ for erect image 
− for inverted image 

magnification M 
+ for erect image 
− for inverted image 

 
In the case at hand, we have an inverted image, so h

′
 is negative, so |h

′
| = −h

′
.  Thus, the equation 

o
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h

h ====
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 can be written as 
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h

h ====
′′′′−−−−

 , or, as 
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o
i

h

h −−−−====
′′′′

  

 But 
h

h′′′′
 is, by definition, the magnification.  Thus, we can write the magnification as: 

 
o
i

M −−−−====  (29-1) 

 
Here’s another copy of the same diagram with another triangle shaded. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By inspection, that shaded triangle is similar to the triangle that is shaded in the following copy 
of the same diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the fact that the ratios of corresponding sides of similar triangles are equal, we set the ratio 
of the two top sides (one from each triangle) equal to the ratio of the two right sides: 
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Again, since the image is upside down, h
′
 is negative so |h

′
| = −h

′
.  Thus, 
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From our first pair of similar triangles we found that 
o
i

h

h −−−−====
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 which can be written 
ih

h o−−−−====
′′′′

 

 

Substituting this into the expression 
h

h
′′′′

−−−−==== 1
f
o

  which we just found, we have 
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Dividing both sides by o and simplifying yields: 
 

 
i

111 ++++====
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 (29-2) 

 
This equation is referred to as the lens equation.  Together with our definition of the 

magnification 
h

h
M

′′′′
==== , the expression we derived for the magnification 

o
i

M −−−−====  ,  and our 

conventions: 
 

Physical Quantity Symbol Sign Convention 

focal length f 
+ for converging lens 
− for diverging lens 

image distance i 
+ for real image 
− for virtual image 

image height h
′
 

+ for erect image 
− for inverted image 

magnification M 
+ for erect image 
− for inverted image 

 
the lens equation tells us everything we need to know about the image of an object that is a 
known distance from the plane of a thin lens of known focal length.  While we have derived it 
for the case of an object that is a distance greater than the focal length, from a converging lens, it 
works for all the combinations of lens and object distance for which the thin lens approximation 
is good.  (The thin lens approximation is good as long as i, o, and f  are all large compared to the 
thickness of the lens.)   In each case, we derive the lens equation (it always turns out to be the 
same equation), by drawing the ray tracing diagram and analyzing the similar triangles that 
appear in it. 
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An Important Conceptual Point 
 
(We mentioned this in the last chapter but it warrants further attention.)  An infinite set of rays 
contributes to any given point of an image formed by a lens.  Consider for instance the case of an 
object at a greater distance than the focal length from a thin spherical convex (converging) lens.  
Further, because it’s easy to specify, we will consider the image of the tip of the (arrow) object.  
We have been using the principal rays to locate the image, as in the following diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

in which I have intentionally used a small lens icon to remind you that, in using the principal ray 
diagram to locate the image, we don’t really care whether or not the principal rays actually hit 
the lens.  Let’s, for the case at hand, consider the diagram to be a life-size diagram of an actual 
lens.  As, important as they are in helping us identify the location of the image, clearly, for the 
case at hand, Principal Rays II and III do not actually contribute to the image.  Principal Ray I 
does contribute to the image.  Let’s draw in some more of the contributors: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The fact that every ray that comes from the tip of the object and hits the lens contributes to the 
image of the tip of the arrow (and the corresponding fact for each and every point on the object) 
explains why you can cover up a fraction of the lens (such as half the lens) and still get a 
complete image (albeit dimmer). 
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The Power of a Lens 
 
When an ophthalmologist writes a prescription for a spherical lens, she or he will typically write 
either a value around  −.5 or .5, or, a value around −500 or 500 without units.  You might well 
wonder what quantity the given number is a value for, and what the units should be.  The answer 
to the first question is that the physical quantity is the power of the lens being prescribed.  In this 
context, the power is sometimes called the optical power of the lens.  The power of a lens has 
nothing to do with the rate at which energy is being transformed or transferred but instead 
represents the assignment of a completely different meaning to the same word.  In fact, the 
power of a lens is, by definition, the reciprocal of the focal length of the lens: 
 

 
f
1====P  (29-3) 

 
In that the SI unit of focal length is the meter (m), the unit of optical power is clearly the 

reciprocal meter which you can write as 
m

1
 or m−1 in accord with your personal preferences.  

This unit has been assigned a name.  It is called the diopter, abbreviated D.  Thus, by definition, 
 

1D = 
m

1
 

 
Thus, a value of −.5 on the ophthalmologist’s prescription can be interpreted to mean that what is 
being prescribed is a lens having a power of −.5 diopters.  The minus sign means that the lens is 
a concave (diverging) lens.  Taking the reciprocal yields: 
 

m2
D

1
2

D5

11 −−−−====−−−−====
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========
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f  

 
If you see a number around −500 or 500 on the ophthalmologist’s lens prescription, you can 
assume that the ophthalmologist is giving the power of the lens in units of millidiopters (mD).  
500 mD is, of course, equivalent to .5 D.  To avoid confusion, if you are given an optical power 
in units of mD, convert it to units of diopters before using it to calculate the corresponding focal 
length. 
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Two-Lens Systems 
 
To calculate the image of a two-lens system, one simply calculates the position of the image for 
the lens that light from the object hits first, and then uses that image as the object for the second 
lens.  In general, one has to be careful to recognize that for the first lens, the object distance and 
the image distance are both measured relative to the plane of the first lens.  Then, for the second 
lens, the object distance and the image distance are measured relative to the plane of the second 
lens.  That means that, in general, the object distance for the second lens is not equal in value to 
the image distance for the first lens. 
 
For instance, in the following diagram of two lenses separated by 12 cm, if the object is to the 
left of the first lens, and i1 turns out to be 8 cm to the right of the first lens, 
 
 
 
 
 
 
 
 
 
 
 
 
then o2, the object distance for the second lens, is 4 cm.  A peculiar circumstance arises when the 
second lens is closer to the first lens than the image formed by the first lens is.  Suppose for 
instance, that we have the image depicted above, formed by the first lens: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now suppose that we put a second lens in between the 1st lens and the image. 
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Note that, for the second lens, we have an object to the right of the lens, but, the light associated 
with that object approaches the object from the left!  This can only happen when the object is 
actually an image formed by another lens.  In such a case, we call the object a virtual object.  
More generally, when an object’s light approaches a lens from the side opposite that side to 
which the object is, the object is considered to be a virtual object, and, the object distance, is, by 
convention, negative.  So, we have one more convention to put in a table for you: 
 
 

Physical Quantity Symbol Sign Convention 

Object Distance o 
+ for real object (always the case for a physical object) 
− for virtual object (only possible if “object” is 
    actually the image formed by another lens) 

 
 
In forming the ray-tracing diagram for the case of the virtual object, we have to remember that 
every ray coming into the second lens is headed straight for the tip of the arrow that is the virtual 
object for the second lens.  Thus, our Principal Ray I is one that is headed straight toward the tip 
of the arrow, and, is headed straight toward the center of the lens.  It goes straight through. 
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Principal Ray II is headed straight for the head of the object along a line that is parallel to the 
principal axis of the lens.  At the plane of the lens it jumps onto the straight line path that takes it 
straight through the focal point on the other side of the lens. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Principal Ray III, is headed straight toward the tip of the virtual object, and, on its way to the 
lens, it passes through the focal point on the side of the lens from which it approaches the lens.  
When it hits the plane of the lens, Principal Ray III adopts a path that is parallel to the principal 
axis of the lens. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that, for the case at hand, we get a real image.  Relative to the virtual object, the image is 
not inverted.  The virtual object was already upside down.  The fact that we can draw a ray-
tracing diagram for the case of a virtual object means that we can identify and analyze similar 
triangles to establish the relationship between the object distance, the image distance and the 
focal length of the lens.  Doing so, with the convention that the object distance of a virtual object 

is negative, again yields the lens equation 
i

111 ++++====
of

. 

 
Here’s a diagram of the entire two-lens system for the case at hand: 
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Note that the real image of lens 1 alone, is never actually formed, but it was crucial in our 
determination of the image location, orientation, and size, in the case of the two-lens system. 
 
 
Two Lenses at (Essentially) the Same Location 
 

In the thin lens approximation (in which we consider the thickness of a lens to be negligible), 
two lenses placed in contact with one another are considered to have one and the same “plane of 
the lens”. 
 
 
 
 
 
 
 
 
As such, the object distance for the second lens is the negative of the image distance for the first 
lens.  The second lens forms an image in accord with: 
 

222

111

i
++++====

of
 

 
in which, as we just stated, the object distance o2 is the negative of the image distance i1 for the 

first lens.  substituting o2 = −  i1  yields 

212

111

ii
++++

−−−−
====

f
 

 

i1 represents the image distance for the image that would be formed by the first lens if the second 
lens wasn’t there.  It is related to the focal length and object distance by the lens equation: 
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Solving this for 
1

1

i−−−−
 yields 

111

111

f
−−−−====

−−−− oi
 which, when substituted into 

212

111

ii
++++

−−−−
====

f
 from 

above, yields: 

2112

1111

i
++++−−−−====

ff o
 

which can be written as: 

2121

1111

i
++++====++++

off
 

 
The object distance o1 for the first lens, is the object distance for the pair of lenses.  I’m going to 

call that oc for the object distance for the combination of two lenses.  In other words, oc ≡ o1.  
The image distance for the second lens is the image distance for the pair two lenses.  I’m going 
to call that ic for the image distance for the combination of two lenses.  In other words, ic ≡ i2.  
Thus, on the right, we have the reciprocal of the object distance for the two-lens system plus the 
reciprocal of the image distance for the two-lens system. 
 

cc21

1111

i
++++====++++

off
 

 
On the left we have the sum of the powers of the two lenses. 
 

cc
21

11

i
PP ++++====++++

o
 

 

For a single lens, the lens equation 
i

111 ++++====
of

 expressed in terms of the power, reads 
i

P
11 ++++====

o
 .  

Thus, if, for our combination of two lenses at one and the same location, we identify 21 PP ++++   as , 

the power cP  of the combination of two lenses, we have, 

 

cc
c

11

i
P ++++====

o
 

 
Thus, a pair of lenses, each of which is at essentially one and the same location, acts as a single 
lens whose powercP  is the sum of the powers of the two lenses making up the combination. 

 
 21c PPP ++++====  (29-4) 
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30  The Electric Field Due to a Continuous Distribu tion of 
Charge On a Line 
 

Every integral must include a differential (such as dx, dt, dq, etc.).  An integral is 
an infinite sum of terms.  The differential is necessary to make each term 

infinitesimal (vanishingly small).  ∫ xdxf )(  is okay, ∫ dyyg )(  is okay, and 

∫ tdth )(  is okay, but never write ∫ )(xf , never write ∫ )(yg  and 

never write ∫ )(th . 

