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Chapter 1 Charge & Coulomb's Law

1 Charge & Coulomb's Law

Charge is a property of matter. There are two kindhafge, positive “+” and negative™

An object can have positive charge, negative chargay charge at all. A particle which has
charge causes a force-per-charge-of-would-be-victim véatexist at each point in the region of
space around itself. The infinite set of force-per-gaarf-would-be-victim vectors is called a
vector field. Any charged partidiéhat finds itself in the region of space whereftivee-per-
charge-of-would-be-victim vector field exists will haadorce exerted upon it by the force-per-
charge-of-would-be-victim field. The force-per-chargeamiuld-be-victim field is called the
electric field. The charged particle causing the eleéield to exist is called the source chdrge

The source charge causes an electric field which exdotxe on the victim charge. The net
effect is, that the source charge causes a forceeadyeed on the victim. While we have much
to discuss about the electric field, for now, we focushe net effect, which we state simply
(neglecting the “middle man”, the electric field) & charged particle exerts a force on another
charged particle.” This statemenCsulomb’s Lawin its conceptual form. The force is called
the Coulomb forcea.k.a. theslectrostatic force

Note that either charge can be viewed as the sourcgechad either can be viewed as the victim
charge. Identifying one charge as the victim charge ivalgut to establishing a point of view,
similar to identifying an object whose motion or equililbn is under study for purposes of

E
applying Newton's & Law of motion,a:z—. In Coulomb’s Law, the force exerted by one
m

charged particle on the other is directed along the bmeecting the two particles, and, away
from the other particle if both particles have the s&mnd of charge (both positive, or, both
negative) but, toward the other particle if the kindledrge differs (one positive and the other
negative). This fact is probably familiar to you akélcharges repel and unlike attract.”

The SI. unit of charge is the coulomb, abbreviated C. d@o®mb of charge is a lot of charge,
so much that, two particles, each having a charge Gfaiid separated by a distance of 1 meter

exert a force 0Ox10°N, that is, 9 billion newtons on each other.

This brings us to the equation form of Coulomb’svhwhich can be written to give the
magnitude of the force exerted by one chargedgbaidn another as

F= k—| qll |2q2| (1-1)

where:
N [Mm?

2

k= 899x10° , a universal constant called tBeulomb constant

g, is the charge of particle 1,

1 A charged particle is a particle that has charge.
2 . - H 1
A charged particle is often referred to simply aslarge”.
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g, is the charge of particle 2, and
r is the distance between the two particles.

The user of the equation (we are still talking dlequation 1-1F = km) Is expected to

r2

establish the direction of the force by means odnimon sense” (the user’s understanding of
what it means for like charges to repel and untikarges to attract each other).

While Coulomb’s Law in equation form is designed®exact for point particles, it is also exact
for spherically symmetric charge distributions (sas uniform balls of charge) as long as one
uses the center-to-center distancerfor

Coulomb’s Law is also a good approximation in thsecof objects on which the charge is not
spherically symmetric as long as the objects’ disiams are small compared to the separation of
the objects (the truer this is, the better the @ppration). Again, one uses the separation of the
centers of the charge distributions in the Coulanlaw equation.

Coulomb’s Law can be written in vector form as:

lElZ = k%ﬁz (1-2)

where:
F,, is the force “of 1 on 27, that is, the force exety particle 1 on particle 2,
r,, IS @ unit vector in the direction “from 1 to 2'hch
k, q,, andq, are defined as before (the Coulomb constant,lthege on particle 1, and the
charge on particle 2 respectively).

Note the absence of the absolute value signs arguawida,. A particle which has a certain

amount, say, Boulombs of the negative kind of charge is saidawee a charge ef5coulombs
and one with Soulombs of the positive kind of charge is saithdve a charge of «€@ulombs)
and indeed the plus and minus signs designatingitideof charge have the usual arithmetic
meaning when the charges enter into equations.instance, if you create a composite object by
combining an object that has a charge,of +3 C with an object that has a charge.of -5 C,

then the composite object has a charge of
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q=q,+q,
q=+3C+(5C)
g=-2C
Note that the arithmetic interpretation of the kofccharge in the vector form of Coulomb’s Law
causes that equation to give the correct direafdhe force for any combination of kinds of

charge. For instance, if one of the particlesgustive charge and the other negative, then the
value of the produat, g, in equation 1-2

r:12 - k qlqz A

r.
12
FZ

has a negative sign which we can associate withniteector. Now-r,, is in the direction

opposite “from 1 to 2” meaning it is in the diresti“from 2 to 1.” This means thét,, the
force of 1 on 2, is directed toward particle 1.isTiB consistent with our understanding that

opposites attract. Similarly, ¢f andg, are both positive, or both negativefp = k%ﬁu

then the value of the produgtq, is positive meaning that the direction of the éo¢ 1 on 2 is
r, (from 1 to 2), that is, away from 1, consistenthvthe fact that like charges repel.

We’ve been talking about the force of 1 on 2. iPlarR exerts a force on particle 1 as well. Itis
given byF,, = koﬂ—gzﬁﬂ. The unit vector,,, pointing from 2 to 1, is just the negative of the

r
unit vector pointing from 1 to 2:

P =T

If we make this substitution into our expressiontfee force exerted by particle 2 on particle 1,
we obtain:

e _ G G A
I:21 =-k 3 I
r

Comparing the right side with our expression fa fitrce of 1 on 2 (namely,

IA:12 = kOﬂ—(jzl:lz), we see that
r

IA:21 = _F12 .
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So, according to Coulomb’s Law, if particle 1 isaing a forceF,, on particle 2, then

particle 2 is, at the same time, exerting an euaibpposite force-F,, back on particle 2,
which, as we know, by Newton'$’3 aw, it must.

In our macroscopicworld we find that charge is not an inherent fixedperty of an object

but, rather, something that we can change. Ruduaal rubber rod with animal fur, for
instance, and you'll find that afterwards, the had some charge and the fur has the opposite
kind of charge. Ben Franklin defined the kind b&arge that appears on the rubber rod to be
negative charge and the other kind to be positiaege. To provide some understanding of
how the rod comes to have negative charge, we tekdy into the atomic world and even
the subatomic world.

The stable matter with which we are familiar cotssef protons, neutrons, and electrons.
Neutrons are neutral, protons have a fixed amolpbsitive charge, and electrons have the
same fixed amount of negative charge. Unlike thdber rod of our macroscopic world, you
cannot give charge to the neutron and you caneredtthd charge to, nor remove charge from,
either the proton or the electron. Every protos the same fixed amount of charge, namely

160x107"° C. Scientists have never been able to isolate axafler amount of charge. That
amount of charge is given a name. It is calledeth@bbreviated e and pronounced “ee”. The

e is a non-SlI unit of charge. As stafiesl= 160x10™° . [ units of e, the charge of a
proton is k (exactly) and the charge of an electrofilis. For some reason, there is a
tendency among humans to interpret the fact tleatitiit the e is equivalent th60x10™ C
to mean that & equals— 160x10*° C This is wrong! Rather,

le=160x10"C.

A typical neutral atom consists of a nucleus maalefuneutrons and protons surrounded by
orbiting electrons such that the number of elecrarorbit about the nucleus is equal to the
number of protons in the nucleus. Let’'s see wiatrheans in terms of an everyday object
such as a polystyrene cup. A typical polystyremeltas a mass of about 2 grams. It consists

of roughly: 6x10%° neutrons,6x10% protons, and, when neutr&x10™ electrons. Thus,

when neutral it has abolik10°C of positive charge antix10°C of negative charge, for a
total of O charge. Now if you rub a polystyreng auth animal fur you can give it a
noticeable charge. If you rub it all over with tise on a dry day and then experimentally

determiné the charge on the cup, you will find it to be abetsx10® C. This represents an

3 Macroscopic means “of a size that we can see witinéliked eye.” It is to be contrasted with microscopia (

need a light microscope to see it), atomic (of orualive size of an atom), and subatomic (smaller thatan, e.g.
about the size of a nucleus of an atom).

* One way to experimentally determine the charge that somlee on a polystyrene (Styrofoam) cup as a result of
rubbing it with fur, is to hang two such cups, side by sigs, harely touching, from the ceiling by means of some
thread. Rub each one with fur the same way so that yoassame the two cups to have one and the same charge.
Let the cups hang freely. They will repel each otheéra@me to rest at a fixed separation. Measure theatepa

of the two cups. Do the equilibrium analysis to find thagnitude of the electrostatic force that each cup mredt e

on the other to maintain the observed separation. Héseesulting value of force in Coulomb’s Law to calcuthte
chargeg (assuming, as mentionagl=g,=q).
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increase of about 0.00000000005 % in the numbeleatrons on the cup. They were

transferred from the fur to the cup. We are tajkabout3x10” electrons, which sure would
be a lot of marbles but represents a minuscul¢idiraof the total number of electrons in the
material of the cup.

The main points of the preceding discussion are:

» Atypical neutral macroscopic object consists afadibly huge amounts of both
kinds of charge (about 50 million coulombs of efahevery kilogram of matter), the
same amount of each kind.

* When we charge an object, we transfer a relatirehuscule amount of charge to or
from that object.

» Atypical everyday amount of charge (such as thewatof charge on a clingy sock
just out of the dryer) is T0coulombs.

* When we transfer charge from one object to anotherare actually moving charged
particles, typically electrons, from one objecthe other.

One point that we did not make in the discussiaovabs thatharge is conservedFor instance,

if, by rubbing a rubber rod with fur, we transfecertain amount of negative charge to the rubber
rod, then, the originally-neutral fur is left withe exact same amount of positive charge.
Recalling the exact balance between the incredibfe amount of negative charge and the
incredibly huge amount of positive charge in angraacopic object, we recognize that, in
charging the rubber rod, the fur becomes positicerged not because it somehow gains
positive charge, but, because it loses negativegehaneaning that the original incredibly huge
amount of positive charge now (slightly) exceeds(still incredibly huge) amount of negative
charge remaining on and in the fur.

Charging by Rubbing

One might well wonder why rubbing a rubber rod vathmal fur would cause electrons to be
transferred from the fur to the rod. If one comtchgine some way that even one electron might,
by chance, find its way from the fur to the rody@uld seem that, then, the rod would be
negatively charged and the fur positively chargethat any electron that got free from the fur
would be attracted back to the fur by the positivarge on it and repelled by the negative charge
on the rod. So why would any more charge everdesterred from the fur to the rod? The
answer comes under the heading of “distance mdttersubbing the rod with the fur you bring
lots of fur molecules very close to rubber molesulén some cases, the outer electrons in the
atoms of the fur come so close to nuclei of thenaton the surface of the rubber that the force
of attraction of these positive nuclei is greabamnt the force of attraction of the nucleus of the
atom of which they are a part. The net force enttoward the rod, the electrons in question
experience an acceleration toward the rod thatggsthe velocity such that the electrons move
to the rod. Charging by rubbing depends stronglyhe molecular structure of the materials in
guestion. One interesting aspect of the procabmighe rubbing only causes lots of molecules
in the fur to come very close to molecules in thigber. It is not as if the energy associated with
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the rubbing motion is somehow given to the eledroausing them to jump from the fur to the
rubber. It should be noted that fur is not theyanhterial that has a tendency to give up
electrons and rubber is not the only material witendency to acquire them. The phenomenon
of charging by rubbing is called triboelectrificatii The following ordered list of the tendency
of (a limited number of) materials to give up oceat electrons is called thaboelectric

sequence

»
»

Increasing tendency to take on electrens
| Ar Rabbit Fur Glass Wool Silk Steel Rubber Polyester Styrofoam Vinyl Teflon |
< Increasing tendency to give up electrons

The presence and position of air on the list suggést it is easier to maintain a negative charge
on objects in air than it is to maintain a posittharge on them.

Conductors and Insulators

Suppose you charge a rubber rod and then touclaineutral object. Some charge, repelled by
the negative charge on the rod, will be transfetoetthe originally-neutral object. What happens
to that charge then depends on the material oftwiie originally-neutral object consists. In the
case of some materials, the charge will stay orsplaé¢ where the originally neutral object is
touched by the charged rod. Such materials aeeregf to as insulators, materials through which
charge cannot move, or, through which the moverokadbarge is very limited. Examples of
good insulators are quartz, glass, and air. lrcése of other materials, the charge, almost
instantly spreads out all over the material in ¢joesin response to the force of repulsion
(recalling that force causes acceleration whicldega the movement) that each elementary
particle of the charge exerts on every other eleéamgmparticle of charge. Materials in which the
charge is free to move about are referred to agumiars. Examples of good conductors are
metals and saltwater.

When you put some charge on a conductor, it imnelgispreads out all over the conductor.
The larger the conductor, the more it spreads buthe case of a very large object, the charge
can spread out so much that any chunk of the obgct negligible amount of charge and
hence, behaves as if were neutral. Near the sudbthe earth, the earth itself is large enough to
play such a role. If we bury a good conductor sagh long copper rod or pipe, in the earth, and
connect to it another good conductor such as aeropjpe, which we might connect to another
metal object, such as a cover plate for an eledtsiocket, above but near the surface of the
earth, we can take advantage of the earth’s natieehuge object made largely of conducting
material. If we touch a charged rubber rod tortigal cover plate just mentioned, and then
withdraw the rod, the charge that is transferrethéometal plate spreads out over the earth to the
extent that the cover plate is neutral. We usefpeession “the charge that was transferred to
the cover plate has flowed into the earth.” A agctdr that is connected to the earth in the
manner that the cover plate just discussed is adedegis called “ground.” The act of touching a
charged object to ground is referred to as grounthe object. If the object itself is a conductor,
grounding it (in the absence of other charged ¢djexauses it to become neutral.
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Charging by Induction

If you hold one side of a conductor in contact vgtbund and bring a charged object very near
the other side of the conductor, and then, keehiegharged object close to the conductor
without touching it, break the contact of the coetdu with ground, you will find that the
conductor is charged with the opposite kind of¢harge that was originally on the charged
object. Here’s why. When you bring the chargegcttnear the conductor, it repels charge in
the conductor right out of the conductor and iti® ¢arth. Then, with those charges gone, if you
break the path to ground, the conductor is stutk thie absence of those charged particles that
were repelled into the ground. Since the origafarged object repels the same kind of charge
that it has, the conductor is left with the oppa&ind of charge.

Polarization

Let’s rub that rubber rod with fur again and brthg rubber rod near one end of a small strip of
neutral aluminum foil. We find that the foil isticted to the rubber rod, even though the foil
remains neutral. Here’s why:

The negatively charged rubber rod repels the emdve negative charge in the strip to the
other end of the strip. As a result, the nearddritie aluminum strip is positively charged and
the far end is negatively charged. So, the rubbeattracts the near end of the rod and repels
the far end. But, because the near end is neheeforce of attraction is greater than the forte o
repulsion and the net force is toward the rod. Jémaration of charge that occurs in the neutral
strip of aluminum is called polarization, and, wtiea neutral aluminum strip is positive on one
end and negative on the other, we say that itlsrzed.

Polarization takes place in the case of insulaasraell, despite the fact that charge is not foee t
move about within an insulator. Let’s bring a negdy-charged rod near one end of a piece of
paper. Every molecule in the paper has a pogsaveand a negative part. The positive part is
attracted to the rod and the negative part is leghelThe effect is that each molecule in the paper
is polarized and stretched. Now, if every bit o§pive charge gets pulled just a little bit closer

to the rod and every bit of negative charge geshed a little farther away, the net effect in the
bulk of the paper is to leave it neutral, but,ha €nds there is a net charge. On the near end, th
repelled negative charge leaves the attractediymsiharge all by itself, and, on the far end, the
attracted positive charge leaves the repelled negelharge all by itself.



Chapter 1 Charge & Coulomb's Law

/K_/ Strip of Paper

As in the case of the aluminum strip, the negatiNeber rod attracts the near, positive, end and
repels the far, negative, end, but, the near ealbser so the attractive force is greater, meaning
that the net force on the strip of paper is ativact Again, the separation of the charge in the
paper is called polarization and the fact that @eme of the neutral strip of paper is negative and
the other is positive means that the strip of pagppplarized.
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2 The Electric Field: Description and Effect

An electric field is an invisible entityvhich exists in the region around a charged fartitt is
caused to exist by the charged particle. The effean electric field is to exert a force on any
charged particle (other than the charged partalesing the electric field to exist) that finds ktse
at a point in space at which the electric fieldsexi The electric field at an empty point in space
is the force-per-charge-of-would-be-victim at thaipty point in space. The charged particle
that is causing the electric field to exist is edlh source charge. The electric field existhien t
region around the source charge whether or no¢ tkex victim charged particle for the electric
field to exert a force upon. At every point in spavhere the electric field exists, it has both
magnitude and direction. Hence, the electric field vector at each point in space at which it
exists. We call the force-per-charge-of-would- &t vector at a particular point in space the
“electric field” at that point. We also call thafinite set of all such vectors, in the region ardu
the source charge, the electric field of the soohzege. We use the symbiglto represent the
electric field. | am using the word “victim” fomg particle upon which an electric field is
exerting a force. The electric field will only eka force on a particle if that particle has clearg
So all “victims” of an electric field have charg#.there does happen to be a charged particle in
an electric field, then that charged particle {tlotim) will experience a force

F=qE (2-1)

whereq is the charge of the victim afds the electric field vector at the location of thetim.
We can think of the electric field as a charactierisf space. The force experienced by the
victim charged patrticle is the product of a chagastic of the victim (its charge) and a
characteristic of the point in space (the eledteid) at which the victim happens to be.

The electric field is not matter. It is not “stuifflt is not charge. It has no charge. It naithe
attracts nor repels charged particles. It canodhdt because its “victims”, the charged particles
upon which the electric field exerts force, ardwmtit. To say that the electric field attracts or
repels a charged particle would be analogous togdlyat the water in the ocean attracts or
repels a submarine that is submerged in the oc€as, the ocean water exerts an upward
buoyant force on the submarine. But, it neithemaats nor repels the submarine. In like
manner, the electric field never attracts nor repely charged particles. It is nonsense to say
that it does.

If you have two source charge particles, e.g. am®iat A and another at point B, each creating
its own electric field vector at one and the samiatd?, the actual electric field vector at poiit

is the vector sum of the two electric field vectolisyou have a multitude of charged particles
contributing to the electric field at poiRt the electric field at poirf is the vector sum of all the
electric field vectors &. Thus, by means of a variety of source chargeiloligsions, one can
create a wide variety of electric field vector satsome chosen region of space. In the next
chapter, we discuss the relation between the sainages that cause an electric field to exist,

! English rather than physics: An entity is something égts. | use the word “entity” here rather than ‘gfiior
“substance” because either of these words would implyitaatre talking about matter. The electric fieldas
matter.

10
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and the electric field itself. In this chapter, fweus our attention on the relation between an
existing electric field (with no concern for howcime to exist) and the effect of that electric
field on any charged particle in the electric fielfio do so, it is important for you to be able to
accept a given electric field as specified, witheatrying about how the electric field is caused
to exist in a region of space. (The latter ismapartant topic which we deal with at length in the
next chapter.)

Suppose for instance that at a particular poiainirempty region in space, let’s call it pdiht
there is an eastward-directed electric field of niagle 032 N/C. Remember, initially, we are
talking about the electric field at an empty pomspace. Now, let’s imagine that we put a
particle that has +@ coulombs of charge at poiRt The electric field at poir® will exert a
force on our D C victim:

F=qE
_ N
F=2.0C (0.32E eastward)

Note that we are dealing with vectors so we didumhe both magnitude and direction when we
substituted folE . Calculating the product on the right side ofélgeation, and including the
direction in our final answer yields:

F =0.64N eastward

We see that the force is in the same directiom@®lectric field. Indeed, the point | want to
make here is about the direction of the electatdfi The electric field at any location is defined
to be inthe direction of the force that the electric fisduld exert on a positively charged victim
if there was a positively charged victim at thataton.

Told that there is an electric field in a given @y@gion in space and asked to determine its
direction at the various points in space at whiehélectric exists, what you should do is to put a
single positively-charged particle at each of theous points in the region in turn, and find out
which way the force that the particle experiendesagh location is directed. Such a positively-
charged particle is called a positiest charge At each location you place it, the directiortlod
force experienced by the positive test chargeegiitection of the electric field at that location.

Having defined the electric field to be in the dtien of the force that it would exert on a
positivetest charge, what does this mean for the casemedativetest charge? Suppose that, in
the example of the empty point in space at whienghvas a @2 N/C eastward electric field,
we place a particle with charg@.0 coulombs (instead of +2.0 coulombs as we didre¢foThis
particle would experience a force:

F=qE
F=-2.0C (0.32% eastward)

F =-0.64N eastward
A negative eastward force is a positive westwarddof the same magnitude:
F =0.64N westward

11
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In fact, any time the victim particle has negaarge, the effect of the minus sign in the value
of the chargejin the equatiorF = gE is to make the force vector have the directionosjip

that of the electric field vector. So the forces&d by an electric field on a negatively charged
particle that is at any location in that fieldaisvays in the exact opposite direction to the
direction of the electric field itself at that Idia.

Let’s investigate this direction business for carseshich the direction is specified in terms of
unit vectors. Suppose that a Cartesian refereacest has been established in an empty region
of space in which there is an electric field. Rertassume that the electric field at a particular
point, call it pointP, is:

E= 5.0k—N’|§
C

Now suppose that a protog € 160x10™"° )@ placed at poir. What force would the
electric field exert on the proton?

F=qE
F = (1.60x10™°C) 5.0x103%’|:

F=80x10"N%

The force on the proton is in the same directiothasof the electric field at the location at
which the proton was placed (the electric fielthishe +z direction and so is the force on the
proton), as it must be for the case of a positiggna.

If, in the preceding example, instead of a protonelectron ¢ =-160x10" ¢ is placed at

point P, recalling that in the example = 5.0%\'?‘ , we have

F=qE
F =(-1.60x10*°C) 5.0x103%’|:

F=-80x10"N%

The negative sign is to be associated with thewaator. This means that the force has a
magnitude of8.0x10** Nand a direction of-%. The latter means that the force is in the —z
direction which is the opposite direction to thathe electric field. Again, this is as expected.

2 A reference frame is a coordinate system.

12



Chapter 2 The Electric Field: Description and Eiffe

The force exerted on a negatively charged parbiglghe electric field is always in the direction
opposite to that of the electric field itself.

In the context of the electric field as the sealbElectric field vectors in a region of spaces th
simplest kind of an electric field isumiform electric field A uniform electric field is one in
which every electric field vector has one and time magnitude and one and the same
direction. So, we have an infinite set of electiedd vectors, one at every point in the region of
space where the uniform electric field is saidxste and every one of them has the same
magnitude and direction as every other one. Aggdhparticle victim that is either released
from rest within such an electric field, or laundheith some initial velocity within such a field,
will have one and the same force exerted upomitnatter where it is in the electric field. By
Newton’s 29 Law, this means that the particle will experierceonstant acceleration. If the
particle is released from rest, or, if the initv@locity of the particle is in the same directian a
or the exact opposite direction to, the electeddfi the particle will experience constant
acceleration motion in one dimension. If the alitielocity of the particle is in a direction that
not collineaf with the electric field, then the particle willgerience constant acceleration
motion in two dimensions. The reader should reviesse topics from Classical Physics I.

Electric Field Diagrams

Consider a region in space in which there is aoumf eastward-directed field. Suppose we
want to depict this situation, as viewed from ahone diagram. At every point in the region of
space where the electric field exists, there iglaatric field vector. Because the electric fisld
uniform, all the vectors are of the same magnitaiag hence, we would draw all the arrows
representing the electric field vectors, the saength. Since the field is uniform and eastward,
we would draw all the arrows so that they wouldpbating eastward. The problem is, it is not
humanly possible to draw an arrow at every pointh@region of a page used to depict a region
of space in which there is an electric field. Awatdifficulty (which does not crop up in the
case of a uniform electric field but is generallyissue) is the that in using the convention that
the length of a vector is representative of its mitagle, the arrows tend to run into each other
and overlap.

Physicists have adopted a set of conventions foictieg electric fields. The result of the
application of the conventions is known as an ele@eld diagram. According to the
convention, the drawer creates a set of curvelmes,|with arrowheads, such that, at every point
on each curve, the electric field is, at every poimthe curve, directed tangent to the curve, in
the direction agreeing with that depicted by thewhead on that curve. Furthermore, the
spacing of the linésin one region of the diagram as compared to a#gions in the diagram is
representative of the magnitude of the electrid fielative to the magnitude at other locations in

3 “Collinear” means “along the same line as”. Twotwees that are collinear are either in one and theesdirection
or in exact opposite directions to each other.

* In geometry, a line is a straight line. In physingthe context of fields, lines can be curved or straidtite notion
of a curved line also arises in nautical terminology—whgerline of a ship or boat is curved. Electradilines can
be curved or straight.
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Chapter 2 The Electric Field: Description and Eiffe

the same diagram. The closer the lines are, tbegsr the electric field they represent. In the
case of the uniform electric field in question, dese the magnitude of the electric field is the
same everywhere (which is what we mean by “unifgrrite line spacing must be the same
everywhere. Furthermore, because the electrid firethis example has a single direction,
namely eastward, the electric field lines willdigaightlines, with arrowheads:

NORTH
>
E N
SOUTH
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Chapter 3 The Electric Field Due to one or mormtfOharges

3 The Electric Field Due to one or more Point Char  ges

A charged particle (a.k.a. a point charge, a.ksmuace charge) causes an electric field to exist i
the region of space around itself. This is Coulsnhlaw for the Electric Field in conceptual

form. The region of space around a charged parchctually the rest of the universe. In
practice, the electric field at points in space #ra far from the source charge is negligible
because the electric field due to a point charges“dff like one over r-squared.” In other

words, the electric field due to a point chargeystan inverse square law, which means, that the
electric field due to a point charge is proportidoahe reciprocal of the square of the distance
that the point in space, at which we wish to knbevelectric field, is from the point charge that

is causing the electric field to exist. In equatiorm, Coulomb’s Law for the magnitude of the
electric field due to a point charge reads

k
E= @ (3-1)
r
where
E is the magnitude of the electric field at a pamnspace,
s N m?
c®
g is the charge of the particle that we have be#imgdhe point charge, and
r is the distance that the point in space, at whivietwant to knovg, is from the point charge
that is causingt.

k is the universal Coulomb constant 8.99x1

Again, Coulomb’s Law is referred to as an invergaase law because of the way the magnitude
of the electric field depends on the distance tiwipoint of interestis from the source charge.

Now let’s talk about direction. Remember, the &ledield at any point in space is a force-per-
charge-of-would-be-victimectorand as a vector, it always has direction. We lsdneady
discussed the defining statement for the direaticithe electric field: The electric field at a

point in space is in the direction of the forcet tie electric field would exert on a positive
victim if there were a positive victim at that poin space. This defining statement for the
direction of the electric field is about teéfectof the electric field. We need to relate thishe
causeof the electric field. Let's use some grade-sé¢koowledge and common sense to find
the direction of the electric field due tgasitive source chargeFirst, we just have to obtain an
imaginary positive test charge. | recommend tbat keep one in your pocket at all times (when
not in use) for just this kind of situation. Plaeaur positive test charge in the vicinity of the
source charge, at the location at which you wiskntmw the direction of the electric field. We
know that like charges repel, so, our positive sewharge repels our test charge. This means
that the source charge, the point charge thatisig the electric field under investigation to
exist, exerts a force on the on the test chargdgtthrectly away from the source charge. Again,
the electric field at any point is in the directiofithe force that would be exerted on a positive
test charge if that charge was at that point,lsadirection of the electric field is “directly awa
from the positive source charge.” You get the saesalt no matter where, in the region of

! The point of interest is the point at which we wistdtzulate the electric field due to the point charge.
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Chapter 3 The Electric Field Due to one or mormtfOharges

space around the source charge, you put the posist charge. So, put your imaginary positive
test charge back in your pocket. It has donelts We know what we needed to know. The
electric field due to a positive source chargemtpoint in the region of space around that
positive source charge, is directed directly awaynfthe positive source charge. At every point
in space, around the positive source charge, we &aelectric field vector (a force-per-charge-
of-would-be-victim vector) pointing directly awasoin the positive source charge. So, how do
we draw the electric field diagram for that? We swpposed to draw a set of lines or curves
with arrowhead§NEVER OMIT THE ARROWHEADS!), such that, at evggint on each line
or curve, the electric field vector at that posgtlirected along the line or curve in the direction
specified by the arrowhead or arrowheads on thatdr curve. Let's give it a try.

The number of lines drawn extending out of thepassource charge is chosen arbitrarily, but,
if there was another charged particle in the saiagram, | would need to have twice as many
lines extending out of it. That is to say that lihe spacing has no absolute meaning overall, but
it does have some relative meaning within a sietgetric field diagram. Recall the convention
that the closer together the electric field lines #he stronger the electric field. Note thathe
case of a field diagram for a single source chafgrelines turn out to be closer together near the
charged particle than they are farther away. ritéd out this way when we created the diagram
to be consistent with the fact that the electeddfis always directed directly away from the
source charge. The bunching of the lines closkg®ource charge (signifying that the electric
field is strong there) is consistent with the irseesquare dependence of the electric field
magnitude on the distance of the point of intefresh the source charge.

There are a few of important points to be made.h&te first one is probably pretty obvious to
you, but, just to make sure: The electric fielisexbetween the electric field lines—its
existence there is implied by the lines that asevit—we simply can’t draw lines everywhere
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Chapter 3 The Electric Field Due to one or mormtfOharges

that the electric field does exist without completdackening every square inch of the diagram.
Thus, a charged victim that finds itself at a posiin between the lines will experience a force
as depicted below for each of two different posigvcharged victims.

The next point is a reminder that a negatively-ghdrparticle that finds itself at a position at
which an electric field exists, experiences a fancénhe direction exactly opposite that of the
electric field at that position.




Chapter 3 The Electric Field Due to one or mormtfOharges

The third and final point that should be made egereminder that the direction of the force
experienced by a particle, is not, in general,dinection in which the particle moves. To be
sure, the expression “in general” implies that eél@e special circumstances in which the
particle would move in the same direction as tHahe electric field but these are indeed special.
For a particle on which the force of the electiatd is the only force acting, there is no way it
will stay on one and the same electric field lideagqvn or implied) unless that electric field line
is straight (as in the case of the electric fial@ tb a single particle). Even in the case ofgitta
field lines, the only way a particle will stay oneand the same electric field line is if the
particle’s initial velocity is zero, or if the paofe’s initial velocity is in the exact same direct

as that of the straight electric field line. Tlddwing diagram depicts a positively-charged
particle, with an initial velocity directed in they direction. The dashed line depicts the
trajectory for the particle (for one set of initislocity, charge, and mass values). The source
charge at the origin is fixed in position by foreces specified.
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Chapter 3 The Electric Field Due to one or mormtfOharges

Here is an example of a trajectory of a negatiaigirged particle, again for one set of values of
source charge, victim charge, victim mass, andraictitial velocity:

Again, the point here is that, in general, changadicles do not move along the electric field
lines, rather, they experience a force along (othé case of negative particles, in the exact
opposite direction to) the electric field lines.

At this point, you should know enough about eledigld diagrams to construct the electric field

diagram due to a singfeegativelyeharged particle. Please do so and then comparenark
with the following diagram:
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Chapter 3 The Electric Field Due to one or mormtfOharges

Some General Statements that can be made about Electric Field Lines

The following useful facts about electric fielddmcan be deduced from the definitions you have
already been provided:

1) Every electric field line begins either at infynor at a positive source charge.
2) Every electric field line ends either at infintir at a negative source charge.

3) Electric field lines never cross each othethentselves.

Superposition

If there is more than one source charge, each smarge contributes to the electric field at
every point in the vicinity of the source charg@$e electric field at a point in space in the
vicinity of the source charges is the vector surthefelectric field at that point due to each
source charge. For instance, suppose the setiafesoharges consists of two charged particles.
The electric field at some poiRtwill be the electric field vector at poift due to the first

charged particle plus the electric field vectope@int P due to the second particle. The
determination of the total electric field at polhis a vector addition problem because the two
electric field vectors contributing to it are, &s hame implies, vectors..
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Chapter 3 The Electric Field Due to one or mormtfOharges

Suppose, for instance, that you were asked totfiednagnitude and direction of the electric
field vectof at pointP due to the two charges depicted in the diagraowbel

A
y
o P
)\ /'+\ >
Y0, =-1.2mC ~,=-1.2mC X

given that chargg, is at (0,0) g, is at (1lcm,0) and pointP is at (1Xm, 60cm). The first
thing that you would have to do is to find the difen and magnitude dE, (the electric field
vector due tay,) and the direction and magnitude®f (the electric field vector due tg).

A
y
E, P
/’/// E2
i ® >
9, =-12mC g,=-1.2mC X

Referring to the diagram above, the directiorEgfis “the —y direction” by inspection.

2 We use the expression “the electric field vector aitg®i for added clarity in distinguishing between the electri
field as the infinite set of all electric field vectaand the electric field as the electric field veetioa particular point
in space. The reader is warned that it is commortipeato use the expression “the electric field at pBihand the
reader is expected to tell from the context, that itrmaéthe electric fieldrectorat pointP”.
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Chapter 3 The Electric Field Due to one or mormtfOharges

The angled specifying the direction ofE, can be determined by analyzing the shaded triangle
in the following diagram.

A

y
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Analysis of the shaded diagram will also give tistathcer, that pointP is from chargey,. The
value ofr, can then be substituted into

_ Kay
r

E,

to get the magnitude d&,. Based on the given coordinates, the valug &fapparent by
inspection and we can use it in

Kg|

2
r2

E, =

to get the magnitude d&,. With the magnitude and direction for bdgh and E,, you follow
the vector addition recipe to arrive at your answer

The Vector Addition Recipe

1. For each vector:
a. Draw a vector component diagram.
b. Analyze the vector component diagram to get the
components of the vector.
2. Add the x components to get the x component of the
resultant.
3. Add the y components to get the y component of the
resultant.
4. For the resultant:
a. Draw a vector component diagram.
b. Analyze the vector component diagram to get the
magnitude and direction of the resultant.
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Chapter 3 The Electric Field Due to one or mormtfOharges

Coulomb’s Law for the Electric Field in Vector Equation Form

The magnitude and direction information on Coulosribaw for the Electric Field can be
combined in one equation. Namely,

= _kqg.
E= r—zr (3-2)
where:
E is the electric field at an empty point in spaall it pointP, due to a point charge,

s N [m?

c? '’

k is the Coulomb consta@99x1

g is the charge of the charged patrticle (the poiatgd) that is causing the electric field to
exist,

r is the distance that poiRtis from the point charge that is causing the atedield, and

r is a unit vector in the “from the point chargevéwd pointP” direction.

Note the absence of the absolute value signs @heqtin the expressiolk = @F . (We did

2
k
have them in the case of the expresstfon@ for the magnitude of the electric field.) In the
r

-

kq

vector equatiorE = — r, the sign indicating what kind of charge the sewkarge is, treated
r

algebraically, automatically yields the correcedtion for the electric field. For example, if the
kg

charge is negative, after substituting the negatalae of charge irE = —r, the minus sign is
r

associated with the unit vector, and, the directionof the resulting electric field vector at point
P is the direction “from poinP, toward the source charge.” This is consistett wir
understanding that a positive test charge, platediat P, would experience a force directly
toward the negative source charge (since oppcaitesct), and, the direction of the force on a
positive test charge at a specific location isdinection of the electric field vector at that
location.

Self-Consistency

In chapter 1 we said that the force that one chibpgeticle, call it particle 1, exerts on another
charged particle, particle 2, is given by equatieir

P =k ok

l“12

% The point in space doesn't realigveto be empty. We use the expression “empty point inedgaemphasize
the fact that we don’t need a charged particle at théidocat which we are calculating the electric fielthe point
is, it canbe empty.
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Chapter 3 The Electric Field Due to one or mormtfOharges

In chapter 2, we said that the force exerted omaaged particle by an electric field is given by
equation 2-1:

F=qE
In this chapter we said that the electric fielghaint P is given by equation 3-2:

k

o]

E=—='r

—_
N

If we call the source chargg, (rather tham) we can write this latter equation as

- ko .
E=r—2r‘lp

where the subscripts on the unit vector make drdleat it is in the direction “from particle 1
toward pointP.”

Substituting this expression into our force of éfectric field equation written for the case of a
victim g, at pointP (F = q,E) yields equation 1-2:

P =k

l'\12

which is the expression for the Coulomb force eectdn charged particle 2 by charged
particle 1 introduced back in Chapter 1—the expoeswithout the “middleman” (the electric
field).
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Chapter 4 Conductors and the Electric Field

4 Conductors and the Electric Field

An ideal conductor is chock full of charged paggthat are perfectly free to move around
within the conductor. Like all macroscopic sammésnaterial, an ideal conductor consist of a
huge amount of positive charge, and, when neutralsame amount of negative charge. When
not neutral, there is a tiny fractional imbalance avay or the other. In an ideal conductor, some
appreciable fraction of the charge is completede fro move around within the conducting
material. The ideal (perfect) conductor is welpggximated by some materials familiar to you,
in particular, metals. In some materials, it isipes charge that is free to move about, in some
it is negative, and, in others, it is both. For purposes, the observable effects of positive
charge moving in one direction are so close togaidistinguishable from negative charge
moving in the opposite direction that, we will tgplly treat the charge carriers as being positive
without concern for what the actual charge carrees

Here, we make one point about conductors by mebais analogy. The analogy involves a lake
full of fish. Let the lake represent the conducind the fish the charge carriers. The fish are
free to move around anywhere within the lake, Baod this is the point, they can’t, under
ordinary circumstances, escape the lake. Thegodao every boundary of the body of water,
you might even see some on the surface, but, teyat leave the water. This is similar to the
charge carriers in a conductor surrounded by vaomuam insulating medium such as air. The
charges can go everywhere in and on the condumigrthey cannot leave the conductor.

The facts we have presented on the nature of chelemric fields, and conductors allow one to
draw some definite conclusions about the elecieid fand unbalanced charge within the
material of, and at or on the surface of, an ideaductor. Please try to reason out the answers
to the following questions:

1) Suppose you put a neutral ideal conducting splitere in a region of space in which there is,
initially, a uniform electric field. Describe (apecifically as possible) the electric field inside
the conductor and the electric field at the surfaicde conductor. Describe the distribution of
charge in and on the conductor.

2) Repeat question 1 for the case of a non-unifozla.

3) Suppose you put some charge on an initiallytiaggolid, perfectly-conducting sphere
(where the sphere is not in a pre-existing eledigid). Describe the electric field inside the
conductor, at the surface of the conductor, andideithe conductor as a result of the
unbalanced charge. Describe the distribution efctiarge in and on the conductor.

4) Repeat questions 1-3 for the case of a hollafepty-conducting spherical shell (with the
interior being vacuum).

! We refer to this as the positive charge carrier mfudledharge movement. We thoroughly exploit it in our
analysis of circuits (in later chapters). Such analgsids to accurate results even though it is typically egpd
circuits in which the nearly ideal conductors are metagerials in which the charge carriers are electronghyhi
as you know, are negatively charged.
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Chapter 4 Conductors and the Electric Field

5) How would your answers to questions 1-4 chahteiconductor had some shape other than
spherical?

Here we provide the answers (preceded in each waatbethe corresponding question).
1) Suppose you put a neutral ideal conducting splitere in a region of space in which there is,
initially, a uniform electric field. Describe (apecifically as possible) the electric field inside

the conductor and the electric field at the surfafcdne conductor. Describe the distribution of
charge in and on the conductor.

Answer: We start with a uniform electric field.

v

v

v

v

v

v

v

We put a solid, ideal conductor in it. The elexfield permeates everything, including the
conductor.

v

v

v

v

v

v

v

The charged particles in the conductor responbléddrce exerted on them by the electric field.
(The force causes acceleration, the acceleratipamitCles that are initially at rest causes them
to acquire some velocity. In short, they movel) tiiis occurs in less than a microsecond. The
net effect is a redistribution of the charged jges.
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Now, get this! The charged particles create thein electric field.
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The total electric field at any point in the conttwds the vector sum of the original electric diel
and the electric field due to the redistributedrgkd particles. Since they are oppositely-
directed, the two contributions to the electriddimside the conductor tend to cancel each other.
Now comes the profound part of the argument: treedantributions to the electric field at any
point in the conductor exactly cancel. We knowythave to completely cancel because, if they
didn’t, the free-to-move-charge in the conductouldamove as a result of the force exerted on it
by the electric field. And the force on the chaigalways in a direction that causes the charge
to be redistributed to positions in which it witeate its own electric field that tends to canbel t
electric field that caused the charge to move. gdiet is, that the charge will not stop
responding to the electric field until the net &lecfield at every point in the conductor is zero.

So far, in answer to the question, we have: Thetrdefield is zero at all points inside the

conductor, and, while the total charge is stillzehe charge has been redistributed as in the
following diagram:
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Recall that we were also called upon to describestéctric field at the surface of the conductor.
Note that the charge on the surface of the sphiéiraat only contribute to the electric field
inside the conductor, it will also contribute t@ thlectric field outside. The net effect of a# th
contributions to the electric field in the nearinity of the sphere is to cause the electric field
be normal to (perpendicular to) the surface ofsihigere at all points where it meets the sphere.
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How is it that we are able to assert this withoaihd any calculations? Here’s the argument: If
the electric field at the surface had a componartlfel to the surface, then the charged particles
on the surface of the conductor would experienfoece directed along the surface. Since those
particles are free to move anywhere in the condutitey would be redistributed. In their new
positions, they would make their own contributiorthie electric field in the surface and their
contribution would cancel the electric field thatused the charge redistribution.

About the charge distribution: The object startatireutral and no charge has left or entered the
conductor from the outside world so it is still et But we do see a separation of the two
different kinds of charge. Something that we hdepicted but not discussed is the assertion that
all the charge resides on the surface. (In theig@cabove, there is positive charge on the right
surface of the sphere and an equal amount of negatarge on the left side.) How do we know
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that all charge must be on the surface? Assunteéhbige was a positive point charge at some
location within the conductor:
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The electric field of that point charge would cattse free-to-move charge in the conductor to
move, and it would keep moving as long as thereamaslectric field. So where would the
charge move in order to cancel out the electrid fu the positive point charge. You can try any
arrangement of charge that you want to, aroundpgbsitive point charge, but, if it is stipulated
that there be a net positive charge at that locatieere is no way to cancel out the electric field
of that positive charge. So the situation doeswén occur. If it did happen, the particle would
repel the conductor’s free-to-move-positive chaagay from the stipulated positive charge, so
that (excluding the stipulated positive charge wrmdmsideration) the conductor would have a
net negative charge at that location, an amounegéative charge exactly equal to the originally-
stipulated positive charge. Taking the positivarge into account as well, the point, after the
redistribution of charge, would be neutral. Thépof our argument is that, under static
conditions, there can be no net charge inside titenml of a perfect conductor. Even if you
assume there to be some, it would soon be newdddlliy the nearly instantaneous charge
redistribution that it would cause.

Next question:
2) Repeat question 1 for the case of a non-unifozla.

Answer: Here is a depiction of an example of a-aniform field:
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If we put a solid, perfectly-conducting spheretine get:

The same arguments lead to the same conclusiohgn Véfter less than a microsecond, the new
static conditions are achieved: There can be exctrét field inside the conductor or else the
free-to-move-charges in it would still be movingand within the volume of the conductor.
There can be no unbalanced charge within the vohfrtiee conductor or else there would be an
electric field inside the conductor. Hence, aroalty unbalanced charge (overall, the initially-
neutral sphere remains neutral) must be on theseirfThe electric field has to be normal to the
surface of the sphere or else the free-to-movegehat the surface would still be moving around
on the surface. The only thing that is differanthis case, as compared to the initially-uniform
electric field case, is the way the charge is thsted on the surface. We see that the negative
charge is more bunched up than the positive chartfe case at hand. In the initially-uniform
electric field case, the positive charge distrititwas the mirror image of the negative charge
distribution.

Next Question:

3) Suppose you put some charge on an initiallytiaggolid, perfectly-conducting sphere
(where the sphere is not in a pre-existing eledigid). Describe the electric field inside the
conductor, at the surface of the conductor, andideithe conductor as a result of the
unbalanced charge. Describe the distribution efctiarge in and on the conductor.

Again, we assume that we have waited long enow@gis (han a microsecond) for static
conditions to have been achieved. There can lhage within the bulk of the conductor or
else there would be an electric field in the conduand there can’'t be an electric field in the
conductor or else the conductor’s free-to-move ghavould move and static conditions would
not be prevailing. So, all the unbalanced chargstrbe on the surface. It can’t be bunched up
more at any location on the surface than it imgtather location on the surface or else the
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charge on the edge of the bunch would be repejleidbbunch and it would move, again in
violation of our stipulation that we have waitedilicharge stopped moving. So, the charge
must be distributed uniformly over the surfacehaf sphere. Inside the sphere there is no
electric field. Where the outside electric fieléeis the surface of the sphere, the electric field
must be normal to the surface of the sphere. @ikeythe electric field at the surface would
have a vector component parallel to the surfacehwwvould cause charge to move along the
surface, again in violation of our static condiSastipulations. Now, electric field lines that are
perpendicular to the surface of a sphere lie aslimat pass through the center of the sphere.
Hence, outside the sphere, the electric field [fines the same pattern as the pattern that would
be formed by a point charge at the location ofcérer of the sphere (with the sphere gone).
Furthermore, if you go so far away from the sphbet the sphere “looks like” a point, the
electric field will be the same as that due to mfpcharge at the location of the center of the
sphere. Given that outside the sphere, it hasahee pattern as the field due to a point charge at
the center of the sphere, the only way it can magctvith the point charge field at a great
distance from the sphere, is if it is identicathie point charge field everywhere that it exists.
So, outside the sphere, the electric field is imuggiishable from the electric field due to the
same amount of charge that you put on the sphémmrecentrated at the location of the center
of the sphere (with the sphere gone).

E
+ |+
+ +
+ +
+ +
+ +

Next question:

4) How would your answers to questions 1-4 chahgeiconductor had some shape other than
spherical?
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In all three cases we have considered so farntbeior of the sphere has played no role. Itis
initially neutral and it is neutral after the sphés placed in a pre-existing electric field or gom
charge is placed on it. Nothing would change ifremoved all that neutral material making up
the bulk of the conductor, leaving nothing but #dw shell of a sphere. Hence all the results
that we found for the solid sphere apply to thédwlisphere. In particular, the electric field at
all points inside an empty hollow perfectly-condogtspherical shell is, under all conditions,
zero.

Last question:

5) How would your answers to questions 1-4 chahteiconductor had some shape other than
spherical?

For a solid perfect conductor, the electric fiehdl ahe charge everywhere inside would have to
be zero for the same reasons discussed aboveheFudre, the electric field would have to be
normal to the surface for the same reasons asebefggain, it would not make any difference if
we hollow out the conductor by removing a buncheitral material. The only things that
would be different for a non-spherical conducta e way the charge would be distributed on
the surface, and, the outside electric field. drtipular, if you put some charge on a perfectly-
conducting object that is not a sphere, the ete@ld in the vicinity of the object will not béé¢
same as the electric field due to a point chardgkeatenter of the object (although the difference
would be negligible at great enough distances fitwarobject).
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5 Work Done by the Electric Field, and, the Electr ic Potential

When a charged particle moves from one positicamilectric field to another position in that
same electric field, the electric field does worktbe particle. The work done is conservative,
hence, we can define a potential energy for the o&the force exerted by an electric field. This
allows us to use the concepts of work, energy,thaconservation of energy, in the analysis of
physical processes involving charged particlesedeckric fields.

We have defined the work done on a particle byreefao be the force-along-the-path times the
length of the path, with the stipulation that witk@ component of the force along the path is
different on different segments of the path, oretbadivide up the path into segments on each
of which the force-along-the-path has one valugherwhole segment, calculate the work done
on each segment, and add up the results.

Let's investigate the work done by the electriddfien a charged particle as it moves in the
electric field in the rather simple case of a umifcelectric field. For instance, let’s calculate t
work done on a positively-charged particle of cleargs it moves from poir®, to pointP,
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along the path: “FrorR, straight to poinP, and from there, straight #,.” Note that we are
not told what it is that makes the particle movée don't care about that in this problem.
Perhaps the charged particle is on the end of ez (quartz is a good insulator) and a
person who is holding the rod by the other end ke rod so the charged particle moves as
specified.
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Along the first part of the path, froR, to P,, the force on the charged particle is perpendicula
to the path.
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The force has no component along the path so & doavork on the charged particle at all as
the charged particle moves from patto pointP,,.

W12 :O

FromP,, the particle goes straight R,
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On that segment of the path (frédtgto P,) the force is in exactly the same direction as the
direction in which the patrticle is going.
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As such, the work is just the magnitude of theddimes the length of the path segment:

W,, = Fb
The magnitude of the force is the charge of thégeartimes the magnitude of the electric field
F=qE, so,

Was = qEb

Thus, the work done on the charged particle byetéetric field, as the particle moves from
point P, to P, along the specified path is

W123 = W12 + WZS

W3 =0+qEb

Wi,s = gEDb
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Now let’s calculate the work done on the chargetige if it undergoes the same displacement
(fromP, to P;) but does so by moving along the direct pathjgitdromP, to P,
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The force on a positively-charged particle beinghm same direction as the electric field, the
force vector makes an andglavith the path direction and the expression

W =FI[Ar
for the work becomes
W,, = Fccosd
W,; = qEccosd
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Analyzing the shaded triangle in the following di:
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we find thatcos@ = b . Substituting this into our expression for therkvfw,, = gEccosd)
o

yields

b
Wi = qECE

W, =qEb

This is the same result we got for the work donéhencharged particle by the electric field as
the particle moved between the same two pointsn(ff9to P,) along the other pathP( to P, to
P;). As it turns out, the work done is the same @dtem what path the particle takes on its way
fromP, to P,. | don't want to take the time to prove that heu¢ | would like to investigate one

more path (not so much to get the result, but ratbeeview an important point about how to
calculate work). Referring to the diagram:
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v

Poe B 3 SR s oPs
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v

let’s calculate the work done on a particle withrgeq, by the electric field, as the particle
moves fronP, to P, along the path “fronf, straight toP,, fromP, straight toP,, and fromP,

straight toP,.” OnP, to P, the force is in the exact same direction as treztion in which
the particle moves along the path, so,

W, =F(b+d)

W,, =gE(b+d)

From pointP, to P, the force exerted on the charged patrticle byetéetric field is at right
angles to the path, so, the force does no workerharged particle on segméntto P...

W45 :O
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On the segment froifA, to P,

v
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v

the force is in the exact opposite direction todmection in which the particle moves. This
means that the work done by the force of the e¢efitld on the charged particle as the particle
moves fornP, to P, is thenegativeof the magnitude of the force times the lengtthefpath
segment. Thus

W,, =-Fd

W, = —qEd
and

W1453 = Wl4 + W45 + WSS

W1453 = qE(b+ d) +0+ (_qu)

Wy4ss = qED

As advertised, we obtain the same result for thekwlone on the particle as it moves fréto
P, along ‘P, to P, to P to P,” as we did on the other two paths.

