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Preface 
Here are my online notes for my Calculus II course that I teach here at Lamar University.  
Despite the fact that these are my “class notes” they should be accessible to anyone 
wanting to learn Calculus II or needing a refresher in some of the topics from the class.   
 
These notes do assume that the reader has a good working knowledge of Calculus I topics 
including limits, derivatives and integration by substitution. 
 
Here are a couple of warnings to my students who may be here to get a copy of what 
happened on a day that you missed   
 

1. Because I wanted to make this a fairly complete set of notes for anyone wanting 
to learn calculus I have included some material that I do not usually have time to 
cover in class and because this changes from semester to semester it is not noted 
here.  You will need to find one of your fellow class mates to see if there is 
something in these notes that wasn’t covered in class. 

2. In general I try to work problems in class that are different from my notes.  
However, with Calculus II many of the problems are difficult to make up on the 
spur of the moment and so in this class my class work will follow these notes 
fairly close as far as worked problems go.  With that being said I often don’t have 
time in class to work all of these problems and so you will find that some sections 
contain problems that weren’t worked in class due to time restrictions. 

3. Sometimes questions in class will lead down paths that are not covered here.  I try 
to anticipate as many of the questions as possible in writing these up, but the 
reality is that I can’t anticipate all the questions.  Sometimes a very good question 
gets asked in class that leads to insights that I’ve not included here.  You should 
always talk to someone who was in class on the day you missed and compare 
these notes to their notes and see what the differences are. 

4. This is somewhat related to the previous three items, but is important enough to 
merit its own item.  THESE NOTES ARE NOT A SUBSTITUTE FOR 
ATTENDING CLASS!!  Using these notes as a substitute for class is liable to get 
you in trouble. As already noted not everything in these notes is covered in class 
and often material or insights not in these notes is covered in class. 
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 Integration Techniques 

 Introduction 
In this chapter we are going to be looking at integration techniques.  There are a fair 
number of them, some easier than others.  The point of the chapter is to teach you these 
new techniques and so this chapter assumes that you’ve got a fairly good working 
knowledge of basic substitutions with integrals.  In fact, most integrals involving 
“simple” substitutions will not have any of the substitution work shown.  It is going to be 
assumed that you can verify the substitution portion of the integration yourself. 
 
Also, most of the integrals done in this chapter will be indefinite integrals.  It is also 
assumed that once you can do the indefinite integrals you can also do the definite 
integrals and so to conserve space we concentrate mostly on indefinite integrals.  There is 
one exception to this and that is the Trig Substitution section and in this case there are 
some subtleties involved with definite integrals that we’re going to have to watch out for. 
 
Here is a list of topics that are covered in this chapter. 
 
Integration by Parts – Of all the integration techniques covered in this chapter this is 
probably the one that students are most likely to run into down the road in other classes. 
 
Integrals Involving Trig Functions – In this section we look at integrating certain 
products and quotients of trig functions. 
 
Trig Substitutions – Here we will look using substitutions involving trig functions an 
how they can be used to simplify certain integrals. 
 
Partial Fractions – We will use partial fractions to allow us to do integrals involving 
rational functions. 
 
Integrals Involving Roots – We will take a look at a substitution that can, on occasion, 
be used with integrals involving roots. 
 
Integrals Involving Quadratics – In this section we are going to look at integrals that 
involve quadratics. 
 
Using Integral Tables – Here we look at using Integral Tables as well as relating new 
integrals back to integrals that we already know how to do. 
 
Integration Strategy – We give a general set of guidelines for determining how to 
evaluate an integral. 
 
Improper Integrals – We will look at integrals with infinite intervals of integration and 
integrals with discontinuous integrands in this section. 
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Comparison Test for Improper Integrals – Here we will use the Comparison Test to 
determine if improper integrals converge or diverge. 
 
Approximating Definite Integrals – There are many ways to approximate the value of a 
definite integral.  We will look at three of them in this section. 
 
 

 Integration by Parts 
Let’s start off with this section with a couple of integrals that we should already be able 
to do to get us started.  First let’s take a look at the following. 
 x xdx c= +∫e e  
So, that was simple enough.  Now, let’s take a look at, 
 

2xx dx∫ e  
To do this integral we’ll use the following substitution. 

 2 12
2

u x du x dx x dx du= = ⇒ =  

 
2 21 1 1

2 2 2
u ux xx dx du c c= = + = +∫ ∫e e e e  

Again, simple enough to do provided you remember how to do substitutions.  By the way 
make sure that you can do these kinds of substitutions quickly and easily.  From this 
point on we are going to be doing these kinds of substitutions in our head.  If you have to 
stop and write these out with every problem you will find that it will take to significantly 
longer to do these problems. 
 
Now, let’s look at the integral that we really want to do. 
 6xx dx∫ e  

If we just had an x by itself or 6xe  by itself we could do the integral easily enough.  But, 
we don’t have them by themselves, they are instead multiplied together.   
 
There is no substitution that we can use on this integral that will allow us to do the 
integral.  So, at this point we don’t have the knowledge to do this integral.   
 
To do this integral we will need to use integration by parts so let’s derive the integration 
by parts formula.  We’ll start with the product rule. 

 ( )f g f g f g′ ′ ′= +  
Now, integrate both sides of this. 

 ( )f g dx f g f g dx′ ′ ′= +∫ ∫  
The left side is easy enough to integrate and we’ll split up the right side of the integral. 

fg f g dx f g dx′ ′= +∫ ∫  



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 4

Note that technically we should have had a constant of integration show up on the left 
side after doing the integration.  We can drop it at this point since other constants of 
integration will be showing up down the road and they would just end up absorbing this 
one. 
 
Finally, rewrite the formula as follows and we arrive that the integration by parts formula. 

f g dx fg f g dx′ ′= −∫ ∫  
 
This is not the easiest formula to use however.  So, let’s do a couple of substitutions. 

 
( ) ( )

( ) ( )
u f x v g x

du f x dx dv g x dx

= =

′ ′= =
 

 
Both of these are just the standard Calc I substitutions that hopefully you are used to by 
now.  Don’t get excited by the fact that we are using two substitutions here.  They will 
work the same way.   
 
Using these substitutions gives us the formula that most people think of as the integration 
by parts formula. 

u dv uv v du= −∫ ∫  
 
To use this formula we will need to identify u and dv, compute du and v and then use the 
formula.  Note as well that computing v is very easy.  All we need to do is integrate dv. 
 v dv= ∫  
 
So, let’s take a look at the integral we wrote down above. 
 
Example 1  Evaluate the following integral. 
 6xx dx∫ e  
Solution 
So, on some level, the problem here is the x that is in front of the exponential.  If that 
wasn’t there we could do the integral.  Notice as well that anything that we choose for u 
will be differentiated and so that seems like choosing u=x will be a good choice since 
upon differentiating the x will drop out.   
 
Once u is chosen we know that dv will be everything else that remains. 
 
So, here are the choices for u and dv as well as du and v. 

 

6

6 61
6

x

x x

u x dv dx

du dx v dx

= =

= = =∫

e

e e
 

The integral is then, 
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6 6 6

6 6

1
6 6

1
6 36

x x x

x x

xx dx dx

x c

= −

= − +

⌠⎮
⌡∫ e e e

e e
 

Once we have done the last integral in the problem we will add in the constant of 
integration to get our final answer. 
 
Next let’s a look at integration by parts for definite integrals.  In this case the formula is, 

b bb

aa a
u dv uv v du= −∫ ∫  

  
Note that the b

a
uv  in the first term is just the standard integral evaluation notation that 

you should be familiar with at this point.  All we do is evaluate at b then subtract off the 
evaluation at a. 
 
Example 2  Evaluate the following integral. 

 
2 6

1

xx dx
−∫ e  

Solution 
This is the same integral that we looked at in the first example so we’ll use the same u 
and dv to get, 

 

2
2 26 6 6

1 1
1

2 2
6 6

1 1

12 6

1
6 6

1
6 36
11 7
36 36

x x x

x x

xx dx dx

x

− −
−

− −

−

= −

= −

= +

∫ ∫e e e

e e

e e

 

 
Since we need to be able to do the indefinite integral in order to do the definite integral 
and doing the definite integral amounts to nothing more than evaluating the indefinite 
integral at a couple of points we will concentrate on doing indefinite integrals in the rest 
of this section.  In fact, through out most of this chapter this will be the case.  We will be 
doing far more indefinite integrals than definite integrals. 
 
Let’s take a look at some more examples. 
 
Example 3  Evaluate the following integral. 

 ( )3 5 cos
4
tt dt⎛ ⎞+ ⎜ ⎟

⎝ ⎠
⌠
⎮
⌡

 

Solution 
There are two ways to proceed with this example.  For many, the first thing that they try 
is multiplying the cosine through the parenthesis, splitting up the integral and then doing 
integration by parts on the first integral.   
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While that is a perfectly acceptable way of doing the problem it’s more work than we 
really need to do.  Instead of splitting the integral up let’s instead use the following 
choices for u and dv. 

 
3 5 cos

4

3 4sin
4

tu t dv dt

tdu dt v

⎛ ⎞= + = ⎜ ⎟
⎝ ⎠
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

The integral is then, 

 
( ) ( )

( )

3 5 cos 4 3 5 sin 12 sin
4 4 4

4 3 5 sin 48cos
4 4

t t tt dt t dt

t tt c

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⌠ ⌠
⎮ ⎮
⌡ ⌡  

Notice that we pulled any constants out of the integral when we used the integration by 
parts formula.  We will usually do this in order to simplify the integral a little. 
 
Example 4  Evaluate the following integral. 
 ( )2 sin 10w w dw∫  
Solution 
For this example we’ll use the following choices for u and dv. 

 
( )

( )

2 sin 10
12 cos 10

10

u w dv w dw

du wdw v w

= =

= = −
 

The integral is then, 

 ( ) ( ) ( )
2

2 1sin 10 cos 10 cos 10
10 5
ww w dw w w w dw= − +∫ ∫  

 
In this example, unlike the previous examples, the new integral will also require 
integration by parts.  For this second integral we will use the following choices. 

 
( )

( )

cos 10
1 sin 10

10

u w dv w dw

du dw v w

= =

= =
 

So, the integral becomes, 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2
2

2

2

1 1sin 10 cos 10 sin 10 sin 10
10 5 10 10

1 1cos 10 sin 10 cos 10
10 5 10 100

1cos 10 sin 10 cos 10
10 50 500

w ww w dw w w w dw

w ww w w c

w ww w w c

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

⎛ ⎞= − + + +⎜ ⎟
⎝ ⎠

= − + + +

∫ ∫
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Be careful with the coefficient on the integral for the second application of integration by 

parts.  Since the integral is multiplied by 1
5

 we need to make sure that the results of 

actually doing the integral is also multiplied by 1
5

.  Forgetting to do this is one of the 

more common mistakes with integration by parts problems. 
 
As this last example has shown us, we will sometimes need more than one application of 
integration by parts to complete a problem.  This is something that will happen so don’t 
get excited about it when it happens. 
 
In this next example we need to acknowledge an important point about integration 
techniques.  Some integrals can be done in using several different techniques.  That is the 
case with the integral in the next example. 
 
Example 5  Evaluate the following integral 
 1x x dx+∫  

(a) Using Integration by Parts. 
(b) Using a standard Calculus I substitution. 

 
Solution 
(a) First notice that there are no trig functions or exponentials in this integral.  While a 
good many integration by parts integrals will involve trig functions and/or exponentials 
not all of them will so don’t get too locked into the idea of expecting them to show up. 
 
In this case we’ll use the following choices for u and dv. 

 
( )

3
2

1
2 1
3

u x dv x dx

du dx v x

= = +

= = +
 

The integral is then, 

 
( ) ( )

( ) ( )

3 3
2 2

3 5
2 2

2 21 1 1
3 3
2 41 1
3 15

x x dx x x x dx

x x x c

+ = + − +

= + − + +

∫ ∫
 

(b) Now let’s do the integral with a substitution.  We can use the following substitution. 
 1 1u x x u du dx= + = − =  
 
Notice that we’ll actually use the substitution twice, once for the quantity under the 
square root and once for the x in front of the square root.  The integral is then, 
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( )

( ) ( )

3 1
2 2

5 3
2 2

5 3
2 2

1 1

2 2
5 3
2 21 1
5 3

x x dx u u du

u u du

u u c

x x c

+ = −

= −

= − +

= + − + +

∫ ∫

∫
 

 
So, we used two different integration techniques in this example and we got two different 
answers.  The obvious question then should be : Did we do something wrong? 
 
Actually, we didn’t do anything wrong.  We need to remember the following fact from 
Calculus I. 
 
 ( ) ( ) ( ) ( )If thenf x g x f x g x c′ ′= = +  
 
In other words, if two functions have the same derivative then they will differ by no more 
than a constant.  So, how does this apply to the above problem?  First define the 
following, 
 ( ) ( ) 1f x g x x x′ ′= = +  
 
Then we can compute f(x) and g(x) by integrating as follows, 
 ( ) ( ) ( ) ( )f x f x dx g x g x dx′ ′= =∫ ∫  
 
We’ll use integration by parts for the first integral and the substitution for the second 
integral.  Then according to the fact f(x) and g(x) should differ by no more than a 
constant.  Let’s verify this and see if this is the case. We can verify that they differ my no 
more than a constant if we take a look at the difference of the two. 
 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

3 5 5 3
2 2 2 2

3
2

3
2

2 4 2 21 1 1 1
3 15 5 3

2 4 2 21 1 1
3 15 5 3

1 0
0

x x x x x

x x x x

x

⎛ ⎞ ⎛ ⎞+ − + − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= + − + − + +⎜ ⎟
⎝ ⎠

= +

=

 

 
So, in this case it turns out the two functions are exactly the same function since the 
difference is zero.  Note that this won’t always happen.  Sometimes the difference will 
yield a nonzero constant.  For an example of this check out the Constant of Integration 
section in my Calculus I notes. 
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So just what have we learned?  First, there will, on occasion, be more than one method 
for evaluating an integral.  Secondly, we saw that different methods will often lead to 
different answers.  Last, even though the answers are different it can be shown that they 
differ by no more than a constant. 
 
When we are faced with an integral the first thing that we’ll need to decide is if there is 
more than one way to do the integral.  If there is more than one way we’ll then need to 
determine which method we should use.  The general rule of thumb that I use in my 
classes is that you should use the method that you find easiest.  This may not be the 
method that others find easiest, but that doesn’t make it the wrong method. 
 
One of the more common mistakes with integration by parts is for people to get too 
locked into perceived patterns.  For instance, all of the previous examples used the basic 
pattern of taking u to be the polynomial that sat in front of another function and then 
letting dv be the other function.  This will not always happen so we need to be careful and 
not get locked into any patterns that we think we see. 
 
Let’s take a look at some integrals that don’t fit into the above pattern.   
 
Example 6  Evaluate the following integral. 
 ln x dx∫  
Solution 
So, unlike any of the other integral we’ve done to this point there is only a single function 
in the integral and no polynomial sitting in front of the logarithm. 
 
The first choice of many people here is to try and fit this into the pattern from above and 
make the following choices for u and dv. 
 1 lnu dv x dx= =  
 
This leads to a real problem however since that means v must be, 
 lnv x dx= ∫  
In other words, we would need to know the answer ahead of time in order to actually do 
the problem.  So, this choice simply won’t work.   
 
Therefore, if the logarithm doesn’t belong in the dv it must belong instead in the u.  So, 
let’s use the following choices instead 

 
ln

1
u x dv dx

du dx v x
x

= =

= =
 

The integral is then, 
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1ln ln

ln

ln

x dx x x x dx
x

x x dx

x x x c

= −

= −

= − +

⌠⎮
⌡∫

∫  

 
Example 7  Evaluate the following integral. 
 5 3 1x x dx+∫  
Solution 
So, if we again try to use the pattern from the first few examples for this integral our 
choices for u and dv would probably be the following. 
 5 3 1u x dv x dx= = +  
However, as with the previous example this won’t work since we can’t easily compute v. 
 3 1v x dx= +∫  
 
This is not an easy integral to do.  However, notice that if we had an x2 in the integral 
along with the root we could very easily do the integral with a substitution.  Also notice 
that we do have a lot of x’s floating around in the original integral.  So instead of putting 
all the x’s (outside of the root) in the u let’s split them up as follows. 

 
( )

3 2 3

3
2 3 2

1
23 1
9

u x dv x x dx

du x dx v x

= = +

= = +
 

The integral is then, 

 
( ) ( )

( ) ( )

3 3
5 3 3 3 2 32 2

3 5
3 3 32 2

2 21 1 1
9 3
2 41 1
9 45

x x dx x x x x dx

x x x c

+ = + − +

= + − + +

⌠⎮
⌡∫

 

 
So, in the previous two examples we saw cases that didn’t quite fit into any perceived 
pattern that we might have gotten from the first couple of examples.  This is always 
something that we need to be on the lookout for with integration by parts. 
 
Let’s take a look at another example that also illustrates another integration technique 
that sometimes arises out of integration by parts problems. 
 
Example 8  Evaluate the following integral. 
 cos dθ θ θ∫e  
Solution 
Okay, to this point we’ve always picked u in such a way that upon differentiating it 
would make that portion go away or at the very least put it the integral into a form that 
would make it easier to deal with.  In this case no matter which part we make u it will 
never go away in the differentiation process. 
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It doesn’t much matter which we choose to be u so we’ll choose in the following way.  
Note however that we could choose the other way as well and we’ll get the same result. 

 
cos

sin
u dv d
du d v

θ

θ

θ θ

θ θ

= =

= − =

e
e

 

The integral is then, 
 cos cos sind dθ θ θθ θ θ θ θ= +∫ ∫e e e  
 
So, it looks like we’ll do integration by parts again.  Here are our choices this time. 

 
sin

cos
u dv d
du d v

θ

θ

θ θ

θ θ

= =

= =

e
e

 

The integral is now, 
 cos cos sin cosd dθ θ θ θθ θ θ θ θ θ= + −∫ ∫e e e e  
 
Now, at this point it looks like we’re just running in circles.  However, notice that we 
now have the same integral on both sides and one the right side its got a minus sign in 
front of it.  This means that we can add the integral to both sides to get, 
 2 cos cos sindθ θ θθ θ θ θ= +∫e e e  
 
All we need to do now is divide by 2 and we’re done.  The integral is, 

 ( )1cos cos sin
2

d cθ θ θθ θ θ θ= + +∫e e e  

 
Notice that after dividing by the two we add in the constant of integration at that point. 
 
This idea of using integration by parts until you get the same integral on both sides of the 
equal sign and then simply solving for the integral is kind of nice to remember.  It doesn’t 
show up all that often, but when it does it may be the only way to actually do the integral. 
 
We’ve got one more example to do.  As we will see some problems could require us to 
do integration by parts numerous times and there is a short hand method that will allow 
us to do multiple applications of integration by parts quickly and easily. 
 
Example 9  Evaluate the following integral. 

 4 2
x

x dx∫ e  
Solution 
We start off by choosing u and dv as we always would.  However, instead of computing 
du and v we put these into the following table.  We then differentiate down the column 
corresponding to u until we hit zero.  In the column corresponding to dv we integrate 
once for each entry in the first column.  There is also a third column which we will 
explain in a bit. 



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 12

 
Now, multiply along the diagonals show in the table.  In front of each product put the 
sign in the third column that corresponds to the “u” term for that product.  In this case 
this would give, 

 
( ) ( ) ( ) ( ) ( )4 4 3 22 2 2 2 2 2

4 3 22 2 2 2 2

2 4 4 12 8 24 16 24 32

2 16 96 384 768

x x x x x x

x x x x x

x dx x x x x

x x x x c

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= − + − + +

∫ e e e e e e

e e e e e

 

 
We’ve got the integral.  This is much easier than writing down all the various u’s and 
dv’s that we’d have to do otherwise. 
 
So, in this section we’ve seen how to do integration by parts.  In your later math classes 
this is liable to be one of the more frequent integration techniques that you’ll encounter.   
 
It is important to not get too locked into patterns that you may think you’ve seen.  In most 
cases any pattern that you think you’ve seen can (and will be) violated at some point in 
time.  Be careful! 
 
Also, don’t forget the shorthand method for multiple applications of integration by parts 
problems.  It can save you a fair amount of work on occasion. 
 
 

 Integrals Involving Trig Functions 
In this section we are going to look at quite a few integrals involving trig functions and 
some of the techniques we can use to help us evaluate them.  Let’s start off with an 
integral that we should already be able to do. 
 

 

5 5

6

cos sin using the substitution sin

1 sin
6

x x dx u du u x

x c

= =

= +

∫ ∫
 

 



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 13

This integral is easy to do with a substitution because the presence of the cosine, 
however, what about the following integral. 
 
Example 1  Evaluate the following integral. 
 5sin x dx∫  
Solution 
This integral no longer has the cosine in it that would allow us to use the substitution that 
we used above.  Therefore, that substitution won’t work and we are going to have to find 
another way of doing this integral. 
 
Let’s first notice that we could write the integral as follows, 
 ( )25 4 2sin sin sin sin sinx dx x x dx x x dx= =∫ ∫ ∫  
Now recall the tirg identity, 
 2 2 2 2cos sin 1 sin 1 cosx x x x+ = ⇒ = −  
 
With this identity the integral can be written as, 
 ( )25 2sin 1 cos sinx dx x x dx= −∫ ∫  
and we can now use the substitution cosu x= .  Doing this gives us, 

 

( )25 2

2 4

3 5

3 5

sin 1

1 2

2 1
3 5

2 1cos cos cos
3 5

x dx u du

u u du

u u u c

x x x c

= − −

= − − +

⎛ ⎞= − − + +⎜ ⎟
⎝ ⎠

= − + − +

∫ ∫
∫

 

So, with a little rewriting on the integrand we were able to reduce this to a fairly simple 
substitution. 
 
Notice that we were able to do the rewrite that we did in the previous example because 
the exponent on the sine was odd.  In these cases all that we need to do is strip out one of 
the sines.  The exponent on the remaining sines will then be even and we can easily 
convert the remaining sines to cosines using the identity, 
 2 2cos sin 1x x+ =  (1) 
 
If the exponent on the sines had been even this would have been difficult to do.  We 
could strip out a sine, but the remaining sines would then have an odd exponent and 
while we could convert them to cosines the resulting integral would often be even more 
difficult than the original integral in most cases. 
 
Let’s take a look at another example. 
 
Example 2  Evaluate the following integral. 
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 6 3sin cosx x dx∫  
Solution 
So, in this case we’ve got both sines and cosines in the problem and in this case the 
exponent on the sine is even while the exponent on the cosine is odd.  So, we can use a 
similar technique in this integral.  This time we’ll strip out a cosine and convert the rest to 
sines. 

 

( )
( )

6 3 6 2

6 2

6 2

6 8

7 9

sin cos sin cos cos

sin 1 sin cos sin

1

1 1sin sin
7 9

x x dx x x x dx

x x x dx u x

u u du

u u du

x x c

=

= − =

= −

= −

= − +

∫ ∫
∫
∫
∫

 

 
At this point let’s pause for a second to summarize what we’ve learned about integrating 
powers of sine and cosine.   
 sin cosn mx x dx∫  (2) 
 
In (2) if the exponent on the sines (n) is odd we strip out one sine, convert the rest to 
cosines using (1) and then use the substitution cosu x= .  Likewise, if the exponent on 
the cosines (m) is odd we strip out one cosine and convert the rest to sines and the use the 
substitution sinu x= . 
 
Of, course if both exponents are odd then we can use either method.  However, in these 
cases it’s usually easier to convert the term with the smaller exponent. 
 
The one case we haven’t looked at is what happens if both of the exponents are even?  In 
this case the technique we used in the first couple of examples simply won’t work and in 
fact there really isn’t any one set method for doing these integrals.  Each integral is 
different and in some cases there is more than one way to do the integral. 
 
With that being said most, if not all, of integrals involving products of sines and cosines 
in which both exponents even can be done using one or more of the following formulas. 

 

( )( )

( )( )

( )

2

2

1cos 1 cos 2
2
1sin 1 cos 2
2

1sin cos sin 2
2

x x

x x

x x x

= +

= −

=
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The first two formulas are the standard half angle formula from a trig class written in a 
form that will be more convenient for us to use.  The last is the standard double angle 
formula for sine, again with a small rewrite. 
 
Let’s take a look at an example. 
 
Example 3  Evaluate the following integral. 
 2 2sin cosx x dx∫  
Solution 
As noted above there are often more than one way to do integrals in which both of the 
exponents are even.  This integral is an example of that, there are at least two solution 
techniques for this problem.  We will do both solutions starting with what is probably the 
harder of the two, but it’s also the one that many people see first. 
 
Solution 1 
In this solution we will use the two half angle formulas above and just substitute them 
into the integral. 

 
( )( ) ( )( )

( )

2 2

2

1 1sin cos 1 cos 2 1 cos 2
2 2

1 1 cos 2
4

x x dx x x dx

x dx

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

= −

⌠
⎮
⌡∫

∫
 

 
So, we still have an integral that can’t be completely done, however notice that we have 
managed to reduce the integral down to just one term causing problems (a cosine with an 
even power) rather than two terms causing problems. 
 
In fact to eliminate the remaining problem term all that we need to do is reuse the first 
half angle formula given above. 

 

( )( )

( )

( )

( )

2 2 1 1sin cos 1 1 cos 4
4 2
1 1 1 cos 4
4 2 2
1 1 1 sin 4
4 2 8
1 1 sin 4
8 32

x x dx x dx

x dx

x x c

x x c

= − +

= −

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

= − +

⌠⎮
⌡

⌠⎮
⌡

∫

 

So, this solution required a total of three trig identities to complete. 
 
Solution 2 
In this solution we will use the half angle formula to help simplify the integral as follows. 
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( )

( )

( )

22 2

2

2

sin cos sin cos

1 sin 2
2

1 sin 2
4

x x dx x x dx

x dx

x dx

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

⌠
⎮
⌡

∫ ∫

∫

 

Now, we use the double angle formula for sine to reduce to an integral that we can do. 

 
( )

( )

2 2 1sin cos 1 cos 4
8
1 1 sin 4
8 32

x x dx x dx

x x c

= −

= − +

∫ ∫
 

This method required only two trig identities to complete. 
 
Notice that the difference between these two methods is more one of “messiness”.  The 
second method is not appreciably easier (other than needing one less trig identity) it is 
just not as messy and that will often translate into an “easier” process. 
 
In the previous example we saw two different solution methods that gave the same 
answer.  Note that this will not always happen.  In fact, more often than not we will get 
different answers.  However, as we discussed in the Integration by Parts section, the two 
answers will differ by no more than a constant. 
 
In general when we have products of sine and cosine in which both exponents are even 
we will need to use a series of half angle and/or double angle formulas to reduce the 
integral into a form that we can integrate.  Also, the larger the exponents the more we’ll 
need to use these formulas and hence the messier the problem. 
 
Sometimes in the process of reducing integrals in which both exponents are even we will 
run across products of sine and cosine in which the arguments are different.  These will 
require one of the following formulas to reduce the products to integrals that we can do. 
 

 

( ) ( )

( ) ( )

( ) ( )

1sin cos sin sin
2
1sin sin cos cos
2
1cos cos cos cos
2

α β α β α β

α β α β α β

α β α β α β

= − + +⎡ ⎤⎣ ⎦

= − − +⎡ ⎤⎣ ⎦

= − + +⎡ ⎤⎣ ⎦

 

 
Let’s take a look at an example of one of these kinds of integrals. 
 
Example 4  Evaluate the following integral. 
 ( ) ( )cos 15 cos 4x x dx∫  
Solution 
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This integral requires the last formula listed above. 

 
( ) ( ) ( ) ( )

( ) ( )

1cos 15 cos 4 cos 11 cos 19
2
1 1 1sin 11 sin 19
2 11 19

x x dx x x dx

x x c

= +

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

∫ ∫
 

 
Okay, at this point we’ve covered pretty much all the possible cases involving products 
of sine and cosine.  It’s now time to look at integrals that involve products of secants and 
tangents. 
 
This time, let’s do a little analysis of the possibilities before we just jump into examples.  
The general integral will be, 
 sec tann mx x dx∫  (3) 
 
The first thing to notice is that we can easily convert even powers of secants to tangents 
and even powers of tangents to secants by using a formula similar to (1).  In fact, the 
formula can be derived from (1) so let’s do that. 
 

 

2 2

2 2

2 2 2

sin cos 1
sin cos 1
cos cos cos

x x
x x
x x x

+ =

+ =
 

 
 2 2tan 1 secx x+ =  (4) 
 
Now, we’re going to want to deal with (3) similarly to how we dealt with (2).  We’ll want 
to eventually use one of the following substitutions. 

 
2tan sec

sec sec tan
u x du x dx
u x du x x dx

= =
= =

 

 
So, if we use the substitution tanu x=  we will need two secants left for the substitution 
to work.  This means that if the exponent on the secant (n) is even we can strip two out 
and then convert the remaining secants to tangents using (4). 
 
Next, if we want to use the substitution secu x= we will need one secant and one tangent 
left over in order to use the substitution.  This means that if the exponent on the tangent 
(m) is odd we can strip one out along with one of the secants of course.   The tangent will 
then have an even exponent and so we can use (4) to convert the rest to tangents to 
secants.  Note that this method does require that we have at least one secant in the 
integral as well.  If there aren’t any secants then we’ll need to do something different. 
 
If the exponent on the secant is even and the exponent on the tangent is odd then we can 
use either case.  Again, it will be easier to convert the term with the smallest exponent. 
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Let’s take a look at a couple of examples. 
 
Example 5  Evaluate the following integral. 
 9 5sec tanx x dx∫  
Solution 
First note that since the exponent on the secant isn’t even we can’t use the substitution 

tanu x= .  However, the exponent on the tangent is odd and we’ve got a secant in the 
integral and so we will be able to use the substitution secu x= .  This means striping out 
a single tangent (along with a secant) and converting the remaining tangents to secants 
using (4). 
 
Here’s the work for this integral. 

 

( )
( )

9 5 8 4

28 2

28 2

12 10 8

13 11 9

sec tan sec tan tan sec

sec sec 1 tan sec sec

1

2

1 2 1sec sec sec
13 11 9

x x dx x x x x dx

x x x x dx u x

u u du

u u u du

x x x c

=

= − =

= −

= − +

= − + +

∫ ∫
∫
∫
∫

 

 
Example 6  Evaluate the following integral. 
 4 6sec tanx x dx∫  
Solution 
So, in this example the exponent on the tangent is even so the substitution secu x=  
won’t work.  The exponent on the secant is even and so we can use the substitution 

tanu x=  for this integral.  That means that we need to strip out two secants and convert 
the rest to tangents. 
 
Here is the work for this integral. 

 

( )
( )

4 6 2 6 2

2 6 2

2 6

8 6

9 7

sec tan sec tan sec

tan 1 tan sec tan

1

1 1tan tan
9 7

x x dx x x x dx

x x x dx u x

u u du

u u du

x x c

=

= + =

= +

= +

= + +

∫ ∫
∫
∫
∫

 

 
Both of the previous examples fit very nicely into the patterns discussed above and so 
were not all that difficult to work.  However, there are a couple of exceptions to the 
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patterns above and in these cases there is no single method that will work for every 
problem.  Each integral will be different and may require different solution methods. 
 
Let’s first take a look at a couple of integrals that have odd exponents on the tangents, but 
no secants.  In these cases we can’t use the substitution secu x= since it requires there to 
be at least one secant in the integral. 
 
Example 7  Evaluate the following integral. 
 tan x dx∫  
Solution 
This integral is nothing more than a Calculus I substitution. 

 
1

sintan cos
cos

1

ln cos ln ln

ln cos

ln sec

r

xx dx dx u x
x

du
u

x c r x x

x c

x c

−

= =

= −

= − + =

= +

+

⌠⎮
⌡

⌠⎮
⌡

∫

 

 
Example 8  Evaluate the following integral. 
 3tan x dx∫  
Solution 
The trick to this one is do the following manipulation of the integrand. 

 ( )

3 2

2

2

tan tan tan

tan sec 1

tan sec tan

x dx x x dx

x x dx

x x dx x dx

=

= −

= −

∫ ∫
∫
∫ ∫

 

We can now use the substitution tanu x=  on the first integral and the results from the 
previous example to on the second integral. 
 
The integral is then, 

 3 21tan tan ln sec
2

x dx x x c= − +∫  

 
Note that all odd powers of tangent (with the exception of the first power) can be 
integrated using the same method we used in the previous example.  For instance, 
 
 ( )5 3 2 3 2 3tan tan sec 1 tan sec tanx dx x x dx x x dx x dx= − = −∫ ∫ ∫ ∫  
 
So, a quick substitution ( tanu x= ) will give us the first integral and the second integral 
will always be the previous odd power. 
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Now let’s take a look at a couple of examples in which the exponent on the secant is odd 
and the exponent on the tangent is even.  In these cases the substitutions used above 
won’t work. 
 
Example 9  Evaluate the following integral. 
 sec x dx∫  
Solution 
This one isn’t too bad once you see what you’ve got to do.  By itself the integral can’t be 
done.  However, if we manipulate the integrand as follows we can do it. 

 

( )

2

sec sec tan
sec

sec tan
sec tan sec

sec tan

x x x
x dx dx

x x
x x x dx

x x

+
=

+

+
=

+

⌠
⎮
⌡

⌠
⎮
⌡

∫
 

 
In this form we can do the integral using the substitution sec tanu x x= + .  Doing this 
gives, 
 sec ln sec tanx dx x x c= + +∫  
 
Example 10  Evaluate the following integral. 
 3sec x dx∫  
Solution 
This one is different from any of the other integrals that we’ve done in this section.  The 
first step to doing this integral is to perform integration by parts using the following 
choices for u and dv. 

 
2sec sec

sec tan tan
u x dv x dx
du x x dx v x

= =
= =

 

 
Note that using integration by parts on this problem is not an obvious choice, but it does 
work very nicely here.  The integral is then, 
 3 2sec sec tan sec tanx dx x x x x dx= −∫ ∫  
Now the new integral also has an odd exponent on the secant and an even exponent on 
the tangent and so the previous examples of products of secants and tangents still won’t 
do us any good. 
 
To do this integral we’ll first write the tangents in the integral in terms of secants. 

 
( )3 2

3

sec sec tan sec sec 1

sec tan sec sec

x dx x x x x dx

x x x dx x dx

= − −

= − +

∫ ∫
∫ ∫

 

 
Now, we can use the results from the previous example to do the second integral and 
notice that the first integral is exactly the integral we’re being asked to evaluate with a 
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minus sign in front.  So, add it to both sides to get, 
 32 sec sec tan ln sec tanx dx x x x x= + +∫  
 
Finally divide by a two and we’re done. 

 ( )3 1sec sec tan ln sec tan
2

x dx x x x x c= + + +∫  

 
The two integrals in the last two examples will arise on occasion in some of the work that 
we’ll be doing in later sections and chapters so it wouldn’t be a bad idea to make sure 
you’ve got them written down somewhere. 
 
Now that we’ve looked at products of secants and tangents let’s also acknowledge that 
because we can relate cosecants and cotangents by  
 2 21 cot cscx x+ =  
all of the work that we did for products of secants and tangents will also work for 
products of cosecants and cotangents.  I’ll leave it to you to verify that. 
 
There is one final topic to be discussed in this section before moving on.  
 
To this point we’ve looked only at products of sines and cosines and products of secants 
and tangents.  However, the methods used to do these integrals can also be used on some 
quotients involving sines and cosines and quotients involving secants and tangents (and 
hence quotients involving cosecants and cotangents). 
 
Let’s take a quick look at an example of this. 
 
Example 11  Evaluate the following integral. 

 
7

4

sin
cos

x dx
x

⌠
⎮
⌡

 

Solution 
If this were a product of sines and cosines we would know what to do.  We would strip 
out a sine (since the exponent on the sine is odd) and convert the rest to cosines.  We’ll 
the same thing will work in this case. 

 
( )

( )

7 6

4 4

32

4

32

4

sin sin sin
cos cos

sin
sin

cos

1 cos
sin

cos

x xdx x dx
x x

x
x dx

x

x
x dx

x

=

=

−
=

⌠ ⌠
⎮ ⎮
⌡ ⌡

⌠
⎮
⌡

⌠
⎮
⌡

 

 
At this point all we need to do is use the substitution cosu x= and we’re done. 
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( )327

4 4

4 2 2

3
3

3
3

1sin
cos

3 3

1 1 1 13 3
3 3

1 3 13cos cos
3cos cos 3

ux dx du
x u

u u u du

u u c
u u

x x c
x x

− −

−
= −

= − − + −

⎛ ⎞= − − + + − +⎜ ⎟
⎝ ⎠

= − − + +

⌠⌠
⎮ ⎮⌡ ⌡

∫  

 
So, under the right circumstances, we can use the ideas developed to help us deal with 
products of trig functions to deal with quotients of trig functions.  The natural question 
then, is just what are the right circumstances? 
 
First notice that if the quotient had been reversed, 

 
4

7

cos
sin

x dx
x

⌠
⎮
⌡

 

we wouldn’t have been able to strip out a sine. 

 
4 4

7 6

cos cos 1
sin sin sin

x xdx dx
x x x

=⌠ ⌠
⎮ ⎮
⌡ ⌡

 

In this case the “stripped out” sine remains in the denominator and it won’t do us any 
good for the substitution cosu x= since this substitution requires a sine in the numerator 
of the quotient.  Also note that, while we could convert the sines to cosines, the resulting 
integral would still be a fairly difficult integral. 
 
So, we can use the methods we applied to products of trig functions to quotients of trig 
functions provided the term that needs parts stripped out in is the numerator of the 
quotient. 
 
 

 Trig Substitutions 
As we have done in the last couple of sections, let’s start off with a couple of integrals 
that we should already be able to do with a standard substitution. 

 
( )

3
2 2 2

2

2

125 4 25 4
75
1 25 4
2525 4

x x dx x c

x dx x c
x

− = − +

= − +
−

⌠
⎮
⌡

∫
 

Both of these used the substitution 225 4u x= − . 
 
However, let’s take a look at the following integral. 
 
Example 1  Evaluate the following integral. 
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225 4x dx

x
−⌠

⎮
⌡

 

Solution 
In this case the substitution 225 4u x= −  will not work and so we’re going to have to do 
something different for this integral.   
 
It would be nice if we could get rid of the square root somehow.  The following 
substitution will do that for us. 

 2 sec
5

x θ=  

Do not worry about where this came from at this point.  As we work the problem you will 
see that it works and that if we have a similar type of square root in the problem we can 
always use a similar substitution. 
 
Notice that this is not the standard substitution we are used to working with.  To this 
point we’ve used substitution that were in the form ( )u f x= .  In this case we are going 
to explicitly give a substitution for x.  The substitution will work in pretty much the same 
manner however.  Before we actually do the substitution however let’s verify the claim 
that this will allow us to get rid of the square root. 

 ( )2 2 2 2425 4 25 sec 4 4 sec 1 2 sec 1
25

x θ θ θ⎛ ⎞− = − = − = −⎜ ⎟
⎝ ⎠

 

 
To get rid of the square root all we need to do is recall the relationship, 
 2 2 2 2tan 1 sec sec 1 tanθ θ θ θ+ = ⇒ − =  
 
Using this fact the square root becomes, 
 2 225 4 2 tan 2 tanx θ θ− = =  
 
Note the presence of the absolute value bars there.  These are important.  Recall that 
 2x x=  
There should always be absolute value bars at this stage.  If we knew that tanθ  was 
always positive or always negative we could eliminate the absolute value bars using, 

 
if 0
if 0

x x
x

x x
≥⎧

= ⎨− <⎩
 

 
Without limits we won’t be able to determine this, however, we will need to eliminate 
them in order to do the integral.  Therefore, since we doing an indefinite integral we will 
assume that tanθ  will be positive and so we can drop the absolute value bars.  This 
gives, 
 225 4 2 tanx θ− =  
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So, we were able to eliminate the square root using this substitution.  Let’s go ahead and 
put the substitution into the integral and see what we get.  In doing the substitution don’t 
forget that well also need to substitute for the dx.  This is easy enough to get from the 
substitution. 