 
Here we revisit Coulomb’s Law for the Electric Field.  Recall that Coulomb’s  Law for the 
Electric Field gives an expression for the electric field, at an empty point in space, due to a 
charged particle.  You have had practice at finding the electric field at an empty point in space 
due to a single charged particle and due to several charged particles.  In the latter case, you 
simply calculated the contribution to the electric field at the one empty point in space due to each 
charged particle, and then added the individual contributions.  You were careful to keep in mind 
that each contribution to the electric field at the empty point in space was an electric field vector, 
a vector rather than a scalar, hence the individual contributions had to be added like vectors. 
 
 

30.1  A Review Problem for the Electric Field due to a Discrete1 
Distribution of Charge 
 
Let’s kick this chapter off by doing a review problem.  The following example is one of the sort 
that you learned how to do when you first encountered Coulomb’s Law for the Electric Field.  
You are given a discrete distribution of source charges and asked to find the electric field (in the 
case at hand, just the x component of the electric field) at an empty point in space. 
 
The example is presented on the next page.  Here, a word about one piece of notation used in the 
solution.  The symbol P is used to identify a point in space so that the writer can refer to that 
point, unambiguously, as “point P.”  The symbol P in this context does not stand for a variable 
or a constant.  It is just an identification tag.  It has no value.  It cannot be assigned a value.  It 
does not represent a distance.  It just labels a point.

                                                
1 The charge distribution under consideration here is called a discrete distribution as opposed to a continuous 
distribution because it consists of several individual particles that are separated from each other by some space.  A 
continuous charge distribution is one in which some charge is “smeared out” along some line or over some region of 
space. 
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Example (of a review problem) 
There are two charged particles on the x-axis of a Cartesian coordinate system, q1 at x = x1 and q2 
at x = x2 where x2 > x1.  Find the x component of the electric field, due to this pair of particles, 
valid for all points on the x-y plane for which x > x2. 
 

 
 
 
 
 
 
 
 
 
 

1E
v

 is the contribution to the electric field at 
point P (at x, y) due to charge q1.  Charge q2 

contributes 2E
v

 to the electric field at P. 

21 EEE
vvv

++++====  

xxx EEE 21 ++++====  

First, let’s get xE1 : 

 
 
 
 
 
 
 
 

1
1

1 cosθ====
E

E x  

 

111 cosθEE x ====  
 

Looking at the diagram at the top of this 
column, we see that Coulomb’s Law for the 
Electric Field yields: 
 

2
1

1
1 r

qk
E ====  

 

12
1

1
1 cosθ

r

qk
E x ====  

 
 

Again, from that first diagram, 
 

22
11 )( yxxr ++++−−−−====  

 

and 
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1

1

1

1
1
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xxxx

++++−−−−
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r
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Substituting both of these into 12
1

1
1 cosθ

r

qk
E x ====   

yields: 
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It is left as an exercise for the reader to show 
that: 
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Since xxx EEE 21 ++++==== , we have: 
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30.2  Linear Charge Density 
 
Okay, enough review, now lets consider the case in which we have a continuous distribution of 
charge along some line segment.  In practice, we could be talking about a charged piece of string 
or thread, a charged thin rod, or even a charged piece of wire.  First we need to discuss how one 
even specifies such a situation.  We do so by stating what the  linear charge density, the charge-
per-length, λ is.  For now we’ll consider the meaning of λ  for a few different situations (before 
we get to the heart of the matter, finding the electric field due to the linear charge distribution).  
Suppose for instance we have a one-meter string extending from the origin to x = 1.00 m along 
the x axis, and that the linear charge density on that string is given by: 
 

x2m

� C
562.====λ . 

 
 
 
(Just under the equation, we have depicted the linear charge density graphically by drawing a 
line whose darkness represents the charge density.) 

Note that if the value of x is expressed in meters, λ will have units of 
m

� C
, units of 

charge-per-length, as it must.  Further note that for small values of x, λ is small, and for larger 
values of x, λ is larger.  That means that the charge is more densely packed near the far (relative 
to the origin) end of the string.  To further familiarize ourselves with what λ is, let’s calculate the 
total amount of charge on the string segment.  What we’ll do is to get an expression for the 
amount of charge on any infinitesimal length dx of the string, and add up all such amounts of 
charge for all of the infinitesimal lengths making up the string segment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The infinitesimal amount of charge dq on the infinitesimal length d x of the string is just the 
charge per length λ times the length d x of the infinitesimal string segment. 
  

xddq λ====                                                           ( 30-1 ) 
 
 

d x 

x (1.00 m, 0) 

Figure 1 



Chapter 30  The Electric Field Due to a Continuous Distribution of Charge On a Line 

287 

Note that you can’t take the amount of charge on a finite length (such as 15 cm) of the string to 
be λ  times the length of the segment because λ  varies over the length of the segment.  In the case 
of an infinitesimal segment, every part of it is within an infinitesimal distance of the position 
specified by one and the same value of x.  The linear charge density doesn’t vary on an 
infinitesimal segment because x doesn’t—the segment is simply too short. 
 
To get the total charge we just have to add up all the dq’s.  Each dq is specified by its 
corresponding value of x.  To cover all the dq’s we have to take into account all the values of x 
from 0 to 1.00 m.  Because each dq is the charge on an infinitesimal length of the line of charge, 
the sum is going to have an infinite number of terms.  An infinite sum of infinitesimal pieces is 
an integral.  When we integrate Equation 30-1 ( dxdq λ= ) we get, on the left, the sum of all the 
infinitesimal pieces of charge making up the whole.  By definition, the sum of all the 
infinitesimal amounts of charge is just the total charge Q (which by the way, is what we are 
solving for), we don’t need the tools of integral calculus to deal with the left side of the equation.  
Integrating both sides of the equation yields: 

∫∫∫∫====
m001

0

.

dxQ λ  

Using the given expression x2m

� C
562.====λ  we obtain 
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A few more examples of distributions of charge follow: 
 
For instance, consider the case of charge distributed along the x axis, from  x = 0 to x = L  for the 
case in which the charge density is given by 
 

)/radsin( LxMAX πλλ =  
 

 
where MAXλ  is a constant having units of charge-per-length, rad stands for the units radians, x is 
the position variable, and L is the length of the charge distribution.  Such a charge distribution 
has a maximum charge density equal to MAXλ  occurring in the middle of the line segment. 
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Another example would be a case in which charge is distributed on a line segment of length L 
extending along the y axis from  y = a  to y = a + L with a being a constant and the charge density 
given by 
 
 

2

m� C38

y

⋅=λ  

 
 
 

 
In this case the charge on the line is more densely packed in the region closer to the origin.  (The 
smaller y is, the bigger the value of λ, the charge-per-length.) 
 
The simplest case is the one in which the charge is spread out uniformly over the line on which 
there is charge.  In the case of a uniform linear charge distribution, the charge density is the same 
everywhere on the line of charge.  In such a case, the linear charge density λ is simply a constant.  
Furthermore, in such a simple case, and only in such a simple case, the charge density λ is just 
the total amount of charge Q divided by the length L of the line along which that charge is 
uniformly distributed.  For instance, suppose you are told that an amount of charge Q = 2.45 C is 
uniformly distributed along a thin rod of length L = 0.840 m.  Then λ is given by: 
 

m

C
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m8400
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====

====

λ

λ

λ
L

Q

 

 

 

30.3  The Electric Field Due to a Continuous Distribution of Charge 
Along a Line 
 
Okay, now we are ready to get down to the nitty-gritty.  We are given a continuous distribution 
of charge along a straight line segment and asked to find the electric field at an empty point in 
space in the vicinity of the charge distribution.  We will consider the case in which both the 
charge distribution and the empty point in space lie in the x-y plane.  The values of the 
coordinates of the empty point in space are not necessarily specified.  We can call them x and y.  
In solving the problem for a single point in space with unspecified coordinates (x,  y), our final 
answer will have the symbols x and y in it, and our result will actually give the answer for an 
infinite set of points on the x-y plane. 
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The plan for solving such a problem is to find the electric field, due to an infinitesimal segment 
of the charge, at the one empty point in space.  We do that for every infinitesimal segment of the 
charge, and then add up the results to get the total electric field. 
 
Now once we chop up the charge distribution (in our mind, for calculational purposes) into 
infinitesimal (vanishingly small) pieces, we are going to wind up with an infinite number of 
pieces and hence an infinite sum when we go to add up the contributions to the electric field at 
the one single empty point in space due to all the infinitesimal segments of the linear charge 
distribution.  That is to say, the result is going to be an integral. 
 
An important consideration that we must address is the fact that the electric field, due to each 
element of charge, at the one empty point in space, is a vector.  Hence, what we are talking about 
is an infinite sum of infinitesimal vectors.  In general, the vectors being added are all in different 
directions from each other.  (Can you think of a case so special that the infinite set of 
infinitesimal electric field vectors are all in the same direction as each other?2  Note that we are 
considering the general case, not such a special case.)  We know better than to simply add the 
magnitudes of the vectors, infinite sum or not.  Vectors that are not all in the same direction as 
each other, add like vectors, not like numbers.  The thing is, however, the x components of all the 
infinitesimal electric field vectors at the one empty point in space do add like numbers.  Likewise 
for the y components.  Thus, if, for each infinitesimal element of the charge distribution, we find, 
not just the electric field at the empty point in space, but the x component of that electric field, 
then we can add up all the x components of the electric field at the empty point in space to get 
the x component of the electric field, due to the entire charge distribution, at the one empty point 
in space.  The sum is still an infinite sum, but this time it is an infinite sum of scalars rather than 
vectors, and we have the tools for handling that.  Of course, if we are asked for the total electric 
field, we have to repeat the entire procedure to get the y component of the electric field and then 
combine the two components of the electric field to get the total.   
 
The easy way to do the last step is to use  iiii, jjjj, kkkk  notation.  That is, once we have Ex and Ey, we 
can simply write:  

ji yx EEE ++++====
r

                                                        (30-2) 

 

                                                
2 Such a special case occurs when one is asked to find the electric field at points on the same line as the charge 
distribution, at points outside the charge distribution. 
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Example 
Find the electric field valid for any point on the positive x axis due a 36.0 cm long line of charge, 
lying on the y axis and centered on the origin, for which the charge density is given by 
 

2
3m

C
001200 y.====λ                                                       (30-3) 

 
As usual, we’ll start our solution with a diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that we use (and strongly recommend that you use) primed quantities (x′, y ′) to specify a 
point on the charge distribution and unprimed quantities (x, y) to specify the empty point in space 
at which we wish to know the electric field.  Thus, in the diagram, the infinitesimal segment of 
the charge distribution is at (0, y ′) and point P, the point at which we are finding the electric 
field, is at (x, 0).  Also, our expression for the linear charge density (see Equation 30-3) becomes: 
 

2
3m

C
001200 y′′′′==== .λ                                                    (30-4) 

 
The plan here is to use Coulomb’s Law for the Electric Field to get the magnitude of the 
infinitesimal electric field vector Ed

v
 at point P due to the infinitesimal amount of charge dq in 

the infinitesimal segment of length d y ′.  
 