Whenever the work done on a particle by a forcm@an that particle, when that particle moves
from pointP, to pointP,, is the same no matter what path the particlestakethe way fron,

to P, we can define a potential energy function forfdree. The potential energy function is an

assignment of a value of potential energy to epeigt in space. Such an assignment allows us
to calculate the work done on the particle by tireé when the particle moves from pdtto

point P, simply by subtracting the value of the potentizm®gy of the particle &, from the
value of the potential energy of the particlé’atand taking the negative of the result. In other

words, the work done on the particle by the foricéhe electric field when the particle goes from
one point to another is just the negative of thenge in the potential energy of the particle.
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In determining the potential energy function foe ttase of a particle of chargen a uniform
electric field E, (an infinite set of vectors, each pointing in @mel the same direction and each
having one and the same magnitéene rely heavily on your understanding of the near
earth’s-surface gravitational potential energy.aiNé@e surface of the earth, we said back in
volume 1 of this book, there is a uniform gravitatl field, (a force-per-mass-vector-figlih

the downward direction. A particle of mamsn that field has a forcevtg downward” exerted

upon it at any location in the vicinity of the sacé of the earth. For that case, the potential
energy of a particle of massis given bymgy wheremg is the magnitude of the downward

force andy is the height that the particle is above an anbijrahosen reference level. For ease

of comparison with the case of the electric fiele, now describe the reference level for
gravitational potential energy as a plane, perperali to the gravitational fiel§, the force-per-

mass vector field, and we describe the varigdzle the “upfield” distance (the distance in the
direction opposite that of the gravitational figlthat the particle is from the reference plane.
(So, we're calling the direction in which the gtational field points, the direction you know to
be downward, the “downfield” direction.)

Now let’s switch over to the case of the uniformogtic field. As in the case of the near-earth’'s
surface gravitational field, the force exerted tsrvictim by a uniform electric field has one and
the same magnitude and direction at any point acep Of course, in the electric field case, the
force isqE rather thanimg and the characteristic of the victim that matterthe charge rather
than the mass. We call the direction in which the electric dgdoints, the “downfield”
direction, and the opposite direction, the “upfieditection. Now we arbitrarily define a plane
that is perpendicular to the electric field to be teference plane for the electric potential eperg
of a particle of chargg in the electric field. If we call the distance that the charged particle is
away from the plane in the upfield direction, thie@ potential energy of the particle with charge
gis given by
U=qgEd

where:

U is the electric potential energy of the chargedigar

g is the charge of the patrticle,

E is the magnitude of every electric field vector ingkup the uniform electric field, and

d is the “upfield” distance that the particle isrfiadheU = O reference plane.
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Let's make sure this expression for the potentnargy function gives the result we obtained
previously for the work done on a particle with ideq, by the uniform electric field depicted in
the following diagram, when the particle moves frieprto P,
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viewed edge on.
< distance that a point is from the referencep 1 All points on this
| plane are atl = 0.

As you can see, | have chosen (for my own converjeto define the reference plane to be at
the most downfield position relevant to the problewiith that choice, the particle of charge
when it is atP, has potential energyEb (since pointP, is a distancé “upfield” from the

reference plane) and, when it isPat the particle of chargg has potential energy O sinBg is
on the reference plane.

W,, = -AU
W, =-U,-U,)
W,; =—-(0-qEb
W,; =qEb

This is indeed the result we got (for the work dbgehe electric field on the particle with
chargeq as that particle was moved frd to P,) the other three ways that we calculated this
work.
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The Electric Potential Energy per Charge

The expression for the work that we found abovethadorm “the charge of the victim times
other stuff.” Likewise, the potential energy oéthictim (see above) has the form “the charge of
the victim times other stuff.” In both cases tldher stuff’ consisted of quantities
characterizing the electric field and positionsgace. This turns out to be a general result: The
electric potential energy of a charged particlet{m) in any electric field (not just a uniform
electric field) can be expressed as the product of the charte e@ictim, and, quantities used to
characterize the electric field in the region ad@pin which the particle finds itself. As sucle w
can always divide the potential energy of the mdby the charge of the victim to obtain what
can be called the electric potential energy pergghéor the point in space at which the victim
finds itself. No matter what the charge of theiwicis, the potential energy of the victim divided
by the charge of the victim always yields the saalee for the potential-energy-per-charge-of-
would-be-victim. This is because the potentialrgggoer-charge-of-would-be-victim is a
characteristic of the point in space at which tieéim finds itself, not a characteristic of the
victim. This means that we can specify valuesatéptial-energy-per-charge-of-would-be-
victim (which we will use the symb®to represent) for all the points in a region ofcgpan

which there is an electric field, without even maya victim in mind. Then, once you find a
victim, the potential energy of the victim at atparlar point in space is just

Uu=qVv (5-1)
where:
U is the electric potential energy of the victimgttharged particle in the electric figld
g is the charge of the victim, and,
V is the electric-potential-energy-per-charge-of-ldele-victim (also known more simply
as theelectric potentia) of the point in space at which the victim fintseif.

Okay, | spilled the beans in the variable list, teydial-energy-per-charge-of-would-be-victim” is
just too much of a mouthful, we call it teéectric potential Now, for the potential enerdy/to
come out in Joules in the expressid qV, what withg having units of coulombs, the electric
potentialV must have units of J/C. The concept of electokeptial is such an important one
that we give its combination unit (J/C) a namehe fiame of the unit is the volt, abbreviatéd

joule

lwolt=1—"""
coulomt

(Please write “volts” for the units if there is @@nn that the abbreviatiovi for the unit will be
confused with the variable narwe For the case of a uniform electric field, onpession

U = qEd for the electric potential energy of a victim wehargeqg, upon division by, yields,
for the electric potential at a point of interesai uniform electric field,

V=Ed (5-2)
where:
V is the electric potential at the point of inteérésr the case of a uniform electric field,
E is the magnitude of every electric field vectothe region of space where the uniform
electric field exists, and,
d is the upfield distance that the point of inteiedtom the (arbitrarily-chosen) reference
plane.
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6 The Electric Potential Due to One or More Point  Charges

The electric potential due to a point charge i®giby

_ka (6-1)
r

where

V is the electric potential due to the point charge,

Nm?
2

k = 899x10°

is the Coulomb constant,

g is the charge of the particle (the source chadea. the point charge) causing the electric
field for which the electric potential applies, and
r is the distance that the point of interest is fithi point charge.

In the case of a non-uniform electric field (susttlae electric field due to a point charge), the
electric potential method for calculating the wddne on a charged patrticle is much easier than
direct application of the force-along-the-path tsntlee length of the path. Suppose, for instance,
a particle of chargq' is fixed at the origin and we need to find the kvdone by the electric

field of that particle on a victim of chargeas the victim moves along the x axis frao X,.

We can't simply calculate the work as

F mxz _X1)

even though the force is in the same directiomagitsplacement, because the fdfdakes on a
different value at every different point on thexsafromx = x, to X =X,. So, we need to do an

integral:

dw =Fdx
dw =qEdx
d%/=qk—(gdx
X

% ke
Jaw = [a*Lox
X

%
W= kq’qj x~%dx
%
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X

-1|"2

, X
W:quT1

il
11
L Fay
2

W:_(qu_qu]
X X

Compare this with the following solution to the saproblem (a particle of charggis fixed at
the origin and we need to find the work done byeleetric field of that particle on a victim of
chargeq as the victim moves along the x axis freymo x,):

W =-AU

W =-gqAV

W :_Q(Vz _Vl)

W :—q(ﬂ—ﬂ]
X 0X

W:_(qu_qu]
X X

The electric potential energy of a particle, usedanjunction with the principle of the
conservation of mechanical energy, is a powerfobf@am-solving tool. The following example
makes this evident:
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Example

A particle of charge .@80uC is fixed in space by unspecified means. A plero¢ charge
—0.0950uC and mass.Q30 grams is 885 cm away from the first particle and moving
directly away from the first particle with a spe&fdl5.0 m/s. How far away from the first
particle does the second particle get?

This is a conservation of energy problem. As nexglifor all conservation of energy problems,
we start with a before and after diagram:

Before After

?r =8.85x10°m

< S =7 ——
v =150 m/s
D S+ ® e
q=-9.50x10°C =
m=1.30x10"*kg
q =1.80x107C
Energy Before = Energy After
0
K+U = %+U’
K+qV=K'+qgV'
lm\/2 + qﬂ = qk_C']S
2 r r
1 1 mv
— ="+
r' r 2kqgq
, 1
r
1, mv
r2koQ
r'= 1
1 N 1.30x10"kg (15.0m/s)’
-3 2
8.85x10°mM 58 99x10° Ngi“ )1.80x107C (-9.50x10°°C)
r =0.05599m
r =0.0560m
r'=5.60cm
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Superposition in the Case of the Electric Potential

When there is more than one charged particle dariing to the electric potential at a point in
space, the electric potential at that point issiine of the contributions due to the individual
charged particles. The electric potential at atoi space, due to a set of several charged
particles, is easier to calculate than the ele@igld due to the same set of charged particles is.
This is true because the sum of electric potengatributions is an ordinary arithmetic sum,
whereas, the sum of electric field contributiona igector sum.

Example

Find a formula that gives the electric potentiad@ay point (X,y) on the x-y plane, due to a

pair of particles: one of charge —q[a{% , O] and the other of charge +qu% , O].

Solution We establish a poif at an arbitrary position (x,y) on the x-y plairdatetermine
the distance that poiRt is from each of the charged patrticles. In th®Wihg diagram, | use
the symbol, to represent the distance that pdins from the positively-charged particle, and

to represent the distance that pdins from the negatively-charged particle.

v

N a<
N <
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Analysis of the shaded
triangle in the diagram
at right gives us, .

Analysis of the shaded
triangle in the diagram
at right gives us_.
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With the distances that poiRtis from each of the charged particles in handawveeready to
determine the potential:

v

N a<
N <

V(X y)=V,+V.

V(X y) = ? +—k(r_q)

+ -

k k
V(x,y)=r—q—r—q

+

kq kq

V(xy) = > =
(g oot os
2 2
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7 Equipotential Surfaces, Conductors, and Voltage

Consider a region of space in which there existslectric field. Focus your attention on a
specific point in that electric field, call it paiA.

<

Imagine placing a positive test charge at paint(Assume that, by means not specified, you can
move the test charge anywhere you want to.) Pkwse about the answer to the following
guestion before reading on: Is it possible for y@move the test charge around in the electric
field in such a manner that the electric field doesvork on the test charge?

If we move the positive test charge in the “dowidfieirection (toward the upper left corner of
the diagram), there will be a positive amount ofkvorce-along-the-path times the length of
the path) done on the test charge. And, if we ntbeeositive test charge in the “upfield”
direction there will be a negative amount of wodnd on it. But, if we move the positive test
charge at right angles to the electric field, nakus done on it. That is, if we choose a path for
the positive test charge such that every infinitedidisplacement of the particle is normal to the
electric field at the location of the particle whe(the particle) undergoes said infinitesimal
displacement, then the work done on the test cHaydke electric field, is zero. The set of all
points that can be reached by such paths makes infiratesimally thin shell, a surface, which
is everywhere perpendicular to the electric fielld.moving a test charge along the surface from
one point (call it poinA) to another point (call it poir) on the surface, the work done is zero
because the electric field is perpendicular topdwh at all points along the path. Let’s
(momentarily) call the kind of surface we have bdescussing a “zero-work surface.” We have
constructed the surface by means of force-alongé#tle times the length-of-the-path work
considerations. But the work done by the eledieid when a test charge is moved from pdint
on the surface to poif on the surface must also turn out to be zero i€aleulate it as the
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negative of the change in the potential energyeftést charge. Let’'s do that and see where it
leads us. We know that the wowk= 0.

Also
W =-AU

W=-Uz-U,)
In terms of the electric potenti®| U =qV so the work can be expressed as

W= _(qVB _qVA)

W= _Q(VB _VA)
Given thatw = 0, this means that

0= _Q(VB _VA)

This is true for any point B on the entire “zerofwosurface. This means that every point on
the entire surface is at the same value of eleptiiential. Thus a “zero-work” surface is also an
equipotential surfacelndeed, this is the name (equipotential surfélca) physicists use for such
a surface. An equipotential surface is typicadlgdled with the corresponding potential value
(V4 in the case at hand). In the following diagrane, dashed curve represents the equipotential

surface viewed edge on.
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Summarizing:

* An equipotential surface is an imaginary surfacevbich every point has one and the
same value of electric potential.

* An equipotential surface is everywhere perpendidaldhe electric field that it
characterizes.

» The work done by the electric field on a particleen it is moved from one point on an
equipotential surface to another point on the saqapotential surface is always zero.

Perfect Conductors and the Electric Potential

Please recall what you know about perfect condaciad the electriield. Namely, that
everywhere inside and on a perfect conductor, ldetre field is zero. This goes for solid
conductors as well as hollow, empty shells of pelyeconducting material. This means that the
work done by the electric field on a test charge th moved from one point in or on a perfect
conductor (consider this to be a thought experijn@nanother point in or on the same
conductor, is zero. This means that the differancbe electrigotentialbetween any two

points in or on a perfect conductor must be zero. Thiams that the electric potential at every
point in and on a perfect conductor must have owletlae same value. Note that the valueois

in general, zero.

Some Electric Potential Jargon

When we talk about the electric potential in thateat of a perfect conductor (or an object that
approximates a perfect conductor), because eveny ipcand on the conductor has the same
value of electric potential, we typically call thatlue the electric potentiaf the conductor We
also use expressions such as, “the conductoripatential of 25 volts,” meaning that the value
of electric potential at every point in and on toaductor is 25 volts with respect to infinity
(meaning that the zero of electric potential iarinfinite distance from the conductor) and/or
with respect to “ground” (meaning that the potdrifahe earth is the zero of electric potential).

Electric Potential Difference, a.k.a. Voltage
In general, what is at issue when one talks abonductors and electric potential is not the value

of the electric potential of a conductor, but ratiiee electric potential difference between one
conductor and another.

! The “difference in the electric potential betweem®iA and B” is the value of the electric potential ahBus
the value of the electric potential at point A.
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Example

A hollow metal sphere is at a potential that is #@Rs higher than that of a nearby metal plate.

A particle of charge 2e is released from rest atstirface of the sphere. It subsequently strikes
the plate. With what kinetic energy does the cedrngarticle strike the plate? (Assume that the
only force acting on the particle is that due t® étectric field corresponding to the given

information.)

BEFORE AFTER

g=2e,v=0

(Given\, =\, = AV = 472 volts.)

Energy Before = Energy After

K‘Eu =K' +U’
% =K'+q\
K'=q\§ —q\,
K'=a0% -\&)
K'=qAV

K' =2e(472volts)

K'=944eV
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Note that in the solution to the example problera,never needed to know the value of the
electric potential of either the sphere or thegqlanly the difference between the two potentials.

There is a device which can be used to measungotieatial difference between two points in
space. The device is called a voltmeter. A tyipioétmeter consists of a box with two wires
extending from it. On the end of each wire is arsimetal wand called a probe. Each wire and
each probe, except for the tip of the probe, iced with insulating material. The box displays,
either by means of a digital readout or the pasiaba needle, the potential difference between
the two wires. In typical use, one presses thaliptof one probe against a conductor of
interest and holds the tip there. That causesptiadite and wire to be at the same potential as the
conductor. One presses the tip of the other paglaénst another conductor. This causes that
probe and wire to be at the potential of the sea@amdiuctor. With each probe in contact with a
conductor, the voltmeter continually displays tloégmtial difference between the two
conductors.

Based on the Sl units of measurement, the elgmbtential difference between two points in
space goes by another name, namalitage Voltage meanslectric potential differencevhich
means, the difference between the electric-potesmiargy-per-charge-of-would-be-victim at
one point in space and the electric-potential-eneey-charge-of-would-be-victim at another
point in space. Whilgoltageliterally means potential difference, the wor@liso, quite often
used to mean electric potential itself, where, paeicular conductor or point in space is defined
to be the zero of potential. If no conductor oinpo space has been defined to be the zero of
electric potential, then it is understood that ifiitfy” is considered to be at the zero of electric
potential. So, if you read that a metal objecitia potential of 230 volts (when no conductor or
point in space has been identified as the zerdecfrc potential), you can interpret the
statement to mean the same thing as a statemémihéhalectric potential of the metal object is
230 volts higher than the electric potential at paint that is an infinite distance away from the
object.

As you move on in your study of physics, onwargdar study and work with electric circuits, it
is important to keep in mind that voltage, in &ugit, is the difference in the value of a
characteristic (the electric potential) of one aastdr, and the value of the same characteristic
(electric potential) of another conductor.

Analogy Between Voltage and Altitude

One can draw a pretty good analogy between voligetric potential) and altitude. Consider a
particular altitude above the surface of the e@rtdasured, for instance, from sea level). The
value of the altitude characterizes a point in spaca set of points in space. In fact, the set of
all points in space that are at the same altitbideeathe surface of the earth forms an
“equi-altitude” surface. On a local scale, we ti@ink of that “equi-altitude” surface as a plane.
On a global scale, looking at the big picture, e®ognize it to be a spheroidal shell. Flocks of
birds can be at that altitude and when they areativibute the altitude to the flock of birds. We
say that the flock of birds has such and suchtim@é®. But, whether or not the flock of birds is
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there, the altitude exists. Regarding a particaldude, we can have birds and air and clouds
moving or flowing through space at that altitudet the altitude itself just exists—it doesn’t
flow or go anywhere. This is like the voltage iniecuit. The voltage in a circuit exists. The
voltage characterizes a conductor in a circuitarGéd particles can move and flow in and
through a conductor that is at that voltage, the Moltage doesn’t flow or go anywhere, any
more than altitude flows or goes anywhere.
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8 Capacitors, Dielectrics, and Energy in Capacitor s

Capacitance is a characteristic of a conductingaibjCapacitance is also a characteristic of a
pair of conducting objects.

Let’s start with the capacitance of a single comidgoobject, isolated from its surroundings.
Assume the object to be neutral. Now put sometigestharge on the object. The electric
potential of the object is no longer zero. Putegnore charge on the object and the object will
have a higher value of electric potential. Whaitsresting is, no matter how much, or how little
charge you put on the object, the ratio of the arhofichargeg on the object to the resulting
electric potentiaV of the object has one and the same value.

3 has same value for any valuegpf

You double the charge, and, the electric potedtaibles. You reduce the amount of charge to
one tenth of what it was, and, the electric po&iecomes one tenth of what it was. The actual
value of the unchanging ratio is called the capaciC of the object.

C= (8-1)

<|a

where:
C is the capacitance of a single conductor, isolédedant from) its surroundings,
g is the charge on the conductor, and,
V is the electric potential of the conductor relatie the electric potential at infinity (the
position defined for us to be our zero level ottle potential).

The capacitance of a conducting object is a prgpkdt an object has even if it has no charge at
all. It depends on the size and shape of the bbjec

The more positive charge you need to add to arcbtgeaise the potential of that object 1 volt,
the greater the capacitance of the object. In figbu defineg, to be the amount of charge you
must add to a particular conducting object to iaseethe electric potential of that object by one

volt, then the capacitance of the objec{l—gl—lt.
VO

The Capacitance of a Spherical Conductor

Consider a sphere (either an empty spherical shellsolid sphere) of radil®made out of a
perfectly-conducting material. Suppose that theesp has a positive chargeand that it is
isolated from its surroundings. We have alreadxyeoed the fact that the electric field of the
charged sphere, from an infinite distance awaythallway to the surface of the sphere, is
indistinguishable from the electric field due tpa@nt chargey at the position of the center of the
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sphere; and; everywhere inside the surface offihers, the electric field is zero. Thus, outside
the sphere, the electqotentialmust be identical to the electric potential due fmint charge at
the center of the sphere (instead of the sphét&rking your way in from infinity, however, as
you pass the surface of the sphere, the electtenpal no longer changes. Whatever the value
of electric potential at the surface of the sphthat is the value of electric potential at every
point inside the sphere.

This means that the electric potential of the spieequal to the electric potential that would be
caused by a point charge (all by itself) at a pmirgpace a distand¢efrom the point charge
(whereR is the radius of the sphere).

P KS—The value of the electric potential h_ere IS
the same as the value of the electric
potential at every point in and on a
conducting sphere of radifsand

chargeg.

Dy

Thus,V :k—l_g Is the electric potential of a conducting sphedreadiusR and charge.

Solving this expression fG\ql7 yields:
a_R
V Kk
Since, by definition, the capacitan(‘bzg , we have:
R
C=— 8-2
> (8-2)

The capacitance of a conducting sphere is dirgectyportional to the radius of the sphere. The
bigger the sphere, the more charge you have torpittto raise its potential one volt (in other
words, the bigger the capacitance of the sphefbis is true of conducting objects in general.
Since all the unbalanced charge on a conductategsin the surface of the conductor, it really
has to do with the amount of surface area of tlecbb The more surface area, the more room
the charge has to spread out and, therefore, the charge you have to put on the object to raise
its potential one volt (in other words, the bigtyee capacitance of the object).
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Consider, for instance, a typical paper clip. nlyadakes an amount of charge on the order of a
pC (picocoulomb1x10™ coulombs) to raise the potential of a paper dlipvdlts.

Units

The unit of capacitance is the coulomb-per-v%t, That combination unit is given a name, the

farad, abbreviated F.

1F=12

The Capacitance of a Pair of Conducting Objects

So far, we've been talking about the capacitance ainducting object that is isolated from its
surroundings. You put some charge on such anplaed, as a result, the object takes on a
certain value of electric potential. The charggtdential ratio is called the capacitance of the
object. But get this, if the conductor is nearteo conductor when you put the charge on it, the
conductor takes on a different value of electriteptial (compared to the value it takes on when
it is far from all other conductors) for the exaaime amount of charge. This means that just
being in the vicinity of another conductor changeseffective capacitantef the conductor in
guestion. In fact, if you put some charge on atated conductor, and then bring another
conductor into the vicinity of the first conducttie electric potential of the first conductor will
change, meaning, its effective capacitance changets investigate a particular case to see
how this comes about.

Consider a conducting sphere with a certain amotichargeg, on it. Suppose that, initially,
the sphere is far from its surroundings and, asaltr of the charge on it, it is at a potential

Let's take a moment to review what we mean whermsayethat the sphere is at a potential
Imagine, that you take a test chacgdrom a great distance away from the sphere arelitda&

the surface of the sphere. Then you will have gbdrthe potential energy of the test charge
from zero tog,V. To do that, you have to do an amount of wpikon the test charge. We're
assuming that the test charge was initially at aesdtis finally at rest. You have to push the
charge onto the sphere. You apply a force ovastartte to give that particle the potential
energyqg,V. You do positive work on it. The electric fieddithe sphere exerts a force on the test

! By definition, the capacitance of a single conductirjgatbis the charge-to-voltage ratio when the object is
isolated (far away from) its surroundings. When itéar another conductor, we generally talk about the
capacitance of the pair of conductors (as we do latiéris chapter) rather than what | have been calling the
“effective capacitance” of one of the conductors.
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charge in the opposite direction to the directiowhich you are moving the test charge. The
electric field does a negative amount of work antest charge such that the total work, the
work done by you plus the work done by the eledteic, is zero (as it must be since the kinetic
energy of the test charge does not change). ®ant you to focus your attention on the amount
of work that you must do, pushing the test changdé same direction in which it is going, to
bring the test charge from infinity to the surfade¢he sphere. That amount of worlqgi¥/
because,V is the amount by which you increase the potentiatg@y of the charged particle. If
you were to repeat the experiment under differentimstances and you found that you did not
have to do as much work to bring the test charg® infinity to the surface of the sphere, then
you would know that the sphere is at a lower paétitan it was the first time.

Now, we are ready to explore the case that wilktilate that the charge-to-voltage ratio of the
conducting object depends on whether or not tleeamother conductor in the vicinity. Let’s
bring an identical conducting sphere near one sidke first sphere. The first sphere still has
the same amount of charg®n it that it always had, anthe second sphere is neutralhe
guestion is, “Is the potential of the original sghetill the same as what it was when it was all
alone?” Let's test it by bringing a charge in framinfinite distance on the opposite side of the
first sphere (as opposed to the side to whichélersd sphere now resides). Experimentally we
find that it takes less work to bring the test geato the original sphere than it did before,
meaning that the original sphere now has a lowlerevaf electric potential. How can that be?
Well, when we brought the second sphere in closkg®riginal sphere, the second sphere
became polarized. (Despite the fact that it ignadut is a conductor so the balanced chargé in i
is free to move around.) The original sphere, lggositive chargg, attracts the negative
charge in the second sphere and repels the positargie. The near side of the second sphere
winds up with a negative charge and the far sidéh the same amount of positive charge. (The
second sphere remains neutral overall.) Now tlgathes charge on the near side of the second
sphere attracts the (unbalanced) positive chargbeoariginal sphere to it. So the charge on the
original sphere, instead of being spread out umfpiover the surface as it was before the
second sphere was introduced, is bunched up ideef the original sphere that is closer to
the second sphere. This leaves the other sideeadriginal sphere, if not neutral, at least less
charged than it was before. As a result, it taées work to bring the positive test charge in
from infinity to that side of the original spher@&s mentioned, this means that the electric
potential of the original sphere must be lower thavas before the second sphere was brought
into the picture. Since it still has the same ghahat it always had, the new, lower potential,
means that the original sphere has a greater clayg@atential ratio, and hence a greater
effective capacitance.

In practice, rather than call the charge-to-po&tmétio of a conductor that is near another
conductor, the “effective capacitance” of the feenhductor, we define a capacitance for the pair
of conductors. Consider a pair of conductors, isgpd by vacuum or insulating material, with a
given position relative to each other. We callbsacconfiguration a capacitor. Start with both
conductors being neutral. Take some charge froenconductor and put it on the other. The
amount of charge moved from one conductor to theras called the charge of the capacitor.
(Contrast this with the actual total charge ofdkeeice which is still zero.) As a result of the
repositioning of the charge, there is a potentiftience between the two conductors. This
potential difference is called the voltage of tapacitor, or, more often, the voltage across the
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capacitor. The ratio of the amount of charge mdvexh one conductor to the other, to, the
resulting potential difference of the capacitoithis capacitance of the capacitor (the pair of
conductors separated by vacuum or insulator).

-9
C v (8-3)
where:

C is the capacitance of a capacitor, a pair of cotata separated by vacuum or an
insulating material,

g is the “charge on the capacitor,” the amount afrgk that has been moved from one
initially neutral conductor to the other. One coaidr of the capacitor actually has an
amount of charge g on it and the other actuallyamamount of charge —q on it.

V is the electric potential difference between theductors. It is known as the voltage of
the capacitor. It is also known as the voltagessthe capacitor.

Note that this equation (equation 8-3) is identinappearance to equation 8-1, but, that the
symbols have different meanings here than theydedjuation 8-1.

A two-conductor capacitor plays an important raddeaacomponent in electric circuits. The
simplest kind of capacitor is the parallel-platpaeator. It consists of two identical sheets of
conducting material (called plates), arranged shahthe two sheets are parallel to each other.
In the simplest version of the parallel-plate catpacthe two plates are separated by vacuum.

One of two wires used for moving charge onto
; and off of the plates of the capacitor.

dy 7% —

Area A J

The capacitance of such a capacitor is given by
A
°d

C=e¢

where:
C is the capacitance of the parallel-plate capagWuose plates are separated by vacuum,
d is the distance between the plates,
A is the area of one face of one of the plates,

€, is a universal constant called the permittivitfree space.¢, is closely related to the
2

Coulomb constark. In fact, k = Our equation

. Thus, ¢, =885x10™" c =
A7Te N

(o]

for the capacitance can be expressed in termedltulomb constaktasC = ﬁg‘

but, it is more conventional to express the capac in terms of .
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This equation for the capacitance is an approxirftataula. It is agoodapproximation as long
as the plate separatidns small compared to a representative plate dimer{ghe diameter in

the case of circular plates, the smaller edge lreimgthe case of rectangular plates). The
derivation of the formula is based on the assumgtat the electric field, in the region between
the plates is uniform, and the electric field odesihat region is zero. In fact, the electricdied
not uniform in the vicinity of the edges of thetels. As long as the region in which the electric
field is not well-approximated by a uniform electfield is small compared to the region in
which it is, our formula for the capacitance is goo

(i VVYVVYVYVVVVVVVVVVYVYYVYVYYVYY

The Effect of Insulating Material Between the Plates of a Capacitor

To get at the effect of insulating material, rattiem vacuum, between the plates of a capacitor, |
. S A : .
need to at least outline the derivation of the falanC = €°E' Keep in mind that the

capacitance is the charge-per-voltage of the capacbuppose that we move chacgieom one
initially-neutral plate to the other. We assumet tine electric field is uniform between the
plates of the capacitor and zero elsewhere.

E V (the potential difference

QLYYYYVVVYVVVVVVVVYVYVY between the plates, a.k.a.
‘ the voltage across the

capacitor)

By means that you will learn about later in thi®kave establish that the value of the electric
field (valid everywhere between the plates) is gitsg:

E=— (8-4)

Also, we know that the work done on a test chaggey the electric field when the test charge is
moved from the higher-potential plate to the loywetential plate is the same whether we
calculate it as force-along the path times thetleogthe path, or, as the negative of the change
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in the potential energy. This results in a refati@tween the electric field and the electric
potential as follows:

W calculated as force times distarreéN calculated as minus change in potential energy

FAXx=-AU
orEd =-g;AV
Ed =-(-V)
V =Ed
Using equation 8-4K :Ai) to replace th& in V = Ed with Ai gives us:
60 60
V :id
Ag,
Solving this forg/V yields
a_ A
Vv d

for the charge-to-voltage ratio. Since the capack is the charge-to-voltage ratio, this means

A

C=¢—
d

which is what we set out to derive.

Okay now, here’s the deal on having an insulatbwéen the plates: Consider a capacitor that is
identical in all respects to the one we just dedl, except that there is an insulating material
between the plates, rather than vacuum. Furthgpose that the capacitor has the same amount
of chargeg on it as the vacuum-between-the-plates capacidom it. The presence of the
insulator between the plates results in a weakectak field between the plate3.his means

that a test charge moved from one plate to anetbeid have less work done on it by the

electric field, meaning that it would experiencgnaaller change in potential energy, meaning the
electric potential difference between the platesmsller. So, with the same charge, but a
smaller potential difference, the charge-to-voltegj® (that is, the capacitance of the capacitor)
must bebigger.

The presence of the insulating material makes @paatance bigger. The part of the preceding

argument that still needs explaining is that padud the insulating material weakening the
electric field. Why does the insulating materialkea the field weaker? Here’s the answer:
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Starting with vacuum between the plates,

we insert some insulating material:

_q VVYVVVVVVVVVVVVVVVY

The original electric field polarizes the insulgtimaterial:

_q +V _V+V V+V V+V V+V V+V ViV V+V ViV V+

The displaced charge creates an electric fieltsadwn, in the direction opposite that of the
original electric field:

+— ]
+—]
+— ]
+—
+—»

+— ]
+— 1]
+— ]

A

_q +V_ Y

62



Chapter 8 Capacitors, Dielectrics, and Energyapdcitors

The net electric field, being at each point in §pdbe vector sum of the two contributions to it,
is in the same direction as the original electietdf but weaker than the original electric field:

This is what we wanted to show. The presenceeirtulating material makes for a weaker
electric field (for the same charge on the cap&gitoeaning a smaller potential difference,
meaning a bigger charge-to-voltage ratio, meanibiger capacitance. How much bigger
depends on how much the insulator is polarized wH&pends on what kind of material the
insulator consists of. An insulating material, wh@aced between the plates of a capacitor is
called adielectric The net effect of using a dielectric insteaddatuum between the plates is to
multiply the capacitance by a factor known as tie¢edtric constant. Each dielectric is
characterized by a unitless dielectric constantifipago the material of which the dielectric is
made. The capacitance of a parallel-plate capaeiach has a dielectric in between the plates,
rather than vacuum, is just the dielectric conskamimes the capacitance of the same capacitor
with vacuum in between the plates.

(8-5)

where:
C is the capacitance of the parallel-plate capagWuose plates are separated by an
insulating material,
K is the dielectric constant characterizing the lgisog material between the plates,
d is the distance between the plates,
A is the area of one face of one of the plates, and
€, is a universal constant called the permittivitfree space.

Calling the dielectric constant for vacuum 1 (ekaohe), we can consider this equation to apply
to all parallel-plate capacitors. Some dieleatoostants of materials used in manufactured
capacitors are provided in the following table:

Dielectric
Substance Constant
Air 1.00

Aluminum Oxide (a corrosion produ¢
found in many electrolytic capacitors

—

Mica 3-8
Titanium Dioxide 114
Vacuum 1 (exactly
Waxed Paper B-35
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Energy Stored in a Capacitor

Moving charge from one initially-neutral capacifgate to the other is calledhargingthe
capacitor. When you charge a capacitor, you amngtenergy in that capacitor. Providing a
conducting path for the charge to go back to théept came from is called discharging the
capacitor. If you discharge the capacitor throaglelectric motor, you can definitely have that
charge do some work on the surroundings. So, hoshranergy is stored in a charged
capacitor? Imagine the charging process. Yolsas® force to move some charge over a
distance from one plate to another. At first,aedn’t take much force because both plates are
neutral. But the more charge that you have alrealdgated, the harder it is to move more
charge. Think about it. If you are moving postsharge, you are pulling positive charge from
a negatively charged plate and pushing it ontositigely charged plate. The total amount of
work you do in moving the charge is the amountrargy you store in the capacitor. Let’s
calculate that amount of work.

In this derivation, | am going to use a lower case represent the variable amount of charge on
the capacitor plate (it increases as we chargeapacitor), and an upper ca34¢o represent the
final amount of charge. Similarly, | choose to adewer case to represent the variable
amount of voltage across the capacitor (it toogases as we charge the capacitor), and the
upper cas#& to represent the final voltage across the capaclietU represent the energy
stored in the capacitor:

dU =vdqg

but the voltage across the capacitor is relatébdeaaharge of the capacitor 8y=q/v which,
solved forv is v = g/c, so:

19
C 2|,
2 2
U:i Q_—O_
cl2 2
11
U==--0?2
2CQ

UsingC = Q/V, we can also express the energy stored in thectapasU :%QV, or

u=1cv? (8-6)
2
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9 Electric Current, EMF, Ohm's Law

We now begin our study of electric circuits. Actiit is a closed conducting path through which
charge flows. In circuits, charge goes aroundaps. The charge flow rate is called electric
current. A circuit consists of circuit elementsnected together by wires. A capacitor is an
example of a circuit element with which you aresalty familiar. We introduce some more
circuit elements in this chapter. In analyzinguits, we treat the wires as perfect conductors
and the circuit elements as ideal circuit elemeiitsere is a great deal of variety in the
complexity of circuits. A computer is a complicatarcuit. A flashlight is a simple circuit.

The kind of circuit elements that you will be degliwith in this course are two-terminal circuit
elements. There are several different kinds oft®vaninal circuit elements but they all have
some things in common. A two-terminal circuit e@his a device with two ends, each of
which is a conductor. The two conductors are dakeminals. The terminals can have many
different forms. Some are wires, some are megdép] some are metal buttons, and some are
metal posts. One connects wires to the termimaisake a circuit element part of a circuit.

An important two-terminal circuit element is a sehEMF". You can think of a seat of EMF as
an ideal battery or as an ideal power supply. Wlddes is to maintain a constant potential
difference (a.k.a. a constant voltage) betweetensinals. One uses either the constant néime
(script E) or the constant nandeo represent that potential difference.

To achieve a potential differenédetween its terminals, a seat of EMF, when it faahes into
existence, has to move some charge (we treat tkement of charge as the movement of
positivecharge) from one terminal to the other. The “tareninal” is left with a net negative
charge and “the other” acquires a net positivegharThe seat of EMF moves charge until the
positive terminal is at a potenti&higher than the negative terminal. Note that ta sf EMF
does not produce charge, it just pushes existiaggeharound. If you connect an isolated wire to
the positive terminal, then it is going to be a #ame potential as the positive terminal, and,
because the charge on the positive terminal wikkag out over the wire, the seat of EMF is
going to have to move some more charge from thedgutential terminal to maintain the
potential difference. One rarely talks about tharge on either terminal of a seat of EMF or on
a wire connected to either terminal. A typicaltsgeEMF maintains a potential difference
between its terminals on the order of 10 volts tiedamount of charge that has to be moved,
from one wire whose dimensions are similar to tiat paper clip, to another of the same sort, is
on the order of a pCL&10™ Y Also, the charge pileup is almost instantangeasby the time
you finish connecting a wire to a terminal, thatenalready has the charge we are talking about.
In general, we don’t know how much charge is onpbsitive terminal and whatever wire might
be connected to it, and we don't care. It is muoles. But, it is enough for the potential
difference between the terminals to be the ratdédye of the seat of EMF.

! The reason for the name “seat of EMF” is of his@rinterest only. EMF stands for electromotive éoré&fou
would be better off calling it “ee em eff” and thinkingaobo-called seat of EMF as a “maintainer of a @onst
potential difference”.
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You'll recall that electric potential is somethitigat is used to characterize an electric field. In
causing there to be a potential difference betvitseierminals and between any pair of wires
that might be connected to its terminals, the sE&MF creates an electric field. The electric
field depends on the arrangement of the wiresaretonnected to the terminals of the seat of
EMF. The electric field is another quantity thag rarely discuss in analyzing circuits. We can
typically find out what we need to find out fronetkialue of the potential differenéehat the
seat of EMF maintains between its terminals. B electric field does exist, and, in circuits,
the electric field of the charge on the wires catee to the seat of EMF is what causes charge
to flow in a circuit, and charge flow in a circista huge part of what a circuit is all about.

We use the symbol

to represent a seat of EMF in a circuit diagrark.éa.a schematic diagram of a circuit) where the
two collinear line segments represent the termiobthe seat of EMF, the one connected to the
shorter of the parallel line segments being theatieg, lower-potential, terminal; and; the one
connected to the longer of the parallel line segsbgaing the positive, higher-potential,

terminal.

The other circuit element that | want to introducéhis chapter is theesistor A resistor is a

poor conductor. The resistance of a resistommeasure of how poor a conductor the resistor is.
The bigger the value of resistance, the more pdbdycircuit element allows charge to flow
through itself. Resistors come in many forms. filaenent of a light bulb is a resistor. A
toaster element (the part that glows red whendastér is on) is a resistor. Humans
manufacture small ceramic cylinders (with a coathgarbon and a wire sticking out each end)
to have certain values of resistance. Each onéseaalue of resistance indicated on the resistor
itself. The symbol

—AAN—

is used to represent a resistor in a circuit dimgrdhe symboR is typically used to represent
the value of the resistance of a resistor.

We are now ready to consider the following simpiteust:

wire (conductor)

Seat of EMF Resistor
7» —— & R 5

wire (conductor)
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Here it is again without so many labels:

The upper wire (conductor) has one value of elegwtential (call itv,, ) and the lower wire has
another value of electric potential (calMt,,) such that the differendé, -V, is¢.

Vv

HI

LO

In order to maintain the potential differer&between the two conductors, the seat of EMF
causes there to be a minuscule amount of positigege on the upper wire and the same amount
of negative charge on the lower wire. This chaggaration causes an electric field in the

resistor.

LO
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(We carry out this argument in the positive chazgeier model. While it makes no difference
for the circuit, as a point of fact, it is actuatiggatively charged particles moving in the opgosit
direction. The effect is the same.)

It is important to realize that every part of thewit is chock full of both kinds of charge. The
wire, the resistor, everything is incredibly crowldeith both positive and negative charge. One
kind of charge can move against the backgroundeobther. Now the electric field in the
resistor pushes the positive charge in the resistitre direction from the higher-potential
terminal toward the lower-potential terminal.

LO

Pushing positive charge onto the lower-potentiaéwrould tend to raise the potential of the
lower-potential wire and leave the upper end ofrdsstor with a negative charge. | say

“would” because any tendency for a change in tkaive potential of the two wires is
immediately compensated for by the seat of EMFm&maber, that's what the seat of EMF does,
it maintains a constant potential difference betwie wires. To do so in the case at hand, the
seat of EMF must pull some positive charges froenldlver-potential wire and push them onto
the higher-potential wire. Also, any tendencyhaf tipper end of the resistor to become negative
immediately results in an attractive force on theifive charge in the higher-potential wire. So
that positive charge moves down into the resistahe place of the charge that just moved along
the resistor toward the lower-potential wire. Tie effect is a continual movement of charge,
clockwise around the loop, as we view it in thegdsan, with the net amount of charge in any
short section of the circuit never changing. Ridpot anywhere in the circuit. Just as fast as
positive charge moves out of that spot, more p@sitharge from a neighboring spot moves in.
What we have is this whole crowded mass of posiharge carriers moving clockwise around
the loop, all because of the electric field in tésistor, and the EMF'’s “insistence” on
maintaining a constant potential difference betwibenwires.
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Chapter 9 Electric Current, EMF, Ohm's Law

Now draw a dotted line across the path of the girat1any point in the circuit, as indicated
below.

Vv

HI

""" <+—Dotted Line

The rate at which charge crosses that line is lthege flow rate at that point (the point at which
you drew the dotted line) in the circuit. The dwflow rate, how many coulombs-of-charge-
per-second are crossing that line is calledelbetric currentat that point. In the case at hand,
because the whole circuit consists of a single,lblog current is the same at every point in the
circuit—it doesn’t matter where you “draw the lihelhe symbol that one typically uses to
represent the value of the current.is

In analyzing a circulit, if the current variablenist already defined for you, you should define it
by drawing an arrow on the circuit and labelingatr | with a subscript.

The units for current are coulombs per second (Cfgat combination of units is given a name,
the ampere, abbreviated A.

1A 219
<

<

Now about that resistor: In our positive chargeieamodel, the charged particles that are free to
move in the resistor experience a force exertethem by the electric field, in the direction of the
electric field. As a result, they experience aedion. But, the background material making up
the substance of which the charge carriers aretagperts a velocity-dependent retarding force
on the charge carriers. The faster they go, thgdrithe retarding force. Upon completion of the
circuit (making that final wire-to-terminal conneant), the charge carriers in the resistor, almost
instantaneously, reach a terminal velocity at whiehretarding force on a given charge carrier is
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Chapter 9 Electric Current, EMF, Ohm's Law

just as great as the force exerted by the elef@ict on that charge carrier. The value of the
terminal velocity, along with the number-of-chamgriers-per-volume in the resistor, and the
cross-sectional area of the poorly-conducting ndteraking up the resistor, determine the
charge flow rate, the current, in the resistorthiesimple circuit under consideration, the charge
flow rate in the resistor is the charge flow ratergwhere in the circuit.

The value of the terminal velocity itself dependshow strong the electric field is, and, on the
nature of the retarding force. The nature of #tarding force depends on what kind of material
the resistor is made of. One kind of material vaBult in a bigger terminal velocity for the same
electric field as another kind of material. Eveitivone kind of material, there’s the question of
how the retarding force depends on the velocisyit proportional to the square of the velocity,
the log of the velocity, or what? Experiment shdkat in an important subset of materials, over
certain ranges of the terminal velocity, the retagdorce is proportional to the velocity itself.
Such materials are said to obey Ohm'’s law andefegred to as ohmic materials.

Consider the resistor in the simple circuit we hbgen dealing with.

§—= §R

If you double the voltage across the resistor @ipgia seat of EMF that maintains twice the
potential difference between its terminals as thgiral seat of EMF) then you double the
electric field in the resistor. This doubles theck exerted on each charge carrier. This means
that, at the terminal velocity of any charge caytibe retarding force has to be twice as great.
(Since, upon making that final circuit connectitre velocity of the charge carriers increases
until the retarding force on each charge carrieigisalin magnitude to the applied force.) In an
ohmic material, if the retarding force is twicegaeat, then the velocity is twice as great. If the
velocity is twice as great, then the charge flote réhe electric current, is twice as great. So,
doubling the voltage across the resistor doublestinrent. Indeed, for a resistor that obeys
Ohm’s Law, the current in a resistor is directlpportional to the voltage across the resistor.

Summarizing: When you put a voltage across atoesihiere is a current in that resistor. The
ratio of the voltage to the current is called tesistance of the resistor.

R=1

This definition of resistance is consistent withr anderstanding that the resistance of a resistor
is a measure of how lousy a conductor it is. Chiecolt. If, for a given voltage across the
resistor, you get a tiny little current (meaning tiesistor is a very poor conductor), the value of

resistanceR :VI_ with that small value of current in the denomimate very big. If, on the
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Chapter 9 Electric Current, EMF, Ohm's Law

other hand, for the same voltage, you get a bigeati{meaning the resistor is a good

. V .
conductor), then the value of resistarRe T Is small.

If the material of which the resistor is made ob&ysn’s Law, then the resistanBas a
. . . . . V .
constant, meaning that its value is the same féerdnt voltages. The relatioR = T IS

typically written in the fornv = IR.

Ohm’s Law: The resistand® in the expressiol = IR, is a constant.

Ohm’s Law is good for resistors made of certainenats (called ohmic
materials) over a limited range of voltages.

Units of Resistance

Given that the resistance of a resistor is defaethe ratio of the voltage across that resistor to
the resulting current in that resistor,

it is evident that the unit of resistance is thé per ampereK . This combination unit is given

a name. We call it the ohm, abbreviaf®dhe Greek letter upper-case omega.

volt
ampere

10=1
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10 Resistivity, Power

In the last chapter we discussed resistors thdboorto Ohm’s Law. From the discussion, one

could deduce that the resistance of such a resisfmnds on the nature of the material of which
the resistor is made and on the size and shaje eésistor. In fact, for resistors made out of a
single kind of material, in the shape of a Wingth a terminal at each end,

Length L

Cros«-sectional AreaA j/'

the resistance is given by:
R=p— (10-1)

where:
R is the resistance of the resistor as measuredebettihe ends,
© Is the resistivity of the substance of which tesistor is made,
A is the cross-sectional area of the wire-shapadtoesand
L is the length of the resistor.

The values of resistivity for several common maierare provided in the following table:

Material Resistivity o
Silver 1.6x10" Qi
Copper 1.7x10" Qi
Gold 24x10° QI

Aluminum | 3x10°" Qi
Tungsten 56x10° Qlh
Nichrome | 5.5x10 " QIfn
Seawater 0.25QIlm

Rubber 1x10° Qi
Glass 1x10° to 1x10" Qi
Quartz 5x10 " to 7.5¢10" Q[

! The resistor can have any shape such that one lineansion can be identified as the length of the resisto, a
such that the intersection of a plane perpendiculdradength of the resistor, at any position alongé¢hgth of the
resistor, has one and the same area (the crossrs@crea of the resistor). | am calling the shape $hape of a
wire” for ease in identification of what we mean by thl®ng-the-length” dimension.
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Chapter 10 Resistivity, Power

In the expressionR = p% , the resistivityp depends on the charge carfidensity, that is, the

number-of-charge-carriers-per-volume. The moregshaarriers per volume, the smaller the
resistance, since, for a given velocity of the ghasarriers, more of them will be passing any
point along the length of the resistor every secdémda given voltage across the resistor. The
resistivity also depends on the retarding forcéofacWe said that the retarding force on each
charge carrier is proportional to the velocity ludtt charge carrier.

Retarding Force = (factor) times (charge carrier velocity)

(The minus sign is there because the retardingg fisro the direction opposite that of the
charge-carrier velocity.) The bigger the retardmige factor, the greater the resistivity of the
material for which the factor applies.

The charge carrier density and the retarding féactor determine the value pf The effect of

e on the resistance is evident in the expressE{cmp% . The biggep is, the greater the
resistance.

Why the factor of. in R= p% ? It's saying that the greater the length of thgls-substance

resistor in the shape of a wire, the greater thestance of the resistor, all other things being
equal (same substance, same cross-sectional dr@a@ans, for instance, that if you have two
resistors, identical in all respects except that isrtwice as long as the other, and you put the
same voltage across each of the resistors, yaf'lhglf the current in the longer resistor. Why
is that?

To get at the answer, we need to consider thereldetid inside the wire-shaped resistor when
we have a voltag¥ across the resistor. The thing is, the elecieid finside the resistor is
directed along the length of the resistor, anba# the same magnitude everywhere along the
length of the resistor. Evidence for this can beamed by means of simple voltage
measurements. Use a voltmeter to measure thetjpdi@ifferenceAV between two points on
the resistor that are separated by a certain dist®g say 2 mm (measured along the length of
the resistor) for instance. It turns out that retter where along the length you pick the pair of
points (separated from each other byAkg you always get the same voltage reading. Ingagin
(this part is a thought experiment) moving a pesitest chargg, that distancéx along the
resistor from high potential toward low potenti&do matter where along the length of the
resistor you do that, the work done (by the eledteld characterized by the potentig)AV
(calculated as the negative of the change of thenpial energy of the test charge) is the same.
The work, calculated as force times distance, iE&Ax. For that to be the same at every point
along the length of the resistor, the electriadfielhas to have the same value everywhere along
the length of the resistor. Furthermore, settivggtivo expressions for the work equal to each
other yields:

2 A charge carrier is a particle that has charge anddégdrmove about within the material of which it is a part.
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o, EAX = g, AV
E:ﬂ
AX

E being constant thus means th%yt— Is constant which means that a grapN ok.x is a
X

straight line with sIopeAAl. But, in calculating that slope, since it is &igtht line, we don'’t
X

have to use a tiny littlAx. We can use the entire length of the resistorthedorresponding
potential difference, which is the voltayeacross the resistor. Thus,

E= !
L
where:
E is the magnitude of the electric field everywhieréhe single-substance wire-shaped
resistor,

V is the voltage across the resistor, and
L is the length of the resistor.

This result € :%) is profound in and of itself, but, if you recalle were working on

answering the question about why the resisté&ad a single-substance wire-shaped resistor, is
proportional to the length of the resistor. We almost there. The resistance is the ratio of the

. o . V .
voltage across the resistor to the current iltcording toE :f , the longer the resistor, the

weaker the electric field in the resistor for aegiwoltage across it. A wealeresults in a
smaller terminal velocity for the charge carrierghe resistor, which results in a smaller current.
Thus, the longer the resistor, the smaller theerirrand; the smaller the current, the greater the
voltage-to-current ratio; meaning, the greaterdsistance.

The next resistance-affecting characteristitis p% that | want to discuss is the area Why

should that affect the resistance the way it doéspresence in the denominator means that the
bigger the cross-sectional area of the wire-shapgidtor, thesmallerthe resistance. Why is
that?

If we compare two different resistors made of thme material and having the same length (but
different cross-sectional areas) both having tieesaoltage across them, they will have the

same electric fielde :% in them. As a result, the charge carriers willhehe same velocity.

In an amount of timdt,
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L = vAt
a=L
\%

all the free-to-move charge carriers in eitherstesiwill flow out the lower potential end of the
resistor (while the same amount of charge flowthénhigher potential end). This tim¢ s the
same for the two different resistors because begistors have the same length, and the charge
carriers in them have the sameThe number of charge carriers in either resistproportional

to the volume of the resistor. Since the volumgiven by volume % A, the number of charge
carriers in either resistor is proportional to thess-sectional aréaof the resistor. Since the
number of charge carriers in either resistor, @didhy the time\t is the current in that resistor,
this means that the current is proportional toattes.

If the current is proportional to the area, thembsistance, being the ratio of the voltage to the

current, must be inversely proportional to the ar&ad so ends our explanation regarding the
presence of tha in the denominator in the expression

Power

You were introduced to power in Volume | of thisolio It is the rate at which work is done. It
is the rate at which energy is transferred. And, the rate at which energy is transformed from
one form of energy into another form of energy.