 2 2sec sec tan
5 5

x dx dθ θ θ θ= ⇒ =  

 
Using this substitution the integral becomes, 

 

2

2
5

2

25 4 2 tan 2 sec tan
sec 5

2 tan

x dx d
x

d

θ θ θ θ
θ

θ θ

− ⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

⌠ ⌠
⎮⎮
⌡⌡

∫
 

 
So, with this substitution we were able to reduce the given integral to an integral 
involving trig functions and we saw how to do these problems in the previous section. 
 
Let’s finish the integral. 

 

( )

2
225 4 2 sec 1

2 tan

x dx d
x

c

θ θ

θ θ

−
= −

= − +

⌠
⎮
⌡ ∫  

 
So, we’ve got an answer for the integral.  Unfortunately the answer isn’t given in x’s as it 
should be.  So, we need to write our answer in terms of x.  We can do this with some right 
triangle trig.  From our original substitution we have, 

 5 hypotenusesec
2 adjacent
xθ = =  

This gives the following right triangle. 

 
From this we can see that, 

 
225 4tan

2
xθ −

=  

We can deal with the θ  in one of any variety of ways.  From our substitution we can see 
that, 

 1 5sec
2
xθ − ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

While this is a perfectly acceptable method of dealing with the θ  we can use any of the 
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possible six inverse trig functions and since sine and cosine are the two trig functions 
most people are familiar with we will usually use the inverse sine or inverse cosine.  In 
this case we’ll use the inverse cosine. 

 1 2cos
5x

θ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
So, with all of this the integral becomes, 

 

2 2
1

2 1

25 4 25 4 22 cos
2 5

225 4 2cos
5

x xdx c
x x

x c
x

−

−

⎛ ⎞− − ⎛ ⎞= − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

⌠
⎮
⌡  

We now have the answer back in terms of x. 
 
Wow!  That was a lot of work.  Most of these won’t take as long to work however.  This 
first one needed lot’s of explanation since it was the first one.  The remaining examples 
won’t need quite as much explanation and so won’t take as long to work. 
 
However, before we move onto more problems let’s first address the issue of definite 
integrals and how the process differs in these cases. 
 
Example 2  Evaluate the following integral. 

 
4

25

2
5

25 4x dx
x

−⌠
⎮
⌡

 

Solution 
The limits here won’t change the substitution so that will remain the same. 

 2 sec
5

x θ=  

Using this substitution the square root still reduces down to, 
 225 4 2 tanx θ− =  
 
However, unlike the previous example we can’t just drop the absolute value bars.  In this 
case we’ve got limits on the integral and so we can use the limits as well as the 
substitution to determine the range of θ  that we’re in.  Once we’ve got that we can 
determine how to drop the absolute value bars. 
 
Here’s the limits of θ . 

 

2 2 2 sec 0
5 5 5
4 4 2 sec
5 5 5 3

x

x

θ θ

πθ θ

= ⇒ = ⇒ =

= ⇒ = ⇒ =
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In the range of 0
3
πθ≤ ≤  tangent is positive and so in this case we can just drop the 

absolute value bars.  So, let’s do the substitution.  Note that the work is identical to the 
previous example and so most of it is left out. 

 ( )

4
25 23

02
5

3

0

25 4 2 sec 1

2 tan

22 3
3

x dx d
x

π

π

θ θ

θ θ

π

−
= −

= −

= −

⌠
⎮
⌡ ∫

 

Note that because of the limits we didn’t need to resort to a right triangle to complete the 
problem. 
 
Let’s take a look at a different set of limits for this integral. 
 
Example 3  Evaluate the following integral. 

 
2

25

4
5

25 4x dx
x

−

−

−⌠
⎮
⌡

 

Solution 
Again, the substitution and square root are the same as the first two examples. 

 22 sec 25 4 2 tan
5

x xθ θ= − =  

 
Let’s next see the limits θ  for this problem. 

 

2 2 2 sec
5 5 5
4 4 2 2sec
5 5 5 3

x

x

θ θ π

πθ θ

= − ⇒ − = ⇒ =

= − ⇒ − = ⇒ =
 

Note that in determining the value of θ  we used the smallest positive value.  Now in the 

range of 2
3
π θ π≤ ≤  tangent is negative and so in this case we can drop the absolute 

value bars, but will need to add in a minus sign upon doing so.  In other words, 
 225 4 2 tanx θ− = −  
 
So, the only change this will make in the integration process is to put a minus sign in 
front of the integral.  The integral is then, 
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 ( )

2
25 2

2
4 3
5

2 3

25 4 2 sec 1

2 tan

2 2 3
3

x dx d
x

π

π

π

π

θ θ

θ θ

π

−

−

−
= − −

= − −

= −

⌠
⎮
⌡ ∫

 

 
In the last two examples we saw that we have to be very careful with definite integrals.  
We need to make sure that we determine the limits on θ  and whether or not this will 
mean that we can drop the absolute value bars or if we need to add in a minus sign when 
we drop them. 
 
Before moving on to the next example let’s get the general form for the substitution that 
we used in the previous set of examples. 

2 2 2 secab x a x
b

θ− ⇒ =  

 
Let’s work a new and different type of example. 
 
Example 4  Evaluate the following integral. 

 
4 2

1
9

dx
x x−

⌠
⎮
⌡

 

Solution 
Now, the square root in this problem looks to be (almost) the same as the previous ones 
so let’s try the same type of substitution and see if it will work here as well. 
 3secx θ=  
 
Using this substitution the square root becomes, 
 2 2 2 29 9 9sec 3 1 sec 3 tanx θ θ θ− = − = − = −  
 
So, this will be trouble.  Using this substitution we will get complex values and we don’t 
want that.  So, using secant for the substitution won’t work. 
 
However, the following substitution (and differential) will work. 

3sin 3cosx dx dθ θ θ= =  
 
With this substitution the square root is, 
 2 2 29 3 1 sin 3 cos 3 cos 3cosx θ θ θ θ− = − = = =  
We were able to drop the absolute value bars because we are doing an indefinite integral 
and so we’ll assume that everything is positive. 
 
The integral is now, 
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( )44 2

4

4

1 1 3cos
81sin 3cos9

1 1
81 sin
1 csc
81

dx d
x x

d

d

θ θ
θ θ

θ
θ

θ θ

=
−

=

=

⌠⌠
⎮ ⎮
⌡ ⌡

⌠⎮
⌡

∫

 

 
In the previous section we saw how to deal with integrals in which the exponent on the 
secant was even and since cosecants behave an awful lot like secants we should be able to 
do something similar with this. 
 
Here is the integral. 

 
( )

2 2

4 2

2 2

2

3

1 1 csc csc
819
1 cot 1 csc cot
81

1 1
81
1 1 cot cot
81 3

dx d
x x

d u

u du

c

θ θ θ

θ θ θ θ

θ θ

=
−

= + =

= − +

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

⌠
⎮
⌡ ∫

∫

∫
 

 
Now we need to go back to x’s using a right triangle.  Here is the right triangle for this 
problem and trig functions for this problem. 

 
29sin cot

3
x x

x
θ θ −

= =  

 
The integral is then, 

 

( )

3
2 2

4 2

3
2 2 2

3

1 1 1 9 9
81 39

9 9
243 81

x xdx c
x xx x

x x c
x x

⎛ ⎞⎛ ⎞− −⎜ ⎟= − + +⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

− −
= − − +

⌠
⎮
⌡

 

 
Here’s the general form for this type of square root. 
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2 2 2 sinaa b x x
b

θ− ⇒ =  

 
There is one final case that we need to look at.  The next integral will also contain 
something that we need to make sure we can deal with. 
 
Example 5  Evaluate the following integral. 

 
( )

1
6 5

3
2 20 36 1

x dx
x +

⌠
⎮
⎮
⌡

 

Solution 
First, notice that there really is a square root in this problem even though it isn’t explicitly 
written out. 

 ( ) ( ) ( )
33 1 3

2 2 22 236 1 36 1 36 1x x x
⎛ ⎞

+ = + = +⎜ ⎟
⎝ ⎠

 

 
This square root is not in the form we saw in the previous examples.  Here we will use 
the substitution. 

 21 1tan sec
6 6

x dx dθ θ θ= =  

 
With this substitution the denominator becomes, 

 ( ) ( ) ( )3 3 3 32 2 236 1 tan 1 sec secx θ θ θ+ = + = =  

 
Now, because we have limits we’ll need to convert them to θ  so we can determine how 
to drop the absolute value bars. 

 

10 0 tan 0
6

1 1 1 tan
6 6 6 4

x

x

θ θ

πθ θ

= ⇒ = ⇒ =

= ⇒ = ⇒ =
 

In this range secant is positive and so we can drop the absolute value bars. 
 
Here is the integral, 

 ( )

1
6 55 14 27776

3 3
2 020

54

0

tan 1 sec
sec 636 1

1 tan
46656 sec

x dx d
x

d

π

π

θ
θ θ

θ

θ θ
θ

⎛ ⎞= ⎜ ⎟
⎝ ⎠+

=

⌠ ⌠⎮ ⎮⎮ ⌡⌡

⌠
⎮
⌡

 

 
There are several ways to proceed from this point.  Normally with an odd exponent on 
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the tangent we would strip on of them out and convert to secants.  However, that would 
require that we also have a secant in the numerator which we don’t have.  Therefore, it 
seems like the best way to do this one would be to convert the integrand to sines and 
cosines. 

 ( )
( )

1
6 5 54

3 4
2 020

224

4
0

1 sin
46656 cos36 1

1 cos1 sin
46656 cos

x dx d
x

d

π

π

θ θ
θ

θ
θ θ

θ

=
+

−
=

⌠ ⌠⎮ ⎮⎮ ⌡⌡

⌠
⎮
⌡

 

 
We can now use the substitution cosu θ=  and we might as well convert the limits as 
well. 

 
0 cos 0 1

2cos
4 4 2

u

u

θ

π πθ

= = =

= = =
 

The integral is then, 

 

( )

1
6 25

4 22
3 1

2 20

2
2

3
1

1 2 1
4665636 1

1 1 2
46656 3

1 11 2
17496 279936

x dx u u du
x

u
u u

− −= − − +
+

⎛ ⎞= − − + +⎜ ⎟
⎝ ⎠

= −

⌠
⎮
⎮
⌡

∫

 

 
The general form for this final type of square root is 

2 2 2 tanaa b x x
b

θ+ ⇒ =  

 
We have a couple of final examples to work in this section.  Not all trig substitutions will 
just jump right out at us.  Sometimes we need to do a little work on the integrand first to 
get it into the correct form. 
 
Example 6  Evaluate the following integral. 

 
22 4 7

x dx
x x− −

⌠
⎮
⌡

 

Solution 
In this case the quantity under the root doesn’t obviously fit into any of the cases we 
looked at above and in fact isn’t in the any of the forms we saw in the previous examples.  
Note however that if we complete the square on the quadratic we can make it look 
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somewhat like the above integrals. 
 
Remember that completing the square requires a coefficient of one in front of the x2.  
Once we have that we take half the coefficient of the x, square it, and then add and 
subtract it to the quantity.  Here is the completing the square for this problem. 

 ( ) ( )2 22 27 7 92 2 2 2 1 1 2 1 2 1 9
2 2 2

x x x x x x⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − = − + − − = − − = − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
So, the root becomes, 

 ( )222 4 7 2 1 9x x x− − = − −  
 
This looks like a secant substitution except we don’t just have an x that is squared.  That 
is okay, it will work the same way. 

 3 3 31 sec 1 sec sec tan
2 2 2

x x dx dθ θ θ θ θ− = = + =  

The root reduces to, 

 ( )22 2 22 4 7 2 1 9 9sec 9 3 tan 3 tan 3tanx x x θ θ θ θ− − = − − = − = = =  
Note we could drop the absolute value bars since we are doing an indefinite integral. 
 
Here is the integral. 

 

3
2

2

2

1 sec 3 sec tan
3tan 22 4 7

1 3sec sec
22

1 3ln sec tan tan
22

x dx d
x x

d

c

θ
θ θ θ

θ

θ θ θ

θ θ θ

+ ⎛ ⎞= ⎜ ⎟
⎝ ⎠− −

= +

= + + +

⌠⌠
⎮ ⎮⌡ ⌡

⌠
⎮
⌡

 

 
And here is the right triangle for this problem. 

 ( ) 22 1 2 4 7sec tan
3 3
x x xθ θ

− − −
= =  

 
The integral is then, 
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 ( ) 2 2

2

2 11 2 4 7 2 4 7ln
3 3 222 4 7

xx x x x xdx c
x x

− − − − −
= + + +

− −

⌠
⎮
⌡

 

 
Example 7  Evaluate the following integral. 
 
 4 21x x dx+∫e e  
Solution 
This doesn’t look to be anything like the other problems in this section.  However it is.  
To see this we first need to notice that, 
 ( )22x x=e e  
With this we can use the following substitution. 
 2tan secx x dx dθ θ θ= =e e  
Remember that to compute the differential all we do is differentiate both sides and then 
tack on dx or dθ  onto the appropriate side. 
 
With this substitution the square root becomes, 

 ( )22 2 21 1 1 tan sec sec secx x θ θ θ θ+ = + = + = = =e e  

Again, we can drop the absolute value bars because we are doing an indefinite integral. 
 
Here’s the integral. 

 

( ) ( )
( )( )

( )

4 2 3 2

3 2

3 2

2 2

4 2

5 3

1 1

1

tan sec sec

sec 1 sec sec tan sec

1 1sec sec
5 3

x x x x x

x x x

dx dx

dx

d

d u

u u du

c

θ θ θ θ

θ θ θ θ θ θ

θ θ

+ = +

= +

=

= − =

= −

= − +

∫ ∫
∫
∫
∫
∫

e e e e e

e e e

 

 
Here is the right triangle for this integral. 

 
2

21tan sec 1
1 1

x x
xθ θ +

= = = +
e e e  
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The integral is then, 

 ( ) ( )
5 3

4 2 2 22 21 11 1 1
5 3

x x x xdx c+ = + − + +∫e e e e  

 
So, as we’ve seen in the final two examples in this section some integrals that look 
nothing like the first few examples can in fact be turned into a trig substitution problem 
with a little work. 
 
Before leaving this section let’s summarize all three cases in one place. 

2 2 2

2 2 2

2 2 2

sin

sec

tan

aa b x x
b
ab x a x
b
aa b x x
b

θ

θ

θ

− ⇒ =

− ⇒ =

+ ⇒ =

 

 
 

 Partial Fractions 
In this section we are going to take a look a integrals of rational expressions of 
polynomials and once again let’s start this section out with an integral that we can already 
do so we can contrast it with the integrals that we’ll be doing in this section. 

 
( )2

2

2

2 1 1 using    6   and    2 1
6

ln 6

x dx du u x x du x dx
x x u

x x c

−
= = − + = −

− +

= − + +

⌠ ⌠⎮ ⎮
⌡ ⌡  

 
So, if the numerator is the derivative of the denominator (or a constant multiple of the 
derivative of the denominator) doing this kind of integral is fairly simple.  However, 
often the numerator isn’t the derivative of the denominator (or a constant multiple).  For 
example, consider the following integral. 

 2

3 11
6

x dx
x x

+
− −

⌠⎮
⌡

 



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 34

In this case the numerator is definitely not the derivative of the denominator nor is it a 
constant multiple of the derivative of the denominator.  Therefore, the simple substitution 
that we used above won’t work. 
 
However, if we notice that 

 2

3 11 4 1
6 3 2

x
x x x x

+
= −

− − − +
 

then the integral can be done. 

 2

3 11 4 1
6 3 2

4ln 3 ln 2

x dx dx
x x x x

x x c

+
= −

− − − +
= − − + +

⌠ ⌠⎮ ⎮
⌡ ⌡  

 
This process of taking a rational expression and decomposing it into simpler rational 
expressions that we can add or subtract to get the original rational expression is called 
partial fraction decomposition.  Many integrals involving rational expressions can be 
done if we first do partial fractions on the integrand. 
 
So, let’s do a quick review of partial fractions.  We’ll start with a rational expression in 
the form, 

 ( ) ( )
( )

P x
f x

Q x
=  

where both P(x) and Q(x) are polynomials and the degree of P(x) is smaller than the 
degree of Q(x).  Recall that the degree of a polynomial is the largest exponent in the 
polynomial.   Partial fractions can only be done if the degree of the numerator is strictly 
less than the degree of the denominator.  That is important to remember. 
 
So, once we’ve determined that partial fractions can be done we factor the denominator 
as completely as possible.  Then for each factor in the denominator we can use the 
following table to determine the term(s) we pick up in the partial fraction decomposition. 
 

Factor in 
denominator 

Term in partial 
fraction decomposition 

ax b+  
A

ax b+
 

( )kax b+  ( ) ( )
1 2

2
k

k

AA A
ax b ax b ax b

+ + +
+ + +

"  

2ax bx c+ +  2

Ax B
ax bx c

+
+ +

 

( )2 k
ax bx c+ +  ( ) ( )

1 1 2 2
22 2 2

k k
k

A x BA x B A x B
ax bx c ax bx c ax bx c

++ +
+ + +

+ + + + + +
"  
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Notice that the first and third cases are really special cases of the second and fourth cases 
respectively. 
 
There are several methods for determining the coefficients for each term and we will go 
over each of those in the following examples. 
 
Let’s start with actually doing the integral above. 
 
Example 1  Evaluate the following integral. 

 2

3 11
6

x dx
x x

+
− −

⌠⎮
⌡

 

Solution 
The first step is to factor the denominator as much as possible and get the form of the 
partial fraction decomposition. 

 
( )( )

3 11
3 2 3 2
x A B

x x x x
+

= +
− + − +

 

The next step is to actually add the right side back up. 

 
( )( )

( ) ( )
( )( )

2 33 11
3 2 3 2

A x B xx
x x x x

+ + −+
=

− + − +
 

 
Now, we need to choose A and B so that the numerators of these two are equal for every 
x.  So, the next step is to set numerators equal. 
 ( ) ( )3 11 2 3x A x B x+ = + + −  
Note that in most problems we will go straight from the general form of the 
decomposition to this step and not bother with actually adding the terms back up.  The 
only point to adding the terms is to get the numerator and we can get that without actually 
writing down the results of the addition. 
 
At this point we have one of two ways to proceed.  One way will always work, but is 
often more work.  The other, while it won’t always work, is often quicker when it does 
work.  In this case both will work and so we’ll use the quicker way for this example.  
We’ll take a look at the other method in a later example. 
 
What we’re going to do here is to notice that the numerators must be equal for any x that 
we would choose to use.  In particular the numerators must be equal for x=-2 and x=3.  
So, let’s plug these in and see what we get. 

 
( ) ( )

( ) ( )
2 5 0 5 1

3 20 5 0 4

x A B B

x A B A

= − = + − ⇒ = −

= = + ⇒ =
 

 
So, by carefully picking the x’s we got the unknown constants to quickly drop out.  Note 
that these are the values we claimed they would be above. 
 
At this point there really isn’t a whole lot to do other than the integral. 



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 36

 

2

3 11 4 1
6 3 2

4 1
3 2

4ln 3 ln 2

x dx dx
x x x x

dx dx
x x

x x c

+
= −

− − − +

= −
− +

= − − + +

⌠ ⌠⎮ ⎮
⌡ ⌡

⌠ ⌠⎮ ⎮
⌡ ⌡

 

 
Recall that to do this integral we first split it up into two integrals and then used the 
substitutions, 
 3 2u x v x= − = +  
on the integrals to get the final answer. 
 
Before moving onto the next example a couple of quick notes are in order here.  First, 
many of the integrals in partial fractions problems come down to the type of integrals 
seen above.  Make sure that you can do those integrals.   
 
There is also another integral that often shows up in these kinds of problems so we may 
as well give the formula for it here since we are already on the subject. 

 1
2 2

1 1 tan xdx c
x a a a

− ⎛ ⎞= +⎜ ⎟+ ⎝ ⎠
⌠⎮
⌡

 

It will be an example or two before we use this so don’t forget about it. 
 
Now, let’s work some more examples. 
 
Example 2  Evaluate the following integral. 

 
2

3 2

4
3 4 4

x dx
x x x

+
+ −

⌠
⎮
⌡

 

Solution 
We won’t be putting as much detail into this solution as we did in the previous example.  
The first thing is to factor the denominator and get the form of the partial fraction 
decomposition. 

 
( )( )

2 4
2 3 2 2 3 2

x A B C
x x x x x x

+
= + +

+ − + −
 

 
The next step is to set numerators equal.  If you need to actually add the right side 
together to get the numerator for that side then you should do so, however, it will 
definitely make the problem quicker if you can do this step in your head. 
 ( )( ) ( ) ( )2 4 2 3 2 3 2 2x A x x Bx x Cx x+ = + − + − + +  
 
As with the previous example it looks like we can just pick a few values of x and find the 
constants so let’s do that. 
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( )( )

( )( )

0 4 2 2 1
12 8 2 8
2

2 40 2 8 40 5
3 9 3 3 16 2

x A A

x B B

x C C

= = − ⇒ = −

= − = − − ⇒ =

⎛ ⎞⎛ ⎞= = ⇒ = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
Note that unlike the first example most of the coefficients here are fractions.  That is not 
unusual so don’t get excited about it when it happens. 
 
Now, let’s do the integral. 

 

2 51
2 2

3 2

4 1
3 4 4 2 3 2

1 5ln ln 2 ln 3 2
2 6

x dx dx
x x x x x x

x x x c

+
= − + +

+ − + −

= − + + + − +

⌠ ⌠⎮⎮
⌡⌡  

 
Again, as noted above, integrals that generate natural logarithms are very common in 
these problems so make sure you can do them. 
 
Example 3  Evaluate the following integral. 

 
( ) ( )

2

2 2

29 5
4 3

x x dx
x x

− +

− +

⌠
⎮
⌡

 

Solution 
This time the denominator is already factored so let’s just jump right to the partial 
fraction decomposition. 

 
( ) ( ) ( )

2

2 2 22

29 5
4 34 3 4

x x A B Cx D
x xx x x

− + +
= + +

− +− + −
 

Setting numerators gives, 
 ( )( ) ( ) ( )( )22 2 229 5 4 3 3 4x x A x x B x Cx D x− + = − + + + + + −  
 
In this case we aren’t going to be able to just pick values of x that will give us all the 
constants.  Therefore, we will need to work this the second (and often longer) way.  The 
first step is to multiply out the right side and collect all the like terms together.  Doing 
this gives, 
 ( ) ( ) ( )2 3 229 5 4 8 3 16 8 12 3 16x x A C x A B C D x A C D x A B D− + = + + − + − + + + − − + +  
 
Now we need to choose A, B, C, and D so that these two are equal.  In other words we 
will need to set the coefficients of like powers of x equal.  This will give a system of 
equations that can be solved. 
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3

2

1

0

: 0
: 4 8 1

1, 5, 1, 2
: 3 16 8 29
: 12 3 16 5

x A C
x A B C D

A B C D
x A C D
x A B D

⎫+ =
⎪

− + − + = ⎪ ⇒ = = − = − =⎬
+ − = − ⎪

⎪− + + = ⎭

 

 
Note that we used x0 to represent the constants.  Also note that these systems can often be 
quite large and have a fair amount of work involved in solving them.  The best way to 
deal with these is to use some form of computer aided solving techniques. 
 
Now, let’s take a look at the integral. 
  

 

( ) ( ) ( )

( )

2

2 2 22

2 2 2

2 1

29 5 1 5 2
4 34 3 4

1 5 2
4 3 34

5 1 2ln 4 ln 3 tan
4 2 3 3

x x xdx dx
x xx x x

x dx
x x xx

xx x c
x

−

− + − +
= − +

− +− + −

= − − +
− + +−

⎛ ⎞= − + − + + +⎜ ⎟− ⎝ ⎠

⌠ ⌠
⎮ ⎮

⌡⌡

⌠
⎮
⌡

 

 
In order to take care of the third term we needed to split it up into two separate terms.  
Once we’ve done this we can do all the integrals in the problem.  The first two use the 
substitution 4u x= − , the third uses the substitution 2 3v x= +  and the fourth term uses 
the formula given above for inverse tangents. 
 
Example 4  Evaluate the following integral. 

 
( )( )
3 2

22

10 3 36

1 4

x x x dx
x x

+ + +

− +

⌠
⎮⎮
⌡

 

Solution 
Let’s first get the general form of the partial fraction decomposition. 

 
( )( ) ( )
3 2

2 222 2

10 3 36
1 41 4 4

x x x A Bx C Dx E
x xx x x

+ + + + +
= + +

− +− + +
 

 
Now, set numerators equal, expand the right side and collect like terms. 

 

( ) ( )( )( ) ( )( )
( ) ( ) ( )

( )

23 2 2 2

4 3 2

10 3 36 4 1 4 1

8 4

4 4 16 4

x x x A x Bx C x x Dx E x

A B x C B x A B C D x

B C D E x A C E

+ + + = + + + − + + + −

= + + − + + − + +

− + − + + − −

 

 
Setting coefficient equal gives the following system. 
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4

3

2

1

0

: 0
: 1
: 8 4 10 2, 2, 1, 1, 0
: 4 4 3
: 16 4 36

x A B
x C B
x A B C D A B C D E
x B C D E
x A C E

⎫+ =
⎪

− = ⎪
⎪+ − + = ⇒ = = − = − = =⎬
⎪− + − + = ⎪
⎪− − = ⎭

 

 
Don’t get excited if some of the coefficients end up being zero.  It happens on occasion. 
 
Here’s the integral. 

 

( )( ) ( )

( )

3 2

2 222 2

22 2 2

2 1
2

10 3 36 2 2 1
1 41 4 4

2 2 1
1 4 4 4

1 1 12ln 1 ln 4 tan
2 2 2 4

x x x x xdx dx
x xx x x

x x dx
x x x x

xx x c
x

−

+ + + − −
= + +

− +− + +

= − − +
− + + +

⎛ ⎞= − − + − − +⎜ ⎟ +⎝ ⎠

⌠ ⌠
⎮ ⎮⎮ ⌡⌡

⌠
⎮
⌡

 

 
To this point we’ve only looked at rational expressions where the degree of the numerator 
was strictly less that the degree of the denominator.  Of course not all rational expressions 
will fit into this form and so we need to take a look at a couple of examples where this 
isn’t the case. 
 
Example 5  Evaluate the following integral. 

 
4 3 2

3 2

5 6 18
3

x x x dx
x x

− + −
−

⌠
⎮
⌡

 

Solution 
So, in this case the degree of the numerator is 4 and the degree of the numerator is 3.  
Therefore, partial fractions can’t be done on this rational expression. 
 
To fix this up we’ll need to do long division on this to get it into a form that we can deal 
with.  Here is the work for that. 

 
( )

( )

3 2 4 3 2

4 3

3 2

3 2

2

3 5 6 18

3

2 6 18

2 6

18

x

x x x x x

x x

x x

x x

−

− − + −

− −

− + −

− − +

−
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So, from the long division we see that, 

 
4 3 2

3 2 3 2

5 6 18 182
3 3

x x x x
x x x x

− + −
= − −

− −
 

and the integral becomes, 

 

4 3 2

3 2 3 2

3 2

5 6 18 182
3 3

182
3

x x x dx x dx
x x x x

x dx dx
x x

− + −
= − −

− −

= − −
−

⌠ ⌠⎮⎮ ⌡⌡

⌠⎮
⌡∫

 

 
The first integral we can do easily enough and the second integral is now in a form that 
allows us to do partial fractions.  So, let’s get the general form of the partial fractions for 
the second integrand. 

 
( )2 2

18
3 3

A B C
x x x x x

= + +
− −

 

Setting numerators equal gives us, 
 ( ) ( ) 218 3 3Ax x B x Cx= − + − +  
 
Now, there is a variation of the method we used in the first couple of examples that will 
work here.  There are a couple of values of x that will allow us to quickly get two of the 
three constants, but there is no value of x that will just hand us the third. 
 
What we’ll do in this example is pick x’s to get the two constants that we can easily get 
and then we’ll just pick another value of x that will be easy to work with (i.e. it won’t 
give large/messy numbers anywhere) and then we’ll use the fact that we also know the 
other two constants to find the third. 

 
( )
( )
( ) ( )

0 18 3 6

3 18 9 2

1 18 2 2 2 14 2

x B B

x C C

x A B C A A

= = − ⇒ = −

= = ⇒ =

= = − + − + = − + ⇒ = −

 

 
The integral is then, 

 

4 3 2

3 2 2

2

5 6 18 2 6 22
3 3

1 62 2ln 2ln 3
2

x x x dx x dx dx
x x x x x

x x x x c
x

− + −
= − − − − +

− −

= − + − − − +

⌠ ⌠⎮⎮ ⌡⌡ ∫
 

 
In the previous example there were actually two different ways of dealing with the x2 in 
the denominator.  One is to treat is as a quadratic which would give the following term in 
the decomposition 

 2

Ax B
x
+  

and the other is to treat it as a linear term in the following way, 
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 ( )22 0x x= −  
which gives the following two terms in the decomposition, 

 2

A B
x x

+  

 
We used the second way of thinking about it in our example.  Notice however that the 
two will give identical partial fraction decompositions.  So, why talk about this?  Simple.  
This will work for x2, but what about x3 or x4?  In these cases we really will need to use 
the second way of thinking about these kinds of terms. 
 

 3 4
2 3 2 3 4

A B C A B C Dx x
x x x x x x x

⇒ + + ⇒ + + +  

 
Let’s take a look at one more example. 
 
Example 6  Evaluate the following integral. 

 
2

2 1
x dx

x −
⌠
⎮
⌡

 

Solution 
In this case the numerator and denominator have the same degree.  As with the last 
example we’ll need to do long division to get this into the correct form.  I’ll leave the 
details of that to you to check. 

 
2

2 2 2

1 11
1 1 1

x dx dx dx dx
x x x

= + = +
− − −

⌠ ⌠ ⌠⎮ ⎮⎮ ⌡ ⌡⌡ ∫  

 
So, we’ll need to partial fraction the second integral.  Here’s the decomposition. 

 
( )( )

1
1 1 1 1

A B
x x x x

= +
− + − +

 

Setting numerator equal gives, 
 ( ) ( )1 1 1A x B x= + + −  
Picking value of x gives us the following coefficients. 

 
( )

( )

11 1 2
2

11 1 2
2

x B B

x A A

= − = − ⇒ = −

= = ⇒ =
 

The integral is then, 

 

2 1 1
2 2

2 1 1 1
1 1ln 1 ln 1
2 2

x dx dx dx
x x x

x x x c

= + −
− − +

= + − − + +

⌠ ⌠⎮⎮ ⌡⌡ ∫
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 Integrals Involving Roots 
In this section we’re going to look at an integration technique that can be useful for some 
integrals with roots in them.  We’ve already seen some integrals with roots in them.  
Some can be done quickly with a simple Calculus I substitution and some can be done 
with trig substitutions. 
 
However, not all integrals with roots will allow us to do either of these methods.  Let’s 
look at a couple of examples to see another technique that can be used on occasion to 
help with these integrals. 
 
Example 1  Evaluate the following integral. 

 
3

2
3

x dx
x
+
−

⌠
⎮
⌡

 

Solution 
Sometimes when faced with an integral that contains a root we can use the following 
substitution to simplify the integral into a form that can be easily worked with. 
 3 3u x= −  
 
So, instead of letting u be the stuff under the radical as we often did in Calculus I we let u 
be the whole radical.  Now, there will be a little more work here since we will also need 
to know what x is so we can substitute in for that in the numerator and so we can compute 
the differential, dx.  This is easy enough to get however.  Just solve the substitution for x. 
 3 23 3x u dx u du= + =  
 
Using this substitution the integral is now, 

 

( )

( ) ( )

3
2 4

5 2

5 2
3 3

3 2
3 3 15

3 15
5 2
3 153 3
5 2

u
u du u u du

u

u u c

x x c

+ +
= +

= + +

= − + − +

⌠
⎮
⌡

∫

 

 
So, sometimes, when an integral contains the root ( )n g x  the substitution, 

 ( )nu g x=  
can be used to simplify the integral into a form that we can deal with. 
 
Let’s take a look at another example real quick. 
 
Example 2  Evaluate the following integral. 

 2
3 10

dx
x x− +

⌠
⎮
⌡
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Solution 
We’ll do the same thing we did in the previous example.  Here’s the substitution, 
 210 10 2u x x u dx u du= + = − =  
 
With this substitution the integral is, 

 ( )2 2

2 2 42
10 3 3 103 10

udx u du du
u u u ux x

= =
− − − −− +

⌠ ⌠ ⌠⎮ ⎮⎮ ⌡ ⌡⌡
 

 
This integral can now be done with partial fractions. 

 
( )( )

4
5 2 5 2

u A B
u u u u

= +
− + − +

 

Setting numerators equal gives, 
 ( ) ( )4 2 5u A u B u= + + −  
Picking value of u gives the coefficients. 

 
( )

( )

82 8 7
7
205 20 7
7

u B B

u A A

= − − = − =

= = =
 

 
The integral is then, 

 

20 8
7 72

5 23 10
20 8ln 5 ln 2
7 7
20 8ln 10 5 ln 10 2
7 7

dx du
u ux x

u u c

x x c

= +
− +− +

= − + + +

= + − + + + +

⌠ ⌠⎮⎮ ⌡⌡

 

 
So, we’ve seen a nice method to eliminate roots from the integral and put into a form that 
we can deal with.  Note however, that this won’t always work and sometimes the new 
integral will be just as difficult to do. 
 
 

 Integrals Involving Quadratics 
 To this point we’ve seen quite a few integrals that involve quadratics.  A couple of 
examples are, 

 2 1
2 2 2

1 1 1ln tan
2

x xdx x a c dx
x a x a a a

− ⎛ ⎞= ± + = ⎜ ⎟± + ⎝ ⎠
⌠⌠⎮ ⎮⌡ ⌡

 

 
We also saw that integrals involving 2 2 2b x a− , 2 2 2a b x−  and 2 2 2a b x+  could be 
done with a trig substitution. 
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Notice however that all of these integrals were missing an x term.  They all consist of a 
quadratic term and a constant. 
 
Some integrals involving general quadratics are easy enough to do.  For instance, the 
following integral can be done with a quick substitution. 

 
( )( )2

2

2

2 3 1 1 4 12 1 4 2 3
4 12 1 4

1 ln 4 12 1
4

x dx du u x x du x dx
x x u

x x c

+
= = + − = +

+ −

= + − +

⌠ ⌠⎮ ⎮
⌡ ⌡  

 
Some integrals with quadratics can be done with partial fractions.  For instance, 

 2

10 6 4 2 24ln 5 ln 3 1
3 16 5 5 3 1 3

x dx dx x x c
x x x x

−
= − = + − + +

+ + + +
⌠ ⌠⎮ ⎮
⌡ ⌡

 

 
Unfortunately, these methods won’t work on a lot of integrals.  A simple substitution will 
only work if the numerator is a constant multiple of the derivative of the denominator and 
partial fractions will only work if the denominator can be factored. 
 
This section is how to deal with integrals involving quadratics when the techniques that 
we’ve looked at to this point simply won’t work. 
 
Back in the Trig Substitution section we saw how to deal with square roots that had a 
general quadratic in them.  Let’s take a quick look at another one like that since the idea 
involved in doing that kind integral is exactly what we are going to need for the other 
integrals in this section. 
 
Example 1  Evaluate the following integral. 
 2 4 5x x dx+ +∫  
Solution 
Recall from the Trig Substitution section that in order to do a trig substitution here we 
first needed to complete the square on the quadratic.  This gives, 
 ( )22 24 5 4 4 4 5 2 1x x x x x+ + = + + − + = + +  
 
After completing the square the integral becomes, 

 ( )22 4 5 2 1x x dx x dx+ + = + +∫ ∫  
 
Upon doing this we can identify the trig substitution that we need.  Here it is, 
 22 tan tan 2 secx x dx dθ θ θ θ+ = = − =  

 ( )2 2 22 1 tan 1 sec sec secx θ θ θ θ+ + = + = = =  
 
Recall that since we are doing an indefinite integral we can drop the absolute value bars.  
Using this substitution the integral becomes, 
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( )

2 34 5 sec

1 sec tan ln sec tan
2

x x dx d

c

θ θ

θ θ θ θ

+ + =

= + + +

∫ ∫
 

 
We can finish the integral out with the following right triangle. 

 
2

22 4 5tan sec 4 5
1 1

x x x x xθ θ+ + +
= = = + +  

 
 ( )( )2 2 214 5 2 4 5 ln 2 4 5

2
x x dx x x x x x x c+ + = + + + + + + + + +∫  

 
So, by completing the square we were able to take an integral that had a general quadratic 
in it and convert it into a form that allowed use a known integration technique. 
 
Let’s do a quick review of completing the square before proceeding.  Here is the general 
completing the square formula that we’ll use. 

 
2 2 2 2

2 2

2 2 2 4
b b b bx bx c x bx c x c⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + = + + − + = + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
This will always take a general quadratic and write it in terms of a squared term and a 
constant term. 
 
Recall as well that in order to do this we must have a coefficient of one in front of the x2.  
If not we’ll need to factor out the coefficient before completing the square.  In other 
words, 

 2 2

complete the 
square on this!

b cax bx c a x x
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟+ + = + +
⎜ ⎟
⎜ ⎟
⎝ ⎠
��	�


 

 
Now, let’s see how completing the square can be used to do integrals that we aren’t able 
to do at this point. 
 
Example 2  Evaluate the following integral. 
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 2

1
2 3 2

dx
x x− +

⌠⎮
⌡

 

Solution 
Okay, this doesn’t factor so partial fractions just won’t work on this.  Likewise, since the 
numerator is a “1” we can’t use the substitution 22 3 8u x x= − + .  So, let’s see what 
happens if we complete the square on the denominator. 

 

2 2

2

2

32 3 2 2 1
2
3 9 92 1
2 16 16

3 72
4 16

x x x x

x x

x

⎛ ⎞− + = − +⎜ ⎟
⎝ ⎠
⎛ ⎞= − + − +⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞− +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 
With this the integral is, 

 
( )22 3 7

4 16

1 1 1
2 3 2 2

dx dx
x x x

=
− + − +

⌠⌠⎮ ⎮⌡ ⌡
 

 
Now this may not seem like all that great of a change.  However, notice that we can now 
use the following substitution. 

 3
4

u x du dx= − =  

and the integral is now, 

 2 2 7
16

1 1 1
2 3 2 2

dx du
x x u

=
− + +

⌠⌠⎮ ⎮⌡ ⌡
 

 
We can now see that this is an inverse tangent!  So, using the formula from above we get, 

 

1
2

1

1 1 4 4tan
2 3 2 2 7 7

2 4 3tan
7 7

udx c
x x

x c

−

−

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟− + ⎝ ⎠ ⎝ ⎠
−⎛ ⎞= +⎜ ⎟

⎝ ⎠

⌠⎮
⌡

 

 
Example 3  Evaluate the following integral. 

 2

3 1
10 28
x dx

x x
−

+ +
⌠⎮
⌡

 

Solution 
This example is a little different from the previous one.  In this case we do have an x in 
the numerator however the numerator still isn’t a multiple of the derivative of the 
denominator and so a simple Calculus I substitution won’t work. 
 