2r

dqk
dE =                                                              (30-5) 
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C
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Figure 2 
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The amount of charge dq in the infinitesimal segment d y ′ of the linear charge distribution is 
given by 

yddq ′= λ                                                              (30-6) 
 
Furthermore, looking at the diagram above (see Figure 2), we can use the Pythagorean theorem 
to express the distance r that point P is from the infinitesimal amount of charge dq under 
consideration as: 
 

22 yxr ′+=                                                             (30-7) 
 
Substituting these two expressions into our equation for dE we obtain 
 

22 yx

ydk
dE

′+
′

= λ
                                                            (30-8) 

 

Recall that our plan is to find Ex, then Ey and then put them together using jjjjiiii yx EE ++++====E
r

.  So 

for now, let’s get an expression for Ex. 
 

 
 
Based on the vector component diagram in Figure 3 we have 
 

θcosdEdEx =                                                            (30-9) 
 

The θ  appearing in Figure 3 is the same θ  that appears in Figure 2.  Based on the plane 
geometry evident in Figure 2 we have: 
 

22
cos

yx

x

r

x

′+
==θ                                                   (30-10) 

 

Substituting this expression for cosθ  as well as the expression we derived for dE above (see 
Equation 30-8) we obtain 

x axis 

y  axis 
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dE 

dEx 

dEy 

Figure 3 
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(((( )))) 2
3

22 yx

ydxk
dEx

′′′′++++

′′′′
====

λ
                                                      (30-11) 

 
Also, let’s go ahead and replace λ  with the expression for λ  in terms of y ′ (which was given as 

2
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C
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Now we have an expression for dEx that includes only one quantity, namely y ′, that depends on 
which bit of the charge distribution is under consideration.  Furthermore, although in the diagram 
(Figure 2) it appears that we picked out a particular infinitesimal line segment d y ′, in fact, the 
value of y ′ needed to establish its position is not specified.  That is, we have an equation for dEx 
that is good for any infinitesimal segment d y ′ of the given linear charge distribution  To identify 
a particular d y ′ we just have to specify the value of y ′.  Thus to sum up all the dEx’s we just have 
to add, to a running total, the dEx for each of the possible values of y′.  Thus we need to integrate 
the expression for d Ex for all the values of y ′ from  –   0.180 m  to  + 0.180 m. 
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On the left we have the infinite sum of all the contributions to the electric field due to all the 
infinitesimal elements of the line of charge.  We don’t need any special mathematics techniques 
to evaluate that.  The sum of all the parts is the whole.  That is, on the left, we have Ex. 
 

The right side, we can evaluate.  First, let’s factor out the constants: 
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The integral is given on your formula sheet. 
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Substituting the value of the Coulomb constant k from the formula sheet we obtain 
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Finally we have 
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It is interesting to note that while the position variable x (which specifies the location of the 
empty point in space at which the electric field is being calculated) is a constant for purposes of 
integration (the location of point P does not change as we include the contribution to the electric 
field at point P of each of the infinitesimal segments making up the charge distribution), an 
actual value x was never specified.  Thus our final result for Ex is a function of the position 
variable x. 
 
Getting the y-component of the electric field can be done with a lot less work if we take 
advantage of the symmetry of the charge distribution with respect to the x axis.  Recall that the 
charge density λ, for the case at hand, is given by equation 30-4: 
 

2
3m

C
001200 y′′′′==== .λ  

 
Because λ is proportional to y ′2, the value of λ is the same at the negative of a specified y ′ value 
as it is at the y′ value itself.  More specifically, the amount of charge in each of the two 
infinitesimal elements d y′  of the charge distribution depicted in Figure 4: 
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is one and the same value because one element is the same distance below the x axis as the other 
is above it.  This position circumstance also makes the distance r  that each element is from point 
P the same as that of the other, and, it makes the two angles (each of which is labeled θ in the 
diagram) have one and the same value.  Thus the two dE ’s have one and the same magnitude.  
As a result of the latter two facts (same angle, same magnitude of dE ), the y components of the 
two dE ’s cancel each other out.  (One is in the + y direction and the other in the – y direction.  
They are “equal and opposite.”)  In fact, for each and every charge distribution element d y′  that 
is above the x axis and is thus creating a downward contribution to the y component of the 
electric field at point P, there is an element d y′  that is the same distance below the x axis that is 
creating an upward contribution to the y component of the electric field at point P, canceling the 
y component of the former.  Thus the net sum of all the electric field y components (since they 
cancel pair-wise) is zero.  That is to say that due to the symmetry of the charge distribution with 
respect to the x axis, Ey = 0.  Thus, 

iiiixE====E
v

. 
 

Using the expression for Ex we found above (see Equation 30-14) we have, for our final answer: 
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31  Gauss’s Law 
 
Conceptually speaking, Gauss’s Law states that the number of electric field lines poking outward 
through an imaginary closed surface is proportional to the charge enclosed by the surface. 
 
A closed surface is one that divides the universe up into two parts: inside the surface, and, 
outside the surface.  An example would be a soap bubble for which the soap film itself is of 
negligible thickness.  I’m talking about a spheroidal soap bubble floating in air.  Imagine one in 
the shape of a tin can, a jar with its lid on, or a box.  These would also be closed surfaces.  In the 
context of Gauss’s law, an imaginary closed surface is often referred to as a Gaussian surface. 
 
In conceptual terms, if you use Gauss’s Law to determine how much charge is in some 
imaginary closed surface by counting the number of electric field lines poking outward through 
the surface, you have to consider inward-poking electric field lines as negative outward-poking 
field lines.  Also, if a given electric field line pokes through the surface at more than one 
location, you have to count each and every penetration of the surface as another field line poking 
through the surface, adding +1 to the tally if it pokes outward through the surface, and −1 to the 
tally if it pokes inward through the surface. 
 
So for instance, in a situation like: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
we have 4 electric field lines poking inward through the surface which, together, count as −4 
outward field lines, plus, we have 4 electric field lines poking outward through the surface which 
together count as +4 outward field lines for a total of 0 outward-poking electric field lines 
through the closed surface.  By Gauss’s Law, that means that the net charge inside the Gaussian 
surface is zero. 
 

E 

Closed Surface 
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The following diagram might make our conceptual statement of Gauss’s Law seem like plain old 
common sense to you: 
 
 
 
 
 
 
 
 
 
 
 
 
There are eight lines poking outward through the Gaussian surface (and none poking inward 
through it) meaning there must (according to Gauss’s Law) be a net positive charge inside the 
closed surface.  Indeed, from your understanding that electric field lines begin either at positive 
charges or infinity and end, either at negative charges or infinity, you could probably deduce our 
conceptual form of Gauss’s Law.  If the net number of electric field lines poking out through a 
closed surface is greater than zero, then you must have more lines beginning inside the surface 
than you have ending inside the surface, and, since field lines begin at positive charge, that must 
mean that there is more positive charge inside the surface than there is negative charge. 
 
Our conceptual idea of the net number of electric field lines poking outward through a Gaussian 
surface corresponds to the net outward electric flux ΦE  through the surface. 
 
To write an expression for the infinitesimal amount of outward flux dΦE through an infinitesimal 

area element dA, we first define an area element vector  dA  whose magnitude is, of course, just 
the area dA of the element; and; whose direction is perpendicular to the area element, and, 
outward.  (Recall that a closed surface separates the universe into two parts, an inside part and an 
outside part.  Thus, at any point on the surface, that is to say at the location of any infinitesimal 
area element on the surface, the direction outward, away from the inside part, is unambiguous.) 
 
 
 
 
 
 
 
 
 
 
In terms of that area element, and, the electric field E

v
 at the location of the area element, we can 

write the infinitesimal amount of electric flux dΦE through the area element as: 

inside 

outside 

 dA  
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 dAE ⋅⋅⋅⋅====
v

EdΦ  
 
 
 
 
 
 
 
 
 
 
 
 

Recall that the dot product  dAE ⋅⋅⋅⋅
v

can be expressed as θcosdAE .  For a given E and a given 

amount of area, this yields a maximum value for the case of θ = 0° (when E
v

 is parallel to dA  
meaning that E

v
 is perpendicular to the surface); zero when θ = 90° (when E

v
 is perpendicular to 

dA  meaning that E
v

 is parallel to the surface); and; a negative value when θ  is greater than 90° 
(with 180° being the greatest value of θ  possible, the angle at which E

v
 is again perpendicular to 

the surface, but, in this case, into the surface.) 
 
Now, the flux is the quantity that we can think of conceptually as the number of field lines.  So, 
in terms of the flux, Gauss’s Law states that the net outward flux through a closed surface is 
proportional to the amount of charge enclosed by that surface.  Indeed, the constant of 

proportionality has been established to be 
o

1
e  where eo (epsilon zero) is the universal constant 

known as the electric permitivity of free space.  (You’ve seen eo before.  At the time, we stated 

that the Coulomb constant k is often expressed as 
o4

1
eπ

 .   Indeed, the identity 
o4

1
eπ

====k  appears 

on your formula sheet.)  In equation form, Gauss’s Law reads: 
 
  (31-1) 
 

 
The circle on the integral sign, combined with the fact that the infinitesimal in the integrand is an 
area element, means that the integral is over a closed surface.  The quantity on the left is the sum 

of the product dAE ⋅⋅⋅⋅
v

 for each and every area element dA making up the closed surface.  It is the 
total outward electric flux through the surface. 
 