In a case in which the power is the rate that gnesrgransformed from one form to another, the
amount of energy that is transformed from tio®e timet:

» if the power is constant, is simply the power tirties duration of the time interval:
Energy =Pt

» if the power is a function of time, lettinigbe the time variable that changes from @ to
is:

t
Energy= I P(t")dt’
0
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The Power of a Resistor

In a resistor across which there is a voltslgenergy is transformed from electric potential
energy into thermal energy. A particle of chaggeassing through the resistor, loses an amount
of potential energgV but it does not gain any kinetic energy. As #g&s through the resistor,
the electric field in the resistor does an amodintark gV on the charged particle, but, at a same
time, the retarding force exerted on the chargetigaby the background material of the
resistor, does the negative of that same amounbd{. The retarding force, like friction, is a
non-conservative force. It is exerted on the chaayrier when the charge carrier collides with
impurities and ions (especially at sites of defactd imperfections in the structure of the
material). During those collisions, the chargeieas impart energy to the ions with which they
collide. This gives the ions vibrational energyiethmanifests itself, on a macroscopic scale,
(early in the process) as an increase in temperatsome of the thermal energy is continually
transferred to the surroundings. Under steadg statditions, arrived at after the resistor has
heated up, thermal energy is transferred to th@sndings at the same rate that it is being
transformed from electrical potential energy in tésistor.

The rate at which electric potential energy is @ted to thermal energy in the resistor is the
power of the resistor (a.k.a. the power dissipabgcthe resistor). It is the rate at which the
energy is being delivered to the resistor. Thegneonversion that occurs in the resistor is
sometimes referred to as the dissipation of ene@ye says that the resistor power is the rate at
which energy is dissipated in the resistor. Itstfy easy to arrive at an expression for the
power of a resistor in terms of circuit quantitidsach time a coulomb of charge passes through
a resistor that has a voltageacross it, an amount of energy equal to one cdukymesV is
converted to thermal energy. The currestthe number of coulombs-per-second passing
through the resistor. Hentktimesl is the number of joules-per-second convertedeonhil
energy. That's the power of the resistor. In ghor

P=IV

where:

P is the power of the resistor. It is the rate hicl the resistor is converting electrical
potential energy into thermal energy.

| is the current in the resistor. It is the ratevaich charge is flowing through the resistor.

V is the voltage across the resistor. It is thewarhby which the value of electric potential
(the electric potential energy per charge) at em@inal of the resistor exceeds that at the
other terminal.

% To be dissipated means to be dispersed or broken up and a#miifferent directions.
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The Power of a Seat of EMF

In a typical circuit, a seat of EMF causes positiiarge carriers (in our positive-charge-carrier
model) to go from a lower-potential conductor, thgh itself, to a higher-potential conductor.
The electric field of the conductors exerts a fayneghe charge carriers in the direction opposite
to the direction in which they are going. The deal particles gain electric potential energy.
Where does that energy come from?

In the case of a battery, the energy comes frormadaé potential energy stored in the battery
and released in chemical reactions that occureabdttery moves charge from one terminal to
the other. In the case of a power supply, the pewpply, when plugged into a wall outlet and
turned on, becomes part of a huge circuit includragsmission wires extending all the way
back to a power plant. At the power plant, depemadin the kind of power plant, kinetic energy
of moving water, or thermal energy used to makarst® turn turbines, or chemical potential
energy stored in wood, coal, or oil; is converteelectric potential energy. Whether it is part of
a battery, or a part of a power supply, the se&@MiF converts energy into electric potential
energy. It keeps one of its terminals at a paaééitnigher than the other terminal. Each time it
moves a coulomb of charge from the lower potergiahinal to the higher potential terminal, it
increases the potential energy of that charge lycomlomb times$. Since the curreritis the
number of coulombs per second that the seat of Eld¥es from one terminal to the other, the
power, the rate at which the seat of EMF delivexergy to the circuit, is given by:

P=1&

Recall that it is common to use the symYdhs well asf) to represent the voltage across a seat
of EMF. If you useV, then the power of the seat of EMF is given by:

P=IV
where:
P is the rate at which a seat of EMF delivers enéogy circuit,
| is the current in the seat of EMF (the rate acWltharge flows through the seat of
EMF), and
V is the voltage across the seat of EMF.

This is the same expression as the expressiohdgudwer of a resistor.
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11 Resistors in Series and Parallel; Measuring | &  V

The analysis of a circuit involves the determinaiid the voltage across, and the current through,
circuit elements in that circuit. A method thatall “the method of ever simpler circuits” can be
used to simplify the analysis of many circuits thave more than one resistor. The method
involves the replacement of a combination of resstith a single resistor, carefully chosen so
that the replacement does not change the voltagssaor the current through, the other circuit
elements in the circuit. The resulting circuieasier to analyze, and, the results of its analysis
apply to the original circuit. Because the singgeefully-chosen resistor has the same effect on
the rest of the circuit as the original combinatadmesistors, we call the single resistor the
equivalent resistance of the combination, or, spnle equivalent resistor.

Resistors in Series

One combination of resistors that can be replagddansingle effective resistor is a series
combination of resistors. Two two-terminal circelements in a circuit are in series with each
other when one end of one is connected with oneoétite other with nothing else connected to
the connectioh For instanceR andR, in the following circuit are in series with eacther.

— AN AN

R R
Vv

|
|
From our viewpoint, the right end Bf is connected to the left end Rf and nothing else is

connected to the point in the circuit where they @nnected.

R, andR, in the following circuit are also in series withah other:

R1 Rz
AAAAY A%

Rs
A

\%

! Here we have described adjacent resistors that aeei@s.s Non-adjacent two-terminal circuit elements e ia
series with each other if each is in series with @ ttwo-terminal circuit element. In this definition, in &ah to
an ordinary two-terminal circuit element such as a@e&MF or a resistor, a two-terminal combination iofigit
elements is considered to be a two-terminal cirdeihent.
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But, R andR, in the following circuit, ar@otin series with each other:

R R,

Ry

|V
|

While it is true that the right end 8f is connected to the left end RS, it is not true that
“nothing else is connected to the connection.”ebd the left end dR, is connected to the point
in the circuit at whiclR, andR, are connected to each other.

That’s enough examples about whether or not resisi@ in series with each other. In
implementing the method of ever simpler circuitg plan is to replace a combination of
resistors that are in series with each other wighngle, well-choserquivalentresistor. The
guestion is, what value must the resistance o$itingle resistor be in order for it to be equivalent
to the set of series resistors it replaces? Fat m@ simply give you the result. The derivation
will be provided in the next chapter.

The equivalent resistance of resistors in seriegnply the sum of the resistances.

Rs=R+R, +R,+...
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Resistors in Parallel

Circuit elements are in parallel with each otheéhdy are connected together (by nothing but
“perfect” conductor) at both ends. So, for insnk, andR, in the following circuit:

are in parallel with each other.

On the other handR, andR, in the following circuit

arenotin parallel with each other.

ResistorRR, andR, in the following circuit are in parallel with eacther:

1
|
\%
SR
R
— A ——

R,
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But, none of the resistors in the following circaie in parallel with each other:

AN

whereaR, andR, in the following circuit are in parallel with eactiher:

T

So what is the equivalent resistor for resistongarallel? Here we provide the result. We save
the derivation for the next chapter.

The equivalent resistance of resistors in paraléie reciprocal of the sum of the reciprocals of
the resistances of the resistors making up thdlebtambination:
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Example

Find the voltage across, and the current through eéthe circuit elements in the diagram
below.

N —1

12volts

Solution

First we add some notation to the diagram to defumrevariables (do not omit this step):

l, R=25Q0 R=42Q
= AAMA—AMA
+ Vl - + V2 -

=58Q
@ g R3+VVW -

— |
V=12volts

The + and — signs on the resistors (indicatingiigl potential side and the low potential side of
each resistor), are an important part of the degimiof the voltages. If you are given values, and
the value you calculate fof, turns out to be positive, e.g. +5.0 volts, thenrdader of your
solution knows that the potential of the left erfidRpis 5.0 volts higher than that of the right end.
But, if the value that you calculate fay is negative, e.g:5.0 volts, then the reader knows that
the potential of the left end & is 5.0 voltdower than that of the right end.

The “+” and “~” labels on the resistors must besistent with the current direction. In fact, one
first draws and labels the current arrows, and thés the “+” on the end of the resister that the
current enters (and the “~” on the other end).

Next we draw a sequence of circuits. Each newrdiragncludes an equivalent resistor in place
of oneseries combination @neparallel combination. (Do not omit any diagraiasg, do not
replace anything more than a single series combimat a single parallel combination of
resistors in any one step.) As you draw each itircalculate the value of the equivalent
resistance.
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l, R=25Q0 R=42Q
—>

VW
First, we copy \4 V,
the diagram Rﬁé&%
from the |:‘ Ty, T
preceding :
page. |
«— |
| V=12volts
| Ri2
— WA=
V.
Next, we replace 12
the series Rs
combination of ———VWA
R, andR, with @ , tV,T
1 2 3 3
the equivalent
resistorR ., |
1 -«—— | |
| Vv
R,=R +R,
R, =25Q +42Q
Ri23
AN
Finally, we
replace the
parallel
combination oR , K
andR, with the — |
equivalent resistor ' \%
R...
123 B 1
T T
R, R
1
R123 = 1 1
[ S
67Q 58Q
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Now we analyze the simplest circuit, the one | hiabeled “3” above.

R123: 31.1Q
AAAAY

©,

|
< | |
! V = 12 volts

One of the most common mistakes that folks malenalyzing circuits is using any old voltage
in V =IR. You have to use the voltage across the resistoanalyzing circuit 3, however, we
can use the one voltage in the diagram becausettage across the seat of ENdRthe voltage
across the resistor. The terminals of the resat®iconnected to the same two conductors that
the terminals of the seat of EMF are connectedrtaus,

R123

_12volts
311Q

| =0.386A

At this point, we've got two of the answers. Tlodtage across the seat of EMF was asked for,
but it is also given, so we don’'t have to show aoyk for it. And now we have the current
through the seat of EMF.

V =12 volts
| = 0.39 amperes

Note that the arrow labelddn our diagram is part of our answer. It tells teader whalit
means, including the direction of current flow #opositive value off.
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Our next step, is to take the information that \@eehlearned here, to our next more complicated
circuit. That would be the one | labeled “2” above

V
© e
DdEAS

4—
| = 0386 A

||
|I
V = 12 volts

There are only two wires (conductors) in this dirci am going to highlight them in order to
make my next point:

|
1=0386A /=12 volts

Highlighting the conductors makes it obvious tlie# voltage acroR , is the same as the
voltage across the seat of EMF because, in bo#sct®e voltage is the potential difference
between one and the same pair of conductors. lidesuwhe voltage acro$ is the same as the

voltage across the seat of EMF. Hence, we have,
V,=V

V,, =12 volts

and,

V,=V

3

V, =12 volts.
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The last value is one of our answers. We wereasgapto findv,.

voltage acrosR,, we can use it iV =IRto getl.,

For resistoR,, we have:

Now that we know the

l =67Q
_l’+’iR/l\/2V\,_
V,, =12 volts
, R=580
A=
T: V, = 12 volts
||
«— K
| =0386 A V =12 volts
V3 = |3R3
V3
|, ==
R,
| _12volts
°  58Q
| _12volts
° 58Q
|, =0.207A

The voltage and current through residRpare answers to the problem:

V, =12 volts
|, =021 amperes
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Now let’s get the current throud®),. I've labeled that curredt in diagram 2.

l =67Q
S
V,, =12 volts
@ [l
A=
10V, =12 volts

3

4+—

|
b |
| =0386 A V = 12 volts

For resistoR ,, we have:

Vi = LR,

= Vi
1
R,

| _12volts
Y67Q

|, =0.179A

Now it is time to take what we have learned her¢oufhe next more complicated circuit (which
is the original circuit).

| R=25Q R=42Q
—> A |3/2vvx
+ V - + V2 -

=580
(1) L aem,
| v,

—
V=12volts
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| copy that here with the values of the currentuded:

,= 0.179A, 5\7\359 ijz\;
+ V2

® e
—>
|.= 0.207A Vs

3

It is clear from this diagram that the currénthat we just found (the current throug)) is the
current throughi , and, it is the current throudg).

,= 0.179A

These are answers to the problem.

With the current througR, known, we can now solve fof:
V,=1LR
V, =0.179A (25Q)
V, =4.5volts

Thus, our answers for resistrare:

V, =4.5volts
|,= 0.18 amperes

And, with the current througR, known, we can solve for,:
V2 = IZRZ
V, =0.179A (42Q)

V, =7.5volts
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Thus, our answers for resisty are:

V, =7.5volts
|,= 0.18 amperes

How to Connect a Voltmeter in a Circuit

As discussed earlier in this book, a voltmeter deaice used for measuring the potential
difference between two different points in spabtrea circuit, we use it to measure the potential
difference between two conductors (wires) in tliewi. When you do that, the voltmeter
becomes a two-terminal circuit element of the girclihe ideal voltmeter, as a circuit element,
can be considered to be a resistor with infinigstance. As such, it has no effect on the circuit
This is good. We don’t want the measuring dewiceltange the value of that which you are
trying to measure.

A voltmeter consists of a box with two wires commngt of it. Typically, each wire ends in a
metal-tipped wand (called a probe) or some kinthefal clip. The box has a gauge on it which
displays the potential difference between the twesv Touch the tip of one wire to one point in
the circuit and the tip of the other wire to anotpeint in the circuit (being sure to establish
good metal-to-metal contact at both points) andvttemeter will display the potential

difference (the voltage) between those two pomthe circuit.

A typical manner of depicting a voltmeter in a aitas to draw it as

\%
To connect a voltmeter to measure the voltage aétos the following circuit:

AAN—
R
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hook it up as indicated in the following diagram.

AAN—
R

As far as its role as a circuit element (a sideajf the ideal voltmeter has as much effect on the
circuit it is used on, as the air around the cirbas.

How to Connect an Ammeter in a Circuit

The ammeter, a device used to measure currentptally different beast. The ideal ammeter
acts like a perfectly-conducting piece of wire thenitors the charge flow through itself.
Connecting it in a circuit as you would a voltmefgon't do it!) will drastically change the
circuit (and could cause damage to the meter).

A typical manner of depicting an ammeter in a atreuto draw it as

A
To connect an ammeter to measure the curreRtimthe following circuit:

AAN—
R
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You have to first break the circuit,

and then connect the ammeter in series with tloaicielement whose current you wish to
measure.

Remember, to measure current with an ammstene disassembly is requited
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12 Kirchoff’'s Rules, Terminal Voltage

There are two circuit-analysis laws that are s@fanthat you may consider them “statements of
the obvious” and yet so powerful as to facilitdte ainalysis of circuits of great complexity. The
laws are known as Kirchoff's Laws. The first okapwn both as “Kirchoff's Voltage Law” and
“The Loop Rule” states that, starting on a condd¢ibyou drag the tip of your finger around

any loop in the circuit back to the original contu¢the sum of the voltage changes experienced
by your fingertip will be zero. (To avoid electugion, please think of the finger dragging in an
actual circuit as a thought experiment.)

Kirchoff's Voltage Law (a.k.a. the Loop Rule)

To convey the idea behind Kirchoff's Voltage Lawgrbvide an analogy. Imagine that you are
exploring a six-story mansion that has 20 stai®asppose that you start out on the first floor.
As you wander around the mansion, you sometimeasgpggiairs and sometimes go down stairs.
Each time you go up stairs, you experience a pesithange in your elevation. Each time you
go down stairs, you experience a negative changeunelevation. No matter how convoluted
the path of your explorations might be, if you ag@mnd yourself on the first floor of the

mansion, you can rest assured that the algebraim$all your elevation changes is zero.

To relate the analogy to a circuit, it is best iwthe circuit as a bunch of conductors connected
by circuit elements (rather than the other way adoas we usually view a circuit). Each
conductor in the circuit is at a different valueetéctric potential (just as each floor in the
mansion is at a different value of elevation). Ysbart with your fingertip on a particular
conductor in the circuit, analogous to startingagrarticular floor of the mansion. The
conductor is at a particular potential. You prdpalmn’t know the value of that potential any
more than you know the elevation that the firsbflof the mansion is above sea level. You
don’t need that information. Now, as you drag yimger around the loop, as long as you stay
on the same conductor, your fingertip will staytet same potential. But, as you drag your
fingertip from that conductor, through a circuieelent, to the next conductor on your path, the
potential of your fingertip will change by an amoeqgual to the voltage across the circuit
element (the potential difference between the tamdactors). This is analogous to climbing or
descending a flight of stairs and experiencingangk in elevation equal to the elevation
difference between the two floors.

If you drag your fingertip around the circuit idaop, back to the original conductor, your finger
is again at the potential of that conductor. Ashsithe sum of the changes in electric potential
experienced by your finger on its traversal oflthep must be zero. This is analogous to stating
that if you start on one floor of the mansion, aadter wandering through the mansion, up and

! Circuits consist of circuit elements and wires, | atiirng the wires “conductors.” More specifically, anduictor
in a circuit is any wire segment, together will ah@t wire segments connected directly to the wire seg (it
no intervening circuit elements).

92



Chapter 12 Kirchoff's Rules, Terminal Voltage

down staircases, you end up on the same flooreofrthinsion, your total elevation change is
zero.

In dragging your finger around a closed loop oireat (in any direction you want, regardless of
the current direction) and adding each of the galtehanges to a running total, the critical issue
is the algebraic sign of each voltage change hérfallowing example we show the steps that
you need to take to get those signs right, anaddweepto the reader of your solution that they are
correct.

Example

Find the current through each of the resistor&énfollowing circuit.

2220 560Q
— VW AN
15 volts———— _—— 27 volts
I I
18 volts

Before we get started, let’s define some variablaes:

R =222Q R,=560Q
— VW AN
V,=15volts———— —— V,=27volts
I I
V,=18 volts

3

Each two-terminal circuit element has one termihat is at a higher potential than the other
terminal. The next thing we want to do is to lakath higher potential terminal with a “+” and
each lower-potential terminal with &  We start with the seats of EMF. They areiai By
definition, the longer parallel line segment, ie 8ymbol used to depict a seat of EMF, is at the
higher potential.

93



+
V,=15 volts—

Chapter 12 Kirchoff's Rules, Terminal Voltage

R =222Q R,=560Q
— VW AN
E— iv2:27 volts

+
|
— |+
V,=18 volts

3

Next we define a current variable for each “leg’tled circuit. A “leg” of the circuit extends
from a point in the circuit where three or moreesiare joined (called a junction) to the next
junction. All the circuit elements in any one lefthe circuit are in series with each other, so,
they all have the same current through them.

+
V,=15 volts™—

l, R =222Q R,=560Q
ANV AN
V
E— = V,=27 volts
+
1
1 | +
V,=18 volts

Note: In defining your current variables, the diten in which you draw the arrow in a
particular leg of the circuit, is just a guess. miospend a lot of time on your guess. It doesn’t
matter. If the current is actually in the direatiopposite that in which your arrow points, you
will simply get a negative value for the currentighle. The reader of your solution is
responsible for looking at your diagram to see lyow have defined the current direction and
interpreting the algebraic sign of the current valaccordingly.

Now, by definition, the current is the directionvitnich positive charge carriers are flowing.
The charge carrielsseelectric potential energy when they go througbksastor, so, they go
from a higher-potential conductor, to a lower-pédrconductor when they go through a
resistor. That means that the end of the resatavhich the current enters the resistor is the
higher potential terminal (+), and, the end at Whiee current exits the resistor is the lower-
potential terminal<) of the resistor.
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|, R=222Q R,=560Q
AN AN ——

+ - +
V:
+ -

V,=15 volts——— == V,=27volts T l,
- +
|
_ |+
V,=18 volts

Now let’s define some variable names for the resigbltages:

l,  R=2220 R,=560Q
=AM ANA——
+ - +
VRl ll?: VR2
+ -
V,=15 volts——— _—— V,=27volts TIZ
- +
|
1 | N
V,=18 volts

Note that the + and — signs on the resistors goerntant parts of our definitions &, andV,,.

If, for instance, we calculaté, to have a positive value, then, that means tiealeth (as we

view it) end ofV_, is at a higher potential than the right end (dscated in our diagram). W_,
turns out to be negative, that means that thesfeftofR  is actually at a lower potential than the
right end. We do not have to do any more woRk jfturns out to be negative. It is incumbent

upon the reader of our solution to look at ourwitrdiagram to see what the algebraic sign of
our value fotvV,, means.

With all the circuit element terminals labeled ‘fet “higher potential” or “~” for “lower
potential,” we are now ready to apply the Loop Rulen going to draw two loops with
arrowheads. The loop that one draws is not supptosbe a vague indicator of direction but a
specific statement that says, “Start at this pmithe circuit. Go around this loop in this
direction, and, end at this point in the circuidlso, the starting point and the ending point
should be the same. In particular, they must bthersame conductor. (Never start the loop on

a circuit element.) In the following diagram #ne two loops, one labele@ and the other
labeled () .
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=222Q R,=560Q
%\/\v /3# =DAA =
VR2 "
V,=15 volts— V,=27 volts T l,

-+
V,=18 volts

Now we write KVL @ to tell the reader that we are applying the LoageRKirchoff's Voltage
Law) using loop@ , and transcribe the loop equation from the cirdiggram:

KVL @
+V, -V_+V,=0

The equation is obtained by dragging your fingeatipund the exact loop indicated and
recording the voltage changes experienced by yongeftip, and then, remembering to write
“= 0.” Starting at the point on the circuit clos&sthe tail of the loop 1 arrow, as we drag our
finger around the loop, we first traverse the sé&EMF, V.. In traversing/, we go from lower

potential €) to higher potential (+). That means that thgdinexperiences a positive change in
potential, hencey, enters the equation with a positive sign. Nextcome to resistdr,. In

traversingR, we go from higher potential (+) to lower poten(ig). That's a negative change in
potential. Hencey,, enters our loop equation with a negative sign.w&scontinue our way
about the loop we come to the seat of EWjfand go from lower potentiat] to higher potential
(+) as we traverse it. Thug, enters the loop equation with a positive sigmaHy, we arrive
back at the starting point. That means thattime to write “= 0.”

We transcribe the second loop equation in the gasigon:

KVL @
_Vz +VR2_V3: 0

With these two equations in hand, and knowing Yhat=1,R, andV,_, =1, R, the solution to the

example problem is straightforward. (We leavesiaa exercise for the reader.) It is now time
to move on to Kirchoff's other law.
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Kirchoff’'s Current Law (a.k.a. the Junction Rule)

Kirchoff's junction rule is a simple statement bétfact that charge does not pile up at a
junction. (Recall that a junction is a point igiecuit where three or more wires are joined
together.) I'm going to state it two ways and gsk to pick the one you prefer and use that one.
One way of stating it is to say that the net curneto a junction is zero. Check out the circuit
from the example problem:

l, R =222Q A R,=560Q
AN AT
+ - +
VR1 EIC’: VR2
V,=15 volts——— == V,=27volts le
- +
|
_ |+
V,=18 volts

3

In this copy of the diagram of that circuit, | utot at the junction at which | wish to apply
Kirchoff's Current Law, and, | labeled that junctitA.”

Note that there are three legs of the circuit &ttddo junctiorA. In one of them, curremf
flows toward the junction. In another, curréniows toward the junction. In the third leg,
currentl, flows away from the junction. A current away frane junction counts as the negative

of that value of current, toward the junction. Boapplying Kirchoff's Current Law in the form,
“The net current into any junction is zero,” to gaion A yields

KCL A
| +1,-1,= 0

Note the negative sign in front bf A current of -, into junctionA is the same thing as a
current ofl, out of that junction, which is exactly what we bav

The other way of stating Kirchoff's Current Law f$he current flowing into a junction is equal
to the current flowing out of that junction.” Ihi$ form, in applying Kirchoff's Current Law to
junctionA in the circuit above, one would write:

KCL A

|L+1= 1

Obviously, the two results are the same.
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Terminal Voltage — A More Realistic Model for a Battery or DC:tieal Power
Source

Our model for a battery up to this point has beseat of EMF. | said that a seat of EMF can be
considered to be an ideal battery. This modeafbattery is good as long as the battery is fairly
new and unused and the current through it is sn&hall compared to what? How small?

Well, small enough so that the voltage across #iteety when it is in the circuit is about the
same as it is when it is not in any circuit. Hdase to being the same? That depends on how
accurate you want your results to be. The voltagess a battery decreases when you connect
the battery in a circuit. If it decreases by fparcent and you calculate values based on the
voltage across the battery when it is in no cirogour results will probably be about 5% off.

A better model for a battery is an ideal seat offENseries with a resistor. A battery behaves
very much as if it consisted of a seat of EMF inesewith a resistor, but, you can never separate
the seat of EMF from the resistor, and if you oppra battery you will never find a resistor in
there. Think of a battery as a black box contgrarseat of EMF and a resistor. The resistor in
this model is called the internal resistance of the

battery.
... Batery ________
€ i
o
Lower-Potential £)~ ! ;Higher-Potential (+)
Battery Terminal C Battery Terminal
Seat of EME Internal Resistance

of the Batter

The point at which the seat of EMF is connectethéointernal resistance of the battery is
inaccessible. The potential difference betweeriéhminals of the battery is called the terminal
voltage of the battery. When the battery is not pba circuit, the terminal voltage is equal to
the EMF. You can deduce this from the fact thag¢rmvthe battery is not part of a circuit, there
can be no current through the resistor. If thenmoi current through the resistor than the two
terminals of the resistor must be at one and thresalue of electric potential. Thus, in the
diagram above, the right end of the resistor thatsame potential as the high-potential terminal
of the seat of EMF.

Now, let’s put the battery in a circuit:
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!
:

I've indicated the two point& andB on the circuit for communication purposes. Thenteal
voltage is the voltage from to B (V,,). If you trace the circuit, with your fingertifsom A to
B, the terminal voltage (how much higher the potdnsi atB than it is atA) is just the sum of
the voltage changes your finger experiences albagath. (Note that this time, we st
going all the way around a loop. We ot wind up on the same conductor upon which we
started. So, the sum of the voltage changes A&doB is notzero.) To sum the voltage
changes from to B, | will mark the terminals of the components betwA andB with “+” for

higher potential and-" for lower potential.

First the seat of EMF: That's trivial. The shorsele of the EMF symbol is the lower potential
(-) side and the longer side is the higher pote(tipside.

!
:

Now, for the internal resistance of the batteryie Bnd of the internal resistancthat the
current enters is the higher-potential (+) end, éimel end that it exits is the lower-potentig) (
end.
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*>
L
+
+
<SS
I
____:.a___

R

Note that | have also defined, in the precedingmim, the variabl¥, for the voltage across the
internal resistance of the battery. Remembergtdige terminal voltag¥,, of the battery, all
we have to do is to sum the potential changesatinatingertip would experience if we were to
drag it fromA to B in the circuit. (This is definitely a thought epment because we can't get
our fingertip inside the battery.)

Ve=€6-V
Ve=€&-Ir

Note that, in the second line, | used the definitod resistance=IR) in the formV, = I, to
replaceV, with 1.

We have been consistent, in this book, with theseation that a double subscript such as AB
can be readA to B” meaning, in the case at hand, thigt is the sum of the potential changes
from A to B (rather than the other way around), in other wothistV, . is how much higher the
electric potential at poirB is than the electric potential at pot Still, there are some books
out there that tak¥,, (all by itself) to mean the voltage Afwith respect t& (which is the
negative of what we mean by it). So, for folksttimay have used a different convention than
you use, it is a good idea to diagrammaticallymiegxactly what you mean by,. Putting a
voltmeter, labeled to indicate that it reads, and labeled to indicate which terminal is its “+”
terminal and which is its~" terminal is a good way to do this.
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13 RC Circuits

Suppose you connect a capacitor across a battetyyait until the capacitor is charged to the
extent that the voltage across the capacitor ialdguhe EMFV, of the battery. Further
suppose that you remove the capacitor from thebhattYou now have a capacitor with voltage
V, and charge),, whereqg, =C V..

+| +
C—==

The capacitor is said to be charged. Now supgudeybu connect the capacitor in series with
an open switch and a resistor as depicted below.

+ |+
C=—=0u V% %R

The capacitor remains charged as long as the svatohins open. Now suppose that, at a clock
reading we shall call time zero, you close the dwit

);

+
;qO’VO %R

I |+

From time O on, the circuit is:

+
| [+

C_—q.,V R%

The potential across the resistor is now the sambeapotential across the capacitor. This
results in current through the resistor:
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| [+

+
il I
oy a3

Positive charge flows from the upper plate of thpacitor, down through the resistor to the
lower plate of the capacitor. The capacitor isl $aibe discharging. As the charge on the
capacitor decreases; accordingjte CV, which can be writteN = g/C, the voltage across the
capacitor decreases. But, as is clear from tigrai, the voltage across the capacitor is the
voltage across the resistor. What we are sayititaisthe voltage across the resistor decreases.
According toV =R, which can be written ds= V/R, this means that the current through the
resistor decreases. So, the capacitor continudistbharge at an ever-decreasing rate.
Eventually, the charge on the capacitor decreasasiegligible value, essentially zero, and the
current dies down to a negligible value, essentiedro. Of interest is how the various
guantities, the voltage across both circuit elesyahie charge on the capacitor, and the current
through the resistor depend on the timé.et’s apply the loop rule to the circuit whileet
capacitor is discharging:

Usingg = CV expressed ag = a andV, = IR, we obtain
C

9_r=o0.
C

| is the charge flow rate through the resistor, Whgcequivalent to the rate at which charge is
being depleted from the capacitor (since the chéogeng through the resistor comes from the
capacitor). Thusis the negative of the rate of change of the ahargthe capacitor:

~_dq
dt
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Substituting this ( = —%) into our loop rule equationg - IR =0) yields:

ﬂ-}-ﬂR:O
C dt

dg 1

at  RcY

Thusq(t) is a function whose derivative with respect todiis itself, times the constaﬁtR—C.

The function is essentially its own derivative. isT hringset to mind. The way to get that

constant (—Ric) to appear when we take the derivative@f with respect td is to include it in

1
-1t
the exponent. Trg(t) =g,e *¢ . Now, when you apply the chain rule for the fumctof a
. dg_ 1 -t . dq_ 1 -t
function you get— =—-——q,e *¢ meaning that— = -———q,e ®¢ which is just what we
dt RC dt RC

wanted. Let’s check the unit® was defined agll— meaning the ohm is a volt per ampere. And

C was defined a§/q— meaning that the farad is a coulomb per volt.tHeaunits oRC.

Cl=——=—=—-=5s (where the C here stands for coulombs).

1

-t . :
So the exponent iB R¢ is unitless. That works. We can’t rast something that has units.
1

-1t )
Now, about that|, out front inq =q,e R¢ . The exponential evaluates to a unitless quanSty

we need to put thg, there to get units of charge. If you plug theuead in for the time in
1

-1t
g=q,e "¢ yougetg=q,. Thus,g, is the initial value of the charge.

One final point: The produ®&Cis called the “RC time constant.” The symbad often used to
represent that time constant. In other words,

r=RC (13-1)

wherer is alsoreferred to as the RC time constant. In ternts ofir expression fag becomes:

t

q=g.e 7
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Note that when t =, we have

-1

q=q.e
1

q:_qo
€

1 Is.368 sor is the time it takes fog to become 38% of its original value.
€

With our expression fog in hand, it is easy to get the expression fovtiieage across the

capacitor (which is the same as the voltage athessesistory,_ =V, ) which we have been
1

-t
calling V. Substituting our expressian=g,e ¢ into the defining equation for capacitance
g = CV solved forV,

V =

0Ola

yields:

1
V :&e_ﬁ:t
C

But if g, is the charge on the capacitor at time 0, thenCV, whereV, is the voltage across the
capacitor at time 0O or:

1

-t
SubstitutingV, for % inV :%e RC above yields:

_t
V =V, e RC (13-2)

for both the voltage across the capacitor and titage across the resistor. From, the defining
equation for resistance:

V=IR,

we can write:
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t
N . = . . . V).
Substituting our expressiow} e R¢ in for V turns this equatloﬁl :Ej into:

| =1,e R (13-3)

Summarizing, we note that all three of the quaegjt, |, andg decrease exponentially with
time.

Charging Circuit

Consider the following circuit, containing an iaili-uncharged capacitor, and

I |+

L |+

Let’s think about what will happen as time elaps@éth no charge on the capacitor, the voltage
across it is zero, meaning the potential of thbtrigrminal of the resistor is the same as the
potential of the lower-potential terminal of thesef EMF. Since the left end of the resistor is
connected to the higher-potential terminal of that ©f EMF, this means that at time 0, the
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voltage across the resistor is equivalent to thé-EMf the seat of EMF. Thus, there will be a
rightward current through the resistor.

I |+

The positive charge flowing through the resist® ttacome from someplace. Where does it
come from? Answer: The bottom plate of the capaciflso, charge can't flow through an
ideal capacitor. So where does it go? It pile®miphe top plate of the capacitor.

I |+

+| +
- C=a V%

The capacitor is becoming charged. As it doesydiitage across the capacitor increases,
meaning the potential of the right terminal of theistor increases (relative to the lower-
potential terminal of the seat of EMF). The poied of the left terminal (also relative to the
lower-potential terminal of the seat of EMF) rensatonstant, as dictated by the seat of EMF.
This means that the voltage across the resistdincaly decreases. This, in turn; frofg= IR,
written asl = V. /R, means that the current continually decreasess ddcurs until there is so
much charge on the capacitor that= £ meaning tha¥, = 0 sol = 0.

Recapping our conceptual discussion:

At time 0, we close the switch:

The charge on the capacitor starts off at 0 andd¥up tog = C&é whereé is the
EMF voltage.

The capacitor voltage starts off at 0 and build$aufne EMF voltage.

* The current starts off dt, :g and decreases to 0.
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Okay, we have a qualitative understanding of wiagiplens. Let’s see if we can obtain formulas
for V,, I, V., andq as functions of time. Here’s the circuit:

Iy |+

+| +
— C=—d \, (q,=0)

We apply the loop rule:

+
——9
KVL (D
+6-V,-V_=0
and the definitions of resistance and capacitance:
=CV,
V. =IR A7
_a
cC
to obtain:
6-1R-J=0
C
R+d=¢
C
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Then we use the fact that the current is equdi¢odte at which charge is building up on the

capacitor, | :%, to get:

ER+E:5
dt C

ﬂ-}-i:é
d¢t RC R

This is interesting. This is the same equatiohweahad before, except that we have the
constanté/R on the right instead of O.

For this equation, I'm simply going to provide aslidcuss the solution, rather than show you
how to solve the differential equation. The chaigection of time that solves this equation is:

t
q=c¢ (1-e're)

Please substitute it into the differential equa@ﬁ— +RiC = gj and verify that it leads to an

identity.

_t
Now let's check to make sure that=Cé€ (1—e RC) is consistent with our conceptual

_t
understanding. At time zerbd<£ 0), our expression(t) =Cé& (1—e RC) evaluates to:

0

q0) =Cé¢ (1-e*e)
=cé (1-¢°)
=cé (1-1)

q@0) =0
Excellent. This is consistent with the fact tha tapacitor starts out uncharged.

_t
Now, what does our charge functigt) = C¢& (1— e RC) say about what happens to the charge
of the capacitor in the limit &ggoes to infinity?
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. . L
!IETOIO q(t) = I|m Cé (1—e RC)

—Cé’llm(l e )

X - o

=célim (1- 1)

X - o

Ccpim(1 1
_cgm(l 7)

=Cé¢ (1—Iy|rr!° v

=cé¢ (1-0)
iim q(t) =Cé

Well, this makes sense. Our conceptual understgndas that the capacitor would keep
charging until the voltage across the capacitor @psl to the voltage across the seat of EMF.
From the definition of capacitance, when the capaeltage isé, its charge is indee@dé. The
formula yields the expected result 1:ml q(t) .

Once we have(t) it is pretty easy to get the other circuit quaesi For instance, from the
definition of capacitance:

g=CV,,

C
_t
we haveV_ = g/C which, with g = C¢ (1-e *¢) evaluates to:

t

V. =¢ (1-e =) (13-4)
Our original loop equation read:
E-V,-V.=0
So:
V.= €=V,

which, withV, = € (1-e ®¢) can be written as:

t
V.=é-¢(1-e®c)
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t

V,=€-€+EeRe

Y/

R

From our definition of resistance:

t

with V. = e Re, this can be expressed as:

t

e RC

pollKs

At time 0, this evaluates #/R meaning tha€/R can be interpreted as the current at time 0

allowing us to write our functioH(t) as

t

= ' RC
I=1,¢e

Our formula has the current starting out at its imaxn value and decreasing exponentially with
time, as anticipated based on our conceptual utaa®lieg of the circuit. Note that this is the
same formula that we got for the current in thelthsging-capacitor circuit. In both cases, the

t

current dies off exponentially. The reasons differt the effectl(= 1, e ®¢) is the same:

In the discharging-capacitor circuit, the currerinh the charging-capacitor circuit, the current

dies off because the capacitor runs out of
charge.

|+

+| +
C==a V%

dies off because the capacitor voltage
counteracts the effect of the seat of EMF, ar
because that capacitor voltage builds ug &s
the capacitor charges.
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14 Capacitors in Series & Parallel

The method of ever-simpler circuits that we usediicuits with more than one resistor can also
be used for circuits having more than one capaciite idea is to replace a combination circuit
element consisting of more than one capacitor awsimgle equivalent capacitor. The equivalent
capacitor should be equivalent in the sense th#t,the same potential across it, it will have the

same charge as the combination circuit element.

Capacitors in Series

Let’s start with a case in which the combinatiorceit element consists of two capacitors in

series with each other:

We consider the two capacitors to be a two-ternmgoatbination circuit element:

@)

@)

The voltage across the combination circuit eleneotearly the EMF voltag¥ since, for both
the seat of EMF and the combination circuit elemensstre talking about the potential difference

between the same two conductors:
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The voltage across each individual capacitor isyéwer, not known.

But consider this: After that last wire is connekie the circuit, the charging process (which
takes essentially no time at all) can be understoguioceed as follows (where, for ease of
understanding, we describe things that occur sanettusly as if they occurred sequentially):

The seat of EMF pulls some positive charge frombitkom plate of the lower capacitor and
pushes it onto the top plate of the upper capacitor

+
|+
O

| |
1
0

The key point about this movement of charge is tiratamount of positive charge on the top
plate of the upper capacitor is exactly equal eoaimount of negative charge on the bottom plate
of the lower capacitor (because that’s where ttstipe charge came from!)

Now, the positive charge on the upper plate otdipecapacitor repels the positive charge
(remember, every neutral object consists of hugeusms of both kinds of charge, and, in our
positive-charge-carrier convention, the positivargles are free to move) on the bottom plate of
the upper capacitor and that charge has a condyadith to the top plate of the lower capacitor,
to which it (the positive charge) is attracted g hegative charge on the bottom plate of the
lower capacitor.

The final result is that both capacitors have améthe same charge

] |+
I||+

[+
|+
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which in turn causes capacitQy to have voltagd/, =— and capacito€, to have voltage
1
- 4q
V, =—.
2 C2
4+
q — — Cl ’ Vl
V ——
T+
q TT C2 ) V2
By the loop rule,
© .
d—==C, . V,
+
- 4+
q Tt C2 1 V2
KvL O
V-V,-V,=0
V=V, +V,
V :i-}-i
G G
V = o} (i + i]
G G
_ 1
a=1—V
R S
G
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So, what we're saying is, that when you put a gatd across the two-terminal circuit element

\——iC,
i::iCZ
N ]
an amount of chargg :1—11V iIs moved from the bottom terminal of the combioati
R S
C, G

circuit element, around the circuit, to the toprimal. Then charge stops moving. Recall that

we defined the capacitance of a capacitor to beaﬂireg of the charge on the capacitor to the

corresponding voltage across the capacite\gl—. for our two-terminal combination circuit

element is thus the equivalent capacitance ofwetérminal circuit element. Solving

q=———V forthe ratio yields & = so our equivalent capacitance for two
1,1 Y, v 1,1
C G C, GC,
capacitors in series 8 = 1 1 1
7-}-7
Cl CZ
EZZECI — I
e
R Cl Cz

By logical induction, we can extend this argumentdver any number of capacitors in series
with each other, obtaining:

CS = 1 1 1 (1¥|'

As far as making things easy to remember, it'stipstbad the way things work out sometimes.
This expression is mathematically identical toeRkpression for resistors parallel. But, this
expression is for capacitorsseries
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Capacitors in Parallel

Suppose we put a voltafeacross a combination circuit element consisting péir of
capacitors in parallel with each other:

It is clear from the diagram that the voltage asmesch capacitor is just the ENMFsince the
voltage across every component in the circuit espgbtential difference between the same two

conductors.

—_—C,V —_—C,V

17

So what happens (almost instantaneously) when vke that final connection? Answer: The
seat of EMF pulls charge off the bottom platesheftivo capacitors and pushes it onto the top

plates until the charge @ is ¢, = CV and the charge o@, is q, =C,V .

1| |+

To do that, the seat of EMF has to move a totalgehaf
=9, +q,
qg=C, V+(C,V

g=(C, +C,)V
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Solving the last equatioq,= (C, +C,)V, for the equivalent capacitanCg, defined asy/V,
yields:

In other words:

—_—CcC _—~¢C — ——C,=C, +C,

So, the equivalent capacitance of capacitors ialleais simply the sum of the individual
capacitances. (This is the way resisinrseriescombine.) By means of inductive reasoning,
the result can be extended to any number of capaciielding:

C.=C, +C, +C, + ... (14-2)

Concluding Remarks

The facts that the voltage is the same for capacitoparallel and the charge is the same for
capacitors in series are important, but, if yokklabthese as two more things that you have to
commit to memory then you are not going about wiudy of physics the right way. You need
to be able to “see” that the charge on capacitoseries has to be the same because the charge
on one capacitor comes from its (originally-neytredighbor. You need to be able to “see” that
the voltage across capacitors in parallel has tihdésame because, for each capacitor, the
voltage is the potential difference betweengametwo conductors.
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15 Magnetic Field Intro: Effects

We now begin our study of magnetism, and, analogmtise way in which we began our study
of electricity, we start by discussing the effeca@iven magnetic field without first explaining
how such a magnetic field might be caused to e delve into the causes of magnetic fields
in subsequent chapters.

A magnetic field is a vector field. That is, itas infinite set of vectors, one at each pointm t
region of space where the magnetic field exist® Uae the expression “magnetic field” to
designate both the infinite set of vectors, andgmbne is talking about the magnetic field at a
point in space, the one magnetic field vector at goint in space. We use the symBdb
represent the magnetic field. The most basic effea magnetic field is to exert a torque on an
object that has a property knownraagnetic dipole momerand, that finds itself in the

magnetic field. A particle or object that has a+zero value of magnetic dipole moment is
called a magnetic dipole. A magnetic dipole isaaragnet. The value of the magnitude of the
magnetic dipole moment of an object is a measur®wfstrong a bar magnet it is. A magnetic
dipole has two ends, known as poles—a north paleassouth pole. Magnetic dipole moment is
a property of matter which has direction. We cafing the direction, of the magnetic dipole
moment of an object, by considering the objecte@b arrow whose north pole is the arrowhead
and whose south pole is the tail. The directiowlich the arrow is pointing is the direction of
the magnetic dipole moment of the object. The ahinagnetic dipole moment is théiK
(ampere meter-squaréd)While magnetic compass needles come in a vanfetyagnetic dipole
moments, a representative value for the magnetizielimoment of a compass needleLif\m?.

Again, the most basic effect of a magnetic fieltbigxert a torque on a magnetic dipole that
finds itself in the magnetic field. The magnet@d vector at a given point in space, is the
maximum possible torque-per-magnetic-dipole-montgnould-be-victim that the magnetic

field would/will exert on any magnetic dipole (vit) that might find itself at the point in
guestion. | have to say “maximum possible” becdhsdorque exerted on the magnetic dipole
depends not only on the magnitude of the magniel &t the point in space, and, the magnitude
of the magnetic dipole moment of the victim; buiglso depends on the orientation of the
magnetic dipole relative to the direction of thegmetic field vector. In fact:

T=jixB (15-1)
where:
T is the torque exerted on the magnetic dipole lfiremagnet) by the magnetic field,
i is the magnetic dipole moment of the magnetic ldigthhe bar magnet, the victim), and

B is the magnetic field vector at the location ia@p at which the magnetic dipole is.

! Magnetic dipole moment magnitugiés a fundamental property of matter, as fundamentalassm and

chargey. For the elementary particle known as the electron 9.11x 103! kg, q = 1.60x 10™° C,
and u = 9.27x 10% A%m. Calling the unit of magnetic dipole moment thenAis about as illuminating as calling

the unit of mass theBIn?, or calling the unit of charge theés\(both of which are correct). It would be nice ifrthe
was a name for the unit of magnetic dipole moment irStreystem of units, but there isn’t. There is a nboAg

of magnetic dipole moment. It is called the Bohr magmetbbreviated.; . In units of Bohr magnetons, the

magnetic moment of the electronlig,, .

117



Chapter 15 Magnetic Field Intro: Effects

For the cross product of any two vectors, the mageiof the cross product is the product of the
magnitudes of the two vectors, times the sine efagle the two vectors form when placed tail

to tail. In the case of =i xB, this means:
r =uBsing

In the SI system of units, torque has units @hNnewton-meters). For the units on the right
side ofr = 4 Bsin @ to work out to be Nih, what withyz having units of electric dipole moment

(AM?) and sirf having no units at alB must have units of torque-per-magnetic-dipole-matme

namely,%. That combination unit is given a name. It iBezhthe tesla, abbreviated T.

1T:1'L\”m2

Example 15-1

Consider a magnetic dipole having a magnetic dipwenenty = 0045 A, oriented so that it
makes an angle of 23vith the direction of a uniform magnetic field magnitude B x 10° T
as depicted below. Find the torque exerted omtdgnetic dipole, by the magnetic field.

v

v

Hw

%

v

v

v

v

v

Recall that the arrowhead represents the northgidlee bar magnet that a magnetic dipole is.
The direction of the torque is such that it termsduse the magnetic dipole to point in the
direction of the magnetic field. For the case dial above, that would be clockwise as viewed
from the vantage point of the creator of the diagrihe magnitude of the torque for such a case
can be calculated as follows:

T =uBsing

r =(.045A n?)(5.0x10°T) sin 23

r=88x 10 AT
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Recalling that a tesla isé\lﬁ[m—m2 we have:

r=88x 107 ARO1
A

r=88x 10" Nih

Thus, the torque on the magnetic dipole.&>810" NI clockwise, as viewed from the vantage
point of the creator of the diagram.

Example 15-2

A particle having a magnetic dipole momgit 0.025 Alin? 4 — 0.035 A’ § + 0015 A &

is at a point in space where the magnetic fgéld 23mT 4 + 53mT § - 36mTk.
Find the torque exerted on the particle by the raagrield.

7= ixB

A
1

<

%

0.025Am? -0.035Am? 0.015Am?

a
|

00023 00053 _ 00036
Am Am Am

e

t= 1| (-0.035Am?2)[ -0.0036 2™ | - (0.015am?)[ 0.0053 ™
Am? Am?

+4{ (0015am?)[ 00023 3™ ) - (0.025am?)( - 0.0036 ~ 1
Am? Am?

e

+%| (0.025am? 0.0053%]—(— 0.035Am2)(0.0023%

e

£=12x10"Nm4t -1.2x10*Nm$ + 21x10*Nm’k
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The Magnetic Force Exerted Upon a Magnetic Dipole

A uniform magnetic field exerts no force on a bagmet that is in the magnetic field. You
should probably pause here for a moment and lesthk in. A uniform magnetic field exerts
no force on a bar magnet that is in that magnetid.f

You have probably had some experience with bar etagnyou know that like poles repel and
unlike poles attract. And, from your study of #lectric field, you have probably (correctly)
hypothesized that in the field point of view, thaywve see this is that one bar magnet (call it the
source magnet) creates a magnetic field in thenegf space around itself, and, that if there is
another bar magnet in that region of space, ithélhffected by the magnetic field it is in. We
have already discussed the fact that the victinrimgnet will experience a torque. But you
know, from your experience with bar magnets, theili also experience a force. How can that
be when | just stated that a uniform magnetic fextdrts no force on a bar magnet? Yes, of
course. The magnetic field of the source magnet el non-uniform. Enough about the nature
of the magnetic field of a bar magnet. I'm suppbtgesave that for an upcoming chapter.
Suffice it to say that it is non-uniform and to éiscour attention on the effect of a non-uniform
field on a bar magnet that finds itself in that meic field.

First of all, a non-uniform magnetic field will estea torque on a magnetic dipole (a bar magnet)
just as beforeX =fixB). But, a non-uniform magnetic field (one for whithe magnitude,
and/or direction, depends on position) also exeftsce on a magnetic dipole. The force is
given by:

Fo =0 B) (15-2)

where

F, is the force exerted by the magnetic fi@don a particle having a magnetic dipole
momentp,
is the magnetic dipole of the “victim”, and,
is the magnetic field at the position in space ngtibe victim finds itself. To evaluate
the force, one must kno® as a function of, y, andz (whereasi is a constant).
Note that after you take the gradientjofB, you have to evaluate the result at the values pf
andz corresponding to the location of the victim.

o =

Just to make sure that you know how to use thisop please note thatjif and B are
expressed iff, 7, % notation, so that they appearjas Ul +ug+ ,uz'|§ and
B =B +B,J+Bk respectively, then:

iB=(ud+us+u0)0BF+BJ+BK)

ROB=uB, +uB, +1,B,
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And the gradient ofi (B (which by equation 15-2 is the force we seek)veg by

_ o _O(@EDB), 0fB),. O(RIB)4
O(B) = k
nB) ox T oy I 0z

where derivatives in this equation can (usjin@ = y, B, + 4B, + 1,B, from just above) can be
expressed as:
d(ji [B) oB 0B oB

- x+ y+ z
ox Hx ox Hy ox He ox '

i (B aB
0( B) = U, 9B, + U, ——+ U, 9B, , and
ay ay ay ay

d(ji [B) 0B, 0B, oB
= + +
0z Ha 0z Hy 0z =

0z '

where we have taken advantage of the fact thatahgonents of the magnetic dipole moment
of the victim are not functions of position. Alsote that the derivatives are all partial
derivatives. Partial derivatives are the easy kinithe sense that, when, for instance, you take
the derivative with respect tQ you are to treat andz as if they were constants. Finally, it is
important to realize that, after you take the deies, you have to plug the valuespy, andz

corresponding to the location of the magnetic digthe victim), into the given expression for
the force.

Example 15-3

There exists, in a region of space, a magnetid,fglen in terms of Cartesian unit vectors
by:

B=-582x10°TH— 2 4 + 582x10°TH— >~ 4

2 2

x> +y X%+ y?

A particle is in the region of space where the nedigrfield exists. The particle has a
magnetic dipole moment given by:

i = 514A0* %
The particle is at (@10m, 0, 0).