So, let’s again complete the square on the denominator and see what we get, 
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 ( )22 210 28 10 25 25 28 5 3x x x x x+ + = + + − + = + +  
 
Upon completing the square the integral becomes, 

 
( )22

3 1 3 1
10 28 5 3
x xdx dx

x x x
− −

=
+ + + +

⌠⌠⎮ ⎮⌡ ⌡
 

 
At this point we can use the same type of substitution that we did in the previous 
example.  The only real difference is that we’ll need to make sure that we plug the 
substitution back into the numerator as well. 
 5 5u x x u dx du= + = − =  
 

 

( )

( )

2 2

2 2

2 1

2 1

3 5 13 1
10 28 3

3 16
3 3

3 16ln 3 tan
2 3 3
3 16 5ln 5 3 tan
2 3 3

ux dx du
x x u

u du
u u

uu c

xx c

−

−

− −−
=

+ + +

= −
+ +

⎛ ⎞= + − +⎜ ⎟
⎝ ⎠

+⎛ ⎞= + + − +⎜ ⎟
⎝ ⎠

⌠⌠⎮ ⎮⌡ ⌡

⌠⎮
⌡

 

 
So, in general when dealing with an integral in the form, 
  

 2

Ax B dx
ax bx c

+
+ +

⌠⎮
⌡

 (1) 

 
where the denominator doesn’t factor we complete the square on the denominator and 
then do a substitution that will yield an inverse tangent and/or a logarithm depending on 
the exact form of the numerator. 
 
Let’s now take a look at a couple of integrals that are in the same general form as (1) 
except the denominator will also be raised to a power.  In other words, let’s look at 
integrals in the form, 

 
( )2 n

Ax B dx
ax bx c

+

+ +

⌠
⎮
⌡

 (2) 

 
Example 4  Evaluate the following integral. 

 
( )32 6 11

x dx
x x− +

⌠
⎮
⌡

 

Solution 
For the most part this integral will work the same as the previous two with one exception 
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that will occur down the road.  So, let’s start by completing the square on the quadratic in 
the denominator. 
 ( )22 26 11 6 9 9 11 3 2x x x x x− + = − + − + = − +  
 
The integral is then, 

 
( ) ( )

3 322 6 11 3 2

x xdx dx
x x x

=
⎡ ⎤− + − +⎣ ⎦

⌠⌠
⎮⎮ ⎮⌡ ⌡

 

 
Now, we will use the same substitution that we’ve used to this point in the previous two 
examples. 
 3 3u x x u dx du= − = + =  
 

 
( ) ( )

( ) ( )

3 32 2

3 32 2

3

6 11 2

3

2 2

x udx du
x x u

u du du
u u

+
=

− + +

= +
+ +

⌠ ⌠
⎮ ⎮
⌡ ⌡

⌠ ⌠
⎮ ⎮
⌡ ⌡

 

 
Now, here is where the differences start cropping up.  The first integral can be done with 
the substitution 2 2v u= +  and isn’t too difficult.  The second integral however, can’t be 
done with the substitution used on the first integral and it isn’t an inverse tangent. 
 
It turns out that a trig substitution will work nicely on the second integral and it will be 
the same as we did when we had square roots in the problem. 
 22 tan 2 secu du dθ θ θ= =  
 
With these two substitutions the integrals become, 
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( ) ( )
( )

( )

( ) ( )

( )( )

( )( )

2
3 332 2

2

32 2

2

2 32 2

2 42

4
22

1 1 3 2 sec
26 11 2 tan 2

1 1 3 2 sec
4 8 tan 1

1 1 3 2 sec
4 82 sec

1 1 3 2 1
4 8 sec3 2

1 1 3 2 cos
4 83 2

x dx dv d
vx x

d
v

d
u

d
x

d
x

θ θ
θ

θ θ
θ

θ θ
θ

θ
θ

θ θ

= +
− + +

= − +
+

= − +
+

= − +
− +

= − +
− +

⌠ ⌠⌠⎮⎮ ⎮⌡⌡ ⌡

⌠
⎮⎮
⌡

⌠
⎮⎮
⌡

⌠⎮
⌡

∫

 

 
Okay, at this point we’ve got two options for the remaining integral.  We can either use 
the ideas we learned in the section about integrals involving trig integrals or we could use 
the following formula. 

 1 21 1cos sin cos cosm m mmd d
m m

θ θ θ θ θ θ− −−
= +∫ ∫  

 
Let’s use this formula to do the integral. 

 

4 3 2

3 0 0

3

1 3cos sin cos cos
4 4
1 3 1 1sin cos sin cos cos cos 1!
4 4 2 2
1 3 3sin cos sin cos
4 8 8

d d

d

θ θ θ θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ

= +

⎛ ⎞= + + =⎜ ⎟
⎝ ⎠

= + +

∫ ∫

∫  

 
Next, let’s use the following right triangle to get this back to x’s. 

 
( ) ( )2 2

3 3 2tan sin cos
2 2 3 2 3 2

u x x

x x
θ θ θ− −

= = = =
− + − +
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The cosine integral is then, 

 

( )
( )( )

( )
( )

( )( ) ( )

4 1
2 22

1
2 22

2 2 3 2 31 3 3 3cos tan
4 8 8 23 23 2

2 3 3 2 3 3 3tan
2 8 8 23 23 2

x x xd
xx

x x x
xx

θ θ −

−

− − −⎛ ⎞= + + ⎜ ⎟− + ⎝ ⎠− +

− − −⎛ ⎞= + + ⎜ ⎟− + ⎝ ⎠− +

∫
 

 
All told then the original integral is, 

 

( ) ( )( )

( )( ) ( )

( )( ) ( )

3 22 2

1
2 22

1
2 22

1 1
46 11 3 2

3 2 2 3 3 2 3 3 3tan
8 2 8 8 23 23 2

1 3 11 9 3 9 2 3tan
8 32 64 23 23 2

x dx
x x x

x x x
xx

x x x c
xx

−

−

= − +
− + − +

⎛ ⎞
− − −⎛ ⎞⎜ ⎟+ + ⎜ ⎟⎜ ⎟− + ⎝ ⎠⎜ ⎟− +

⎝ ⎠

− − −⎛ ⎞= + + +⎜ ⎟− + ⎝ ⎠− +

⌠
⎮
⌡

 

It’s a long and messy answer, but there it is. 
 
Example 5  Evaluate the following integral. 

 
( )22

3

4 2

x dx
x x

−

− −

⌠
⎮
⌡

 

Solution 
As with the other problems we’ll first complete the square on the denominator. 
 ( ) ( ) ( )( ) ( )2 22 2 24 2 2 4 2 1 1 4 1 5 5 1x x x x x x x x− − = − + − = − + + − − = − + − = − +  

The integral is, 

 
( ) ( )

2 222

3 3

4 2 5 1

x xdx dx
x x x

− −
=

⎡ ⎤− − − +⎣ ⎦

⌠⌠
⎮⎮ ⎮⌡ ⌡

 

 
Now, let’s do the substitution. 
 1 1u x x u dx du= + = − =  
and the integral is now, 
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( ) ( )

( ) ( )

2 22 2

2 22 2

3 4

4 2 5

4

5 5

x udx du
x x u

u du du
u u

− −
=

− − −

= −
− −

⌠ ⌠
⎮ ⎮
⌡ ⌡

⌠ ⌠
⎮ ⎮
⌡ ⌡

 

 
In the first integral we’ll use the substitution  
 25v u= −  
and in the second integral we’ll use the following trig substitution 
 5 sin 5 cosu du dθ θ θ= =  
 
Using these substitutions the integral becomes, 

 

( ) ( )
( )

( )

( )

2 222 2

22

4

3

3 1 1 4 5 cos
24 2 5 5sin

1 1 4 5 cos
2 25 1 sin

1 1 4 5 cos
2 25 cos
1 1 4 5 sec
2 25
1 1 2 5 sec tan ln sec tan
2 25

x dx dv d
vx x

d
v

d
v

d
v

c
v

θ θ
θ

θ θ
θ

θ θ
θ

θ θ

θ θ θ θ

−
= − −

− − −

= −
−

= −

= −

= − + + +

⌠ ⌠⌠⎮⎮ ⎮⌡⌡ ⌡

⌠
⎮
⌡

⌠⎮
⌡

∫

 

 
We’ll need the following right triangle to finish this integral out. 

 
( ) ( )2 2

1 5 1sin sec tan
5 5 5 1 5 1

u x x

x x
θ θ θ+ +

= = = =
− + − +

 

 
 
So, going back to x’s the integral becomes, 
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( )

( )
( ) ( ) ( )

( ) ( )

2 22 2 22

2 2

5 13 1 1 2 5 5 1ln
2 5 25 5 14 2 5 1 5 1

1 4 1 2 5 1 5ln
10 255 1 5 1

xx xdx c
u xx x x x

x x c
x x

⎛ ⎞+− +⎜ ⎟= − + + +⎜ ⎟− − +⎜ ⎟− − − + − +⎝ ⎠

− + +
= + +

− + − +

⌠
⎮
⌡

 

 
Often the following formula is needed when using the trig substitution that we used in the 
previous example. 
 

 2 21 2sec tan sec sec
1 1

m m mmd d
m m

θ θ θ θ θ θ− −−
= +

− −∫ ∫  

 
Note that we’ll only need the two trig substitutions that we used here.  The third trig 
substitution that we used will not be needed here.  
 
 

 Using Integral Tables 
 
 
Note : Of all the notes that I’ve written up for download, this is the one section that is 
tied to the book that we are currently using here at Lamar University.  In this section we 
discuss using tables of integrals to help us with some integrals.  However, I haven’t had 
the time to construct a table of my own and so I will be using the tables given in 
Stewart’s Calculus (5th edition).  As soon as I get around to writing my own table I’ll post 
it online and make any appropriate changes to this section. 
 
 
So, with that out of the way let’s get on with this section. 
 
This section is entitled Using Integral Tables and we will be using integral tables.  
However, at some level, this isn’t really the point of this section.  To a certain extent the 
real subject of this section is how to take advantage of known integrals to do integrals 
that may not look like anything the ones that we do know how to do or are given in a 
table of integrals. 
 
For the most part we’ll be doing this by using substitution to put integrals into a form that 
we can deal with.  However, not all of the integrals will require a substitution.  For some 
integrals all that we need to do is a little rewriting of the integrand to get into a form that 
we can deal with. 
 
We’ve already related a new integral to one we could deal with least once.  In the last 
example in the Trig Substitution section we looked at the following integral. 
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 4 21x x dx+∫e e  
 
At first glance this looks nothing like a trig substitution problem.  However, with the 
substitution xu = e  we could turn the integral into, 
 3 21u u du+∫  
which definitely is a trig substitution problem ( tanu θ= ).  We actually did this process 
in a single step by using tanx θ=e , but the point is that with a substitution we were able 
to convert an integral into a form that we could deal with. 
 
So, let’s work a couple examples using substitutions and tables. 
 
Example 1  Evaluate the following integral. 

 
2

2

7 9x dx
x
+⌠

⎮
⌡

 

Solution 
So, the first thing we should do is go to the tables and see if there is anything in the tables 
that is close to this.  In the tables in Stewart we find the following integral, 

 ( )
2 2 2 2

2 2
2 lna u a udu u a u c

u u
+ +

= − + + + +⌠
⎮
⌡

 

 
This is nearly what we’ve got in our integral.  The only real difference is that we’ve got a 
coefficient in front of the x2 and the formula doesn’t.  This is easily enough dealt with.  
All we need to do is the following manipulation on the integrand. 

 
( )27 2 22 7 7

9 9 9
2 2 2 2

9 37 9 3
x x xx dx dx dx dx

x x x x

+ + ++
= = =

⌠ ⌠ ⌠⌠
⎮⎮ ⎮ ⎮

⌡ ⌡ ⌡⌡
 

 

So, we can now use the formula with 7
3

a = . 

 
22 7

9 2
2

7 9 73 ln
9

xx dx x x c
x x

⎛ ⎞⎛ ⎞++ ⎜ ⎟= − + + + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⌠
⎮
⌡

 

 
Example 2  Evaluate the following integral. 

 cos
sin 3sin 9

x dx
x x −

⌠
⎮
⌡

 

Solution 
Going through our tables we aren’t going to find anything that looks like this in them.  
However, notice that with the substitution sinu x=  we can rewrite the integral as, 

 cos 1
sin 3sin 9 3 9

x dx du
x x u u

=
− −

⌠ ⌠
⎮ ⎮
⌡ ⌡
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and this is in the tables. 

 
1

1 1 ln if 0

2 tan if 0

a bu adu c a
u a bu a a bu a

a bu c a
aa

−

+ −
= + >

+ + +

⎛ ⎞+
= + <⎜ ⎟⎜ ⎟−− ⎝ ⎠

⌠
⎮
⌡

 

 
Notice that this is a formula that will depend upon the value of a.  This will happen on 
occasion.  In our case we have a=-9 and b=3 so we’ll use the second formula. 
 

 
( ) ( )

1

1

cos 2 3 9tan
9sin 3sin 9 9

2 3sin 9tan
3 9

x udx c
x x

x c

−

−

⎛ ⎞−
= +⎜ ⎟⎜ ⎟− −− − − ⎝ ⎠

⎛ ⎞−
= +⎜ ⎟⎜ ⎟

⎝ ⎠

⌠
⎮
⌡

 

 
This final example uses a type of formula known as a reduction formula. 
 
Example 3  Evaluate the following integral. 

 4cot
2
x dx⎛ ⎞

⎜ ⎟
⎝ ⎠

⌠
⎮
⌡

 

Solution 

We’ll first need to use the substitution 
2
xu =  since none of the formulas in our tables 

have that in them.  Doing this gives, 

 4 4cot 2 cot
2
x dx u du⎛ ⎞ =⎜ ⎟

⎝ ⎠
⌠
⎮
⌡ ∫  

 
To help us with this integral we’ll use the following formula. 

 1 21cot cot cot
1

n n nu du u u du
n

− −−
= −

−∫ ∫  

 
Formulas like this are called reduction formulas.  Reduction formulas generally don’t 
explicitly give the integral.  Instead they reduce the integral to an easier one.  In fact they 
often reduce the integral to a different version of itself! 
 
For our integral we’ll use n=4. 

 4 3 21cot 2 cot cot
2 3
x dx u u du⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⌠
⎮
⌡ ∫  

 
At this stage we can either reuse the reduction formula with n=2 or use the formula  
 2cot cotu du u u c= − − +∫  
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We’ll reuse the reduction formula with n=2 so we can address something that happens on 
occasion. 

 

4 3 0 0

3

3

3

1 1cot 2 cot cot cot cot 1!
2 3 1

2 cot 2cot 2
3
2 cot 2cot 2
3
2 cot 2cot
3 2 2

x dx u u u du u

u u du

u u u c

x x x c

⎛ ⎞⎛ ⎞ ⎛ ⎞= − − − − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

= − + +

= − + + +

⎛ ⎞ ⎛ ⎞= − + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⌠
⎮
⌡ ∫

∫
 

 
Don’t forget that 0 1a = .  Often people forget that and then get stuck on the final integral! 
 
There really wasn’t a lot to this section.  Just don’t forget that sometimes a simple 
substitution or rewrite of an integral can take it from undoable to doable. 
 

 Integration Strategy 
We’ve now seen a fair number of different integration techniques and so we should 
probably pause at this point and talk a little bit about a strategy to use for determining the 
correct technique to use when faced with an integral. 
 
There are a couple of points that need to be made about this strategy.  First, it isn’t a hard 
and fast set of rules for determining the method that should be used.  It is really nothing 
more than a general set of guidelines that will help us to identify techniques that may 
work.  Some integrals can be done in more than one way and so depending on the path 
you take through the strategy you may end up with a different technique than somebody 
else who also went through this strategy. 
 
Second, while the strategy is presented as a way to identify the technique that could be 
used on an integral also keep in mind that, for many integrals, it can also automatically 
exclude certain techniques as well.  When going through the strategy keep two lists in 
mind.  The first list is integration techniques that simply won’t work and the second list is 
techniques that look like they might work.  After going through the strategy and the 
second list has only one entry then that is the technique to use.  If, on the other hand, 
there are more than one possible technique to use we will then have to decide on which is 
liable to be the best for us to use.  Unfortunately there is no way to teach which technique 
is the best as that usually depends upon the person and which technique they find to be 
the easiest. 
 
Third, don’t forget that many integrals can be evaluated in multiple ways and so more 
than one technique may be used on it.  This has already been mentioned in each of the 
previous points, but is important enough to warrant a separate mention.  Sometimes one 
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technique will be significantly easier than the others and so don’t just stop at the first 
technique that appears to work.  Always identify all possible techniques and then go back 
and determine which you fell will be the easiest for you to use. 
 
Next, it’s entirely possible that you will need to use more than one method to completely 
do an integral.  For instance a substitution may lead to using integration by parts or 
partial fractions integral. 
 
Finally, in my class I will accept any valid integration technique as a solution.  As already 
noted there is often more than one way to do an integral and just because I find one 
technique to be the easiest doesn’t mean that you will as well.  So, in my class, there is no 
one right way of doing an integral.  You may use any integration technique that I’ve 
taught you in this class or you learned in Calculus I to integrals in this class.  In other 
words, always take the approach that you find to be the easiest. 
 
Note that this final point is more geared towards my class and it’s completely possible 
that your instructor may not agree with this and so be careful in applying this point if you 
aren’t in my class. 
 
Okay, let’s get on with the strategy.   
 
 

1. Simplify the integrand, if possible.  This step is very important in the integration 
process.  Many integrals can be taken from impossible or very difficult to very 
easy with a little simplification or manipulation.  Don’t forget basic trig and 
algebraic identities as these can often be used to simplify the integral. 
 
We used this idea when we were looking at integrals involving trig functions.  For 
example consider the following integral. 

2cos x dx∫  
This integral can’t be done as is however, simply by recalling the identity, 

( )( )2 1cos 1 cos 2
2

x x= +  

the integral becomes very easy to do. 
 
Note that this example also shows that simplification does not necessarily mean 
that we’ll write the integrand in a “simpler” form.  It only means that we’ll write 
the integrand into a form that we can deal with and this is often longer and/or 
“messier” than the original integral. 
 

2. See if a “simple” substitution will work.  Look to see if a simple substitution 
can be used instead of the often more complicated methods from Calculus II.  For 
example consider both if the following integrals. 

2
2 1

1
x dx x x dx

x
−

−
⌠⎮
⌡ ∫  
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The first integral can be done with partial fractions and the second could be done 
with a trig substitution.   
 
However, both could also be evaluated using the substitution 2 1u x= −  and the 
work involved in the substitution would be significantly less than the work 
involved in either partial fractions or trig substitution. 
 
So, always look for quick, simple substitutions before moving on to the more 
complicated Calculus II techniques. 
 

3. Identify the type of integral.  Note that any integral may fall into more than one 
of these types.  Because of this fact it’s usually best to go all the way through the 
list and identify all possible types since one may be easier than the other and it’s 
entirely possible that the easier type is listed lower in the list. 
 

a. Is the integrand a rational expression (i.e is the integrand a polynomial 
divided by a polynomial)?  If so, then partial fractions may work on the 
integral. 

b. Is the integrand a polynomial times a trig function, exponential, or 
logarithm?  If so, then integration by parts may work. 

c. Is the integrand a product of sines and cosines, secant and tangents, or 
cosecants and cotangents?  If so, then the topics from the second section 
may work. 
Likewise, don’t forget that some quotients involving these functions can 
also be done using these techniques. 

d. Does the integrand involve 2 2 2b x a+ , 2 2 2b x a− , or 2 2 2a b x− ?  If 
so, then a trig substitution might work nicely. 

e. Does the integrand have roots other than those listed above in it?  If so, 
then the substitution ( )nu g x=  might work. 

f. Does the integrand have a quadratic in it?  If so, then completing the 
square on the quadratic might put it into a form that we can deal with. 
 

4. Can we relate the integral to an integral we already know how to do?  In 
other words, can we use a substitution or manipulation to write the integrand into 
a form that does fit into the forms we’ve looked at previously in this chapter. 
 
A typical example here is the following integral. 

2cos 1 sinx x dx+∫  
This integral doesn’t obviously fit into any of the forms we looked at in this 
chapter.  However, with the substitution sinu x=  we can reduce the integral to 
the form, 

21 u du+∫  
which is a trig substitution problem. 
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5. Do we need to use multiple techniques?  In this step we need to ask ourselves if 
it is possible that we’ll need to use multiple techniques.  The example in the 
previous part is a good example.  Using a substitution didn’t allow us to actually 
do the integral.  All it did was put the integral and put it into a form that we could 
use a different technique on. 
 
Don’t ever get locked into the idea that an integral will only require one step to 
completely evaluate it.  Many will require more than one step. 
 

6. Try again.  If everything that you’ve tried to this point doesn’t work then go back 
through the process and try again.  This time try a technique that that you didn’t 
use the first time around. 

 
 
As noted above this strategy is not a hard and fast set of rules.  It is only intended to 
guide you through the process of best determining how to do any given integral.  Note as 
well that the only place Calculus II actually arises is in the third step.  Steps 1, 2 and 4 
involve nothing more than manipulation of the integrand either through direct 
manipulation of the integrand or by using a substitution.  The last two steps are simply 
ideas to think about in going through this strategy. 
 
Many students go through this process and concentrate almost exclusively on Step 3 
(after all this is Calculus II, so it’s easy to see why they might do that….) to the exclusion 
of the other steps.  One very large consequence of that exclusion is that often a simple 
manipulation or substitution is overlooked that could make the integral very easy to do. 
 
Before moving on to the next section we should work a couple of quick problems 
illustrating a couple of not so obvious simplifications/manipulations and a not so obvious 
substitution. 
 
Example 1  Evaluate the following integral. 

 4

tan
sec

x dx
x

⌠⎮
⌡

 

Solution 
This integral almost falls into the form given in 3c.  It is a quotient of tangent and secant 
and we know that sometimes we can use the same methods for products of tangents and 
secants on quotients.   
 
The process from that section tells us that if we have even powers of secant to strip two 
of them off and convert the rest to tangents.  That won’t work here.  We can split two 
secants off, but they would be in the denominator and they won’t do us any good there.  
Remember that the point of splitting them off is so they would be there for the 
substitution tanu x= .  That requires them to be in the numerator. 
 
So, that won’t work and so we’ll have to find another solution method. 
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There are in fact two solution methods to this integral depending on how you want to go 
about it.  We’ll take a look at both. 
 
Solution 1 
In this solution method we could just convert everything to sines and cosines and see if 
that gives us an integral we can deal with.  

 

4
4

3

3

4

tan sin cos
sec cos

sin cos cos

1 cos
4

x xdx x dx
x x

x x dx u x

u du

x c

=

= =

= −

= − +

⌠ ⌠⎮ ⎮
⌡ ⌡

∫
∫

 

Note that just converting to sines and cosines won’t always work and if it does it won’t 
always work this nicely.  Often there will be a lot more work that would need to be done 
to complete the integral. 
 
Solution 2 
This solution method goes back to dealing with secants and tangents.  Let’s notice that if 
we had a secant in the numerator we could just use secu x=  as a substitution and it 
would be a fairly quick and simple substitution to use.  We don’t have a secant in the 
numerator.  However we could very easily get a secant in the numerator simply by 
multiplying the numerator and denominator by secant. 

 

4 5

5

4

4

tan tan sec sec
sec sec

1

1 1
4 sec
1 cos
4

x x xdx dx u x
x x

du
u

c
x

x c

= =

=

= − +

= − +

⌠ ⌠⎮ ⎮
⌡ ⌡

⌠⎮
⌡  

 
In the previous example we saw two “simplifications” that allowed us to do the integral.  
The first was using identities to rewrite the integral into terms we could deal with and the 
second involved multiplying the numerator and the denominator by something to again 
put the integral into terms we could deal with. 
 
Using identities to rewrite an integral is an important “simplification” and we should not 
forget about it.  Integrals can often be greatly simplified or at least put into a form that 
can be dealt with by using an identity. 
 
The second “simplification” is not used as often, but does show up on occasion so again, 
it’s best to not forget about it.  In fact, let’s take another look at an example in which 
multiplying the numerator and denominator by something will allow us to do an integral. 
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Example 2  Evaluate the following integral. 
 

 1
1 sin

dx
x+

⌠⎮
⌡

 

Solution 
This is an integral in which if we just concentrate on the third step we won’t get 
anywhere.  This integral doesn’t appear to be any of the kinds of integrals that we worked 
in this chapter. 
 
We can do the integral however, if we do the following, 

 

2

1 1 1 sin
1 sin 1 sin 1 sin

1 sin
1 sin

xdx dx
x x x

x dx
x

−
=

+ + −
−

=
−

⌠ ⌠⎮ ⎮
⌡ ⌡

⌠⎮
⌡

 

 
This does not appear to have done anything for us.  However, if we now remember the 
first “simplification” we looked at above we will notice that we can use an identity to 
rewrite the denominator.  Once we do that we can further reduce the integral into 
something we can deal with. 

 

2

2

2

1 1 sin
1 sin cos

1 sin 1
cos cos cos

sec tan sec

tan sec

xdx dx
x x

x dx
x x x

x x x dx

x x c

−
=

+

= −

= −

= − +

⌠ ⌠⎮ ⎮
⌡ ⌡

⌠⎮
⌡

∫

 

 
So, we’ve seen once again that multiplying the numerator and denominator by something 
can put the integral into a form that we can integrate.  Notice as well that this example 
also showed that “simplifications” do not necessarily put an integral into a simpler form.  
They only put the integral into a form that is easier to integrate. 
 
Let’s now take a quick look at an example of a substitution that is not so obvious. 
 
Example 3  Evaluate the following integral. 
 ( )cos x dx∫  

Solution 
We introduced this example saying that the substitution was not so obvious.  However, 
this is really an integral that falls into the form given by 3e in our strategy above.   
However, many people miss that form and so don’t think about it.  So, let’s try the 
following substitution. 
 2 2u x x u dx u du= = =  
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With this substitution the integral becomes, 
 ( )cos 2 cosx dx u u du=∫ ∫  

 
This is now an integration by parts integral.  Remember that often we will need to use 
more than one technique to completely do the integral.  This is a fairly simple integration 
by parts problem so I’ll leave the remainder of the details to you to check. 
 ( ) ( ) ( )( )cos 2 cos sinx dx x x x c= + +∫  

 
Before leaving this section we should also point out that there are integrals out there in 
the world that just can’t be done in terms of functions that we know.  Some examples of 
these are. 

 ( ) ( ) ( )22 sin
cos cos xx x

dx x dx dx dx
x

− ⌠
⎮
⌡∫ ∫ ∫e e  

 
That doesn’t mean that these integrals can’t be done at some level.  If you go to a 
computer algebra system such as Maple and have it do these integrals here is what it will 
return the following. 

 

( )

( )

( ) ( )

( ) ( )

2

2
erf

2
2cos FresnelC

2

sin
Si

cos Cix x

x dx x

x dx x

x
dx x

x

dx

π

π
π

− =

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

=

=

⌠
⎮
⌡

∫

∫

∫

e

e e

 

 
So it appears that these integrals can in fact be done.  However this is a little misleading.  
Here are the definitions of each of the functions given above. 
 
Error Function 

 ( )
0

22erf
x tx dt

π
−= ∫ e  

The Sine Integral 

 ( )
0

sinSi
x tx dt

t
= ⌠⎮

⌡
 

The Fresnel Cosine Integral 

 ( ) 2

0

FresnelC cos
2

x

x t dtπ⎛ ⎞= ⎜ ⎟
⎝ ⎠

⌠
⎮
⌡

 

The Cosine Integral 
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 ( ) ( )
0

cos 1Ci ln
x tx x dt

t
γ −

= + + ⌠⎮
⌡

 

 Where γ  is the Euler-Mascheroni constant. 
 
Note that the first three are simply defined in terms of themselves and so when we say we 
can integrate them all we are really doing is renaming the integral.  The fourth one is a 
little different and yet it is still defined in terms of an integral that can’t be done in 
practice. 
 
It will be possible to integrate every integral given in this class, but it is important to note 
that there are integrals that just can’t be done.  We should also note that after we look at 
Series we will be able to write down series representations of each of the integrals above. 
 
 

 Improper Integrals 
In this section we need to take a look at a couple of different kinds of integrals.  Both of 
these are examples of integrals that are called Improper Integrals.   
 
Let’s start with the first kind of improper integrals that we’re going to take a look at. 
 
Infinite Interval 
In this kind of integrals we are going to take a look at integrals that in which one or both 
of the limits of integration are infinity.  In these cases the interval of integration is said to 
be over an infinite interval. 
 
Let’s take a look at an example that will also show us how we are going to deal with 
these integrals. 
 
Example 1  Evaluate the following integral. 

 2
1

1 dx
x

∞
⌠⎮
⌡

 

Solution 
This is an innocent enough looking integral.  However, because infinity is not a real 
number we can’t just integrate as normal and then “plug in” the infinity to get an answer. 
 
To see how we’re going to do this integral let’s think of this as an area problem.  So 

instead of asking what the integral is, let’s instead ask what the area under ( ) 2

1f x
x

=  on 

the interval [ )1,∞  is. 
 
We still aren’t able to do this, however, let’s step back a little and instead ask what the 
area under f(x) is on the interval [ ]1, t  were 1t >  and t is finite.  This is a problem that we 
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can do. 

 2
1 1

1 1 11
tt

tA dx
x x t

= = − = −⌠⎮
⌡

 

 
Now, we can get the area under f(x) on [ )1,∞  simply by taking the limit of At as t goes to 
infinity. 

 1lim lim 1 1tt t
A A

t→∞ →∞

⎛ ⎞= = − =⎜ ⎟
⎝ ⎠

 

 
This is then how we well do the integral it self. 

 

2 2
1 1

1

1 1lim

1lim

1lim 1

1

t

t

t

t

t

dx dx
x x

x

t

∞

→∞

→∞

→∞

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

⎛ ⎞= −⎜ ⎟
⎝ ⎠

=

⌠ ⌠⎮ ⎮
⌡ ⌡

 

 
So, this is how we will deal with these kinds of integrals in general.  We will replace the 
infinity with a variable (usually t), do the integral and then take the limit of the result as t 
goes to infinity. 
 
On a side note, notice that the area under a curve on an infinite interval was not infinity 
as we might have suspected it to be.  In fact, it was a surprisingly small number.  Of 
course this won’t always be the case, but it is important enough to point out that not all 
areas on an infinite interval will yield infinite areas. 
 
Let’s now get some definitions out of the way.  We will call these integrals convergent if 
the associated limit exists and is a finite number (i.e. it’s not plus or minus infinity) and 
divergent if the associated limits either doesn’t exist or is (plus or minus) infinity. 
 
Let’s now formalize up the method for dealing with infinite intervals.  There are 
essentially three cases that we’ll need to look at. 
 
 

1. If ( )
t

a
f x dx∫  exists for every t a> then, 

 ( ) ( )lim
t

a at
f x dx f x dx

→∞

∞
=∫ ∫  

  provided the limit exists and is finite. 
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2. If  ( )
b

t
f x dx∫  exists for every t b<  then, 

 ( ) ( )lim
b b

tt
f x dx f x dx

− →−∞∞
=∫ ∫  

 provided the limits exists and is finite. 
  

3. If ( )
c

f x dx
−∞∫  and ( )

c
f x dx

∞

∫  are both convergent then, 

 ( ) ( ) ( )
c

c
f x dx f x dx f x dx

− −

∞ ∞

∞ ∞
= +∫ ∫ ∫  

Where c is any number.  Note as well that this requires BOTH of the integrals to 
be convergent in order for this integral to also be convergent.  If either of the two 
integrals is divergent then so is this integral.  

 
 
Let’s take a look at a couple more examples. 
 
Example 2  Determine if the follow integral is convergent or divergent and if it’s 
convergent find it’s value. 

 
1

1 dx
x

∞
⌠⎮
⌡

 

Solution 
So, the first thing we do is convert the integral to a limit. 

 
1 1

1 1lim
t

t
dx dx

x x

∞

→∞
=⌠ ⌠⎮ ⎮

⌡ ⌡
 

Now, do the integral and the limit. 

 

( )

( )( )
1

1

1 lim ln

lim ln ln1

t

t

t

dx x
x

t

∞

→∞

→∞

=

= −

= ∞

⌠⎮
⌡

 

 
So, the limit is infinite and so the integral is divergent. 
 

If we go back to thinking in terms of area notice that the area under ( ) 1g x
x

=  on the 

interval [ )1,∞  is infinite.  This is in contrast to the area under ( ) 2

1f x
x

=  which was 

quite small.  There really isn’t all that much difference between these two functions and 
yet there is a large difference in the area under them.  We can actually extend this out to 
the following fact. 
 
Fact 
If a>0 then 
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1
p

a
dx

x

∞
⌠⎮
⌡

 

is convergent if 1p >  and divergent if 1p ≤ . 
 
One thing to note about this fact is that it’s in essence saying that if an integrand goes to 
zero fast enough then the integral will converge.  How fast is fast enough?  If we use this 

fact as a guide it looks like integrands that go to zero faster than 1
x

 goes to zero will 

probably converge. 
 
Let’s take a look at a couple more examples. 
 
Example 3  Determine if the following integral is convergent or divergent.  If it is 
convergent find its value. 

 
0 1

3
dx

x−∞ −
⌠
⎮
⌡

 

Solution 
There really isn’t much to do with these problems once you know how to do them.  We’ll 
convert the integral to a limit/integral pair, evaluate the integral and then the limit. 

 ( )

0 0

0

1 1lim
3 3

lim 2 3

lim 2 3 2 3

2 3

t
t

t t

t

dx dx
x x

x

t

→−∞
−∞

→−∞

→−∞

=
− −

= − −

= − + −

= − + ∞
= ∞

⌠ ⌠
⎮ ⎮
⌡ ⌡

 

 
So, the limit is infinite and so this integral is divergent. 
 
Example 4  Determine if the following integral is convergent or divergent.  If it is 
convergent find its value. 

 
2xx dx

∞ −

−∞∫ e  

Solution 
In this case we’ve got infinities in both limits and so we’ll need to split the integral up 
into two separate integrals.  We can split the integral up at any point, so let’s choose a=0 
since this will be a convenient point for the evaluate process.  The integral is then, 

 
0

0

2 2 2x x xx dx x dx x dx
∞ ∞− − −

−∞ −∞
= +∫ ∫ ∫e e e  

 
We’ve now got to look at each of the individual limits. 
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0 0

0

2 2

2

2

lim

1lim
2

1 1lim
2 2

1
2

tt

t
t

t

t

x x

x

x dx x dx− −

−∞ →−∞

−

→−∞

−

→−∞

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

= −

∫ ∫e e

e

e
 

 
So, the first integral is convergent.  Note that this does NOT mean that the second 
integral will also be convergent.  So, let’s take a look at that one. 

 

0 0

0

2 2

2

2

lim

1lim
2

1 1lim
2 2

1
2

t

t

t

t

t

t

x x

x

x dx x dx
∞ − −

→∞

−

→∞

−

→∞

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

=

∫ ∫e e

e

e
 

This integral is convergent and so since they are both convergent the integral we were 
actually asked to deal with is also convergent and its value is, 

 
0

0

2 2 2 1 1 0
2 2

x x xx dx x dx x dx
∞ ∞− − −

−∞ −∞
= + = − + =∫ ∫ ∫e e e  

 
Example 5  Determine if the following integral is convergent or divergent.  If it is 
convergent find its value. 

 
2
sin x dx

∞

−∫  

Solution 
First convert to a limit. 

 ( )
( )

2 2

2

sin lim sin

lim cos

lim cos 2 cos

t

t

t

t

t

x dx x dx

x

t

∞

− −→∞

−→∞

→∞

=

= −

= −

∫ ∫
 

This limit doesn’t exist and so the integral is divergent. 
 
In most examples in a Calculus II class that are worked over infinite intervals the limit 
either exists or is infinite.  However, there are limits that don’t exist, as the previous 
example showed, so don’t forget about those. 
 
Discontinuous Integrand 
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We now need to look at the second type of improper integrals that we’ll be looking at in 
this section.  These are integrals that have discontinuous integrands.  The process here is 
basically the same with one on subtle difference.  Here are the general cases that we’ll 
look at for these integrals. 
 
 

1. If f(x) is continuous on the interval [ ),a b  and not continuous at x=b then, 

 ( ) ( )lim
b t

a at b
f x dx f x dx

−→
=∫ ∫  

provided the limit exists and is finite.  Note as well that we do need to use a left 
hand limit here since the interval of integration is entirely on the left side of the 
upper limit. 

  
2. If f(x) is continuous on the interval ( ],a b  and not continuous at x=a then, 

 ( ) ( )lim
b b

a tt a
f x dx f x dx

+→
=∫ ∫  

provided the limit exists and is finite.  In this case we need to use a right hand 
limit here since the interval of integration is entirely on the right side of the lower 
limit. 

  

3. If f(x) is not continuous at x=c where a c b< <  and ( )
c

a
f x dx∫  and ( )

b

c
f x dx∫  

are both convergent then, 

 ( ) ( ) ( )
b c b

a a c
f x dx f x dx f x dx= +∫ ∫ ∫  

As with the infinite interval case this requires BOTH of the integrals to be 
convergent in order for this integral to also be convergent.  If either of the two 
integrals is divergent then so is this integral.  
 

4. If f(x) is not continuous at x=a and x=b and if ( )
c

a
f x dx∫  and ( )

b

c
f x dx∫  are 

both convergent then, 

 ( ) ( ) ( )
b c b

a a c
f x dx f x dx f x dx= +∫ ∫ ∫  

Where c is any number.  Again, this requires BOTH of the integrals to be 
convergent in order for this integral to also be convergent. 

 
 
Note that the limits in these cases really do need to be right or left handed limits.  Since 
we will be working inside the interval of integration we will need to make sure that we 
stay inside that interval.  This means that we’ll used one-sided limits to make sure we 
stay inside the interval. 
 
Let’s do a couple of examples of these kinds of integrals. 
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Example 6  Determine if the following integral is convergent or divergent.  If it is 
convergent find its value. 

 
3

0

1
3

dx
x−

⌠
⎮
⌡

 

Solution 
The problem point is the upper limit so we are in the first case above. 

 ( )
( )

3

30 0

3 0

3

1 1lim
3 3

lim 2 3

lim 2 3 2 3

2 3

t

t

t

t

t

dx dx
x x

x

t

−

−

−

→

→

→

=
− −

= − −

= − −

=

⌠ ⌠
⎮ ⎮
⌡ ⌡

 

The limit exists and is finite and so the integral converges and the integrals value is 2 3 . 
 
Example 7  Determine if the following integral is convergent or divergent.  If it is 
convergent find its value. 

 
3

3
2

1 dx
x−

⌠⎮
⌡

 

Solution 
This integrand is not continuous at x=0 and so we’ll need to split the integral up at that 
point. 

 
3 0 3

3 3 3
2 2 0

1 1 1dx dx dx
x x x− −

= +⌠ ⌠ ⌠⎮ ⎮ ⎮
⌡ ⌡ ⌡

 

 
Now we need to look at each of these integrals and see if they are convergent. 

 

0

3 302 2

20
2

20

1 1lim

1lim
2

1 1lim
2 8

t

t

t

t

t

dx dx
x x

x

t

+

+

+

→− −

→
−

→

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

= −∞

⌠ ⌠⎮ ⎮
⌡ ⌡

 

At this point we’re done.  One of the integrals is divergent that means the integral that we 
were asked to look at is divergent.  We don’t even need to bother with the second 
integral. 
 
Before leaving this section lets note that we can also have integrals that involve both of 
these cases.  Consider the following integral. 
 
Example 8  Determine if the following integral is convergent or divergent.  If it is 
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convergent find its value. 

 2
0

1 dx
x

∞
⌠⎮
⌡

 

Solution 
This is an integral over an infinite interval that also contains a discontinuous integrand.  
To do this integral we’ll need to split it up into two integrals.  We can split it up 
anywhere, but pick a value that will be convenient for evaluation purposes. 

 
1

2 2 2
0 0 1

1 1 1dx dx dx
x x x

∞ ∞

= +⌠ ⌠ ⌠⎮ ⎮ ⎮
⌡ ⌡ ⌡

 

 
In order for the integral in the example to be convergent we will need BOTH of these to 
be convergent.  If one or both are divergent then the whole integral will also be divergent. 
 
We know that the second integral is convergent by the fact given in the infinite interval 
portion above.  So, all we need to do is check the first integral. 