  (31-2) 
 
Using this definition in Gauss’s Law allows us to write Gauss’s Law in the form: 
 

 
o

E
ENCLOSED

e
Q

====Φ  (31-3) 

 dA  

θ 

E 

dAE ⋅⋅⋅⋅====
v

EΦ

o

ENCLOSED

e
Q

====⋅⋅⋅⋅ dAE
v
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o

ENCLOSED

e
Q

====⋅⋅⋅⋅ dAE
v

dAE ⋅⋅⋅⋅====
v

EΦ

How You Will be Using Gauss’s Law 
 
Gauss’s Law is an integral equation.  Such an integral equation can also be expressed as a 
differential equation.  We won’t be using the differential form, but, because of its existence, the 
Gauss’s Law equation  
 
 
 

is referred to as the integral form of Gauss’s Law.  The integral form of Gauss’s Law can be used 
for several different purposes.  In the course for which this book is written, you will be using it in 
a limited manner consistent with the mathematical prerequisites and co-requisites for the course.  
Here’s how: 

1) Gauss’s Law in the form 
o

E
ENCLOSED

e
Q

====Φ  makes it easy to calculate the net outward flux 

through a closed surface that encloses a known amount of charge QENCLOSED .  Just divide the 

amount of charge QENCLOSED by eo (given on your formula sheet as 
2

2
12

o mN

C
1085.8

⋅
×= −e ) and 

you have the flux through the closed surface. 
 
2) Given the electric field at all points on a closed surface, one can use the integral form of 

Gauss’s Law to calculate the charge inside the closed surface.  This can be used as a check for 
a case in which the electric field due to a given distribution of charge has been calculated by a 
means other than Gauss’s Law.  You will only be expected to do this in cases in which one 
can treat the closed surface as being made of one or more finite (not vanishingly small) 
surface pieces on which the electric field is constant over the entire surface piece so that the 
flux can be calculated algebraically as EA or E A cosθ.  After doing so for each of the finite 
surface pieces making up the closed surface, you add the results and you have the flux 

 
 
 

 through the surface.  To get the charge enclosed by the surface, you just plug that into 

o
E

ENCLOSED

e
Q

====Φ  and solve for QENCLOSED .  If you are using the method as a check, you just 

compare your result with the amount of charge known to be enclosed by the surface. 
 
3)  In cases involving a symmetric charge distribution, Gauss’s Law can be used to calculate the 

electric field due to the charge distribution.  In such cases, the right choice of the Gaussian 
surface makes E a constant at all points on each of several surface pieces, and in some cases, 
zero on other surface pieces.  In such cases the flux can be expressed as EA and one can 

simply solve 
o

ENCLOSED

e
Q

EA====  for E and logic to get the direction of E
v

.  The remainder of this 

chapter and all of the next will be used to provide examples of the kinds of charge 
distributions to which you will be expected to be able to apply this method. 
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Using Gauss’s Law to Calculate the Electric Field in the Case of a Charge 
Distribution Having Spherical Symmetry 
 
A spherically-symmetric charge distribution has a well-defined center.  Furthermore, if you 
rotate a spherically-symmetric charge distribution through any angle, about any axis that passes 
through the center, you wind up with the exact same charge distribution.  A uniform ball of 
charge is an example of a spherically-symmetric charge distribution.  Before we consider that 
one, however, let’s take up the case of the simplest charge distribution of them all, a point 
charge. 
 
We use the symmetry of the charge distribution to find out as much as we can about the electric 
field and then we use Gauss’s Law to do the rest.  Now, when we rotate the charge distribution, 
we rotate the electric field with it.  And, if a rotation of the charge distribution leaves you with 
the same exact charge distribution, then, it must also leave you with the same electric field. 
 
We first prove that the electric field due to a point charge can have no tangential component by 
assuming that it does have a tangential component and showing that this leads to a contradiction. 
 
Here’s our point charge q, and an assumed tangential component of the electric field at a point P 
which, from our perspective is to the right of the point charge. 
 
 
 
 
 
 
 
 
 
(Note that a radial direction is any direction away from the point charge, and, a tangential 
direction is perpendicular to the radial direction.) 
 

P 

Et 

q 
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Now let’s decide on a rotation axis for testing whether the electric field is symmetric with respect 
to rotation.  Almost any will do.  I choose one that passes through both the point charge, and, 
point P. 
 
 
 
 
 
 
 
Now, if I rotate the charge, and its associated electric field, through an angle of 180° about that 
axis, I get:  
 
 
 
 
 
 
 
 
 
 
This is different from the electric field that we started with.  It is downward instead of upward.  
Hence the electric field cannot have the tangential component depicted at point P.  Note that the 
argument does not depend on how far point P is from the point charge, indeed I never specified 
the distance.  So, no point to the right of our point charge can have an upward component to its 
electric field.  In fact, if I assume the electric field at any point P

′
 in space other than the point at 

which the charge is, to have a tangential component, then, I can adopt a viewpoint from which 
point P

′
 appears to be to the right of the charge, and, the electric field appears to be upward.  

From that viewpoint, I can make the same rotation argument presented above to prove that the 
tangential component cannot exist.  Thus, based on the spherical symmetry of the charge 
distribution, the electric field due to a point charge has to be strictly radial.  Thus, at each point in 
space, the electric field must be either directly toward the point charge or directly away from it.  
Furthermore, again from symmetry, if the electric field is directly away from the point charge at 
one point in space, then it has to be directly away from the point charge at every point in space.  
Likewise for the case in which it is directly toward the point charge at one point in space.  If so, 
the electric field has to be directly toward the point charge at every point in space. 
 
We’ve boiled it down to a 50/50 choice.  Let’s assume that the electric field is directed away 
from the point charge at every point in space and use Gauss’s Law to calculate the magnitude of 
the electric field.  If the magnitude is positive, then the electric field is indeed directed away 
from the point charge.  If the magnitude turns out to be negative, then the electric field is actually 
directed toward the point charge. 
 

q 

P 

Et 

Axis of Rotation 

q 

P 

Et 

Axis of Rotation 
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o

ENCLOSED

e
Q

dAE ====

o

ENCLOSED

e
Q

dAE ====

At this point we need to choose a Gaussian surface.  To further exploit the symmetry of the 
charge distribution, we choose a Gaussian surface with spherical symmetry.  More specifically, 
we choose a spherical shell, of radius r, centered on the point charge. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At every point on the shell the electric field, being radial, has to be perpendicular to the spherical 
shell.  This means that for every area element, the electric field is parallel to our outward-

directed area element vector  dA .  This means that the  dAE ⋅⋅⋅⋅
v

in Gauss’s Law, 
 
 
 
evaluates to E dA.  So, for the case at hand, Gauss’s Law takes on the form: 
 
 
 
 
Furthermore, the magnitude of the electric field has to have the same value at every point on the 
shell.  If it were different at a point P

′
 on the spherical shell than it is at a point P on the spherical 

shell, then we could rotate the charge distribution about an axis through the point charge in such 
a manner as to bring the original electric field at point P

′
 to position P.  But this would represent 

a change in the electric field at point P, due to the rotation, in violation of the fact that a point 
charge has spherical symmetry.  Hence, the electric field at any point P

′
 on the Gaussian surface 

must have the same magnitude as the electric field at point P, which is what I set out to prove.  
The fact that E is a constant, in the integral, means that we can factor it out of the integral.  So, 
for the case at hand, Gauss’s Law takes on the form: 
 
  
 
 
 

o

ENCLOSED

e
Q

====⋅⋅⋅⋅ dAE
v

q 

Gaussian Surface 
(a sphere of radius r) 
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o

ENCLOSED

e
Q

dAE ====

dA

 
 
 
 
 
 
 
 
 
 
 
 
 
 
We left off with                                     . 
 
Now        , the integral, over the Gaussian surface, of dA, is just the sum of all the area elements 
making up the Gaussian surface.  That means that it is the total area of the Gaussian surface.  The 
Gaussian surface, being a sphere of radius r, has area 4π r  

2.  So now, Gauss’s Law for the case at 
hand looks like: 

o

2 ENCLOSED4 e
Q

rE ====π  

 

Okay, we’ve left that right side alone for long enough.  We’re talking about a point charge q and 
our Gaussian surface is a sphere centered on that point charge q, so, the charge enclosed,  
QENCLOSED is obviously q.  This yields: 

o

24 e
q

rE ====π  

Solving for E gives us: 

2
o4

1
r

q
E

eπ
====  

 
This is positive when the charge q is positive, meaning that the electric field is directed outward, 
as per our assumption.  It is negative when q is negative.  So, when the charge q is negative, the 
electric field is directed inward, toward the charged particle.  This expression is, of course, just 
Coulomb’s Law for the electric field.  It may look more familiar to you if we write it in terms of 

the Coulomb constant 
o4

1
eπ

====k  in which case our result for the outward electric field appears  

2r

kq
E ====  

 
It’s clear that, by means of our first example of Gauss’s Law, we have derived something that 
you already know, the electric field due to a point charge. 

Gaussian Surface 
(a sphere of radius r) 

q 

as: 
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32  Gauss’s Law Example 
 
We finished off the last chapter by using Gauss’s Law to find the electric field due to a point 
charge.  It was an example of a charge distribution having spherical symmetry.  In this chapter 
we provide  another example involving spherical symmetry. 
 
 
Example 32-1  

Find the electric field due to a uniform ball of charge of radius R and total charge Q.  Express 
the electric field as a function of r, the distance from the center of the ball. 

 
 
Solution 

Again we have a charge distribution for which a rotation through any angle about any axis 
passing through the center of the charge distribution results in the exact same charge 
distribution.  Thus, the same symmetry arguments used for the case of the point charge apply 
here with the result that, the electric field due to the ball of charge has to be strictly radially 
directed, and, the electric field has one and the same value at every point on any given 
spherical shell centered on the center of the ball of charge.  Again, we assume the electric 
field to be outward-directed.  If it turns out to be inward-directed, we’ll simply get a negative 
value for the magnitude of the outward-directed electric field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Charge Q, uniformly 
distributed throughout 
a spherical region of 
radius R. 

E 
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o

ENCLOSED

e
Q

dAE ====

The appropriate Gaussian surface for any spherical charge distribution is a spherical shell 
centered on the center of the charge distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Okay, let’s go ahead and apply Gauss’s Law. 
 
 
 
Since the electric field is radial, it is, at all points, perpendicular to the Gaussian Surface.  In 

other words, it is parallel to the area element vector dA .  This means that the dot product 

dAE ⋅⋅⋅⋅
v

 is equal to the product of the magnitudes, E  dA.  This yields: 
 
 
 
 
Again, since E has the same value at all points on the Gaussian surface of radius r, each dA in 
the infinite sum that the integral on the left is, is multiplied by the same value of E.  Hence, 
we can factor the E out of the sum (integral).  This yields 
 
 
 
The integral on the left is just the infinite sum of all the infinitesimal area elements making up 
the Gaussian surface, our spherical shell of radius r.  The sum of all the area elements is, of 
course, the area of the spherical shell.  The area of a sphere is 4π r2.  So, 

 

o

2 ENCLOSED4 e
Q

rE ====π  

 

Now the question is, how much charge is enclosed by our Gaussian surface of radius r  ? 