Find the force exerted on the particle by the mégfield.
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Solution First, we sketch the configuration:
A
\

Substituting the givefi and B, into our expression for the force yields:

4

y

Fy = 0(ji 0B)
_ . - Yy 4 T — 4
F, = O[(.514AM*}) [-5.82x10° T Ty + 5.82x107°Tlh T+ Y )
F, = D(- 2.99x10°A mﬁ:rﬁhﬁ]

X*+y
Fy = —299x10°NE? O[y(x* + y*)™]

0 ) 0 ) 0 R
F =_299 10—6Nm.]2 dl 2+ 2 1A+_ 2+ 2 lA+_ 2+ 2\ -1 k
5 X {ax[y(x y )14 ay[y(X y)135 az[y(X y)~l }
F, = = 299x10° NI { [y(-1)(¢ + y*) 2 2x3 +[(¢ + y?) ™ +y(-1)(¢ + y?) ?2y]§ + 0%}

_ i} 2xy 1 2y?
Fy = —2.99x10° N’ { - T+ - )
B 99x10 [t { (XZ + y2)2 J |:X2 + y2 (XZ + y2)2 :|J}

Recalling that we have to evaluate this expresaidhe location of the victim, a location that
was given as (@10m, 0, 0), we find that:
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T
™
]

2
— 299x10°° N2 4 — 2(0.11(Zm)02 W 1 - 2(0)2 |3
[(0.120m)° +07] (0.110m)“ +0° [(0.110m)° + 0]

T
™
]

-247%10N §

Characteristics of the Earth’s Magnetic Field

We live in a magnetic field produced by the eawth its magnitude and its direction are
different at different locations on the surfacdlef earth. Furthermore, at any given location, the
earth’s magnetic field varies from year to yeabath magnitude and direction. Still, on the
geographical scale of a college campus, and, oneadcale measured in days, the earth’s
magnetic field is approximately uniform and constan

To align your index finger with the magnetic fiedfithe earth on the Saint Anselm College
campus, first point in the horizontal direction4West of NortA. Then tilt your arm
downward so that you are pointing in a directicat th 68.9 below the horizontal. (Yes! Can
you believe it? It's mostly downward!) You arempointing your finger in the direction of the
earth’s magnetic field. The magnitude of the magresld, on the Saint Anselm College
campus, is 37 x 10 T. In other words:

The Earth’s Magnetic Field on the Saint Anselm Coége Campus in 2005

Characteristic Value Rate of Change
Declination -15.4° +0.075/year
Inclination (Dip Angle) 689° —0.095’/year
Magnitude 537x10°T | -0.012x 107 Tlyear
Horizontal Component | 1.93x 10°T | +0004x 107 T/year
Vertical Component 501x10°T | -0.014x 107 Tlyear

A compass needle is a tiny bar magnet that is cainsd to rotate about a vertical axis. The
earth’s magnetic field exerts a torque on the canpeedle that tends to make the compass
needle point in the direction of the horizontal gament of the earth’s magnetic field, a
direction we call “magnetic north”. Recall thatevhwe talk about which way a bar magnet
(such as a compass needle) is pointing, we imdbere to be an arrowhead at its north pole.

2 The values of the earth’s magnetic field presenesd tvere obtained from the (United States) National
Geophysical Data Center (NGDC) geomagnetism web tsitééa//www.ngdc.noaa.gov/seg/geomag/geomag.shtml
| used the magnetic field values calculator at thet@itdtain the presented values. | used latitudes927”,

longitude 72 30’ 20” (the location of my office in the Goulet Scier@enter, obtained from a topographic map) and
date February 21, 2005 as input values. Check out the webtgitevides some interesting insight into thel@art
magnetic field.
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16 Magnetic Field: More Effects

The electric field and the magnetic field are et $ame thing. An electric dipole with positive
charge on one end and negative charge on theisthet the same thing as a magnetic dipole
having a north and a south pole. More specifically object can have positive charge but it
can’t have “northness”.

On the other hand, electricity and magnetism ateinelated. In fact, under certain
circumstances, a magnetic field will exert a fonoea charged particle that has no magnetic
dipole moment. Here we consider the effect of gmeéic field on such a charged particle.

FACT: A magnetic field exerts no force on a chargedigarthat is at rest in the magnetic
field.

v

v

v

g® F=0

v

v

v

v

FACT: A magnetic field exerts no force on a chargedigarthat is moving along the line
along which the magnetic field, at the locatiornledf particle, lies.

v

v

v

v

v

v

v
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FACT: A magnetic fielddoesexert a force on a charged patrticle that is énrttagnetic field,
and, is moving, as long as the velocity of theipleris not along the line, along which, the
magnetic field is directed. The force in such secia given by:

F=qvxB (16-1)

Note that the cross product yields a vector thpeipendicular to each of the multiplicands.
Thus the force exerted on a moving charged paiigldhe magnetic field within which it finds
itself, is always perpendicular to both its ownowetly, and the magnetic field vector at the
particle’s location.

Consider a positively-charged particle moving wiocity v at angled in the x-y plane of a
Cartesian coordinate system in which there is @oumimagnetic field in the +x direction.

YA

v

v

v

_
q@

v

v

v

v

v

To get the magnitude of the cross produstB that appears iff = qvxB we are supposed to
establish the angle that and B make with each other when they are placed tadito Then
the magnitudd;\‘/ X B‘ Is just the absolute value of the product of tlagnitudes of the vectors

times the sine of the angle in between them. Llmiighe two vectors tail to tail and establish
that angle. Note that the magnetic field as a @i®an infinite set of vectors in the +x direction

So, of course, the magnetic field vectrat the location of the particle, is in the +x diien.

vV
/{L

B

Clearly the angle between the two vectors is justangled that was specified in the problem.
Hence,

‘VXB‘ =|vBsind| ,
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so, starting with our given expression for we have:

F=quxB
Fl=lav =8|
‘IE‘=|qusinH|

Okay, now let’s talk about the direction Bf= qvxB. We get the direction of xB and then

we think. The charggis a scalar. I is positive, then, when we multiply the vectoxB byq
(to getF), we get a vector in the same direction as that»B. So, whatever we get (using the
right-hand rule for the cross product) for the dii@n of vx B is the direction ofF = qvxB.

But, if q is negative then, when we multiply the vect@x B by q (to getF), we get a vector in

opposite direction to that ofxB. So, once we get the direction\w& B by means of the right-
hand rule for the cross product of two vectorshaee to realize that (because the charge is

negativ@ the direction ofF = qvxB is oppositethe direction that we found forx B .

Let's do it. To get the direction of the crossguot vectorv xB (which appears in
F=qvxB), draw the vectorsy andB tail to tail.

/V

B

extend the fingers of youirght hand so that they are pointing directly away fryoar right
elbow. Extend your thumb so that it is at righgjlas to your fingers.

Now, keeping your fingers aligned with your foreaatign your fingers with the first vector
appearing in the cross produck B, namelyv .

v
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Now rotate your hand, as necessary, about an irmagaxis extending along your forearm and
along your middle finger, until your hand is oriedtsuch that, if you were to close your fingers,
they would point in the direction of the secondteec

This thumb is pointing
= straight into the page,

== Bt directly away from you!

The direction in which your right thumb is now piiiny is the direction ofi xB. We depict a
vector in that direction by means of amvith a circle around it. That symbol is supposad
represent the tail feathers of an arrow that isgag away from you.

v

v

v

0
v

v

v

v

Let’s not forget about thatin the expressiofr = qvxB. In the case at hand, the charged
particle under consideration is positive. In otherdsq is positive. SoF =qvxB is in the
same direction ag xB.

v

v

v

<l
X
o
é\
\Y
v

o]
T
v

v

v
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A magnetic field will also interact with a currecérying conductor. We focus our attention on
the case of a straight current-carrying wire sedgrmea magnetic field:

FACT: Given a straight, current carrying conductor magnetic field, the magnetic field exerts
no force on the wire segment if the wire segme# dilong the line along which the magnetic
field is directed. (Note: The circuit used to aatise current in the wire must exist, but, is not
shown in the following diagram.)

v

v

v

v

v

v

v

FACT: A magnetic field exerts a force on a current-dagyvire segment that is in the
magnetic field, as long as the wire is not collme#h the magnetic field.

e

v

\

\
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The force exerted on a straight current-carryingevsegment, by the (uniform) magnetic field in
which the wire is located, is given by

F=I1LxB (16-2)
where:

F is the force exerted on the wire-segment-with-entrby the magnetic field the wire is in,

| is the current in the wire,

L is a vector whose magnitude is the length of seagment of the wire which is actuaily
the magnetic field, and, whose direction is theation of the current (which depends
both on how the wire segment is oriented and hasvabnnected in the (not-shown)
circuit.)

B is the magnetic field vector. The magnetic figldst be uniform along the entire length
of the wire for this formula to apply, s&,, is the magnetic field vector at each and every
point along the length of the wire.

§

v

v v

A
—
v

v

~

Note that in the preceding diagraf,is directed into the page as determined fiem | L xB
by means of the right-hand rule for the cross pcodéitwo vectors.
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Effect of a Uniform Magnetic Field on a Current Loop

Consider a rectangular loop of wire. Supposedbe to be in a uniform magnetic field as
depicted in the following diagram:

Note that, to keep things simple, we are not shg\e circuitry that causes the current in the
loop and we are not showing the cause of the maygimtl. Also, the magnetic field exists
throughout the region of space in which the loogdiitself. We have not shown the full extent
of either the magnetic field lines depicted, og thagnetic field itself.

Each segment of the loop has a force exertedlmntite magnetic field the loop is in. Let’s
consider the front and back segments first:

A
Back Segmem—\ =

==
/ /
/

/
/ .

_ L .

Front Segment

Because both segments have the same length, lgptiests make the same angle with the same
magnetic field, and both segments have the samerntuthe forceF = 1 L xB will be of the

same magnitude in each. (If you write the magmitaslF = ILBsinéd, you know the

magnitudes are the same as long as you know thahfoangled, sin(@) = sin(180- 8).)

Using the right-hand rule for the cross produaj¢bthe direction, we find that each force is
directed perpendicular to the segment upon whiaht#, and, away from the center of the
rectangle:
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The two forcesF, ., andF,, ., are equal in magnitude, collinear, and oppositdiriection.

About the only effect they could have would betteteh the loop. Assuming the material of the
loop is rigid enough not to stretch, the net eff#dhe two forces is no effect at all. So, we can
forget about them and focus our attention on tfiealed right segments in the diagram.

Both the left segment and the right segment ariglatt angles to the magnetic field. They are
also of the same length and carry the same curfteach, the magnitude Bf=1 L xB is
just IwB wherew is the width of the loop and hence the lengthaihlihe left segment and the

right segment.
fRig ht Segment
P4

Left Segme v S
MI = 7
< A B

/ \;/ //
Width w ﬁL //

’
’
.
’
’
.
| ’
| .
v ’
| ’
7
[
7

Length/

Using the right-hand rule for the cross produdinad vectors, applied to the expression
F=1LxB for the force exerted on a wire segment by a miagfield, we find that the force
F =IwB on the right segment is upward and the fétreelwB on the left segment is downward.
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The two forces are equal (both have magnittdelwB ) and opposite in direction, but, they are
not collinear. As such, thewill exert a netorqueon the loop. We can calculate the torque
about the central axis:

by extending the lines of action of the forces mtahtifying the moment arms:
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The torque provided by each force j&. Both torques are counterclockwise as viewetien

diagram. Since they are both in the same directi@magnitude of the sum of the torques is
just the sum of the magnitudes of the two torqomesgning that the magnitude of the total torque

is justz=2r F. We can get an expression for By recognizing, in the diagram, that 2is
just the distance across the bottom of the triaimgtee front of the diagram:

/ |

Length/

|/

and defining the anglé in the diagram, to be the angle between the pliiee loop and the
vertical.

From the diagram, it is clear that 2= /sing.
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Thus the magnetic field exerts a torque of mageitud

r=&F

r =[£(sing)] (IwB)
on the current loop.

Length/

M/

The expression for the torque can be written moreisely by first reordering the multiplicands
so that the expression appears as

r=1/wBsiné

and then recognizing that the proddut is just the ared of the loop. Replacingw with A
yields:

r=1ABsing

Torque is something that has direction, and, yoghtriecognize that sthappearing in the
preceding expression as something that can resuaft & cross product. Indeed, if we define an
area vector to have a magnitude equal to the dutba doop,

‘A‘ =/w

and, a direction perpendicular to the plane ofldog,
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\53\

Width w L0 \/L

Length/

we can write the torque as a cross product. kot that the area vector as | have defined it in
words to this point, could point in the exact optedirection to the one depicted in the diagram.
If, however, we additionally stipulate that theaxector is directed in accord with the right-
hand rule for something curly something straighthwhe loop current being the something
curly and the area vector the something straigid (ee do so stipulate) , then the direction of
the area vector is uniquely determined to be thection depicted in the diagram.

Now, if we slide that area vector over to the riffbnt corner of the loop,

4

o /[

/ / !

/ /| ! B
// //
- Z /
Width w 7 /:\
J /AN
7 .
y A A
Length/ A= Iw

it becomes more evident (you may have already edti} that the angle between the area vector

A and the magnetic field vect®, is the samé defined earlier and depicted in the diagram
just above.
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Width w ﬁ'g; /‘\ /5, %

This allows us to write our expression for the terg = IABsind counterclockwise as viewed
in the diagram, as:

xB

>

|

Check it out. The magnitude of the cross pro@et B‘ IS just ABsin@, meaning that our new

expression yields the same magnitude | ABsinég for the torque as we had before.

Furthermore, the right-hand rule for the cross pob@f two vectors yields the torque direction
depicted in the following diagram.

P
/|
/ / !
=< /| ! B
S //
2 [
> TN
// i
9 __________________ 2. S
—
A= /w

Recalling that the sense of rotation associated antaxial vector is determined by the right-
hand rule for something curly, something straigig,point the thumb of our cupped right hand
in the direction of the torque vector and note thatfingers curl around counterclockwise, as
viewed in the diagram.
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\

Okay, we're almost there. So far, we have thetfaat if you put a loop of wire carrying a
currentl in it, in a uniform magnetic fiel® , with the loop oriented such that the area vegtor
of the current loop makes an anlaith the magnetic field vector, then, the magnééi
exerts aorque

t=1AxB
on the loop.

This is identical to what happens to a magnetioldipvhen you put it in a uniform magnetic
field. It experiences a torque=fixB. In fact, if we identify the produdiA as the magnetic
dipole moment of theurrent loop then the expressions for the torque are conipletentical:

(16-3)

al
1
=
X
os]}

where:

T is the torque exerted on the victim. The victiam ®de either a particle that has an
inherent magnetic dipole moment, or, a current.loop

p is the magnetic dipole moment of the victimthié victim is a particlepis simply the
magnitude and direction of the inherent magnepoldi moment of the particle. If the
victim is a current loop, thep = IA wherel is the current in the loop andl is the area

vector of the loop, a vector whose magnitude isattea of the loop and whose direction
is the direction in which your right thumb pointsen you curl the fingers of your right
hand around the loop in the direction of the curréBee the discussion below for the
case in which the victim is actually a coil of wiaher than a single loop.)

B is the magnetic field vector at the locationted victim.
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A single loop of wire can be thought of as a colwwre that is wrapped around once. If the wire
is wrapped arountl times, rather than once, then the coil is saidateeN turns orN windings.

Each winding makes a contribution bA to the magnetic dipole moment of the current loop.

The contribution from all the loops is in one ahd same direction. So, the magnetic moment of
a current-carryingoil of wire is:

i=NIA (16-4)

where:

i is the magnetic moment of the coil of wire.

N is the number of times the wire was wrapped ardaridrm the coil.N is called the
number of windings.N is also known as the number of turns.

| is the current in the coil. The coil consistoo€ long wire wrapped around many
times, so, there is only one current in the wiée call that one current the current in
the coil.

A is the area vector of the loop or coil. It's miwgde is the area of the plane shape whose
perimeter is the loop or coil. It's direction fgetdirection your extended right thumb
would point if you curled the fingers of your righand around the loop in the direction
of the current.

Some Generalizations Regarding the Effect of addmifMagnetic Field on a Current Loop

We investigated the effect ofumiform magnetic field on a current loop. A magneticdialill
exert a torque on a current loop whether or notriagnetic field is uniform. Since a current
loop has some spatial extent (it is not a pointigay, using a single value-plus-direction for

B in ¥ = xB will yield an approximation to the torque. ltsdggood approximation as long as
the magnetic field is close to being uniform in thgion of space occupied by the coil.

We investigated the case of a rectangular looge r€bult for the torque exerted on the current-
carrying loop or coil is valid for any plane loopawil, whether it be circular, oval, or
rectangulat.

1 We have not proved this to be the case. We simplgri¢, without proof.
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17 Magnetic Field: Causes

This chapter is about magnetism but let’s thinkkitacour introduction to charge for a moment.
We talked about the electric field before sayingcmabout what caused it. We said the electric
field exerts a force on a particle that has chalgeer we found out that charged particles play
not only the role of “victim” to the electric fieldut, that charged particleauseelectric fields to
exist.

Now we have been talking about the magnetic figMe have said that the magnetic field exerts
a torque on a particle that has magnetic dipole emmYou might guess that a particle that has
magnetic dipole moment would cause a magnetic.fi&du’'d be right! A particle that has the
physical property known as magnetic dipole momesaises a magnetic field to exist in the
region of space around it. A magnetic field carchesed to exist by a particle having magnetic
dipole moment or a distribution of particles havinggnetic dipole moment.

The magnetic field at poi?, an empty point in space in the vicinity of a paetthat has a
magnetic dipole moment, due to that particle-witagmetic-dipole-moment, is given by

gzt SMO)T R [ﬂ‘zr . 17¢1)
4T r
where

U, =4mrx10™ % Is a universal constant which goes by the naméled magnetic

permeability of free space.” This value is to &deein as exact. (Do not treat the “4” as a
value known to only one significant digit.)

B is the magnetic field vector at polf whereP is an empty point in space a distance
away from the particle-with-magnetic-dipole-momét is causing .

i is the magnetic dipole moment of the particle thatausing the magnetic field.

I is a unit vector in the direction “from the paltictoward poinP”. Defining F to be the
position vector of point P relative to the locatwirthe particle-with-magnetic-dipole-
N
moment,F =rf sor =—.
r

r is the distance that point P is from the partwléi+-magnetic-dipole-moment.

A particle-with-magnetic-dipole-moment is calledhagnetic dipole. Note that the magnetic

field due to a magnetic dipole dies off Iilﬁlg :
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Example

A particle is at the origin of a Cartesian coortingystem. The magnetic dipole moment of the
particle is1.0 Ah*4 . Find the magnetic field vector, due to the wéetiat (30cm, 40cm).

Solution
I’m going to start with a diagram of the configuoat

A

y

v

H X

Note that | danotknow the direction of B in advance, so, | havendr®8 on the diagram in a
fairly arbitrary direction. | did want to pi@ on there to make it more evident that we are
dealing with the magnetic field at point P, causgdhe particle at the origin. Also, |
intentionally drewB in a direction other than that of to avoid conveying the false impression
that B is necessarily in the direction 6f (At some points, it is, but those points are the
exception. In generaB is notin the same direction a. As we shall soon see, for the case at
hand, it turns out thaB is notin the same direction &s.)

Givenx = 0.030 andy =0.040 m, the position vector, for point Pris=s 0.030mf + 0.040m3 .
The magnitude of is given by:

r=,x+y?

r =4/(.030m)? + (.040m)’

r =.050m

The unit vector is thus given by:

140



Chapter 17 Magnetic Field: Causes

-
]
= |

0.030m* +0.040mJ
0.050m

r

f =0.601 +0.80%

Substituting what we have into our expressiorBfare find:

B=Ho SBO)N -
ar r?
5 4mx107TBVA 3[1L.0 AT*§) 0601 +0.803)] (0601 +0803) ~10 AT’
ar (.050m)?

B=1x107 10" 3 [0.80Am?] (0,601 +0.80%) -1.0 AT}

A (.050m)°
5 = 1x1q T ON L44AM’ T +192AM’ § - 1.0 An’g

(.050m)°
B = 1x1g7 1 ON LA4AD” T +0.92AM° §
(.050m)°
B=1x10" 12" 1442 £ 40922 3
m m

B=144x107 T1+0.92x107 T3

So ends our solution to the sample problem. Heretsmgnetic field diagram of the magnetic
field due to a particle that has a magnetic dipotenent.
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The Magnetic Field Due to a Loop or Coil

We discovered in the last chapter that, as a vitdia magnetic field, a current loop or a current-
carrying coil behaves as if it were a particle vatmagnetic dipole moment

i =NIA

where:

it is the magnetic moment of the coil of wire.

N is the number of windings, a.k.a. the number aidu(N = 1 in the case of a loop.)

| is the current in the coil.

A is the area vector of the loop or coil. It's miigde is the area of the plane shape whose
perimeter is the loop or coil. It's direction Igetdirection your extended right thumb
would point if you curled the fingers of your righand around the loop in the direction
of the current.

You might guess that if a coil of wire respondsitmagnetic field as if it were a particle with a
magnetic dipole moment, then perhaps it can alkav®eas a source of magnetic field lines and
create the same kind of magnetic field that a gartvith a magnetic dipole moment produces.
Indeed it does. As compared to a particle likeetleetron that has a magnetic dipole moment
but itself has no extent in space, a loop or doilioe does have extent in space. The magnetic
field very near the loop or coil is more complicghtban a dipole field, but, at points whose
distance from the loop or coil are large compaceth¢ diameter of the coil, the magnetic field
of the loop or coil is the dipole magnetic field

B_&?’(ﬁm)f_ﬁ
- 3
7T r

SN

In the case of a loop or coil, thethat appears in this equationfiss NIA .

A Bar Magnet

An atom is made of a nucleus containing neutrodspaatons; and; electrons in orbiboutthe
nucleus. Each of these elementary particles masgmetic moment. The magnetic monerit

the electron i€.28x10™**AIn?, the magnetic moment of the protorlid1x10°An*, and,

the magnetic moment of the neutrori66x10>' Aln*. When these particles combine to form
atoms, they each contribute to the magnetic fiétth@ atom. In addition to these contributions
to the magnetic field, the protons move in loopthwithe nucleus and the electrons move in
loops about the nucleus. A charged particle thataving in a loop is a current loop and such
current loops contribute to the overall magnesddfiof the atom. In many atoms the various
contributions to the magnetic field cancel eacteotiut in such a manner that the overall

1| got the magnetic moment values from the U.S. Natibwstitute of Standards and Technology (NIST)
www.hist.gov web site and rounded them to three signffiigares.
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magnetic field is essentially zero. In some ataush as iron, cobalt, and neodymium, the
various contributions to the magnetic field do cancel out. In such cases, the observed total
magnetic field of the atom is a dipole magnetitdfi@and, the atom behaves as a magnetic dipole.
Substances consisting of such atoms are referrasl fierromagnetic materials.

Consider an iron rod or bar that is not a magiée bar was formed from molten iron. As the
iron cooled, seed crystals formed at various locatwithin the iron. At the start of
crystallization, the iron atoms forming the seegstal tend to align with each other, south pole
to north pole. The magnetic field of the seedtelysauses neighboring iron atoms to align with
the seed crystal magnetic dipole moment so thanliney crystallize and become part of the
growing crystal they also align south pole to nqgutie. The contributions of the atoms making
up the crystal to the magnetic field of the cryséald to add together constructively to form a
relatively large magnetic field. There is a multie of sites at which crystals begin to form and
at each site, in the absence of an external magfnet, the seed crystal is aligned in a random
direction. As the crystals grow, they collectivedym a multitude of microscopic bar magnets.
When the iron bar is completely solidified it castsiof a multitude of microscopic bar magnets
calleddomains Because they are aligned in random directidres; thagnetic fields cancel each
other out. Put the iron rod or bar in a magnesitfand the magnetic field will cause the
microscopic bar magnets, the domains, in the iodmé up with each other to an extent that
depends on the strength of the magnetic field.s Tumns the iron rod or bar into a magnet.
Remove the rod or bar from the magnetic field @@l forces on the domains cause them to
revert back toward their original orientations. eytdo not achieve their original orientations and
the iron is remains at least weakly magnetizedféect known as hysteresis.

Getting back to the cooling process, if we allow tholten iron to crystallize within an external
magnetic field, the seed crystals, will all tendin@ up with the external magnetic field, and
hence, with each other. When the iron is completelidified, you have a permanent magnet.

So a bar magnet consists of a bunch of microsdmienagnets which themselves consist of a
bunch of atoms each of which has a magnetic dipolment because it consists of particles that
each have a magnetic dipole moment and in some base charge and move in a loop within
the atom.

The magnetic field of a bar magnet is thus the sagsition (vector sum at each point in space)
of a whole lot of magnetic dipole fields. As suahdistances large compared to the length of
the magnet, the magnetic field of a bar magnemnmagnetic dipole field. As such, we can
assign, based on measurements, a magnetic dipziter yeto the bar magnet as a whole, and

compute its magnetic field (valid for distanceg&compared to the length of the magnet) as

B_&?’(ﬁm)f_ﬁ
- 3
7T r

SN
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The Dipole-Dipole Force

The magnetic field produced by one bar magnetex#rt a torque on another bar magnet.
Because the magnetic field due to a magnetic digalen-uniform (you can see in

- p)r - - N A
B =%3(uﬂj# that it dies off IlkeF), it also exerts forceon another bar magnet.
T

We are now in a position to say something quantéatbout the force that one bar magnet
exerts on another. Consider an object that iseabtigin of a Cartesian coordinate system.
Suppose that object to have a magnetic dipole mbgieen by i, = 141 . Clearly we're talking
about a magnet pointing (treating the magnet agtanv with its head at the north pole of the
magnet) in the +x direction. Lets find the forbatthat magnet would exert on another one at
(x,0,0) given that the magnetic dipole moment ofstteond magnet ig, = -4, . The second
magnet is pointing back toward the origin, so wetatking about two magnets whose north
poles are facing each other. Knowing that likeepakpel, you should be able to anticipate that
the second magnet will experience a force in thditection. The magnetic field produced by
the first magnet is given (for any point in spaa®Jong as the distance to that point, from the
origin, is large compared to the size of the magimet

B _&3@[?)?_?‘
7 am re

B _&3(/111\”\)": _/'111\
YT ar r

41T ° 3

g = Mo [3TO)r _ pif
! r r

The force on the second particle is given by:
F=0(, B,)

evaluated at the position of magnet 2, namelx,&@). Substituting the givep, = -/, in for
the magnetic dipole of particle 2, and, the expoesfsist above foB,, we obtain:

F= D{— w7 Eﬁf—ﬂ (B(N 1:?)? - ﬁ:lj H}
=_ My A 3@ T
F= 4ﬂﬂ1ﬂ2|:|{' EE( (5 I’3]:|}
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Now, if you substitutef = xf + y§ + Zk andr =./x* + y? + z° , take the gradient, and then
(aftertaking the gradient) evaluate the result,Q), you find that

l‘:=%:ul{’1121\
21T X

So, when like poles are facing each other, two reeggrepel each other with a force that dies off
. 1 . . . .
like F wherer is the distance between the magnets (measurptérde center), the in the

case that we investigated.

The Magnetic Field Due to a Long Straight Current-Carrying Wire

A current-carrying conductor causes a magnetid.fiddou are already aware of this because we
have already discussed the fact that a currentdn@or coil behaves as a magnetic dipole, and,
you know that a magnetic dipole creates a magfietetin the region of space around it. As it
turns out, a wire with a current in it doesn’t hawede wrapped around in the shape of a loop or
coil to produce a magnetic field. In fact, expezntally, we find that a straight wire segment
creates a magnetic field in the region of spacaratat. The magnitude of the magnetic field
due to a long straight wire, valid for any pointasglk distance from the wire is small compared to
the length of the wire and whose distance fromeeignd of the straight wire segment in
guestion is large compared to the distance fronwiles is given by

g=tol (17-2)
21T r
where

M, is a constant referred to as the magnetic periigadfi free space,

| is the current in the wire segment, and,

r is the distance that the point in question is ftbmlong straight wire segment. The
eqguation gives the magnitude of the magnetic frldny specified poire. The symbol
r represents the distance that point P is from tine. w

The direction of the magnetic field due to a losigaight, current-carrying wire, at some empty
point in space, call it poirR, is always perpendicular to both the wire anditteginary line
segment that extends from potstraight to (and thus perpendicular to), theentrcarrying
wire.
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Consider the case of a long straight wire carrgmgent straight at you. The magnetic field at a
few points is depicted in the diagram below (wh@eeempty points in space in question are
labeledP , P,, and R.)

Bl'\Pl
PZI @I

B,

Ps
—>B,

While the magnetic field vector at any point inspas, of course, directed along a straight line,
the overall pattern of the magnetic field lineshe vicinity of a long straight wire segment, in a
plane perpendicular to the wire segment, formdesraround the wire. The magnetic field lines
are directed tangent to the circles, and, the tinecs given by the right hand rule for something
curly something straight. The magnetic field |pegtern is the something curly and the current
in the straight wire is the something straightinPgour right thumb in the direction of the
current and the fingers of your cupped right hamd @ound in the direction of the magnetic
field lines.
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18 Faraday's Law, Lenz's Law

Do you remember Archimedes’s Principle? We welte tbsay something simple, specific, and
useful about a complicated phenomenon. The gdesswas that a submerged object, being
pressed upon on every surface element in contalettiag fluid, by the fluid, experiences a net
upward force because the pressure in a fluid ise®ith depth. The infinite sum, over all the
surface area elements of the object in contact thelfluid, of the force, of magnitude pressure-
times-the-area, and direction, normal to and iheodrea element, resulted in an upward force
that we called the buoyant force. The thing isweee able to prove that the buoyant force is
eqgual in magnitude to the weight of that amourftwd that would be where the object is if the
object wasn't there. Thus we can arrive at a vidu¢he buoyant force without having to even
think about the vector integration of pressureteeldorce that causes it.

We are about to encounter another complicated whenon which can be characterized in a
fruitful fashion by a relatively simple rule. I'going to convey the idea to you by means of a
few specific processes, and then sum it up byngtabie simple rule.

Consider a gofdring and a bar magnet in the hands of a persdw pérson is holding the ring
so that it encircles the bar magnet. She is hglthe magnet, north end up.
A

N

S

There is a magnetic field, due to the bar Fagnhaln,imthe bar magnet, and in the region of
space around it.

! Any conductive material will do here. | chose golditaabily.
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It is important to note that the magnetic fielceknare most densely packed inside the bar
magnet.

Now suppose that the person, holding the magmetssain one hand, moves the loop upward. |
want to focus on what is going on while she is mgvt upward. As she moves the loop
upward, she is moving it roughly along the directod the magnetic file lines, but, and this is
actually the important part, that loop will also dcagting through some magnetic field lines.
Consider an instant in time when the loop is alibeemagnet, and moving upward:

From above, the scene looks like:

where it is important to realize that none of thosgnetic field lines begin on the magnet or end
at the tip of the arrow depicted, rather, they eateut of the magnet toward us, flower out and
over, back down away from us, and then they loopiad to enter the south pole of the magnet
from which the extend back up through the magneatd us. In fact, no magnetic field line

ever begins or ends anywhere. They all form cldsegs. This is a manifestation of the fact
that there is no such thing as magnetic charglerglrare no magnetic monopoles.)
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View From Above

N

N—

Here’s where we’re going with this: The motiontloé ring relative to the magnet is going to
cause a current in the ring. Here’s how: The ngeutral, but, it is chock full of charged
particles that are free to move around within tblel g [I'm going to discuss it in our positive
charge carrier model but you can verify that youtge same result if the charge carriers are
negative (recalling that our current is in the diren opposite that in which negative charge
carriers are moving.)] Pick any short segmenhefring and get the direction of the force
exerted on the charge carriers of that segmeng i qv x B and the right-hand rule for the
cross product of two vectors. In the view fromahaall we can see is the horizontal component
of the magnetic field vectors in the vicinity oktimoving ring but that’s just dandy; the vertical
component, being parallel to the ring’s velocitpydaénence parallel to the velocity of the charge
in the ring), makes no contribution fxB. Now, pick your segment of the ring. Make your
fingers point away from your elbow, and, in theedtion of the first vector (the velocity vector)
in vxB, namely, “out of the page”. Now, keeping youngkrs pointing both away from your
elbow, and, out of the page, rotate your forearmeg®ssary so that your palm is facing in the
direction of B (at the location of the segment you are working oreaning that if you were to
close your fingers, they would point in the directbf B. Your extended thumb is now
pointing in the direction of the force exerted ba positive charge carriers in the ring segment
you chose. No matter what ring segment you pluk force is always in that direction which
tends to push the positive charge carriers couniehwise around the ring! The result is a
counterclockwise (as viewed from above) currerhering.

Suppose that, starting with the ring encircling nieegnet, the person who was holding the ring
and the magnet moved the magnet downward rathemtoaing the ring upward. She holds the
ring stationary, and moves the magnet. | saidexdHat a charged particle at rest in a magnetic
field has no force exerted on it by the magnettdfi But we were talking abostationary
magnetic fields at the time. Now we are talkingatithe magnetic field of a magnet that is
moving. Since the magnet responsible for it is imgyvthe magnetic field itself must be moving.
Will that result in a force on the charges in timg(and hence a current in the ring)? This brings
us to a consideration of relative motion. To bs,tiwo processes (person moves ring upward

149



Chapter 18 Faraday's Law, Lenz's Law

while holding magnet at rest, vs. person moves magownward while holding ring at rest) are
different. But that is just because we are so is&tewing things from the earth’s reference
frame. In the grand scheme of things, there isuth thing as an object being absolutely at rest,
and there is no such thing an object being abdglutenotion with a specified constant velocity.
All motion is relative. So, let’s take this expeant into outer space where we won't all have
one and the same favorite reference frame. AbiBa#trice, and Cecelia are all out for a space
walk. Abigail has a gold ring. She is holdin@iit in front of her so that it is oriented the same
way as the belt she is wearing around her waistatie is some distance away from Abigail,
but, from Cecelia’s point of view, the two of theme moving toward each other along lines that
are parallel to each other, such that, at some itirtiee future, Abigail and Beatrice will be face
to face at a position right in front of Ceceli&urthermore, Cecelia sees each of the other
spacewalkers approaching her respective closest pbapproach, at one and the same speed.
Beatrice has a bar magnet. She has positionécdtly in front of herself, aligned the same
way she is, with its north pole closer to her haad its south pole closer to her feet. Beatrice is
not holding on to her magnet. Because of the alesehgravity, the magnet stays right in front
of her, just as she positioned it. At this poBgatrice sees Abigail “feetward” of herself, and
Abigail sees Beatrice “headward” of herself. Tistahce between the magnet and the ring is
decreasing at a rate we shall callAbigail and Beatrice come together and we fimat the ring
encircles the magnet and then, a little later réttetive positions of the ring and the magnet are
as they were in the on-earth process we discussédre

L —

Of course, based on the way | described the prptie=® is motion, the distance between the
ring and the magnet is now increasing at a vafeee footnofd. The question is, what is
“really” moving?

2 Actually, the current induced to flow in the ring tuths ring into a magnetic dipole, and, at the instantotizgi

the ring and the bar magnet are exerting an attradiee bn each other which will of course cause each to
experience an acceleration. For the purposes of our dmtuse are considering the masses of the magnet, and,
the mass of the ring-plus-Abigail (since Abigail isding the ring) to be so great and the force to be sil that

the accelerations are so small as to be negligible.
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Chapter 18 Faraday's Law, Lenz's Law

Let each participant view the process from theregfee frame in which she is at rest. Abigail,
who is holding the ring, sees the magnet “flyingagvrom” the ring:

—

N

T.

Beatrice, on the other hand, with the magnet atimgsont of her, sees the ring “flying away
from” the magnet:

Finally, Cecelia sees the ring and the magnetrifyaway from” each other!
v
=3

N

N[ <
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So the question is, “Who’s right?” And the answgeeverybody! There is no preferred inertial
reference frame. There is no experiment that eatidme to show that one of the reference
frames is actually at rest and the others are lytmaving. The fact that there is no preferred
inertial frame is one of Einstein’s two postulatg®n which his special theory of relativity is
based. So, Abigail’s, Beatrice’s, and Cecelia’s viewmsiare all equally valid. In the earth-
bound process that we discussed, we showed thmatBeatrice’s viewpoint (moving ring), there
will be a current induced to flow in the ring (caerclockwise as viewed by anybody looking at
the magnet end-on, with the north end closer tosigner). As such, there will be the same
current in the ring, in the same direction aroumelring, if we view the process from Abigail’s
perspective, in which the magnet is moving relatovéhe ring. And, there will be the same
current in the ring, in the same direction aroumglring, if we view the process from Cecelia’s
perspective, in which the magnet and the ring ath moving away from each other. It doesn't
matter which object is moving, all that matterthis relative motion.

Getting back down to earth: Remember that perstairig the magnet and the ring? When she
moved the ring upward, there was a current inithge rNow we have established that if, instead
of moving the ring, she moves the magnet downwatrthe same speed, she will get the same
current in the ring. Based on what caused thaentrthatF = gv x B force on the charged

particles in the ring, you should be able to suenigat the current will depend on things like the
velocity of the ring relative to the magnet, theesgth of the magnetic field, and the relative
orientation of the velocity vector and the magné&&t. You should also be able to come up
with the idea that the current depends on theteegis of the ring.

Michael Faraday came up with a very fruitful wayladking at the phenomenon we are
discussing and | will convey his idea to you by meaf the example we have been working
with.

% The other postulate is that the speed of light is#mee in all inertial reference frames.
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Chapter 18 Faraday's Law, Lenz's Law

Looking at the diagrams of that ring moving relatte the magnet again,

View From Above

¥y ~~ N X
N—

we can describe what’s happening by saying thatitigeis “cutting through” magnetic field

lines (or, equivalently, by saying that the magnéald lines are “cutting through” the ring).

What Faraday recognized was that, in conceptualseby the ring cutting through magnetic

field lines (or vice versa depending on your poirwiew), what was happening was, that the
number of magnetic field lines encircled by thepawas changing. In the diagrams above, each
time the ring “cuts through” one more field linBetnumber of field lines encircled by the loop
decreases by one. The rate at which the ring ttwmtsigh” magnetic field lines (or the magnetic
field lines cut through the ring) is determinedtbg same things that determine the force on the
charged particles making up the ring (relative dgegtween ring and magnetic field, strength of
magnetic field, relative orientation of velocity ixig and magnetic field) such that, the greater
the rate at which the ring “cuts through” magnéedd lines (or the greater the rate at which
magnetic field lines cut through the ring), theages the force on the charged particles and hence
the greater the current. Faraday expressed thigrianner that is easier to analyze. He said that
the current is determined by the rate at whichnilnmber of magnetic field lines encircled by the
loop is changing. In fact, Faraday was able tdenthis statement in equation form. Before |
show you that, | have to be a lot more specificilvchat | mean by “the number of magnetic
field lines.”

I’m going to call the statement | have just atttémlito Faraday, the conceptual form of
Faraday’'s Law. In other wordSaradays Lawin conceptual form isA changing number of
magnetic field lines through a closed loop or @ailises a current in that loop or colil, and, the
faster the number is changing, the greater the enirr
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Chapter 18 Faraday's Law, Lenz's Law

Our field line concept is essentially a diagrammatheme used to convey some information
about the direction and the relative strength iéld. We have used it both for the electric field
and the magnetic field. What | say here abounthaber of field lines can be applied to both,
but, since we are presently concerned with the etagfeld, | will talk about it in terms of the
magnetic field. Conceptually, the number of filets encircled by a loop is going to depend on
how closely packed the field lines are, how bigltw is, and to what degree the loop is
oriented “face-on” to the field lines. (Clearlythe loop is oriented edge-on to the field linies,
will encircle none of them.) Now, diagrammaticaliypw closely packed the field lines are is
representative of how strong the magnetic fieldTise more closely-packed the field lines, the
greater the value d@. Imagine that someone has created a beautifekitiimensional,

magnetic field diagram. Now if you view the fidides end-on, e.g. such that the magnetic field
lines are directed right at you, and depict a csession of “what you see” in a two-dimensional
diagram, you would get something like this.

This is a graphical representation of the magnitfd@at component of the magnetic field
which is directed straight at you.
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Chapter 18 Faraday's Law, Lenz's Law

Suppose the scale of the diagram to be given by [{°)n wheren is the magnetic field line
density, the number-of-magnetic-field-lines-peraardirected through the plane represented by
the page, straight at you. Let’s use a squarecengmeter on a side, to sample the field at a
position near the center,

| count 19 field lines that are clearly in the sgueentimeter and four that are touching it, I'm
going to count two of those four for an estimatédild lines in one square centimeter. Thus,
in that region,

21lines

n=—————
@A%107°m)?
n= 2100“”—62S
m
Using the given scale factor,

B = (LOuT On’)n

B = (LOuT [in?) 2100":“@

B=21mT

Let’s make it more clear what the number of linegresents by replacimgwith
Numberof Lines

A

and solving the expressiddi= (L.0uT)n for the number of lines.

Numberof Lines

B = (LOuT On?) A

BA

Numberof Lines= ————
1.0 uT O
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So the number of lines through a loop encirclingaae region of are& is proportional tA,

with the constant of proportionality being the peoical of our scale factor for the field diagram.
The simple produdBA is really only good if the magnetic field lines&hitting” the area
encircled by the loop “head on,” and, if the magnéeld is single-valued over the whole area.

We can take care of the “which way the loop isrfgtissue by replacinBAwith B[A where

A , the area vector, is a vector whose magnitudeeisitea of the plane region encircled by the
loop and whose direction is perpendicular to tlemelof the loop. There are actually two
directions that are perpendicular to the loop. @rtbe opposite of the other. In practice, one
picks one of the two directions arbitrarily, buicking a direction for the area vector establishes
a positive direction for the current around theplod he positive direction for the current is the
direction around the loop that makes the curremction and the area vector direction, together,
conform to the right-hand rule for something cistymething straight. We take care of the
possible variation of the magnetic field over thgion enclosed by the loop, by cutting that

plane region up into an infinite number of infisimal area elements dA, calculatiBg@A for
each area element, and adding up all the resiilis.final result is the integr@lé @A . You
won't be held responsible for using the calculgoathms for analyzing such an integral, but,
you are responsible for knowing whﬁé @A means. Itis the infinite sum you get when you

subdivide the area enclosed by the loop up intmfarite number of infinitesimal area elements,
and, for each area element, dot the magnetic vieddor at the location of that area element into
the area vector of that area element, and addl tipeadesulting dot products. You also need to
know that, in thespecial cas®f a magnetic field that isonstant in both magnitude and

direction over the entire area enclosed by the Io§ﬁ @A is justBIA .
Using a genericconstant for the reciprocal of the field diagram scalettacyields
Numberof Lines= (constan} § B @A

for the number of field lines encircled by the lompcoil. The quantit;fB @A is called the

magnetic fluxhrough the plane region enclosed by the loopteNuat the flux is directly
proportional to the number of magnetic field linbsough the loop.

The magnetic flux is given the nan#g (the Greek letter upper case phi).
@, = {BIHA
The expression yield¥n” as the units of magnetic flux. This combinatidmioits is given a

name: the Weber, abbreviated Wb.
1 Wb = Tn?

156



Chapter 18 Faraday's Law, Lenz's Law

Faraday’'s Law, the one that says that the curnehuced to flow in a loop or coil is proportional
to the rate of change in the number of magnetid fires encircled by the loop or coil, can be
written in terms of the flux as:

__N do,
R dt
where:
N is the number of windings or turns making up tlesed coil of wire.N =1 for a single
loop.

R is the resistance of the loop or coil.

d;ptB is the rate of change in the flux through the loop

The derivative of a function with respecttimeis often abbreviated as the function itself with a
dot over it. In other words,

_do
b=

Using this notation in our expression for the cotia Faradays Law of induction we have:

N

R B

Faraday’'s Law is usually expressed in terms of lslir Eather than a current. I'm going to use a
specific case study to develop the idea which geoferal applicability. Consider a coil of
ideally-conductingwire in series with a resistor. For closure @& kbop, the resistor is to be
considered part of the loop (and hence is thetessisof the loop), but, we have a negligible
number of magnetic field lines cutting through thsistor itself. Suppose there to be an
increasing magnetic flux directed upward throughdail.

B increasing

AAAA

]

]

ANANANATIN
v v uUyYv
Py
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Chapter 18 Faraday's Law, Lenz's Law

. . N . . .
By Faraday’s Law of Induction, there will be a @nt| = —quB induced to flow in the coil.

The induced current will flow around and around ¢bé, then out the top of the coil and down
through the resistor.

B increasing
AAAA —I>
il
C~_\>
allP R
C__\D
q D

But, for a resistor to have a current flowing thybut, there must be a potential difference IR
between the terminals of the resistor.

B increasing
AAAA —I>
Q]
C‘_\D +
allP v >R
C‘_sD -
D

. . : N :
Recognizing that, in the case at hand,ItimeV = IR is the| = —quB resulting from the

changing magnetic flux through the coil, we have
N
V = (—E B] R

v=-Nq£B

which we can write as
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Where there is a voltage across a resistor, teae electric field in the resistor. What exactly
causes that electric field? The answer is, theging flux through the coil. More specifically,
the magnetic field lines cutting through the cailthey must be doing to cause a change in the
number of field lines through the coil. The fidildes through the coil causes a force on the
charge carriers in the coil. In our positive clecgrrier model, this causes positive charge
carriers in the coil all to surge toward the toplef resistor, leaving an absence of same on the
bottom of the resistor. It only takes a minus@an®unt of charge to cause an appreciable
electric field in the resistor. A dynamic equiliom is reached in which the changing magnetic
field force on the charged particle becomes unebpish any more charge to the top terminal of
the resistor than is forced through the resistathiyelectric field in the resistor. The changing
magnetic field can’t push more charge there becatigee repulsion of the charge that is already
there. The changing magnetic field force in thi maintains the potential difference across the
resistor in spite of the fact that charge carriersp “falling” through the resistor. This should
sound familiar. A seat of EMF does the same thilgnaintains a constant potential difference
between two conductors (such as the terminalseof@histor in the case at hand). The coil with
the changing flux through it is acting like a sesREMF. One says that the changing flux
induces an EMF in the coil, calls that Faraday'w/lcd Induction, and writes:

¢=-Ndb,

where:
& is the EMF induced in the loop.
N is the number of windings or turns making up toé af wire.

qu is the rate of change in the flux through the loop
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Lenz’s Law

Faraday’'s Law of Induction, has the direction @& turrent built into it. One arbitrarily
establishes the direction of the area vector ofdbp. This determines, via the right-hand rule
for something curly something straight, the positikrection for the current. Then the algebraic

sign of the result of = _quB determines whether the current is really in thagation (“+”) or

in the opposite direction{*). This is tough to keep track of. | advise @skaraday’s Law in
the form

1=l

to get the magnitude of the current, and, usingzlselhaw to get the direction.

The current induced to flow in the loop or coil, twe changing flux through the loop or coll,
producesa magnetic field of its own. | cathat magnetic fieldB, for “the magnetic field
produced by the induced current.” At points indidge loop or coilB,  is related to the induced

current itself by the right hand rule for somethmgly something straight. Lenz’s Law states
thatB, is in that direction which tends to keep the nunddenagnetic field lines what it was.

Consider, for instance, a horizontal loop.

Suppose there are magnetic field lines direag@slardthrough the loop, and, that they are
increasingin number. By Faraday’s Law, the changing nundfdield lines through the
loop will induce a current to flow in the loop. Bynpere’s Law, a current in the loop will
produce a magnetic field (B). By Lenz’s Law, B, will be downward to cancel out some
of the newly-appearing upward magnetic field linesa futile attempt to keep the number
of magnetic field lines directed upward through ld@p, what it was. By the right-hand
rule for something curly something straight, toduroe a downward-directed magnetic
field line inside the loop, the induced current trhesclockwise around the loop, as
viewed from above.

Suppose there are magnetic field lines direag@slardthrough the loop, and, that they are
decreasingn number. By Faraday’s Law, the changing nundééield lines through the
loop will induce a current to flow in the loop. Bynpere’s Law, a current in the loop will
produce a magnetic field (B). By Lenz’s Law, B will be upward to make up for the
departure of upward-directed magnetic field linesa futile attempt to keep the number of
magnetic field lines directed upward through theplowhat it was. By the right-hand rule
for something curly something straight, to prodaneipward-directed magnetic field line
inside the loop, the induced current mustbenterclockwisearound the loop, as viewed
from above.
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19 Induction, Transformers, and Generators

In this chapter we provide examples chosen to éurtlimiliarize you with Faraday’s Law of
Induction and Lenz’s Law. The last example isgbaerator, the device used in the world’s
power plants to convert mechanical energy intotetat energy.

Example 19-1

A straight wire carries a current due north. Dast®f the straight wire, at the same elevation as
the straight wire, is a horizontal loop of wirehelTcurrent in the straight wire is increasing.
Which way does the current, induced to flow in it by the changing magnetic field of the
straight wire, flow around the loop?

Solution
I’m going to draw the given situation from a fewfélient viewpoints, just to help you get used

to visualizing this kind of situation. As viewein above-and-to-the-southeast, the
configuration (aside from the fact that magnetddfilines are invisible) appears as:

North
/71

| increasing

Up
A

where | included a sheet of paper in the diagrahetp you visualize things.
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Here’'s a view of the same configuration from thatbplooking due north:

West

Down

Both diagrams make it clear that we have an inangasumber of downward-directed magnetic
field lines through the loop. It is important tedp in mind that a field diagram is a
diagrammatic manner of conveying information atmuinfinite set of vectorsThere is no such
thing as a curved vectorA vector is always directed along a straight.lifidhe magnetic field
vector is tangent to the magnetic field lines cbmazing that vector. At the location of the
loop, every magnetic field vector depicted in tieegdam above is straight downward. While it
is okay to say that we have an increasing numbseraginetic field lines directed downward
through the loop, please keep in mind that thel fieles characterizeectors

In presenting my solution to the example questi@fat is the direction of the current induced
to flow in a horizontal loop that is due east stinight wire carrying an increasing current due
north?” | wouldn’t draw either one of the diagraai®ve. The first one takes too long to draw
and there is no good way to show the directiorhefdurrent in the loop in the second one. The
view from above is the most convenient one:

NORTH

><B increasing
X

WEST EAST

NG

A ><
| increasin

OOOOOOOO

SOUTH
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NORTH

><B increasing
X

WEST EAST

NC

A ><
| increasing

OOOOOOOO

SOUTH

In this view (in which the downward direction igarthe page) it is easy to see that what we have
is an increasing number of downward-directed magrieid lines through the loop (more
specifically, through the region enclosed by thaplp In its futile attempt to keep the number of

magnetic field lines directed downward through Ithep the same as what it was,,, must be

directedupwardin order to cancel out the newly-appearing dowa@irected magnetic field
lines. [Recall the sequence: The changing numbetagnetic field linesnduces(by Faraday’s

Law) a current in the loop. That currgmbducesgby Ampere’s Law) a magnetic field(,, ) of
its own. Lenz’s Law relates tlead produc{B,,, ) to theoriginal change(decreasing number
of downward-through-the-loop magnetic field lings).

NORTH

B increasing

WEST EAST

X

3 . .
T I'increasing

OOOOOOOO
Uw
{ X XX X)X X

SOUTH
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Interesting. We know the direction of the magnéél produced by the induced current before
we even known the direction of the induced curitself. So, what must the direction of the

induced current be in order to produce an upwarekctid magnetic fieldg,,, ). Well, by the

right-hand rule for something curly something sfhdy the current must be counterclockwise, as
viewed from above.