 

1 1

2 200

1

0

0

1 1lim

1lim

1lim 1

t t

t
t

t

dx dx
x x

x

t

+

+

+

→

→

→

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

= ∞

⌠ ⌠⎮ ⎮
⌡ ⌡

 

 
So, the first integral is divergent and so the whole integral is divergent. 
 
 

 Comparison Test for Improper Integrals 
Now that we’ve seen how to actually compute improper integrals we need to address one 
more topic about them.  Often we aren’t concerned with the actual value of these 
integrals.  Instead we might only be interested in whether the integral is convergent or 
divergent.  Also, there will be some integrals that we simply won’t be able to integrate 
and yet we would still like to know if they converge or diverge.   
 
To deal with this we’ve got a test for convergence or divergence that we can use to help 
us answer the question of convergence for an improper integral. 
 
We will give this test only for a sub-case of the infinite interval integral, however 
versions of the test exist for the other sub-cases of the infinite interval integrals as well as 
integrals with discontinuous integrands. 
 
Comparison Test 



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 70

If ( ) ( ) 0f x g x≥ ≥  on the interval [ ),a ∞  then, 

1. If ( )
a

f x dx
∞

∫  converges then so does ( )
a

g x dx
∞

∫ . 

2. If ( )
a

g x dx
∞

∫  diverges then so does ( )
a

f x dx
∞

∫ . 

 
Note that if you think in terms of area the Comparison Test makes a lot of sense.  If f(x) is 
larger than g(x) then the area under f(x) must also be larger than the area under g(x).   
 

So, if the area under the larger function is finite (i.e. ( )
a

f x dx
∞

∫  converges) then the area 

under the smaller function must also be finite (i.e. ( )
a

g x dx
∞

∫  converges). 

 

Likewise, if the area under the smaller function is infinite (i.e. ( )
a

g x dx
∞

∫  diverges) then  

the area under the larger function must also be infinite (i.e. ( )
a

f x dx
∞

∫  diverges). 

 
Be careful not to misuse this test.  If the smaller function converges there is no reason to 
believe that the larger will also converge (after all infinity is larger than a finite 
number…) and if the larger function diverges there is no reason to believe that the 
smaller function will also converge. 
 
Let’s work a couple of example using the comparison test.  Note that all we’ll be able to 
do is determine the convergence of the integral.  We won’t be able to determine the value 
of the integrals and so won’t even bother with that. 
 
Example 1  Determine if the following integral is convergent or divergent. 

 
2

2
2

cos x dx
x

∞
⌠
⎮
⌡

 

Solution 
Let’s take a second and think about how the Comparison Test works.  If this integral is 
convergent then we’ll need to find a larger function that also converges on the same 
interval.  Likewise, if this integral is divergent then we’ll need to find a smaller function 
that also diverges. 
 
So, it seems like it would be nice to have some idea as to whether the integral converges 
or diverges ahead of time so we will know whether we will need to look for a larger (and 
convergent) function or a smaller (and divergent) function. 
 
To get the guess for this function let’s notice that the numerator is nice and bounded and 
simply won’t get too large.  Therefore, it seems likely that the denominator will 
determine the convergence/divergence of this integral and we know that 
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 2
2

1 dx
x

∞
⌠⎮
⌡

 

converges since p=2>1 by the fact in the previous section.  So let’s guess that this 
integral will converge. 
 
So we now know that we need to find a function that is larger than  

 
2

2

cos x
x

 

and also converges.  Making a fraction larger is actually a fairly simple process.   We can 
either make the numerator larger or we can make the denominator smaller.  In this case 
can’t do a lot about the denominator.  However we can use the fact that 20 cos 1x≤ ≤  to 
make the numerator larger (i.e. we’ll replace the cosine with something we know to be 
larger, namely 1).  So, 

 
2

2 2

cos 1x
x x

≤  

Now, as we’ve already noted  

 2
2

1 dx
x

∞
⌠⎮
⌡

 

converges and so by the Comparison Test we know that  

 
2

2
2

cos x dx
x

∞
⌠
⎮
⌡

 

must also converge. 
 
Example 2  Determine if the following integral is convergent or divergent. 

 
3

1
x dx

x

∞

+
⌠⎮
⌡ e

 

Solution 
Let’s first take a guess about the convergence of this integral.  As noted after the fact in 
the last section about  

 1
p

a
dx

x

∞
⌠⎮
⌡

 

if the integrand goes to zero faster than 1
x

 then the integral will probably converge.  

Now, we’ve got an exponential in the denominator which is approaching infinity much 
faster than the x and so it looks like this integral should probably converge. 
 
So, we need a larger function that will also converge.  In this case we can’t really make 
the numerator larger and so we’ll need to make the denominator smaller in order to make 
the function larger as a whole.  We will need to be careful however.  There are two ways 
to do this and only one, in this case only one, of them will work for us. 
 
First, notice that since the lower limit of integration is 3 we can say that 3 0x ≥ >  and we 
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know that exponentials are always positive.  So, the denominator is the sum of two 
positive terms and if we were to drop one of them the denominator would get smaller.  
This would in turn make the function larger. 
 
The question then is which one to drop?  Let’s first drop the exponential.  Doing this 
gives, 

 1 1
xx x

<
+ e

 

This is a problem however, since  

 
3

1 dx
x

∞
⌠⎮
⌡

 

diverges by the fact.  We’ve got a larger function that is divergent.  This doesn’t say 
anything about the smaller function.  Therefore, we chose the wrong one to drop. 
 
Let’s try it again and this time let’s drop the x. 

 1 1 x
x xx

−< =
+

e
e e

 

Also, 

 ( )
3 3

3

3

lim

lim

tx x

t

t

t

dx dx
∞ − −

→∞

− −

→∞

−

=

= − +

=

∫ ∫e e

e e

e

 

So, 
3

x dx
∞ −∫ e  is convergent.  Therefore, by the Comparison test 

 
3

1
x dx

x

∞

+
⌠⎮
⌡ e

 

is also convergent. 
 
Example 3  Determine if the following integral is convergent or divergent. 

 
3

1
x dx

x

∞

−−
⌠⎮
⌡ e

 

Solution 
This is very similar to the previous example with a couple of very important differences.  
First, notice that the exponential now goes to zero as x increases instead of growing larger 
as it did in the previous example (because of the negative in the exponent).  Also note 
that the exponential is now subtracted off the x instead of added onto it. 
 
The fact that the exponential goes to zero means that this time the x in the denominator 
will probably dominate the term and that means that the integral probably diverges.  We 
will therefore need to find a smaller function that also diverges.   
 
Making fractions smaller is pretty much the same as making fractions larger.  In this case 
we’ll need to either make the numerator smaller or the denominator larger. 
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This is where the second change will come into play.  As before we know that both x and 
the exponential are positive.  However, this time since we are subtracting the exponential 
from the x if we were to drop the exponential the denominator will become larger and so 
the fraction will become smaller.  In other words, 

 1 1
xx x− >

− e
 

and we know that  

 
3

1 dx
x

∞
⌠⎮
⌡

 

diverges and so by the Comparison Test we know that  

 
3

1
x dx

x

∞

−−
⌠⎮
⌡ e

 

must also diverge. 
 
Example 4  Determine if the following integral is convergent or divergent. 

 ( )4

1

1 3sin 2x
dx

x

∞ +⌠
⎮
⌡

 

Solution 
First notice that as with the first example, the numerator in this function is going to be 
bounded since the sine is never larger than 1.  Therefore, since the exponent on the 
denominator is less than 1 we can guess that the integral will probably diverge.  We will 
need a smaller function that also diverges. 
 
We know that ( )40 sin 2 1x≤ ≤ .  In particular, this term is positive and so if we drop it 
from the numerator the numerator will get smaller.  This gives, 

 ( )41 3sin 2 1x
x x

+
>  

and 

 
1

1 dx
x

∞
⌠
⎮
⌡

 

diverges so by the Comparison Test 

 ( )4

1

1 3sin 2x
dx

x

∞ +⌠
⎮
⌡

 

also diverges. 
 
Okay, we’ve seen a few examples of the Comparison Test now.  However, most of them 
worked pretty much the same way.  All the functions were rational and all we did for 
most of them was add or subtract something from the numerator or denominator to get 
what we want. 
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Let’s take a look at an example that works a little differently so we don’t get too locked 
into these ideas. 
 
Example 5  Determine if the following integral is convergent or divergent. 

 
1

x

dx
x

∞ −⌠
⎮
⌡

e  

Solution 
Normally, the presence of just an x in the denominator would lead us to guess divergent 
for this integral.  However, the exponential in the numerator will approach zero so fast 
that instead we’ll need to guess that this integral converges. 
 
To get a larger function we’ll use the fact that we know from the limits of integration that 
x>1.  This means that if we just replace the x in the denominator with 1 (which is always 
smaller than x) we will make the denominator smaller and so the function will get larger.  

 
1

x x
x

x

− −
−< =

e e e  

and we can show that  

 
1

x dx
∞ −∫ e  

converges.  In fact, we’ve already done this for a lower limit of 3 and changing that to a 1 
won’t change the convergence of the integral.  Therefore, by the Comparison Test  

1

x

dx
x

∞ −⌠
⎮
⌡

e  

also converges. 
 
We should also really work an example that doesn’t involve a rational function since 
there is no reason to assume that we’ll always be working with rational functions. 
 
Example 6  Determine if the following integral is convergent or divergent. 

 
1

2x dx
∞ −∫ e  

Solution 
We know that exponentials with negative exponents die down to zero very fast so it 
makes sense to guess that this integral will be convergent.  We need a larger function, but 
this time we don’t have a fraction to work with so we’ll need to do something different. 
 
We’ll take advantage of the fact that x−e  is a decreasing function.  This means that  
 1 2

1 2
x xx x − −> ⇒ <e e  

In other words, plug in a larger number and the function gets smaller. 
 
From the limits of integration we know that x>1 and this means that if we square x we 
will get larger.  Or, 
 2 provided 1x x x> >  
Note that we can only say this since x>1.  This won’t be true if x<1!  We can now use the 
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fact that x−e  is a decreasing function to get, 
 

2 xx− −<e e  
 
So, x−e  is a larger function than 

2x−e  and we know that  

1

x dx
∞ −∫ e  

converges so by the Comparison Test we also know that 

 
1

2x dx
∞ −∫ e  

is convergent. 
 
The last two examples made use of the fact that x>1.  Let’s take a look at an example to 
see how do we would have to go about these if the lower limit had been smaller than 1. 
 
Example 7  Determine if the following integral is convergent or divergent. 

1
2

x

dx
x

∞ −⌠
⎮
⌡

e  

Solution 

In this case we can’t just replace x with 1
2

 in the denominator and get a larger function 

for all x in the interval of integration as we did in Example 5.  Remember that we need a 
function (that is also convergent) that is always larger than the given function..   
 

To see why we can’t just replace x with 1
2

 plug in 3
4

x =  into the denominator and 

compare this to what we would have if we plug in 1
2

x = . 

 4 2
3 4 3 1 2

x x
x x

− −
− −= < =

e ee e  

So, for x’s in the range 1 1
2

x≤ <  we won’t get a larger function as required for use in the 

Comparison Test.   
 
However, this isn’t the problem it might at first appear to be.  We can always write the 
integral as follows, 

 

1

1 1 1
2 2

1

0.34039

x x x

x

dx dx dx
x x x

dx
x

∞ ∞− − −

∞ −

= +

= +

⌠ ⌠ ⌠
⎮ ⎮ ⎮
⌡ ⌡ ⌡

⌠
⎮
⌡

e e e

e
 

 
We used Maple to get the value of the first integral.  Now, if the second integral 
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converges it will have a finite value and so the sum of two finite values will also be finite 
and so the original integral will converge.  Likewise, if the second integral diverges it 
will either be infinite or not have a value at all and adding a finite number onto this will 
not all of a sudden make it finite or exist and so the original integral will diverge.  
Therefore, this integral will converge or diverge depending only on the convergence of 
the second integral. 
 
As we saw in Example 5 the second integral does converge and so the whole integral 
must also converge. 
  
As we saw in this example, if we need to, we can split the integral up into one that 
doesn’t involve any problems and can be computed and one that may contain problem 
what we can use the Comparison Test on to determine its converge. 
 
 

 Approximating Definite Integrals 
In this chapter we’ve spent quite a bit to time on computing the values of integrals.  
However, not all integrals can be computed.  A perfect example is the following definite 
integral. 

 
2

0

2x dx∫ e  

 
We now need to talk a little bit about estimating values of definite integrals.  We will 
look at three different methods, although one should already be familiar to you from your 
Calculus I days. 
 
We will develop all three methods for estimating 

 ( )
b

a
f x dx∫  

by thinking of the integral as an area problem and using known shapes to estimate the 
area under the curve. 
 
Let’s get first develop the methods and then we’ll try to estimate the integral shown 
above. 
 
Midpoint Rule 
This is the rule that you should be somewhat familiar to you.  We will divide the interval 
[ ],a b  into n subintervals of equal width, 

 b ax
n
−

Δ =  

We will denote each of the intervals as follows, 
 [ ] [ ] [ ]0 1 1 2 1 0, , , , , , where  and n n nx x x x x x x a x b− = =…  
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Then for each interval let *
ix  be the midpoint of the interval.  We then sketch in 

rectangles for each subinterval with a height of ( )*
if x .  Here is a graph showing the set 

up using n=6. 

 
We can easily find the area for each of these rectangles and so for a general n we get that, 

 ( ) ( ) ( ) ( )* * *
1 2

b

na
f x dx x f x x f x x f x≈ Δ + Δ + + Δ∫ "  

Or, upon factoring out a xΔ we get the general Mid Point Rule. 
 

 ( ) ( ) ( ) ( )* * *
1 2

b

na
f x dx x f x f x f x⎡ ⎤≈ Δ + + +⎣ ⎦∫ "  

 
Trapezoid Rule 
For this rule we will do the same set up as for the Midpoint Rule.  We will break up the 
interval [ ],a b  into n subintervals of width, 

b ax
n
−

Δ =  

Then on each subinterval we will approximate the function with a straight line that is 
equal to the function values at either endpoint of the interval.  Here is a sketch of this 
case for n=6. 
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Each of these objects is a trapezoid (hence the rules name…) and as we can see some of 
them do a very good job of approximating the actual area under the curve and others 
don’t do such a good job. 
 
The area of the trapezoid in the interval [ ]1,i ix x−  is given by, 

 ( ) ( )( )12i i i
xA f x f x−

Δ
= +  

So, if we use n subintervals the integral is approximately, 

 ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )0 1 1 2 12 2 2
b

n na

x x xf x dx f x f x f x f x f x f x−

Δ Δ Δ
≈ + + + + + +∫ "  

 
Upon doing a little simplification we arrive at the general Trapezoid Rule. 
 

 ( ) ( ) ( ) ( ) ( ) ( )0 1 2 12 2 2
2

b

n na

xf x dx f x f x f x f x f x−

Δ
≈ + + + + +⎡ ⎤⎣ ⎦∫ "  

 
Note that all the function evaluations, with the exception of the first and last, are 
multiplied by 2. 
 
Simpson’s Rule 
This is the final method we’re going to take a look at and in this case we will again divide 
up the interval [ ],a b  into n subintervals.  However unlike the previous two methods we 
need to require that n be even.  The reason for this will be evident in a bit  The width of 
each subinterval is, 

b ax
n
−

Δ =  
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In the Trapezoid Rule we approximated the curve with a straight line.  For Simpson’s 
Rule we are going to approximate the function with a quadratic and we’re going to 
require that the quadratic agree with three of the points from our subintervals.  Below is a 
sketch of this using n=6.  Each of the approximations is colored differently so we can see 
how they actually work. 

 
Notice that each approximation actually covers two of the subintervals.  This is the 
reason for requiring n to be even.  It can be shown that the area under the approximation 
on the intervals [ ]1,i ix x−  and [ ]1,i ix x +  is, 

 ( ) ( ) ( )( )1 14
3i i i i
xA f x f x f x− +

Δ
= + +  

 
If we use n subintervals the integral is then approximately, 

 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

0 1 2 2 3 4

2 1

4 4
3 3

4
3

b

a

n n n

x xf x dx f x f x f x f x f x f x

x f x f x f x− −

Δ Δ
≈ + + + + +

Δ
+ + + +

∫

"
 

 
Upon simplifying we arrive at the general Simpson’s Rule. 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 2 14 2 2 4
3

b

n n na

xf x dx f x f x f x f x f x f x− −
Δ

≈ + + + + + +⎡ ⎤⎣ ⎦∫ "  

 
In this case notice that all the function evaluations at points with odd subscripts are 
multiplied by 4 and all the function evaluations at points with even subscripts (except for 
the first and last) are multiplied by 2.  If you can remember this, this a fairly easy rule to 
remember. 
 
Okay, it’s time to work an example and see how these rules work. 
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Example 1  Using n=4 and all three rules to approximate the value of the following 
integral. 

2

0

2x dx∫ e  

Solution 
First, for reference purposes, Maple gives the following value for this integral. 

 
2

0

2
16.45262776x dx =∫ e  

 
In each case the width of the subintervals will be, 

 2 0 1
4 2

x −
Δ = =  

and so the subintervals will be, 
 [ ] [ ] [ ] [ ]0, 0.5 , 0.5, 1 , 1, 1.5 , 1.5, 2  
 
Let’s go through each of the methods. 
 
Midpoint Rule 

 ( ) ( ) ( ) ( )( )2 2 2 22 0.25 0.75 1.25 1.75

0

2 1 14.48561253
2

x dx ≈ + + + =∫ e e e e e  

 
Remember that we evaluate at the midpoints of each of the subintervals here!  The 
Midpoint Rule has an error of 1.96701523. 
 
Trapezoid Rule 

 ( ) ( ) ( ) ( ) ( )( )2 2 2 2 22 0 0.5 1 1.5 2

0

2 1 2 2 2 2 20.64455905
2

x dx ≈ + + + + =∫ e e e e e e  

 
The Trapezoid Rule has an error of 4.19193129 
 
Simpson’s Rule 

 ( ) ( ) ( ) ( ) ( )( )2 2 2 2 22 0 0.5 1 1.5 2

0

2 1 2 4 2 4 17.35362645
3

x dx ≈ + + + + =∫ e e e e e e  

 
The Simpson’s Rule has an error of 0.90099869. 
 
None of the estimations in the previous example are all that good.  The best 
approximation in this case is from the Simpson’s Rule and yet it’s still had an error of 
almost 1.  To get a better estimation we would need to use a larger n.  So, for 
completeness sake here are the estimates for some larger value of n. 
 

 Midpoint Trapezoid Simpson’s 
n Approx. Error Approx. Error Approx. Error 
8 15.9056767 0.5469511 17.5650858 1.1124580 16.5385947 0.0859669
16 16.3118539 0.1407739 16.7353812 0.2827535 16.4588131 0.0061853
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32 16.4171709 0.0354568 16.5236176 0.0709898 16.4530297 0.0004019
64 16.4437469 0.0088809 16.4703942 0.0177665 16.4526531 0.0000254
128 16.4504065 0.0022212 16.4570706 0.0044428 16.4526294 0.0000016

 
In this case we where able to determine the error for each estimate because we could get 
our hands on the exact value.  Often this won’t be the case and so we’d next like to look 
at error bounds for each estimate. 
 
These bounds will give the largest possible error in the estimate, but it should also be 
pointed out that the actual error may be significantly smaller than the bound.  The bound 
is only there so we can say that we know the actual error will be less than the bound. 
 
So, suppose that ( )f x K′′ ≤  and ( ) ( )4f x M≤  for a x b≤ ≤  then if EM, ET, and ES are 

the actual errors for the Midpoint, Trapezoid and Simpson’s Rule we have the following 
bounds, 

 ( ) ( ) ( )3 3 5

2 2 424 12 180M T S

K b a K b a M b a
E E E

n n n
− − −

≤ ≤ ≤  

 
Example 2  Determine the error bounds for the estimations in the last example. 
 
Solution 
We already know that n=4, a=0, and b=2 so we just need to compute K (the largest value 
of the second derivative) and M (the largest value of the fourth derivative).  This means 
that we’ll need the second and fourth derivative of f(x). 

 
( ) ( )

( ) ( ) ( )

2

4 2 4

2

2

2 1 2

4 3 12 4

x

x

f x x

f x x x

′′ = +

= + +

e

e
 

Here is a graph of the second derivative. 

 
 
Here is a graph of the fourth derivative. 
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So, from these graphs it’s clear that the largest value of both of these are at x=2.  So, 

 
( )

( ) ( )4

2 982.76667 983

2 25115.14901 25116

f K

f M

′′ = ⇒ =

= ⇒ =
 

We rounded to make the computations simpler. 
 
Here are the bounds for each rule. 

 ( )
( )

3

2

983 2 0
20.4791666667

24 4ME
−

≤ =  

 ( )
( )

3

2

983 2 0
40.9583333333

12 4TE
−

≤ =  

 ( )
( )

5

4

25116 2 0
4.36041666667

180 4SE
−

≤ =  

 
In each case we can see that the errors are significantly smaller than the actual bounds. 
 
 

 Applications of Integrals 
 

 Introduction 
In this section we’re going to take a look at some of applications of integration.  It should 
be noted as well that these applications are presented here, as opposed to Calculus I, 
simply because many of the integrals that arise from these applications tend to require 
techniques that we discussed in the previous chapter. 
 
Here is a list of applications that we’ll be taking a look at in this chapter. 
 
Arc Length – We’ll determine the length of a curve in this section. 
 
Surface Area – In this section we’ll determine the surface area of a solid of revolution. 
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Center of Mass – Here we will determine the center of mass or centroid of a thin plate. 
 
Hydrostatic Pressure and Force – We’ll determine the hydrostatic pressure and force 
on a vertical plate submerged in water. 
 
Probability – Here we will look at probability density functions and computing the mean 
of a probability density function. 
 
 

 Arc Length 
In this section we are going to look at computing the arc length of a function.  Because 
it’s easy enough to derive the formulas that we’ll use in this section we will derive one of 
them and leave the other to you to derive. 
 
We want to determine the length of the continuous function ( )y f x=  on the interval 

[ ],a b .  Initially we’ll need to estimate the length of the curve.  We’ll do this by dividing 
the interval up into n equal subintervals each of width xΔ and we’ll denote the point on 
the curve at each point by Pi.  We can then approximate the curve by a series of straight 
lines connecting the points.  Here is a sketch of this situation for n=9. 

 
Now denote the length of each of these line segments by 1i iP P−  and the length of the 
curve will then be approximately, 

 1
1

n

i i
i

L P P−
=

≈ ∑  

and we can get the exact length by taking n larger and larger.  In other words, the exact 
length will be, 

 1
1

lim
n

i in i

L P P−→∞
=

= ∑  
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Now, let’s get a better grasp on the length of each of these line segments.  First, on each 
segment let’s define ( ) ( )1 1i i i i iy y y f x f x− −Δ = − = − .  We can then compute directly the 
length of the line segments as follows. 

 ( ) ( )2 2 2 2
1 1 1i i i i i i iP P x x y y x y− − −= − + − = Δ + Δ  

 
By the Mean Value Theorem we know that on the interval [ ]1,i ix x−  there is a point *

ix  so 
that, 

 
( ) ( ) ( )( )

( )

*
1 1

*

i i i i i

i i

f x f x f x x x

y f x x

− −′− = −

′Δ = Δ
 

Therefore, the length can now be written as, 

 

( ) ( )

( )

( )

2 2
1 1 1

22 * 2

2*1

i i i i i i

i

i

P P x x y y

x f x x

f x x

− − −= − + −

⎡ ⎤′= Δ + Δ⎣ ⎦

⎡ ⎤′= + Δ⎣ ⎦

 

The exact length of the curve is then, 

 
( )

1
1

2*

1

lim

lim 1

n

i in i

n

in i

L P P

f x x

−→∞
=

→∞
=

=

⎡ ⎤= + Δ⎣ ⎦

∑

∑
 

 
However, using the definition of the definite integral, this is nothing more than, 
 

 ( ) 2
1

b

a
L f x dx′= + ⎡ ⎤⎣ ⎦⌠

⌡  

 
A slightly more convenient notation (in my opinion anyway) is the following. 

 
2

1
b

a

dyL dx
dx

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

⌠
⎮
⌡

 

 
In a similar fashion we can also derive a formula for ( )x h y=  on [ ],c d .  This formula is, 

 ( )
2

2
1 1

d
d

c
c

dxL h y dy dy
dy

⎛ ⎞′= + = +⎡ ⎤ ⎜ ⎟⎣ ⎦
⎝ ⎠

⌠
⌠ ⎮⎮⌡

⌡
 

Again, the second form is probably a little more convenient.  
 
Note the difference in the derivative under the square root!  Don’t get the too confused.  
With one we differentiate with respect to x and with the other we differentiate with 
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respect to y.  One way to keep the two straight is to notice that the differential in the 
“denominator” of the derivative will match up with the differential in the integral.  This is 
one of the reasons why the second form is a little more convenient. 
 
Before we work any examples we need to make a small change in notation.  Instead of 
having two formulas for the arc length of a function we are going to reduce it, in part, to a 
single formula. 
 
From this point on we are going to use the following formula for the length of the curve. 
 
 L ds= ∫  
where, 

 
( )

( )

2

2

1 if ,

1 if ,

dyds dx y f x a x b
dx

dxds dy x h y c y d
dy

⎛ ⎞= + = ≤ ≤⎜ ⎟
⎝ ⎠

⎛ ⎞
= + = ≤ ≤⎜ ⎟

⎝ ⎠

 

 
Note that no limits where put on the integral as the limits will depend upon the ds that 
we’re using.  Using the first ds will require x limits of integration and using the second ds 
will require y limits of integration. 
 
Thinking of the arc length formula as a single integral with different ways to define ds 
will be convenient when we run across arc lengths in future sections.  Also, this ds 
notation will be a nice notation for the next section as well. 
 
Now that we’ve derived the arc length formula let’s work some examples. 
 

Example 1  Determine the length of ( )ln secy x=  between 0
4

x π
≤ ≤ . 

Solution 
In this case we’ll need to use the first ds since the function is in the form ( )y f x= .  So, 
let’s get the derivative out of the way. 

 
2

2sec tan tan tan
sec

dy x x dyx x
dx x dx

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

 
Let’s also get the root out of the way since there is often simplification that can be done 
and there’s no reason to do that inside the integral. 

 
2

2 21 1 tan sec sec secdy x x x x
dx

⎛ ⎞+ = + = = =⎜ ⎟
⎝ ⎠

 

Note that we could drop the absolute value bars here since secant is positive in the range 
given. 
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The arc length is then, 

 

( )

4
0

4
0

sec

ln sec tan

ln 2 1

L x dx

x x

π

π

=

= +

= +

∫

 

 

Example 2  Determine the length of ( )
3
2

2 1
3

x y= −  between 1 4y≤ ≤ . 

Solution 
There is a very common mistake that students make in problems of this type.  Many 
students see that the function is in the form ( )x h y=  and they immediately decide that it 
will be too difficult to work with it in that form so they solve for y to get the function into 
the form ( )y f x= .  While that can be done here it will lead to a messier integral for us 
to deal with. 
 
Sometimes it’s just easier to work with functions in the form ( )x h y= .  In fact, if you 

can work with functions in the form ( )y f x=  then you can work with functions in the 

form ( )x h y= .  There really isn’t a difference between the two so don’t get excited 

about functions in the form ( )x h y= . 
 
Let’s compute the derivative and the root. 

 ( )
2

1
21 1 1 1dx dxy y y

dy dy
⎛ ⎞

= − ⇒ + = + − =⎜ ⎟
⎝ ⎠

 

As you can see keeping the function in the form ( )x h y=  is going to lead to a very easy 
integral.  To see what would happen if we tried to work with the function in the form 

( )y f x=  see the next example. 
 
Let’s get the length. 

 

4

1

43
2

1

2
3

14
3

L y dy

y

=

=

=

∫

 

 
As noted in the last example we really do have a choice as to which ds we use.  Provided 
we can get the function in the form required for a particular ds we can use it.  However, 
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as also noted above, there will often be a significant difference in difficulty in the 
resulting integrals.  Let’s take a quick look at what would happen in the previous example 
if we did put the function into the form ( )y f x= .   
 
Example 3  Redo the previous example using the function in the form ( )y f x=  instead. 
 
Solution 
In this case the function and its derivative would be, 

 
2 1
3 33 31

2 2
x dy xy

dx

−
⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

The root in the arc length formula would then be. 

 
( )

( )
( )

( )

( )

22
2 33 33 22

2 2 1
3 3 33 3 3
2 2 2

1111 1
xx

x x x

dy
dx

++⎛ ⎞+ = + = =⎜ ⎟
⎝ ⎠

 

All the simplification work above was just to put the root into a form that will allow us to 
do the integral. 
 
Now, before we write down the integral we’ll also need to determine the limits.  This 
particular ds requires x limits of integration and we’ve got y limits.  They are easy enough 
to get however.  Since we know x as a function of y all we need to do is plug in the 
original y limits of integration and get the x limits of integration.  Doing this gives, 

 ( )
3
2

20 3
3

x≤ ≤  

Not easy limits to deal with, but there they are. 
 
Let’s now write down the integral that will give the length. 

 
( )

( )

( )
3
2

2 3 23
3 3
2

1
3 3
20

1x

x

L dx
+

=
⌠
⎮
⎮⎮
⌡

 

That’s a really unpleasant looking integral.  It can be evaluated however using the 
following substitution. 

 
2 1
3 33 31

2 2
x xu du dx

−
⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
( )

3
2

0 1
2 3 4
3

x u

x u

= ⇒ =

= ⇒ =
 

 
Using this substitution the integral becomes, 
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4

1

43
2

1

2
3

14
3

L u du

u

=

=

=

∫

 

So, we got the same answer as in the previous example.  Although that shouldn’t really 
be all that surprising since we were dealing with the same curve. 
 
From a technical standpoint the integral in the previous example was not that difficult.  It 
was just a Calculus I substitution.  However, from a practical standpoint the integral was 
significantly more difficult than the integral we used in Example 2.  So, the moral of the 
story here is that we can use either formula (provided we can get the function in the 
correct form of course) however one will often be significantly easier to actually 
evaluate.  
 
Okay, let’s work one more example. 
 

Example 4  Determine the length of 21
2

x y=  for 10
2

x≤ ≤ .  Assume that y is positive. 

Solution 
We’ll use the second ds for this one as the function is already in the correct form for that 
one.  Also, the other ds would again lead to a particularly difficult integral.  The 
derivative and root will then be, 

 
2

21 1dx dxy y
dy dy

⎛ ⎞
= ⇒ + = +⎜ ⎟

⎝ ⎠
 

 
Before writing down the length notice that we were given x limits and we will need y 
limits for this ds.  With the assumption that y is positive there are easy enough to get.  
They are, 
 0 1y≤ ≤  
 
The integral for the arc length is then, 

 
1 2

0
1L y dy= +∫  

 
This integral will require the following trig substitution. 
 2tan secy dy dθ θ θ= =  

 
0 0 tan 0

1 1 tan
4

y

y

θ θ
πθ θ

= ⇒ = ⇒ =

= ⇒ = ⇒ =
 

 2 2 21 1 tan sec sec secy θ θ θ θ+ = + = = =  
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The length is then, 

 ( )

( )( )

34
0

4

0

sec

1 sec tan ln sec tan
2
1 2 ln 1 2
2

L d
π

π

θ θ

θ θ θ θ

=

= + +

= + +

∫

 

 
The first couple of examples ended up being fairly simple Calculus I substitutions.  
However, as this last example had shown we will often end up with trig substitutions as 
well for these integrals. 
 
 

 Surface Area 
In this section we are going to look once again at solids of revolution.  We first looked at 
them back in Calculus I when we found the volume of the solid of revolution.  In this 
section we want to find the surface area of this region. 
 
So, for the purposes of the derivation of the formula, let’s look at rotating the continuous 
function ( )y f x=  in the interval [ ],a b  about the x-axis.  Below is a sketch of a function 
and the solid of revolution we get by rotating the function about the x-axis. 

        
 
We can derive a formula for the surface area much as we derived the formula for arc 
length.  We’ll start by dividing the integral into n equal subintervals of width xΔ .  On 
each subinterval we will approximate the function with a straight line that agrees with the 
function at the endpoints of the each interval.  Here is a sketch of that for our 
representative function using n=4. 
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Now, rotate the approximations about the x-axis and we get the following solid. 

 
The approximation on each interval gives a distinct portion of the solid and to make this 
clear each portion is colored differently.  Each of these portions are called frustums and 
we know how to find the surface area of frustums. 
 
The surface area of a frustum is given by, 
 2A rlπ=  
where, 

( )1 2 1

2

1 radius of right end
2

radius of left end

r r r r

r

= + =

=
 

and l is the length of the slant of the frustum. 
 
For the frustum on the interval [ ]1,i ix x−  we have, 

 
( )
( )

( )

1

2 1

1 1length of the line segment connecting  and 

i

i

i i i i

r f x

r f x

l P P P P
−

− −

=

=

=
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and we know from the previous section that, 

 ( ) [ ]
2* *

1 11 where  is some point in ,i i i i i iP P f x x x x x− −
⎡ ⎤′= + Δ⎣ ⎦  

 
Before writing down the formula for the surface area we are going to assume that xΔ  is 
“small” and since f(x) is continuous we can then assume that, 
 ( ) ( ) ( ) ( )* *

1andi i i if x f x f x f x−≈ ≈  
 
So, the surface area of the frustum on the interval [ ]1,i ix x−  is approximately, 

 

( ) ( )

( ) ( )

1
1

2* *

2
2

2 1

i i
i i i

i i

f x f x
A P P

f x f x x

π

π

−
−

+⎛ ⎞
= ⎜ ⎟

⎝ ⎠

⎡ ⎤′≈ + Δ⎣ ⎦

 

 
The surface area of the whole solid is then approximately, 

 ( ) ( ) 2* *

1
2 1

n

i i
i

S f x f x xπ
=

⎡ ⎤′≈ + Δ⎣ ⎦∑  

and we can get the exact surface area by taking the limit as n goes to infinity. 

 
( ) ( )

( ) ( )

2* *

1

2

lim 2 1

2 1

n

i in i

b

a

S f x f x x

f x f x dx

π

π

→∞
=

⎡ ⎤′= + Δ⎣ ⎦

′= + ⎡ ⎤⎣ ⎦⌠
⌡

∑
 

 
If we wanted to we could also derive a similar formula for rotating ( )x h y=  on [ ],c d  
about the y-axis.  This would give the following formula. 

 ( ) ( ) 2
2 1

d

c
S h y h y dyπ ′= + ⎡ ⎤⎣ ⎦⌠

⌡  

 
These are not the “standard” formulas however.  Notice that the roots in both of these 
formulas are nothing more than the two ds’s we used in the previous section.  Also, we 
will replace f(x) with y and h(y) with x.  Doing this gives the following two formulas for 
the surface area. 
 

 
2 rotation about axis

2 rotation about axis

S y ds x

S x ds y

π

π

= −

= −

∫
∫

 

where, 
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( )

( )

2

2

1 if ,

1 if ,

dyds dx y f x a x b
dx

dxds dy x h y c y d
dy

⎛ ⎞= + = ≤ ≤⎜ ⎟
⎝ ⎠

⎛ ⎞
= + = ≤ ≤⎜ ⎟

⎝ ⎠

 

 
There are a couple of things to note about these formulas.  First, notice that the variable 
in the integral itself is always the opposite variable from the one we’re rotating about.  
Second, we are allowed to use either ds in either formula.  This means that there are, in 
some way, four formulas here.  We will choose the ds based upon which is the most 
convenient for a given function and problem. 
 
Now let’s work a couple of examples. 
 
Example 1  Determine the surface area of the solid obtained by rotating  29y x= − , 

2 2x− ≤ ≤  about the x-axis. 
 
Solution 
The formula that we’ll be using here is, 
 2S y dsπ= ∫  
since we are rotating about the x-axis and we’ll use the first ds in this case because our 
function is in the correct form for that ds and we won’t gain anything by solving it for x. 
 
Let’s first get the derivative and the root taken care of. 

 ( ) ( )
( )

1
2 2

1
2 2

1 9 2
2 9

dy xx x
dx x

−
= − − = −

−
 

 
2 2

2 2 2

9 31 1
9 9 9

dy x
dx x x x

⎛ ⎞+ = + = =⎜ ⎟ − −⎝ ⎠ −
 

 
Here’s the integral for the surface area, 

 
2

2
2

32
9

S y dx
x

π
−

=
−

⌠
⎮
⌡

 

There is a problem however.  The dx means that we shouldn’t have any y’s in the 
integral.  So, before evaluating the integral we’ll need to substitute in for y as well. 
 
The surface area is then, 
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2
2

2
2

2

2

32 9
9

6

24

S x dx
x

dx

π

π

π

−

−

= −
−

=

=

⌠
⎮
⌡

∫  

 
Previously we made the comment that we could use either ds in the surface area 
formulas.  Let’s work an example in which using either ds won’t create integrals that are 
too difficult to evaluate and so we can check both ds’s. 
 
Example 2  Determine the surface area of the solid obtained by rotating  3y x= , 
1 2y≤ ≤  about the y-axis.  Use both ds’s to compute the surface area. 
 
Solution 
Note that we’ve been given the function set up for the first ds and limits that work for the 
second ds.  
 
Solution 1 
This solution will use the first ds listed above.  We’ll start with the derivative and root. 

 
2
31

3
dy x
dx

−
=  

 

4 4
2 3 3

4 4 2
3 3 3

1 9 1 9 11 1
9 9 3

dy x x
dx

x x x

+ +⎛ ⎞+ = + = =⎜ ⎟
⎝ ⎠

 

 
We’ll also need to get new limits.  That isn’t too bad however.  All we need to do is plug 
in the given y’s and get that the range of x’s is 1 8x≤ ≤ .  The integral for the surface area 
is then, 

 

8 4
3

2
3

1

1 48
3 3

1

9 12
3

2 9 1
3

xS x dx
x

x x dx

π

π

+
=

= +

⌠
⎮
⎮
⌡

⌠⎮
⌡

 

Note that this time we didn’t need to substitute in for the x as we did in the previous 
example.  In this case we picked up a dx from the ds and so we don’t need to do a 
substitution for the x.  In fact if we had substituted for x we would have put y’s into 
integral which would have caused problems. 
 
Using the substitution 

 
4 1
3 39 1 12u x du x dx= + =  

the integral becomes, 
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145

10

1453
2

10

3 3
2 2

18

27

145 10 199.48
27

S u du

u

π

π

π

=

=

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠

∫

 

 
Solution 2 
This time we’ll use the second ds.  So, we’ll first need to solve the equation for x.  We’ll 
also go ahead and get the derivative and root while we’re at it. 

 3 23dxx y y
dy

= =  

 
2

41 1 9dx y
dy

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
 

The surface area is then, 

 
2 4

1
2 1 9S x y dyπ= +∫  

We used the original y limits this time because we picked up a dy from the ds.  Also note 
that the presence of the dy means that this time, unlike the first solution, we’ll need to 
substitute in for the x. Doing that gives, 

 

2 3 4 4

1

145

10

3 3
2 2

2 1 9 1 9

18

145 10 199.48
27

S y y dy u y

u du

π

π

π

= + = +

=

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠

∫

∫  

 
Note that after the substitution the integral was identical to the first solution and so the 
work was skipped. 
 
As this example has shown we can used either ds to get the surface area.  It is important 
to point out as well that with one ds we had to do a substitution for the x and with the 
other we didn’t.  This will always work out that way. 
 
Note as well that in the case of the last example it was just as easy to use either ds.  That 
often won’t be the case.  In many examples only one of the ds will be convenient to work 
with so we’ll always need to determine which ds is liable to be the easiest to work with 
before starting the problem. 
 
 



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 95

  

 Center of Mass 
In this section we are going to find the center of mass or centroid of a thin plate with 
uniform density ρ.  The center of mass or centroid of a region is the point in which the 
region will be perfectly balanced horizontally if suspended from that point. 
 