Charge Q, uniformly 
distributed throughout 
a spherical region of 
radius R. 

E 

Gaussian Surface: a 
spherical shell of 
radius r. 

o

ENCLOSED

e
Q

dAE ====

o

ENCLOSED

e
Q

====⋅⋅⋅⋅ dAE
v
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There are two ways that we can get the value of the charge enclosed.  Let’s try it both ways 
and make sure we get one and the same result. 
 
The first way:  Because the charge is uniformly distributed throughout the volume, the amount 
of charge enclosed is directly proportional to the volume enclosed.  So, the ratio of the 
amount of charge enclosed to the total charge, is equal to the ratio of the volume enclosed by 
the Gaussian surface to the total volume of the ball of charge: 
 

Charge of Ball Entire  theof Volume

SurfaceGaussian  of VolumeENCLOSED ====
Q

Q
 

 

3
3
4

3
3
4

ENCLOSED

Rπ rπ
Q

Q
====  

 

Q
R

r
Q 3

3

ENCLOSED ====  

 
 
The second way:  The other way we can look at it is to recognize that for a uniform 
distribution of charge, the amount of charge enclosed by the Gaussian surface is just the 
volume charge density, that is, the charge-per-volume r, times the volume enclosed. 
 

)SurfaceGaussian   theof Volume(ENCLOSED r====Q  

 
3

3
4

ENCLOSED rQ πr====  

 

Charge Q, uniformly 
distributed throughout 
a spherical region of 
radius R. 

E 

Gaussian Surface: a 
spherical shell of 
radius r. 
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In this second method, we again take advantage of the fact that we are dealing with a uniform 
charge distribution.  In a uniform charge distribution, the charge density is just the total 
charge divided by the total volume.  Thus: 
 

Charge of Ball of Volume

Q====r  

 

3
3
4 R

Q

π
====r  

 
Substituting this in to our expression 2

ENCLOSED 4 rQ πr====  for the charge enclosed by the 

Gaussian surface yields: 
 

3
3
4

3
3
4ENCLOSED r

R

Q
Q π

π
====  

 

Q
R

r
Q 3

3

ENCLOSED ====  

 
which is indeed the same expression that we arrived at in solving for the charge enclosed the 
first way we talked about. 
 

A couple of pages back we used Gauss’s Law to arrive at the relation 
o

2 ENCLOSED4 e
Q

rE ====π  

and now we have something to plug in for QENCLOSED .  Doing so yields: 
 

o

3

3

24 e










====
Q

R

r

rE π  

 

r
R

Q
E 3

o4 eπ
====  

 
This is our result for the magnitude of the electric field due to a uniform ball of charge at 
points inside the ball of charge (r ≤ R).  E is directly proportional to the distance from the 
center of the charge distribution.  E increases with increasing distance because, the farther a 
point is from the center of the charge distribution, the more charge there is inside the spherical 
shell that is centered on the charge distribution and upon which the point in question is 
situated.  How about points for which r ≥ R? 
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If r ≥ R, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the analysis is identical to the preceding analysis up to and including the point where we 
determined that: 
 

o

2 ENCLOSED4 e
Q

rE ====π  

 
But as long as r ≥ R, no matter by how much r exceeds R, all the charge in the in the charge 
distribution is enclosed by the Gaussian surface.  “All the charge” is just Q the total amount of 
charge in the uniform ball of charge.  So, 
 

o

24 e
Q

rE ====π  

 

2
o4

1
r

Q
E

eπ
====  

 

The constant 
o4

1
eπ

 is just the Coulomb constant k so we can write our result as: 

 

2r

Qk
E ====  

 
This result looks just like Coulomb’s Law for a point charge.  What we’ve proved here is that, at 
points outside a spherically-symmetric charge distribution, the electric field is the same as that 
due to a point charge at the center of the charge distribution. 

Charge Q, 
uniformly 
distributed 
throughout a 
spherical region 
of radius R. 

E 

Gaussian Surface: a 
spherical shell of 
radius r. 
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33  The Electric Potential due to a Continuous Char ge 
Distribution 
 
We have defined electric potential as, electric-potential-energy-per-charge.  Potential energy was 
defined as the capacity, of an object to do work, possessed by the object because of its position in 
space.  Potential energy is one way of characterizing the effect, or the potential effect of a force.  
In the case of electric potential energy, the force in question is the electrostatic force (a.k.a. the 
Coulomb force)—you know; the repulsive force that two like charges exert on each other, and, 
the attractive force that two unlike charges exert on each other.  The electric potential energy of a 
charged particle depends on a characteristic of itself, and a characteristic of the point in space at 
which it finds itself.  The characteristic of itself is its charge, and, the characteristic of the point 
in space is what this chapter is about, the electric-potential-energy-per-charge, better known as 
the electric potential.  If we can establish the electric-potential-energy-per-charge for each point 
in space in the vicinity of some source charge, it is easy to determine what the potential energy 
of a victim charge would be at any such point in space.  To do so, we just have to multiply the 
charge of the victim by the potential-energy-per-charge (the electric potential) applicable to the 
point in space at which the victim is located.  
 
In the next two chapters, we exploit the fact that if you know the electric potential throughout a 
region in space, you can use that knowledge to determine the electric field in that region of 
space. 
 
Our purpose of this chapter, is to help you develop your ability to determine the electric 
potential, as a function of position, in the vicinity of a charge distribution—in particular, in the 
vicinity of a continuous charge distribution. (Recall that you can think of a continuous charge 
distribution as some charge that is smeared out over space, whereas a discrete charge distribution  
is a set of charged particles, with some space between nearest neighbors.) 
 
It’s important for you to be able to contrast the electric potential with the electric field.  The 
electric potential is a scalar whereas the electric field is a vector.  The electric potential is 
potential-energy-per-charge-of-the-would-be-victim whereas the electric field is a force-per-
charge-of-the-would-be-victim.  Hey, that makes this chapter easy compared to the one in which 
we worked on calculating the electric field due to a continuous charge distribution.  It is, in 
general, easier to calculate a scalar than it is to calculate a vector. 
 
Let’s kick things off by doing a review problem involving a discrete distribution of charge.  
Please solve the following example problem and then check your work against my solution 
which follows the problem statement. 
 
 
Example 33-1 
 
Find the electric potential on the x-y plane, due to a pair of charges, one of charge +q at (0, d/2) 
and the other of charge –q at (0, – d/2). 
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Solution 
 
We define a point P to be at some unspecified position (x, y). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We call the distance from the positive charge to point P,  r+ , and, we call the distance from the 
negative charge to point P,  r− .  The electric potential due to a single point charge is given by 

r

kq
V ==== .  Also, the contributions to the electric field at one point in space due to more than one 

point charge simply add like numbers.  So, we have: 
 

21 VVV ++++====  
 

−−−−++++

−−−−++++====
r

qk

r

kq
V

)(
 

 

−−−−++++

−−−−====
r

kq

r

kq
V  

 
 
 
 

x 

y 

P 

+q 

−  q 

r+ 

r− 

(x,y) 

2
d

2
d
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But, from the diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
we can determine that: 

2
2

2







 −−−−++++====++++
d

yxr  

 
and from the diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
we can see that: 

2
2

2







 ++++++++====−−−−
d

yxr  

 

x 

y 

P 

+q 

-q 

r+ 

(x,y) 

y 

2
d x 

x 

y 
P 

+q 

-q 

r− 

(x,y) 

y 

2
d

x 

y  + 
d 
2 

y  − d 
2 
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Plugging both of these results into our expression 
−−−−++++

−−−−====
r

kq

r

kq
V  yields: 

 
 

2
2

2
2

22







 ++++++++

−−−−








 −−−−++++

====
d

yx

kq

d
yx

kq
V  

 
 

That’s enough review.  Please keep that 
r

kq
V ====  formula in mind as we move on to the new 

stuff.  Also keep in mind the fact that the various contributions to the electric potential at an 
empty point in space simply add (like numbers/scalars rather than like vectors). 
 
The “new stuff” is the electric potential due to a continuous distribution of charge along a line 
segment.  What we are dealing with is some line segment of charge.  It can be anywhere, in any 
orientation, but for concreteness, let’s consider a line segment of charge on the x axis, say from 
some x = a to x = b where a < b.  Furthermore, let’s assume the linear charge density (the charge-
per-length) on the line segment to be some function λ(x

′
).  The idea is to treat the charge 

distribution as an infinite set of point charges where each point charge may have a different 
charge value dq depending on where (at what value of x

′
) it is along the line segment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A particular infinitesimal segment of the line of charge, a length dx

′
 of the line segment, will 

make a contribution 

r

dqk
dV ====  

to the electric field at point P. 

a b 
dx

′
 

x 

y 

x
′
 

dq is the amount of charge in this 
infinitesimal segment dx

′
. 

P 
(x,y) 

r 
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The amount of charge, dq, in the infinitesimal segment dx
′
 of the line of charge is just the charge-

per-length λ(x
′
) (the linear charge density) times the length dx

′
 of the segment.  That is to say 

that dq = λ(x
′
) dx

′
 .  Substituting this into 

r

kdq
dV ====  yields: 

 

r

xdxk
dV

′′′′′′′′
====

)(λ
 

 
Applying the Pythagorean theorem to the triangle in the diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tells us that r can be written as 22)( yxxr ++++′′′′−−−−==== .  Substituting this into our expression for dV 
yields: 

22)(

)(

yxx

xdxk
dV

++++′′′′−−−−

′′′′′′′′
====

λ
 

 
Integrating both sides yields: 

∫∫∫∫∫∫∫∫ ++++′′′′−−−−

′′′′′′′′
====

b

a yxx

xdxk
dV

22)(

)(λ
 

 

∫∫∫∫ ++++′′′′−−−−

′′′′′′′′
====

b

a yxx

xdx
kV

22)(

)(λ
 

 
This is the electric potential at point P due to the charged line segment on the x axis.  Each bit of 
charge on the line segment is specified by its position variable x

′
.  Thus, in summing the 

contributions to the electric potential due to each bit of charge, x
′
 is our variable of integration.  

While its position coordinates have not been specified, but rather, they have been designated x 
and y, point P is a fixed point in space.  Hence, in summing up all the contributions to the 
electric potential at point P; x and y are to be considered constants.  After the integral is done, 
however, because we never specified values for x and y, the resulting expression for V can be 
considered to be a function of x and y. 

a b dx
′
 

x 

y 

x
′
 

dq is the amount of charge in this 
infinitesimal line segment dx

′
. 

P 
(x,y) 

r 

x−x
′
 

y 
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34  Calculating  the Electric Field from the Electr ic Potential  
 
The plan here is to develop a relation between the electric field and the corresponding electric 
potential that allows you to calculate the electric field from the electric potential. 
 