NORTH

B increasing

'\l
WEST EAST

OOOOOOOO
Uw
{ X XX X)X X

X

3 . .
T I'increasing

SOUTH

Hey. That's the answer to the question. We'reedeith that example. Here’s another one:
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Example 19-2

A person is moving a bar magnet, aligned north ppleout from under a coil of wire, as
depicted below. Which way does the induced curftent through the resistor?

upP

DOWN

The magnetic field of the bar magnet extends upwranaligh the coil.

upP

DOWN
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As the magnet moves out from under the coil, ietaks magnetic field with it. So, as regards
the coil, what we have is a decreasing number whug-directed magnetic field lines through
the coil. By Faraday’'s Law, this induces a curiierihe coil. By Ampere’s Law, the current

produces a magnetic fiel@,,. By Lenz’s LawB,,, is upward, to make up for the departing

upward-directed magnetic field lines through the co

upP

So, what is the direction of the current that isstag B, ? The right-hand rule will tell us that.
Point the thumb of your cupped right hand in theation of B, . Your fingers will then be
curled around (counterclockwise as viewed from abpav the direction of the current.

uP
R§

B

. PIN
Y S

W\
=1 d_a_

<
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Because of the way the coil is wound, such a cumghexit the coil at the top and flow
downwardthrough the resistor.

|2+

DOWN

That's the answer to the question posed in the pl&an(Which way does the current flow
through the resistor?)
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Example 19-3 The Transformer

When you put two coils of wire near each otherhdiat when you create a magnetic field by
using a seat of EMF to cause a current to flownia coil,that magnetic fieleextends through
the region encircled by the other coil, you cresttansformer Let’s call the coil in which you
initially cause the current to flow, the primaryilcand the other one, the secondary coil.

upP

I .. Secondary %R
,/V\\

If you cause the current in the primary coil toch@anging, then the magnetic field produced by
that coil is changing. Thus, the flux through seeondary coil is changing, and, by Faraday's
Law of Induction, a current will be induced to flowthe secondary coil. One way to cause the
current in the primary coil to be changing wouldtbeut a switch in the primary circuit (the
circuit in which the primary colil is wired) and tepeatedly open and close it.

U

5

i
J

E — Primary™

' Secondary

— AN G

Okay, enough preamble, here’s the question: Ve direction of the transiérturrent
induced to flow in the circuit above when the sWite closed?

! (This footnote is about the English language rather phagsics.) Transient meaasisting for a short time
interval
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Solution toExample 19-3

.

Prim ' ~N S d
s imary econdary % .

i

1,

4

S

AN !

r

Upon closing the switch, the current in the primairguit very quickly builds up t&/~. While

the time that it takes for the current to buildtaE/r is very short, it is during this time interval
that the current is changing. Hence, it is ontinie interval that we must focus our attention in
order to answer the question about which way thesot briefly flows through resistd in the
secondary circuit. The current in the primary esus magnetic field. Because the current is
increasing, the magnetic field vector at each poispace is increasing in magnitude.

Secondary

NV YERY
r U
B (briefly increasing upon closing of switch)

The increasing magnetic field causes upward-dicentagnetic field lines in the region encircled
by the secondary coil. There were no magnetid fiaks through that coil before the switch was
closed, so clearly, what we have here is an inacrgasimber of upward-directed magnetic field
lines through the secondary coil. By Faraday’s lthis will induce a current in the coil. By
Ampere’s law, the current induced to flow in themadary will produce a magnetic field of its

own, one that | like to caB,,, for “The Magnetic fieldProduced by thénduced Current.” By

Lenz’s Law, B,,, must be downward to cancel out some of the neppearing upward-

directed magnetic field lines through the seconddéhope it is clear that what I call the
magnetic field lineshroughthe secondary, are the magnetic field lines pgd$irough the
region encircled by the secondary coil.)
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UP
| increasing |

— VAN .
AHP G

! : G~ Secondary

I — ' ! :Q ' R
P G
—VVV Ee
NN

Y VBPIN

B increasing

Okay. Now the question is, which way must the entrbe flowing around the coil in order to
create the downward-directed magnetic filg, that we have deduced it does create. As
usual, the right-hand rule for something curly stdnmg straight reveals the answer. We point
the thumb of the cupped right hand in the directibB,,, and cannot fail to note that the

fingers curl around in a direction that can bestiéscribed as “clockwise as viewed from
above.”

upP

| y increasing

B A

4

: Club-‘anecondary
& —— . : CJ_% R lls
. Sc
1)

D

B increasing
Because of the way the secondary coil is woundj auzurrent will exit the secondary at the top

of the coil and flow downward through resiskr This is the answer to the question posed in the
example.
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An Electric Generator
Consider a magnet that is caused to rotate initheity of a coil of wire as depicted below.

upP

i)

[

As a result of the rotating magnet, the numberdirettion of the magnetic field lines through

the coil is continually changing. This inducesuarent in the coil, which, as it turns out, is also
changing. Check it out in the case of magnetithdtom our viewpoint, rotating clockwise. In
the orientation of the rotating magnet depictecther

upP

as the magnet rotates, the number of its magnetitlines extendinglownwardthrough the
coil isdecreasing In accord with Faraday’s Law, this induces a&ufrin the coil which, in
accord with Ampere’s Law, produces a magnetic feflds own. By Lenz’s Law, the field

(B, ) produced by the induced current must be downwardake up for the loss of downward-
directed magnetic field lines through the coil. gfoduceB,,, downward, the induced current

must be clockwise, as viewed from above. Baseth@mvay the wire is wrapped and the coil is
connected in the circuit, a current that is clodayias viewed from above, in the coll, exits the
coil at the top of the coil and flows downward tigh the resistor.
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In the orientation depicted here:
UP

we have amncreasingnumber olupward-directednagnetic field lines through the coil. To
“fight” that, the induced current produces a dowrth&,,, to cancel out some of the newly-
appearing upward-directed magnetic field lines. pfaduceB,,, downward, the induced

current must be clockwise, as viewed from abovéhéncoil. Such a current exits the coil at the
top of the coil and flows downward through the stsi.

In the orientation of the rotating magnet depidtede:

the number otipward-directednagnetic field lines directed through the cotlecreasing The
induced current produces an upwdg|, to make up for the departing upward-directed

magnetic field lines through the coil. To do d@& turrent must be counterclockwise, as viewed
from above, in the coil. Such a current flows updarough the resistor.
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In the orientation of the rotating magnet depidtede:

upP

we have amncreasingnumber odownward-directeanagnetic field lines through the coil. To
“fight” that, the induced current produces an upivB,,, to cancel out some of the newly-

appearing downward-directed magnetic field lin&s. produceB,,,, upward, the induced current

must be counterclockwise, as viewed from abovéhercoil. Because of the way the coil is wound,
such a current exits the colil at the bottom ofdbkeand flows upward through the resistor.

As the magnet continues to rotate clockwise, the agentation it achieves is our starting point
and the process repeats itself over and over again.

Recapping and extrapolating, the current throughréistor in the series of diagrams above, is:
downward, downwardjpward, upwargddownward, downward,upward, upward...

For half of each rotation, the current is downwant] for the other half of each rotation, the
current is upward. In quantifying this behavionedocuses on the EMF induced in the coil:

upP
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The EMF across the colil varies sinusoidally witheias:

& =€, SIN(277 )
where:

& which stands for EMF, is the time-varying elecpotential difference between the
terminals of a coll in close proximity to a magttet is rotating relative to the coil as
depicted in the diagrams above. This potentidéehce is caused to exist, and to vary the
way it does, by the changing magnetic flux throtighcoil.

& .. is the maximum value of the EMF of the coil.

MAX

£ is the frequency of oscillations of the EMF acrti&scoil. It is exactly equal to the
rotation rate of the magnet expressed in rotafgansecond, a unit that is equivalent to
hertz.

& [Volts]

MAX 7

t [seconds]

The device that we have been discussing (coil-piteting magnet) is called a generator, or
more specifically, aelectric generatar A generator is a seat of EMF that causes tleebe ta
potential difference between its terminals thatessinusoidally with time. The schematic
representation of such a time-varying seat of ESF i

®

It takes work to spin the magnet. The magnetid fiaused by the current induced to flow in the
coil exerts a torque on the magnet that alwayssémdlow it down. So, to keep the magnet
spinning, one must continually exert a torque anrtlagnet in the direction in which it is
spinning. The generator is the main componenhyfedectrical power plantlt converts
mechanical energy to electrical energyhe kind of power plant you are dealing with is
determined by what your power company uses totggimagnet. If moving water is used to
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spin the magnet, we call the power plant a hydateteplant. If a steam turbine is used to spin
the magnet, then the power plant is designatetsbyeéthod of heating and vaporizing water.
For instance, if one heats and vaporizes the vgtereans of burning coal, one calls the power
plant a coal-fired power plant. If one heats aapgorizes the water by means of a nuclear
reactor, one calls the power plant a nuclear pgiast.

Consider a “device which causes a potential diffeeebetween its terminals that varies
sinusoidally with time” in a simple circuit:

N R

The time-varying seat of EMF causes a potentidiihce across the resistor, in this simple
circuit, equal, at any instant in time, to the &gk across the time-varying seat of EMF. As a

. . \% -
result, a current flows through the resistor. Thgent is given byl =E , our defining

equation for resistance, solved for the curterBecause the algebraic sign of the potential
difference across the resistor is continually ali¢ing, the direction of the current in the registo
is continually alternating. Such a current is@@dknalternating current(AC). It has become
traditional to use the abbreviation AC to the ektaat we do so in a redundant fashion, often
referring to an alternating current as an AC curréihen we need to distinguish it from AC,
we call the “one-way” kind of current that, saypattery causes in a circudirect current
abbreviated DC.)

A device that causes current to flow through astesi whether that current is alternating or not,
is delivering energy to the resistor at a rate wwatall power. The power delivered to a resistor
can be expressed BslV wherel is the current through the resistor anis the voltage across
the resistor. Using the defining equation of tasise,V=IR, the power can be expressed as
P=1’R. A “device which causes a potential differencemMeen its terminals that varies
sinusoidally with time”, what | have been referritngas a “time-varying seat of EMF” is
typically referred to as aAC power source An AC power source is typically referred to in
terms of the frequency of oscillations, and, thitage that a DC power source, an ordinary seat
of EMF, would have to maintain across its termirtalsause the same average power in any
resistor that might be connected across the tetsnoidhe AC power Source. The voltage in
question is typically referred to &g, or V., . where the reasoning behind the name of the

subscript will become evident shortly.

Since the power delivered by an ordinary seat ofFEd/a constant, its average power is the
value it always has.
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Here's the fictitious circuit

RMS —

that would cause the same resistor power as thpoA&@r source in question. The average
power (which is just thpowerin the case of a DC circuit) is given B, =1¢&,,,., which, by

RMS?

means of our defining equation of resistance soloed I1=V/R, (where the voltage across the
2

resistor is, by inspectio,,,) can be writterP,,; = g"s . So far, this is old stuff, with an

unexplained name for the EMF voltage.

Now let’'s consider the AC circuit:

=6, sin@nn) /\) R

2 H 2 2 H 2
€ [Cup SN _ Ene [S|r|1\)(277ft)] . The average power over any

The power isP =— =

R R
long time interval will simply be the total enerdglivered to the resistor during that time
interval, divided by the time interval. Becausehd way the power function repeats itself, the
average power during any long time interval wiitjipe the numbeX of periods of oscillation in
that time interval times the energy delivered dyiome period, all divided by (the number of
periods times one periom).

Let a long time intervaht = NI, whereT is the period of oscillations.
EnergyfAt) = N[Energy(T)

_ EnergyAt)

e ST
_ NIEnergyT)
e TTNT

_ Energy(T)

AVG _f
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. . o 1
Thus, the average power over any time intervalss the average over one periobd—. Let’s

go ahead and get an expression for that. Firdt fvel the energy delivered to the resistor in
one period of the oscillations of the EMF.

Energy(T) = ]' P(t)dt

vez | [sin(2mf)]?
E T) = [ —wax
nergy(T) _([ R

dt

2 1/F

EnergyT) = % j [sin(2721)]2dlt

We use the trigonometric identi(gin 8)* =%—%cose¢9) to obtain:

2 1/F

Energy(T) = 5“"?’“ IG - % cos[2(2m‘t)]]dt

52 1/ 1/
Energy(T) =%( Idt - Icos@lm‘t)dt
0 0

52 T 1/ F
Energy(T) = %U dt - _[ cos@rft)dt
0 0

&2 T 1 . UF
Energy(T) =%(t‘o —4—77]05|n(4771"[)‘0 ]

Energy(T) = gg"—g( (T-0 - 4—71#{sin[477f EE% } —sin[4r7f IZ(D]} }

2

Energy(T) = gg"s [T - 47le (0-0)

€ nx
Energy(T) =FT
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Recalling that our average power is the energyweedd to the resistor in one peridddivided
by one periodl we see that:

_ Energy(T)
PAVG _f
2R
PAVG =f
p =1
AVG ~ A
2 R

Okay, remember what we were doing? We wantedtbthe value of the DC EMF, which |
called &€,,,5, that would deliver the same average power todhistor as our actual time-varying

seat of EMF. For our DC seat of EMF we had:
-_— 5§%MS

I:)AVG R

and now, for our AC power source, we have:

P _— 1 gi/IAX
AVG 2 R

Setting the two expressions equal to each otheybiasn:

5§1MS _EgiAAX

R 2 R
1
Epus =—=¢€
RMS \/E MAX
Now we are in a position to explain why we called equivalent EMF¢,,,s. In our expression

16&; & :
Puwe = 5 '\|/IQAX , We can con5|d(-:~r“"TAX to be the average value of the square of our time-

varying EMF & =€ ,,, sin(27zft ). Another name for “average” is “mean” so we cansider
2
%TAX to be themeanvalue ofé. On the right side of our expression for our eglgint EMF,

1 & :
€ s = —=€uax » We have the square rootei”zﬁ , that is, we have thequare rootof themean

RMS _ﬁ

of thesquareof the EMF£. And indeed the subscript “RMS” stands for “romtan squared.”
RMS values are convenient for circuits consistihgesistors and AC power sources in that, one
can analyze such circuits using RMS values the saaysone analyzes DC circuits.
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More on the Transformer

When the primary coil of a transformer is drivenasyAC power source, it creates a magnetic
field which varies sinusoidally in such a mannetasause a sinusoidal EMF, of the same
frequency as the source, to be induced in the siecgrcoil. The RMS value of the EMF
induced in the secondary coil is directly proparéibto the RMS value of the sinusoidal
potential difference imposed across the primarge Gonstant of proportionality is the ratio of
the number of turns in the secondary to the nurabeirns in the primary.

N

g - SECONDARYV
SECONDARY N PRIMARY
PRIMARY
+ i E‘P +
' S
) Vv . DS ¢ R
PRIMARY 0 %: SECONDARY
1 : [« I
- Pa ==
NPRIMARY NSECONDARY

When the number of windings in the secondary sgteater thanthe number of windings in
the primary coil, the transformer is said to b&ep-up transformeand the secondary voltage is
greater than the primary voltage. When the nurobarndings in the secondary coillsss than
the number of windings in the primary coil, thensBormer is said to bestep-down transformer
and the secondary voltage is less than the privaltsige.

The Electrical Power in Your House

When you plug your toaster into a wall outlet, ywing the prongs of the plug into contact with
two conductors between which there is a time-v@ryiatential difference characterized as

115 volts 60 Hz AC. The 60 Hz is the frequencysdillations of the potential difference
resulting from a magnet completing 60 rotationsgsEond, back at the power plant. A step-up
transformer is used near the power plant to stepdlwer plant output up to a high voltage.
Transmission lines at a very high potential, webpect to each other, provide a conducting path
to a transformer near your home where the voltagéspped down. Power lines at a much
lower potential provide the conducting path towhees in your home. 115 volts is the RMS
value of the potential difference between the tanductors in each pair of slots in your wall

outlets. SiNCE gy =i5MAX , we havet,,., =+/2 &5, S0, =+/2 (115volts), or

V2

&uax =163volts. Thus,
&€ = (163volts)sin[271 (60H2)t]

which can be written as,

¢ = (163votts)sin[(37773%1)
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20 Electric and Magnetic Fields in Motion

It's time to consider another viewpoint for somelwé interactions that we have been studying.
Much like we can describe the force exerted onahagged particle by another, either in terms
of action at a distance, or by stating that onegddh particle creates an electric field, and, its
electric field is what exerts a force on the ottiesrged particle; we can look at the interaction
between a magnetic field and a charged particke tlag interaction of an electric field with a
particle that has a magnetic dipole moment, inva way.

For instance, consider the case of a charged |eattiat is moving in the vicinity of a moving
bar magnet as depicted in the following diagram:
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Let the magnitudes of the two velocities add ug taeaning that is the magnitude of the
velocity of the particle and the magnet relativeach other. You might want to imagine this
arrangement to be in outer space because I'm dgoiagk you to jump around between three
different reference frames, each of which is moahg different constant velocity relative to the
other two. There’s the reference frame who's pofntiew is depicted above, in which each of
the objects is moving relative to the other. Tlsetlee particle’s reference frame in which the
particle is at rest and the magnet is moving pastspeed. And, there’s the magnet’s
reference frame, in which the magnet is at restthagbarticle is moving past it at speed_et’s
start off in the magnet’s reference frame (but,eeper, its all one and the same situation—its
just that we’re going to view it from different ezEnce frames):

I

When we view the situation from the reference frarhhe magnet, what we see (as depicted
just above) is a charged particle moving in a etatly magnetic field. We have already studied

the fact that a magnetic field exerts a fofce qvxB on a charged particle moving in that
magnetic field. Now let’s look at the same phenoamefrom the point of view of the charged

particle.
4
B
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Surely we aren’t going to change the force exeotethe charged particle by the magnetic field
of the magnet just by looking at the situation frarifferent reference frame. In fact we've
already addressed this issue. What | said wagttisathe relative motion between the magnet
and the charged particle that matters. Whethechheged particle is moving through magnetic
field lines, or, the magnetic field lines, due lheit motion, are “cutting through” the particlegth
particle experiences a forcélow here’s the new viewpoint on this situatiaihat we say is,

that the magnetic field doesn't really exert a éoon the charged particle, but rather, that by
“cutting through” the point at which the partickelocated, the magnetic field creates an electric
field at that location, and it is the electric fi¢hat exerts the force on the charged particle.

What I've done here is to introduce a “middlemamtiescribe the same phenomenon in a
slightly different way. In terms of the phenomehat we have studied to date, there is no way
to tell whether the magnetic field actually doesate an electric field to exert a force on a
moving charged patrticle, or, it directly exert®oeck on the charged particle itself. The result is
the same, a charged particle moving in a magnield éxperiences a force. Based on our
understanding of Newton's'2Law, we deduce that there is a force on the peytiut, there is

no way to tell whether the force is exerted ongéasicle directly by the magnetic field, or, that
the motion of the magnetic field creates an eledteid, which does the exerting. The
introduction of this “middleman” electric field, #tis stage, probably seems like a violation of
the philosophical principle known as Occam’s razahich physicists use to determine which of
two equally-accurate descriptions of nature shbeléccepted into that body of knowledge
known as physics. The principle demands that coep the simpler description. Indeed, this
“middleman” electric field does complicate the dgswn, but, as we shall see later in this
chapter, there is evidence for its existence. 8@, start looking at things from this point of
view.

Things quickly get pretty amazing. Recall that ¢ltextric field vector is something that exists at
a point in space whether or not there is a victiarged particle for it to exert force on. So what
we’re saying is, if you “look at” the field of a benagnet from a reference frame at rest with
respect to the bar magnet, all you “see” is a magfield. But, if you “look at” the field of the
same bar magnet from a reference frame that isngaelative to the magnet, what you “see” is
a moving magnetic fieldand, an electric field

Suppose you are considering a point in space umdieh a magnet is moving. Suppose you
can’t see the magnet. What we have, at the poigtiestion, is a changing magnetic field. The
name that we give to the phenomenon that we haye ddscussing is, “Faraday’s Law of
Induction.” What we say is, that a changing maigrfetld causes an electric field. Of course,
you’ve already heard of Faraday’s Law of Inductidie said that Faraday’s Law of Induction is
the statement that a changing flux through a laogod will induce a current in that coil. With
the introduction of our “middleman” electric fieldie are now saying the same thing and more.
A changing flux through a loop or colil will inde@ttluce a current in that coil because it will

! I've heard the Occam’s Razor analogy explained two waye first explanation was that Occam’s razor,
positioned edge up, is a very narrow elevated sidewalk. p¥ba bunch of competing, accurate, hypotheses on the
razor, and the one that is able to stay on thewnesurface, owing to its simplicity and compactness,astie that
becomes a law or principle of physics. The secondaaggibn was that Occam’s razor is a sharp-edged tool aised t
cut away all the unnecessary parts of a good hypothesisiathing is left but a law of physics.
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produce an electric field in the loop or coil, dactric field that will push charged particles
around loop or coil such that their motion is tharge flow we call currefit In fact, if you need
to determine the direction of the electric fieldg@uced by a changing magnetic field, just
imagine there to be a loop surrounding the changiagnetic field. The direction of the current
that would flow in that fictitious loop is the de&on of the electric field.

So, what I'm saying is, that Faraday’s Law boilswidido the statement that a changing magnetic
field causes an electric field. Let’s review ehxagthat we mean bghangingin this context.
Much like the statement “Work is force times dis@yi is a convenient mnemonibut a

woefully incomplete and possibly misleading defomtof work, the statement that a changing
magnetic field causes an electric field is a core@mmnemonic but an incomplete and possibly
misleading statement of Faraday’s Law. So, wioatre mean by “changing” in this context?
Here’s the deal: whatevehanging of the magnetic field a particular point in space would
cause a force on a positive test charge if it ve¢tbat point in space, would cause an electric
field at that point in space. Furthermore, thateilc field would be in the same direction as the
force that would be experienced by the test change, that electric field would have a
magnitude equal to the magnitude of: the magnitfdbe force on the test charge divided by
the charge of the test charge. Let’s investigateuple of cases. We are going to look at a
point P in the reference frame in which poftis at rest. From our point of view, poftis a
fixed point in space.

CASE 1: A non-rotating bar magnet is moving straigthpointP, north pole first, such that point
P is on the extended axis of symmetry of the barmatg

o P

Now that’s ironic. There will be no electric fieldduced at poinP. Think about it. | mean
suppose there was a charged particle at restveekatipointP, at pointP. As viewed from the

rest frame of the magnet, the charged particle evbalapproaching the magnet along a
magnetic field line. We all know that won't resinta force on the charged particle. It has to be

2 Recall that, technically, current is trate of charge flow. Still, the charge flow itself is coromty referred to as
current.
3 A mnemonic is a device that helps you remember something
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crossing some magnetic field lines in order to haverce exerted on it by the magnetic field.
So, the magnetic field would not exert a force guositive test charge if that test charge were at
point P, and, at rest relative to poiRt This means that the magnetic field of the bagmea

would not be causing an electric field at pdtmtThis is weird. The magnetic field at pokinis
getting stronger. Hey, that's an ongoing changkthe same, there is no electric field induced
at pointP. We need magnetic field lines “cutting througl@ing P to cause an electric field at
point P. Despite the ongoing change, we don’'t have antitig through” going on here, so
there is no electric field induced at pokht

CASE 2: A uniform magnetic field is moving in aelition transverse to the direction of the
magnetic field, through poir.

Let's assume we have a huge bar magnet and Poghear the face of the north pole of the
magnet, far from any edges. In that region, nearface of the pole, far from any edges, the
magnetic field is, to a good approximation, uniforkiere we just show the upper tip of the bar
magnet and a small portion of its magnetic field.

[

/ —~———

We have a little bit more irony here. Neither thagnitude nor the direction of the magnetic
field at pointP is changing with time, yet, clearly we have arcele field induced at poir®.
Check it out. Suppose there was a positive tesmigehatP and at rest relative to poiRt

Relative to the magnet, and more importantly, ndatio the magnetic field of the magnet, the
test charge would be moving rightward. It wouldeed be crossing some magnetic field lines

so it would indeed experience a forlge= qv xB. By the right-hand rule for the cross product,

applied toF = qv x B wherev is the velocity of the charged particle relativetie magnetic

field, the force would be directed out of the pagjeaight at you. Putting the test charge back in
my pocket, what this means is, there is an eletigid atP, which, in the diagram, would be
directed out of the page, straight at you. Rehgrmo the rest frame of poiRt, what we have is
some magnetic field lines cutting through the posibf pointP, and, that is exactly what we
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need to cause an electric field at pditin fact, what we really mean when we say that “a
changing magnetic field causes an electric fieskdkhat magnetic field lines that are dynamically
“cutting through,” a point in space will cause d@ctric field at that point in space. Another way
of putting it would be to say that the velocityaomagnetic field vector & must have a
transverse-to-the-magnetic-field-vector componemrder for an electric field to be induced at
point P.

CASE 3 The superposition of a uniform magnetitfidat is moving in a direction transverse
to the direction of the magnetic field, throughmid?, and, a stationary magnetic field that is
equal and opposite to the one just mentioned.

\¥ ‘\

N

o N

/’ \\\;

Again, we are just showing a small fraction of eadgnet. The total magnetic field is not only
constant, it is zero! The superposition of the tmagnetic fields is no field at all. And yet,
because there are magnetic field lines moving vesely through poirn®, thereis an electric
field induced at poinP. As in the last case, the electric field is diegicout of the page, straight
at you.

Before moving on, | want to write down an expresdir the electric field vector at a point in

space due to relative motion between that pointthednagnetic field at that point (what we
have just been talking about and what is typicadherred to as the electric field due to a
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changing magnetic field). I'll do so by imaginitigere to be a positive test charge “attached” to
point P and viewing the situation from the point of viemwvhich the magnetic field is at rest.

A A A A A A A B A

A positive test charge “attached” to poinP would experience a force given by:

F=qvxB

Now we are saying that this force is actually duan electric field caused by the relative motion
between the charged particle and the magnetic figldhis case,

F=qE

Of course we are talking about the same force fwandifferent viewpoints. In order for both
viewpoints to give the same result we must have:

E=vxB (20-1)
where:

E is the electric field at an empty point in space tb the motion of that point relative to a
magnetic field vector that exists at that poinsjpace,

v is the velocity of the empty point in space refatio the magnetic field vector, and,

B is the magnetic field vector.
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Now let’s consider the effect that an electricdibas on a particle having a magnetic dipole
moment. I’'m going to refer to such a particle asagnetic dipole. Consider a magnetic dipole
in the vicinity of a long line of charge that isifommly distributed along the line.

p
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Please consider the line of charge to extend marther in both directions than | have depicted
it to, so that we don’'t have to deal with the narifarm nature of its electric field near the ends.
With that understanding, we can depict the eledigld of the line of charge as follows:

The electric field of the line of charge exertstomue on the magnetic dipole.

Now, consider a different situation involving tb@me two objects, a situation in which the two
objects are moving in opposite directions paradighe line of charge:
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Again we’ll let v be the speed of the line and the magnetic digdéeive to each other and we
will be jumping back and forth between referenearfes. As viewed from the reference frame
in which the magnetic dipole is at rest, the lifielwarge is moving.
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The moving line of positive charge is an electrerent in the direction in which the line is
moving.
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According to Ampere’s Law, a current causes a magfield. We have learned that a straight
current causes a magnetic field that extends ipd@vound the current in accord with the right-
hand rule for something curly something straighthwie current being the something straight.

Thus, in the vicinity of our magnetic dipole, weveamagnetic field lines directed as depicted in
the following diagram:
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Now we see that our magnetic dipole is in a magrietid. A magnetic field exerts a torque on
a magnetic dipole in the magnetic field. So, oagnetic dipole experiences a torque. By the

right hand rule for the cross product of two vest@pplied tor = ixB, the axial torque vector
is in the direction depicted in the following diagn:
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Of course, you can get the sense of rotation assatith that torque by means of the right-
hand rule for something curly something straighaint your right thumb in the direction of the
torque vector and your fingers will curl aroundte way that torque tends to spin the magnetic
dipole (counterclockwise when viewing the torquetwoe “tip-on”). Note that, as always, the
torque tends to align the magnetic dipole withrttsgnetic field it is in. So far, we have been
viewing things the way we always have. Moving dgesis current. Current causes a magnetic
field. A magnetic field exerts a torque. Now $etiew this situation in the same reference
frame, but, from a different point of view.

Again, we have a line of charge moving near a garthat has a magnetic dipole moment.
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This time, let’s focus our attention on the electield of the line of charge.
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The magnetic dipole finds itself at a point in sp#arough which electric field vectors are
moving, transverse to the direction in which thectic field vectors point. Let’s jump
momentarily into the reference frame in which tihe lof charge is at rest and see what the
situation looks like from that reference frame.

7] E

o~

Remember, we know the end result: The magnetmlaipxperiences torque which is directed
up and to the left in the diagram. Can we desdhigein terms of an interaction between the
magnetic dipole and the electric field? The answages. We can say, that: An electric field
exerts a torque on a particle that has a magngiidedmoment as long as that particle is moving
so that it is crossing electric field lines, anslJ@ng as its magnetic dipole momegnis not

collinear withv x E , wherev is the velocity of the particle aril is the electric field vector at
the location of the particle. This is a bit of authful and indeed, unlike the case of a charged
particle moving in a magnetic field, this statemsrdlmost never made without “the
middleman.” In the case at hand, the “middlemarthe magnetic field.
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We view the situation in the rest frame of the n&tgndipole.

E
”
i + |+ |+ |+ + 4+ + I+ [+ F ]+
N |+ |+ |+ |+ |+ F |+ |+ |+ |+ |+ |+ |+ [+ |+ |+ +

In this reference frame we see electric field linesving transversely through the position of the
magnetic dipole. Despite the fact that the eledieid is changing in neither magnitude nor
direction at the location of the particle, we retethis transverse motion of the electric field
through the position of the particle as a changiegtric field at the location of the particle. We
say that a changing electric field causes a magfietd, and it is the magnetic field so produced
that causes the torque. The magnetic field ewikether or not there is a victim magnetic dipole
for it to exert a torque on. What we're sayingthgt a line of charge, viewed from the reference
frame in which the line of charge is at rest, caubere to be an electric field, and only an
electric field in the region of space around it Bf you “look at” that same line of charge from
a reference frame that is moving relative to the bf charge, what you see is both a magnetic
field and an electric field.

Let's consider a point in space. Call it pdiht Regarding the direction, by analogy with the
force on a charged particle moving relative torttegnetic field it is in, we use the point of view
in which pointP is moving in an electric field.

From our earlier considerations (we consideredexdif charge, moving relative to a magnetic
dipole, to be a current) we know that the magrield at pointP is into the page in the diagram
above. Now, by the right-hand rule for the crossipct of two vectors, applied fox E , we

note that the direction of x E , is out of the page in the diagram above. Seeidopt the

point of view in which the electric fiel& is at rest and the point at which we might placesa
dipole is moving through electric field lines alo@ty v, we can say that the magnetic field that
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would be experienced by our test dipole, is indinection —v xE . In fact, the magnetic field at
point P is given by
B=-ue VxE (20-2)
where
B is the magnetic field, at an empty point in spakes to the motion of that point relative to
anelectricfield vector that exists at that point in space,

M, = 471x10‘7T[Tm Is the magnetic permeability of free space,

2

€, =8.85x107" NC is the electric permitivity of free space,

2

v is the velocity of the empty point in space refatio the magnetic field vector, and,
E is the electric field vector.

This business of transverse electric field motretative to a point in space, causing a magnetic
field at that point in space, is usually, ratherdely, stated as, “A changing electric field cawses
magnetic field,” and referred to &axwell’s extension to Ampere’s Lgwhere Ampere’s Law

is the one that sayscarrentwill cause a magnetic field). In the exampledtjused to develop
this principle for you, we had an electric fielduisang a magnetic field at poiRt despite the fact
that the electric field & was constant in both magnitude and direction. tdould that be?

Well, we did have electric field vectors movingrtsaersely througPR, and that’s sufficient to
cause a magnetic field Bt (By “moving transversely,” | mean that the velgpof the electric
field vectors was perpendicular to the directiomhaf electric field vectors.)

Returning to the example that we have been studigtig put a very long stationary sheath or
pipe around the line of charge and put the samenitualg of linear density of charge (the same
as is on the line of charge) on it, but, make gat&e charge.

T

A
+H+
|1+
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|1+
1+

=+
=+
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Please consider both the line of charge and thetisloé charge to be much longer than depicted.
Consider them both to extend left and right asfayou can imagine. Every meter of our long
object consisting of the line of charge plus iteath, is neutral, because we have just as much
negative charge on a meter of the sheath as wegwsiteve charge on a meter of the line.
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Chapter 20 Electric and Magnetic Fields in Motion

Thus, the electric field at the location of pdh(the location of the test magnetic dipole in the
diagram)is zero But, the line of charge is moving leftward whitee sheath is stationary. As a
result, we have outward-directed electric fiele&er{only) moving leftward through poiRt

Using the right-hand rule for the cross produdiwd vectors applied t@8 = —ye v X E with v
being the rightward velocity of poiit relative to the upward directed electric fielgoatnt P,

we get “out of the page” for the direction wk E meaning thaB is “into the page” consistent
with our understanding of the magnetic field lirstprn formed by a straight (leftward) current.
Indeed what we have in this example is a modehfoeutral current-carrying conductor such as
a copper wire connected across a power supply.

Okay. Here comes the main point of this chapter.

We've said that a magnetic field vector moving ssarsely through a point in space will cause
an electric fieldE =v x B at that point in space, and, that an electrid figlctor moving
transversely through a point in space will causeagnetic fieldB = -z ¢, v xE at that point in
space. First, an admission to the reader. The Yeause” in this context is not really

appropriate because there is never any time delaged it to avoid falling into a diction
guagmire. In reality, whenever we have a magriitid vector moving transversely through a

point there exists, simultaneously, an electritlfie =vxB at that point in space, and,
whenever we have an electric field vector moviregswersely through a point in space, there

exists, simultaneously, a magnetic fid= —z e v E at that point in space.

Consider the following circuit. Assume that we leking down on the circuit from above,
meaning that into the page, is downward, and othe@page, is upward.

-
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| want you to focus your attention on the rightmase of that circuit. As soon as someone
closes that switch we are going to get a curraotgh that wire and that current is going to
produce a magnetic field. You can look at the eanfshe magnetic field in terms of Ampere’s
Law or in terms of Maxwell's extension to Amperé&aw, the cause is not the issue here. We
get a current, and, by means of the right-handfarlsomething curly something straight, with
the current being the something straight, and aonkedge that straight currents cause magnetic
fields that make loops around the current, we @tude that there will be an upward-directed
magnetic field at points to the right of the wire steady state, we understand that the upward-
directed magnetic field vectors will be everywhtrehe right of the wire with the magnitude of
the magnetic field vector being smaller the gretiterdistance the point in question is from the
wire. Now the question is, how long does it tatiethe magnetic field to become established at
some point a specified distance to the right ofwtive. Does the magnetic field appear instantly
at every point to the right of the wire or doetake time? James Clerk Maxwell decided to
explore the possibility that takes timein other words, that the magnetic fields develothe
vicinity of the wire and move rightward with a fieivelocity. To keep the drawing uncluttered
I’m going to show just one of the infinite numbédmaagnetic field lines moving rightward at
some unknown velocity (and it tkis velocity that | am curious about) as the magniegid due

to the wire becomes established in the universe.

S
|

—— AAA

Again, what I'm saying is that, as the magnetitdfieuilds up, what we have, are rightward-
moving upward-directed magnetic field lines du¢h®s current that just began flowing. Well, as
a magnetic field vector moves through whatevertlonat is moving through, it causes an
electric field E =vxB (wherev is the velocity of the point in space relativetie magnetic
field—since we see the magnetic field moving rigdutsly the point in space must be moving
leftward relative to the magnetic field at thatrgan space.)

194



Chapter 20 Electric and Magnetic Fields in Motion

%1
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At any pointP through which the magnetic field vector passeslactric field exists consistent
with E =vxB. What this amounts to is that we have both a miagfield and an electric field
moving rightward through space. But we said timag¢lactric field moving transversely through
space “causes” a magnetic field. More specificaiysaid that it is always accompanied by a
magnetic field given byB = -1, v xE (where again, the vectar is the velocity of the point in
space relative to the magnetic field vector—it's th@ same magnitude as the velocity vector in
the diagram, but, if the electric field vector iswing rightward relative to the point in space,
then, the point in space is movilggtward relative to the electric field vector). Now we've
argued around in a circle. The current “causes™lagnetic field and its movement through
space “causes” an electric field whose movemenutyin space “causes” the magnetic field.
Again, the word “causes” here should really berpiteted as “exists simultaneously with.” Still,
we have two explanations for the existence of onkthe same magnetic field and the two
explanationsnustbe consistent with each other. For that to be#se, if we take our
expression for the magnetic field “caused” by thegion of the electric field,

B=-ue VXE
and substitute into it, our expressi&r=vxB for the electric field “caused” by the motion of
the magnetic field, we must obtain the saBhé¢hat, in this circular argument, is “causing” Ifse
Lets try it. SubstitutingsE =vxB into B =-y.¢ VX E, we obtain:
B = —44,6,Vx (VX B)
All right. Always keeping in mind that the is the velocity of the point in space relativehe

field, meaning it has the same speed as the #dddive to the wire, but it is directed leftward in
the diagram rather than rightward, and noting thas perpendicular to botB andv xB,
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meaning that the magnitude of the cross produ@adah case, is just the product of the
magnitudes of the multiplicand vectors, we obtain:

Again, it is one and the sani& on both sides, so, the only way this equationteatrue is if
U.e, v’ is exactly equal to 1. Let’s see where that lasds

Uev:=1
vZ= !
Ho€,
1
vV =
ﬂ0€0
1

2
4rx10” "M ) ggsx10z ©
A N On?

v= 3.00x108%

Wow. That's the speed of light!
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Faraday’s Law and Maxwell’'s Extension to Amperessviand, the Imaginary Loop

Here we give an argument similar to the one we gaweair discussion of a changing number of
magnetic field lines through a conducting loop,, Iblis time, instead of a conducting loop in
which current is induced, we deal with an imaginanp in which an electric field is induced.
Then we give a similar argument for the case dfanging number doflectricfield lines through
another imaginary loop.

Suppose we have an increasing number of downwaedtdd magnetic field lines through an
imaginary loop. Viewed from above the situatiopegrs as:

X X

B increasing

X X

The big idea here is that you can’t have an inengasumber of downward-directed field lines
through the region encircled by the imaginary leathout having, either, downward-directed
magnetic field lines moving transversely andiard through the loop into the region encircled
by the loop, or, upward-directed magnetic fielefrmoving transversely aoditwardthrough

the loop out of the region encircled by the lodpther way you have magnetic field lines cutting
through the loop and with each magnetic field agtthrough the loop there has to be an
associate@lectricfield tangent to the loop. Our technical expr@sgor the “number of
magnetic field lines through the loop” is the magm#ux, given, in the case of a uniform (but
time-varying) magnetic field by

o, =BOA (20-3)

whereA is the area of the region encircled by the lo®pe average magnitude of the electric
field vector at any point in the loop is given by

E_l

= (20-4)

B

wherquB Is, of course, the time derivative of the magn#tig, that is, the rate of change of the
magnetic flux through the region encircled by thep.

Now here’s an important piece of information regagdirection that we derived earlier in this
chapter but never explicitly stated:
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When you have an electric field vector and its eis$ed magnetic field vector (the one pair
appearing in botle =vxB and B = —¢,V xE), both fields are moving in the same direction
as the direction of the vect@ xB .

Suppose that, in the case at hand, the number grietia field lines downward through the loop
is increasing because we have downward magneldcliiees moving inward through the loop,
into the region encircled by the loop. Let’s loatkone such field line in the act of crossing the
loop.

Now, our newE xB direction rule is that the transverse velocityBofand E for that matter) is
in the same direction as the direction of the vegba get when you take the cross product

ExB. Forthe cross product to be leftward in the diagabove E must be pointing toward
the top of the page:

You can check it out for some more magnetic fieddters moving into the region encircled by
the loop from other positions about the loop. Aywlj can check it assuming the reason that the
magnetic field downward through the loop is incnegss because upward directed magnetic
field lines are moving out (through the loop) of tlegion encircled by the loop. In all cases
you'll find, consistent with what we just found fone E vector, that the electric field vectors
form a circular pattern directed counterclockwibeut the loop, as viewed from above. Note

that if we imagine the loop to be a conducting labgat our result is also consistent with Lenz’s
Law.
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Now consider the case of an increasing number whd@rd-directeelectricfield lines through
an imaginary loop. Viewed from above the situatgppears as:

X X

E increasing

X X

We can't get an increasing number of downward-ti@electric field lines through the region
encircled by the loop without some of them movinigptigh the loop. In cutting through the
loop, the electric field must have a magnetic figdhgent to the loop) associated with it. The
technical name for the number of electric fiel®8rthrough the loop is the electric flux through
the loop, given, for a uniform electric field by:

o, =E[A (20-5)

whereA is the area of the region encircled by the lobpthe case of a uniform electric field, the
magnitude of the induced magnetic field vectog\ery point on the loop, is given by:

B=

qéE‘ (20-6)

ﬂ0€0
27
The direction can be obtained by means of BB direction rule. For example, by assuming

thatE is increasing because electric field lines are mgito the region encircled by the loop,
for one electric field vector in the act of crogsthe loop, we have:

For v to be inward for any downward-directed electr&divector crossing the loop from
outside to inside,

the magnetic field vectors must fornclackwise(as viewed from above) pattern about the loop.
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21 The Nature of Electromagnetic Waves

When we left off talking about the following cirdui

A

we had recently closed the switch and the wire evaating a magnetic field which was
expanding outward. The boundary between thatgfdhe universe in which the magnetic field
is already established and that part of the unéversvhich the magnetic field has not yet been
established is moving outward at the speed of,light3.00x 10° m/s. Between that boundary
and the wire we have a region in which there exastteady unmoving magnetic field. Note that
it was the act of creating the current that cadskednagnetic field “edge” that is moving at the
speed of light. In changing from a no-currentagiten to one in which there was current in the
wire, charged particles in the wire went from no veocity in the along-the-wire
direction to a net velocity along the wire, meanithgt the charged particles were
accelerated. In other words, accelerated chargeetles cause light. We can
also cause light by means of the angular acceteratfi particles having a
magnetic dipole moment, but, tekortanswer to the question about what cause
light, is, accelerated charged particles

Here’s a simple circuit that one might use to ititerally cause light:

UP 1

O

The vertical arrangement of wires on the righefeired to as a dipole antenna.
As the AC power source alternately causes chargartge upward in both parts o
the antenna, and then downward, the dipole anteraaes electric and magnetic
fields that oscillate sinusoidally in both time asghce. The fields propagate
through space away from the antenna at the speehbf
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The charged particles oscillating up and down enghtenna causes waves of electric and
magnetic fields known as light. The frequencyhaf tvaves is the same as the frequency of
oscillations of the particles which is determingdtliie frequency of the power source. The
speed of the waves is the speed of light3.00x 1 m/s, because the waves are light. For any
kind of wave, the frequency, wavelength, and wapeed are related by:

which, in the case of light reads:

Here’s a quick pictorial review of some propertd¢svaves. In the case of light, we have
electric and magnetic fields oscillating in synatigation with each other. It is customary to
characterize the waves in terms of the electrid fi¢'ll do that here, but, one should keep in
mind that the magnetic field oscillates and movethe same manner that the electric field does,
but, at right angles to the electric field.

E [N/C]

Amplitude E__

! ! Peak-to-Peak Amplitude

\

X [meters]
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E [N/C]
! Period T N
E i ~
max ' :
0 | | | |
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-E 1
max
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, WavelengthA ,
E : .
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0 | | | |
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-E i
max

The intensity of a wave is proportional to its aityale, so, in the case of light:
T (Bpyax )2

The frequency of light is determined by the fregreof oscillations of the charged particles
constituting the source of the light. How we cat@e light depends on the frequency of the
light. In order of increasing frequency, we rdfetight as: radio waves, microwaves, infrared
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radiation, visible light, ultraviolet light, X raysnd gamma rays. They are all the same thing—
electric and magnetic fields that are oscillatingime and space. | am using the word light in a
generic sense. It refers to waves of any oneexdlvarious frequencies of oscillations of
electric and magnetic fields. In this context,want to talk about light whose frequency falls in
the range to which our eyes are sensitive, | teféras visible light. Another name for light is
electromagnetic radiation. The entire set of tiffer@nt frequencies of light is referred to as the
electromagnetic spectrum. The following table ¢aties the way in which humans categorize
the various frequencies of light in the electrongtgnspectrum. While | do give definite values,
boundaries separating one frequency from the mexnat well defined and hence, should be
treated as approximate values.

Kind of Light Freguency Wavelength
Radio Waves < 300 MHz >1m
Microwaves 300 - 75000 MHz .Amm-1m
Infrared 750 GHz - 430 THz 700 nm- .4 mm
Visible 430 - 750 THz 400 - 700 nm
Ultraviolet 750 - ®00 THz 5-400 nm

X rays 6000 - 500000 THz .006 - 5 nm
Gamma Rays > 5100000 THz <.006 nm

Note that the visible regime is but a tiny slicelo# overall electromagnetic spectrum. Within it,
red light is the long-wavelength, low-frequencyivis light, and, blue/violet light is the short-
wavelength high-frequency visible light. AM raditations broadcast in the kHz range and FM
stations broadcast in the MHz range. For instaseiting your AM dial to 100 makes your radio
sensitive to radio waves of frequency 100 kHz aagtlelength 800 m. Setting your FM dial to
100 makes your radio sensitive to radio waveseaxfudency 100 MHz and wavelength 3 m.

We call the superposition of the changing ele@nd magnetic field vectors, with other

changing electric and magnetic field vectors, fiet@nce. Many of the phenomena involving
light are understood in terms of interference. Wiight interacts with matter, its electric and
magnetic fields exert forces on the charged pasithat make up matter. (Both the electric and
magnetic fields associated with light, at a givestant, exert a force on a charged particle in one
and the same direction. That direction is the sdingztion as the electric field if the particle is
positive, and in the opposite direction if it iggagive. In the case of the magnetic field, the
force results from the relative motion betweenghgicle and the magnetic field. Because the,
magnetic fieldforceis in the same direction as that of the electeltlfforce, and the electric

field force is easier to keep track of, it has beeaustomary to talk about the interaction of
electric fields with matter in terms of the inteian of the electric field with matter. | will

follow that custom. Please keep in mind that tlagnetic field, always at right angles to the
electric field in light, simultaneously with theeetric field, exerts a force in the same direction
that the electric field does.) As a result, thargled particles accelerate, and, as a result, peodu
their own electric and magnetic fields. Becausedhs no time delay between the exertion of
the force and the resulting acceleration, the nendygluced electric and magnetic field vectors
superpose with the very electric and magnetic fielckors causing the acceleration. Because the
mass of an electron is approximately 1/2000 oftlass of a proton, the acceleration
experienced by an electron is 2000 times greager it experienced by a proton subject to the
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same force. Hence, the interaction of light withttar, can often be explained in terms of the
interaction of light with theslectronsin matter.

How the electrons in matter interact with lightlasgely determined by the degree to which the
electrons are bound in the matter. As a rathartezexample of how a large number of
complicated interactions can combine to form a gnptal effect, the mix of attractive and
repulsive 17> Coulomb forces exerted on the electron in a sobiderial by the protons and
electrons on all sides of it, results in a netdooa the electron that is well modeled by the force
that would be exerted on a particle “tied” to igiBibrium position by a spring. Hence the
electron acts like a “mass on a spring.” As sutoten undergo simple harmonic motion like a
mass on the end of a spring. The way light intsraath the electrons can thus be said to
depend on the frequency of the light and the fomoestant of the effective spring. If we limit
our discussion to visible light, the degree to witice electrons are bound (the spring constant)
determines how the light interacts with the matterthe case of what we would consider
opaque light-absorbing matter such as flat bladkt pehe electron accelerations result in
destructive interference of the incoming light witfe light produced by the electrons. Light
doesn’t go through, nor is much reflected off thetenial. In the case of shiny metal surfaces,
the electrons that the light interacts with aréudlly free. The light emitted by these electrons
as a result of the acceleration caused by the, ligt@rferes constructively with the light in a yer
specific backward direction and destructively inffard directions. Hence, the light does not get
through the metal, but, it is reflected off in ammar referred to as plane mirror reflection. la th
case of a transparent medium such as glass, titegiigen off by the electrons interferes with the
incoming light in such a manner as to cause coctstriinterference in specific forward and
backward directions. But, the constructive intexfiee in the forward direction is such that the
pattern of electric and magnetic waves formed bthalinterference taken as a whole, moves
more slowly through the glass than light movesulgirovacuum. We say that the speed of light
in a transparent medium is less than the speadhafih vacuum. The ratio of the speed of light
in vacuum to the speed of light in a transparerdiome, is called the index of refractiom, of

that transparent medium.

where:
n is the index of refraction of a transparent medium
c = 3.00x 10° m/s is the speed of light in vacuum, and,
v is the speed of light in the transparent medium.

Because the speed of light never exceeds the-sddght-in-vacuum, the index of refraction is
always greater than or equal to 1 (equal when thaium is, or behaves as, vacuum). Some
values for the index of refraction of light forewf transparent media are:

Medium Index of Refraction
Vacuum 1
Air 1.00
Water 1.33
Glass (Depends on the kind of 15
glass. Here is one typical valug.) '
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The kind of interaction of light with matter withhich we are most familiar is called diffuse
reflection. Itis the light that is diffusely refiting off a person that enters your eyes when you
are looking at that person. The electron moti@dpces light that interferes destructively with
the incoming light in the forward direction (theetition in which the incoming light is

traveling), so, essentially none gets through fouta particular frequency range, for all
backward directions, very little destructive ine¥egnce occurs. When the object is illuminated
by a mix of all visible frequencies (white lighthe frequency of the reflected light depends on
the force constant of the effective spring thatimling the electrons to the material of which
they are a part. The frequency reflected (in atlkwvard directions) corresponds to what we call
the color of the object.
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22 Huygens’ Principle and 2-Slit Interference

Huygens’ Principle states that, to explain whatititensity distribution of the light at some
forward position of a wavefront is, one can tréwat wavefront, as it exists at one instant in time
as an infinite set of point sources of light. Befave can get a handle on exactly what that
means, we need to get a handle on some of then@ogy. Furthermore, “getting” Huygens’
Principle is a matter of “seeing” the picture. fAgh, we need to become familiar with some of
the diagrammatic conventions that physicists usshévacterize light.

Note: Huygens’ principle can be applied to all fregcies of electromagnetic radiatiorAs |
talk about it here, | am going to hawisible light in mind.

Here’s one way of depicting a portion of a beanigitt traveling rightward through space, at an
instant in time:
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Each “sheet” in the diagram characterizes the mde@tertical arrows) and magnetic (horizontal
arrows) fields at the instant in time depicted. €h sheet, we use the field diagram convention
with which you are already familiar—the strongee fteld, the more densely packed the field
lines in the diagram.

Considering time frozen, we see that the electric magnetic fields at the back of the beam are
strong. In fact, they are at their maximum. Ifallew our attention to move forward along the
beam from there, we note that the electric fieldpward-directed and weaker, the further
forward we move, until we get to sheet 5 (counforgvard from the rear) where the electric
field is zero. Just forward of that, the elecfigdd is weak and downward, and as we move
forward, it gets stronger for a while, until it nesxout. Forward of that, we find it downward but
getting weaker until we get to the front where ¢lextric field is again zero.