So, let’s suppose that the plate is the region bounded by the two curves f(x) and g(x) on 
the interval [a,b].  So, we want to find the center of mass of the region below. 

 
 
We’ll first need the mass of this plate.  The mass is, 

 
( )

( ) ( )

Area of plate
b

a

M

f x g x dx

ρ

ρ

=

= −∫
 

 
Next we’ll need the moments of the region.  There are two moments, denoted by Mx and 
My.  The moments measure the tendency of the region to rotate about the x and y-axis 
respectively.  The moments are given by, 
 

( ) ( )( )
( ) ( )( )

2 21
2

b

x
a

b

y a

M f x g x dx

M x f x g x dx

ρ

ρ

= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= −

⌠⎮
⌡

∫
 

 
The coordinates of the center of mass, ( ),x y , are then, 
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( ) ( )( )
( ) ( )

( ) ( )( )

( ) ( )( )
( ) ( )

( ) ( )( )
2 2

2 2

1

1
1 12

2

b

bay
b a

a

b

b
ax

b
a

a

x f x g x dxM
x x f x g x dx

M Af x g x dx

f x g x dx
My f x g x dx
M Af x g x dx

−
= = = −

−

−⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
= = = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

−

⌠⎮
⌡ ⌠⎮

⌡

∫
∫

∫

∫

 

  
where, 

 ( ) ( )
b

a
A f x g x dx= −∫  

 
Note that the density, ρ, of the plate cancels out and so isn’t really needed. 
 
Let’s work a couple of examples. 
 
Example 1  Determine the center of mass for the region bounded by ( )2sin 2y x= , 0y =  

on the interval 0,
2
π⎡ ⎤

⎢ ⎥⎣ ⎦
. 

Solution 
Here is a sketch of the region with the center of mass denoted with a small box. 

 
Let’s first get the area of the region. 

 

( )

( )

2
0

2
0

2sin 2

cos 2

2

A x dx

x

π

π

=

= −

=

∫

 

Now, the moments (without density since it will just drop out) are, 
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( )

( )

( )

22
0

2
0

4

0

2sin 2

1 cos 4

1 sin 4
4

2

xM x dx

x dx

x x

π

π

π

π

=

= −

⎛ ⎞= −⎜ ⎟
⎝ ⎠

=

∫

∫
 

 

( )

( ) ( )

( ) ( )

2
0

22
0 0

2
2
0

0

2 sin 2 integrating by parts...

cos 2 cos 2

1cos 2 sin 2
2

2

yM x x dx

x x x dx

x x x

π

ππ

π
π

π

=

= − +

= − +

=

∫

∫
 

 
The coordinates of the center of mass are then, 

 

2
2 4

2
2 4

x

y

π π

π π

= =

= =

 

 

So, the center of mass for this region is ,
4 4
π π⎛ ⎞

⎜ ⎟
⎝ ⎠

. 

 
Example 2  Determine the center of mass for the region bounded by 3y x=  and y x= . 
 
Solution 
The two curves intersect at x=0 and x=1 and here is a sketch of the region with the center 
of mass marked with a box. 
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We’ll first get the area of the region. 

 

1 3

0

13
42

0

2 1
3 4

5
12

A x x dx

x x

= −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

=

∫

 

 
Now the moments, again without density, are 

 

( )
1

6

0

1
2 7

0

1
2

1 1 1
2 2 7
5
28

xM x x dx

x x

= −

⎛ ⎞= −⎜ ⎟
⎝ ⎠

=

⌠⎮
⌡

 

 

( )1 3

0

31 42
0

15
52

0

2 1
5 5

1
5

yM x x x dx

x x dx

x x

= −

= −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

=

∫

∫
 

 
The coordinates of the center of mass is then, 
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1 5 12
5 12 25
5 28 3
5 12 7

x

y

= =

= =
 

 

The coordinates of the center of mass are then, 12 3,
25 7

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
 

 Hydrostatic Pressure and Force 
In this section we are going to submerge a vertical plate in water and we want to know 
the force that is exerted on the plate due to the pressure of the water.  This force is often 
called the hydrostatic force. 
 
There are two basic formulas that we’ll be using here.  First, if we are d meters below the 
surface then the hydrostatic pressure is given by, 
 

P gdρ=  
where, ρ is the density of the fluid and g is the gravitational acceleration.  We are going 
to assume that the fluid in question is water and since we are going to be using the metric 
system these quantities become, 
 3 21000 kg/m 9.81 m/sgρ = =  
 
The second formula that we need is the following.  Assume that a constant pressure P is 
acting on a surface with area A.  Then the hydrostatic force that acts on the area is, 
 
 F PA=  
 
Note that we won’t be able to find the hydrostatic force on a vertical plate using this 
formula since the pressure will vary with depth.  We will however need this for our work. 
 
The best way to see how these problems work is to do an example or two. 
 
Example 1  Determine the hydrostatic pressure on the following triangular plate that is 
submerged in water as shown. 
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Solution 
The first thing to do here is set up an axis system.  We’ll use the following axis system. 

 
So, we are going to orient the x-axis so that positive x is downward, x=0 corresponds to 
the waters surface and x=4 corresponds to the depth of the tip of the triangle. 
 
Next we are break up the triangle into n strips each of equal width xΔ  and in each 
interval [ ]1,i ix x−  choose any point *

ix .  In order to make the computations easier we are 
going to make two assumptions about these strips.  First, we will ignore the fact that the 
ends are actually going to be slanted and assume the strips are rectangular.  If xΔ  is 
sufficiently small this will not affect our computations much.  Second, we will assume 
that xΔ  is small enough that the hydrostatic pressure on each strip is essentially constant. 
 
Below is a representative strip. 
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The height of this strip is xΔ  and the width is 2a.  We can use similar triangles to 
determine a. 

 *
*

3 33
4 4 4 i

i

a a x
x

= ⇒ = −
−

 

 
Now, since we are assuming the pressure on this strip is constant, the pressure is given 
by, 
 ( ) * *1000 9.81 9810i i iP gd x xρ= = =  
and the hydrostatic force is 

 ( ) ( )* * * *3 32 9810 2 3 19620 3
4 4i i i i i i iF P A P a x x x x x x x⎛ ⎞ ⎛ ⎞= = Δ = − Δ = − Δ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
The approximate hydrostatic force on the plate is then the sum of the forces on all the 
strips or, 

 * *

1

319620 3
4

n

i i
i

F x x x
=

⎛ ⎞≈ − Δ⎜ ⎟
⎝ ⎠

∑  

 
Taking the limit will get the exact hydrostatic force, 

 * *

1

3lim 19620 3
4

n

i in i
F x x x

→∞
=

⎛ ⎞= − Δ⎜ ⎟
⎝ ⎠

∑  

 
Using the definition of the definite integral this is nothing more than, 
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4

2

0

319620 3
4

F x x dx⎛ ⎞= −⎜ ⎟
⎝ ⎠

⌠
⎮
⌡

 

 
The hydrostatic force is then, 

 

4
2

0

4
2 3

0

319620 3
4

3 119620
2 4

156960

F x x dx

x x

N

⎛ ⎞= −⎜ ⎟
⎝ ⎠

⎛ ⎞= −⎜ ⎟
⎝ ⎠

=

⌠
⎮
⌡

 

 
Let’s take a look at another example. 
 
Example 2  Find the hydrostatic force on a circular plate of radius 2 that is submerged 6 
meters in the water. 
 
Solution 
First, we’re going to assume that the top of the circular plate is 6 meters under the water.  
Next, we will set up the axis system so that the origin of the axis system is at the center of 
the plate.  Finally, we will again split up the plate into n strips each of width yΔ  and 
we’ll choose a point *

iy  from each strip.  We’ll also assume that the strips are rectangular 
again to help with the computations.  Here is a sketch of the setup. 
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The depth below the waters surface of each strip is, 

*8i id y= −  
and that in turn gives us the pressure on the strip, 
 ( )*9810 8i i iP gd yρ= = −  
 
The area of each strip is, 

 ( )2*2 4i iA y y= − Δ  

 
The hydrostatic force on each strip is, 

 ( )( ) ( )2* *9810 8 2 4i i i i iF P A y y y= = − − Δ  

 
The total force on the plate is, 

 
( ) ( )

( )

2* *

1
2 2

2

lim 19620 8 4

19620 8 4

n

i in i
F y y y

y y dy

→∞
=

−

= − − Δ

= − −

∑

∫
 

 
To do this integral we’ll need to split it up into two integrals. 

 
2 22 2

2 2
19620 8 4 19620 4F y dy y y dy

− −
= − − −∫ ∫  

 
The first integral requires the trig substitution 2siny θ=  and the second integral needs 
the substitution 24v y= − .  After using these substitution we get, 

 
( )

( )

2 02

2 0

2

2

2

2

627840 cos 9810

313920 1 cos 2 0

1313920 sin 2
2

313920

F d v dv

d

π

π

π

π

π

π

θ θ

θ θ

θ θ

π

−

−

−

= +

= + +

⎛ ⎞= +⎜ ⎟
⎝ ⎠

=

∫ ∫

∫
 

 
Note that we know the second integral will be zero because the upper and lower limit is 
the same. 
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 Probability 
In this last application of integrals that we’ll be looking at we’re going to look at 
probability.  Before actually getting into the applications we need to get a couple of 
definitions out of the way. 
 
Suppose that we wanted to look at the age of a person, the height of a person, the amount 
of time spent waiting in line, or maybe the lifetime of a battery.  Each of these quantities 
have values that will range over an interval of integers.  Because of this these are called 
continuous random variables.  Continuous random variables are often represented by X. 
 
Every continuous random variable, X, has a probability density function, f(x).  
Probability density functions satisfy the following conditions. 
 

1. ( ) 0f x ≥  for all x. 

2. ( ) 1f x dx
∞

−∞
=∫    

 
Probability density functions can be used to determine the probability that a continuous 
random variable lies between two values, say a and b.  This probability is denoted by 

( )P a X b≤ ≤  and is given by, 
 

( ) ( )
b

a
P a X b f x dx≤ ≤ = ∫  

 
Let’s take a look at an example of this. 
 

Example 1  Let ( ) ( )
3

10
5000

xf x x= −  for 0 10x≤ ≤  and ( ) 0f x =  for all other values of 

x.  Answer each of the following questions about this function. 
(a) Show that f(x) is a probability density function. 
(b) Find ( )1 4P X≤ ≤  

(c) Find ( )6P x ≥  
Solution 
(a) To show this is a probability density function we’ll need to show that ( ) 1f x dx

∞

−∞
=∫ . 

 

( ) ( )
10 3

0

104 5

0

10
5000

2000 25000

1

xf x dx x dx

x x

∞

−∞
= −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
=

⌠
⎮
⌡∫
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Note the change in limits on the integral.  The function is only non-zero in these ranges 
and so the integral can be reduced down to only the interval where the function is not 
zero. 
 
(b) In this case we need to evaluate the following integral. 

 

( ) ( )
4 3

1

44 5

1

1 4 10
5000

2000 25000

0.08658

xP X x dx

x x

≤ ≤ = −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
=

⌠
⎮
⌡

 

So the probability of X being between 1 and 4 is 8.658%. 
 
(c) Note that in this case ( )6P x ≥  is equivalent to ( )6 10P X≤ ≤  since 10 is the largest 
value that X can be.  So the probability that X is greater than or equal to 6 is, 

 

( ) ( )
10 3

6

104 5

6

6 10
5000

2000 25000

0.66304

xP X x dx

x x

≥ = −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
=

⌠
⎮
⌡

 

This probability is then 66.304%. 
 
Probability density functions can also be used to determine the mean of a continuous 
random variable.  The mean is given by, 
 

( )xf x dxμ
∞

−∞
= ∫  

 
Let’s work one more example. 
 
Example 2  It has been determined that the probability density function for the wait in 
line at a counter is given by, 

 ( )
10

0 if 0

0.1 if 0
t

t
f t

t
−

<⎧⎪= ⎨
⎪ ≥⎩ e

 

where t is the number of minutes spent waiting in line.  Answer each of the following 
questions about this probability density function. 

(a) Verify that this is in fact a probability density function. 
(b) Determine the probability that a person will wait in line for at least 6 minutes. 
(c) Determine the mean wait in line. 

 
Solution 
(a) Not much to do here other than compute the integral. 
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( ) 10
0

10
0

10

0

10

0.1

lim 0.1

lim

lim 1

1

t

tu

u

ut

u

u

u

f t dt dt

dt

−∞ ∞

−∞

−

→∞

−

→∞

−

→∞

=

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
=

∫ ∫

∫

e

e

e

e

 

So it is a probability density function. 
 
(b) The probability that we’re looking for here is ( )6P x ≥ . 

 

( ) 10
6

10
6

10

6

6
10 10

3
5

6 0.1

lim 0.1

lim

lim

0.548812

t

tu

u

ut

u

u

u

P X dt

dt

−∞

−

→∞

−

→∞

− −

→∞

−

≥ =

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

= =

∫

∫

e

e

e

e e

e

 

So the probability that a person will wait in line for more than 6 minutes is 54.8811%. 
 
(c) Here’s the mean wait time. 

 

( )

( )

( )

10
0

10
0

10

0

10

0.1

lim 0.1 integrating by parts....

lim 10

lim 10 10

10

t

tu

u

ut

u

u

u

t f t dt

t dt

t dt

t

u

μ
∞

−∞

−∞

−

→∞

−

→∞

−

→∞

=

=

=

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
=

∫

∫

∫

e

e

e

e

 

So, it looks like the average wait time is 10 minutes. 
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 Parametric Equations and Polar Coordinates 
 

 Introduction 
In this section we will be looking at parametric equations and polar coordinates.  While 
the two subjects don’t appear to have that much in common on the surface we will see 
that several of the topics in polar coordinates can be done in terms of parametric 
equations and so in that sense they make a good match in this chapter. 
 
We will also be looking at how to do many of the standard calculus topics such as 
tangents and area in terms of parametric equations and polar coordinates. 
 
Here is a list of topics that we’ll be covering in this chapter. 
 
Parametric Equations and Curves – An introduction to parametric equations and 
parametric curves (i.e. graphs of parametric equations) 
 
Tangents with Parametric Equations – Finding tangent lines to parametric curves. 
 
Area with Parametric Equations – Finding the area under a parametric curve. 
 
Arc Length with Parametric Equations – Determining the length of a parametric 
curve. 
 
Surface Area with Parametric Equations – Here we will determine the surface area of 
a solid obtained by rotating a parametric curve about an axis. 
 
Polar Coordinates – We’ll introduce polar coordinates in this section.  We’ll look at 
converting between polar coordinates and Cartesian coordinates.  We will also look at 
some basic graphs in polar coordinates. 
 
Tangents with Polar Coordinates – Finding tangent lines of polar curves. 
 
Area with Polar Coordinates – Finding the area enclosed by a polar curve. 
 
Arc Length with Polar Coordinates – Determining the length of a polar curve. 
 
Surface Area with Polar Coordinates – Here we will determine the surface area of a 
solid obtained by rotating a polar curve about an axis. 
 
Arc Length and Surface Area Revisited – In this section we will summarize all the arc 
length and surface area formulas from the last two chapters. 
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 Parametric Equations and Curves 
To this point (in both Calculus I and Calculus II) we’ve looked almost exclusively at 
functions in the form ( )y f x=  or ( )x h y=  and almost all of the formulas that we’ve 
developed require that functions be in one of these two forms.  The problem is that not all 
curves or equations that we’d like to look at fall easily into this form.   
 
Take, for example, a circle.  It is easy enough to write down the equation of a circle 
centered at the origin with radius r. 
 2 2 2x y r+ =  
However, we will never be able to write the equation of a circle down as a single 
equation in either of the forms above.  Sure we can solve for x or y as the following two 
formulas show 
 2 2 2 2y r x x r y= ± − = ± −  
but there are in fact two functions in each of these. Each formula gives a portion of the 
circle. 

 
( ) ( )
( ) ( )

2 2 2 2

2 2 2 2

top right side

bottom left side

y r x x r y

y r x x r y

= − = −

= − − = − −
 

 
Unfortunately we usually are working on the whole circle, or simply can’t say that we’re 
going to be working only on one portion of it.  Even if we can narrow things down to 
only one of these portions the function is still fairly unpleasant to work with. 
 
There are also a great many curves out there that we can’t even write down as a single 
equation in terms of only x and y. 
 
To deal with some of these problems we introduce parametric equations.  Instead of 
defining y in terms of x ( ( )y f x= ) or x in terms of y ( ( )x h y= ) we define both x and y 
in terms of a third variable called a parameter.   
 ( ) ( )x f t y g t= =  
This third variable is usually denoted by t (as we did here) but doesn’t have to be of 
course.  Sometimes we will restrict the values of t that we’ll use and at other times we 
won’t.  This will often be dependent on the problem and just what we are attempting to 
do. 
 
Each value of t defines a point ( ) ( ) ( )( ), ,x y f t g t=  that we can plot.  The collection of 
points that we get by letting t be all possible values is the graph of the parametric 
equations and is called the parametric curve. 
 
Sketching a parametric curve is not always an easy thing to do.  Let’s take a look at an 
example to see one way of sketching a parametric curve.  This example will also illustrate 
why this method is usually not the best. 
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Example 1  Sketch the parametric curve for the following set of parametric equations. 
 2 2 1x t t y t= + = −  
Solution 
At this point our only option for sketching a parametric curve is to pick values of t, plug 
them into the parametric equations and then plot the points.  So, let’s plug in some t’s. 
 

t x y 
-2 2 -5
-1 0 -3
1
2

−
1
4

− -2

0 0 -1
1 2 1 

 
The first question that should be asked as this point is : How did we know to use the 
values of t that we did, especially the third choice?  Unfortunately there is no real answer 
to this question.  We simply pick t’s until we are fairly confident that we’ve got a good 
idea of what the curve looks like.  It is this problem with picking “good” values of t that 
make this method of sketching parametric curves one of the poorer choices.  Sometimes 
we have no choice, but if we do have a choice we should avoid it.  We’ll discuss an 
alternate graphing method in later examples. 
 
We have one more idea to discuss before we actually sketch the curve.  Parametric curves 
have a direction of motion.  The direction of motion is given by increasing t.  So, when 
plotting parametric curves we also include arrows that show the direction of motion.  We 
will often give the value of t that gave specific points on the graph to make it clear the 
value of t that have that particular point. 
 
Here is the sketch of this parametric curve. 

 
So, we had a parabola that opens to the right. 
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Before addressing a much easier way to sketch this graph let’s first address the issue of 
limits on the parameter.  In the previous example we didn’t have any limits on the 
parameter.  This will not always be the case.  So, let’s look a slight variation of the 
previous example. 
 
Example 2  Sketch the parametric curve for the following set of parametric equations. 
 2 2 1 1 2x t t y t t= + = − − ≤ ≤  
Solution 
Note that the only difference here is the presence of the limits on t.  All these limits do is 
tell us that we can’t take any value of t outside of this range.  Therefore, the parametric 
curve will only be a portion of the curve above.  Here is the parametric curve for this 
example. 

 
 
It is now time to take a look at an easier method of sketching this parametric curve.  This 
method uses the fact that in many cases we can actually eliminate the parameter from the 
parametric equations and get a function involving only x and y.  There will be two small 
problems with this method, but it will be easy to address those problems. 
 
Just how we eliminate the parameter will depend upon the parametric equations that 
we’ve got.  Let’s see how to eliminate the parameter for the set of parametric equations 
that we’ve been working with to this point. 
 
Example 3  Eliminate the parameter from the following set of parametric equations. 

2 2 1x t t y t= + = −  
Solution 
One of the easiest ways to eliminate the parameter is to simply solve one of the equations 
for the parameter (t, in this case) and substitute that into the other equation.  Note that 
while this may be the easiest, it’s usually not the best as we’ll see soon enough. 
 
In this case we can solve y for t. 
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 ( )1 1
2

t y= +  

Plugging this into the equation for x gives, 

 ( ) ( )
2

21 1 1 31 1
2 2 4 4

x y y y y⎛ ⎞= + + + = + +⎜ ⎟
⎝ ⎠

 

 
Sure enough this is a parabola that opens to the right. 
 
Getting a sketch of the parametric curve once we’ve eliminated the parameter is fairly 
simple.  All we need to do is graph the equation that we found by eliminating the 
parameter.   
 
As noted already however, there are two small problems with this method.  The first is 
direction of motion.  The equation involving only x and y will NOT give the direction of 
motion of the parametric curve.  This is an easy problem to fix however.  All we need to 
do is plug in some values of t into the parametric equations and we can determine 
direction of motion from that.  How many values of t we plug in will depend upon the 
parametric equations.  In some cases only two will be required and in others we might 
need more points. 
 
The second problem is best illustrated in an example as we’ll be seeing this in the 
remaining examples. 
 
Let’s sketch another parametric curve. 
 
Example 4  Sketch the parametric curve for the following set of parametric equations.  
Clearly indicate direction of motion. 
 5cos 2sin 0 2x t y t t π= = ≤ ≤  
Solution 
In this case we could eliminate the parameter as we did in the previous section by solving 
one of these for t and plugging this into the other.  For example, 

 1 1cos 2sin cos
5 5
x xt y− −⎛ ⎞⎛ ⎞ ⎛ ⎞= ⇒ =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Can you see the problem with doing this?  We have a greater chance of correctly 
graphing the original parametric equations that we do graphing this! 
 
There are many ways to eliminate the parameter form the parametric equations and 
solving for t is usually not the best way to do it.  In this case let’s notice that we could do 
the following. 

 
2 2 2 2

2 225cos 4sin cos sin 1
25 4 25 4
x y t t t t+ = + = + =  

 
Eliminating the middle steps gives us, 
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2 2

1
25 4
x y

+ =  

and so it looks like we’ve got an ellipse.  
 
Next, we need to determine the direction of motion.  Note that in this case we’ll need 
more than two points to do this.  Given any two points on an ellipse we could get 
between them by going either clockwise or counter-clockwise about the circle.  So, we’ll 
need at least three points to accurately determine the direction of motion. 
 
While doing this we should also keep in mind that we’ve been given a range of t’s to 
work with and as we saw in Example 2 this may mean that we will only get a portion of 
the actual ellipse.  So, let’s choose t’s that will cover the whole range.  This will give us 
the direction of motion and enough information to determine what portion of the ellipse is 
in fact traced out. 
 
Note that this is the second problem alluded to above in eliminating the parameter.  Once 
we have eliminated the parameter we’ve not only eliminated the direction of motion, but 
we’ve also eliminated any information about what portion of the actual graph is traced 
out by the parametric equations.  We will always need to keep in mind that this a 
potential problem when eliminating the parameter. 
 
So, here is a table of values for this set of parametric equations. 
 

t x y 
0 5 0 

2
π  0 2 

π  -5 0 
3
2
π

0 -2

2π 5 0 
 
It looks like we are moving in a counter-clockwise direction about the ellipse and it also 
looks like we’ll make exactly one complete trace of the ellipse in the range given. 
 
Here is a sketch of the parametric curve. 
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Let’s take a look at another example. 
 
Example 5  Sketch the parametric curve for the following set of parametric equations.  
Clearly indicate direction of motion. 

( ) ( )5cos 3 2sin 3 0 2x t y t t π= = ≤ ≤  
Solution 
Note that the only difference in these parametric equations is that we replaced the t with 
3t.  We can eliminate the parameter here in exactly the same way that we did in the 
previous example. 

 ( ) ( ) ( ) ( )
2 22 2

2 225cos 3 4sin 3
cos 3 sin 3 1

25 4 25 4
t tx y t t+ = + = + =  

 
So, we get the same ellipse that we did in the previous example.  However, we don’t get 
the same parametric curve in some sense.  We saw in the previous example that we make 
one complete trace of the ellipse in the range 0 2t π≤ ≤ .  In this set of parametric curves 
we don’t have just a t however.  In this set we’ve got a 3t.  This means that we’ll 
complete one complete trace when 

 23 2
3

t t ππ= ⇒ =  

So, while we have the same ellipse that we got in the previous example it will be traced 
out three times in the range of t’s given instead of only once as we got in that example.  
By picking values of t we can see that the direction of motion isn’t changed in this case.  
However, because we’re going around faster than before we should probably use a 
different set this time to make sure we get an accurate idea of the direction of motion. 
 

t x y
0 5 0

6
π

0 2
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3
π

-5 0

 
Here’s the sketch. 

 
 
So, we saw in the last two examples two sets of parametric equations that in some way 
gave the same graph.  Yet, because they traced out the graph a different number of times 
we really do need to think of them as different parametric curves.  This may seem like a 
difference that we don’t need to worry about, but as we will see in later sections this can 
be a very important difference.  In some of the later sections we are going to need a curve 
that is traced out exactly once. 
 
Let’s take a look at a couple more examples. 
 
Example 6  Sketch the parametric curve for the following set of parametric equations.  
Clearly identify the direction of motion.  If the curve is traced out more than once give a 
range of the parameter for which the curve will trace out exactly once. 
 2sin 2cosx t y t= =  
Solution 
We can eliminate the parameter much as we did in the previous two examples.  However, 
we’ll need to note that the x already contains a 2sin t  and so we won’t need to square the 
x.  We will however, need to square the y. 

 
2 2

2 2sin cos 1 1
4 4
y yx t t x+ = + = ⇒ = −  

In this case we get a parabola that opens to the left.   
 
We will need to be very, very careful however in sketching this parametric curve.  We 
will NOT get the whole parabola.  To see this let’s note the following, 
 

 
21 sin 1 0 sin 1 0 1

1 cos 1 2 2cos 2 2 2
t t x
t t y

− ≤ ≤ ⇒ ≤ ≤ ⇒ ≤ ≤
− ≤ ≤ ⇒ − ≤ ≤ ⇒ − ≤ ≤
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We will only get the portion of the parabola that is traced out in this range of x and y.  
Before sketching let’s also get the direction of motion.  Here are some points for a range 
of t’s. 
 

t x y 
0 0 2 

2
π  1 0 

π  0 -2
3
2
π

1 0 

2π 0 2 
 
So, in the range 0 2t π≤ ≤  we start at (0,2) and end up back at that same point.  Recalling 
that we must travel along the parabola this means that we must retrace our path to get 
back to the starting point. 
 
So, it looks like we’ve got a parametric curve that is traced out over and over in both 
directions and we will trace out once in the range 0 t π≤ ≤ . 
 
Here is a sketch of the curve with a few value of t noted on it.   

 
 
To this point we’ve seen examples that would trace out the complete graph that we got by 
eliminating the parameter if we took a large enough range of t’s.  However, in the 
previous example we’ve now seen that this will not always be the case.  It is more than 
possible to have a set of parametric equations which will continuously trace out just a 
portion of the curve. 
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We can usually determine this by looking for limits on x and y that are imposed up us by 
the parametric equation. 
 
We will often use parametric equations to describe the path of an object or particle.  Let’s 
take a look at an example of that. 
 
Example 7  The path of a particle is given by the following set of parametric equations. 
 ( ) ( )23cos 2 1 cos 2x t y t= = +  
Completely describe the path of this particle.  Do this by sketching the path, determining 
limits on x and y and giving a range of t’s for which the path will be traced out exactly 
once (provide it traces out more than once of course). 
 
Solution 
Eliminating the parameter this time will be a little different.  We only have cosines this 
time and we’ll use that to our advantage.  We can solve the x equation for cosine and plug 
that into the equation for y.  This gives, 

 ( )
2 2

cos 2 1 1
3 3 9
x x xt y ⎛ ⎞= = + = +⎜ ⎟

⎝ ⎠
 

 
This time we’ve got a parabola that opens upward.  We also have the following limits on 
x and y. 

 
( ) ( )
( ) ( )2 2

1 cos 2 1 3 3cos 2 3 3 3

0 cos 2 1 1 1 cos 2 2 1 2

t t x

t t y

− ≤ ≤ − ≤ ≤ − ≤ ≤

≤ ≤ ≤ + ≤ ≤ ≤
 

 
So, again we only trace out a portion of the curve.  Here’s a set of evaluations so we can 
determine a range of t’s for one trace of the curve. 
 

t x y
0 3 2

4
π  0 1

2
π  -3 2

3
4
π

0 1

π  3 2
 
So, it looks like the particle will again, continuously trace out this portion of the curve 

and will make one trace in the range 0
2

t π
≤ ≤ .  Here is a sketch of the particles path with 

a few value of t on it. 
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We should give a small warning at this point.  Because of the ideas involved in them we 
concentrated on parametric curves that retraced portions of the curve more than once.  Do 
not however, get too locked into the idea that this will always happen.  Many, if not most 
parametric curves will only trace out once.  The first one we looked at is a good example 
of this.  That parametric curve will never repeat any portion of itself. 
 
There is one final topic to be discussed in this section before moving on.  So far we’ve 
started with parametric equations and eliminated the parameter to determine the 
parametric curve. 
 
However, there are times in which we want to go the other way.  Given a function or 
equation we might want to write down a set of parametric equations for it.  In these cases 
we say that we parameterize the function. 
 
If we take Examples 4 and 5 as examples we can do this for ellipses (and hence circles).  
Given the ellipse  

 
2 2

2 2 1x y
a b

+ =  

a set of parametric equations for it would be, 
 

cos sinx a t y b t= =  
 
There is usually more than one set of parametric equations for the ellipse.  Any of the 
following will also parameterize the same ellipse. 
 

 
( ) ( )
( ) ( )

( ) ( )

cos sin

sin cos

cos sin

x a t y b t

x a t y b t

x a t y b t

ω ω

ω ω

ω ω

= =

= =

= − =

 

 
There are many more of course, but you get the idea.  Also note that while all of these 
have parametric curves in the shape of the ellipse they will all have different speeds as 
they travel around the ellipse, they will have different starting places (if we think of t=0 
as the starting place anyway) and they have potentially different directions of motion. 
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As noted we can use these to get the parametric equations for a circle centered at the 
origin of radius r as well.  On possible way to parameterize a circle is, 
 
 cos sinx r t y r t= =  
 
Finally, even though there may not seem to be any reason to, we can also parameterize 
functions in the form ( )y f x=  or ( )x h y= .  In these cases we parameterize them in the 
following way, 

 
( )

( )
x t x h t

y f t y t

= =

= =
 

 
 

 Tangents with Parametric Equations 
In this section we want to find the tangent lines to the parametric equations given by, 
 ( ) ( )x f t y g t= =  
 
To do this let’s first recall how to find the tangent line to ( )y F x=  at x=a.  Here the 
tangent line is given by, 

 ( ) ( ) ( ),   where   
x a

dyy F a m x a m F a
dx =

′= + − = =  

 

Now, notice that if we could figure out how to get the derivative dy
dx

 from the parametric 

equations we could simply reuse this formula since we will be able to use the parametric 
equations to find the x and y coordinates of the point. 
 
So, just for a second let’s suppose that we where able to eliminate the parameter from the 
parametric form and write the parametric equations in the form ( )y F x= .  Now, plug 
the parametric equations in for x and y.  Yes, it seem silly to eliminate the parameter, then 
immediately put it back in, but it’s what we need to do in order to get our hands on the 
derivative.  Doing this gives, 
 ( ) ( )( )g t F f t=  
 
Now, differentiate with respect to t and notice that we’ll need to use the Chain Rule on 
the right hand side. 
 ( ) ( )( ) ( )g t F f t f t′ ′ ′=  
 
Let’s do another change in notation.  We need to be careful with our derivatives here.  
Derivatives of the lower case function are with respect to t while derivatives of upper 
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case functions are with respect to x.  So, to make sure that we keep this straight let’s 
rewrite things as follows. 

 ( )dy dxF x
dt dt

′=  

 
At this point we should remind ourselves just what we here after.  We needed a formula 

for dy
dx

 or ( )F x′  that we is in terms of the parametric formulas.  Notice however that we 

can get that from the above equation. 

,     provided    0

dy
dy dxdt

dxdx dt
dt

= ≠  

  
Notice as well that this will be a function of t and not x. 
 
As an aside, notice that we could also get the following formula with a similar derivation 
if we needed to, 

,     provided    0

dx
dx dydt

dydy dt
dt

= ≠  

  
Why would we want to do this?  Well, recall that in the arc length section of the 
Applications of Integral section we actually needed this derivative on occasion. 
 
So, let’s find a tangent line. 
 
Example 1  Find the tangent line(s) to the parametric curve given by 
 5 3 24x t t y t= − =  
at (0,4). 
 
Solution 
Note that there is apparently the potential for more than one tangent line here!  We will 
look into this more after we’re done with the example. 
 
The first thing that we should do is find the derivative so we can get the slope of the 
tangent line. 

 4 2 3

2 2
5 12 5 12

dy
dy tdt

dxdx t t t t
dt

= = =
− −

 

 
At this point we’ve got a small problem.  The derivative is in terms of t and all we’ve got 
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is an x-y coordinate pair.  The next step then is to determine that value(s) of t which will 
give this point.  We find these by plugging the x and y values into the parametric 
equations and solving for t. 
 

 
( )5 3 3 2

2

0 4 4 0, 2

4 2

t t t t t

t t

= − = − ⇒ = ±

= ⇒ = ±
 

 
Any value of t which appears in both lists will give the point.  So, since there are two 
values of t that give the point we will in fact get two tangent lines.  That’s definitely not 
something that happened back in Calculus I and we’re going to need to look into this a 
little more.  However, before we do that let’s actually get the tangent lines. 
 
t = -2  
Since we already know the x and y-coordinates of the point all that we need to do is find 
the slope of the tangent line. 

 
2

1
8t

dym
dx =−

= = −  

The tangent line (at t = -2) is then, 

 14
8

y x= −  

 
t = 2 
Again, all we need is the slope. 

 
2

1
8t

dym
dx =

= =  

The tangent line (at t = 2) is then, 

 14
8

y x= +  

 
Now, let’s take a look at just how we could possibly get two tangents lines at a point.  
This was definitely not possible back in Calculus I where we first ran across tangent 
lines. 
 
A quick graph of the parametric curve will explain what is going on here. 
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So, the parametric curve crosses itself!  That explains how there can be more than one 
tangent line.  There is one tangent line for each instance that the curve goes through the 
point. 
 
The next topic that we need to discuss in this section is that of horizontal and vertical 
tangents.  We can easily identify where these will occur (or at least the t’s that will give 
them) by looking at the derivative formula. 

 

dy
dy dt

dxdx
dt

=  

 
Horizontal tangents will occur where the derivative is zero and that means that we’ll get 
horizontal tangent at values of t for which we have, 

 0,    provided   0dy dx
dt dt

= ≠  

 
Vertical tangents will occur where the derivative is not defined and so we’ll get vertical 
tangents at values of t for which we have, 

 0,    provided   0dx dy
dt dt

= ≠  

 
Example 2  Determine the x-y coordinates of the points where the following parametric 
equations will have horizontal or vertical tangents. 
 3 23 3 9x t t y t= − = −  
Solution 
We’ll first need the derivatives of the parametric equations. 
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 ( )2 23 3 3 1 6dx dyt t t
dt dt

= − = − =  

 
Horizontal Tangents 
We’ll have horizontal tangents where, 
 6 0 0t t= ⇒ =  
 
Now, this is the value of t which gives the horizontal tangents and we were asked to find 
the x-y coordinates of the point.  To get these we just need to plug t into the parametric 
equations.  Therefore, the only horizontal tangent will occur at the point (0,-9). 
 
Vertical Tangents 
In this case we need to solve, 
 ( )23 1 0 1t t− = ⇒ = ±  
 
The two vertical tangents will occur at the points (2,-6) and (-2,-6). 
 
For the sake of completeness and at least partial verification here is the sketch of the 
parametric curve. 

 
 
The final topic that we need to discuss in this section really isn’t related to tangent lines, 
but does fit in nicely with the derivation of the derivative that we needed to get the slope 
of the tangent line. 
 
Before moving into the new topic let’s first remind ourselves of the formula for the first 
derivative and in the process rewrite it slightly. 
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 ( )
( )d ydy d dty dxdx dx

dt

= =  

 
Written in this way we can see that the formula actually tells us how to differentiate a 
function y (as a function of t) with respect to x (when x is also a function of t) when we 
are using parametric equations. 
 
Now let’s move onto the final topic of this section.  We would also like to know how to 
get the second derivative of y with respect to x. 

 
2

2

d y
dx

 

 
Getting a formula for this is fairly simple if we remember the rewritten formula for the 
first derivative above. 

2

2

d dy
d y d dy dt dx

dxdx dx dx
dt

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠= =⎜ ⎟

⎝ ⎠
 

 
Note that, 

 

2

2 2

22

2

d y
d y dt

d xdx
dt

≠  

 
Let’s work a quick example. 
 
Example 3  Find the second derivative for the following set of parametric equations. 

5 3 24x t t y t= − =  
Solution 
This is the set of parametric equations that we used in the first example and so we already 
have the following computations completed. 

 4 2

3

2

5 12

2
5 12

dy t
dt
dx t t
dt
dy
dx t t

=

= −

=
−

 

 
We will first need the following, 
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( )

( ) ( )

2 2

2 23 3 3

2 15 122 24 30
5 12 5 12 5 12

td t
dt t t t t t t

− − −⎛ ⎞ = =⎜ ⎟−⎝ ⎠ − −
 

 
The second derivative is then, 

 ( )

( )( )

( )

2

2

2

23

4 2

2

24 2 3

2

33

24 30
5 12
5 12

24 30

5 12 5 12

24 30

5 12

d dy
d y dt dx

dxdx
dt

t
t t
t t

t

t t t t

t

t t t

⎛ ⎞
⎜ ⎟
⎝ ⎠=

−

−
=

−
−

=
− −

−
=

−

 

 
So, why would we want the second derivative?  Well, recall from your Calculus I class 
that with the second derivative we can determine where a curve is concave up and 
concave down.  We could do the same thing with parametric equations if we wanted to. 
 
Example 4  Determine the values of t for which the parametric curve given by the 
following set of parametric equations is concave up and concave down. 
 2 7 51x t y t t= − = +  
Solution 
To compute the second derivative we’ll first need the following. 

 

( )

6 4

6 4
5 3

7 5

2

7 5 1 7 5
2 2

dy t t
dt
dx t
dt
dy t t t t
dx t

= +

= −

+
= = − +

−

 

 
Note that we can also use the first derivative above to get some information about the 
increasing/decreasing nature of the curve as well.  In this case it looks like the parametric 
curve will be increasing if t<0 and decreasing if t>0. 
 
Now let’s move on to the second derivative. 

 
( )

( )
4 2

2
3

2

1 35 15 12 35 15
2 4

t td y t t
dx t

− +
= = +

−
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It’s clear, hopefully, that the second derivative will only be zero at t=0.  Using this we 
can see that the second derivative will be negative if t<0 and positive if t>0.  So the 
parametric curve will be concave down for t<0 and concave up for t>0. 
 
Here is a sketch of the curve for completeness sake. 

 
 
 

 Area with Parametric Equations 
In this section we will find a formula for determining the area under a parametric curve 
given by the parametric equations, 
 ( ) ( )x f t y g t= =  
We will also need to further add in the assumption that the curve is traced out exactly 
once as t increases from α to β. 
 
We will do this in much the same way that we found the first derivative in the previous 
section.  We will first recall how to find the area under ( )y F x=  on a x b≤ ≤ . 

 ( )
b

a
A F x dx= ∫  

 
We will now think of the parametric equation ( )x f t=  as a substitution in the integral.  

We will also assume that ( )a f α=  and ( )b f β=  for the purposes of this formula.  
There is actually no reason to assume that this will always be the case and so we’ll give a 
corresponding formula later if it’s the opposite case ( ( )b f α=  and ( )a f β= ).   
 
So, if this is going to be a substitution we’ll need, 
 ( )dx f t dt′=  
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Plugging this into the area formula above and making sure to change the limits to their 
corresponding t values gives us, 

 ( )( ) ( )A F f t f t dt
β

α
′= ∫  

 
Since we don’t know what F(x) is we’ll use the fact that  
 ( ) ( )( ) ( )y F x F f t g t= = =  
and we arrive at the formula that we want. 