The electric field is the force-per-charge associated with empty points in space that have a force-
per-charge because they are in the vicinity of a source charge or some source charges.  The 
electric potential is the potential-energy-per-charge associated with the same empty points in 
space.  Since the electric field is the force-per-charge, and the electric potential is the potential-
energy-per charge, the relation between the electric field and its potential is essentially a special 
case of the relation between any force and its associated potential energy.  So, I’m going to start 
by developing the more general relation between a force and its potential energy, and then move 
on to the special case in which the force is the electric field times the charge of the victim and the 
potential energy is the electric potential times the charge of the victim. 
 
The idea behind potential energy was that it represented an easy way of getting the work done by 
a force on a particle that moves from point A to point B under the influence of the force.  By 
definition, the work done is the force along the path times the length of the path.  If the force 
along the path varies along the path, then we take the force along the path at a particular point on 
the path, times the length of an infinitesimal segment of the path at that point, and repeat, for 
every infinitesimal segment of the path, adding the results as we go along.  The final sum is the 
work.  The potential energy idea represented the assignment of a value of potential energy to 
every point in space so that, rather than do the path integral just discussed, we simply subtract 
the value of the potential energy at point A from the value of the potential energy at point B.  
This gives us the change in the potential energy experienced by the particle in moving from point 
A to point B.  Then, the work done is the negative of the change in potential energy.  For this to 
be the case, the assignment of values of potential energy values to points in space must be done 
just right.  For things to work out on a macroscopic level, we must ensure that they are correct at 
an infinitesimal level.  We can do this by setting: 
 

Work as Change in Potential Energy = Work as Force-Along-Path times Path Length 
 

dsF ⋅⋅⋅⋅====−−−−
v

dU  
where: 

dU is an infinitesimal change in potential energy, 
F
v

  is a force, 

ds is the infinitesimal displacement-along-the-path vector. 
 

In Cartesian coordinate unit vector notation, ds can be expressed as kkkkjjjjiiii dzdydx ++=ds , and, 

F
v

 can be expressed as kkkkjjjjiiii zyx FFF ++=F
v

.  Substituting these two expressions into our 

expression dsF ⋅=−
v

dU , we obtain: 
 

)()( kkkkjjjjiiiikkkkjjjjiiii dzdydxFFFdU zyx ++⋅++=−  
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dzFdyFdxFdU zyx ++=−  

 
Now check this out.  If we hold y and z constant (in other words, if we consider dy and dz to be 
zero) then: 
 

dxFdU x=−  (when y and z are held constant) 
 

Dividing both sides by dx and switching sides yields: 
 

dx

dU
Fx −=  (when y and z are held constant) 

 
That is, if you have the potential energy as a function of x, y, and z; and; you take the negative  of 
the derivative with respect to x while holding y and z constant, you get the x component of the 
force that is characterized by the potential energy function.  Taking the derivative of U with 
respect to x while holding the other variables constant is called taking the partial derivative of U 
with respect to x and written 
 

x

U

∂
∂

 

 
Alternatively, one writes  
 

zyx

U

,∂
∂

 

 
to be read, “the partial derivative of U with respect to x holding y and z constant.”  This latter 
method makes it more obvious to the reader just what is being held constant.  Rewriting our 
expression for Fx with the partial derivative notation, we have: 
 

x

U
Fx ∂

∂−=  

 
Returning to our expression dzFdyFdxFdU zyx ++=− , if we hold x and z constant we get: 

 
 

y

U
Fy ∂

∂−=  

 
and, if we hold x and y constant we get, 
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z

U
Fz ∂

∂−=  

 
Substituting these last three results into the force vector expressed in unit vector notation: 
 

kkkkjjjjiiii zyx FFF ++=F
v

 

 
yields 

kkkkjjjjiiii
z

U

y

U

x

U

∂∂∂∂
∂∂∂∂−−−−

∂∂∂∂
∂∂∂∂−−−−

∂∂∂∂
∂∂∂∂−−−−====F

v
 

 
which can be written: 
 










∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂−−−−==== kkkkjjjjiiii

z

U

y

U

x

U
F
v

 

 
 
Okay, now, this business of: 

taking the partial derivative of U with respect to x and multiplying the result by the unit 
vector iiii and then, 
taking the partial derivative of U with respect to y and multiplying the result by the unit 
vector jjjj and then, 
taking the partial derivative of U with respect to z and multiplying the result by the unit 
vector kkkk, and then, 
adding all three partial-derivative-times-unit-vector quantities up, 

is called “taking the gradient of U “ and is written ∇U.  “Taking the gradient” is something that 
you do to a scalar function, but, the result is a vector.  In terms of our gradient notation, we can 
write our expression for the force as,  
 
 U−∇=F

v
 (34-1) 

 
Check this out for the gravitational potential near the surface of the earth.  Define a Cartesian 
coordinate system with, for instance, the origin at sea level, and, with the x-y plane being 
horizontal and the +z direction being upward.  Then, the potential energy of a particle of mass m 
is given as: 

U = zmg  

 
Now, suppose you knew this to be the potential but you didn’t know the force.  You can 
calculate the force using  U−∇=F

v
, which, as you know, can be written: 

 










∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂−−−−==== kkkkjjjjiiii

z

U

y

U

x

U
F
v

 

 



Chapter 34  Calculating  the Electric Field from the Electric Potential 

316 

Substituting U = zmg  in for U we have 

 










∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂−−−−==== kkkkjjjjiiii )()()( zm

z
zm

y
zm

x
gggF

v
 

 
Now remember, when we take the partial derivative with respect to x we are supposed to hold y 
and z constant.  (There is no y.)  But, if we hold z constant, then the whole thing ( zmg ) is 

constant.  And, the derivative of a constant, with respect to x, is 0.  In other words, 0)( ====
∂∂∂∂
∂∂∂∂

zm
x

g  

Likewise, 0)( ====
∂∂∂∂
∂∂∂∂

zm
y

g .  In fact, the only non-zero partial derivative in our expression for the 

force is gg mzm
z

====
∂∂∂∂
∂∂∂∂

)( .  So: 

(((( ))))kkkkjjjjiiii gm++++++++−−−−==== 00F
v

 

 
In other words: 
 

kkkkgm−=F
v

 

 
That is to say that, based on the gravitational potential U = zmg , the gravitational force is in the 

−kkkk direction (downward), and, is of magnitude mg.  Of course, you knew this in advance, the 
gravitational force in question is just the weight force.  The example was just meant to 
familiarize you with the gradient operator and the relation between force and potential energy. 
 
Okay, as important as it is that you realize that we are talking about a general relationship 
between force and potential energy, it is now time to narrow the discussion to the case of the 
electric force and the electric potential energy, and, from there, to derive a relation between the 
electric field and electric potential (which is electric-potential-energy-per-charge). 
 
Starting with  U−∇=F

v
 written out the long way: 

 










∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂−−−−==== kkkkjjjjiiii

z

U

y

U

x

U
F
v

 

 
we apply it to the case of a particle with charge q in an electric fieldE

v
(caused to exist in the 

region of space in question by some unspecified source charge or distribution of source charge).  
The electric field exerts a force EF

vv
q=  on the particle, and, the particle has electric potential 

energy U = qV  where V is the electric potential at the point in space at which the charged particle 

is located.  Plugging these into 








∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂−−−−==== kkkkjjjjiiii

z

U

y

U

x

U
F
v

 yields: 
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








∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂−−−−==== kkkkjjjjiiii

z

qV

y

qV

x

qV
q

)()()(
E
v

 

 
The q inside each of the partial derivatives is a constant so we can factor it out of each partial 
derivative. 
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Then, since q appears in every term, we can factor it out of the sum: 
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Dividing both sides by the charge of the victim yields the desired relation between the electric 
field and the electric potential: 
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We see that the electric field E

v
 is just the gradient of the electric potential V.  This result can be 

expressed more concisely by means of the gradient operator as: 
 
 V∇∇∇∇−−−−====E

v
 (34-2) 
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35  Examples of Calculating the Electric Field from  the 
Electric Potential   
 
Example 35-1:  In Chapter 33 Example 33-1, we found that the electric potential due to a pair 
of particles, one of charge +q at (0, d/2) and the other of charge – q at (0, – d/2), is given by: 
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Such a pair of charges is called an electric dipole.  Find the electric field of the dipole, valid for 
any point on the x axis. 
 

Solution:  We can use a symmetry argument and our conceptual understanding of the electric 
field due to a point charge  to deduce that the x component of the electric field has to be zero, 
and, the y component has to be negative.  But, let’s use the gradient method to do that, and, to 
get an expression for the y component of the electric field.  I do argue, however that, from our 
conceptual understanding of the electric field due to a point charge, neither particle’s electric 
field has a z component in the x-y plane, so we are justified in neglecting the z component 
altogether.  As such our gradient operator expression for the electric field 
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Let’s work on the 
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We were asked to find the electric field on the x axis, so, we evaluate this expression at y = 0: 
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To continue with our determination of 
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Again, we were asked to find the electric field on the x axis, so, we evaluate this expression at 
y = 0: 
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As expected,E

v
 is in the –y direction.  Note that to find the electric field on the x axis, you have 

to take the derivatives first, and then evaluate at y = 0. 
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Example 35-2 
 
A line of charge extends along the x axis from x = a  to  x = b.  On that line segment, the linear 
charge density λ  is a constant.  Find the electric potential as a function of position (x and y) due 
to that charge distribution on the x-y plane, and then, from the electric potential, determine the 
electric field on the x axis. 
 
Solution:  In Chapter 33 we derived an expression for just such a case, except that in the 
Chapter 33 case, the charge density was an unspecified function of x

′
.  Here’s the result we found 

for the potential: 

∫∫∫∫ ++++′′′′−−−−

′′′′′′′′
====

b

a yxx

xdx
kV

22)(

)(λ
 

 
In the example at hand, we are told that the linear charge density (appearing as λ(x

′
 ) in the 

integral just above) is actually a constant.  Replacing λ(x
′
 ) with the constant λ and factoring it 

out of the integral yields: 
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====
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To carry out the integration, we use the variable substitution: 

u = x – x
′
  

d u = – dx
′
    ⇒   dx

′
  = – d u 

Lower Integration Limit:  When x
′
  = a,   u = x – a 

Upper Integration Limit:   When x
′
  = b,   u = x – b 

 
Making these substitutions, we obtain: 
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Using the minus sign to interchange the limits of integration, we have: 
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Okay, that’s the potential.  Now we have to take the gradient of it and evaluate the result at y = 0 
to get the electric field on the x axis.  We need to find 
 

V∇∇∇∇−−−−====E
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which, in the absence of any z dependence, can be written as: 
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Evaluating this at y = 0 yields: 
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Now, let’s work on getting 
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Evaluating this at  y = 0  yields: 
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36  Gauss’s Law for the Magnetic Field, and, Ampere ’s Law  
 
Gauss’s Law for the Magnetic Field 
 
Remember Gauss’s Law for the electric field?  It’s the one that, in conceptual terms, states that 
the number of electric field lines poking outward through a closed surface is proportional to the 
amount of electric charge inside the closed surface.  In equation form, we wrote it as: 
 

 
 
 
We called the quantity on the left the electric flux                          . 
 