! In fact, Huygens’ Principle can be applied to all kinflaaves(not just electromagnetic waves).
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At the same instant in time, we find the magnagtdfto be rightward (as viewed from someone
facing in the direction in which the beam is trang) and maximal at the back of the beam
segment depicted, at the instant in time depict&dm there, its variation with position is just
like that of the electric field, except that foetheam depicted, the magnetic field points
rightward or leftward (rather than upward or downya So starting from the rear, as we move
our attention forward, the magnetic field starts strong and rightward, and gets weaker and
weaker until it is zero at sheet five. From thesgtarts building up and pointing leftward, and
does so up until sheet 10 where it is maximal laftlv From sheet 10 forward, the magnetic
field is pointing leftward and getting weaker, limte get to the front of the beam, where it is
zero.

While | have drawn the electric field such that étectric field oscillations occur vertically, we
should not consider this to be true in generalfir@ea rotation axis containing the arrow at the
front of the depiction of the beam segment. Atioteabout that axis through any angle would
still be an appropriate diagram. For instancetation of 90 would result in a diagram
characterizing light whose electric field variefiiard and rightward (as viewed from behind).
Any direction perpendicular to the direction in winithe light is traveling can be a direction
along which the electric field is oscillating. Famy tiny length of the beam segment, however,
the electric field oscillations do occur in a pautar direction, such that the electric field vesto
are pointing in either that direction or the oppesiirection. Because there are only two choices,
we can call one direction positive, and the otlegrative, and, using this convention, make a
graph of the component of the electric field alangarticular direction perpendicular to the
direction of travel, versus our position along kegth of the beam segment. For the beam
segment depicted, oscillations of the electriaifizle occurring along what I call the upward
direction (so a positive value of the upward congranio the electric field means the electric
field is indeed upward, whereas a negative valubetipward component to the electric field
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mean< is actually downward). The diagram after next,ictspthe electric field variation with
position along the length of the beam segmentjustiton one thin horizontal slice of the beam:

NS e
=

i

1 5 10 15

This is a simpler diagram with less information erhis, perhaps, easier to interpret, but, also,
perhaps, easier to misinterpret. It may for inséate more readily apparent to you that what we

are depicting (as we were in the other diagram)sisg of a wavelength of the wave. On the

other hand, the diagram is more abstract—the leofgtine electric field vectors does not
represent extent through space, but rather, thenitoag of the electric field at the tail of the
arrow. As mentioned, the set of locations of ks of the arrows, namely the horizontal plane,
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is the only place the diagram is giving informatidhis generally assumed that the electric field
has the same pattern for some distance above #owl thee plane on which it is specified in the
diagram. Note the absence of the magnetic fidtlts up to the reader to know that; as part of
the light, there is a magnetic field wherever theran electric field; and; that, the greater the
electric field, the greater the magnetic field; ah@t the magnetic field is perpendicular both to
the direction in which the light is going, and the electric field. (Recall that the directiontbé
magnetic field is such that the vectéx B is in the same direction as the velocity of therevi
What is perhaps the most common graphical repraSentof a wave traveling to the right,
characterizes the electric and magnetic fieldsgalmut a single line extending along the center of
the beam in the direction of travel. An exampleswth a line would be the line along the center
of the plane in the following copy of the diagrara thave been working with:

An example of an electric field depiction, on ag#nline along the direction of travel, would be:

A
E A
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It is important to keep in mind that the arrows enaracterizing the electric field at points on the
one line, and, it's theengthof the arrow that indicates the strength of tleeteic field at the tail

of the arrownotthe spacing between arrows.

The simplicity of this field-on-a-line diagram als for the inclusion of the magnetic field
vectors in the same diagram:

A v==C
E 4 q

)

,/ .
l l

If one connects the tips of the arrows in this kfidiiagram, the meaning of those Electric Field
vs. Position sinusoidal curves presented in theclsegpter becomes more evident:

v=c
E A
ﬁ

Huygens’ Principle involves wavefronts. A wavefr@the part of a wave which is at a surface
that is everywhere perpendicular to the directiowhich the wave is traveling. If such surfaces
are planes, the wave is calleglane wave The kind of wave we have been depicting is agla
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wave. The set of fields on any one of the gray&s” on in the diagram:

is a part of a wavefront. It is customary to foous attention on wavefronts at which the electric
and magnetic fields are a maximum in one directidhe rearmost sheet in the diagram above
represents such a wavefront.

In the following diagram, you see black lines oa tbp of each sheet representing maximum-
upward-directed-electric-field wavefronts.

And, in the following, each such wavefront is mafketh a black dot:
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A common method of depicting wavefronts, corressaieda view from above, of the preceding
electric field sheet diagram which I copy here:

o

L

Such a wavefront diagram appears as:

More commonly, you’'ll see more of them packed aldegether. The idea is that the
wavefronts look like a bird’s eye view of wavesie ocean.

Y

Note that the distance between adjacent maximulchsfravefronts, as depicted here, is one
wavelength.
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Chapter 22 Huygens’ Principle and 2-Slit Interfere

Again, Huygens’ Principle states that, for deteimgrthe future light intensity at positions
forward of a wavefront, one can treat the wavefiaman infinite set of point sources of light. A
point source creates spherical wavefronts centandte point source. We limit our discussion
to the light emitted in the forward direction orthasis that light propogating backward from a
wavefront (in the absense of any matter for thiet lig interact with at the wavefront) is not
physical. Huygen’s Principle applied to a planevevpropagating forward through vacuum is
not particularly useful, but, it will help to convan understanding of Huygens’ Principle. So,
we do that here. Depicted below is a wavefrongmien for a particular instant in time. |
arbitrarily pick one wavefront, call it the “desmped wavefront,” to serve as “infinite set of point
sources” which should serve to replace the the fmants ahead of it (the designated wavefront)
as they move away from it. The designated waveéfposition will be “fed by” the wavefronts
behind it, which will continue their forward movenmdoward the designated wavefront position.

The Designated Wavefront
f (chosen arbitrarily)

v

| am not going to try to depict an infinite setpafints, rather, | will convey the idea behind
Huygens’ principle by means offiite set of points which | depict as black dots infihieowing
diagram.
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The Designated Wavefront
f (chosen arbitrarily)

v

Now | provide a series of diagrams, representimgessive instants in time, one period apart
from each other. In one period, each wavefromelsaone wavelength, the distance between the
wavefronts depicted. This goes for the waves etman&om the “point sources” as well.

The Designated Wavefront
(chosen arbitrarily)

v
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Chapter 22 Huygens’ Principle and 2-Slit Interfere

The preceding series of diagrams does show the planefronts being replaced by new ones.
Hey, you probably can’t even tell that | deleted diniginal lines. Still, beyond the wavefront
patterns, the diagrams should not be taken to@lliye We really need to add the total electric
field at any given point in space due to all theifyp sources” that contribute to it. If we assume
the electric field to be along a line perpendictidathe page, the sum at any point can indeed be
a simple algebraic sum, but, it will involwegativeas well as positive values. The simple
diagrams above do not show any of the negativeribatibns. Done correctly, taking the
decreasing magnitude of the electric field withahse into account, the application of the
principle yields results that agree with experimewot only in the gross features, but in the
details as well.

Two-Slit Interference

When you shine plane-wave visible light throughaskwith two parallel slits cut into it, onto a
screen, under certain circumstances (which we digduss) you see, on the screen, an extended
pattern of bright and dark bands where you migbeekto see two bright lines surrounded by
darkness which we might call the shadow of the mask

| use the kind of double slit mask that studentkeria a double-slit laboratory exercise to
convey what we mean by a mask with a double slit We obtain rectangular pieces of thin
plate glass of about the size depicted in theioilg diagram:

Prior to the laboratory session, we spray painh @aask with flat black spray paint which is
given ample time to dry. Each student is giveazor-blade knife, a metal ruler, and a painted
piece of glass that looks like this:
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The students use the ruler and knife to etch twallgalines in the paint. After they are done
their masks looks like this:

The double slit is illuminated with light from askr. The laser beam hits the mask “head on”.
More specifically, the direction in which the ligisttraveling is at right angles to the surface of
the mask. Such light is said to lermally incidentupon the mask. (Recall that the word
“normal” means “at right angles to.” Make sure yawow what we mean by the statement that
light is normally incidentupon a mask with a double slit in it.)

On a white paper screen behind the mask, aligreedaime way the mask is, the students see a
pattern of bright and dark bands distributed horially over the face of the screen. The bright
bands are typically referred tofagsiges In cases (unlike the laboratory exercise under
discussion) where the width of each fringe is sroathpared to its height, the fringes are often
referred to asines

Huygens’ Principle helps us understand this phemome The phenomenon is an interference
phenomenon. Aside from the need for the slitsetalbse enough together for the beam to “hit”
both slits at the same time, the slits, for reasbaswill soon be clear, must be close to each
other. In analyzing the phenomenon here, | amgtmrizoom in” on the small piece of the
mask outlined in the following diagram:
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Upward1

: I I I R

I’m going to call the direction in which the liglst traveling, on its way to the mask (which is
into the page in the diagram above) ttievard direction. Now, | am going to depict the entire
situation as viewed from above from above.

Screen
Forward1t
~ Leftward Rightward -
Mask with Double Slit —

Incoming Plane Waves of Light




Treating the interface of each slit as a point eeum accord with Huygens’ Principle, and
representing the intersections of the sphericalefrants with the plane of the page, we have:

T

AN VAY
L

A

Incoming Plane Waves of Light

Because there are only two point-like sources, avetake this diagram a lot more literally than
our diagram for plane waves moving through spadlke mo obstructions. The line and circle
segments representing the wavefronts correspopdints in space where, at the instant in
guestion, the electric field is maximum in one arar direction. While the direction can be
any direction perpendicular to the direction in gththe waves are traveling, to make the
discussion easier, lets assume that the eleattet discillations are vertical (into and out of the
page) and that the wavefronts represent pointganesat which, at the instant in question, the
electric field is maximunupward At those points in space forward of the soutioe electric
field due to each point-like source varies periatlycfrom upward and maximum (call it ,

see footnotd, to zero, to downward and maximurE(.,), back to zero, and back to maximum
upward (Enay, With a frequency that we call the frequencyha tight waves. At those points in
space forward of the source, the total electrid fie the sum of the contribution to the electric
field from the left slit and the contribution toetlelectric field from the right slit. Thus, foreth
instant depicted in the diagram, where the wavé$roross, we have both contributions at a
maximum in one and the same direction. So thé eteatric field at such points is, at the instant
in question, twice that due to either source. il®telapses, the electric field varies at such
points, from Eaxto 0 to—2Emax to 0, and back to Bnax; repeatedly. The intensity of the light
at such a position is 4 times what the intensity ttueither slit alone would be. The
superposition of the time-varying electric fieldscalled interference, and when the various

2 At any position through which the light under discussiamets, the electric field of that light varies sinustida
with time. I'm using the symbol Fto represent the amplitude of the oscillations due&smurce at such a point.
This amplitude is different at different locations,tbbecause of diminishment with distance from the soaro,
because both of the point-like sources under discussiorateeetually infinite sets of point sources themselve
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contributions add together to form an electricdiilat varies with an amplitude that is bigger
than the electric field due to any individual cdmtitor, we call the interference constructive.

Note that the points where the wavefronts croeorh, or very near, straight lines extending out
from the midpoint between the slits:

()

a
P

A

The big deal is, that at every point on those l{@Eept “too” close to the slits) the electriddie
is oscillating with an amplitude of&,.. If we were to let time continually elapse, yoauld

see those crossing points continually being creaged the slits, moving onto the lines and
outward along the lines toward the screen. Atyepeint on the lines (except “too” close to the
slits), the interference is always constructive\ary instant in time. For instance, for the same
instant depicted in the diagram above, consideekeric field on the wavefronts midway
between the wavefronts depicted. On these “midveyween” wavefronts, the electric field is
maximum downward. | am going to redraw the wawvatfidiagram above, minus the maximum-
upward (electric field vector) wavefronts, math the maximum-downward wavefronts
(depicted with dashed lines). Again, this diagiarfor the same instant in time characterized by
the diagram above. Also, | am going to leave trsasre straight lines along which the
constructive interference is occurring, on the diag
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Note that, indeed, (except for “too close” to this)y the maxima (wavefront crossing points) for
the maximum-downward-electric-field vector wavetgroccur along thexact same linethat

the maximum-upward-electric-field vector wavefroatsurred along. Again, | want to stress
that the amplitude of oscillations is maximaE{z,) at every point on each of those lines—at

points on the lines other than where the wavefrargscrossing, it is just that the electric fiedd i
at different stages of those maximum-amplitudellasicins.

Where the lines consisting of points of maximalstaunctive interference intersect the screen, we
see a bright fringe. How about the dark fringd3tse result at points in space where the
electric field from one slit always cancels thectde field from the other slit. We can find such
points by depicting the maximum-upward-electridefizvavefronts from one slit at a particular

instant, while, on the same diagram, depictingniagimum-downward-electric-field wavefronts
from the other slit. Where they cross, we havédgoeicancellation, not just for the instant
depicted, but, for all time.
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Here we show maximum-downward-electric-field wawvefs from the left slit interfering with
maximum-upward-electric-field wavefronts from thght slit:

Again, except for very close to the slits, the powf intersection of the oppositely-directed
electric field wavefronts, the points of destruetimterference, lie on lineagtthe same lines as
before) extending outward from the point on thelnthat is midway between the slits:

Along these lines, the interference is always cetaby destructive. Where they intersect the
screen, we see dark (unilluminated) fringes.



If we put these lines on which destructive intezfere always occurs on the diagram with the
lines along which constructive interference alwagsurs,

[l

N

A

we see that the angles at which destructive imentee always occurs are apparently midway
between the angles at which constructive interfa¥exiways occurs.

Okay, it's time to get quantitative. It's probalgyetty obvious to you that the pattern depends
on the wavelength of the light and the spacing betwthe slits. What we need to do to put an
end to this chapter is to find a mathematical r@testhip between the angles at which the maxima
(bright light) and minima (darkness, a.k.a. zeght) occur. | am going to use the symboto
represent the angle that whichever maximum or mininve are focusing on at the time, occurs.
We number the maxima 0, 1, 2, ... working out from thiddle in both directions as indicated
on the diagram above. The minima are labeled 3, @here is no “0” minimum), also working
out from the middle. To avoid clutter, | have fadieled the minima in the diagram. If
necessary, use those numbers as subscripts onglesdato distinguish one angle at which a
maximum occurs from another, and, to distinguisé amgle at which a minimum occurs from
another. Ifit is not clear from the context, tuperscript§** and"™ may also be needed. The
angle of a particular maximum or minimum to the Isfalways the same as the angle of the
corresponding maximum or minimum to the right, soden’'t need to differentiate between left
and right.

The two slits represent a special pair of sour&¥bat’s special about such a pair of sources is
that the two sources are exactly in synchronizatidth each other. That is, for instance, when
one is producing a maximum-upward electric fieldtee, so is the other. We say that the two
sources are iphasewith each other. Another thing that is speciawlihe sources is that,
because we consider each slit to be the samessibe ather, and the light from the source to be
of one and the same intensity across the faceedb¢m, the amplitude of the oscillations is the
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same for each. This is why we get total canceltasiliong the lines on which the minima occur.
By inspection of the diagram, it is clear thatgtt to any point on the line in the straight-ahead
direction, the distance that the light from onetséivels is the same as the distance that light
from the other slit travels. As such, at any paioing the center line (the line extending from
the midpoint between the two slits, straight ahedwnever a crest (maximum upward electric
field) arrives from one slit, a crest arrives frome other slit; and; whenever a trough (maximum
downwardelectric field) arrives from one slit, a troughiaes from the other slit. Thus, on the
centerline, the interferenceasvaysconstructive. So, we have one quantitative redrgady, a
maximum (constructive interference, bright fringegurs atd = C°.

Let’s define the center-to-center slit spacingéalband, the wavelength of the incoming plane
waves to bel. We’'ll work on finding an expression for the am@l at which the first maximum

AR TANK
’c‘gu‘\‘
g

Incoming Plane Waves of Wavelength

Lets redraw the diagram with a little less cluttesee what's going on.
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| removed some of the spherical wavefronts andidalée wavefronts from the left slit, Lo,

Ls, andL4 corresponding to the order in which they came ftbenleft slit. Similarly, wavefronts
from the right slit are labelel;, R;, Rs, andR, corresponding to the order in which they came
from the right slit. Furthermore, | have indicated distance from the left slit to one point
(point P) on the line of maxima, and, the distamcé&om the right slit to the same poiaton the
line of maxima.

Look at the diagram and note that, altho&gtandL; originate from their respective slits at one
and the same instant, asRpandL,, it is R, andL; that arrive at poinP together. By the time

it arrives at poinP, L; has been traveling for a greater amount of tirm@ | has, butl;

arrives at poinP at the same time &5 does because iL{) has a greater distance to travel. This
is the whole key to constructive interference.aAy point illuminated by two in-phase sources
there will be constructive interference if the gagithe same distance from both sources, or,
when the distance is different, if that differene®ne wavelength, two wavelengths, three
wavelengths, or, for that matter, any integer nunatbevavelengths. If the path differenisean
integer number of wavelengths, then, whatever giathie wave is arriving from one source, the
same part of the wave will be arriving from theestBource. So, for instance, crest arrives with
crest, and trough arrives with trough. Defining

As=/—r
we have:
As=mi (m=0,1,2,...)

as our condition for constructive interference.
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Now | provide the diagram we have been working wittthout the wavefronts, so that we can
do the geometry needed to relatgto the angled.

(%
/ r

First | want to draw a line segment perpendicuasur line of maximum interference, ending on

the right slit.
(%
P
r
As
it

Lfd—>

The new line segment breaks up the path of lehgtto a part identical in length to the one of
lengthr, and a part whose length is the path-length @iffeeAs. The new line segment also
forms atriangle, the one that is shaded in the diagram. Usingeptgeometry, | have identified
the angle labele@ in the small triangle as the same ar@téat the line of maximal constructive
interference makes with the straight-ahead diractioneed to blow up that triangle so that we
can analyze it:
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Okay, now we make an approximation. See aggie the shaded triangle? It is approximately
equal to 90. Indeed, the farther poiftis from the slits, the closer is to 90. All we need is

for the distance from the slits to poltto be large compared to the distance betweenlitbe s

In practice, this is realized in an actual douliteexperiment. The distance to poldtis

typically thousands to millions of times greatearitihe distance between the slits. The
approximation in question is thus, typically, atéstic approximation. Treatingas a right
anglemakes the shaded triangle a rigfangle, meaning that the path difference can be
expressed as:

As=dsind

This is the relation we’ve been looking for. Combg it with the fact that the path difference
has to be an integer number of wavelengths forferencemaximawe have:

mA =dsing (m=0,1,2,...) (22-1)
as the condition for maximum constructive interfee

For perfectlydestructiveinterference, the path difference must be haltselength or, half a
wavelength more than any integer number of wavetengSo, for interferenaainimawe have:

(m+Y¥2)A =dsind (m=0,1,2,...) (22-2)
The value of the integen is referred to as therder of interference. Thus, the first maximum to

either side of the straight-ahead direction isrrefto as théirst order maximum, the next one
is called thesecond ordemaximum, etc.
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23 Single-Silit Diffraction

Single-slit diffraction is another interference pbenenon. If, instead of creating a mask with
two slits, we create a mask with one slit, and tHeminate it, we find, under certain conditions,
that we again get a pattern of light and dark bants not the same pattern that you get for
two-slit interference, but, it's quite differenbfin the single bright line in the straight-ahead
direction that you might expect. Here’s how it @mabout. Firstly, here’s the setup:

Screen

Mask with single slit

Incoming Plane Waves

Again, we get a bright fringe in the straight-ah@adition on the screen. From there, working
out to either side, we get bands that alternatedssi dark and bright. The first maximum to the
right or left of the central maximum is not neaalybright as the central maximum. And each
maximum after that is less bright than the maxinpreceding it. As far as the analysis goes, |
want to start with the minima. Consider an imagyrline extending out from the midpoint of
the slit all the way to the screen.
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Screen

Mask with single slit
PN J

Incoming Plane Waves

So now the question is, “Under what conditions théire be completely destructive interference
along a line such as the one depicted to be aé&&jlove?” To get at the answer, we first
divide the slit in half. I’'m going to enlarge theask so that you can see what | mean.

A B
— A
Mask with

L single slit
Point A Point B

Now | imagine dividing side A up into an infiniteimber of pieces and side B up the same way.
When the slit is illuminated by the light, eachqaébecomes a point source. Consider the first
point source (counting from the left) on side A dhe first point source (again counting from
the left) on side B. These two point sources atstancen/2 apart, whersv is the width of the
slit. If the light from these two point sourceshjeh are in phase with each other because they
are really both part of the same incoming planee)amterferes completely destructively, at
some angl& with respect to the straight-ahead direction, tienlight from the second point
source on side A and the second point source @Bsidill also interfere with each other
completely destructively because these two pointces are alsa/2 apart. The same goes for
the third-from-the-left point sources on both sjdée fourth, the fifth, and so on, ad infinitum.
So, all we need is to establish the condition thakes the light from the leftmost point source
on side A (overall, the leftmost point of the siitjerfere completely destructively with the
leftmost point source on side B (overall, esselgttale midpoint of the slit). So, consider any
point P on a proposed line of minima.
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Screen

Mask with single slit

e point B

Point A W

A

Incoming Plane Waves

The distance between the two point sourceg2s From the analysis done for the case of two-
L . : : W .
slit interference, we know that this results inadhpdifference/ — r = Esme. And, as you

know, the condition for completely destructive meeence is that the path difference is half a
wavelength, or, any integer number of wavelengtas a half a wavelength. So, we have a
minima along any anglé (less than 99 such that:

(m+£])l =V—Vsin9 (m=0,1, 2, ...)
2 2

Now we turn our attention to the question of ditian maxima | should warn you that this
analysis takes an unexpected turn. We do the saaat thing that we did to locate the minima,
except that we set the path differedee- equal to anntegernumber of wavelengths (instead of
a half a wavelength plus an integer number of vengths). This means that the path to pBint
from the leftmost point on side A (position)Aof the slit, differs by an integer number of
wavelengths, from the path to poftfrom the leftmost point on side B (positiom)B This will
also hold true for the path fromyAs. the path from B It will hold true for the path from Avs.
the path from Bas well. Indeed, it will hold true for any pairarresponding points, one from
side A and one point from side B. So, at p&intve have maximally constructive interference
for every pair of corresponding points along thdtWiof the slit. There is, however, a problem.
While, for any pair of points, the oscillationsRawill be maximal, that means thitis at an

angle that will make thamplitudeof theoscillationsof the electric field due to the pair of points
maximal. But the electric field due to the paimpoints will still be oscillating, e.g. from max up
to 0, to max down, to 0, and back to max up. Ahdse oscillations will not be in
synchronization with the maximal oscillations daeother pairs of points. So, the grand total
will not necessarily correspond to an intensity mmasm. The big difference between this case
and the minima case is that, in contrast to the trarying maximal oscillations just discussed,

230



Chapter 23 Single-Slit Diffraction

when a pair of contributions results in an elediatd amplitude of zero, the electric field due to
the pair is always zero. It is constant at zekad, when every pair in an infinite sum of pairs
contributes zero to the sum, at every instantnnetithe result is zero. In fact, in our attempt to
locate the angles at which maxima will occur, weehactually found some more minima. We
can see this if we sum the contributions in a cdffie order.

Consider the following diagram in which each hdltle slit has itself been divided up into two
parts:

P
g
A B
r_JH
| |
Point AL——J) \ \ Point B,
Point Ay Point B,

If the path difference between 140 P” and “B; to P”, is one wavelength, then the path
difference betweenA, to P” and “A] to P” must be half a wavelength. This yields completel
destructive interference. Likewise for the patifiedénce betweenB, to P” and “B; to P”. So,

for each half of the slit (with each half itselfibg divided in half) we can do the same kind of
pair-wise sum that we did for the whole slit befosnd, we get the same result—an infinite
number ofzerocontributions to the electric field Bt All we have really done is to treat each
half of the slit the way we treated the origindl sFor the entire slit we found

[m+%))l:\’§vsin9 h=0,12,...)

Here we get the same result but withtself replaced by/2 (since we are dealing with half the
slit at a time.) So now we have:

1 W .
+=(A=—sind =0,1,2,...
(meh=Ys «n )
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Let's abandon our search for maxima, at least dov,rand see where we are in terms of our
search for minima. From our consideration of thire slit divided into two parts, we have

(m+%))l :VEVsinH which can be written @2m+1)1 = wsind meaning that we have a

minimum when:
wsind =14,31,541,...

From our consideration of each half divided int@ fparts (for a total of four parts) we have

(m+%))l :Vzvsiné? which can be writtef4m+2)1 =wsiné meaning that we have a minimum

when:
wsingd =2A1,64,104,144, ...

If we cut each of the four parts of the slit infred we have four pairs of two parts, ea\éc\;lhin

width, we find minima a(m+%))l :ngsine which can be writtef8m+ 4)1 = wsin @

meaning that we have a minimum when:
wsind =44,121,201,281,...

If we continue this process of splitting each pdrthe slit in two and finding the minima for
each adjacent pair, ad infinitum, we eventuallgfinat we get a minimum whensing is
equal to any integer number of wavelengths.

wsin@d =11,2A,31,4A4,...
a result which write as
mA = wsiné m=1,23,..) (23-1)

We still haven't found any maxima. The only anglgt way to determine the angles at which
maxima occur is to do a full-fledged derivatiortloé intensity of the light as a function of
position, and then mathematically solve for the mex While, this is not really as hard as it
sounds, let's save that for an optics course afitsut to say that, experimentally, we find
maxima approximately midway between the minimaisTircludes the straight-ahead’)0
direction.

Conditions Under Which Single-Slit Diffraction amdo-Slit Interference Occurs

To see the kinds of interference patterns thatave Ibeen talking about in this and the
preceding chapter, certain conditions need to ke fer instance, in order to sereset of
bright fringes in the two-slit interference expeeint we neeanonochromatidight. Translated
literally, from the Latin, monochromatic means ax@er. Monochromatic light is single-
frequency light. Strictly monochromatic light is @ealization. In practice, light that is
classified as being essentially monochromatic,alsteonsists of an infinite set of frequencies
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that are all very close to the nominal frequenctheflight. We refer to the set of frequencies as
a band of frequencies. If all the frequenciehandet are indeed very close to the nominal
frequency of the light, we refer to the light asrow-band radiation.

If you illuminate a single or double slit with lighonsisting of several discrete (individual)
wavelengths of light, you get a mix of several iféeence/diffraction patterns. If you illuminate
a single or double slit with a continuum of diffetérequencies, you find that minima from one
wavelength of light are “filled in” by maxima and/mtermediate-amplitude oscillations of other
amplitudes of light. Depending on the slit widtidgin the case of two-slit interference) slit
separation, and the wavelength of the light, yoy s&e a spectrum of colors on the screen.

In order for the kind of interference that we héeen talking about to occur, the light must be
coherent. The light must be temporally cohereohécent with respect to time). While it

applies to any part of a wave, | am going to tdlku it in terms of crests. In temporally
coherent light, one wave crest is part of the sawaee that the preceding wave crest is a part of.
In light having a great deal of temporal cohereiheg holds true for thousands of crests in a row.
In light with very little temporal coherence thisynhold true for only one or two crests in a row.
Another way of stating it is to say that light tltainsists of a bunch of little wave pulses is
temporally incoherent and light consisting of laxantinuous waves is temporally coherent. The
long continuous wave can be called a “wave tralm’terms of wave trains, light that is
temporally incoherent consists of lots of short vérains, whereas light that is temporally
coherent consists of a relatively small numbewoaofjlwave trains. Since the kinds of
interference we have been talking about involvespart of a wave passing through a slit or slits
in a mask, interfering with a part of the same wpassing through the same mask at a later
time. In order for the latter to indeed be partr@same wavgethe light must consist of long

wave trains, in other words, it must be temporadferent. Now, if the wave crest following a
given wave crest is not part of the same wavedistance from one wave crest to the next will
be different for different crests. This means\lavelengths are different and hence the
frequencies are different. Thus the light is nohochromatic. Under the opposite
circumstances, the light is monochromatic. So, mebromatic light is temporally coherent.

The other condition is that the light must be sgiticoherent. In the context of light that is
normally incident on plane masks, this means thattavefronts must be plane and they must
have extent transverse to the direction in whighligit is traveling. In the case of two-slit
interference for instance, spatial coherence miwtghe light at one slit really is in phase with
the light at the other slit. In the case of sipgjiediffraction, spatial coherence means thdttlig
passing through the right half of the slit is irapl with light passing through the left half of the
slit.
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24 Thin Film Interference

As the name and context imply, thin-film interfeceris another interference phenomenon
involving light. Here’s the picture, as viewedrfi@above:

N3

Ny

Ny

Incoming Plane Waves of Monochromatic Light

Involved are three transparent media: medium 1,june@, and medium 3, of index of refraction
n,, n,, andn,, respectively. The phenomenon occurs whetheoom = n,, but,n, must be
different fromn, andn,. Medium 2 is the “thin film.” For thin-film intéerence to occur, the
thickness of medium 2 must be on the order of thealength of the light. (The actual
maximum thickness for which thin-film interferencan occur depends on the coherence of the

light.)

Here’s the deal: Under most circumstances, wiggit 8Bncounters a smooth interface between
two transparent media, some of the light goes tiindtransmitted light) and some of the light
bounces off (reflected light). In the thin-flmrangement of three transparent media depicted
above, for certain thicknesses of the thin film dinen 2) all the light can be reflected, and, for
certain other thicknesses, all the light can bestratted. You see this phenomenon when
looking at soap bubbles, and sometimes when lockimuddles in the road (when there is a thin
layer of oil on top of the water). Humans takeatage of the phenomenon by putting a thin
coating of a transparent substance on lenses sutdmnaera lenses and binocular lenses, a layer
of just the right thickness for maximum transmissio

Based on the situations in which it occurs, it dtidne clear that we do not need monochromatic
light to make thin-film interference happen. Hoeev am going to discuss it in terms of
monochromatic light to get the idea across. Omeeunderstand it in terms of monochromatic
light, you can apply it to white light (a mixturé @l the visible frequencies) to answer questions
such as, “What wavelength of incoming white lightl experience maximum reflection?” The
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answer helps one understand the rainbow of cotmusyight see on the surface of a puddle in
broad daylight. You put a clear layer of gasobmetop of a clear puddle of water and thin-film
interference results in maximal constructive ireegfice of the reflected light, at certain
wavelengths.

Based on your experience with soap bubbles andipsddfaces, you know that the light does
not have to be normally incident upon the interfaetveen transparent media in order for thin-
film interference to occur. However, the analysisasier for the case of normal incidence, so,
in this chapter, | am going to limit our analysisthhe case of normal incidence.

Forward1t

~ Leftward Rightward -

Ny

Ny

Incoming Plane Waves of Monochromatic Light

Here’s the gross idea: In going through a thingpament film, light encounters two interfaces,
then, abuttingn, interface, and, the, abuttingn, interface. At each interface, some of the light
gets through and some is reflected. We can sdgatlwe need to say about thin-film
interference, just by talking about the reflectigtitt The thing is, light reflected off the second
interface interferes with light reflected off thest interface. The reflected light can be thought
of as being from two sources at two different lamag, one source being theabuttingn,
interface, and the other being theabuttingn, interface. But, there is a fixed phase difference
between the light from the two sources becauséghewas originally part of one and the same
source of incoming light. The light reflected frahe second interface travels farther, to arrive
back at the same backward position, than the figftécted from the first interface does. If you
figure, that, when that extra distance is one wevgth, the interference of reflected light is
constructive, and that, when that extra distané®lta wavelength, the interference of reflected
light is destructive, then you've got the rightaddut, there are two “complications” that need to
be taken into account.
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The first complication has to do with phase revieupan reflection. Consider a single interface
(forget about the thin film for a moment) betweeo transparent medium. Assume light to be
incident upon the interface. Call the index ofaefion of the medium in which the light is
initially traveling, n,, and call the index of refraction of the mediunwinich the transmitted

light travels,n,. Experimentally we find that if, > n , then the reflected light is phase reversed,
but, that ifn, <n_, the reflected light experiences no phase chahgd.

Forward1t

~ Leftward Rightward -

Ny

Ny

Incoming Plane Waves of Monochromatic Light

Regarding what we mean by phase reversal: Thiskapést of a wave hitting the interface.
More specifically, let the electric field be osatihg along the vertical (into and out of the page
in the diagram) so that at the instant under cenattbn, we have a forward-moving maximum
upward-directed electric field vector at the logatof the interface. An infinitesimal tink

later, we will find a forward-moving maximum-upwagtectric field vector at a point, dt

forward of the interface. W, >n, (phase reversal condition met), then, at the sastant in

time (dt after the forward-moving maximum upward-directézteic field vector hits the
interface) we have a maximutilownwarddirected electric field vector, traveling backwaad a
point v, dt behind the interface. This is what we mean bysphraversal. An incoming electric
field vector pointing in one direction, bounces i interface as an electric field vector pointing
in theoppositedirection. If there ismo phase reversathen, at the specified instant in time, we
would have a maximumpwarddirected electric field vector, traveling backwaati a point, dt
behind the interface. With no phase reversallectrc field vector pointing in one direction,
bounces off the interface as an electric field @epbinting in the same direction.
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Now back to the thin-film setup:

Forward1t

~ Leftward Rightward -

N3

Ny

Ny

Incoming Plane Waves of Monochromatic Light

Recall that to get back to some specified poirsipace, light reflecting off the second interface
(between medium 2 and medium 3) travels farthar tha light reflecting off the first interface
(between medium 1 and medium 2). Before, we hygmitled that if the path difference was a
half a wavelength, the light from the two “sourcesjuld interfere destructively, but, that if it
was a full wavelength, the interference would bestactive. Now, if there iso phase reversal
from either surface (becausg<n andn, <n,), or, if thereis phase reversal frotvoth surfaces
(becausen, > n, andn, >n,) then our original hypothesis is still viable. tBifiwe have phase
reversal at one of the interfaces but not the dffier n, butn, <n,, or,n, >n, butn,<n,), then
the situation is reversed. A path difference of mavelength would result in a crest interfering
with a “crest that upon reflection turned into @ugh” meaning that a path difference of one
wavelength would result idestructiveinterference. And, a path differencehalf a wavelength
would result in a crest interfering with a “troutifat upon reflection turned into a crest” meaning
that a path difference of half a wavelength woelsutt inconstructiveinterference. Okay, we
have addressed the phase reversal issue. We havaaye complication to deal with. The
thing is, the light that bounces off teecondnterface, not only travels a greater distance, ibu
travels at a differerdpeedwhile it is traveling that extra distance becaise in a different
medium. Let's see how this complication plays out.

The phenomenon holds true for every part of theewdvocus the attention on crests, just
because | find them easier to keep track of. Baer, 1 also want to focus attention on the no-
phase-reversal constructive interference case si@@nan instant when a crest of the forward-
traveling incoming wave hits the first interfacéhe crest of the transmitted wave travels
through the interface, proceeds through the sepmdium at spee#,= c/n,, bounces off the
interface with the third medium, and travels bdalotigh the second medium, completing its
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round trip (of distance two times the thicknesshefsecond medium) through the second
medium in time:

= 2(thicknes}

2
VZ

Now, while that is going on, the next crest frora thcoming wave is traveling forward at speed
v,=c/n. Itarrives at the same interface (between mediamd medium 2) at time

A

t,=-2
Vl
where/, is the wavelength of the light while it is travejiin medium 1. (Remember, the source
establishes the frequency of the light #mat never changes, but, fromm= A £, thewavelength
depends on the speed of the wave in the mediunhichvwthe light is traveling.) For
constructive interference (under no phase-revemaditions), we must have

t, =t

1 2

which, from the expressions fgrandt, above, can be written as:

A, _ 2(thicknes}¥

Vi Va

Substitutingv,=A, fandv,= A, f yields:

A, _ 2(thicknes$
A A,f

A, = 2(thicknes}

I’'m going to leave the result in this form becatw&e the thickness of the thin film is the path
difference. So the equation is saying that, umtephase-reversal conditions, there will be
constructive interference of the light reflecteohfrthe two interfaces, when the wavelength that
the light has in the material of which the thimfitonsists, is equal to the path difference. Of
course, if the path difference id 2 34,, 44,, etc. we will also get constructive interferendtie
can write this as:
mA, = 2(thicknes} m=1,2,3,...) (24-1)

where:

mis an integer,

A, is the in-the-thin-film wavelength of the lightd

thicknesss the thickness of the thin film.
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This condition is also appropriate for the casenakimal constructive interference when phase
reversal occurs at both interfaces. But, this ¢andyields completelylestructiveinterference
of reflected light when there is phase reversahat interface but not the other.

The in-the-film wavelengtil, of the light can be expressed most simply in tevfriibe
wavelengthi, of the light in the medium in which it is origitatraveling, by setting the two
expressions for the frequency equal to each othermv,=A, ' we havef=v /A,. but from

n,=c/v, we havev,=c/n. Replacingv, in £=v /A withc/n yields 7 = . In a similar

1

manner, we find thaf can be expressed #&s= j . Setting the two expressions ®equal to
2772
each other yields:
c _ ¢C
nlAl nZAZ
which can be written as:
A, =" (24-2)
n2

To get a maximum when we have phase reversal aandeonly one, interface, we need the
path difference (twice the thickness) toHadf a wavelength-in-the-film,

1A, = 2(thicknes}
or that, plus, an integer number of full wavelesgiththe-film:
(m+3)A, = 2(thicknes¥ ih=1,2,3,...) (24-3)

This is also the condition for completely destruetinterference for the case of no phase
reversal, or, phase reversal at both interfacéss i$ exactly what we want for a camera lens
that is to be used in ain(= 100). Consider a clegiastic medium of index of refraction

n, = 13. Now consider thevavelengttthat light from the middle of the visible spectr{gneen
light) would have in that medium. Put a coatinghe plastic, one quarter as thick as that
wavelength is long, on a lens made of glass haamindex of refraction, = 1.5 . (Note that we
have phase reversal at both interfaces.) Withdbating, the lens reflects none of the light of
the specified wavelength that is normally incidentthe lens (and a reduced amount of light of
nearby wavelengths). That is, it transmits mortheflight than it would without the coating.
This is the desired effect.
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25 Polarization

The polarization direction of light refers to theotdirections or one of the two directions in
which the electric field is oscillating. For thase of completely polarized light there are always
two directions that could be called the polarizattirection. If a single direction is specified,
then, that direction, and the exact opposite doactare both the directions of polarization. IStil
specifying one direction completely specifies tiveation of polarization. For instance for light
that is traveling straight downward near the swfatthe earth, if the polarization direction is
said to be a compass heading of,1bat unambiguously means that the electric fosicillates

so that it is at times pointing in the directiortiwa compass heading of°1%and at times

pointing in the direction with a compass headind @8 (15° west of south).

North

E
15°

West East

South

Randomly polarized lighti.k.a.unpolarized lighthas electric field oscillations in each and
every direction perpendicular to the direction inieh the light is traveling. Such light is often
depicted, as viewed from behind, (where forwarhésdirection in which the light is traveling)
as:

Unpolarized Light, a.k.a.
Randomly Polarized Light
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Vertically polarized light traveling horizontallywey from you is typically depicted as:

Vertically Polarized Light

where the direction in which the light is travelisg‘into the page” and upward is “toward the
top of the page.” At a particular position throughich the light is traveling, starting at an
instant when the electric field vector at that posiis upward and maximum, the electric field
will decrease to zero, then be downward and inargaseach a maximum downward, then be
downward and decreasing, become zero, then be dmarincreasing, then reach a maximum
upward, and repeat, continually. The diagram degdhe polarization indicates the directions
that the electric field does point, at some timardyits oscillations. It in no way is meant to
imply that the electric field is pointing in twordctions at the same time.

Light that is traveling horizontally away from ythat is polarized at 30with respect to the
vertical could be either:

or
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If you encounter such an ambiguous specificatiopatdrization in a problem statement then the
answer is the same for either case, so, it doesatter which of the two possible polarization
directions you pick. Pick one arbitrarily and wavkh it.

Light that is traveling horizontally away from yand is polarized at 3&lockwise from the
vertical is, however, unambiguously:

Polarizers

A plastic material is manufactured in the formlat heets that polarize light that travels
through them. A sample of such a flat sheet iedal polarizer. In use, one typically causes
light to travel toward a polarizer along a direntthat is perpendicular to the polarizer. In other
words, one causes the light to be normally incidgan the polarizer.

Schematically, one typically depicts a polarizemhyans of a rectangle or a circle filled with

parallel line segments.
\
\
l |
/
/

The orientation of the lines is referred to aspgbfarization direction of the polarizer. The effec
of a polarizer is to transmit light that is poladkin the same direction as that of the polarizer,
and to block (absorb or reflect) light that is p@ad at right angles to the direction of the
polarizer.

The polarization direction of the rectangular pizlar depicted above is vertical. So, it lets
vertically-polarized light through and blocks hanally-polarized light.

The polarization direction of the circle-shaped plnof polarizing material depicted above is
horizontal. So, it lets horizontally-polarizedHhigthrough and blocks vertically-polarized light.

242



Chapter 25 Polarization

When unpolarized light (a.k.a. randomly-polarizigght) is normally incident on any polarizer,
half the light gets through. So, if the intensifithe incoming light id,, then the intensity of the
light that gets through, call lit, is given by:

|1 = % I 0 (25'1)
In completely unpolarized light, the electric fieldctors are oscillating in every direction that is
perpendicular to the direction in which the lightraveling. But all the electric field vectorear
as the name implies, vectors. As such, we carkl@eery single one of them up into a
component along the direction of polarization & golarizer and a component that is
perpendicular to the polarization direction of gudarizer. A polarizer will let every component
that is along the direction of polarization of g@arizer through, and block every component
that is perpendicular to the polarization direction completely unpolarized light, no matter
what the direction of polarization of the polarizerif you break up all the electric field vectors
into components parallel to and perpendicular éopblarizer’s polarization direction, and add
all the parallel components together, and thenraggigt add all the perpendicular components
together, the two results will have the same mageit This means that we can view completely
unpolarized light as being made up of two halvedf polarizedparallel to the polarizer’s
polarization direction, and half polarizedrpendicularto the polarizer’'s polarization direction.
The half that is polarized parallel to the polarzéolarization direction gets through the
polarizer, and the other half doesn't.

Unpolarized Light Traveling Directly Away From You

— HP
4,
) i lly incident on a .. the light that gets through
When completely unpolarized | - 'S hormally . 7 LY
light of inTpensiT;lI P polarizer whose polarization 'S polarlzed In Th? polgr'lzer's
o direction makes an angle 6, direction of PO|0I"IZOT1IOH, and,
with the vertical... has anintensity I, = 5 I, .

Note how the effect of a polarizer on the intensityormally-incident unpolarized light does
not depend on the orientation of the polarizer.u get the same intensitly =11, of light

getting through the polarizer, no matter what tineation of polarization of the polarizer is.
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Now suppose that we have some light that, for weateeason, islready polarized When
polarized light is normally incident on a polarizéhe intensity of the light that gets throutdes
depend on the direction of polarization of the pa&x (relative to that of the incoming light).
Suppose for instance, that the incoming light,

is polarized at an ang&with respect to the polarization direction of ags@er upon which the
light is normally incident:

Before it hits the polarizer, the light's electfield-oscillations-amplitude vector,

E/‘
can be broken up into a component parallel to tiarjzer’s polarization direction and a
component perpendicular to the polarizer’'s poldieradirection.

E, =E sin@

244



Chapter

E, =E sin@

The parallel componerif, = E cosf gets through the polarizer, the perpendicular carapb
does not.

Now the intensity of polarized light is proportida the square of the amplitude of the
oscillations of the electric field. So, we can egs the intensity of theacoming lightas

|, = (constan} E’
and the intensity of thigght that gets througlas:
|, = (constan} E"2
|, = (constan} (E cosﬁ)2
2 2
|, = (constanf E" (cosd)

l, =1 (cos)’ (25-2)
Summarizing:

Polarized Light Traveling Directly Away From You

6 |
‘/EHP/V
.. is normally incident on a polar- | ... the light that gets through is
When polarized light of izer whose polarization direction | polarized in the polarizer's
intensity I,... makes an angle 8 with the polari- | direction of polarization, and,
zation direction of the light.. has an intensity I, = I (cos@)’.
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26 Geometric Optics, Reflection

We now turn to a branch of optics referred to asggric optics and also referred to as ray
optics. It applies in cases where the dimensidtiseoobjects (and apertures) with which the
light interacts are so large as to render diffaaceffects negligible. In geometric optics we trea
light as being made up of an infinite set of nartmams of light, calletight rays or simply

rays, traveling through vacuum or transparent matbing straight line paths. Where a ray of
light encounters the surface of a mirror, or therface between the transparent medium in
which it (the light) is traveling and another trpasent medium, the ray makes an abrupt change
in direction, after which, it travels along a netnagyht line path.

In the geometric optics model of light, we seetlighitted by sources of light because the light
enters our eyes. Consider for instance, a candle.

Every point of the flame of the candle emits ralyBght in every direction.

While the preceding diagram conveys the idea irstheement preceding the diagram, the
diagram is not the complete picture. To get a neoraplete picture of what’s going on, what |
want you to do is to look at the diagram providedm a picture of it in your mind, and, to the
picture in your mind, add the following embellishme
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1. First off, | need you to imagine it to be alreandle extending ithree dimensionsOur set
of rays depicted as arrows whose tips are all oincée becomes a set of rays depicted as
arrows whose tips all end orsphere Thus, in addition to rays going (at various asy!
upward, downward and to the sides, you've got prgseeding (at various angles) away
from you and toward you.

2. Now I need you to add more rays to the p&taryour mind. I included 16 rays in the
diagram. In three dimensions, you should have &b2@i rays in the picture in your mind. |
need you to bump that up to infinity.

3. In the original diagram, | showed rays conomdy from the tip of the flame. At this point,
we have an infinite number of rays coming fromtipeof the flame. | need you to picture
that to be the case for each point of the flaméjust the tip of the flame. In the interest of
simplicity, in the picture in your mind, let thefhe of the candle be an opaque solid rather
than gaseous, so that we can treat all our ragerasg from points on the surface of the
flame. Neglect any rays that are in any way d@eadnto the flame itself (don't include
them in the picture in your mind). Upon completathis step, you should have, in the
picture in your mind, an infinite number of raysyaog from each of the infinite number of
points making up the surface of the flame.

4. For this next part, we need to establists#téng. I'm concerned that you might be reading
this in a room in which lit candles are forbidddhso, please relocate the candle in the
picture in your mind to the dining room table inuydhome, or, replace the candle with a
fake electric-powered candle such as you mighirsahome around Christmastime. Now |
need you to extend each of the rays in the pigtuyeur mind all the way out to the point
where they bump into something. Pleasdeach ray at the point where it bumps into
something. (A ray that bumps into a non-shinyaef bounces off in all directions [diffuse

reflection]. Thus, each ray that bumps into a nemyssurface, creates an infinite set of rays

coming from the point of impact. A ray bumpingamgerfectly shiny surfaces continues as
a single ray in one particular, new, direction [ggdar reflection]. To avoid clutter, let’s
omit all the reflected rays from the picture in yonind.)

If you have carried out steps 1-4 above, then yauelthe picture, in your mind, of the geometric

optics model of the light given off by a light-etimig object. When you are in a room with a
candle such as the one we have been discussingayaell where it is (in what direction and
how far away—you might not be able to give veryumate values, but you can tell where it is)

by looking at it. When you look at it, an infinileimber of rays, from each part of the surface of
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the flame, is entering your eyes. What is ama@rigpw few rays you need to determine where,
for instance, the tip of the flame is. Of the mite number of rays available to you, you only
need two! Consider what you can find out fromreyl ray entering your eye:

From just one of the infinite number of rays, ya@n deduce the direction that the tip of the
flame is in, relative to you. In other words, yoan say that the tip of the flame lies somewhere
on the line segment that both contains the rayehtdrs your eye, and, that ends at the location

of your eye.

Fromray 1, you can

tell that the tip of the

flame is somewhere

back along this line. ‘)

From one other ray, ray 2 in the diagram
at right, you can deduce that the tip of the
flame must lie somewhere back along
one other line.
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Fromray 1, you can
tell that the tip of the
flame is somewhere
back along this line.
g 1@

From ray 2, you can
tell that the tip of the
flame is somewhere
back along this line.

There is only one point in space that is both “sairexe back along line 1” and “somewhere
back along line 2.” That one point is, of coutée, point where the two lines cross. The eye-
brain system is an amazing system. When you lbskmaething, your eye-brain system
automatically carries out the “trace back and fimelintersection” process to determine how far
away that something is. Again, you might not bie &b tell me how many centimeters away the
candle, for instance, is, but you must know howafaay it is because yomould know about

how hard to throw something to hit the cardle

This business of tracing rays back to see wheredbme from is known as ray tracing and is
what geometric optics is all about.

At this point | want to return our attention to ttendle to provide you with a little bit more
insight into the practice of ray tracing. Supptis® when you were determining the location of
the tip of the flame of the candle, you already badhe additional information about the candle.
For instance, assume: You know that the rays@meng from the upper extremity of the
candle; you know that the bottom of the candlenishe plane of the surface of your dining room
table; and you know that the candle is verticale’Vlso assume that the candle is so skinny
that we are not interested in its horizontal extergpace, so, we can think of it as a skinny line
segment with a top (the tip of the candle) andttobm the point on the candle that is at table
level. The intersection of the plane of the tahleface with the plane of the two rays is a line,
and, based on the information we have, the bottotimeocandle is on that line.

! Note: Throwing things at lit candles is a dangerous it which | urge youot to engage.
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Fromray 1, you can
tell that the tip of the
flame is somewhere
back along this line. Q

From ray 2, you can
tell that the tip of the

flame is somewhere
Reliable, but undisclosed, sources tell us that back along this line.
the bottom of the candle is on this line, and

that the candle is verti(:\'

Taken together with the information gleaned from tthys, we can draw in the entire (skinny)
candle, on our diagram, and from the diagram, deter such things as the candle’s height,
position, and orientation (whether it is upside ddwmverted] or right side up [erect]). In adding
the candle to the diagram, | am going to draw aimsrrow. Besides the fact that it is
conventional to draw objects in ray tracing diagsaas arrows, we use an arrow to represent the
candle to avoid conveying the impression that, ftbenlimited facts we have at our disposal, we
have been able to learn more about the candle éi@anflame height, etc) than is possible. (We
can only determine the height, position, and oaBoh.)
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The trace-back method for locating the tip of thadie flame works for any two rays, from
among the infinite number of rays emitted by tipedti the candle flame. All the rays come from
the same point and they all travel along differsgtraight line paths. As such, the rays are said to
diverge from the tip of the candle flame. The érdack method allows us to determine the point
from which the rays are diverging.

By means of lenses and mirrors, we can redirest ojight, infinite numbers of them at a time,
in such a manner as to fool the eye-brain systamistusing the trace-back method into
perceiving the point from which the rays are diveggas being someplace other than where the
object is. To do so, one simply has to redireetrttys so that thegre diverging from

someplace other than their point of origin. Thenpmther than their point of origin, from which
the rays diverge (because of the redirection of taymirrors and/or lenses) is called itmage

of the point on the object from which the light @ty originates.