( ) ( )A g t f t dt
β

α
′= ∫  

 
Now, if we should happen to have ( )b f α=  and ( )a f β=  the formula would be, 

( ) ( )A g t f t dt
α

β
′= ∫  

 
Let’s work an example. 
 
Example 1  Determine the area under the parametric curve given by the following 
parametric equations. 
 ( ) ( )6 sin 6 1 cos 0 2x yθ θ θ θ π= − = − ≤ ≤  
Solution 
First, notice that we’ve switched the parameter to θ  for this problem.  This is to make 
sure that we don’t get too locked into always having t as the parameter. 
 
Now, we could graph this to verify that the curve is traced out exactly once for the given 
range if we wanted to.  We are going to be looking at this curve in more detail after this 
example so we won’t sketch its graph here. 
 
There really isn’t too much to this example other than plugging the parametric equations 
into the formula.  We’ll first need the derivative of the parametric equation for x 
however. 

 ( )6 1 cosdx
d

θ
θ

= −  

 
The area is then, 
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( )

( )

( )

2 2

0

2 2

0

2

0

2

0

36 1 cos

36 1 2cos cos

3 136 2cos cos 2
2 2

3 136 2sin sin 2
2 4

108

A d

d

d

π

π

π

π

θ θ

θ θ θ

θ θ θ

θ θ θ

π

= −

= − +

= − +

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

=

⌠⎮
⌡

∫

∫

 

 
The parametric curve (without the limits) we used in the previous example is called a 
cycloid.  In its general form the cycloid is, 
 
 ( ) ( )sin 1 cosx r y rθ θ θ= − = −  
 
The cycloid represents the following situation. Consider a wheel of radius r.  Let the 
point where the wheel touches the ground initially be called P.  Then start rolling the 
wheel to the right.  As the wheel rolls to the right trace out the path of the point P.  The 
path that the point P traces out is called a cycloid and is given by the equations above.  In 
these equations we can think of θ as the angle through which the point P has rotated. 
 
Here is a sketch of the cycloid used in the previous example. 

 
We can see that one arch of the cycloid is traced out in the range 0 2θ π≤ ≤ .  This makes 
sense when you consider that the point P will be back on the ground after it has rotated 
through and angle of 2π. 
 
 

 Arc Length with Parametric Equations 
In the previous two sections we’ve looked at a couple of Calculus I topics in terms of 
parametric equations.  We now need to look at a couple of Calculus II topics in terms of 
parametric equations.   
 
In this section we will look at the arc length of the parametric curve given by, 
 ( ) ( )x f t y g t tα β= = ≤ ≤  
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We will also be assuming that the curve is traced out exactly once as t increases from α 
to β.  Also, for the purposes of the derivation that we’re going to use we will assume that 
the curve is traced out from left to right as t increases.  This is equivalent to saying, 
 

 0 for  dx t
dt

α β≥ ≤ ≤  

 
This is not actually required for the final formula, but as noted above we’ll need it for our 
derivation.  If the curve isn’t traced out from left to right we would need to go through a 
slightly more complicated derivation. 
 
So, let’s start out the derivation by recalling the arc length formula as we first derived it 
in the arc length section of the Applications of Integrals chapter. 
 L ds= ∫  
where, 

 
( )

( )

2

2

1 if ,

1 if ,

dyds dx y f x a x b
dx

dxds dy y h y c y d
dy

⎛ ⎞= + = ≤ ≤⎜ ⎟
⎝ ⎠

⎛ ⎞
= + = ≤ ≤⎜ ⎟

⎝ ⎠

 

 
We will use the first ds above because we have a nice formula for the derivative in terms 
of the parametric equations (see the Tangents with Parametric Equations section).  To use 
this we’ll also need to know that, 

 ( ) dxdx f t dt dt
dt

′= =  

 
The arc length formula then becomes, 

 

22

21 1

dydy
dx dxdtdtL dt dtdx dt dtdx

dt dt

ββ

α α

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎝ ⎠= + = +⎜ ⎟
⎛ ⎞⎜ ⎟
⎜ ⎟⎝ ⎠ ⎝ ⎠

⌠⌠
⎮⎮
⎮⎮
⎮⎮⎮ ⎮⌡ ⌡

 

 
This is a particularly unpleasant formula.  However, if we factor out the denominator 
from the square root we arrive at, 

 
2 21 dx dy dxL dt

dx dt dt dt
dt

β

α

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⌠
⎮
⎮⎮
⌡
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Now, making use of our assumption that the curve is being traced out from left to right 
we can drop the absolute value bars on the derivative which will allow us to cancel the 
two derivatives that are outside the square root this gives, 

2 2dx dyL dt
dt dt

β

α

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⌠
⎮
⌡

 

 
Notice that we could have used the second formula for ds above is we had assumed 
instead that  

 0 for  dy t
dt

α β≥ ≤ ≤  

If we had gone this route in the derivation we would have gotten the same formula. 
 
Let’s take a look at an example. 
 
Example 1  Determine the length of the parametric curve given by the following 
parametric equations. 
 ( ) ( )3sin 3cos 0 2x t y t t π= = ≤ ≤  
Solution 
We know that this is a circle of radius 3 centered at the origin from our prior discussion 
about graphing parametric curves.  We also know from this discussion that it will be 
traced out exactly once in this range. 
 
So, we can use the formula we derived above.  We’ll first need the following, 

 ( ) ( )3cos 3sindx dyt t
dt dt

= = −  

 
The length is then, 

 

( ) ( )

( ) ( )

2 2 2

0

2 2 2

0

2

0

9sin 9cos

3 sin cos

3

6

L t t dt

t t dt

dt

π

π

π

π

= +

= +

=

=

∫

∫

∫
 

 
Since this is a circle we could have just used the fact that the length of the circle is just 
the circumference of the circle.  This is a nice way, in this case, to verify our result. 
 
Let’s take a look at one possible consequence of a curve is traced out more than once and 
we try to find the length of the curve without taking this into account. 
 
Example 2  Use the arc length formula for the following parametric equations. 
 ( ) ( )3sin 3 3cos 3 0 2x t y t t π= = ≤ ≤  
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Solution 
Notice that this is the identical circle that we had in the previous example and so the 
length is still 6π.  However, for the range given we know trace out the curve three times 
instead once as required for the formula.  Despite that restriction let’s use the formula 
anyway and see what happens. 
 
In this case the derivatives are, 

 ( ) ( )9cos 3 9sin 3dx dyt t
dt dt

= = −  

and the length formula gives, 

 

( ) ( )
2 2 2

0

2

0

81sin 81cos

9

18

L t t dt

dt

π

π

π

= +

=

=

∫

∫  

 
The answer we got form the arc length formula in this example was 3 times the actual 
length.  Recalling that we also determined that this circle would trace out three times in 
the range given, the answer should make some sense. 
 
If we had wanted to determine the length of the circle for this set of parametric equations 
we would need to determine a range of t for which this circle is traced out exactly once.  

This is, 20
3

t π
≤ ≤ .  Using this range of t we get the following for the length. 

 

( ) ( )
2

2 23
0

2
3

0

81sin 81cos

9

6

L t t dt

dt

π

π

π

= +

=

=

∫

∫  

which is the correct answer. 
 
Be careful to not make the assumption that this is always what will happen if the curve is 
traced out more than once.  Just because the curve traces out n times does not mean that 
the arc length formula will give us n times the actual length of the curve! 
 
Before moving on to the next section let’s notice that we can put the arc length formula 
derived in this section into the same form that we had when we first looked at arc length.  
The only difference is that we will add in a definition for ds when we have parametric 
equations. 
 
The arc length formula can be summarized as, 
 
 L ds= ∫  
where, 
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( )

( )

( ) ( )

2

2

2 2

1 if ,

1 if ,

if , ,

dyds dx y f x a x b
dx

dxds dy y h y c y d
dy

dx dyds dt x f t y g t t
dt dt

α β

⎛ ⎞= + = ≤ ≤⎜ ⎟
⎝ ⎠

⎛ ⎞
= + = ≤ ≤⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞= + = = ≤ ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
 

 Surface Area with Parametric Equations 
In this final section dealing with calculus using parametric equations we will take a look 
at determining the surface area of a region obtained by rotating a parametric curve about 
the x or y-axis. 
 
We will rotate the parametric curve given by, 

( ) ( )x f t y g t tα β= = ≤ ≤  
about the x or y-axis.  We are going to assume that the curve is traced out exactly once as 
t increases from α to β.  At this point there actually isn’t all that much to do.  We know 
that the surface area can be found by using one of the following two formulas depending 
on the axis of rotation (recall the Surface Area section of the Applications of Integrals 
chapter). 

 
2 rotation about axis

2 rotation about axis

S y ds x

S x ds y

π

π

= −

= −

∫
∫

 

 
All that we need is a formula for ds to use and from the previous section we have, 
 

( ) ( )
2 2

if , ,dx dyds dt x f t y g t t
dt dt

α β⎛ ⎞ ⎛ ⎞= + = = ≤ ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
which is exactly what we need. 
 
We will need to be careful with the x or y that is in the original surface area formula.  
Back when we first looked at surface area we saw that sometimes we had to substitute for 
the variable in the integral and at other times we didn’t.  This was dependent upon the ds 
that we used.  In this case however, we will always have to substitute for the variable.  
The ds that we use for parametric equations introduces a dt into the integral and that 
means that everything needs to be in terms of t.  Therefore, we will need to substitute the 
appropriate parametric equation for x or y depending on the axis of rotation. 
 
Let’s take a quick look at an example. 
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Example 1  Determine the surface area of the solid obtained by rotating the following 
parametric curve about the x-axis. 

 3 3cos sin 0
2

x y πθ θ θ= = ≤ ≤  

Solution 
We’ll first need the derivatives of the parametric equations. 

 2 23cos sin 3sin cosdx dy
dt dt

θ θ θ θ= − =  

 
Before plugging into the surface area formula let’s get the ds out of the way. 

 

4 2 4 2

2 2

9cos sin 9sin cos

3 cos sin cos sin
3cos sin

ds dtθ θ θ θ

θ θ θ θ
θ θ

= +

= +

=

 

Notice that we could drop the absolute value bars since both sine and cosine are positive 
in this range of θ given. 
 
Now let’s get the surface area and don’t forget to also plug in for the y. 

 

( )32
0

42
0

1 4

0

2

2 sin 3cos sin

6 sin cos sin

6

6
5

S y ds

d

d u

u du

π

π

π

π θ θ θ θ

π θ θ θ θ

π

π

=

=

= =

=

=

∫

∫

∫

∫

 

 
 

 Polar Coordinates 
Up to this point we’ve dealt exclusively with the Cartesian (or Rectangular, or x-y) 
coordinate system.  However, as we will see, this is not always the easiest coordinate 
system to work in.  So, in this section we will start looking at the polar coordinate system. 
 
Coordinate systems are really nothing more than a way to define a point.  For instance in 
the Cartesian coordinate system at point is given the coordinates (x,y) and we use this to 
define the point by starting at the origin and then moving x units horizontally followed by 
y units vertically.  This is shown in the sketch below. 



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 133

 
This is not, however, the only way to define a point in two dimensional space.  Instead of 
moving vertically and horizontally from the origin to get to the point we could instead go 
straight out of the origin until we hit the point and then determine the angle this line 
makes with the positive x-axis.  We could then use the distance of the point from the 
origin and the amount we needed to rotate from the positive x-axis as the coordinates of 
the point.  This is shown in the sketch below. 

 
Coordinates in this form are called polar coordinates.   
 
The above discussion may lead one to think that r must be a positive number.  However, 

we also allow r to be negative.  Below is a sketch of the two points 2,
6
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 and 2,
6
π⎛ ⎞−⎜ ⎟

⎝ ⎠
. 
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From this sketch we can see that if r is positive the point will be in the same quadrant as 
θ.  On the other hand if r is negative the point will end up in the quadrant exactly 

opposite θ.  Notice as well that the coordinates 2,
6
π⎛ ⎞−⎜ ⎟

⎝ ⎠
 describe the same point as the 

coordinates 72,
6
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 do.  The coordinates 72,
6
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 tells us to rotate an angle of 7
6
π  from 

the positive x-axis, this would put us on the dashed line in the sketch above, and then 
move out a distance of 2. 
 
This leads to an important difference between Cartesian coordinates and polar 
coordinates.  In Cartesian coordinates there is exactly one set of coordinates for any given 
point.  With polar coordinates this isn’t true.   
 
In polar coordinates there is literally an infinite number of coordinates for a given point.  
For instance, the following four points are all coordinates for the same point. 
 

 5 4 25, 5, 5, 5,
3 3 3 3
π π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = − = − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
Here is a sketch of the angles used in these four sets of coordinates. 
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In the second coordinate pair we rotated in a clock-wise direction to get to the point.  We 
shouldn’t forget about rotating in the clock-wise direction.  Sometimes it’s what we have 
to do. 
 
The last two coordinate pairs use the fact that if we end up in the opposite quadrant from 
the point we can use a negative r to get back to the point and of course there is both a 
counter clock-wise and a clock-wise rotation to get to the angle. 
 
These four points only represent the coordinates of the point without rotating around the 
system more than once.  If we allow the angle to make as many complete rotation about 
the axis system as we want then there are an infinite number of coordinates for the same 
point.  In fact the point ( ),r θ  can be represented by any of the following coordinate 
pairs. 
 ( ) ( )( ), 2 , 2 1 , where  is any integer.r n r n nθ π θ π+ − + +  
 
Next we should talk about the origin of the coordinate system.  In polar coordinates the 
origin is often called the pole.  Because aren’t actually moving away from the origin/pole 
we know that r=0.  However, we can still rotate around the system by any angle we want 
and so the coordinates of the origin/pole are ( )0,θ . 
 
Now that we’ve got a grasp on polar coordinates we need to think about converting 
between the two coordinate systems.  Well start out with the following sketch reminding 
us how both coordinate systems work. 
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Note that we’ve got a right triangle above and with that we can get the following 
equations that will convert  polar coordinates into Cartesian coordinates. 
 

cos
sin

x r
y r

θ
θ

=
=

 

 
Converting from Cartesian is almost as easy.  Let’s first notice the following. 

 

( ) ( )

( )

2 22 2

2 2 2 2

2 2 2

2

cos sin

cos sin

cos sin

x y r r

r r

r

r

θ θ

θ θ

θ θ

+ = +

= +

= +

=

 

This is a very useful formula that we should remember, however we are after an equation 
for r so let’s take the square root of both sides.  This gives, 
 2 2r x y= +  
Note that technically we should have a plus or minus in front of the root since we know 
that r can be either positive or negative.  We will run with the convention of positive r 
here. 
 
Getting an equation for θ is almost as simple.  We’ll start with, 

sin tan
cos

y r
x r

θ θ
θ

= =  

Taking the inverse tangent of both sides gives, 

 1tan y
x

θ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠
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We will need to be careful with this because inverse tangents only return values in the 

range 
2 2
π πθ− < < .  Recall that there is a second possible angle and that the second angle 

is given by θ π+ . 
 
Summarizing then gives the following formulas for converting from Cartesian 
coordinates to polar coordinates. 
 

2 2 2

2 2

1tan

r x y

r x y
y
x

θ −

= +

= +

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
Let’s work a quick example. 
 
Example 1  Convert each of the following points into the given coordinate system. 

(a) 24,
3
π⎛ ⎞−⎜ ⎟

⎝ ⎠
 into Cartesian coordinates. 

(b) (-1,-1) into polar coordinates. 
Solution 
(a) This conversion is easy enough.  All we need to do is plug the points into the 
formulas. 

 

2 14cos 4 2
3 2

2 34sin 4 2 3
3 2

x

y

π

π

⎛ ⎞ ⎛ ⎞= − = − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞= − = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

So, in Cartesian coordinates this point is ( )2, 2 3− . 

 
(b) Let’s first get r. 

 ( ) ( )2 21 1 2r = − + − =  

Now, let’s get θ. 

 ( )1 11tan tan 1
1 4

πθ − −−⎛ ⎞= = =⎜ ⎟−⎝ ⎠
 

This is not the correct angle however.  This value of θ is in the first quadrant and the 
point we’ve been given is in the third quadrant.  As noted above we can get the correct 
angle by adding π onto this.  Therefore, the actual angle is, 

5
4 4
π πθ π= + =  
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So, in polar coordinates the point is 52,
4
π⎛ ⎞

⎜ ⎟
⎝ ⎠

.  Note as well that we could have used the 

first θ that we got by using a negative r.  In this case the point could also be written in 

polar coordinates as 2,
4
π⎛ ⎞−⎜ ⎟

⎝ ⎠
. 

 
We can also use the above formulas to convert equations from one coordinate system to 
the other. 
 
Example 2  Convert each of the following into an equation in the given coordinate 
system. 

(a) Convert 32 5 1x x xy− = +  into polar coordinates. 
(b) Convert 8cosr θ= −  into Cartesian coordinates. 

Solution 
(a) In this case there really isn’t much to do other than plugging in the formulas for 
converting from polar to Cartesian coordinates. 

 ( ) ( ) ( )( )3

3 3 2

2 cos 5 cos 1 cos sin

2 cos 5 cos 1 cos sin

r r r r

r r r

θ θ θ θ

θ θ θ θ

− = +

− = +
 

 
(b) This one is a little trickier, but not by much.  First notice that we could substitute 
straight for the r.  However, there is no straight substitution for the cosine that will give 
us only Cartesian coordinates.  If we had an r on the right along with the cosine then we 
could do a direct substitution. So, if an r on the right side would be convenient let’s put 
one there, just don’t forget to put on the right side as well. 
 2 8 cosr r θ= −  
 
We can now make some substitutions that will convert this into Cartesian coordinates. 
 
 2 2 8x y x+ = −  
 
Before moving on to the next subject let’s do a little more work on the second part of the 
previous example. 
 
The equation given in the second part is actually a fairly well known graph; it just isn’t in 
a form that most people will quickly recognize.  To identify it let’s take the Cartesian 
coordinate equation and do a little rearranging. 
 2 28 0x x y+ + =  
 
Now, complete the square on the x portion of the equation. 

 
( )

2 2

2 2

8 16 16

4 16

x x y

x y

+ + + =

+ + =
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So, this was a circle of radius 4 and center (-4,0). 
 
This leads us into the final topic of this section. 
 
Common Polar Coordinate Graphs 
Let’s identify a few of the more common graphs in polar coordinates.  We’ll also take a 
look at a couple of special polar graphs. 
 
Lines 
Some lines have fairly simple equations in polar coordinates. 
 

1. θ β= . 
We can see that this is a line by converting to Cartesian coordinates as follows 

 

( )

1tan

tan

tan

y
x

y
x
y x

θ β

β

β

β

−

=

⎛ ⎞ =⎜ ⎟
⎝ ⎠

=

=

 

This is a line that goes through the origin and makes an angle of  β with the 
positive x-axis. 
 

2. cosr aθ =  
This is easy enough to convert to Cartesian coordinates to x=a.  So, this is a 
vertical line. 
 

3. sinr bθ =  
Likewise, this converts to y=b and so is a horizontal line. 

 

Example 3  Graph 3
4
πθ = , cos 4r θ =  and sin 3r θ = −  on the same axis system. 

Solution 
There really isn’t too much to this one other than doing the graph so here it is. 
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Circles 
Let’s take a look at the equations of circles in polar coordinates. 

1. r a= . 
This equation is saying that no matter what angle we’ve got the distance from the 
origin must be a.  If you think about it that is exactly the definition of a circle of 
radius a centered at the origin. 
 
So, this is a circle of radius a centered at the origin.  This is also one of the 
reasons why we might want to work in polar coordinates.  The equation of a circle 
centered at the origin has a very nice equation, unlike the corresponding equation 
in Cartesian coordinates. 
 

2. 2 cosr a θ= . 
We looked at a specific example of one of these when we were converting 
equations to Cartesian coordinates. 
 
This is a circle of radius a  and center ( ),0a .  Note that a might be negative (as it 
was in our example above) and so the absolute value bars are required on the 
radius.  They should not be used however on the center. 
 

3. 2 sinr b θ= . 
This is similar to the previous one.  It is a circle of radius b  and center ( )0,b . 
 

4. 2 cos 2 sinr a bθ θ= + . 
This is a combination of the previous two and by completing the square twice it 
can be shown that this is a circle of radius 2 2a b+  and center ( ),a b .  In other 
words, this is the general equation of a circle that isn’t centered at the origin. 

 
Example 4  Graph 7r = , 4cosr θ= , and 7sinr θ= −  on the same axis system. 
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Solution 
The first one is a circle of radius 7 centered at the origin.  The second is a circle of radius 

2 centered at (2,0).  The third is a circle of radius 7
2

 centered at 70,
2

⎛ ⎞−⎜ ⎟
⎝ ⎠

.  Here is the 

graph of the three equations. 

 
 
Note that it takes a range of 0 2θ π≤ ≤  for a complete graph of r=a and it only takes a 
range of 0 θ π≤ ≤  to graph the other circles given here. 
 
Cardioids and Limacons 
These can be broken up into the following three cases. 
 

1. Cardioids : cosr a a θ= ±  and sinr a a θ= ± . 
These have a graph that is vaguely heart shaped and always contain the origin. 
 

2. Limacons with an inner loop : cosr a b θ= ±  and sinr a b θ= ±  with a b< . 
These will have an inner loop and will always contain the origin. 
 

3. Limacons without an inner loop : cosr a b θ= ±  and sinr a b θ= ±  with a b> . 
These do not have an inner loop and do not contain the origin. 

 
Example 5  Graph 5 5sinr θ= − , 7 6cosr θ= − , and 2 4cosr θ= + . 
 
Solution 
These will all graph out once in the range 0 2θ π≤ ≤ .  Here is a table of values for each 
followed by graphs of each. 
 

θ  5 5sinr θ= − 7 6cosr θ= − 2 4cosr θ= +  
0 5 1 6 
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2
π  0 7 2 

π  5 13 -2 
3
2
π  10 7 2 

2π  5 1 6 
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There is one final thing that we need to do in this section.  In the third graph in the 
previous example we had an inner loop.  We will, on occasion, need to know the value of 
θ  for which the graph will pass through the origin.  To find these all we need to do is set 
the equation equal to zero and solve. 
 

 
0 2 4cos

1 2 4cos ,
2 3 3

θ
π πθ θ

= +

= − ⇒ =
 

 
 

 Tangents with Polar Coordinates 
We now need to discuss some calculus topics in terms of polar coordinates.   
 
We will start with finding tangent lines to polar curves.  In this case we are going to 
assume that the equation is in the form ( )r f θ= .  With the equation in this form we can 

actually use the equation for the derivative dy
dx

 we derived when we looked at tangent 

lines with parametric equations.  To do this however requires us to come up with a set of 
parametric equations to represent the curve.  This is actually pretty easy to do. 
 
From our work in the previous section we have the following set of conversion equations 
for going from polar coordinates to Cartesian coordinates. 
 cos sinx r y rθ θ= =  
 
Now, we’ll use the fact that we’re assuming that the equation is in the form ( )r f θ= .  
Substituting this into these equations gives the following set of parametric equations 
(with θ as the parameter) for the curve. 
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 ( ) ( )cos sinx f y fθ θ θ θ= =  
 
Now, we will need the following derivatives. 

 
( ) ( ) ( ) ( )cos sin sin cos

cos sin sin cos

dx dyf f f f
d d

dr drr r
d d

θ θ θ θ θ θ θ θ
θ θ

θ θ θ θ
θ θ

′ ′= − = +

= − = +
 

 

The derivative dy
dx

 is then, 

sin cos

cos sin

dr rdy d
drdx r
d

θ θ
θ

θ θ
θ

+
=

−
 

 
Note that rather than trying to remember this formula it would probably be easier to 
remember how we derived it and just remember the formula for parametric equations. 
 
Let’s work a quick example with this. 
 

Example 1  Determine the equation of the tangent line to 3 8sinr θ= +  at 
6
πθ = . 

Solution 
We’ll first need the following derivative. 

 8cosdr
d

θ
θ

=  

The formula for the derivative dy
dx

 becomes, 

 ( )
( )2 2 2

8cos sin 3 8sin cos 16cos sin 3cos
8cos 3 8sin sin 8cos 3sin 8sin

dy
dx

θ θ θ θ θ θ θ
θ θ θ θ θ θ

+ + +
= =

− + − −
 

 
The slope of the tangent line is, 

 
6

3 34 3 11 32
3 54
2

dym
dx πθ =

+
= = =

−
 

 

Now, at 
6
πθ =  we have r=7.  We’ll need to get the corresponding x-y coordinates so we 

can get the tangent line. 



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 145

 7 3 77cos 7sin
6 2 6 2

x yπ π⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

The tangent line is then, 

 7 11 3 7 3
2 5 2

y x
⎛ ⎞

= + −⎜ ⎟⎜ ⎟
⎝ ⎠

 

For the sake of completeness here is a graph of the curve and the tangent line. 

 
 
 

 Area with Polar Coordinates 
In this section we are going to look at areas enclosed by polar curves.  Note as well that 
we said “enclosed by” instead of “under” as we typically have in these problems.  These 
problems work a little differently in polar coordinates.  Here is a sketch of what the area 
that we’ll be finding in this section looks like. 
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We’ll be looking for the shaded area in the sketch above.  The formula for finding this 
area is, 

21
2

A r d
β

α
θ= ⌠⎮

⌡
 

  
Notice that we use r in the integral instead of ( )f θ  so make sure and substitute 
accordingly when doing the integral. 
 
Let’s take a look at an example. 
 
Example 1  Determine the area of the inner loop of 2 4cosr θ= + . 
 
Solution 
We graphed this function back when we first started looking at polar coordinates.  Here is 
the sketch again for the sake of completeness. 
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So, we will need the limits that will enclose this area as we trace out the curve.  This will 
be the angles for which the curve passes through the origin.  We can get these by setting 
the equation equal to zero and solving. 

 
0 2 4cos

1 2 4cos ,
2 3 3

θ
π πθ θ

= +

= − ⇒ =
 

 
So, the area is then, 

 

( )

( )

( )( )

( )

( )( )

4
3 2

2
3
4
3 2

2
3

4
3

2
3
4
3

2
3

4
3

2
3

1 2 4cos
2

1 4 16cos 16cos
2

2 8cos 4 1 cos 2

6 8cos 4cos 2

6 8sin 2sin 2

4 6 3 2.174

A d

d

d

d

π

π

π

π

π

π

π

π

π

π

θ θ

θ θ θ

θ θ θ

θ θ θ

θ θ θ

π

= +

= + +

= + + +

= + +

= + +

= − =

⌠⎮
⌡

⌠⎮
⌡

∫

∫

 

 
So, that’s how we determine areas that are enclosed by a single curve, but what about 
situations like the following sketch were we want to find the area between two curves. 
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In this case we can use the above formula to find the area enclosed by both and then the 
actual area is the difference between the two.  The formula for this is, 

( )2 21
2 o iA r r d

β

α
θ= −⌠⎮

⌡
 

 
Let’s take a look at an example of this. 
 
Example 2  Determine the area that lies inside 3 2sinr θ= +  and outside 2r = . 
 
Solution 
Here is a sketch of the region that we are after. 

 
 
To determine this area we’ll need to know that value of θ for which the two curves 
intersect.  We can determine these points by setting the two equations and solving. 
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3 2sin 2

1 7 11sin ,
2 6 6

θ
π πθ θ

+ =

= − ⇒ =
 

Here is a sketch of the figure with these angles added. 

 
 
Note as well here that we also acknowledged that another representation for the angle 
11

6
π  is 

6
π

− .  This is important for this problem.  In order to use the formula above the 

area must be enclosed as we increase from the smaller to larger angle.  So, if we use 7
6
π  

to 11
6
π  we will not enclose the shaded area, instead we will enclose the bottom most of 

the three regions.  However if we use the angles 
6
π

−  to 7
6
π  we will enclose the area that 

we’re after. 
 
So, the area is then, 
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( ) ( )( )

( )

( )( )

( )( )

7
6 2 2

6
7
6 2

6

7
6

6
7
6

6

1 3 2sin 2
2

1 5 12sin 4sin
2

1 7 12sin 2cos 2
2

1 7 12cos sin 2
2

11 3 14 24.187
2 3

A d

d

d

π

π

π

π

π

π

π

π

θ θ

θ θ θ

θ θ θ

θ θ θ

π

−

−

−

−

= + −

= + +

= + −

= − −

= + =

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

 

 
Let’s work a slight modification of the previous example. 
 
Example 3  Determine the area of the region outside 3 2sinr θ= +  and inside 2r = . 
 
Solution 
This time we’re looking for the following region. 

 
 

So, this is the region that we get by using the limits 7
6
π  to 11

6
π .  The area is then, 
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( ) ( )( )

( )

( )( )

( )( )

11
6 2 2

7
6
11

6 2

7
6

11
6

7
6

11
6

7
6

1 2 3 2sin
2

1 5 12sin 4sin
2

1 7 12sin 2cos 2
2

1 7 12cos sin 2
2

11 3 7 2.196
2 3

A d

d

d

π

π

π

π

π

π

π

π

θ θ

θ θ θ

θ θ θ

θ θ θ

π

= − +

= − − −

= − − +

= − + +

= − =

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

 

Notice that for this area the “outer” and “inner” function where opposite! 
 
Let’s do one final modification of this example. 
 
Example 4  Determine the area that is inside both 3 2sinr θ= +  and 2r = . 
 
Solution 
Here is the sketch for this example. 

 
 
We are not going to be able to do this problem in the same fashion that we did the 
previous two.  There is no set of limits that will allow us to enclose this area as we 
increase from one to the other. 
 
In this case however, that is not a major problem.  There are two ways to do get the area 
in this problem. 



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 152

 
Solution 1 
Notice that the circle is divided up into two portions and we’re after the upper portion.  
Also notice that we found the area of the lower portion in Example 3.  Therefore, the area 
is, 

 ( )2

Area Area of Circle Area from Example 3

2 2.196
10.370
π

= −

= −

=

 

 
Solution 2 
In this case we do pretty much the same thing except this time we’ll think of the area as 
the other portion of the limacon than the portion that we were dealing with in Example 2. 
 
So, in this case the area is, 
  

 

( )

( )

( )( )

( ) ( )( )

2
2

0

2
2

0

2

0

2

0

Area Area of Limacon Area from Example 2

1 3 2sin 24.187
2

1 9 12sin 4sin 24.187
2

1 11 12sin 2cos 2 24.187
2

1 11 12cos sin 2 24.187
2
11 24.187
10.370

d

d

d

π

π

π

π

θ θ

θ θ θ

θ θ θ

θ θ θ

π

= −

= + −

= + + −

= + + −

= − + −

= −
=

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

 

 
A slightly longer approach, but sometimes we are forced to take this longer approach. 
 
As this last example has shown we will not be able to get all areas in polar coordinates 
straight from an integral. 
 
 

 Arc Length with Polar Coordinates 
We now need to move into the Calculus II applications of integrals and how we do them 
in terms of polar coordinates.  In this section we’ll look at the arc length of the curve 
given by, 
 ( )r f θ α θ β= ≤ ≤  
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where we also assume that the curve is traced out exactly once.  Just as we did with the 
tangent lines in polar coordinates we’ll first write the curve in terms of a set of parametric 
equations. 

 ( ) ( )
cos sin

cos sin
x r y r

f f
θ θ

θ θ θ θ
= =

= =
 

and we can now use the parametric formula for finding the arc length. 
 
We’ll need the following derivatives for these computations. 

( ) ( ) ( ) ( )cos sin sin cos

cos sin sin cos

dx dyf f f f
d d

dr drr r
d d

θ θ θ θ θ θ θ θ
θ θ

θ θ θ θ
θ θ

′ ′= − = +

= − = +
 

 
We’ll need the following for our ds. 

 

( ) ( )

2 2 2 2

2
2 2 2

2
2 2 2

2
2 2 2 2 2

2
2

cos sin sin cos

cos 2 cos sin sin

sin 2 cos sin cos

cos sin cos sin

dx dy dr drr r
d d d d

dr drr r
d d

dr drr r
d d

dr r
d

drr
d

θ θ θ θ
θ θ θ θ

θ θ θ θ
θ θ

θ θ θ θ
θ θ

θ θ θ θ
θ

θ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 

 
The arc length formula for polar coordinates is then, 
 L ds= ∫  
where, 

 
2

2 drds r d
d

θ
θ

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 

 
Let’s work a quick example of this. 
 
Example 1  Determine the length of r θ=  0 1θ≤ ≤ . 
 
Solution 
Okay, let’s just jump straight into the formula since this is a fairly simple function. 

 
1 2

0
1L dθ θ= +∫  
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We’ll need to use a trig substitution here. 
 2tan secx d x dxθ θ= =  

 
0 0 tan 0

1 1 tan
4

x x

x x

θ
πθ

= = =

= = =
 

 2 2 21 tan 1 sec sec secx x x xθ + = + = = =  
 
The arc length is then, 

 
( )

( )( )

1 2

0

34
0

4

0

1

sec

1 sec tan ln sec tan
2
1 2 ln 1 2
2

L d

x dx

x x x x

π

π

θ θ= +

=

= + +

= + +

∫

∫
 

 
 

 Surface Area with Polar Coordinates 
We will be looking at surface area in polar coordinates in this section.  Note however that 
all we’re going to do is give the equations since most of these integrals tend to be fairly 
difficult. 
 
We want to find the surface area of the region found by rotating, 
 ( )r f θ α θ β= ≤ ≤  
about the x or y-axis. 
 
As we did in the tangent and arc length sections we’ll write the curve in terms of a set of 
parametric equations. 

 ( ) ( )
cos sin

cos sin
x r y r

f f
θ θ

θ θ θ θ
= =

= =
 

 
If we now use the parametric formula for finding the surface area we’ll get, 

2 rotation about axis

2 rotation about axis

S y ds x

S x ds y

π

π

= −

= −

∫
∫

 

where, 

 ( )
2

2 ,drds r d r f
d

θ θ α θ β
θ

⎛ ⎞= + = ≤ ≤⎜ ⎟
⎝ ⎠
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Note that because we will pick up a dθ  from the ds we’ll need to substitute one of the 
parametric equation in for x or y depending on the axis of rotation.  This will often mean 
that the integrals will be somewhat unpleasant. 
 
 

 Arc Length and Surface Area Revisited 
We won’t be working any examples in this section.  This section is here solely for the 
purpose of summarizing up all the arc length and surface area problems.   
 
Over the course of the last two chapters the topic of arc length and surface area has arisen 
many times and each time we got a new formula out of the mix.  Students often get a 
little overwhelmed with all the formulas.   
 
However, there really aren’t as many formulas as it might seem at first glance.  There is 
exactly one arc length formula and exactly two surface area formulas.  These are, 
 

2 rotation about axis

2 rotation about axis

L ds

S y ds x

S x ds y

π

π

=

= −

= −

∫
∫
∫

 

 
The problems arise because we have quite a few ds’s that we can use.  Again students 
often have trouble deciding which one to use.  The examples/problems usually suggest 
the correct one to use however.  Here is a complete listing of all the ds’s that we’ve seen 
and when they are used. 
 

( )

( )

( ) ( )

( )

2

2

2 2

2
2

1 if ,

1 if ,

if , ,

if ,

dyds dx y f x a x b
dx

dxds dy x h y c y d
dy

dx dyds dt x f t y g t t
dt dt

drds r d r f
d

α β

θ θ α θ β
θ

⎛ ⎞= + = ≤ ≤⎜ ⎟
⎝ ⎠

⎛ ⎞
= + = ≤ ≤⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞= + = = ≤ ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= + = ≤ ≤⎜ ⎟
⎝ ⎠

 

 
Depending on the form of the function we can quickly tell which ds to use. 
 
There is only one other thing to worry about in terms of the surface area formula.  The ds 
will introduce a new differential to the integral.  Before integrating make sure all the 
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variables are in terms of this new differential.  For example if we have parametric 
equations well use the third ds and then we’ll need to make sure and substitute for the x 
or y depending on which axis we rotate about to get everything in terms of t. 
 
Likewise, if we have a function in the form ( )x h y=  then we’ll use the second ds and if 
the rotation is about the y-axis we’ll need to substitute for the x in the integral.  On the 
other hand if we rotate about the x-axis we won’t need to do a substitution for the y. 
 
Keep these rules in mind and you’ll always be able to determine which formula to use 
and how to correctly do the integral. 
 

 Sequences and Series 
 

 Introduction 
In this chapter we’ll be taking a look at sequences and (infinite) series.  Actually this 
chapter will deal almost exclusively with series, however, we also need to understand 
some of the basics of sequences in order to properly deal with series.   We will therefore, 
spend a little time on sequences as well. 
 
Series is one of those topics that many students simply don’t see the use in studying and 
to be honest many students will never see series outside of their calculus class.  However, 
series do play an important role in the field of ordinary differential equations and without 
series large portions of the field of partial differential equations would not be possible.   
 
In other words, series is an important topic even if you won’t ever see any of the 
applications.  Most of the applications are beyond the scope of most Calculus courses and 
tend to occur in classes that many students don’t take.  So, as you go through this 
material keep in mind that these do have applications even if we won’t really be covering 
many of them in this class. 
 
Here is a list of topics in this chapter. 
 
Sequences – We will start the chapter off with a brief discussion of sequences. 
 
Series – The Basics – In this section we will discuss some of the basics of infinite series. 
 
Series – Convergence/Divergence – Most of this chapter will be about the 
convergence/divergence of a series so we will give the basic ideas and definitions in this 
section. 
 
Series – Special Series – We will look at the Geometric Series, Telescoping Series, and 
Harmonic Series in this section. 
 



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 157

Integral Test – Using the Integral Test to determine if a series converges or diverges. 
 
Comparison Test/Limit Comparison Test – Using the Comparison Test and Limit 
Comparison Tests to determine if a series converges or diverges. 
 
Alternating Series Test – Using the Alternating Series Test to determine if a series 
converges or diverges. 
 
Absolute Convergence – A brief discussion on absolute convergence and how it differs 
from convergence. 
 
Ratio Test – Using the Ratio Test to determine if a series converges or diverges. 
 
Root Test – Using the Root Test to determine if a series converges or diverges. 
 
Strategy for Series – A set of general guidelines to use when deciding which test to use. 
 
Estimating the Value of a Series – Here we will look at estimating the value of an 
infinite series. 
 
Power Series – An introduction to power series and some of the basic concepts. 
 
Power Series and Functions – In this section we will start looking at how to find a 
power series representation of a function. 
 
Taylor Series – Here we will discuss how to find the Taylor/Maclaurin Series for a 
function. 
 
Applications of Series – In this section we will take a quick look at a couple of 
applications of series. 
 
Binomial Series – A brief look at binomial series. 
 
 

 Sequences 
Let’s start off this section with a discussion of just what a sequence is.  A sequence is 
nothing more than a list of numbers written in a specific order.  The list may or may not 
have an infinite number of terms in them although we will be dealing exclusively with 
infinite sequences in this class.  General sequence terms are denoted as follows, 
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( )

1

2

st
1

first term
second term

 term

1  term

th
n

n

a
a

a n

a n+

−
−

−

− +

#

#

 

 
Because we will be dealing with infinite sequences each term in the sequence will be 
followed by another term as noted above.  In the notation above we need to be very 
careful with the subscripts.  The subscript of n+1 denotes the next term in the sequence 
and NOT one plus the nth term!  In other words, 
 1 1n na a+ ≠ +  
so be very careful when writing subscripts to make sure that the “+1” doesn’t migrate out 
of the subscript! 
 
There is a variety of ways of denoting a sequence.  Each of the following are equivalent 
ways of denoting a sequence. 
 { } { } { }1 2 1 1

, , , , ,n n n n n
a a a a a a ∞

+ =
… …  

In the second and third notations above an is usually given by a formula.   
 