Well, there is a Gauss’s Law for the magnetic field as well.  In one sense, it is quite similar 
because it involves a quantity called the magnetic flux which is expressed mathematically as 
 

                         and represents the number of magnetic field lines poking outward through a 
closed surface.  The big difference stems from the fact that there is no such thing as “magnetic 
charge.”  In other words, there is no such thing as a magnetic monopole.  In Gauss’s Law for the 
electric field we have electric charge (divided by eo ) on the right.  In Gauss’s Law for the 
magnetic field, we have 0 on the right: 
 
  (36-1) 
 
As far as calculating the magnetic field, this equation is of limited usefulness.  But, in 
conjunction with Ampere’s Law in integral form (see below), it can come in handy for 
calculating the magnetic field in cases involving a lot of symmetry.  Also, it can be used as a 
check for cases in which the magnetic field has been determined by some other means. 
 
 
Ampere’s Law 
 
We’ve talked about Ampere’s Law quite a bit already.  It’s the one that says a current causes a 
magnetic field.  Note that this one says nothing about anything changing.  It’s just a cause and 
effect relation.  The integral form of Ampere’s Law is both broad and specific.  It reads: 
 
  (36-2) 
where: 

     the circle on the integral sign, and, lllld , the differential length, together, tell you that 
the integral (the infinite sum) is around an imaginary closed loop. 

B
v

 is the magnetic field, 

lllld  is an infinitesimal path element of the closed loop,  
 µo is a universal constant called the magnetic permeability of free space, and 
 ITHROUGH is the current passing through the region enclosed by the loop. 

0====⋅⋅⋅⋅ dAB
v

dAE ⋅⋅⋅⋅====
v

EΦ

dAB ⋅⋅⋅⋅====
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ENCLOSED

e
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====⋅⋅⋅⋅ dAE
v

THROUGHo Iµ====⋅⋅⋅⋅ lllldB
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What Ampere’s Law in integral form says is that, if you sum up the magnetic-field-along-a-path-
segment times the length of the path segment for all the path segments making up an imaginary 
closed loop, you get the current through the region enclosed by the loop, times a universal 
constant.  The integral             on whatever closed path upon which it is carried out, is called the 
circulation of the magnetic field on that closed path.  So, another way of stating the integral form 
of Ampere’s Law is to say that the circulation of the magnetic field on any closed path is directly 
proportional to the current through the region enclosed by the path.  Here’s the picture: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the picture, I show everything except for the magnetic field.  The idea is that, for each 

infinitesimal segment lllld  of the imaginary loop, you dot the magnetic field B
v

, at the position of 

the segment, into lllld .  Add up all such dot products.  The total is equal to µ
0
 times the current  I  

through the loop. 
 
So, what’s it good for?  Ampere’s Law in integral form is of limited use to us.  It can be used as 
a great check for a case in which one has calculated the magnetic field due to some set of 
current-carrying conductors some other way (e.g. using the Biot-Savart Law, to be introduced in 
the next chapter).  Also, in cases involving a high degree of symmetry, we can use it to calculate 
the magnetic field due to some current. 
 
For example, we can use Ampere’s Law to get a mathematical expression for the magnitude of 
the magnetic field due to an infinitely-long straight wire.  I’m going to incorporate our 
understanding that, for a segment of wire with a current in it, the current creates a magnetic field 
which forms loops about the wire in accord with the right-hand rule for something curly 
something straight.  In other, words, we already know that for a long straight wire carrying 
current directly away from you, the magnetic field extends in loops about the wire, which, from 
your vantage point, are clockwise. 

dl 

A wire with some current in it (in 
other words, with some charge 
flowing through it.) 

An imaginary loop. An infinitesimal element of the 
imaginary loop. 

lllldB ⋅⋅⋅⋅
v

I 
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From symmetry, we can argue that the magnitude of the magnetic field is the same for a given 
point as it is at any other point that is the same distance from the wire as that given point.   In 
implementing Ampere’s Law, it is incumbent upon us to choose an imaginary loop, called an 
Amperian Loop in this context, that allows us to get some useful information from Ampere’s 
Law.  In this case, a circle whose plane is perpendicular to the straight wire and whose center lies 
on the straight wire is a smart choice. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At this point I want to share with you some directional information about the integral form of 

Ampere’s Law.  Regarding the lllld : each lllld  vector can, from a given point of view, be 
characterized as representing either a clockwise step along the path or a counterclockwise step 
along the path.  And, if one is clockwise, they all have to be clockwise.  If one is 
counterclockwise, they all have to be counterclockwise.  Thus, in carrying out the integral 
around the closed loop, the traversal of the loop is either clockwise or counterclockwise from a 
specified viewpoint.  Now, here’s the critical direction information:  Current that passes through 
the loop in that direction which relates to the sense (clockwise or counterclockwise) of loop 
traversal in accord with the right-hand rule for something curly something straight (with the loop 
being the something curly and the current being the something straight) is considered positive.  
So, for the case at hand, if I choose a clockwise loop traversal, as viewed from the vantage point 
that makes things look like: 

I 

B 

I 

B 

For the imaginary loop 
(a.k.a. the Amperian 
loop), we choose a circle 
of radius r. 

r 
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then, the current I is considered positive.  If you curl the fingers around the loop in the clockwise 
direction, your thumb points away from you.  This means that current, through the loop, that is 
directed away from you, is positive.  That is just the kind of current we have in the case at hand.  
So, when we substitute the I for the case at hand into the generic equation (Ampere’s Law), 
 

 
 
for the current ITHROUGH it goes in with a “+” sign. 
 
 
 

Now, with the loop I chose, every lllld  is exactly parallel to the magnetic field B
v

 at the location 

of the lllld , so, lllldB ⋅⋅⋅⋅
v

 is simply B dl.  That is, with our choice of Amperian loop, Ampere’s Law 
simplifies to: 

 
 
Furthermore, from symmetry, with our choice of Amperian loop, the magnitude of the magnetic 
field B has one and the same value at every point on the loop.  That means we can factor the 
magnetic field magnitude B out of the integral.  This yields: 
 
 
 
Okay, now we are on easy street.  The    dl   is just the sum of all the dl ’s making up our 
imaginary loop (a circle) of radius r.  Hey, that’s just the circumference of the circle rπ2 .   So, 
Ampere’s Law becomes: 
 

IrB o)2( µπ ====  
 

I 

B 

The imaginary loop (a.k.a. 
the Amperian loop) 

r 

IdB oµ====l

THROUGHo Iµ====⋅⋅⋅⋅ lllldB
v

Ioµ====⋅⋅⋅⋅ lllldB
v

IdB oµ====l

dl 
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which means 

r

I
B

π
µ
2

o====  

 
This is our end result.  The magnitude of the magnetic field due to a long straight wire is directly 
proportional to the current in the wire and inversely proportional to the distance from the wire. 
 
 
 
 
 
 
 
 
A Long Straight Solenoid 
 
A solenoid is a coil of wire in the form of a cylindrical shell.  The idealized solenoid that we 
consider here is infinitely long but, it has a fixed finite radius R and an constant finite current I. 
 
 
 
 
 
 
 
 
It is also characterized by its number-of-turns-per-length, n, where each “turn” (a.k.a. winding) is 
one circular current loop.  In fact, we further idealize our solenoid by thinking of it as an infinite 
set of circular current loops.  An actual solenoid approaches this idealized solenoid, but, in one 
turn (in the view above), the end of the turn is displaced left or right from the start of the turn by 
an amount equal to the diameter of the wire.  As a result, in an actual solenoid, we have (in the 
view above) some left-to-right or right-to-left (depending on which way the wire wraps around) 
current.  We neglect this current and consider the current to just go “round and round.” 
 
Our goal here is to find the magnetic field due to an ideal infinitely-long solenoid that has a 
number-of-turns-per-length n, has a radius R, and carries a current I. 

I 
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We  start by looking at the solenoid in cross section.  Relative to the view above, we’ll imagine 
looking at the solenoid from the left end.  From that point of view, the cross section is a circle 
with clockwise current: 
 
 
 
 
 
 
 
 
Let’s try an amperian loop in the shape of a circle, whose plane is perpendicular to the axis of 
symmetry of the solenoid, a circle that is centered on the axis of symmetry of the solenoid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
From symmetry, we can argue that if the magnetic field has a component parallel to the depicted 

lllld , then it must have the exact same component for every lllld  on the closed path.  But this would  
 

 make the circulation              non-zero in contradiction to the fact that no current passes through 
the region enclosed by the loop.  This is true for any value of r.  So, the magnetic field can have 
no component tangent to the circle whose plane is perpendicular to the axis of symmetry of the 
solenoid, a circle that is centered on the axis of symmetry of the solenoid. 
 
Now suppose the magnetic field has a radial component.  By symmetry it would have to be 
everywhere directed radially outward from the axis of symmetry of the solenoid, or everywhere 
radially inward.  In either case, we could construct an imaginary cylindrical shell whose axis of 
symmetry coincides with that of the solenoid.  The net magnetic flux through such a Gaussian 
surface would be non-zero in violation of Gauss’s Law for the magnetic field.  Hence the 
solenoid can have no radial magnetic field component. 
 
The only kind of field that we haven’t ruled out is one that is everywhere parallel to the axis of 
symmetry of the solenoid.  Let’s see if such a field would lead to any contradictions. 
 