The Law of Reflection

| have mentioned specular reflection. In spectdfiection, a ray of light traveling along one
straight line path, hits a smooth shiny surface @mtinues along a new straight line path. The
adoption of the new path, at the smooth shiny serfhy the incoming ray is called reflection.
Where the ray travels along the new path, we balray, the reflected ray. The smooth shiny
surface is typically called a mirror. The law eflection, derived originally directly from
experimental evidence and, by Huygens, from thecpie now known as Huygens’ principle,
states thathe angle that the reflected ray makes with an imey line that is perpendicular to
the mirror, and, passes through the point whereittiieming ray hits the mirror, is equal to the
angle that the incoming ray makes with the samainaay line The point where the incoming
ray hits the mirror is called thgoint of incidence The imaginary line that is perpendicular to the
surface of the mirror and passes through the pdimtcidence is callethe normal The angle
that the incoming ray makes with the normal isezhtheangle of incidenc#. The angle that
the reflected ray makes with the normal is callesbingle of reflectiorg,. In terms of this
jargon, the law of reflection can be stated ase dingle of reflectiord], is equal to the angle of

incidenced .

Reflected Ray

P The Law of Reflection
The Normal-------------------F--- states thatg, = § .

Incident Ray
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Geometric Optics Applied to a Plane Mirror

Let's apply our ray-tracing methods to the casarobbject in front of a plane mirror in order to
determine the position of that object. Here’s¢bafiguration.

A/Object of height E/The Plane of the Mirror
h |
— _
~ 1
The Principal Axis

of the Mirror
Mirror /

We have an object of heighta distance from the plane of the mirror. Our object is
represented by an arrow. The tail of the arroanis reference line that is perpendicular to the
plane of the mirror. | am calling the referencelithe principal axis of the mirror.” The plane
of the mirror is the infinite plane that contaihe tsurface of the mirror.

We use the method of principal rays to determimepibsition of the image of the object. In the
method of principal rays, we consider only a feaident rays for which the reflected rays are
particularly easy to determine. Experimentally,fime that the position of the image is
independent of the size of the mirror, so we carside mirror to be as large as it needs to be for
the principal rays to hit it. In particular, ifgincipal ray appears to miss the mirror in our
diagram, we show the ray as reflecting off the plafthe mirror nevertheless. Our Principal
Ray | for the case at hand is one that approatigeglane of the mirror along a line that is
parallel to the principal axis of the mirror.

[
N >
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Chapter 26 Geometric Optics, Reflection

According to the law of reflection, Principal Raislreflected straight back on itself as depicted
in the following diagram:

A

A

Using the trace-back method we know that the tifhefobject lies somewhere along this li

Principal Ray II hits the mirror right where thenmipal axis of the mirror intersects the mirror.
In accord with the Law of Reflection, with, for they in question, the principal axis of the
mirror being the normal, the reflected ray makesdhme angle with the principal axis of the
mirror as the incident ray does.

A 4

o
- A

\
\
\

Tracing back the second reflected ray to the pohre it intersects the first reflected ray trace-
back line yields the position of the image of tipeof the arrow. | have drawn the shaft of the
image of the arrow in so that it is perpendicutathte principal axis of the mirror. The question

is, what is the image heightand what is the distance of the image from thaeptaf the mirror?
Well, the image height' is the distance between the same two paralles linat the object
heighthis. Soh’=h. From the geometric fact that vertical angleseapaal, we havé' in the
diagram above being equal &y which we know to be equal hfrom the law of reflection.
Thus the right triangle of side and angled’ is congruent to the triangle of heighand angle
g. Hence, since corresponding sides of congruimtgies are equal, we have o. That is to
say that the image distance, from the plane ofrtineor, is equal to the object distance.
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27 Refraction, Dispersion, Internal Reflection

When we talked about thin film interference, weldaiat when light encounters a smooth
interface between two transparent media, someeolight gets through, and some bounces off.
There we limited the discussion to the case of mbmctidence. (Recall thatormal means
perpendicular tcand normal incidence is the case where the dimeati which the light is
traveling is perpendicular to the interface.) Nwe consider the case in which light shining on
the smooth interface between two transparent mediiat normally incident upon the interface.
Here’s a “clean” depiction of what I'm talking aldou

and here’s one that’s all cluttered up with lalptsviding terminology that you need to know:

The The Transmitted Ray, a.k
the Refracted Ray

The index of refraction ¢
Thestraight the medium in which the
ahead path. light is traveling after it
passes through the interfag

The Angle of
Refraction

(D

/

The indgx of_refra_ction C |~ n
the medium in which the
light is originally traveling.

The interface between tl
two transparent media.

The

Inciden /* Angle of
. ngle of -
Ray/ Incidence e?lection — Reflected R_ay af, = 6
! in Accord with the
The Law of Reflection
Normal
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As in the case of normal incidence, some of thet lig reflected and some of it is transmitted
through the interface. Here we focus our attentiothe light that gets through.

Experimentally we find that the light that getsaingh travels along a different straight line path
than that which the incoming ray is on. As subk, transmitted ray, makes an arglevith the

normal, that is different from the anglethat the incident ray makes with the normal.

The adoption of a new path by the transmitted aayhe interface between two transparent
media is referred to asfraction The transmitted ray is typically referred tatlasrefracted
ray. And, the anglé, that the refracted ray makes with the normal ieddaheangle of

refraction Experimentally, we find that the angle of refrac g, is related to the angle of
incidenced, by Snell's Law:

n,sing, =n,sing, (27-1)
where:

n, is the index of refraction of tHfest medium, the medium in which the light is traveling
before it gets to the interface,

6 is the angle that the incident ray (the ray inftt& medium) makes with the normal,

n, is the index of refraction of treecondmedium, the medium in which the light is traveling
afterit gets to the interface, and,

g, is the angle that the refracted ray (the ray @stttondmedium) makes with the normal.
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Dispersion

On each side of the equation form of Snell’s lawhage anndex of refraction The index of
refraction has the same meaning as it did wheralked about it in the context of thin film
interference. It applies to a given medium. bhis ratio of the speed of light in that medium to
the speed of light in vacuum. At that time, | menéd that different materials have different
indices of refraction, and in fact, provided youhtihe following table:

Medium Index of Refraction
Vacuum 1
Air 1.00
Water 1.33

Glass (Depends on the kind of

glass. Here is one typical valug.) 1.5

What | didn’t mention back then is that there sight dependence of the index of refraction on
the wavelength of the visible light, such that, sherter the wavelength of the light, the greater
the index of refraction. For instance, a particklad of glass might have an index of refraction
of 1.49 for light of wavelength 695 nm (red light), lart index of refraction that is greater than
that for shorter wavelengths, including an indexafifaction of 151 for light of wavelength

705 nm (blue light). The effect in the case ohw of white light traveling in air and
encountering an interface between air and glass,dause the different wavelengths of the light
making up the white light to refract at differemigdes.

blue ~ -9reen
\

red

Glass

Incoming White Air

Light

This phenomena of white light being separateditstoonstituent wavelengths because of the
dependence of the index of refraction on wavelgngttalleddispersion
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Total Internal Reflection

In the case where the index of refraction of th&t fmedium is greater than the index of
refraction of the second medium, the angle of otifa is greater than the angle of incidence.

For such a case, look what happens when we incteasmgle of incidencé,:

The angle of refraction gets bigger...
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until eventually it (the angle of refraction) gébsbe 90.

>n

;
JN
A 4

'_‘:J

N

It can’t get any bigger than that, because, beybat] the light is not going through the
interface. An angle of refraction greater thaf B&s no meaning. But, note that we still have
room to increase the angle of incidence. What &éapjf we continue to increase the angle of
incidence? Well, indeed, no light gets throughitierface. But, remember at the beginning of
this chapter where we talked about how, when ligimcident on the interface between two
transparent media, some of the light gets throughsame of it is reflected? Well, | haven'’t
been including the reflected ray on our diagrantabse we have been focusing our attention on
the transmitted ray, but, it is always there. Tiieg is, at angles of incidence bigger then the
angle that makes the angle of refractiof, 90e reflected ray is all there is. The phenomeio
which there is no transmitted light at all, jusleeted light, is known atotal internal reflection
The angle of incidence that makes the angle ohc&én 90 is known aghe critical angle At

any angle of incidence greater than the criticglarthe light experiences total internal
reflection. Note that the phenomenon of totalrimi reflection only occurs when the light is
initially in the medium with the bigger index offraction.

Let’s investigate this phenomenon mathematicalitarting with Snell’'s Law:
n, sing, =n,sing,

solved for the sine of the angle of refraction:

sing, =nisin5rl

2

we note that, since it was stipulated that n,, the ration,/ n, is greater than 1. The #ins
always less than 1, butdf is big enough, s} can be so close to 1 that the right-hand side of
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the equatiorsing, = nisiné?l is greater than 1. In that case, there igthat will solve the
2

equation because there is no angle whose sineasagrthan 1. This is consistent with the
experimental fact that, at angles of incidence tgrean the critical angle, no light gets through
the interface. Let's solve for the critical anglt the critical angle, the angle of refractins

90°. Lets plug that into the equation we have beerkiwg with and solve foé.:

sing, =nisin5rl

2

evaluated af,, = 9 yields:
sin90° = A sing,

n,

1="

2

sing,
: n
sing, ==

4N
6, =sin™ -2

This is such a special angle of incidence that eteonly give it a name (as mentioned, it is
called the critical angle), but, we give it its osymbol. The critical angle, that angle of
incidence beyond which there is no transmittedJighdesignated., and, as we just found, can
be expressed as:

6. =sin (27-2)
n
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28 Thin Lenses: Ray Tracing

A lens is a piece of transparent material whostasas have been shaped so that, when the lens
is in another transparent material (call it medinlight traveling in medium 0O, upon passing
through the lens, is redirected to create an inodigiee light source. Medium O is typically air,
and lenses are typically made of glass or plastichis chapter we focus on a particular class of
lenses, a class known as thin spherical lensesh &aface of a thin spherical lens is a tiny
fraction of a spherical surface. For instance sater the two spheres:

A piece of glass in the shape of the intersectioih@se two sphericaolumeswvould be a thin
spherical lens. The intersection of two spherstafacess a circle. That circle would be the
rim of the lens. Viewed face on, the outline dhi spherical lens is a circle.

The plane in which that circle lies is called thane of the lens. Viewing the lens edge-on, the
plane of the lens looks like a line.

Lens\

<S———— The Plane of the Lens
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Chapter 28 Thin Lenses: Ray Tracing

Each surface of a thin spherical lens has a radioarvature. The radius of curvature of a
surface of a thin spherical lens is the radiuhefdphere of which that surface is a part.
Designating one surface of the lens as the froriace of the lens and one surface as the back
surface, in the following diagram:

The Front Surface™ <— The Back Surface
of the Lens of the Lens

we can identifyR, as the radius of curvature of the front surfactheflens ant, as the radius
of curvature of the back surface of the lens.

The defining characteristic of a lens is a quardéifed the focal length of the lens. At this

point, I'm going to tell you how you can calculatealue for the focal length of a lens, based on
the physical characteristics of the lens, befaredn tell you what focal length means. (Don'’t
worry, though, we’ll get to the definition soonThe lens-maker’s equation gives the reciprocal
of the focal length in terms of the physical chégastics of the lens (and the medium in which
the lens finds itself):

% =(n- no)(% + é] (28-1)

The Lens-maker’s Equation:
where:
£ is the focal length of the lens,
n is the index of refraction of the material of winithe lens is made,
n, is the index of refraction of the medium surroungdihe lensrg; is typically 100 because
the medium surrounding the lens is typically air),
R is the radius of curvature of one of the surfaafetge lens, and,

R, is the radius of curvature of the other surfactheflens.
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Before we move on from the lens-maker’s equatiorgdd to tell you about an algebraic sign
convention for thdk values. There are two kinds of spherical lenfases. One is the “curved
out” kind possessed by any lens that is the inttiseof two spheres. (This is the kind of lens
that we have been talking about.) Such a lensfésned to as aonvexens(a.k.a. a converging
lens) and each (“curved out”) surface is refercedd aconvex surface The radius of curvature
R for a convex surface is, by convention, positive.

The other kind of lens surface is part of a splieat does not enclose the lens itself. Such a
surface is said to be “curved in” and is calle®acave surface.

Concave Ler

Z\Concave Lens (a.k.a. a diverging lens)

By convention, the absolute valueRfor a concave surface is still the radius of thleese of
whose surface coincides with that of the lens., B quantityR contains additional
information in the form of a minus sign used toigleate the fact that the surface of the lens is
concave.Ris still calledthe radius of curvature of the surface of the ldaspite the fact that
there is no such thing as a sphere whose radausilly negative.
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Chapter 28 Thin Lenses: Ray Tracing

Summarizing, our convention for the radius of ctuve of the surface of a lens is:

Surface of Lens Algebraic Sign of Radius of Curvai
Convex +
Concave -

So, what does a lens do? It refracts light at batfaces. What's special about a lens is the
effect that it has on an infinite set of rays, edlively. We can characterize the operational
effect of a lens in terms of the effect that it basncoming rays that are all parallel to the
principal axis of the lens. (The principal axiseolens is an imaginary line that is perpendicular
to the plane of the lens and passes through theraefthe lens.) A converging lens causes all
such rays to pass through single point on the atiderof the lens. That point is tfazal point

F of the lens. It's distance from the lens is ahlieefocal length# of the lens.

T

Plane of the Leng
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Principal Axis of the Lens

Note that in the diagram, we show the rays of ligidergoing an abrupt change in directan

the plane of the lensThis is called the thin lens approximation arelwill be using it in all our
dealings with lenses. You know that the lightagacted twice in passing through a lens, once at
the interface where it enters the lens medium,agyan where it exits the lens medium. The two
refractions together cause the incoming rays teetra the directions in which they do travel.

The thin lens approximation treats the pair ofaetions as a single refraction occurring at the
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Chapter 28 Thin Lenses: Ray Tracing

plane of the lens. The thin lens approximatiogased as long as the thickness of the lens is
small compared to the focal length, the objectadise, and the image distance.

Rays parallel to the principal axis of the leng #mater the lens from the opposite direction
(opposite the direction of the rays discussed apbaikalso be caused to converge to a focal
point on the other side of the lens. The two femahts are one and the same distafite®m
the plane of the lens.

Incoming Parallel Rays
_______________________________________ -
F ! - F

The two phenomena discussed above are reversitile sense that rays of light coming from a
point source, at either focal point, will resultparallel rays on the other side of the lens. Here
we show that situation for the case of a point s@at one of the focal points:

Point Source Located
at the Focal Point
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and here we show it for the case of a point soattke other focal point.

Point Source Located
at the Focal Point
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The important thing about this is that, any ray gresses through the focal point on its way to
the lens is, after passing through the lens, gtarige parallel to the principal axis of the lens.
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In the case of a diverging lens, incoming para#gk are caused to diverge:

Plane of the Lend——>

Incoming Parallel Rays

\ \
~—_

Principal Axis of the Lens

so that they travel along lines which trace-bacwa)

Incoming Parallel Rays \

1
1
[
[
1
1
1
1
!
!
I~
[

all pass through one and the same point. Thahipassing through the lens, the

once-parallel rays diverge as if they originatexhfra point. That point is known as tloeal

point of the diverging lens. The distance from the plahthe lens to the focal point is the
magnitude of the focal length of the lens. Butgcbpvention, the focal length of a diverging lens
is negative. In other words, the focal length dhaerging lends thenegativeof the distance

from the plane of the lens to the focal point.
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As in the case of the converging lens, there ishemdocal point on the other side of the lens, the
same distance from the plane of the lens as tlad ment discussed above:

<

+

- ---R--=--)---}-

This effect is reversible in that any ray thatraveling through space on one side of the lens, and
is headed directly toward the focal point on the otiele of the lenswill, upon passing through
the lenspbecome parallel to the principal axis of the lens
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Our plan here is to use the facts about what adems to incoming rays of light that are parallel
to the principal axis of a lens or are headingafiyeoward or away from a focal point, to
determine where a lens will from an image of areobj Before we do that, | need to tell you one
more thing about both kinds of thin spherical lens&his last fact is a reminder that our whole
discussion is an approximation that hinges onalsethat the lenses we are dealing with are
indeedthin. Here’s the new fact: Any ray that is heade@atly toward the center of a lens
goes straight through. The justification is, thath@ center of the lens, the two surfaces of the
lens are parallel. So, to the extent that theyparallel in a small region about the center of the
lens, it is as if the light is passing through ia tiece of plate glass (or any transparent medium
shaped like plate glass.) When light in air, mdent at some angle of incidence other thign 0
on plate glass, after it gets through both airglaterfaces, the ray is parallel to the incoming
ray. The amount by which the outgoing ray is gdifsideways, relative to the incoming ray,
depends on how thick the plate is—the thinner theepthe closer the outgoing ray is to being
collinear with the incoming ray. In the thin lesggproximation, we treat the outgoing ray as
beingexactlycollinear with the incoming ray.
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Using Ray Tracing Diagrams

Given an object of heighht, the object positiow, and the focal lengthof the lens with respect

to which the object position is given, you needbé¢oable to diagrammatically determine: where
the image of that object will be formed by the lemsw big the image is, whether the image is
erect (right side up) or inverted (upside downy] amether the image is real or virtual (these
terms will be defined soon). Here’s how you dat tlor the case of a diverging lens of specified

focal length with the object distanee> #':

Draw the plane of the lens and the principal akihe lens. Draw the lens, but think of it as an
icon, just telling you what kind of lens you areatieg with. As you proceed with the diagram
be careful not to show rays changing directiorhatdurface of your icon. Also, make sure you
draw a diverging lens if the focal length is negati Measure off the distanc€||to both sides

of the plane of the lens and draw the focal poieasure off the object distangdrom the
plane of the lens, and, the heigdf the object. Draw in the object.

h
|| | |—
——————————————— :___________E__________________1__________________1;________________________

A
Q
e L

We determine the position of the image of the fithe arrow by means of three principal rays.
The three principal rays are rays on which theotfbé the lens is easy to determine based on our
understanding of what a lens does to incoming tiagsare traveling toward the center of the
lens, incoming rays that are traveling toward oagdvom a focal point, and incoming rays that
are traveling directly toward the center of thesleihets start with the easy one, Principal Ray I.

It leaves the tip of the arrow and heads direatlyard the center of the lens. It goes straight
through.
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Next comes Principal Ray Il. It comes in paratitethe principal axis of the lens, and, at the
plane of the lens, jumps on a diverging line, whitkraced back, passes through the focal point
on the same side of the lens as the object. Metaded for trace-back.

In the case of a diverging lens, Principal Raydiithe ray that, as it approaches the lens, is
headed straight for the focal point on tiker sideof the lens. At the plane of the lens,
Principal Ray IIl jumps onto a path that is parféibethe principal axis of the lens.

Note that, after passing through the lens, alleheys are diverging from each other. Trace-
back yields the apparent point of origin of thes;aye image of the tip of the arrow. It is at the
location where the three lines cross. (In practiseng a ruler and pencil, due to human error,
the lines will cross at three different points. nSinler these to be the vertices of a triangle and
draw the tip of the arrow at what you judge to e geometric center of the triangle.) Having
located the image of the tip of the arrow, drawshatft of the image of the arrow, showing that
it extends from point of intersection, to the pijpad axis of the lens, and, that it is perpendicula
to the principal axis of the lens.

270



Chapter 28 Thin Lenses: Ray Tracing

\
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Measurements with a ruler yield the image helglaind the magnitude of the image distange |
The image is said to be a virtual imagevidual image of a point, is a point from which rays
appear to come, as determined by trace back,Hyoygh which the rays do not all, actually
pass. By convention, the image distance is negatingn the image is on the same side of the
lens as the object. A negative image distancesadgofies a virtual image. Note that the image
is erect. By convention, an erect image has dipesmage heighk’. The magnificatioM is
given by:

By convention, a positive value bf means the image is erect (right side up).

For the case of a converging lens, Principal Rigyidentical to the corresponding ray for the
diverging lens. It starts out headed straightliercenter of the lens, and, it goes straight
through. Principal Ray Il starts out the same Wawcipal Ray Il did for the diverging lens—it
comes in parallel to the principal axis of the {fedmit, starting at the plane of the lens, rather
than diverging, it is caused to converge to thembdhat it passes through the focal point on the
other side of the lens.
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Principal Ray Il , for a converging lens (with thbject farther from the lens than the focal point
iS), passes through the focal point onshme sidef the lens (the side of the lens the object is
on) and then, when it gets to the plane of the, leoies out parallel to the principal axis of the
lens.

If you position yourself so that the rays, haviragged through the lens, are coming at you, and,
you are far enough away from the lens, you williagae the rays diverging from a point. But
this time, all the rays actually go through thainpo That is, the lens converges the rays to a
point, and they don't start diverging again untieathey pass through that point. That point is
the image of the tip of the arrow. Itis a reahgae. You can tell because if you trace back the
lines the rays are traveling along, you come toiatghrough which all the rays actually travel.
Identifying the crossing point as the tip of theoar, we draw the shaft and head of the arrow.

This time, the image is inverted. We can meadwdength of the image and the distance of the
image from the plane of the mirror. By conventithe image height is negative when the image
is inverted, and, the image distance is positivenine image is on the side of the lens opposite
that of the object. The magnificatidvhis again given by
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M=— (28-2)

which, withh’ being negative, turns out to be negative itséliis is consistent with the
convention that a negative magnification meandrttege is inverted.

Principal Ray Il is different for the convergingns when the object is closer to the plane of the
lens than the focal point is:

Principal Ray lll, like every principal ray, stadsthe tip of the object and travels toward the
plane of the lens. In the case at hand, on itstwdlye plane of lens, Principal Ray Il travels
along a line that, if traced back, passes throbgHdcal point on the same side of the lens as the
object.

This concludes our discussion of the determinatiobmage features and position by means of
ray tracing. In closing this chapter, | summatize algebraic sign conventions, in the form of a
table:

Physical Quantity Symbol| Sign Convention

+ for converging lens
— for diverging lens
+ for real image (on opposite side of lens as dpjec
— for virtual image (on same side of lens as object)
+ for erect image

— for inverted image
+ for erect image

— for inverted image

focal length f

image distance [

image height h’

magnification M
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29 Thin Lenses: Lens Equation, Optical Power

From the thin lens ray-tracing methods developdtienast chapter, we can derive algebraic
expressions relating quantities such as objecantist, focal length, image distance, and
magnification.

Consider for instance the case of a convergingwatisan object more distant from the plane of
the lens than the focal point is. Here’s the diagfrom the last chapter. In this copy, | have
shaded two triangles in order to call your attentmthem. Also, | have labeled the sides of
those two triangles with their lengths.

h fi
o)

Ih'

By inspection, the two shaded triangles are sindagach other. As such, the ratios of
corresponding sides are equal. Thus:
|h']
h

o |-

Recall the conventions stated in the last chapter:

Physical Quantity | Symbol Sign Convention
+ for converging lens
— for diverging lens
+ for real image

— for virtual image

+ for erect image

— for inverted image
+ for erect image

— for inverted image

focal length f

image distance [

image height h’

magnification M

In the case at hand, we have an inverted image,ismegative, sth| =—h’. Thus, the equation
[h"] i . -h" i
=— can be written as— =— , or, as
o h o
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L
h o

I

But% IS, by definition, the magnification. Thus, wenaarite the magnification as:

M=—t (29-1)

Here’s another copy of the same diagram with amdtiangle shaded.

- o

By inspection, that shaded trianglesimilar to the triangle that is shaded in the followingygo
of the same diagram:

ll

Using the fact that the ratios of correspondingsidf similar triangles are equal, we set the ratio
of the two top sides (one from each triangle) etpéhe ratio of the two right sides:
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Again, since the image is upside downhis negative sch|| =—h". Thus,

o_h-n

£ =h

f h
From our first pair of similar triangles we fourtth H =-L which can be Written;l, = —_g
0 [

Substituting this into the expressie%ml—# which we just found, we have

(1)

Dividing both sides by and simplifying yields:

1.1,1 (29-2)
£ o i

This equation is referred to #ee lens equatianTogether with our definition of the

I

magnificationM =hF’ the expression we derived for the magnificatidr= L , and our
0

conventions:

Physical Quantity | Symbol Sign Convention
+ for converging lens
— for diverging lens
+ for real image

— for virtual image

+ for erect image

— for inverted image
+ for erect image

— for inverted image

focal length f

image distance [

image height h’

magnification M

the lens equation tells us everything we need twkabout the image of an object that is a
known distance from the plane of a thin lens oflndocal length. While we have derived it

for the case of an object that is a distance grélaée the focal length, from a converging lens, it
works forall the combinations of lens and object distance foiciwvthe thin lens approximation
is good. (The thin lens approximation is goodoag)lag, o, andf are all large compared to the
thickness of the lens.) In each case, we dehedans equation (it always turns out to be the
same equation), by drawing the ray tracing diagaachanalyzing the similar triangles that
appear in it.
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An Important Conceptual Point

(We mentioned this in the last chapter but it watsdurther attention.) An infinite set of rays
contributes to any given point of an image formgdllens. Consider for instance the case of an
object at a greater distance than the focal lefigth a thin spherical convex (converging) lens.
Further, because it's easy to specify, we will cdeisthe image of the tip of the (arrow) object.
We have been using the principal rays to locatentiagie, as in the following diagram:

A 4

<
<

1
1
1
1
I
I
!
»!
>
1
1

in which | have intentionally used a small lensni¢co remind you that, in using the principal ray
diagram to locate the image, we don't really cahetiver or not the principal rays actually hit
the lens. Let's, for the case at hand, considedihigram to be a life-size diagram of an actual
lens. As, important as they are in helping ustifiethe location of the image, clearly, for the
case at hand, Principal Rays Il and Il do not altyicontribute to the image. Principal Ray |
does contribute to the image. Let’'s draw in someenof the contributors:

The fact that every ray that comes from the tighefobject and hits the lens contributes to the
image of the tip of the arrow (and the correspogdact for each and every point on the object)
explains why you can cover up a fraction of theslésuch as half the lens) and still get a
complete image (albeit dimmer).
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The Power of a Lens

When an ophthalmologist writes a prescription fepherical lens, she or he will typically write
either a value around.5 or.5, or, a value arouneéb00 or 500 without units. You might well
wonder what quantity the given number is a valuedad what the units should be. The answer
to the first question is that the physical quanstthepower of the lenbeing prescribed. In this
context, the power is sometimes calleddpécal power of the lensThe power of a lens has
nothing to do with the rate at which energy is barmansformed or transferred but instead
represents the assignment of a completely differezgning to the same word. In fact, the
power of a lens is, by definition, the reciprochtie focal length of the lens:

P= (29-3)

1
f
In that the SI unit of focal length is the metel),(the unit of optical power is clearly the

. . .1 1. .
reciprocal meter which you can write &as or m ™~ in accord with your personal preferences.
m

This unit has been assigned a name. It is cdlledliibpter, abbreviated D. Thus, by definition,

1D:i
m

Thus, a value of.5 on the ophthalmologist’s prescription can berpteted to mean that what is

being prescribed is a lens having a power.bfdiopters. The minus sign means that the lens is
a concave (diverging) lens. Taking the recipryeats:

If you see a number aroun800 or 500 on the ophthalmologist’s lens pres@iptyou can
assume that the ophthalmologist is giving the paé¢he lens in units of millidiopters (mD).
500mD is, of course, equivalent t6D. To avoid confusion, if you are given an optipaiver

in units of mD, convert it to units of diopters bef using it to calculate the corresponding focal
length.
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Two-Lens Systems

To calculate the image of a two-lens system, omplgi calculates the position of the image for
the lens that light from the object hits first, ahdn uses that image as the object for the second
lens. In general, one has to be careful to reeegtiat for the first lens, the object distance and
the image distance are both measured relativestplttme of the first lens. Then, for the second
lens, the object distance and the image distareeaasured relative to the plane of¢beond
lens. That means that, in general, the objecanit for the second lens is not equal in value to
the image distance for the first lens.

For instance, in the following diagram of two lesseparated by I2n, if the object is to the
left of the first lens, and turns out to be &m to the right of the first lens,

image formed by“llens 2" lens
(serves as the object for :
the second len

o i
\/ =

object

theno,, the object distance for the second lenscisi4 A peculiar circumstance arises when the
second lens is closer to the first lens than thegerformed by the first lens is. Suppose for
instance, that we have the image depicted abougefb by the first lens:

Now suppose that we put a second lens in betweefi'tlens and the image.
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image formed byllens
(serves as the object for
the second lens)

object 1% lens 2 lens ;S %

Note that, for the second lens, we have an olgeitte right of the lens, but, the light associated
with that object approaches the object from the [&his can only happen when the object is
actually an image formed by another lens. In suchse, we call the object a virtual object.
More generally, when an object’s light approaché&na from the side opposite that side to
which the object is, the object is considered t@ b@tual object, and, the object distance, is, by
convention, negative. So, we have one more comretd put in a table for you:

Physical Quantity Symbol| Sign Convention
+ for real object (always the case for a physitgéct)
Object Distance o — for virtual object (only possible if “object” is
actually the image formed by another lens)

In forming the ray-tracing diagram for the casehef virtual object, we have to remember that
every ray coming into the second lens is headaabsirfor the tip of the arrow that is the virtual
object for the second lens. Thus, our Principal Ra one that is headed straight toward the tip
of the arrow, and, is headed straight toward timeceof the lens. It goes straight through.

< image formed byllens
(serves as the object for
the second lens)
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Principal Ray Il is headed straight for the heathefobject along a line that is parallel to the
principal axis of the lens. At the plane of thedét jumps onto the straight line path that takes
straight through the focal point on the other sifléhe lens.

<———image formed by*llens
(serves as the object for
the second lens)

Principal Ray Ill, is headed straight toward thpedf the virtual object, and, on its way to the
lens, it passes through the focal point on the gidbe lens from which it approaches the lens.
When it hits the plane of the lens, Principal Rdyatlopts a path that is parallel to the principal
axis of the lens.

image formed
by 29 lens

<—image formed by®llens
( (serves as the object for
i the second lens)

Y

Note that, for the case at hand, we get a realem&glative to the virtual object, the image is
not inverted. The virtual object was already upsidwn. The fact that we can draw a ray-
tracing diagram for the case of a virtual objecangthat we can identify and analyze similar
triangles to establish the relationship betweerothect distance, the image distance and the
focal length of the lens. Doing so, with the cami@n that the object distance of a virtual object

: . . 1 11
iS negative, again yields the lens equauf@n—+_—.
o |

Here’s a diagram of the entire two-lens systentliercase at hand:

281



Chapter 29 Thin Lenses: Lens Equation, Opticalé&tow

/,1

<

[{

=

Q

i

Note that the real image of lens 1 alone, is naetally formed, but it was crucial in our
determination of the image location, orientatiomd aize, in the case of the two-lens system.

Two Lenses at (Essentially) the Same Location

In the thin lens approximation (in which we consittee thickness of a lens to be negligible),
two lenses placed in contact with one another ansidered to have one and the same “plane of
the lens”.

K

As such, the object distance for the second letigisegative of the image distance for the first
lens. The second lens forms an image in accota wit

.||_‘

1 1
- =— 4
fz 02

N

in which, as we just stated, the object distagmads the negative of the image distanctr the
first lens. substituting, = —i, yields

i, represents the image distance for the image tbatdabe formed by the first lens if the second
lens wasn't there. It is related to the focal Eangnd object distance by the lens equation:
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. . : : . 1 1
Solving this fori_ yleldsi_ =i—i which, when substituted intg- =——+— from
-l -l 0 1 £, =i 1,

above, yields:

1 1 1 1

R :___+__

fZ 01 fl I2
which can be written as:

1 1 1 1

—+ =+

fl fZ 01 I2

The object distance, for the first lens, is the object distance for piagr of lenses. I'm going to

call thato, for the object distance for tkembinationof two lenses. In other words, = o,.
The image distance for tlsecondens is the image distance for the pair two lens&s going
to call thati, for the image distance for tikembinationof two lenses. In other wordg=1i,.

Thus, on the right, we have the reciprocal of thea distance for the two-lens system plus the
reciprocal of the image distance for the two-leystem.

1 1 1 1
—+ =+
fl fZ ac Ic

On the left we have the sum of the powers of the lemses.

F>1+F>2=i+_1
OC IC

. 1 1 1 , 11
For a single lens, the lens equat1gn=—+_— expressed in terms of the power, refds—+= .
o i o i

Thus, if, for our combination of two lenses at @nel the same location, we ident®/+ P, as,
the poweP, of the combination of two lenses, we have,

F3::i+_1
OC IC

Thus, a pair of lenses, each of which is at essi§ntine and the same location, acts as a single
lens whose powd? is the sum of the powers of the two lenses makmthe combination.

P=R+P, (29-4)

Cc
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30 The Electric Field Due to a Continuous Distribu  tion of
Charge On a Line

Every integral must include a differential (suchdxs dt, dq, etc.). An integral is
an infinite sum of terms. The differential is resaey to make each term

infinitesimal (vanishingly small).j f(x)dx is okay,jg(y) dy is okay, and
j h(t)dt is okay, but never writ§ f (), never writej g(y) and

never write j h(t) .

Here we revisit Coulomb’s Law for the Electric EielRecall that Coulomb’s Law for the

Electric Field gives an expression for the elediatd, at an empty point in space, due to a
charged particle. You have had practice at findimegelectric field at an empty point in space
due to a single charged particle and due to seeheabed particles. In the latter case, you
simply calculated the contribution to the elecfigdd at the one empty point in space due to each
charged particle, and then added the individuatrdmrtions. You were careful to keep in mind
that each contribution to the electric field at @mepty point in space was an electric field vector,
a vector rather than a scalar, hence the individoatributions had to be added like vectors.

30.1 A Review Problem for the Electric Field due to a Discrete?
Distribution of Charge

Let’s kick this chapter off by doing a review prebil. The following example is one of the sort
that you learned how to do when you first encowwdéoulomb’s Law for the Electric Field.
You are given a discrete distribution of sourcergha and asked to find the electric field (in the
case at hand, just thecomponent of the electric field) at an empty painspace.

The example is presented on the next page. Hevercdhabout one piece of notation used in the
solution. The symbd? is used to identify a point in space so that thigewcan refer to that
point, unambiguously, as “poift.” The symbolP in this context does not stand for a variable
or a constant. It is just an identification tdghas no value. It cannot be assigned a valtue. |
does not represent a distance. It just labelsrd.po

! The charge distribution under consideration here ledtal discrete distribution as opposed to a continuous
distribution because it consists of several individual gadithat are separated from each other by some space.
continuous charge distribution is one in which some chargarisdred out” along some line or over some region of
space.

284



Chapter 30 The Electric Field Due to a ContinuDistribution of Charge On a Line

Example (of a review problem)

There are two charged particles on xkexis of a Cartesian coordinate systematx = x; andds
atx = x; wherex, > x;. Find thex component of the electric field, due to this pdiparticles,
valid for all points on the-y plane for whichx > xo.

Ex
A
y-axis ]

(X, )51

P

r,-"

1.

oy

q .6, & 1
—X—>k—x—x —> x-axis
X

E, is the contribution to the electric field at
pointP (atx, y) due to charge,. Chargey,
contributesE, to the electric field aP.

E=E, +E,
Ex = Elx + EZx
First, let's getE,, :
y
El
6.
Elx X
E
X = cosf,
Elx = El Cosel

Looking at the diagram at the top of this
column, we see that Coulomb’s Law for the
Electric Field yields:

Again, from that first diagram,

=y (x=x)" +y*

and

cosel=x_x1= X_)Zl -
noJx-x)+y

Substituting both of these int,, = %cos&’l

1

yields:
E, = ko, X=X
(\/(x— x)% + Y )2 JX=x)*+y?
E = kg, (x=x)
N N
y-axis J{ E,
bng-
rzl y
%, qu,\gz Ly x-axis
R x-x,

It is left as an exercise for the reader to shoy
that:

E2 - qu(X—XZ) .
ox= )2 +y2] %2

SinceE, = E, + E,,, we have:

E = kql(x_xl) . qu(X—XZ) .
Y2y -2y
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30.2 Linear Charge Density

Okay, enough review, now lets consider the casehioh we have a continuous distribution of
charge along some line segment. In practice, wé&dwme talking about a charged piece of string
or thread, a charged thin rod, or even a chargece@f wire. First we need to discuss how one
even specifies such a situation. We do so bygtathat the linear charge density, the charge-
per-length A is. For now we’ll consider the meaning.bfor a few different situations (before
we get to the heart of the matter, finding the teledield due to the linear charge distribution).
Suppose for instance we have a one-meter strirgneixtg from the origin ta = 1.00 m along
thex axis, and that the linear charge density on tineigsis given by:

uC

A= 256—2 X
m

(Just under the equation, we have depicted tharliclearge density graphically by drawing a
line whose darkness represents the charge density.)

Note that if the value of is expressed in meterdwill have units of”—C, units of
m

charge-per-length, as it must. Further note thiasinall values of, A is small, and for larger
values ofx, A is larger. That means that the charge is morsalgipacked near the far (relative
to the origin) end of the string. To further faianize ourselves with what is, let’s calculate the
total amount of charge on the string segment. Wikt do is to get an expression for the
amount of charge on any infinitesimal lengthof the string, and add up all such amounts of
charge for all of the infinitesimal lengths making the string segment.

X | (1.00m, 0)

Figure 1

The infinitesimal amount of chargig on the infinitesimal lengtbx of the string is just the
charge per length times the lengthkx of the infinitesimal string segment.

dg=A dx (30-1)
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Note that you can’t take the amount of charge bnit@ length (such as 15 cm) of the string to
be A times the length of the segment becatisaries over the length of the segment. In the case
of an infinitesimal segment, every part of it ighin an infinitesimal distance of the position
specified by one and the same value.oThe linear charge density doesn’t vary on an
infinitesimal segment becauseloesn’'t—the segment is simply too short.

To get the total charge we just have to add ughalllgs. Eachdqis specified by its
corresponding value of To cover all thelgs we have to take into account all the values of
from O to 1.00 m. Because eatdpis the charge on an infinitesimal length of time [of charge,
the sum is going to have an infinite number of ®rmn infinite sum of infinitesimal pieces is
an integral. When we integrate Equation 30dd € A dx) we get, on the left, the sum of all the
infinitesimal pieces of charge making up the whadb. definition, the sum of all the

infinitesimal amounts of charge is just the totaigeQ (which by the way, is what we are
solving for), we don't need the tools of integralaulus to deal with the left side of the equation.

Integrating both sides of the equation yields:
1.00m

Q= j Adx
0
Using the given expressioh= 2.56;—C2:x we obtain

1.00m

1.00m 1.00m 2 2 2
0= [ 256"Sxdx= 256*C [xdx= 256"CX 256HC| L0 O 1_ 4 56,c
2 2 2 2
0 m m < m= 2| m 2 2

A few more examples of distributions of chargedoli

For instance, consider the case of charge dis&iibatong thex axis, fromx=0 tox=L for the
case in which the charge density is given by

A = Ayax Sin(7rradx/ L)
B

where A,,,, is a constant having units of charge-per-lengiti,stands for the units radiards
the position variable, aridis the length of the charge distribution. Sudaharge distribution
has a maximum charge density equall{p, occurring in the middle of the line segment.

287



Chapter 30 The Electric Field Due to a ContinuDistribution of Charge On a Line

Another example would be a case in which chargestsibuted on a line segment of lendgth
extending along thg axis fromy =a toy =a + L with a being a constant and the charge density
given by

In this case the charge on the line is more dernssaiied in the region closer to the origin. (The
smallery is, the bigger the value df the charge-per-length.)

The simplest case is the one in which the chargprsad out uniformly over the line on which
there is charge. Inthe case of a uniform lind@rge distribution, the charge density is the same
everywhere on the line of charge. In such a dhsdjnear charge densityis simply a constant.
Furthermore, in such a simple case, and only ih sugsimple case, the charge dengity just

the total amount of chard@ divided by the length of the line along which that charge is
uniformly distributed. For instance, suppose yoaitald that an amount of char@e= 2.45C is
uniformly distributed along a thin rod of lendth= 0.840 m. Then is given by:

2=9
L
_ 245C
0.840m
A= 2.92E
m

30.3 The Electric Field Due to a Continuous Distribution of Charge
Along a Line

Okay, now we are ready to get down to the nittygriWe are given a continuous distribution
of charge along a straight line segment and askédd the electric field at an empty point in
space in the vicinity of the charge distributiofWe will consider the case in which both the
charge distribution and the empty point in spagenithex-y plane. The values of the
coordinates of the empty point in space are noésearily specified. We can call therandy.

In solving the problem for a single point in spaath unspecified coordinates, §), our final
answer will have the symboksandy in it, and our result will actually give the answer an
infinite set of points on the-y plane.
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The plan for solving such a problem is to find éhectric field, due to an infinitesimal segment
of the charge, at the one empty point in space.déénat for every infinitesimal segment of the
charge, and then add up the results to get theetletzric field.

Now once we chop up the charge distribution (inmurd, for calculational purposes) into
infinitesimal (vanishingly small) pieces, we arargpto wind up with an infinite number of
pieces and hence an infinite sum when we go taipdtie contributions to the electric field at
the one single empty point in space due to allrifieitesimal segments of the linear charge
distribution. That is to say, the result is goiodoe an integral.

An important consideration that we must addressadact that the electric field, due to each
element of charge, at the one empty point in spaceyector. Hence, what we are talking about
is an infinite sum of infinitesimal vectors. Inrgal, the vectors being added are all in different
directions from each other. (Can you think of secao special that the infinite set of
infinitesimal electric field vectors are all in teame direction as each ottferote that we are
considering the general case, not such a specal)c&Ve know better than to simply add the
magnitudes of the vectors, infinite sum or not.ctdes that are not all in the same direction as
each other, add like vectors, not like numberse thing is, however, thecomponents of all the
infinitesimal electric field vectors at the one @gnpoint in space do add like numbers. Likewise
for they components. Thus, if, for each infinitesimal edgrnof the charge distribution, we find,
not just the electric field at the empty point pase, but th& component of that electric field,
then we can add up all tkecomponents of the electric field at the empty poirspace to get

thex component of the electric field, due to the entinarge distribution, at the one empty point
in space. The sum is still an infinite sum, bus time it is an infinite sum of scalars ratherrtha
vectors, and we have the tools for handling ti@itcourse, if we are asked for the total electric
field, we have to repeat the entire procedure tdahggy component of the electric field and then
combine the two components of the electric fielgebthe total.

The easy way to do the last step is to tis§, % notation. That is, once we hakig andE,, we
can simply write:
E=EFT+E,J (30-2)

2 Such a special case occurs when one is asked to fietethigc field at points on the same line as the charge
distribution, at points outside the charge distribution.
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Example

Find the electric field valid for any point on thesitivex axis due a 36 cm long line of charge,
lying on they axis and centered on the origin, for which thergbalensity is given by

)= o.oo1zo% V2 (30-3)

As usual, we’ll start our solution with a diagram:

y axis

» X axis

A= 0.00120% y?
~0.180 m

Figure 2

Note that we use (and strongly recommend that ye) primed quantitiex'(y') to specify a
point on the charge distribution and unprimed qtiast(x, y) to specify the empty point in space
at which we wish to know the electric field. Thirsthe diagram, the infinitesimal segment of

the charge distribution is at (¢) and pointP, the point at which we are finding the electric
field, is at & 0). Also, our expression for the linear chargestgr(see Equation 30-3) becomes:

A= o.omzo% N (30-4)

The plan here is to use Coulomb’s Law for the Eie¢tield to get the magnitude of the
infinitesimal electric field vectodE at pointP due to the infinitesimal amount of chamggin
the infinitesimal segment of lengtly’.

_ kdqg

- (30-5)
r

dE
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The amount of charggqg in the infinitesimal segmemly’ of the linear charge distribution is
given by
dg=A dy’ (30-6)

Furthermore, looking at the diagram above (seerEig) we can use the Pythagorean theorem
to express the distancehat pointP is from the infinitesimal amount of chardg under

consideration as:
r=yx’+y? (30-7)

Substituting these two expressions into our eqndtodE we obtain

dE = % (30-8)
X2 +y

Recall that our plan is to finé, thenE, and then put them together usiigs E, 1 + E,J. So
for now, let’'s get an expression f&y.

dE
6

» X axis

A 4

dE,
dE

v
y axis

Figure 3

Based on the vector component diagram in Figure Bave
dE, = dEcosf (30-9)

The @ appearing in Figure 3 is the safehat appears in Figure 2. Based on the plane
geometry evident in Figure 2 we have:

=2 30¢10)

Substituting this expression for @ss well as the expression we deriveddrabove (see
Equation 30-8) we obtain
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_ kA xdy
(¢ +y2)*

Also, let’'s go ahead and replagevith the expression fot in terms ofy’ (which was given as
A=0. 00120£y in Equation 30-4).

(30-11)

ky”*xdy
30-12
X +y’)% ( :

Now we have an expression i, that includes only one quantity, namglythat depends on
which bit of the charge distribution is under caolesation. Furthermore, although in the diagram
(Figure 2) it appears that we picked out a pariculfinitesimal line segmemly’, in fact, the

value ofy’ needed to establish its position is not specifi€dat is, we have an equation @,

that is good for any infinitesimal segmelyt of the given linear charge distribution To id@nti

a particulady’ we just have to specify the valueydf Thus to sum up all the’'s we just have

to add, to a running total, tli, for each of the possible valuesybf Thus we need to integrate
the expression fadE, for all the values of' from —0.180m to +0.180m.

[ dE, = +0,1me (o 00120— ] (k ‘/: ; d;/ - (30-13)

—0.180m

dE, = (o 00120 ](

On the left we have the infinite sum of all the gdiutions to the electric field due to all the
infinitesimal elements of the line of charge. W@ need any special mathematics techniques
to evaluate that. The sum of all the parts isthele. That is, on the left, we hakg

The right side, we can evaluate. First, let'sdaciut the constants:

+0.180m 2
= (0.00120%] kx| VY
m -0.180m (X2 + y'z)/2

The integral is given on your formula sheet.

(000120 ¢ ]kxlﬁﬂn(wﬁ)]

+0.180m

—0.180m

= ( 00120£)k +.180m + In(+ .180m + \/xz +(+ .18Om)2) -
_\/x2 + (+.180m)?

| %2 +(~.180m)*

~A80m (= 180m + " + (=.180m)) }
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m

+(.1 +.1
E, = (_00120%) K X :360m +In \/X (.180m)* +.180m
VX2 +(180m)2  y/x?+(.180m)? -.180m

Substituting the value of the Coulomb constafibm the formula sheet we obtain

’ +(.1 +.1
E, (00120£)8 99x10° NI]n X .360m +In Jx (.180m)* 80m
¢ +(.180m)?  /x? +(.180m)? -.180m

Finally we have

£ =1.08x10" N N 360m - 3¢ +(.180m)? +.180m
\/x +(.180m)>  4/x? +(.180m)? -.180m

} (30-14)

It is interesting to note that while the positicariablex (which specifies the location of the
empty point in space at which the electric fieltbésng calculated) is a constant for purposes of
integration (the location of poift does not change as we include the contributigheeelectric
field at pointP of each of the infinitesimal segments making wpdharge distribution), an
actual valuex was never specified. Thus our final resultBQis a function of the position
variablex.

Getting they-component of the electric field can be done witbtdess work if we take

advantage of the symmetry of the charge distriloutvgh respect to the axis. Recall that the
charge densityl, for the case at hand, is given by equation 30-4:

A= 0.00120% Y2

Becausel is proportional tg/?, the value ofl is the same at the negative of a specifiecalue
as it is at the/ value itself. More specifically, the amount obepe in each of the two
infinitesimal elementgly’ of the charge distribution depicted in Figure 4:
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y axis

» X axis

'l

Figure 4

is one and the same value because one elemeantsartie distance below thexis as the other
is above it. This position circumstance also makedlistance that each element is from point
P the same as that of the other, and, it makessbhengles (each of which is label@ah the
diagram) have one and the same value. Thus thdEgdave one and the same magnitude.
As a result of the latter two facts (same anglmesenagnitude odE), they components of the
two dE’s cancel each other out. (One is in tlyedirection and the other in theg direction.

They are “equal and opposite.”) In fact, for eaold every charge distribution elemegt that

is above thex axis and is thus creating a downward contributeothey component of the
electric field at poinP, there is an elemeny’ that is the same distanbelowthex axis that is
creating anupwardcontribution to they component of the electric field at polt canceling the
y component of the former. Thus the net sum ahallelectric fields components (since they
cancel pair-wise) is zero. That is to say thattdubde symmetry of the charge distribution with
respect to the axis,E, = 0. Thus,

E=EA.

Using the expression fdt, we found above (see Equation 30-14) we have,dofinal answer:

E ) +(.180m)° +.
E=108x10 N x| 360m X +(180m)" +.180m | .

Cln | /x®+(.180m)2  4/x?+(.180m)* —.180m
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31 Gauss’s Law

Conceptually speaking, Gauss’s Law statestttehumber of electric field lines poking outward
through an imaginary closed surface is proportiot@athe charge enclosed by the surface

A closed surface is one that divides the univep@to two parts: inside the surface, and,
outside the surface. An example would be a soapledor which the soap film itself is of
negligible thickness. I'm talking about a spheabisoap bubble floating in air. Imagine one in
the shape of a tin can, a jar with its lid on, doa. These would also be closed surfaces. Inthe
context of Gauss’s law, an imaginary closed surfacdten referred to as@aussian surface

In conceptual terms, if you use Gauss’s Law tordatee how much charge is in some
imaginary closed surface by counting the numbexlextric field lines poking outward through
the surface, you have to consider inward-pokingtagefield lines asiegativeoutward-poking
field lines. Also, if a given electric field lingokes through the surface at more than one
location, you have to count each and every penmetraf the surface as another field line poking
through the surface, adding +1 to the tally ifokps outward through the surface, aido the
tally if it pokes inward through the surface.

So for instance, in a situation like:

K

Closed Surface

we have 4 electric field lines poking inward thrbuge surface which, together, count-ds
outward field lines, plus, we have 4 electric fitees pokingoutwardthrough the surface which
together count as +4 outward field lines for altof® outward-poking electric field lines

through the closed surface. By Gauss'’s Law, tlegtima that the net charge inside the Gaussian
surface izera
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The following diagram might make our conceptualesteent of Gauss’s Law seem like plain old
common sense to you:

There are eight lines poking outward through thassman surface (and none poking inward
through it) meaning there must (according to Gauisaiv) be a net positive charge inside the
closed surface. Indeed, from your understandiagetectric field lines begin either at positive
charges or infinity and end, either at negativa@bs or infinity, you could probably deduce our
conceptual form of Gauss’s Law. If the net nundfezlectric field lines poking out through a
closed surface is greater than zero, then you hay& more linebeginninginside the surface
than you havendinginside the surface, and, since field lines begpoaitive charge, that must
mean that there is more positive charge insidstiiace than there is negative charge.

Our conceptual idea of the net number of electeid fines poking outward through a Gaussian
surface corresponds to the net outwalettric flux@. through the surface.

To write an expression for the infinitesimal amoahoutward fluxd@_ through an infinitesimal

area elemerdA, we first define an area element veatidr whose magnitude is, of course, just
the areaA of the element; and; whose direction is perpendido the area element, and,
outward (Recall that a closed surface separates thergavnto two parts, an inside part and an
outside part. Thus, at any point on the surfdea, is to say at the location of any infinitesimal
area element on the surface, the direapiotward away from the inside part, is unambiguous.)