A couple of notes are now in order about these notations.  First, note the difference 
between the second and third notations above.  If the starting point is not important or is 
implied in some way by the problem it is often not written down as we did in the third 
notation.  Next, we used a starting point of n=1 in the third notation only so we could 
write one down.  There is absolutely no reason to believe that a sequence will start at 
n=1.  A sequence will start where ever it needs to start. 
 
Let’s take a look at a couple of sequences. 
 
Example 1  Write down the first few terms of each of the following sequences. 

(a) 2
1

1

n

n
n

∞

=

+⎧ ⎫
⎨ ⎬
⎩ ⎭

 

(b) ( ) 1

0

1
2

n

n

n

∞+

=

⎧ ⎫−⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 

(c) { } 1n n
b ∞

=
, where digit of th

nb n π=  
Solution 
(a) To get the first few sequence terms here all we need to do is plug in values of n into 
the formula given and we’ll get the sequence terms. 
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 N
N N N N

2
11

2 3 4 5

1 3 4 5 62 , , , , ,
4 9 16 25nn

n n n n

n
n

∞

==
= = = =

⎧ ⎫
+ ⎪ ⎪⎧ ⎫ =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎪ ⎪
⎩ ⎭

…  

Note the inclusion of the “…” at then end!  This is an important piece of notation as it is 
the only thing that tells us that the sequence continues on and doesn’t terminate at the last 
term. 
 
(b) This one is similar to the first one.  The main difference is that this sequence doesn’t 
start at n=1. 

 ( ) 1

0

1 1 1 1 11, , , , ,
2 2 4 8 16

n

n

n

∞+

=

⎧ ⎫−⎪ ⎪ ⎧ ⎫= − − −⎨ ⎬ ⎨ ⎬
⎩ ⎭⎪ ⎪⎩ ⎭

…  

Note that the terms in this sequence alternate in signs.  Sequences of this kind are 
sometimes called alternating sequences. 
 
(c) This sequence is different from the first two in the sense that it doesn’t have a specific 
formula for each term.  However, it does tell us what each term should be.  Each term 
should be the nth digit of π.  So we know that 3.14159265359π = …  
 
The sequence is then, 

{ }3,1, 4,1,5,9, 2,6,5,3,5,…  
 
In the first two parts of the previous example note that we were really treating the 
formulas as functions that can only have integers plugged into them.  Or, 

 ( ) ( ) ( ) 1

2

11
2

n

n

nf n g n
n

+−+
= =  

 
This is an important idea in the study of sequences (and series).  Treating the sequence 
terms as function evaluations will allow us to do many things with sequences that 
couldn’t do otherwise.  Before delving further into this idea however we need to get a 
couple more ideas out of the way. 
 
First we want to think about “graphing” a sequence.  To graph the sequence { }na  we plot 

the points ( ), nn a  as n ranges over all possible values on a graph.   
 

For instance, let’s graph the sequence 2
1

1

n

n
n

∞

=

+⎧ ⎫
⎨ ⎬
⎩ ⎭

.  The first few points on the graph are 

then, 

 ( ) 3 4 5 61,2 , 2, , 3, , 4, , 5, ,
4 9 16 25

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

… 

 
The graph is then, 
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This graph leads us to an important idea about sequences.  Notice that as n increases the 
sequence terms from our sequence terms, in this case, get closer and closer to zero.  We 
then say that zero is the limit (or sometimes the limiting value) of the sequence and 
write, 

 2

1lim lim 0nn n

na
n→∞ →∞

+
= =  

 
This notation should look familiar to you.  It is the same notation we used when we 
talked about the limit of a function.  In fact, if you recall, we said earlier that we could 
think of sequences as functions in some way and so this notation shouldn’t be too 
surprising. 
 
Using the ideas that we developed for limits of functions we can write down the 
following working definition for limits of sequences. 
 
Definitions 

1. We say that  
 lim nn

a L
→∞

=  

if we can make an as close to L as we want for all sufficiently large n.  In other 
words, the value of the an’s approach L as n approaches infinity. 
 

2. We say that 
 lim nn

a
→∞

= ∞  

if we can make an as large as we want for all sufficiently large n.  Again, in other 
words, the value of the an’s get larger and larger without bound as n approaches 
infinity. 
 

3. We say that 
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 lim nn
a

→∞
= −∞  

if we can make an as large and negative as we want for all sufficiently large n.  
Again, in other words, the value of the an’s are negative and get larger and larger 
without bound as n approaches infinity. 

 
We now have a bit of terminology to get out of the way.  If lim nn

a
→∞

 exists and is finite we 

say that the sequence is convergent.  If lim nn
a

→∞
 doesn’t exist or is infinite we say the 

sequence diverges.  Note that sometimes we will say the sequence diverges to ∞  if 
lim nn

a
→∞

= ∞  and if lim nn
a

→∞
= −∞  we will sometimes say that the sequence diverges to −∞ . 

 
So just how do we find the limits of sequences?  We will use the following theorems and 
facts. 
 
Theorem 1 
Given the sequence { }na  if we have a function f(x) such that ( ) nf n a=  and 

( )lim
x

f x L
→∞

=  then lim nn
a L

→∞
=  

 
This theorem is basically telling us that we take the limits of sequences much like we take 
the limit of functions.  In fact, in most cases we’ll not even really use this theorem by 
explicitly writing down a function.  We will more often just treat the limit as if it were a 
limit of a function. 
 
Theorem 2 
If lim 0nn

a
→∞

=  then lim 0nn
a

→∞
= . 

 
This theorem is convenient for sequences that alternate in signs and note that it will only 
work if the sequence has a limit of zero. 
 
Theorem 3 
The sequence { }

0

n

n
r

∞

=
 converges if 1 1r− < ≤  and diverges for all other value of r.  Also, 

 
0 if 1 1

lim
1 if 1

n

n

r
r

r→∞

− < <⎧
= ⎨ =⎩

 

 
Note that the sequence in this theorem will converge for 1r =  and diverge for 1r = −  
 
Facts 
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( )

( ) ( )( )

lim lim lim

lim lim

lim lim lim

lim
lim , provided lim 0

lim

n n n nn n n

n nn n

n n n nn n n

nn n
nn n

n nn

a b a b

ca c a

a b a b

aa b
b b

→∞ →∞ →∞

→∞ →∞

→∞ →∞ →∞

→∞

→∞ →∞
→∞

± = ±

=

=

= ≠

 

 
Let’s take a look at a couple of examples. 
 
Example 2  Determine if the following sequences converge or diverge.  If the sequence 
converges determine its limit. 

(a) 
2

2
2

3 1
10 5 n

n
n n

∞

=

⎧ ⎫−
⎨ ⎬+⎩ ⎭

 

(b) 
2

1

n

nn

∞

=

⎧ ⎫
⎨ ⎬
⎩ ⎭

e  

(c) ( )

1

1 n

n
n

∞

=

⎧ ⎫−⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 

(d) ( ){ }
0

1 n

n

∞

=
−  

Solution 
(a) In this case all we need to do is recall the method that was developed in Calculus I to 
deal with the limits of rational functions.  See the Limits Involving Infinity section of my 
Calculus I notes for a review of this if you need to.   
 
To do a limit in this form all we need to do is factor from the numerator and denominator 
the largest power of n, cancel and then take the limit. 

 

2
2 2 2

2
2

1 13 33 1 3lim lim lim 0010 5 555
n n n

n
n n n
n n n

nn
→∞ →∞ →∞

⎛ ⎞− −⎜ ⎟− ⎝ ⎠= = =
11+ ⎛ ⎞ ++⎜ ⎟

⎝ ⎠

 

 

So the sequence converges and its limit is 3
5

. 

(b) We will need to be careful with this one.   We will need to use L’Hospital’s Rule on 
this sequence.  The problem is that L’Hospital’s Rule only works on functions and not on 
sequences.  Normally this would be a problem, but we’ve got Theorem 1 from above to 
help us out.  Let’s define 

( )
2x

f x
x

=
e  
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and note that, 

( )
2n

f n
n

=
e  

 
Theorem 1 says that all we need to do is take the limit of the function. 

 
2 2 22lim lim lim

1

n x x

n x xn x→∞ →∞ →∞
= = = ∞

e e e  

So, the sequence in this part diverges (to ∞ ). 
 
More often than not we just do L’Hospital’s Rule on the sequence terms without first 
converting to x’s since the work will be identical regardless of whether we use x or n.  
However, we really should remember that technically we can’t do the derivatives while 
dealing with sequence terms. 
 
(c) We will also need to be careful with this sequence.  We might be tempted to just say 
that the limit of the sequence terms is zero (and we’d be correct).  However, technically 
we can’t take the limit of sequences whose terms alternate, because we don’t know how 
to do limits of functions that exhibit that same behavior.  Also, we want to be very careful 
to not rely too much on intuition with these problems.  As we will see in this section, and 
in later sections, our intuition can lead us astray in these problem if we aren’t careful. 
 
So, let’s work this one by the book.  We will need to use Theorem 2 on this problem. 

 ( )1 1lim lim 0
n

n nn n→∞ →∞

−
= =  

Therefore, since the limit of the sequence terms with absolute value bars on them goes to 
zero we know by Theorem 2 that, 

 ( )1
lim 0

n

n n→∞

−
=  

which also means that the sequence converges to a value of zero. 
 
(d) For this sequence all that we need to do is acknowledge that ( )lim 1 n

n→∞
−  doesn't exist to 

get that the sequence is divergent.  If you’re not convinced that this limit doesn’t exist 
write down the first few terms of the sequence. 

 ( ){ } { }
0

1 1, 1,1, 1,1, 1,1, 1,1, 1,n

n

∞

=
− = − − − − − …  

 
In order for a limit to exist the terms must be settling down towards a specific value and 
these clearly will never do that.  
 
Note that we could also use Theorem 3 on this sequence if we wanted to. 
 
Before moving on we need to give a warning about misusing Theorem 2.  Theorem 2 
only works if the limit is zero.  If the limit of the absolute value of the sequence terms is 
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not zero then the theorem will not hold.  The last part of the previous example is a good 
example of this.  Notice that  
 ( )lim 1 lim1 1n

n n→∞ →∞
− = =  

 and yet, ( )lim 1 n

n→∞
−  doesn’t even exist let alone equal 1.  So, be careful using this theorem. 

 
We now need to take a look at some more terminology and definitions for sequences. 
 
Given any sequence { }na  we have the following. 

1. We call the sequence increasing if 1n na a +≤  for every n. 
2. We call the sequence decreasing if 1n na a +≥  for every n. 
3. If { }na  is an increasing sequence or { }na  is a decreasing sequence we call it 

monotonic. 
4. If there exists a number m such that nm a≤  for every n we say the sequence is 

bounded below. The number m is sometimes called a lower bound for the 
sequence. 

5. If there exists a number M such that na M≤  for every n we say the sequence is 
bounded above.  The number M is sometimes called an upper bound for the 
sequence. 

6. If the sequence is both bounded below and bounded above we call the sequence 
bounded. 

 
Note that in order for a sequence to be increasing or decreasing it must be 
increasing/decreasing for every n.  In other words, a sequence that increases for three 
terms and then decreases for the rest of the terms is NOT a decreasing sequence! 
 
Before moving on we should make a quick point about the bounds for a sequence that is 
bounded above and/or below.  We’ll make the point about lower bounds, but we could 
just as easily make it about upper bounds. 
 
A sequence is bounded below if we can find any number m such that nm a≤  for every n.  
Note however that if we find one number m to use for a lower bound then any number 
smaller than m will also be a lower bound.  Also, just because we find one lower bound 
that doesn’t mean there won’t be a better lower bound for the sequence than the one we 
found.  In other words, there are an infinite number of lower bounds for a sequence that is 
bounded below, some will be better than others.  In my class all that I’m after will be a 
lower bound.  I don’t necessarily need the best lower bound, just a number that will be a 
lower bound for the sequence. 
 
We also have the following theorem about bounded and monotonic sequences. 
 
Theorem 4 
If { }na  is bounded and monotonic then { }na  is convergent. 



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 165

 
Let’s take a look at a couple of examples. 
 
Example 3  Determine if the following sequences are monotonic and/or bounded. 

(a) { }2

0n
n

∞

=
−  

(b) ( ){ }1

1
1 n

n

∞+

=
−  

(c) 2
5

2

nn

∞

=

⎧ ⎫
⎨ ⎬
⎩ ⎭

 

Solution 
(a) This sequence is a decreasing sequence (and hence monotonic) because, 
 ( )22 1n n− > − +  
for every n.  Also, since the sequence terms will be either zero or negative this sequence 
is bounded above.  We can use any positive number or zero as the bound, M, however, 
it’s standard to choose the smallest possible bound if we can and it’s a nice number.  So, 
we’ll choose M=0 since, 

2 0 for every n n− ≤  
 
This sequence is not bounded below however since we can always get below any 
potential bound by taking n large enough.  Therefore, while the sequence is bounded 
above it is not bounded. 
 
As a side note we can also note that this sequence diverges (to −∞  if we want to be 
specific). 
 
(b) The sequence terms in this sequence alternate between 1 and -1 and so the sequence is 
not monotonic.  It is bounded however since it is bounded above by 1 and bounded below 
by -1.   
 
This sequence is also divergent. 
 
(c) This sequence is a decreasing sequence (and hence monotonic) since, 

 
( )22

2 2
1n n

>
+

 

The terms in this sequence are all positive and so it is bounded below by zero.  Also, 
since the sequence is a decreasing sequence the first sequence term will be the largest and 

so we can see that the sequence will also be bounded above by 2
25

.  Therefore, this 

sequence is bounded. 
 
Theorem 4 says that this sequence is then convergent since it is both bounded and 
monotonic.  A quick limit can verify that this sequence is convergent and its value is 
zero. 



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 166

 
Now, let’s work a couple more examples that are designed to make sure that we don’t get 
too used to relying on our intuition with these problems. 
 
Example 4  Determine if the following sequences are monotonic and/or bounded. 

(a) 
11 n

n
n

∞

=

⎧ ⎫
⎨ ⎬+⎩ ⎭

 

(b) 
3

4
010000 n

n
n

∞

=

⎧ ⎫
⎨ ⎬+⎩ ⎭

 

Solution 
(a) We’ll start with the bounded part of this example first and then come back and deal 
with the increasing/decreasing question since that is where students often make mistakes 
with problems of this type.   
 
First, n is positive and so the sequence terms are all positive.  The sequence is therefore 
bounded below by zero.  Likewise each sequence term is the quotient of a number 
divided by a larger number and so is guaranteed to be less that one.  The sequence is then 
bounded above by one.  So, this sequence is bounded. 
 
Now let’s think about the monotonic question.  First, students will often make the 
mistake of assuming that because the denominator is larger the quotient must be 
decreasing.  This will not always be the case and in this case we would be wrong.  This 
sequence is increasing. 
 
To see this we will need to resort to Calculus I techniques.  First consider the following 
function and its derivative. 

 ( ) ( )
( )2

1
1 1

xf x f x
x x

′= =
+ +

 

 
We can see that the first derivative is always positive and so from Calculus I we know 
that the function must then be an increasing function.  So, how does this help us?  Notice 
that, 

 ( )
1 n

nf n a
n

= =
+

 

Therefore, 

( ) ( ) 1 1
11

1 1 1n n n n
n na f n f n a a a

n n + +
+

= = < + = = ⇒ <
+ + +

 

 
In other words, the sequence must be increasing.  Note that now that we know the 
sequence is an increasing sequence we can get a better lower bound for the sequence.  
Since the sequence is increasing the first term in the sequence must be the smallest term 

and so since we are starting at 1n =  we could also use a lower bound of 1
2

 for this 
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sequence.  It is important to remember that any number that is always less than or equal 
to all the sequence terms can be a lower bound.  Some are better than others however. 
 
Also, the sequence converges to 1, which again is a verification of Theorem 4. 
 
Before moving on to the next part there is a natural question that many students will have 
at this point.  That is this.  Why did we use Calculus to determine the 
increasing/decreasing nature of the sequence when we could have just plugged in a 
couple of n’s and quickly determined the say thing? 
 
The answer to this question is the next part! 
 
(b) This is a messy looking sequence, but it needs to be in order to make the point of this 
part.  
 
First, notice that, as with the previous part, the sequence terms are all positive and will all 
be less that one (since the numerator is guaranteed to be less than the denominator) and 
so the sequence is bounded. 
 
Now, let’s move on to the increasing/decreasing question.  First, as with the last problem, 
many students will look at the exponents in the numerator and denominator and 
determine based on that that sequence terms must decrease. 
 
This however, isn’t a decreasing sequence.  Let’s take a look at the first few terms to see 
this. 

 

1 2

3 4

5 6

7 8

9 10

1 10.00009999 0.0007987
10001 1252

27 40.005678 0.006240
10081 641
1 270.011756 0.019122

85 1412
343 320.02766 0.03632

12401 881
729 10.04402 0.05

16561 20

a a

a a

a a

a a

a a

= ≈ = ≈

= ≈ = ≈

= ≈ = ≈

= ≈ = ≈

= ≈ = =

 

 
The first 10 (at least) terms of this sequence are all increasing and so clearly the sequence 
can’t be a decreasing sequence.  Recall that a sequence can only be decreasing if ALL the 
terms are decreasing. 
 
Now, we can’t make another mistake and assume that because the first few terms 
increase then whole sequence must also increase.  If we did that we would also be 
mistaken. 
 
This sequence is neither decreasing or increasing.  The only sure way to see this is to do 
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the Calculus I approach to increasing/decreasing functions. 
 
In this case we’ll need the following function and its derivative. 

 ( ) ( ) ( )
( )

2 43

24 4

30000
10000 10000

x xxf x f x
x x

− −
′= =

+ +
 

This function will have the following three critical points, 
 4 40, 30000 13.1607, 30000 13.1607x x x= = ≈ = − ≈ −  
 
Why critical points?  Remember these are the only places where the function may change 
sign!  Our sequence starts at n=0 and so we can ignore the third one since it lies outside 
the values of n that we’re considering.  By plugging in some test values of x we can 
quickly determine that the derivative is positive for 40 30000x< <  and so the function 
is increasing in this range.  Likewise, we can see that the derivative is negative for 

4 30000x >  and so the function will be decreasing in this range. 
 
So, our sequence will be increasing for 0 13n≤ ≤  and decreasing for 13n ≥ .  Therefore 
the function is not monotonic. 
 
Notice however Theorem 4 does NOT say that this sequence will then diverge.  In fact, 
this sequence converges to a value of zero.  Be careful not to misuse Theorem 4. 
 
So, as the last example, has shown we need to be careful in making assumptions about 
sequences.  Our intuition will often not be sufficient to get the correct answer and we can 
NEVER make assumptions about a sequence based on the value of the first few terms.  
As the last part showed there are sequences which will increase or decrease for a few 
terms and then change direction after that.   
 
Note as well that we said “first few terms” here, but it is completely possible for a 
sequence to decrease for the first 10,000 terms and then start increasing for the remaining 
terms.  In other words, there is no “magical” value of n for which all we have to do is 
check up to that point and then we’ll now that the whole sequence will do. 
 
The only time that we’ll be able to avoid using Calculus I techniques to determine the 
increasing/decreasing nature of a sequence is in sequences like part (c) of Example 3.  In 
this case increasing n only changed (in fact increased) the denominator and so we were 
able to determine the behavior of the sequence based on that. 
 
In Example 4 however, increasing n increased both the denominator and the numerator.  
In cases like this there is no way to determine which increase will “win out” and cause 
the sequence terms to increase or decrease and so we need to resort to Calculus I 
techniques to answer the question. 
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 Series – The Basics 
In this section we will introduce the topic that we will be discussing for the rest of this 
chapter.  That topic is series.  So just what is a series?  Well, let’s start with a sequence 
{ } 1n n
a ∞

=
 (note the n=1 is for convenience, it can be anything) and then add up all the terms 

of the sequence. 
 1 2 3 na a a a+ + + + +" "  
This is not an easy thing to write down on a regular basis and so we introduce the 
following notation. 

 1 2 3
1

n n
n

a a a a a
∞

=

+ + + + + = ∑" "  

 
We have just defined what a series is.  A series is nothing more than the summation of a 
list of numbers or sequence.  Since we started out with an infinite sequence we will be 
summing up an infinite list of numbers.  Because of this the series above is sometimes 
called an infinite series.  The n is often called an index of summation or just index for 
short.   
 
Note as well that we will use na∑  to represent an infinite series in which the starting 
point for the index is not important.  We will do this in quite a few facts and theorems 
that we’ll be seeing throughout this chapter.  In these facts the starting point of the series 
will not affect the result and so to simplify the notation and to avoid giving the 
impression that the starting point is important we will drop the index from the notation.  
Do not forget however, that there is a starting point and that this will be an infinite series. 
 
The notation used for series is called a number of things.  The most common names are : 
series notation, summation notation, and sigma notation. 
 
The series notation (or summation notation or sigma notation, which ever you prefer) 
tells us to add all the items from the sequence starting at the value of the index that is 
below the sigma.  Also note that the letter that we use for the index is not important.  The 
following two series are identical. 

 2 2
0 0

3 3
1 1n in i

∞ ∞

= =

=
+ +∑ ∑  

As long as we’re starting at the same spot (n=0 or i=0 respectively) and we’re adding the 
same terms so the series will be identical. 
 
The point of this section is to cover the basic ideas, concepts and manipulations involved 
in series.  We need to be somewhat familiar with these before we get into the later 
sections. 
 
So, let’s start off the discussion with some basic facts about arithmetic with series. 
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 ( )

0 0 0 0

is any number

where 

n n

n n n n
n k n k n k

n

n n n n i n i
n n n i

ca c a c

a b a b

a b c c a b

∞ ∞ ∞

= = =

∞ ∞ ∞

−
= = = =

=

± = ±

⎛ ⎞⎛ ⎞ = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑

 

 
Before discussing these in detail let’s again talk a little bit about the notation.  In the first 
formula the initial value of the index is not important to the formula and so was dropped 
completely.  Note as well that we dropped the infinity from the top of the sigma in this 
case as well.  We will always drop the infinity when we drop the initial value of the 
index.  When there is no initial value given for the series the assumption is that we can 
use any value there and we neglected putting one in the formula to avoid giving the 
impression that the starting point was important. 
 
In the second series we had a starting point, but it wasn’t a specific starting point.  In this 
case we needed to acknowledge that in order to add or subtract two series we need the 
two series to start at the same point.  Just what this value happens to be isn’t important, 
but it must be the same for both series and to denote this we used the general starting 
point n=k. 
 
In the third series we gave a specific starting point (n=0).  From this point on it can be 
assumed that if a fact/theorem gives a specific starting point for a series then that starting 
point is required in order of the fact/theorem to be valid.  That is the case with this fact 
about multiplying series.  There are similar facts for series that don’t start at zero, 
however we won’t be doing much in the way of multiplying series in this chapter and so 
we don’t really need them. 
 
Okay, now that the notational stuff is out of the way, let’s think about these facts a little.  
The first fact should make some sense.  We can always factor a constant out of a series.  
We know that we can do this with a finite sum, 
 ( )2 22 4 6 2 2 3x x x x+ + = + +  
and so it should make some sense that we can also do it for infinite sums (i.e. infinite 
series). 
 
Likewise, the second fact isn’t too bad to understand.  Adding/Subtracting two (or more) 
series involves nothing more than adding/subtracting similar terms 
 
The formula that always causes difficulty is the multiplication of series formula.  First, 
let’s note the following, 

 ( )
0 0 0

n n n n
n n n

a b a b
∞ ∞ ∞

= = =

⎛ ⎞⎛ ⎞ ≠⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑ ∑  

 
To convince yourself that this isn’t true consider the following product of two finite 
sums. 
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 ( )( )2 2 32 3 5 6 7 3x x x x x x+ − + = − − +  
Yeah, it was just the multiplication of two polynomials, but it makes the point.  In doing 
the multiplication we didn’t just multiply the constant terms, them the x terms, etc.  
Instead we had to distribute the 2 through the second polynomial, then distribute the x 
through the second polynomial and finally combine like terms. 
 
Multiplying infinite series needs to be done in the same manner.  Remember that a series 
is really a giant summation and so here is what we’re really asking for multiplication, 

 ( )( )0 1 2 3 0 1 2 3
0 0

n n
n n

a b a a a a b b b b
∞ ∞

= =

⎛ ⎞⎛ ⎞ = + + + + + + + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑ " "  

 
To do this multiplication we would have to distribute the a0 through the second term, 
distribute the a1 through, etc then combine like terms.  This is pretty much impossible 
since both series have an infinite set of terms in them.  The formula given above is the 
general formula for this, but again, is usually impossible to use in practice.   
 
The reality is that multiplication of series is a somewhat difficult process and in general is 
avoided at all costs if possible.  We will take a brief look at it towards the end of the 
chapter when we’ve got more work under our belt and we run across a situation where it 
might actually be what we want to do.  Until then, don’t worry about multiplying series. 
 
The next topic that we need to discuss in this section is that of index shift.  To be honest 
this is not a topic that we’ll see all that often in this course.  In fact, we’ll use it once in 
the next section and then not use it again in all likelihood.  Despite the fact that we won’t 
use it much in this course doesn’t mean however that it isn’t used often in other classes 
where you might run across series.  So, we will cover it briefly here so that you can say 
you’ve seen it. 
 
The basic idea behind index shifts is to start a series at a different value for whatever the 
reason (and yes, there are legitimate reasons for doing that). 
 
Consider the following series, 

 
2

5
2n

n

n∞

=

+∑  

Suppose that for some reason we wanted to start this series at n=0, but we didn’t want to 
change the value of the series.  This means that we can’t just change the n=2 to n=0 as 
this would add in two new terms to the series changing its value. 
 
Performing an index shift is a fairly simple process to do.  We’ll start by defining a new 
index, say i, as follows, 
 2i n= −  
Now, when n=2, we will get i=0.  Notice as well that if n = ∞  then 2i = ∞ − = ∞ , so 
only the lower limit will change here.  Next, notice that we can solve this for n to get, 
 2n i= +  
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We can now completely rewrite the series in terms of the index i instead of the index n. 

 ( )
2 2

2 0 0

2 55 7
2 2 2n i i

n i i

in i∞ ∞ ∞

+ +
= = =

+ ++ +
= =∑ ∑ ∑  

 
To finish the problem out we’ll recall that the letter we used for the index doesn’t matter 
and so we’ll change the final i back into an n to get, 

 2
2 0

5 7
2 2n n

n n

n n∞ ∞

+
= =

+ +
=∑ ∑  

 
To convince yourselves that these really are the same summation let’s write out the first 
couple of terms for each of them, 

 
2 3 4 5

2

2 2 3 4 5
0

5 7 8 9 10
2 2 2 2 2

7 7 8 9 10
2 2 2 2 2

n
n

n
n

n

n

∞

=

∞

+
=

+
= + + + +

+
= + + + +

∑

∑

"

"
 

 
So, sure enough they are the same series. 
 
There is actually an easier way to do an index shift.  The method given above is the 
technically correct way of doing an index shift.  However, notice in the above example 
we decreased the initial value of the index by 2 and all the n’s in the series terms 
increased by 2 as well. 
 
This will always work in this manner.  If we decrease the initial value of the index by a 
set amount then all the other n’s in the series term will increase by the same amount.  
Likewise, if we increase the initial value of the index by a set amount, then all the n’s in 
the series term will decrease by the same amount. 
 
Let’s do a couple of examples using this shorthand method for doing index shifts. 
 
Example 1  Perform the following index shifts. 

(a) Write 1

1

n

n
ar

∞
−

=
∑  as a series that starts at n=0. 

(b) Write 
2

1
1 1 3n

n

n∞

+
= −∑  as a series that starts at n=3. 

Solution 
(a) In this case we need to decrease the initial value by 1 and so the n’s (okay the single 
n) in the term must increase by 1 as well. 

 ( )1 11

1 0 0

nn n

n n n
ar ar ar

∞ ∞ ∞
+ −−

= = =

= =∑ ∑ ∑  

 
(b) For this problem we want to increase the initial value by 2 and so all the n’s in the 
series term must decrease by 2. 
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 ( )
( )

( )2 22

1 12 1
1 3 3

2 2
1 3 1 31 3n nn

n n n

n nn∞ ∞ ∞

+ −− +
= = =

− −
= =

− −−
∑ ∑ ∑  

 
The final topic in this section is again a topic that we’ll not be seeing all that often in this 
class, although we will be seeing it more often than the index shifts.  This final topic is 
really more about alternate ways to write series when the situation requires it. 
 
Let’s start with the following series (note that the n=1 starting point is only for 
convenience, we can start anywhere). 

 1 2 3 4 5
1

n
n

a a a a a a
∞

=

= + + + + +∑ "  

 
Notice that if we ignore the first term the remaining terms will also be a series that will 
start at n=2 instead of n=1  So, we can rewrite the original series as follows, 

 1
1 2

n n
n n

a a a
∞ ∞

= =

= +∑ ∑  

In the example we say that we’ve stripped out the first term. 
 
We could have stripped out more terms if we wanted to.  In the following series we’ve 
stripped out the first two terms and the first four terms respectively. 

 
1 2

1 3

1 2 3 4
1 5

n n
n n

n n
n n

a a a a

a a a a a a

∞ ∞

= =

∞ ∞

= =

= + +

= + + + +

∑ ∑

∑ ∑
 

 
Being able to strip out terms will, on occasion, simplify our work or allow us to reuse a 
prior result so it’s an important idea to remember. 
 
Notice that in the second example above we could have also denoted the four terms that 
we stripped out as a finite series as follows, 

 
4

1 2 3 4
1 5 1 5

n n n n
n n n n

a a a a a a a a
∞ ∞ ∞

= = = =

= + + + + = +∑ ∑ ∑ ∑  

 
This is a convenient notation when we are stripping out a large number of terms or if we 
need to strip out an undetermined number of terms.  In general, we can write a series as 
follows, 

 
1 1 1

N

n n n
n n n N

a a a
∞ ∞

= = = +

= +∑ ∑ ∑  

 
We’ll leave this section with an important warning about terminology.  Don’t get 
sequences and series confused!  A sequence is a list of numbers written in a specific order 
while a series is a summation of the list of numbers.  So, provided it even makes sense to 
do the addition (see the next section), a series will be a single value. 
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So, once again, a sequence is a list of numbers while a series is a single number, provided 
it makes sense to even compute the series.  Students will often confuse the two and try to 
use facts pertaining to one on the other.  However, since they are different beasts this just 
won’t work.  There will be problems where we are using both sequences and series, but 
we’ll always have to remember that they are different. 
 
 

 Series – Convergence/Divergence 
In the previous section we spent some time getting familiar with series, but to be honest, 
most of what we did in that section won’t be used on a regular basis in this chapter.  We 
covered that material because we need to be aware of how series work and can be 
manipulated, but we also covered it so that we could start getting our feet wet in the 
subject of series. 
 
It is now time to start talking about an idea involved in series that we will deal with to 
one extent of another in almost all of the remaining sections of this chapter. 
 
There was a very important question about series that was only mentioned in passing 
towards the very end of the previous section.  The question is simply this : Does it even 
make sense to add up an infinite sequence of numbers?  Technically we can always write 
down an infinite series or summation, but that doesn’t mean that it makes sense to do it.   
 
The real question that we’ll be asking here is does the (infinite) series/summation yield a 
finite value or infinite value?  Of course that also assumes that the series yields a value at 
all!  As we will see it will be possible for a series to not even have a value. 
 
To answer this question we’ll need some more terminology out of the way.  Let’s start 
with the following series. 

 
1

n
n

a
∞

=
∑  

Note that we’re starting at n=1 only for convenience.  We could start the series 
anywhere, but the following notation and terminology demands that we start somewhere 
and so for the sake of the work we choose to start at n=1. 
 
Now, instead of adding all the terms out to infinity, let’s look at the following finite 
summations/series. 



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 175

 

1 1

2 1 2

3 1 2 3

4 1 2 3 4

1 2 3 4
1

n

n n i
i

s a
s a a
s a a a
s a a a a

s a a a a a a
=

=
= +
= + +

= + + +

= + + + + + = ∑

#

"

 

 
These are called partial sums.  Notice that the partial sums will form an infinite 
sequence, { } 1n n

s ∞

=
, and that while it might not make sense to perform a summation of an 

infinite list of numbers these are all summations of a finite list of numbers and so are 
guaranteed to be finite numbers.  Well they will be finite numbers provided we don’t end 
up with a division by zero error somewhere in the list.  In all of the work that we’ll be 
doing in this chapter we will assume that all the sequence terms exist and are finite 
numbers. 
 
From the section on sequences we know how to determine if the sequence of partial sums 
converges or diverges.  Also notice that as n → ∞  the sequence terms, sn, should start 
looking more and more like the infinite series.  In fact it can be shown that if the 
sequence of partial sums is convergent and if we define, 
 lim nn

s s
→∞

=  

then, 

 
1

n
n

a s
∞

=

=∑  

In these cases we call the series convergent and we call s the sum or value of the series.  
If the sequence of partial sums is divergent (i.e. either the limit doesn’t exist or is infinite) 
then we call the series divergent. 
 
In other words, the series is convergent if the sequence of partial sums is convergent and 
hence has a finite value.  Likewise the series will be divergent if the sequence of partial 
sums is divergent.  In the case of a divergent series, either the series will have an infinite 
value or won’t have a value at all depending on whether or not the limit of the sequence 
of partial sums exists or is infinite. 
 
Let’s take a look at some series and see if we can determine if they are convergent or 
divergent. 
 
Example 1  Determine if the following series is convergent or divergent.  If it converges 
determine its sum. 

 
1n
n

∞

=
∑  

Solution 
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To determine if the series is convergent we first need to get our hands on a formula for 
the general term in the sequence of partial sums. 

 
1

n

n
i

s i
=

= ∑  

This is a known series and its value can be shown to be, 

 ( )
1

1
2

n

n
i

n n
s i

=

+
= =∑  

Don’t worry if you didn’t know this formula (I’d be surprised if anyone knew it…) as 
you won’t be required to know it in my course. 
 
So, to determine if the series is convergent we will first need to see the sequence of 
partial sums, 

 ( )
1

1
2

n

n n
∞

=

+⎧ ⎫
⎨ ⎬
⎩ ⎭

 

is convergent or divergent.  That’s not terribly difficult in this case. 

 ( )1
lim

2n

n n
→∞

+
= ∞  

 
Therefore, the sequence of partial sums diverges to ∞  and so the series also diverges.  
Note that we can say that the series has the value of ∞  in these cases, although the series 
is still called divergent. 
 
So, as we saw in this example we had to know a fairly obscure formula in order to 
determine the convergence of this series.  In general finding a formula for the general 
term in the sequence of partial sums is a very difficult process.  In fact after the next 
section we’ll not be doing much with the partial sums of series due to the extreme 
difficulty faced in find the general formula. 
 
We will continue with a few more examples however, since this is technically how we 
determine convergence of a series.  Also, the remaining examples we’ll be looking at in 
this section will lead us to a very important fact about the convergence of series. 
 
So, let’s take a look at a couple more examples. 
 
Example 2  Determine if the following series converges or diverges.  If it converges 
determine its sum. 

2
2

1
1n n

∞

= −∑  

Solution 
This is actually one of the few series in which we are able to determine a formula for the 
general term in the sequence of partial fractions.  However, in this section we are more 
interested in the general idea of convergence and divergence and so we’ll put off 
discussing the process for finding the formula until the next section. 
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The general formula for the partial sums is, 

 
( )2

2

1 3 1 1
1 4 2 2 1

n

n
i

s
i n n=

= = − −
− +∑  

and in this case we have, 

 
( )

3 1 1 3lim lim
4 2 2 1 4nn n

s
n n→∞ →∞

⎛ ⎞
= − − =⎜ ⎟⎜ ⎟+⎝ ⎠

 

 
The sequence of partial sums converges and so the series converges as well and its value 
is, 

 2
2

1 3
1 4n n

∞

=

=
−∑  

 
Example 3  Determine if the following series converges or diverges.  If it converges 
determine its sum. 

( )
0

1 n

n

∞

=

−∑  

Solution 
In this case we really don’t need a general formula for the partial sums to determine the 
convergence of this series.  Let’s just write down the first few partial sums. 
 

 

0

1

2

3

1
1 1 0
1 1 1 1
1 1 1 1 0

.

s
s
s
s
etc

=
= − =
= − + =
= − + − =

 

 
So, it looks like the sequence of partial sums is, 
 { } { }0

1,0,1,0,1,0,1,0,1,n n
s ∞

=
= …  

and this sequence diverges since lim nn
s

→∞
 doesn’t exist.  Therefore, the series also diverges.  

Note as well that unlike the first example, which was also divergent, this series doesn’t 
even have a value. 
 
Example 4  Determine if the following series converges or diverges.  If it converges 
determine its sum. 

1
1

1
3n

n

∞

−
=

∑  

Solution 
Here is the general formula for the partial sums for this series. 
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 1
1

1 3 11
3 2 3

n

n i n
i

s −
=

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

∑  

 
Again, do not worry about knowing this formula.  This is not something that you’ll ever 
be asked to know in my class. 
 
In this case the limit of the sequence of partial sums is, 
  

 3 1 3lim lim 1
2 3 2n nn n

s
→∞ →∞

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 

 
The sequence of partial sums is convergent and so the series will also be convergent.  The 
value of the series is, 

 1
1

1 3
3 2n

n

∞

−
=

=∑  

 
As we already noted, do not get excited about determining the general formula for the 
sequence of partial sums.  There is only going to be one type of series where you will 
need to determine this formula and the process in that case isn’t too bad.  In fact, you 
already know how to do most of the work in the process as you’ll see in the next section. 
 
So, we’ve determined the convergence of four series now.  Two of the series converged 
and two diverged.  Let’s go back and examine the series terms for each of these.  For 
each of the series let’s take the limit as n goes to infinity of the series term (not the partial 
sums!!). 
 

 
( )

2

1

lim this series diverged

1lim 0 this series converged
1

lim 1 doesn't exist this series diverged

1lim 0 this series converged
3

n

n

n

n

nn

n

n

→∞

→∞

→∞

−→∞

= ∞

=
−

−

=

 

 
Notice that for the two series that converged the series term itself was zero in the limit.  
This will always be true for convergent series. 
 
Theorem 
If na∑ converges then lim 0nn

a
→∞

= . 

 
Be careful to not misuse this theorem however!  This theorem gives us a requirement for 
convergence but not a guarantee of convergence.  In other words, the converse is NOT 
true.  If lim 0nn

a
→∞

=  the series may actually diverge!  Consider the following two series. 
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 2
1 1

1 1
n nn n

∞ ∞

= =
∑ ∑  

In both cases the series terms are zero in the limit as n goes to infinity, yet only the 
second series converges.  The first series diverges.  It will be a couple of sections before 
we can prove this, so at this point please believe this and know that you’ll be able to 
prove the convergence of these two series in a couple of sections. 
 
Again, as noted above, all this theorem does is give us a requirement for a series to 
converge.  In order for a series to converge the series terms must go to zero in the limit.  
If the series terms do not go to zero in the limit then there is no way the series can 
converge since this would violate the theorem. 
 
This leads us to the first of many tests for the convergence/divergence of a series that 
we’ll be seeing in this chapter. 
  
Divergence Test 
If lim 0nn

a
→∞

≠  then na∑ will diverge. 
 
Again, do NOT misuse this test.  This test only says that a series is guaranteed to diverge 
if the series terms don’t go to zero in the limit.  If the series terms do happen to go to zero 
the series may or may not converge!   Again, recall the following two series, 

 1

2
1

1 diverges

1 converges

n

n

n

n

∞

=

∞

=

∑

∑
 

 
One of the more common mistakes that students make when the first get into series is to 
assume that if lim 0nn

a
→∞

=  then na∑  will converge.  There is just no way to guarantee 

this so be careful! 
 
Let’s take a quick look at an example of how this test can be used. 
 
Example 5  Determine if the following series is convergent or divergent. 