 
 
 

I 

R 

I 

R 

dl 

For the imaginary loop 
(a.k.a. the Amperian 
loop), we choose a 
circle of radius r. 

r 

lllldB ⋅⋅⋅⋅
v
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Here we view the solenoid in cross-section from the side.  At the top of the coil, we see the 
current directed toward us, and, at the bottom, away.  The possible longitudinal (parallel to the 
axis of symmetry of the solenoid) magnetic field is included in the diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The rectangles in the diagram represent Amperian loops.  The net current through any of the 
loops, in either direction (away from you or toward you) is zero.  As such, the circulation            
is zero.  Since the magnetic field on the right and left of any one of the loops is perpendicular to 
the right and left sides of any one of the loops, it makes no contribution to the circulation there.  
By symmetry, the magnetic field at one position on the top of a loop is the same as it is at any 
other point on the top of the same loop.  Hence, if we traverse any one of the loops 
counterclockwise (from our viewpoint) the contribution to the circulation is –BTOPL where L is 
the length of the top and bottom segments of whichever loop you choose to focus your attention 
on.  The “–” comes from the fact that I have (arbitrarily) chosen to traverse the loop 

counterclockwise, and, in doing so, every lllld  in the top segment is in the opposite direction to the 
direction of the magnetic field at the top of the loop.  The contribution to the circulation by the 
bottom segment of the same loop is +BBOTTOML .  What we have so far is: 
 
 
 
 
 
 
(where the net current through any one of the loops depicted is zero by inspection.) 
 

0 + –BTOPL + 0 + BBOTTOML = 0 
 

(with the first two zeros being from the right and left sides of the loop where the magnetic field 
is perpendicular to the loop.) 
 

B 

I 

lllldB ⋅⋅⋅⋅
v

0====⋅⋅⋅⋅ lllldB
v

THROUGHo Iµ====⋅⋅⋅⋅ lllldB
v
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Solving for BBOTTOM we find that, for every loop in the diagram (and the infinite number of loops 
enclosing a net current of zero just like them): 
 

 BBOTTOM = BTOP 
 

What this means is that the magnetic field at all points outside the solenoid has one and the same 
magnitude.  The same can be said about all points inside the solenoid, but, the inside-the-
solenoid value may be different from the outside value.  In fact, lets consider a loop through 
which the net current is not zero: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Again, I choose to go counterclockwise around the loop (from our viewpoint).  As such, by the 
right-hand rule for something curly something straight, current directed toward us through the 
loop is positive.  Recalling that the number-of-turns-per-length-of-the-solenoid is n, we have, for 
the loop depicted above, 
 
 
 

InLLBLB oBOTTOMTOP 00 µ====++++++++−−−−++++  
 

InBB oTOPBOTTOM µ++++====  
 
The bottom of the loop is inside the solenoid and we have established that the magnitude of the 
magnetic field inside the solenoid has one and the same magnitude at all points inside the 
solenoid.  I’m going to call that BINSIDE, meaning that  BBOTTOM = BINSIDE.  Similarly, we have found 
that the magnitude of the magnetic field has one and the same (other) value at all points outside 
the solenoid.  Let’s call that BOUTSIDE, meaning that BTOP = BOUTSIDE.  Thus: 
 

InBB oOUTSIDEINSIDE µ++++====  

B 

I 

L 

THROUGHo Iµ====⋅⋅⋅⋅ lllldB
v
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This is as far as I can get with Gauss’s Law for the magnetic field, symmetry, and Ampere’s Law 
alone.  From there I turn to experimental results with long finite solenoids.  Experimentally, we 
find that the magnetic field outside the solenoid is vanishingly small, and that there is an 
appreciable magnetic field inside the solenoid.  Setting 
 

BOUTSIDE = 0  
 

we find that the magnetic field inside a long straight solenoid is: 
 

InB oINSIDE µ====  
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37  The Biot-Savart Law 
 
The Biot-Savart Law provides us with a way to find the magnetic field at an empty point in 
space, let’s call it point P, due to current in wire.  The idea behind the Biot-Savart Law is that 
each infinitesimal element of the current-carrying wire makes an infinitesimal contribution to the 
magnetic field at the empty point in space.  Once you find each contribution, all you have to do 
is add them all up.  Of course, there are an infinite number of contributions to the magnetic field 
at point P and each one is a vector, so, we are talking about an infinite sum of vectors.  This 
business should seem familiar to you.  You did this kind of thing when you were calculating the 
electric field back in Chapter 30  The Electric Field Due to a Continuous Distribution of 
Charge On a Line.  The idea is similar, but here, of course, we are talking about magnetism. 
 
The Biot-Savart Law gives the infinitesimal contribution to the magnetic field at point P due to 
an infinitesimal element of the current-carrying wire.  The following diagram helps to illustrate 
just what the Biot-Savart Law tells us.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Biot-Savart Law states that: 
 

 3
o

4 r

rd
dB

r××××==== llllI
π

µ
 (37-1)  

 
The Biot-Savart Law represents a powerful straightforward method of calculating the magnetic 
field due to a current distribution. 
 

I 

r 

P 

dl 

dB 
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Example 37-1 
 
Calculate the magnetic field due to a long straight wire carrying a current I along the z axis in the 
positive z direction.  Treat the wire as extending to infinity in both directions. 
 
Solution 
 
 
 
 
 
 
 
 
 
 
 
 
 

Each infinitesimal element of the current-carrying conductor makes a contribution dB  to the 
total magnetic field at point P. 
 
The r

r
 vector extends from the infinitesimal element at (0,0, z

′
 ) to point P at (x, y, z). 

 
kkkkkkkkjjjjiiii zzyx ′′′′−−−−++++++++==== )(r

v
 

 
kkkkjjjjiiii )( zzyx ′′′′−−−−++++++++====r

v
 

 
The magnitude of r

v
 is thus: 

 
222 )( zzyxr ′′′′−−−−++++++++====  

 

The
 

 lllld vector points in the +z direction so it can be expressed as kkkkllll zd ′′′′====d  
 
 

With these expressions for r
v

, r, and
 

 lllld  substituted into the Biot-Savart Law,  
 

3
o

4 r

rd
dB

r××××==== llllI
π

µ
 

 
we obtain: 

x 

y 

z 

dl 

I 

P (x,y,z) r 

z 

′
 

dB 
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(((( ))))
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′′′′−−−−++++++++
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π
µ I
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4 zzyx
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π
µ I

dB  
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iiiijjjj
π

µ I
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o
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o
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π
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Let’s work on this a component at a time.  For the x component, we have: 
 

[[[[ ]]]] 2/3222

o

)(4 zzyx

zd
ydBx

′′′′−−−−++++++++

′′′′
−−−−====

π
µ I

 

 
Integrating over z

′
 from −∞ to ∞ yields: 

 

[[[[ ]]]]∫∫∫∫
∞∞∞∞

∞∞∞∞−−−− ′′′′−−−−++++++++

′′′′
−−−−====

2/3222

o

)(4 zzyx

zd
yBx π

µ I
 

 
I’m going to go with the following variable substitution: 

u = z – z
′
 

du =  – dz
′
, so,  dz

′
 = – du 

Upper Limit:  Evaluating u = z – z
′
 at z

′
 = ∞ yields −∞ for the upper limit of integration. 

Lower Limit:  Evaluating u = z – z
′
 at z

′
 = −∞ yields ∞ for the upper limit of integration. 

 
So, our integral becomes: 
 

(((( ))))∫∫∫∫
−∞−∞−∞−∞

∞∞∞∞ ++++++++

−−−−−−−−====
2/3222

o

4 uyx

du
yBx π

µ I
 

 
I choose to use one of the minus signs to interchange the limits of integration: 
 

(((( ))))∫∫∫∫
∞∞∞∞

∞∞∞∞−−−− ++++++++
−−−−====

2/3222

o

4 uyx

du
yBx π

µ I
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Using 
222

2
322

1

)( ax

x

aax

dx

++++
====

++++
∫∫∫∫   from your formula sheet; and; identifying 22 yx ++++  as 2a , 

and, u as the x appearing on the formula sheet, we obtain: 
 

∞∞∞∞

∞∞∞∞−−−−
++++++++++++

−−−−====
22222

o 1
4 yxu

u

yx
yBx π

µ I
 

 
Now, I need to take the limit of that expression as u goes to ∞ and again as u goes to − ∞.  To 
facilitate that, I want to factor a u out of the square root in the denominator.  But, I have to be 

careful.  The expression 222 yxu ++++++++ , which is equivalent to 222)'( yxzz ++++++++−−−−  is a 
distance.  That means it is inherently positive, whether u (or z 

′
 for that matter) is positive or 

negative.  So, when I factor u out of the square root, I’m going to have to use absolute value 

signs.  For the denominator: 2

2

2

2

2

2

2

2
2222 11

u

y

u

x
u

u

y

u

x
uyxu ++++++++====
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



 ++++++++====++++++++  , so, 
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Now for the y component.  Recall that we had:  
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But, except for the replacement of –y by x, this is the same expression that we had for xdB .  And 

those, (the –y in the expression for xdB and the x in the expression for ydB ), are, as far as the 

integration over z 

′
 goes, constants, out front.  They don’t affect the integration, they just “go 

along for the ride.”  So, we can use our yx for result  BB  if we just replace the –y, in our 

expression for xB , with x.  In other words, without having to go through the entire integration 
process again, we have: 

22
o 1

2 yx
xBy ++++

====
π

µ I
 

 
Since we have no z component in our expression 
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B
v

 itself must have no z component. 
 
Substituting our results for zyx  and ,  , BBB  into the iiii, jjjj, kkkk expression forB

v
, (Namely, 

kkkkjjjjiiii zyx BBB ++++++++====B
v

 ),  we have: 
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The quantity 22 yx ++++  is just 2r , the distance that point P is from the current-carrying wire (recall 
that we are finding the magnetic field due to a wire, with a current I, that extends along the z axis 
from −∞ to +∞) 
 

)(
1

2 2
o jjjjiiii xy

r
++++−−−−====

π
µ I

B
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Furthermore, the vector )( jjjjiiii xy ++++−−−−  has magnitude ryxxy ====++++====++++−−−− 2222)( .  Hence, the 

unit vector Bû  in the same direction as )( jjjjiiii xy ++++−−−−  is given by 
 

jjjjiiii
jjjjiiii

r

x

r

y

r

xy
B ++++−−−−====

++++−−−−====û  

 
and, expressed as its magnitude times the unit vector in its direction, the vector )( jjjjiiii xy ++++−−−−  can 
be written as: 
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Brxy û)( ====++++−−−− jjjjiiii  
 

Substituting Brxy û)( ====++++−−−− jjjjiiii  into our expression )(
1

2 2
o jjjjiiii xy
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++++−−−−====
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 yields: 
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Note that the magnitude of B
v

 obtained here, namely
r

B
1

2
o

π
µ I====  , is identical to the magnitude 

obtained using the integral form of Ampere’s Law.  The direction jjjjiiii
r

x

r

y
B ++++−−−−====û  for the 

magnetic field at any point P having coordinates (x, y, z), is also the same as, “the magnetic field 
extends in circles about that wire, in that sense of rotation (counterclockwise or clockwise) 
which is consistent with the right hand rule for something curly something straight with the 
something straight being the current and the something curly being the magnetic field.” 
 