‘cﬁ:

I

outside

inside

In terms of that area element, and, the elecild f£ at the location of the area element, we can
write the infinitesimal amount of electric fld@_ through the area element as:
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do, =EQ@A

E dA

N\

Recall that the dot produEtI]ﬁ( can be expressed &dAcosf. For a giverkE and a given
amount of area, this yields a maximum value forddse od= 0° (whenE is parallel todA
meaning thaE is perpendicular to the surface); zero wigen9C® (whenE is perpendicular to

dA meaning tha€ is parallel to the surface); and; a negative valbend is greater than 90

(with 180 being the greatest value ®possible, the angle at whidh is again perpendicular to
the surface, but, in this caseto the surface.)

Now, the flux is the quantity that we can thinkcohceptually as the number of field lines. So,
in terms of the flux, Gauss’s Law states that #seautward flux through a closed surface is
proportional to the amount of charge enclosed by $brface. Indeed, the constant of

proportionality has been established to—j@ewhereeo (epsilon zero) is the universal constant

known as the electric permitivity of free spac¥o\f’'ve seere, before. At the time, we stated

that the Coulomb constakis often expressed afl— . Indeed, the identiti = % appears
3

TE o

on your formula sheet.) In equation form, Gauks\w reads:

§E Dﬂ’ - QENCLOSED (31_1)

€o

The circle on the integral sign, combined with et that the infinitesimal in the integrand is an
area element, means that the integral is oversedlsurface. The quantity on the left is the sum

of the producte [MA for each and every area elemdAtmaking up the closed surface. It is the
total outward electric flux through the surface.

®, = $E A (31-2)

Using this definition in Gauss’s Law allows us tater Gauss’s Law in the form:

CDE = QENCLOSED (31_3)

€o
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How You Will be Using Gauss’s Law

Gauss’s Law is an integral equation. Such an rategjuation can also be expressed as a
differential equation. We won'’t be using the diffietial form, but, because of its existence, the
Gauss's Law equation 9
E A — “CENCLOSED
$EMA = —

(o]

is referred to as thategral formof Gauss’s Law. The integral form of Gauss’s Laam be used
for several different purposes. In the coursenfoich this book is written, you will be using it in
a limited manner consistent with the mathematicatgguisites and co-requisites for the course.
Here’s how:

Q

—EN;LOSED makes it easy to calculate the net outward flux

(o]

1) Gauss’s Law in the formp_ =

Just divide the

2

N [n?

through a closed surface that encloses a known ainedehargeQ

ENCLOSED *

amount of charg® by €, (given on your formula sheet as = 885x10™* ) and

ENCLOSED

you have the flux through the closed surface.

2) Given the electric field at all points on a édssurface, one can use the integral form of
Gauss’s Law to calculate the charge inside theedissirface. This can be used as a check for
a case in which the electric field due to a givestrdbution of charge has been calculated by a
means other than Gauss’s Law. You will only beeekgd to do this in cases in which one
can treat the closed surface as being made ofromem finite fot vanishingly small)
surface pieces on which the electric field is cansover the entire surface piece so that the
flux can be calculated algebraically& or EAcosd. After doing so for each of the finite
surface pieces making up the closed surface, yduhsdresults and you have the flux

@, = $E @A
through the surface. To get the charge enclogéldebsurface, you just plug that into
o, = @ and solve foQ,, . osn- |f YOU are using the method as a check, you jus

(o]

compare your result with the amount of charge kntwioe enclosed by the surface.

3) In cases involving a symmetric charge distidoytGauss’s Law can be used to calculate the
electric field due to the charge distribution. slrch cases, the right choice of the Gaussian
surface makeE a constant at all points on each of several sanféeces, and in some cases,
zero on other surface pieces. In such casesuhedin be expressed B8 and one can

Q

—N;LOSED for E and logic to get the direction &. The remainder of this

(o]

simply solveEA=

chapter and all of the next will be used to provedamples of the kinds of charge
distributions to which you will be expected to l@eato apply this method.
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Using Gauss’s Law to Calculate the Electric Field in the Case©harge
Distribution Having Spherical Symmetry

A spherically-symmetric charge distribution hasellsefined center. Furthermore, if you
rotate a spherically-symmetric charge distributimough any angle, about any axis that passes
through the center, you wind up with the exact sahage distribution. A uniform ball of
charge is an example of a spherically-symmetricgehdistribution. Before we consider that
one, however, let’s take up the case of the simplerge distribution of them ad, point

charge

We use the symmetry of the charge distributionrtd ébut as much as we can about the electric
field and then we use Gauss’s Law to do the rdstw, when we rotate the charge distribution,
we rotate the electric field with it. And, if atadion of the charge distribution leaves you with
the same exact charge distribution, then, it misst laave you with the same electric field.

We first prove that the electric field due to amaharge can have no tangential component by
assuming that it does have a tangential compomehslaowing that this leads to a contradiction.

Here’s our point charge ¢, and an assumed tangeatigponent of the electric field at a poiht
which, from our perspective is to the right of fflant charge.

L
q

(Note that a radial direction is any direction avitlaym the point charge, and, a tangential
direction is perpendicular to the radial directjon.
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Now let’s decide on a rotation axis for testing Wiee the electric field is symmetric with respect
to rotation. Almost any will do. | choose onettpasses through both the point charge, and,
point P.

AXis of Rotation P

Now, if | rotate the charge, and its associatedtetefield, through an angle of 18@bout that
axis, | get:

AXis of Rotation P

This is different from the electric field that weaded with. It is downward instead of upward.
Hence the electric field cannot have the tangeatialponent depicted at poiat Note that the
argument does not depend on how far pBirg from the point charge, indeed | never specified
the distance. So, no point to the right of ounpoharge can have an upward component to its

electric field. In fact, if | assume the elecfiiield at any poinP’ in space other than the point at
which the charge is, to have a tangential componlean, | can adopt a viewpoint from which

point P appears to be to the right of the charge, andeldwtric field appears to be upward.
From that viewpoint, | can make the same rotatigu@ent presented above to prove that the
tangential component cannot exist. Thus, basdatespherical symmetry of the charge
distribution, the electric field due to a point gy has to be strictly radial. Thus, at each paint
space, the electric field must be either direalydrd the point charge or directly away from it.
Furthermore, again from symmetry, if the electiddf is directly away from the point charge at
one point in space, then it has to be directly afsay the point charge at every point in space.
Likewise for the case in which it is directly towlghe point charge at one point in space. If so,
the electric field has to be directly toward thenpaharge at every point in space.

We've boiled it down to a 50/50 choice. Let’s assuthat the electric field is directagvay

from the point charge at every point in space as&l@Gauss’s Law to calculate the magnitude of
the electric field. If the magnitude is posititieen the electric field is indeed directed away
from the point charge. If the magnitude turnstoute negative, then the electric field is actually
directed toward the point charge.
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At this point we need to choose a Gaussian surfaoefurther exploit the symmetry of the
charge distribution, we choose a Gaussian surfétespherical symmetry. More specifically,
we choose a spherical shell, of radiusentered on the point charge.

Gaussian Surface

<__//(a sphere of radiug

At every point on the shell the electric field, fgpradial, has to be perpendicular to the spherical
shell. This means that for every area elementeldweric field is parallel to our outward-

directed area element vectdA . This means that the @A in Gauss’s Law,

E A — QENCLOSED
$EMA = =22

(o]

evaluates t&cdA. So, for the case at hand, Gauss’s Law takekefotm:

§ E dA - QENCLOSED

€o

Furthermore, the magnitude of the electric field tmhave the same value at every point on the
shell. If it were different at a poift on the spherical shell than it is at a péinn the spherical
shell, then we could rotate the charge distribuéibaut an axis through the point charge in such
a manner as to bring the original electric fielgpaint P’ to positionP. But this would represent

a change in the electric field at pofitdue to the rotation, in violation of the facttthapoint
charge has spherical symmetry. Hence, the eldigfitat any poinP’ on the Gaussian surface
must have the same magnitude as the electricdtghdintP, which is what | set out to prove.

The fact thak is a constant, in the integral, means that wefaetor it out of the integral. So,
for the case at hand, Gauss’s Law takes on the form

_Q
E§ dA = EN(€ZIC_)OSED
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Gaussian Surface

é/(a sphere of radiug

We left off with E§dA = Sewoseo
Now $dA, the integral, over the Gaussian safaédA, is just the sum of all the area elements
making up the Gaussian surface. That means tisathi¢ total area of the Gaussian surface. The
Gaussian surface, being a sphere of radihas areamr® So now, Gauss's Law for the case at
hand looks like:
E4n.r2 = QENCLOSED
€

(o]

Okay, we’ve left that right side alone for long egb. We're talking about a point chargand
our Gaussian surface is a sphere centered ondhmtghargey, so, the charge enclosed,

Qererosep IS Obviouslyg. This yields:
2 - 9
Edmre = e
Solving forE gives us:
E = 1 &2
4rte, 1

This is positive when the charges positive, meaning that the electric field isedted outward,
as per our assumption. It is negative whesinegative. So, when the chargis negative, the
electric field is directed inward, toward the credtgarticle. This expression is, of course, just
Coulomb’s Law for the electric field. It may lookore familiar to you if we write it in terms of

in which case our result for the outward elediatd appears

the Coulomb constark =
as: 47Te,

kq
E=r_2

It's clear that, by means of our first example @fuSs’s Law, we have derived something that
you already know, the electric field due to a paimarge.
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32 Gauss’s Law Example

We finished off the last chapter by using Gaussiw lto find the electric field due to a point
charge. It was an example of a charge distribudtanng spherical symmetry. In this chapter
we provide another example involving spherical syatry.

Example 32-1
Find the electric field due to a uniform ball ofache of radiufk and total charg®. Express
the electric field as a function ofthe distance from the center of the ball.

Solution
Again we have a charge distribution for which ation through any angle about any axis

passing through the center of the charge distobutesults in the exact same charge
distribution. Thus, the same symmetry argumeres @3 the case of the point charge apply
here with the result that, the electric field da¢he ball of charge has to be strictly radially
directed, and, the electric field has one and éimeesvalue at every point on any given
spherical shell centered on the center of thedfalharge. Again, we assume the electric
field to be outward-directed. If it turns out te inward-directed, we’ll simply get a negative
value for the magnitude of the outward-directedteie field.

ChargeQ, uniformly E
distributed throughout

a spherical region of —
radiusR.

A
v
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The appropriate Gaussian surface for any sphesiaaiye distribution is a spherical shell
centered on the center of the charge distribution.

ChargeQ, uniformly E
distributed throughout

a spherical region of —
radiusR.

A
v

Gaussian Surface: a
spherical shell of
radiusr.

Okay, let’'s go ahead and apply Gauss’s Law.

ey = Q
§E|]jA = EN;(I)_OSED

Since the electric field is radial, it is, at adlipts, perpendicular to the Gaussian Surface. In
other words, it is parallel to the area elementaredA . This means that the dot product
E@A is equal to the product of the magnitudedA. This yields:

§ E dA - QENCLOSED

€

Again, sincekE has the same value at all points on the Gaussiéace of radius, eachdA in
the infinite sum that the integral on the leftigssmultiplied by the same value Bf Hence,
we can factor th& out of the sum (integral). This yields

EédA = QENCLOSED

€

The integral on the left is just the infinite sufradl the infinitesimal area elements making up
the Gaussian surface, our spherical shell of raditdghe sum of all the area elements is, of
course, the area of the spherical shell. The@frasphere is@r®. So,

E477T2 - QENCLOSED

€

Now the question is, how much charge is encloseaubyGaussian surface of radia
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ChargeQ, uniformly E
distributed throughout

a spherical region of | ——
radiusR.

A
v

Gaussian Surface: a
spherical shell of
radiusr.

There are two ways that we can get the value oflhege enclosed. Let’s try it both ways
and make sure we get one and the same result.

The first way: Because the chargeimsformly distributed throughout the volume, the amount
of charge enclosed is directly proportional toxbkime enclosed. So, the ratio of the
amount of charge enclosed to the total chargejualdo the ratio of the volume encloded

the Gaussian surfade the total volume of the ball of charge:

Qcenvelosen . Volumeof Gaussiarsurface
Q Volumeof theEntireBall of Charge

4 3
Qencrosep — 3" r

Q ir R®

r3

QENCLOSED - E Q

The second way: The other way we can look attd i®cognize that for aniform
distribution of charge, the amount of charge ereddsy the Gaussian surface is just the
volume charge density, that is, the charge-perfaelp, times the volume enclosed.

Qenciosen = © (Volumeof theGaussiarSurface

— 4,3
EncLosep — Q3711
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In this second method, we again take advantageedftt that we are dealing withuaiform
charge distribution. In a uniform charge distribat the charge density is just the total
charge divided by the total volume. Thus:

_ Q
3 Volumeof Ball of Charge
_ Q
\p % HRS

Substituting this in to our expressiO},c oseo = §>4nr2 for the charge enclosed by the
Gaussian surface yields:

Qcenciosen = 2
3

N
A,

r
Qencrosen = EQ

which is indeed the same expression that we arav@udsolving for the charge enclosed the
first way we talked about.

A couple of pages back we used Gauss’s Law toeaatithe relatiorE 477r* = Qencioseo

€

and now we have something to plug in@x . ...,- Doing so yields:

r.3
=3 Q
E4n’r2 = (L

Q

= = __r
477e, R

This is our result for the magnitude of the electield due to a uniform ball of charge at
points inside the ball of charge< R). E is directly proportional to the distance from the
center of the charge distributiok increases with increasing distance because, ttieefea

point is from the center of the charge distributitte more charge there is inside the spherical
shell that is centered on the charge distributiwh @on which the point in question is
situated. How about points for whickz R?
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Ifr>2R,

ChargeQ, =
uniformly
distributed
throughout a
spherical region
of radiusR.

< Gaussian Surface: a

spherical shell of
radiusr.

the analysis is identical to the preceding analypiso and including the point where we
determined that:

E477T2 - QENCLOSED

60
But as long as = R, no matter by how muahexceed®, all the charge in the in the charge
distribution is enclosed by the Gaussian surfédéd.the charge” is jusiQ the total amount of
charge in the uniform ball of charge. So,

2 _ Q
Edmr = e
=19

A7e, 1

1 . .
The constant4— is just the Coulomb constakso we can write our result as:
TI€,

kQ
E=r_2

This result looks just like Coulomb’s Law for a pbcharge. What we’ve proved here is that, at
points outside a spherically-symmetric charge ihigtion, the electric field is the same as that
due to a point charge at the center of the charggbaition.

307



Chapter 33 The Electric Potential due to a CowtirsuCharge Distribution

33 The Electric Potential due to a Continuous Char ge
Distribution

We have definee@lectric potentiaks, electric-potential-energy-per-charge. Padéatiergy was
defined as the capacity, of an object to do wookspssed by the object because of its position in
space. Potential energy is one way of characteyitie effect, or the potential effect of a force.
In the case of electric potential energy, the famcguestion is the electrostatic force (a.k.a. the
Coulomb force)—you know; the repulsive force that fike charges exert on each other, and,
the attractive force that two unlike charges emareach other. The electric potential energy of a
charged particle depends on a characteristic @lf,itsnd a characteristic of the point in space at
which it finds itself. The characteristic of itb& its charge, and, the characteristic of thepoi

in space is what this chapter is about, the eteptential-energy-per-charge, better known as
the electric potential. If we can establish thecelc-potential-energy-per-charge for each point
in space in the vicinity of some source chargis, é#asy to determine what the potential energy
of a victim charge would be at any such point iacg To do so, we just have to multiply the
charge of the victim by the potential-energy-peardge (the electric potential) applicable to the
point in space at which the victim is located.

In the next two chapters, we exploit the fact thgbu know the electric potential throughout a
region in space, you can use that knowledge tamete the electric field in that region of
space.

Our purpose othis chapter, is to help you develop your ability téedmine the electric

potential, as a function of position, in the vitynof a charge distribution—in patrticular, in the
vicinity of a continuous charge distribution. (Rikthat you can think of a continuous charge
distribution as some charge that is smeared outspace, whereas a discrete charge distribution
is a set of charged particles, with some spaced®twearest neighbors.)

It's important for you to be able to contrast thectric potential with the electric fieldThe

electric potential is a scalavhereas thelectric field is a vector The electric potential is
potential-energyper-charge-of-the-would-be-victim whereas theteiedield is aforce-per-
chargeof-the-would-be-victim. Hey, that makes this ctepgeasy compared to the one in which
we worked on calculating the electric field dueatoontinuous charge distribution. It is, in
general, easier to calculate a scalar than it cekoulate a vector.

Let’s kick things off by doing a review problem wmiving a discrete distribution of charge.
Please solve the following example problem and dietk your work against my solution
which follows the problem statement.

Example33-1

Find the electric potential on the x-y plane, due pair of charges, one of charggat (0,d/2)
and the other of chargeat (0, -d/2).
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Solution

We define a poinP to be at some unspecified positioyy.

N Nl

i— +q @
:[_ -q (T)

We call the distance from the positive charge totd®, r,, and, we call the distance from the
negative charge to poift, r_. The electric potential due to a single pointrghas given by

= m. Also, the contributions to the electric fieldaate point in space due to more than one
r

point charge simply add like numbers. So, we have:

V=V, +V,

v = K4, k(=0)
r, r_
_ka_kq

r r_

+
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But, from the diagram:

P
y (Xy)’ N
rj/,/ i y_%
! y
G @ R
2
X
_q (._P
we can determine that:
d 2
r, =[x+ (y——)
2
and from the diagram:
y (X’%’TP N
r E Y
— : d
Y+
+q @ Y72
d i i}
2 5
v _q (_P, ___________________________
X

we can see that:
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Plugging both of these results into our exprest?—?

+

yields:

veo_ kg kg

b g

. k o
That’'s enough review. Please keep N/iath formula in mind as we move on to the new

stuff. Also keep in mind the fact that the vari@asitributions to the electrjmotentialat an
empty point in space simply add (like numbers/geaiather than like vectors).

The “new stuff” is the electric potential due teantinuous distribution of charge along a line
segment. What we are dealing with is some linenseg of charge. It can be anywhere, in any
orientation, but for concreteness, let’s considiemeasegment of charge on thaxis, say from
somex = atox=bwherea<h. Furthermore, let's assume the linear chargeiyeftise charge-
per-length) on the line segment to be some funct{@i). The idea is to treat the charge
distribution as an infinite set of point chargesswheach point charge may have a different
charge valuelg depending on where (at what valuex®ft is along the line segment.

P
y
2 xy
/’r
X’
%| v
] .1

dx’

dqis the amount of charge in this
infinitesimal segmentx’.

A particular infinitesimal segment of the line dfacge, a lengtlx of the line segment, will
make a contribution
av = @
r
to the electric field at poirRR.
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The amount of chargelg, in the infinitesimal segmetx of the line of charge is just the charge-
per-lengthA(X) (the linear charge density) times the lerdphof the segment. That is to say

thatdg = A(X)dx . Substituting this intalV = @ yields:
_kA(X) dX'
r

dv

Applying the Pythagorean theorem to the trianglthendiagram:

P
y‘ o
. (X’y)
dqis the amount of charge in this O
infinitesimal line segmerdXx. r
\ Y
a |d)1(,', b
—>| < X
X' | X=X’
|

tells us that can be written as = /(x— X')* + y* . Substituting this into our expression &
yields:

qV = kA(X")dx
\/(X_ XI)Z + y2
Integrating both sides yields:
b ]
IdV=I KA(X') dx
a\/(X_X’)Z +y2

A(X') ax’
Xx—X)?+y?

VszjJ(

This is the electric potential at poiatdue to the charged line segment on the x axish B of
charge on the line segment is specified by itstipmsvariablex’. Thus, in summing the
contributions to the electric potential due to ebitlof chargex’ is our variable of integration.
While its position coordinates have not been sptibut rather, they have been designated
andy, pointP is a fixed point in space. Hence, in summing luthe contributions to the
electric potential at poir®; x andy are to be considered constants. After the integone,
however, because we never specified valuex &dy, the resulting expression f¥rcan be
considered to be a functionxandy.
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34 Calculating the Electric Field from the Electr  ic Potential

The plan here is to develop a relation betweerkneric field and the corresponding electric
potential that allows you to calculate the eledlietd from the electric potential.

The electric field is the force-per-charge assediatith empty points in space that have a force-
per-charge because they are in the vicinity ofumc@charge or some source charges. The
electric potential is the potential-energy-per-gleaassociated with the same empty points in
space. Since the electric field is the force-gerge, and the electric potential is the potential-
energy-per charge, the relation between the etdetfd and its potential is essentially a special
case of the relation between any force and itscestsnl potential energy. So, I'm going to start
by developing the more general relation betwear@efand its potential energy, and then move
on to the special case in which the force is thetat field times the charge of the victim and the
potential energy is the electric potential times ¢charge of the victim.

The idea behind potential energy was that it repmesl an easy way of getting the work done by
a force on a particle that moves from point A tmp& under the influence of the force. By
definition, the work done is the force along théhpganes the length of the path. If the force
along the path varies along the path, then wettakérce along the path at a particular point on
the path, times the length of an infinitesimal seghof the path at that point, and repeat, for
every infinitesimal segment of the path, addingrésults as we go along. The final sum is the
work. The potential energy idea represented thigm@sient of a value of potential energy to
every point in space so that, rather than do theiptegral just discussed, we simply subtract
the value of the potential energy at point A frdra value of the potential energy at point B.

This gives us the change in the potential energgleanced by the particle in moving from point
A to point B. Then, the work done is the negati¥¢he change in potential energy. For this to
be the case, the assignment of values of potemehy values to points in space must be done
just right. For things to work out on a macroscdpvel, we must ensure that they are correct at
an infinitesimal level. We can do this by setting:

Work as Change in Potential Energy = Work as FoMeng-Path times Path Length

-dU =F [ds
where:
dU is an infinitesimal change in potential energy,
F isa force,

ds is the infinitesimal displacement-along-the-patictor.

In Cartesian coordinate unit vector notatids, can be expressed ds=dxi + dyj +dZk, and,
F can be expressed &= F 1 + FJ+ F, k. Substituting these two expressions into our

expression-duU = F [@s, we obtain:

-dU = (F, &+ F,§ + F,%) Qdxt + dyg + dzk)

313



Chapter 34 Calculating the Electric Field frora tlectric Potential

—-dU = F,dx+F,dy+F,dz

Now check this out. If we holand z constant (in other words, if we considiganddzto be
zero) then:

—-dU = F dx (wheny andz are held constant)

Dividing both sides bylx and switching sides yields:

F = —Cii—u (wheny andz are held constant)
X

X

That is, if you have the potential energy as ationmfx, y, andz and; you take the negative of
the derivative with respect towhile holdingy andz constant, you get the x component of the
force that is characterized by the potential enéuggtion. Taking the derivative &f with

respect tx while holding the other variables constant isezhtiaking the partial derivative of
with respect tocand written

u
1)

Alternatively, one writes

u
0Xx vz

to be read, “the partial derivative dfwith respect to holdingy andz constant.” This latter
method makes it more obvious to the reader just 8Haeing held constant. Rewriting our
expression foF, with the partial derivative notation, we have:

Fx = —a_U
o0x

Returning to our expressiondU = F,dx+ F dy+ F,dz, if we holdx andz constant we get:
Fy = —a_U
oy

and, if we holdk andy constant we get,
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Fz = —a_U
0z

Substituting these last three results into theefmexctor expressed in unit vector notation:

yields

which can be written:

T+ 5+
ox oy 0z

Okay, now, this business of:
taking the partial derivative &f with respect tox and multiplying the result by the unit
vectorf and then,
taking the partial derivative &f with respect ty and multiplying the result by the unit
vectorj and then,
taking the partial derivative &f with respect t@ and multiplying the result by the unit
vectork, and then,
adding all three partial-derivative-times-unit-vactjuantities up,
is called “taking the gradient &f “ and is written JU. “Taking the gradient” is something that
you do to ascalarfunction, but, the result is\eector Interms of our gradient notation, we can
write our expression for the force as,

E

-0u (34-1)

Check this out for the gravitational potential nthe surface of the earth. Define a Cartesian
coordinate system with, for instance, the origisesd level, and, with the x-y plane being
horizontal and the +z direction being upward. Thka potential energy of a particle of mass
IS given as:

U=nmgz

Now, suppose you knew this to be the potentialybutdidn’t know the force. You can
calculate the force usindr = -0U , which, as you know, can be written:

= ou, oU_ odUa
F=- T+ J+ k
X oy 0z
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Substitutingl = mgz in for U we have

= ) 0 0 ~
F=-| —(mg2)T +—(g2)§ + —(my2)k
(ax(mg )1 ay(mg )3 az(mg ) }
Now remember, when we take the partial derivatiite vespect tx we are supposed to hotd
andz constant. (There is no) But, if we holdz constant, then the whole thing)gz) is

constant. And, the derivative of a constant, wés$pect tog, is 0. In other wordsiX (mg2) =0

0

Likewise, %(mgz) =0. In fact, the only non-zero partial derivativeomr expression for the

force is%(rryz) =mg. So:
F=-(ot+03 +mgk)

In other words:
F= —mg’l?

That is to say that, based on the gravitationa¢ma|U = mgz, the gravitational force is in the

~% direction (downward), and, is of magnitude. Of course, you knew this in advance, the

gravitational force in question is just the weifghice. The example was just meant to
familiarize you with the gradient operator and thkation between force and potential energy.

Okay, as important as it is that you realize thatane talking about a general relationship
between force and potential energy, it is now tismearrow the discussion to the case of the
electric force and the electric potential energyl,drom there, to derive a relation between the
electric field and electric potential (which is @léc-potential-energy-per-charge).

Starting with F = -0U written out the long way:

= ou, odU_, o0Ua
F=- T+ J+ k
ox oy 0z

we apply it to the case of a particle with chamge an electric fieldE (caused to exist in the
region of space in question by some unspecifiedcgocharge or distribution of source charge).

The electric field exerts a forde= gE on the particle, and, the particle has electriepial
energyU =qV whereV is the electric potential at the point in space/laich the charged particle

ou oUa) .
T+ k | yields:
ay > } Y

is located. Plugging these info= —(%U T+
X
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G =—[2aV) 4, 0@V) o a@V) ¢
ox oy 0z

Theq inside each of the partial derivatives is a cartsta we can factor it out of each partial
derivative.

E=-{ g1+ a—V"+qa—v'l§
g qax qayJ 0z

Then, sincey appears in every term, we can factor it out ofsiine:

E—_ a_v'|\+a_VA+a_VT‘
g g X ayJ 0z

Dividing both sides by the charge of the victimlggthe desired relation between the electric
field and the electric potential:

—t+—7+—k

E-_ ov, oV, o0Va
ox oy 0z

We see that the electric fiel is just the gradient of the electric potential This result can be
expressed more concisely by means of the gradparator as:

E=-0V (34-2)
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35 Examples of Calculating the Electric Field from the
Electric Potential

Example 35-1 In Chapter 33 Example 33-1, we found that the gepbtential due to a pair
of particles, one of chargeg-at (0,d/2) and the other of chargej-at (0, -d/2), is given by:

U kg

Pl e

Such a pair of charges is called an electric dip&lad the electric field of the dipole, valid for
any point on the x axis.

Solution We can use a symmetry argument and our concedalstanding of the electric
field due to a point charge to deduce that themponent of the electric field has to be zero,
and, the y component has to be negative. Bus, let¢ the gradient method to do that, and, to
get an expression for the y component of the etefitdid. | do argue, however that, from our
conceptual understanding of the electric field thua point charge, neither particle’s electric
field has a z component in the x-y plane, so weustéied in neglecting the z component
altogether. As such our gradient operator expwadsir the electric field

E=-0V
becomes

Let's work on the%—v part:
X

V_a| k. ka
o o x2+( —dT X2 + +d 2
y 5 y 5
_ _1 1
oV 0 d)| 2 2|2
&—kq& X2+(y—5):| - |:X2+(y+—):|
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3 3

LAZS x2+( +ﬂ)2 _E— x> + _dYy e
ox . Y 2 Y 2

ov kgx kgx

"] ey

We were asked to find the electric field on thecis aso, we evaluate this expressioly atO0:

oV _ kgx : kgx
ox 2o a5
{x2+(0+d) } {x2+(0—d) }
2 2
a_v =0
0X | =g
To continue with our determination &= - a_v,l\ +a—vj‘ , We next solve fo;ai :
0x oy oy
v_o| k. k
o o 2+ dy 2+l y+ 2
X -— X -
Y 2 Y 2

o _ . all, ( d)z 2 , ( d)z 2

—=kg—| X +|y-—= - [ X+ y+—=

oy oy 2 2
AN B XZ+( _9)2 '22( _ﬂ]__z Xz{ LAY 7oy, 8
ay 977 =3 =3 2 Y5 Y5

3 3

R RENCIRENE
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LR ar+3) - aly-3) §
o) bl

Again, we were asked to find the electric fieldtbe x axis, so, we evaluate this expression at

y=0:
d d
kgl 0+= kq| 0-—=
ov| _ q(o 2] _ q( 2]
ay|y=0 2 g 2 g
{x2+(0+d] } {x2+(0—d] }
2 2
| _  kaqd
- 3
ay|y=0 X2+g2 2
4
Plugginga—V =0 and ov| = kad - intoE=- a_vﬂa_vj yields:
0X |- ay|y=0 FERE o0x oy
4
E-_|ops kqd §‘T
x2+92 i
4
_ kqad .
E=- g )

As expectedE is in the —y direction. Note that to find theatti field on the x axis, you have
to take the derivatives first, atidenevaluate ay = 0.

320



Chapter 35 Examples of Calculating the Electr&ld=irom the Electric Potential

Example 35-2

A line of charge extends along the x axis frema to x =b. On that line segment, the linear
charge density is a constant. Find the electric potential asretion of positionX andy) due
to that charge distribution on the x-y plane, dmeht from the electric potential, determine the
electric field on the x axis.

Solution In Chapter 33 we derived an expression for jushs case, except that in the
Chapter 33 case, the charge density was an ungaeftihction ofx’. Here’s the result we found
for the potential:

In the example at hand, we are told that the lickarge density (appearing 4x’) in the
integral just above) is actually a constant. RaptpA(x") with the constand and factoring it
out of the integral yields:

dx’
XI)Z + y2

V=k/1_a[\/(x_

To carry out the integration, we use the variablesstution:
u=x-x’
du=—-dx = dx =-du

Lower Integration Limit: When’ =a, u=x-a
Upper Integration Limit: Whenx' =b, u=x-b
Making these substitutions, we obtain:
x=b _ du

V=Kkl| —

o /u2+ yz

Using the minus sign to interchange the limitsmégration, we have:

X=a du

2 /u2+y2

V= k)lln(u+,/u2 + y2) i
x=b

V=k/1{ |n[x—a+\/m] "”[X_b"’m] }

V =kA
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Okay, that’s the potential. Now we have to taledhadient of it and evaluate the resulya0
to get the electric field on the x axis. We nedirid

E=-0V

which, in the absence of amglependence, can be written as:

E

v . oV
__I+_J
(6X oy }

We start by findingg—\)/( :

v _ 9 (m{|n[x—a+m] - in[x=b+ix=by+ y?] })

R‘ax

%=kﬂ{%ln[x—a+( x—a)2+y2);} i %'n[x'b““((x‘b)“yz);} }

1+;((x—a)2 +y2)_% 2(x-a) 1+;((x—b)2 +y2)_% 2(x=h)

LY _
ox x—a+((x—a)2+y2)% x—b+((x—b)2+y2)%

v _ ((x—a)2+y2)§+(x—a) ((x—b)2+y2)%+(x—b)

% L x-alxmar e ) e (-t e ) eb(-p+y)e (-0 )

Evaluating this at y = 0 yields:

G_V :kA( 1 —i)
0X| o X—a X-b

Now, let’s work on gettingg—\; :
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2 =2 (1 il x-asox=ar+y] -nx-v+ Joxre ] 1)

?3_\3//= k)l{ %In[x_a+((x_a)2 + yz);] - %(In[x—b+((x—b)2 + yz);] }

1 1
v_ ;((x—a)2+y2) 22y ;((x—b)2+y2) 2 2y
ay

1

x—a+((x—a)2 + y2)E x—b+((x—b)2 + yz)%

Evaluating this ay = 0 yields:

M=o
Y|,
.oV 1 1 ov . = ov ov .
Pl — = K -—— d — =0 into E=-| —%+—3 ds:
ugging —~ B (x—a x—b] an oy into ( |+a J] yields
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36 Gauss’s Law for the Magnetic Field, and, Ampere s Law

Gauss’s Law for the Magnetic Field

Remember Gauss’s Law for thkectricfield? It's the one that, in conceptual termajes that
the number oélectricfield lines poking outward through a closed sugfeccproportional to the
amount ofelectriccharge inside the closed surface. In equatiom,fare wrote it as:

§E|]ﬂ’ - QENCLOSED

€

We called the quantity on the left the electrixfl®_ = $E BA

Well, there is a Gauss’s Law for theagneticfield as well. In one sense, it is quite similar
because it involves a quantity called the magrfkebcwhich is expressed mathematically as

P, = 9B @A and represents the nunlb@nagnetic field lines poking outward through a
closed surface. The big difference stems fronfabethat there is no such thing as “magnetic
charge.” In other words, there is no such thingasgnetic monopoleln Gauss’s Law for the
electricfield we have electric charge (divided &y on the right. In Gauss’s Law for the

magnetic field, we hav@ on the right:
$BMA =0 (36-1)

As far as calculating the magnetic field, this dgqurais of limited usefulness. But, in
conjunction with Ampere’s Law in integral form (skeelow), it can come in handy for
calculating the magnetic field in cases involvinigteof symmetry. Also, it can be used as a
check for cases in which the magnetic field haslutermined by some other means.

Ampere’s Law

We've talked about Ampere’s Law quite a bit alreadhys the one that sayscurrent causes a
magnetic field Note that this one says nothing about anythivanging. It's just a cause and
effect relation. The integral form of Ampere’s Laboth broad and specific. It reads:

§ B mﬁ =H ITHROUGH (36'2)
where:
o the circle on the integral sign, amt, the differential length, together, tell you that
the integral (the infinite sum) is around an imagyclosedloop.
B is the magnetic field,
di is an infinitesimal path element of the closedploo
M, is a universal constant called the magnetic pebitigeof free space, and
I Is the current passing through the region enclbyetie loop.

THROUGH
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What Ampere’s Law in integral form says is thatyals sum up the magnetic-field-along-a-path-
segment times the length of the path segment fftheapath segments making up an imaginary
closed loop, you get the current through the regiariosed by the loop, times a universal
constant. The integr@B @i  on whatevesetbpath upon which it is carried out, is callesl th
circulation of the magnetic field on that closed path. Sotlar way of stating the integral form
of Ampere’s Law is to say that the circulation lo¢ tmagnetic field on any closed path is directly
proportional to the current through the region esetl by the path. Here’s the picture:

An imaginary loop. An infinitesimal element of the

imaginary loop.
\ /

y
\ 4

]

A wire with some current in it (in
other words, with some charge
flowing through it.)

In the picture, | show everything except for thegmetic field. The idea is that, for each
infinitesimal segmerﬂi of the imaginary loop, you dot the magnetic fi@d at the position of
the segment, intdl. Add up all such dot products. The total is égoig/, times the current
through the loop.

So, what's it good for? Ampere’s Law in integratrh is of limited use to us. It can be used as
a great check for a case in which one has calautatemagnetic field due to some set of
current-carrying conductors some other way (e.gguse Biot-Savart Law, to be introduced in
the next chapter). Also, in cases involving a hdglgree of symmetry, we can use it to calculate
the magnetic field due to some current.

For example, we can use Ampere’s Law to get a madtieal expression for the magnitude of
the magnetic field due to an infinitely-long stratigvire. 1'm going to incorporate our
understanding that, for a segment of wire with igesut in it, the current creates a magnetic field
which forms loops about the wire in accord with tigéat-hand rule for something curly
something straight. In other, words, we alreadgvkihat for a long straight wire carrying
current directly away from you, the magnetic fiekdends in loops about the wire, which, from
your vantage point, are clockwise.
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From symmetry, we can argue that the magnitudaeohtagnetic field is the same for a given
point as it is at any other point that is #zne distancéom the wire as that given point. In
implementing Ampere’s Law, it is incumbent uporteghoose an imaginary loop, called an
Amperian Loop in this context, that allows us to ggme useful information from Ampere’s

Law. In this case, a circle whose plane is perjpetal to the straight wire and whose center lies
on the straight wire is a smart choice.

For the imaginary loop
(a.k.a. the Amperian
loop), we choose a circle
of radiusr.

At this point | want to share with you some direaal information about the integral form of

Ampere’s Law. Regarding thed : eachd! vector can, from a given point of view, be
characterized as representing either a clockwige abong the path or a counterclockwise step
along the path. And, if one is clockwise, theytalle to be clockwise. If one is
counterclockwise, they all have to be counterclaskw Thus, in carrying out the integral
around the closed loop, the traversal of the lsogither clockwise or counterclockwise from a
specified viewpoint. Now, here’s the critical ditien information: Current that passes through
the loop in that direction which relates to thesge(clockwise or counterclockwise) of loop
traversal in accord with the right-hand rule fomsbhing curly something straight (with the loop
being the something curly and the current beingstireething straight) is considered positive.
So, for the case at hand, if | choose a clockvase traversal, as viewed from the vantage point
that makes things look like:
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The imaginary loop (a.k.a.
the Amperian loop)

then, the currentis considered positive. If you curl the fingersund the loop in the clockwise
direction, your thumb points away from you. Thieans that current, through the loop, that is
directed away from you, is positive. That is jun kind of current we have in the case at hand.
So, when we substitute théor the case at hand into the generic equationp@eis Law),

§ B Ijj! = /'10 ITHF{OUGH

for the current it goes in with a “+” sign.

THROUGH
SBL = 4|

Now, with the loop | chose, eveEi is exactly parallel to the magnetic fieRl at the location

of the di, so, Bl is simplyBdI. That is, with our choice of Amperian loop, AmpsrLaw
simplifies to:
$Bd/ =y

Furthermore, from symmetry, with our choice of Amae loop, the magnitude of the magnetic
field B has one and the same value at every point odme IThat means we can factor the
magnetic field magnitudB out of the integral. This yields:

Béds = 1,1

Okay, now we are on easy street. $lé is just the sum of all th#/’s making up our
imaginary loop (a circle) of radius Hey, that’s just the circumference of the cir2ler . So,

Ampere’s Law becomes:
B(2mr) = 1,1
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which means
B — :Uol
27

This is our end result. The magnitude of the magrield due to a long straight wire is directly
proportional to the current in the wire and invérsoportional to the distance from the wire.

A Long Straight Solenoid

A solenoid is a coil of wire in the form of a cydirical shell. The idealized solenoid that we
consider here is infinitely long but, it has a tixnite radiusk and an constant finite current

It is also characterized by its number-of-turnsdeeagth,n, where each “turn” (a.k.a. winding) is
one circular current loop. In fact, we furtheratiee our solenoid by thinking of it as an infinite
set of circular current loops. An actual solerapgroaches this idealized solenoid, but, in one
turn (in the view above), the end of the turn gpthiced left or right from the start of the turn by
an amount equal to the diameter of the wire. Assalt, in an actual solenoid, we have (in the

view above) some left-to-right or right-to-left @=nding on which way the wire wraps around)
current. We neglect this current and considercthieent to just go “round and round.”

Our goal here is to find the magnetic field duamnadeal infinitely-long solenoid that has a
number-of-turns-per-length has a radiuR, and carries a curreht
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We start by looking at the solenoid in cross sectiRelative to the view above, we’ll imagine
looking at the solenoid from the left end. Frorattpoint of view, the cross section is a circle
with clockwise current:

I/v

Let's try an amperian loop in the shape of a cjraleose plane is perpendicular to the axis of
symmetry of the solenoid, a circle that is centeredhe axis of symmetry of the solenoid.

For the imaginary loop
(a.k.a. the Amperian

loop), we choose a |/' d/
circle of radiug.

From symmetry, we can argue that if the magneeid fhas a component parallel to the depicted
di, then it must have the exact same component ﬁmyeﬁi on the closed path. But this would

make the circulatiofB @1  non-zero in cadiction to the fact that no current passes through
the region enclosed by the loop. This is trueafoy value of. So, the magnetic field can have
no component tangent to the circle whose planensgmdicular to the axis of symmetry of the
solenoid, a circle that is centered on the axsyaimetry of the solenoid.

Now suppose the magnetic field has a radial commorgy symmetry it would have to be
everywhere directed radially outward from the afisymmetry of the solenoid, or everywhere
radially inward. In either case, we could congtarcimaginary cylindrical shell whose axis of
symmetry coincides with that of the solenoid. Tieé magnetic flux through such a Gaussian
surface would be non-zero in violation of Gausssvlfor the magnetic field. Hence the
solenoid can have no radial magnetic field comptnen

The only kind of field that we haven't ruled outoise that is everywhere parallel to the axis of
symmetry of the solenoid. Let’s see if such afwbuld lead to any contradictions.
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Here we view the solenoid in cross-section fromside. At the top of the coil, we see the
current directed toward us, and, at the bottomyawde possible longitudinal (parallel to the
axis of symmetry of the solenoid) magnetic fielthisluded in the diagram.

[ [
» »

Y

» »
> >

\ 4

» »
> >

\ 4

» » »
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I
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\ 4
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The rectangles in the diagram represent Amperiapslo The net current through any of the
loops, in either direction (away from you or towgml) is zero. As such, the circulatipB [}

is zero. Since the magnetic field on the right kfidof any one of the loops is perpendicular to
the right and left sides of any one of the loopsjakes no contribution to the circulation there.
By symmetry, the magnetic field at one positiortlmmtop of a loop is the same as it is at any
other point on the top of the same loop. Hencegitraverse any one of the loops
counterclockwise (from our viewpoint) the contriloutto the circulation isB; L whereL is

the length of the top and bottom segments of wiweh®op you choose to focus your attention
on. The “=” comes from the fact that | have (agbily) chosen to traverse the loop

counterclockwise, and, in doing so, eveTMn the top segment is in the opposite directioth&o
direction of the magnetic field at the top of thep. The contribution to the circulation by the
bottom segment of the same loop &, 4,,,,L - What we have so far is:

-

§ Ij:” = ﬂOITHROUGH
§BOEI =0
(where the net current through any one of the |latgpscted is zero by inspection.)

0+-B_L+0+B,  L=0

BOTTOM

(with the first two zeros being from the right dett sides of the loop where the magnetic field
is perpendicular to the loop.)
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Solving forB, ., We find that, for every loop in the diagram (ahd infinite number of loops
enclosing a net current of zero just like them):
BBOTTOM = BTOP

What this means is that the magnetic field at @ith{s outside the solenoid has one and the same
magnitude. The same can be said about all paisida the solenoid, but, the inside-the-
solenoid value may be different from the outsidiei@a In fact, lets consider a loop through
which the net current is not zero:

\ 4
\ 4
\ 4

Y
Y
Y

Y
Y
Y

[ [ »-

Ll Ll Ll
0000000000000000000000000000000000000001000000000000000000000000000000000000000000000
I
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Y
Y
Y

Y
Y
Y

[ [ »-
» » »

Again, | choose to go counterclockwise around ¢l I(from our viewpoint). As such, by the
right-hand rule for something curly something sfhaj current directed toward us through the
loop is positive. Recalling that the number-ofasiper-length-of-the-solenoid s we have, for
the loop depicted above,

§ B Ijj! = /'10|THROUGH

0+ =B;opl + 0+ Bygrron L = 4,NLI

ESB()TTC)M = BTOP + /jbr]l

The bottom of the loop is inside the solenoid aednave established that the magnitude of the
magnetic field inside the solenoid has one andédmee magnitude at all points inside the
solenoid. I'm going to call thd, .., meaning thatB, ., = Bspe- Similarly, we have found

that the magnitude of the magnetic field has orkthe same (other) value at all points outside
the solenoid. Let's call th&_ ... Mmeaning thaB, , =B Thus:

OUTSIDE’

BINSIDE = BOUTSIDE + /'Ionl
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This is as far as | can get with Gauss'’s Law ferrttagnetic field, symmetry, and Ampere’s Law
alone. From there | turn to experimental resultd ¥ong finite solenoids. Experimentally, we
find that the magnetic field outside the solensi@anishingly small, and that there is an
appreciable magnetic field inside the solenoiditiige

B =0

OUTSIDE

we find that the magnetic field inside a long gfthaisolenoid is:

BINSIDE = /'Ionl
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Chapter 37 The Biot-Savart Law

37 The Biot-Savart Law

The Biot-Savart Law provides us with a way to fthd magnetic field at an empty point in
space, let’s call it poirf, due to current in wire. The idea behind the Eatvart Law is that
each infinitesimal element of the current-carryivige makes an infinitesimal contribution to the
magnetic field at the empty point in space. Orme fjnd each contribution, all you have to do
is add them all up. Of course, there are an t&finumber of contributions to the magnetic field
at pointP and each one is a vector, so, we are talking adooutfinite sum of vectors. This
business should seem familiar to you. You did kinsl of thing when you were calculating the
electricfield back in ChapteB0 The Electric Field Due to a Continuous Distribution of
ChargeOn aLine. The idea is similar, but here, of course, wetalleng about magnetism.

The Biot-Savart Law gives the infinitesimal contitiion to the magnetic field at poiRtdue to

an infinitesimal element of the current-carryingevi The following diagram helps to illustrate
just what the Biot-Savart Law tells us.

dB

Y

The Biot-Savart Law states that:

(37-1)

The Biot-Savart Law represents a powerful stragmérd method of calculating the magnetic
field due to a current distribution.
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Example37-1

Calculate the magnetic field due to a long straiginé carrying a currertalong the z axis in the
positive z direction. Treat the wire as extendmgnfinity in both directions.

Solution

ZA

dB
r P (x.Y.2
/1 Y

v

Each infinitesimal element of the current-carryaugnductor makes a contributi@® to the
total magnetic field at poirR.

Ther vector extends from the infinitesimal element0£) to pointP at ,y, 2).
r=0At+yp+zk) -2 %
F=xt+y}+(z-2)k

The magnitude of is thus:

r=x’+y? +(z-2)

The di vector points in the +z direction so it can be esped asll = dz' &

With these expressions for, r, anddf substituted into the Biot-Savart Law,

= ,uOIcTIXF
dB=-2 3
4 r

we obtain:
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cﬁ’:”OI dz"|2><(x'|‘+yj+(z—z')'|2)
4 [Xz+yz+(z_z,)z]3/2

— 1 o [Xkxt+ykxg+(z-2)kxk )

dB = ' -
ar | X* +y? +(z2-7)?] .
ﬁ = HoL i o4 (X.T B y?) ]
4T .X2+y2+(z_zr)2. 3/2
—  uI (074 y7 (074

dB = T+

~
3/2 J

Tan? [x2+y2+(z—z')2]3/2 4077 § [x2+y2+(z—z')2]

Let’s work on this a component at a time. Fontlt®mponent, we have:

L dz'
dBX:_Iu y 2 2 2] 372
ar [x +y +(z—z')]

Integrating over' from —co to o yields:

X

__HT T o4
. ar y_‘[o[x2+y2+(z—z’)2]

3/2

I’m going to go with the following variable substiton:
u=z-7
du= —dZ, so, dZ = —du
Upper Limit: Evaluatingy =z—Z atZ = o yields— for the upper limit of integration.
Lower Limit: Evaluatingu = z—Z atZ = —oo yieldsc for the upper limit of integration.

So, our integral becomes:

__HML f  —du
B, = a7 i(x2+y2+u2)3/2

| choose to use one of the minus signs to inteigdae limits of integration:

__HT T du
B, = e yJ.(X2+y2+U2)3/2

—00
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Using _[ =t x from your formula sheet; and; identifying + y? asa?,

(X* +a )/2 a’ \x? +a?

and,u as thex appearing on the formula sheet, we obtain:

7 1 u |m

A ey ety

Now, | need to take the limit of that expressiomu@®es too and again as goes to-c. To
facilitate that, | want to factor@out of the square root in the denominator. BhguJe to be

careful. The expressioq‘u2 +x* +y® , which is equivalent tQ/(z— Z)?+x°+y® isa
distance. That means it is inherently positivegthieru (or z’ for that matter) is positive or
negative. So, when | factarout of the square root, I’'m going to have to ussoaute value

X2 y2 X2 y2
signs. For the denominatoyu® + x> + y* = (1+u—+ ¥ ) ul I+ 55 S0,

1
X2 y2
1+ -+
U2 2

Ul 1 (1 1 1 ]
J1+0+0 J1+0+0

B, =-
g ar VX + y’
7w 1
B =—-">"y——(2
X 477_ yX2 + yz ( )
v 1
B, = _'Léo Y2 2
TTX Yy
Now for the y component. Recall that we had:
= ﬂoI o4 NN 4 3

dB=-

3/2 3/2

ar [x +y2+(z- z)] amr [x +y2+(z- z)]

S0,
dB, = Mo’ &
Am [x +y2+(z- z)]

3/2

336



Chapter 37 The Biot-Savart Law

But, except for the replacement ofby x, this is the same expression that we hadifgr. And
those, (the y-in the expression fodB, and thex in the expression fodB, ), are, as far as the
integration over’ goes, constants, out front. They don't affectitiegration, they just “go
along for the ride.” So, we can use djrresultfor B, if we just replace they-in our
expression foB, , with x. In other words, without having to go through &mtire integration
process again, we have:

Since we have no z component in our expression

__ﬂI 4 ay ol o’ 3
ar [x +y?+(z- z)]al2 ar [x +y?+(z- z)]SI2

dB

B itself must have no z component.

Substituting our results fds, , B, ,andB, into thef, J, % expression foB , (Namely,
B=B,+B,+B% ), we have:

B=-tly 21 2'|‘+'u°Ix 21 -5 +0k
2 T X +y 2 Xty

D IUI A
= + X
2”X+y2(y‘ 3)

The quantityx® + y? is justr?, the distance that poiftis from the current-carrying wire (recall
that we are finding the magnetic field due to aewwwith a current, that extends along the z axis
from —oo t0 +o0)

B =2 -y +x)

T

Furthermore, the vectqry% + xj has magnituda/(—y)2 +x° = \/xz +y® =r. Hence, the
unit vectorUy in the same direction gs-yf + xJ* i9 given by

" -yt +x3 X
i, == Ve X5
r r r

and, expressed as its magnitude times the uniovecits direction, the vectar-yt + x§* gan
be written as:
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(=yT+x§) =rig

Substituting -yt + x3) =r(, into our expressiof = 'L;L]l;r—lz(—y? +x3) yields:

= uIr 1l .

B = —ru
2rr? B

g=flly,
2T r

. - . Il . . . .
Note that the magnitude & obtained here, nameB/= ’L;‘) AR is identical to the magnitude
T

: . . o X
obtained using the integral form of Ampere’s Lawhe directiont, = —Ty'u‘ +?j‘ for the

magnetic field at any poif® having coordinates(y, 2), is also the same as, “the magnetic field
extends in circles about that wire, in that serfigetation (counterclockwise or clockwise)
which is consistent with the right hand rule fom&thing curly something straight with the
something straight being the current and the sangetturly being the magnetic field.”
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