 
2 3

3
0

4
10 2n

n n
n

∞

=

−
+∑  

Solution 
With almost every series the first thing that we should do is take a look at the series terms 
and see if they go to zero of not.  If it’s clear that the terms don’t go to zero use the 
Divergence Test and be done with the problem. 
 
That’s what we’ll do here. 
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2 3

3

4 1lim 0
10 2 2n

n n
n→∞

−
= − ≠

+
 

The limit of the series terms isn’t zero and so by the Divergence Test the series diverges. 
 
The divergence test is the first test of many tests that we will be looking at over the 
course of the next several sections.  You will need to keep track of all these tests, the 
conditions under which they can be used and their conclusions all in one place so you can 
quickly refer back to them as you need to. 
 
Next we should talk briefly about arithmetic of series and convergence/divergence.  If 

na∑  and nb∑  are both convergent series then so are nca∑  and ( )n n
n k

a b
∞

=

±∑ .  Further 

more, these series will have the following sums or values. 
 

 
( )

n n

n n n n
n k n k n k

ca c a

a b a b
∞ ∞ ∞

= = =

=

± = ±

∑ ∑

∑ ∑ ∑
 

We’ll see an example of this in the next section after we get a few more examples under 
our belt.  At this point just remember that a sum of convergent sequences is convergent 
and multiplying a convergent sequence by a number will not change its convergence. 
 
We need to be a little careful with these facts when it comes to divergent series.  In the 
first case if na∑  is divergent then nca∑  will also be divergent (provided c isn’t zero of 
course) since multiplying a series that is infinite in value or doesn’t have a value by a 
finite value (i.e. c) won’t change that fact.  However, it is possible to have na∑  and 

nb∑  are both be divergent series and yet have ( )n n
n k

a b
∞

=

±∑  be a convergent series. 

 
Before leaving this section there is one more topic that we need to briefly discuss.  Since 
the main topic of this section is the convergence of a series we should mention a stronger 
type of convergence. 
 
A series na∑  is said to converge absolutely if na∑  also converges.  Absolute 
convergence is stronger than convergence in the sense that a series that is absolutely 
convergent will also be convergent, but a series that is convergent may or may not be 
absolutely convergent. 
 
In fact if na∑ converges and na∑  diverges the series na∑ is sometimes called 
conditionally convergent.  
 
At this point we don’t really have the tools at hand to properly investigate this topic in 
detail and so we’ll not say anything more about this subject for a while.  When we finally 
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have the tools in hand to discuss this topic in more detail we will revisit it.  Until then 
don’t worry about it.  The idea is mentioned here only because we were already 
discussing convergence in this section. 
 
 

 Series – Special Series 
In this section we are going to take a brief look at three special series.  Actually, special 
may not be the correct term.  All three have been named which makes them special in 
some way, however the main reason that we’re going to look at two of them in this 
section is that they are the only types of series that we’ll be looking at for which we will 
be able to get actual values for the series.  The third type is divergent and so won’t have a 
value to worry about. 
 
In general, determining the value of a series is very difficult and outside of these two 
kinds of series that we’ll look at in this section we will not be determining the value of 
series in this chapter. 
 
So, let’s get started. 
 
Geometric Series 
A geometric series is any series that can be wrote in the form, 

 1

1

n

n

ar
∞

−

=
∑  

or, with an index shift the geometric series will often be written as, 

 
0

n

n
ar

∞

=
∑  

 
These are identical series and will have identical values, provided they converge of 
course. 
 
If we start with the first form it can be shown that the partial sums are, 

 
( )1
1 1 1

n n

n

a r a ars
r r r

−
= = −

− − −
 

 
The series will converge provided the partial sums form a convergent sequence, so let’s 
take the limit of the partial sums. 

 

lim lim
1 1

lim lim
1 1

lim
1 1

n

nn n

n

n n

n

n

a ars
r r

a ar
r r

a a r
r r

→∞ →∞

→∞ →∞

→∞

⎛ ⎞
= −⎜ ⎟− −⎝ ⎠

= −
− −

= −
− −
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Now, from Theorem 3 from the Sequence section we know that the limit above will exist 
and be finite provided 1 1r− < ≤ .  However, note that we can’t let r=1 since this will give 
division by zero.  Therefore, this will exist and be finite provided 1 1r− < <  and in this 
case the limit is zero and so we get, 

 lim
1nn

as
r→∞

=
−

 

 
Therefore, a geometric series will converge if 1 1r− < < , which is usually written 1r < , 
its value is, 

 1

1 0 1
n n

n n

aar ar
r

∞ ∞
−

= =

= =
−∑ ∑  

 
Note that in using this formula we’ll need to make sure that we are in the correct form.  In 
other words, if the series starts at n=0 then the exponent on the r must be n.  Likewise if 
the series starts at n=1 then the exponent on the r must be n-1. 
 
Example 1  Determine if the following series converge or diverge.  If they converge give 
the value of the series. 

(a) 2 1

1
9 4n n

n

∞
− + +

=
∑  

(b) ( )3

1
0

4
5

n

n
n

∞

−
=

−
∑  

Solution 
(a) This series doesn’t really look like a geometric series.  However, notice that both 
parts of the series term are numbers raised to a power.  This means that it can be put into 
the form of a geometric series.  We will just need to decide which form is the correct 
form.  Since the series starts at n=1 we will want the exponents on the numbers to be n-1. 
 
It will be fairly easy to get this into the correct form.  Let’s first rewrite things slightly.  
One of the n’s in the exponent has a negative in front of it and that can’t be there in the 
geometric form.  So, let’s first get rid of that. 

 ( )
1

22 1 1
2

1 1 1

49 4 9 4
9

n
nn n n

n
n n n

+∞ ∞ ∞
− −− + + +

−
= = =

= =∑ ∑ ∑  

 
Now let’s get the correct exponent on each of the numbers.  This can be done using 
simple exponent properties. 

 
1 1 2

2 1
2 1 1

1 1 1

4 4 49 4
9 9 9

n n
n n

n n
n n n

+ −∞ ∞ ∞
− + +

− − −
= = =

= =∑ ∑ ∑  

 
Now, rewrite the term a little. 
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 ( )
11

2 1
1

1 1 1

4 49 4 16 9 144
9 9

nn
n n

n
n n n

−−∞ ∞ ∞
− + +

−
= = =

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

∑ ∑ ∑  

 

So, this is a geometric series with a=144 and 4 1
9

r = < .  Therefore, since 1r <  we know 

the series will converge and its value will be, 

 ( )2 1

1

144 9 12969 4 1444 5 51
9

n n

n

∞
− + +

=

= = =
−

∑  

(b) Again, this doesn’t look like a geometric series, but it can be put into the correct form.  
In this case the series starts at n=0 so we’ll need the exponents to be n on the terms.  Note 
that this means we’re going to need to rewrite the exponent on the numerator a little 

 ( ) ( )( ) ( )
33

1 1
0 0 0 0

44 64 645 5
5 5 5 5 5

n
n n n

n n n
n n n n

∞ ∞ ∞ ∞

− −
= = = =

−− − −⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑  

 

So, we’ve got it into the correct form and we can see that a=5 and 64
5

r = − .  Also note 

that 1r ≥  and so this series diverges. 
 
Back in the Series – Basics section we talked about stripping out terms from a series, but 
didn’t really provide any examples of how this idea could be used in practice.  We can 
now do some examples. 
 
Example 2  Use the results from the previous example to determine the value of the 
following series. 

(a) 2 1

0
9 4n n

n

∞
− + +

=
∑  

(b) 2 1

3

9 4n n

n

∞
− + +

=
∑  

Solution 
(a) In this case we could just acknowledge that this is a geometric series that starts at n=0 
and so we could put it into the correct form and be done with it.  However, this does 
provide us with a nice example of how to use the idea of stripping out terms to our 
advantage. 
 
Let’s notice that if we strip out the first term from this series we arrive at, 

 2 1 2 1 2 1 2 1

0 1 1

9 4 9 4 9 4 324 9 4n n n n n n

n n n

∞ ∞ ∞
− + + − + + − + +

= = =

= + = +∑ ∑ ∑  

 
From the previous example we know the value of the new series that arises here and so 
the value of the series in this example is, 
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 2 1

0

1296 29169 4 324
5 5

n n

n

∞
− + +

=

= + =∑  

 
(b) In this case we can’t strip out terms from the given series to arrive at the series used 
in the previous example.  However, we can start with the series used in the previous 
example and strip terms out of it to get the series in this example.  So, let’s do that.  We 
will strip out the first two terms from the series we looked at in the previous example. 

 2 1 1 2 0 3 2 1 2 1

1 3 3
9 4 9 4 9 4 9 4 208 9 4n n n n n n

n n n

∞ ∞ ∞
− + + − + + − + +

= = =

= + + = +∑ ∑ ∑  

 
We can now use the value of the series from the previous example to get the value of this 
series. 

 2 1 2 1

3 1

1296 2569 4 9 4 208 208
5 5

n n n n

n n

∞ ∞
− + + − + +

= =

= − = − =∑ ∑  

 
Notice that we didn’t discuss the convergence of either of the series in the above 
example.  Here’s why.  Consider the following series written in two separate ways (i.e. 
we stripped out a couple of terms from it). 

 0 1 2
0 3

n n
n n

a a a a a
∞ ∞

= =

= + + +∑ ∑  

 

Let’s suppose that we know 
3

n
n

a
∞

=
∑  is a convergent series.  This means that it’s got a finite 

value and adding three finite terms onto this will not change that fact.  So the value of 

0
n

n
a

∞

=
∑  is also finite and so is convergent. 

 

Likewise, suppose that 
0

n
n

a
∞

=
∑  is convergent.  In this case if we subtract three finite values 

from this value we will remain finite and arrive at the value of 
3

n
n

a
∞

=
∑ .  This is now a 

finite value and so this series will also be convergent. 
 
In other words, if we have two series and they differ only by the presence, or absence, of 
a finite number of terms they will either both be convergent or they will both be 
divergent.  The difference of a few terms one way or the other will not change the 
convergence of a series.  This is an important idea and we will use it several times in the 
following sections to simplify some of the tests that we’ll be looking at. 
 
Telescoping Series  
It’s now time to look at the second of the three series in this section.  In this portion we 
are going to look at a series that is called a telescoping series.  The name in this case 
comes from what happens with the partial sums and is best shown in an example. 
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Example 3  Determine if the following series converges or diverges.  If it converges find 
its value. 

 2
0

1
3 2n n n

∞

= + +∑  

Solution 
We first need the partial sums for this series. 

 2
0

1
3 2

n

n
i

s
i i=

=
+ +∑  

 
Now, let’s notice that we can use partial fractions on the series term to get, 

 
( )( )2

1 1 1 1
3 2 2 1 1 2i i i i i i

= = −
+ + + + + +

 

I’ll leave the details of the partial fractions to you.  By now you should be fairly adept at 
this since we spent a fair amount of time doing partial fractions back in the Integration 
Techniques chapter.  If you need a refresher you should go back and review that section. 
 
So, what does this do for us?  Well, let’s start writing out the terms of the general partial 
sum for this series using the partial fraction form. 

 

0

1 1
1 2

1 1
1 2

n

n
i

s
i i=

⎛ ⎞= −⎜ ⎟+ +⎝ ⎠

= −

∑
1
2

⎛ ⎞
+⎜ ⎟

⎝ ⎠

1
3

−
1
3

⎛ ⎞
+⎜ ⎟

⎝ ⎠

1
4

−
1
n

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
" 1

1n
−

+
1

1n
⎛ ⎞

+⎜ ⎟ +⎝ ⎠

1
2

11
2

n

n

⎛ ⎞
−⎜ ⎟+⎝ ⎠

= −
+

 

 
Notice that every term except the first and last term canceled out.  This is the origin of the 
name telescoping series. 
 
This also means that we can determine the convergence of this series by taking the limit 
of the partial sums. 

 1lim lim 1 1
2nn n

s
n→∞ →∞

⎛ ⎞= − =⎜ ⎟+⎝ ⎠
 

 
The sequence of partial sums is convergent and so the series is convergent and has a 
value of  

 2
0

1 1
3 2n n n

∞

=

=
+ +∑  

 
In telescoping series be careful to not assume that successive terms will be the ones that 
cancel.  Consider the following example. 
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Example 4  Determine if the following series converges or diverges.  If it converges find 
its value. 

 2
1

1
4 3n n n

∞

= + +∑  

Solution 
As with the last example we’ll leave the partial fractions details to you to verify.  The 
partial sums are, 

 

1 1
2 2

1 1

1 1 1
1 3 2 1 3

1 1 1
2 2 4

n n

n
i i

s
i i i i= =

⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟⎜ ⎟+ + + +⎝ ⎠⎝ ⎠

= −

∑ ∑

1 1
3 5

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠

1
4

⎛ ⎞
+⎜ ⎟

⎝ ⎠

1
6

−
1
n

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
" 1 1

2 1n n
⎛ ⎞

− +⎜ ⎟+ +⎝ ⎠

1
3

1 1 1 1 1
2 2 3 2 3

n

n n

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤= + − −⎢ ⎥+ +⎣ ⎦

 

 
In this case instead of successive terms canceling a term will cancel with a term that is 
farther down the list.  The end result this time is two initial and two final terms are left.  

Notice as well that in order to help with the work a little we factored the 1
2

 out of the 

series.   
 
The limit of the partial sums is, 

 1 5 1 1 5lim lim
2 6 2 3 12nn n

s
n n→∞ →∞

⎛ ⎞= − − =⎜ ⎟+ +⎝ ⎠
 

 
So, this series is convergent (because the partial sums form a convergent sequence) and 
its value is, 

 2
1

1 5
4 3 12n n n

∞

=

=
+ +∑  

 
Note that it’s not always obvious if a series is telescoping or not until you try to get the 
partial sums and then see if they are in fact telescoping.  There is no test that will tell us 
that we’ve got a telescoping series right off the bat.  Also note that just because you can 
do partial fractions on a series term does not mean that the series will be a telescoping 
series.    The following series, for example, is not a telescoping series despite the fact that 
we can partial fraction the series terms. 
 

 2
1 1

3 2 1 1
3 2 1 2n n

n
n n n n

∞ ∞

= =

+ ⎛ ⎞= +⎜ ⎟+ + + +⎝ ⎠
∑ ∑  

 
In order for a series to be a telescoping we must get terms to cancel and all of these terms 
are positive and so none will cancel. 
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Next, we need to go back and address an issue that was first raised in the previous 
section.  In that section we stated that the sum or difference of convergent series was also 
convergent and that the presence of a multiplicative constant would not affect the 
convergence of a series.  Now that we have a few more series in hand let’s work a quick 
example showing that. 
 
Example 5  Determine the value of the following series. 

 2 1
2

1

4 9 4
4 3

n n

n n n

∞
− + +

=

⎛ ⎞−⎜ ⎟+ +⎝ ⎠
∑  

Solution 
To get the value of this series all we need to do is rewrite it and then use the previous 
results. 

 

2 1 2 1
2 2

1 1 1

2 1
2

1 1

4 49 4 9 4
4 3 4 3

14 9 4
4 3

5 12964
12 5

3863
15

n n n n

n n n

n n

n n

n n n n

n n

∞ ∞ ∞
− + + − + +

= = =

∞ ∞
− + +

= =

⎛ ⎞− = −⎜ ⎟+ + + +⎝ ⎠

= −
+ +

⎛ ⎞= −⎜ ⎟
⎝ ⎠

= −

∑ ∑ ∑

∑ ∑
 

 
We didn’t discuss the convergence of this series because it was the sum of two 
convergent series and that guaranteed that the original series would also be convergent. 
 
Harmonic Series 
This is the third and final series that we’re going to look at in this chapter.  Here is the 
harmonic series. 

 
1

1
n n

∞

=
∑  

 
The harmonic series is divergent and we’ll need to wait until the next section to show 
that.  This series is here because it’s got a name and so I wanted to put it here with the 
other two named series that we looked at in this section.  We’re also going to use the 
harmonic series to illustrate a couple of ideas about divergent series that we’ve already 
discussed for convergent series.  We’ll do that with the following example. 
 
Example 6  Show that each of the following series are divergent. 

(a) 
1

5
n n

∞

=
∑  

(b) 
4

1
n n

∞

=
∑  

Solution 
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(a) To see that this series is divergent all we need to do is use the fact that we can factor a 
constant out of a series as follows, 

 
1 1

5 15
n nn n

∞ ∞

= =

=∑ ∑  

Now, 
1

1
n n

∞

=
∑  is divergent and so five times this will still not be a finite number and so the 

series has to be divergent.  In other words, if we multiply a divergent series by a constant 
it will still be divergent. 
 
(b)  In this case we’ll start with the harmonic series and strip out the first three terms. 

 
1 4 4 1

1 1 1 1 1 1 111
2 3 6n n n nn n n n

∞ ∞ ∞ ∞

= = = =

⎛ ⎞= + + + ⇒ = −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑  

 
In this case we are subtracting a finite number from a divergent series.  This subtraction 
will not change the divergence of the series.  We will either have infinity minus a finite 
number, which is still infinity, or a series with no value minus a finite number, which will 
still have no value. 
 
Therefore, this series is divergent. 
 
Just like with convergent series, adding/subtracting a finite number from a divergent 
series is not going to change the fact the convergence of the series. 
 
So, some general rules about the convergence/divergence of a series are now in order.  
Multiplying a series by a constant will not change the convergence/divergence of the 
series and adding or subtracting a constant from a series will not change the 
convergence/divergence of the series.  These are nice ideas to keep in mind. 
 
 

 Integral Test 
The last topic that we discussed in the previous section was the harmonic series.  In that 
discussion we stated that the harmonic series was a divergent series.  It is now time to 
prove that statement.  This proof will also get us started on the way to our next test for 
convergence that we’ll be looking at. 
 
So, we will be trying to prove that the harmonic series, 

1

1
n n

∞

=
∑  

diverges.  
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We’ll start this off by looking at an apparently unrelated problem.  Let’s start off by 

asking what the area under ( ) 1f x
x

=  is on the interval [ )1,∞ .  From the section on 

Improper Integrals we know that this is, 

 
1

1 dx
x

∞

= ∞⌠⎮
⌡

 

and so we called this integral divergent (yes, that’s the same term we’re using here with 
series….). 
 
So, just how does that help us to prove that the harmonic series diverges?  Well, recall 
that we can always estimate the area by breaking up the interval into segments and then 
sketching in rectangles and using the sum of the area all of the rectangles as an estimate 
of the actual area.  Let’s do that for this problem as well and see what we get. 
 
We will break up the interval into subintervals of width 1 and we’ll take the function 
value at the left endpoint as the height of the rectangle.  The image below shows the first 
few rectangles for this area. 

 
 
So, the area under the curve is approximately, 

 
( ) ( ) ( ) ( ) ( )1 1 1 1 11 1 1 1 1

1 2 3 4 5
1 1 1 1 1
1 2 3 4 5

A ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞≈ + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= + + + + +

"

"
 

 
Now note a couple of things about this approximation.  First, each of the rectangles 
overestimates the actual area and secondly the formula for the area is exactly the 
harmonic series! 
 
Putting these two facts together gives the following, 

 
11

1 1
n

A dx
n x

∞∞

=

≈ > = ∞⌠⎮
⌡∑  
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Notice that this tells us that we must have, 

 
1 1

1 1
n nn n

∞ ∞

= =

> ∞ ⇒ = ∞∑ ∑  

Since we can’t really be larger than infinity the harmonic series must also be infinite in 
value.  In other words, the harmonic series is in fact divergent. 
 
So, we’ve managed to relate a series to an improper integral that we could compute and it 
turns out that the improper integral and the series have exactly the same convergence. 
 
Let’s see if this will also be true for a series that converges.  When discussing the 
Divergence Test we made the claim that 

 2
1

1
n n

∞

=
∑  

converges.  Let’s see if we can do something similar to the above process to prove this. 
 

We will try to relate this to the area under ( ) 2

1f x
x

=  is on the interval [ )1,∞ .   Again, 

from the Improper Integral section we know that, 

 2
1

1 1dx
x

∞

=⌠⎮
⌡

 

and so this integral converges. 
 
We will once again try to estimate the area under this curve.  We will do this in an almost 
identical manner as the previous part with the exception that we will instead of using the 
left end points for the height of our rectangles we will use the right end points.  Here is a 
sketch of this case, 

 
 
In this case the area estimation is, 
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( ) ( ) ( ) ( )2 2 2 2

2 2 2 2

1 1 1 11 1 1 1
2 3 4 5

1 1 1 1
2 3 4 5

A ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞≈ + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= + + + +

"

"
 

 
This time, unlike the first case, the area will be an underestimation of the actual area and 
the estimation is not quite the series that we are working with.  Notice however that the 
only difference is that we’re missing the first term.  This means we can do the following, 

 2 2 2 2 2 2 2
11

Area Estimation

1 1 1 1 1 1 11 1 1 2
1 2 3 4 5n

dx
n x

∞∞

=

= + + + + + < + = + =⌠⎮
⌡∑ "

����	���

 

 
Or, putting all this together we see that, 

 2
1

1 2
n n

∞

=

<∑  

 
With the harmonic series this was all that we needed to say that the series was divergent.  
With this series however, this isn’t quite enough.  For instance 2−∞ <  and if the series 
did have a value of −∞  then it would be divergent (when we want convergent).  So, let’s 
do a little more work. 
 
First, let’s notice that all the series terms are positive (that’s important) and that the 
partial sums are, 

 2
1

1n

n
i

s
i=

= ∑  

Because the terms are all positive we know that the partial sums must be an increasing 
sequence. In other words, 

 
1

12 2
1 1

1 1n n

n n
i i

s s
i i

+

+
= =

= < =∑ ∑  

In sn+1 we are adding a single positive term onto sn and so must get larger.  Therefore, the 
partial sums form an increasing (and hence monotonic) sequence. 
 
Also note that, since the terms are all positive, we can say, 

 2 2
1 1

1 1 2 2
n

n n
i n

s s
i n

∞

= =

= < < ⇒ <∑ ∑  

and so the sequence of partial sums is a bounded sequence. 
 
In the section on Sequences we gave a theorem that stated that a bounded and monotonic 
sequence was guaranteed to be convergent.  This means that the sequence of partial sums 
is a convergent sequence.  So, who cares right?  Well recall that this means that the series 
must then also be convergent! 
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So, once again we were able to relate a series to an improper integral (that we could 
compute) and the series and the integral had the same convergence. 
 
We went through a fair amount of work in both of these examples to determine the 
convergence of the two series.  Luckily for us we don’t need to do all this work every 
time.  The ideas in these two examples can be summarized in the following test. 
 
Integral Test 
Suppose that f(x) is a positive, decreasing function on the interval [ ),k ∞  and that 

( ) nf n a=  then, 

1. If ( )
k

f x dx
∞

∫  is convergent so is n
n k

a
∞

=
∑ . 

2. If ( )
k

f x dx
∞

∫  is divergent so is n
n k

a
∞

=
∑ . 

 
There are a couple of things to note about the integral test.  First, the lower limit on the 
improper integral must be the same value that starts the series.  Second, the function does 
not actually need to be decreasing everywhere in the interval.  All that’s really required is 
that eventually the function is decreasing.  In other words, it is okay if the function 
increases for a while, but eventually the function must start decreasing and then continue 
to decrease from that point on. 
 
There is one more very important point that must be made about this test.  This test does 
NOT give the value of a series.  It will only give the convergence/divergence of the 
series.  That’s it.  No value.  We can use the above series as a perfect example of this.  
All that the test gave us was that, 

 2
1

1 2
n n

∞

=

<∑  

 
So, we got an upper bound on the value of the series, but not an actual value for the 
series.  In fact, from this point on we will not be asking for the value of a series we will 
only be asking whether a series converges or diverges.  In a later section we look at 
estimating values of series, but even in that section still won’t actually be getting values 
of series. 
 
Just for the sake of completeness the value of this series is known. 

 
2

2
1

1 1.644934... 2
6n n

π∞

=

= = <∑  

 
Let’s work a couple of examples. 
 
Example 1  Determine if the following series is convergent or divergent. 
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2

1
lnn n n

∞

=
∑  

Solution 
In this case the function we’ll use is, 

 ( ) 1
ln

f x
x x

=  

This function is clearly positive and if we make x larger the denominator will get larger 
and so the function is also decreasing.  Therefore, all we need to do is determine the 
convergence of the following integral. 

 ( )( )
( )( )

2 2

2

1 1lim ln
ln ln

lim ln ln

lim ln ln ln 2

t

t

t

t

t

dx dx u x
x x x x

x

t

∞

→∞

→∞

→∞

= =

=

= −

= ∞

⌠ ⌠⎮ ⎮
⌡ ⌡

 

 
The integral is divergent and so the series is also divergent by the Integral Test. 
 
Example 2  Determine if the following series is convergent or divergent. 

 
0

2

n

nn
∞

−

=
∑ e  

Solution 
The function that we’ll use in this example is, 
 ( ) 2xf x x −= e  
This function is always positive on the interval that we’re looking at.  Now we need to 
check that the function is decreasing.  It is not clear that this function will always be 
decreasing on the interval given.  We can use our Calculus I knowledge to help us 
however.  The derivative of this function is, 

( ) ( )22
1 2xf x x−′ = −e  

This function has two critical points (which will tell us where the derivative changes 

sign) at 1
2

x = ± .  Since we are starting at n=0 we can ignore the negative critical point.  

Picking a couple of test points we can see that the function in increasing on the interval 
10,
2

⎡ ⎤
⎢ ⎥⎣ ⎦

 and it is decreasing on 1 ,
2

⎡ ⎞∞⎟⎢⎣ ⎠
.   Therefore, eventually the function will be 

decreasing and that’s all that’s required for us to use the Integral Test. 
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2

0 0

0

2 2

2

2

lim

1lim
2

1 1lim
2 2

1
2

t

t

t

t

t

t

x x

x

x dx x dx u x
∞ − −

→∞

−

→∞

−

→∞

= = −

⎛ ⎞= −⎜ ⎟
⎝ ⎠

⎛ ⎞= −⎜ ⎟
⎝ ⎠

=

∫ ∫e e

e

e
 

 
The integral is convergent and so the series must also be convergent by the Integral Test. 
 
We can use the Integral test to get the following fact/test for some series. 
 
Fact (p –series Test) 

If k>0 then 1
p

n k n

∞

=
∑  converges if 1p >  and diverges if 1p ≤ . 

 
Sometimes the series in this fact are called p-series and so this fact is sometimes called 
the p-series test. 
 
Example 3  Determine if the following series are convergent or divergent. 

(a) 7
4

1
n n

∞

=
∑  

(b) 
1

1
n n

∞

=
∑  

Solution 
(a) In this case p=7>1 and so by this fact the series is convergent. 
 

(b) For this series 1 1
2

p = ≤  and so the series is divergent by the fact. 

 
It is important to note before leaving this section that in order to use the Integral Test the 
series terms MUST be positive.  If they are negative then the test doesn’t work.  Also 
remember that the test only determines the convergence of a series and does NOT give 
the value of the series. 
 
 

 Comparison Test / Limit Comparison Test 
In the previous section we saw how to relate a series to an improper integral to determine 
the convergence of a series.  While the integral test is a nice test, it does force us to do 
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improper integrals which aren’t always easy and in some cases may be impossible to 
evaluate. 
 
For instance consider the following series. 

 
0

1
3n

n n

∞

= +∑  

 
In order to use the Integral Test we would have to integrate 

 
0

1
3x dx

x

∞

+
⌠⎮
⌡

 

and I’m not even sure if it’s possible to do this integral.  Nicely enough for us there is 
another test that we can use on this series that will be much easier to use. 
 
First, let’s note that the series terms are positive.  As with the Integral Test that will be 
important in this section.  Next let’s note that we must have 0x >  since we are 
integrating on the interval 0 x≤ < ∞ .  Likewise, regardless of the value of x we will 
always have 3 0x > . So, if we drop the x from the denominator the denominator will get 
smaller and hence the whole fraction will get larger.  So, 

 1 1
3 3n nn

<
+

 

 
Now,  

 
0

1
3n

n

∞

=
∑  

is a geometric series and we know that since 1 1
3

r = <  the series will converge and it’s 

value will be, 

 
1

0 3

1 1 3
3 1 2n

n

∞

=

= =
−∑  

 
Now, if we go back to our original series and write down the partial sums we get, 

 
1

1
3

n

n i
i

s
i=

=
+∑  

 
Since all the terms are positive adding a new term will only make the number larger and 
so the sequence of partial sums must be an increasing sequence. 

 
1

1
1 1

1 1
3 3

n n

n ni i
i i

s s
i i

+

+
= =

= < =
+ +∑ ∑  

 
Then since, 

 1 1
3 3n nn

<
+
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and because the terms in these two sequences are positive we can also say that, 

 
1 1 1

1 1 1 3 3
3 3 3 2 2

n n

n ni i n
i i n

s s
i

∞

= = =

= < < = ⇒ <
+∑ ∑ ∑  

 
Therefore, the sequence of partial sums is also a bounded sequence.  Then from the 
section on Sequences we know that a monotonic and bounded sequence is also 
convergent. 
 
So, the sequence of partial sums of our series is a convergent sequence.  This means that 
the series itself, 

0

1
3n

n n

∞

= +∑  

is also convergent. 
 
So, what did we do here?  We found a series whose terms were always larger than the 
original series terms and this new series was also convergent.  Then since the original 
series terms were positive (very important) this meant that the original series was also 
convergent. 
 
To show that a series (with only positive terms) was divergent we could go through a 
similar argument and find a new divergent series whose terms are always smaller than the 
original series.  In this case the original series would have to take a value larger than the 
new series.  However, since the new series is divergent its value will be infinite.  This 
means that the original series must also be infinite and hence divergent. 
 
We can summarize all this in the following test. 
 
Comparison Test 
Suppose that we have two series na∑  and nb∑  with , 0n na b ≥  for all n and n na b≤  for 
all n.  Then, 

1. If nb∑  is convergent then so is na∑ . 

2. If na∑  is divergent then so is nb∑ . 
 
In other words, we have two series of positive terms and the terms of one of the series is 
always larger than the terms of the other series.   Then if the larger series is convergent 
the smaller series must also be convergent.  Likewise, if the smaller series is divergent 
then the larger series must also be divergent. 
 
Do not misuse this test.  Just because the smaller of the two series converges does not say 
anything about the larger series.  The larger series may still diverge.  Likewise, just 
because we know that the larger of two series diverges we can’t say that the smaller 
series will also diverge!  Be very careful in using this test 
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Recall that we had a similar test for improper integrals back when we were looking at 
integration techniques.  So, if you could use the comparison test for improper integrals 
you can use the comparison test for series as they are pretty much the same idea. 
 
Let’s take a look at some examples. 
 
Example 1  Determine if the following series is convergent or divergent. 

 
( )2 2

1 cosn

n
n n

∞

= −∑  

Solution 
Since the cosine term in the denominator doesn’t get too large we can assume that the 
series terms will behave like, 

 2

1n
n n

=  

which, as a series, will diverge.  So, from this we can guess that the series will probably 
diverge and so we’ll need to find a smaller series that will also diverge. 
 
Recall that from the comparison test with improper integrals that we determined that we 
can make a fraction smaller by either making the numerator smaller or the denominator 
larger.  In this case the two terms in the denominator are both positive. So, if we drop the 
cosine term we will in fact be making the denominator larger since we will no longer be 
subtracting off a positive quantity.  Therefore, 

 
( )2 2 2

1
cos
n n

n n n n
> =

−
 

 
Then, since  

 
1

1
n n

∞

=
∑  

diverges (it’s harmonic and the p-series test) by the Comparison Test our original series 
must also diverge. 
 
Example 2  Determine if the following series converges or diverges. 

 
2

4
1

2
5n

n
n

∞

=

+
+∑  

Solution 
In this case the “+2” and the “+5” don’t really add anything to the series and so the series 
terms should behave pretty much like 

 
2

4 2

1n
n n

=  

which will converge as a series.  Therefore, we will need to find a larger series which 
also converges. 
 
This means that we’ll either have to make the numerator larger or the denominator 
smaller.  We can make the denominator smaller by dropping the “+5”.  Doing this gives, 
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2 2

4 4

2 2
5

n n
n n

+ +
<

+
 

 
At this point, notice that we can’t drop the “+2” from the numerator since this would 
make the term smaller and that’s not what we want.  However, this is actually all the 
further that we need to go.  Let’s take a look at the following series. 

 

2 2

4 4 4
1 1 1

2 4
1 1

2 2

1 2
n n n

n n

n n
n n n

n n

∞ ∞ ∞

= = =

∞ ∞

= =

+
= +

= +

∑ ∑ ∑

∑ ∑
 

 
As shown, we can write the series as a sum of two series and both of these series are 
convergent by the p-series test.  Therefore, since each of these series are convergent we 
know that the sum, 

 
2

4
1

2
n

n
n

∞

=

+∑  

is also a convergent series.  Recall that the sum of two convergent series will also be 
convergent. 
 
Now, since the terms of this series are larger than the terms of the original series we 
know that the original series must also be convergent by the Comparison Test. 
 
The comparison test is a nice test that allows us to do problems that either we couldn’t 
have done with the integral test or at the best would have been very difficult to do with 
the integral test.  That doesn’t mean that it doesn’t have problems of its own. 
 
Consider the following series. 

0

1
3n

n n

∞

= −∑  

This is not much different from the first series that we looked at.  The original series 
converged because the 3n gets very large very fast and will be significantly larger than the 
n.  Therefore, the n doesn’t really affect the convergence of the series in that case.  The 
fact that we are now subtracting the n off now instead of adding the n on really shouldn’t 
change the convergence.  We can say this because the 3n gets very large very fast and the 
fact that we’re subtracting n off won’t really change the size of this term for all 
sufficiently large value of n. 
 
So, we would expect this series to converge.  However, the comparison test won’t work 
with this series.  To use the comparison test on this series we would need to find a larger 
series that we could easily determine the convergence of.  In this case we can’t do what 
we did with the original series.  If we drop the n we will make the denominator larger 
(since the n was subtracted off) and so the fraction will get smaller and just like when we 
looked at the comparison test for improper integrals knowing that the smaller of two 
series converges does not mean that the larger of the two will also converge. 
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So, we will need something else to do help us determine the convergence of this series.  
The following variant of the comparison test will allow us to determine the convergence 
of this series. 
 
Limit Comparison Test 
Suppose that we have two series na∑  and nb∑  with , 0n na b ≥  for all n.  Define, 

 lim n

n
n

ac
b→∞

=  

If c is positive (i.e. 0c > ) and is finite (i.e. c < ∞ ) then either both series converge or 
both series diverge. 
 
Note that it doesn’t really matter which series term is in the numerator for this test, we 
could just have easily defined c as, 

 lim n

n
n

bc
a→∞

=  

and we would get the same results.  To see why this is, consider the following two 
definitions. 

 lim limn n

n n
n n

a bc c
b a→∞ →∞

= =  

 
Start with the first definition and rewrite it as follows, then take the limit. 

 1 1 1lim lim
lim

n

n n n nn
n

n n

ac b bb c
a a

→∞ →∞

→∞

= = = =  

 
In other words, if c is positive and finite then so is c  and if c  is positive and finite then 
so is c.  Likewise if 0c =  then c = ∞  and if c = ∞  then 0c = .  Both definitions will give 
the same results from the test so don’t worry about which series terms should be in the 
numerator and which should be in the denominator.  Choose this to make the limit easy to 
compute. 
 
Also, this really is a comparison test is some ways.  If c is positive and finite this is 
saying that both of the series terms will behave in generally the same fashion and so we 
can expect the series themselves to also behave in a similar fashion.  If 0c =  or c = ∞  
we can’t say this and so the test fails to give any information.  
 
The limit in this test will often be written as, 

 1lim nn
n

c a
b→∞

= ⋅  

since often both terms will be fractions and this will make the limit easier to deal with. 
 
Let’s see how this test works. 
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Example 3  Determine if the following series converges or diverges. 

 
0

1
3n

n n

∞

= −∑  

Solution 
To use the limit comparison test we need to find a second series that we can determine 
the convergence of easily and has what we assume is the same convergence as the given 
series.  On top of that we will need to choose the new series in such a way as to give us 
an easy limit to compute for c. 
 
We’ve already guessed that this series converges and since it’s vaguely geometric let’s 
use 

 
0

1
3n

n

∞

=
∑  

as the second series.  We know that this series converges and there is a chance that since 
both series have the 3n in it the limit won’t be too bad.   
 
Here’s the limit. 

 

1 3lim
3 1

lim1
3

n

nn

nn

nc

n
→∞

→∞

−
=

= −
 

 
Now, we’ll need to use L’Hospital’s Rule on the second term in order to actually evaluate 
this limit. 

 ( )
11 lim

3 ln 3
1

nn
c

→∞
= −

=

 

 
So, c is positive and finite so by the Comparison Test both series must converge since  

0

1
3n

n

∞

=
∑  

converges. 
 
Example 4  Determine if the following series converges or diverges. 

 
2

3 7 3
2

4
n

n n
n n

∞

=

+

+
∑  

Solution 
Fractions involving only polynomials or polynomials under radicals will behave in the 
same way as the largest power of n will behave in the limit.  So, the terms in this series 
should behave as, 
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2 2

7 13 7
3 3

1n n
n n n

= =  

and as a series this will diverge by the p-series test.  In fact, this would make a nice 
choice for our second series in the limit comparison test so let’s use it. 

 

1 7 4
2 3 3 3

3 7 3
73

4

7
3

7
3 3

4

3

4 4lim lim
1 11

14
lim

11

4 4
1

n n

n

n n n n n
n n n

n

n
n

n
n

c

→∞ →∞

→∞

+ +
=

+ ⎛ ⎞+⎜ ⎟
⎝ ⎠

⎛ ⎞+⎜ ⎟
⎝ ⎠=

+

= = =

 

 
So, c is positive and finite and so both limits will diverge since 

 1
2 3

1
n n

∞

=
∑  

diverges. 
 
Finally, to see why we need to c must be positive and finite (i.e. 0c ≠  and c ≠ ∞ ) 
consider the following two series. 

 2
1 1

1 1
n nn n

∞ ∞

= =
∑ ∑  

The first diverges and the second converges. 
 
Now compute each of the following limits. 

 
2

2

1 1 1lim lim lim lim 0
1 1n n n n

n nn
n n n→∞ →∞ →∞ →∞

= = ∞ = =i i  

 
In the first case the limit from the limit comparison test yields c = ∞  and in the second 
case the limit yields 0c = .  Clearly, both series do not have the same convergence. 
 
Note however, that just because we get 0c =  or c = ∞  doesn’t mean that the series will 
have the opposite convergence.  To see this consider the series, 

 3 2
1 1

1 1
n nn n

∞ ∞

= =
∑ ∑  

Both of these series converge and here are the two possible limits that the limit 
comparison test uses. 

 
2 3

3 2

1 1 1lim lim 0 lim lim
1 1n n n n

n n n
n n n→∞ →∞ →∞ →∞

= = = = ∞i i  
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So, even though both series had the same convergence we got both 0c =  and c = ∞ . 
 
The point of all of this is to remind us that if we get 0c =  or c = ∞  from the limit 
comparison test we will know that we have chosen the second series incorrectly and we’ll 
need to find a different choice in order to get any information about the convergence of 
the series. 
 
 

 Alternating Series Test 
The last two tests that we looked at for series convergence have required that all the terms 
in the series be positive.  Of course there are many series out there that have negative 
terms in them and so we now need to start looking at tests for these kinds of series. 
 
The test that we are going to look into in this section will be a test for alternating series.  
An alternating series is any series, na∑ , for which the series terms can be written in 
one of the following two forms. 

 
( )
( ) 1

1 0

1 0

n
n n n

n
n n n

a b b

a b b+

= − ≥

= − ≥
 

 
There are many other ways to deal with the alternating sign, but they can all be written as 
on of the two forms above.  For instance, 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2

1 1 2 1

1 1 1 1

1 1 1 1

n n n

n n n

+

− + − +

− = − − = −

− = − − = −
 

There are of course many others, but they all follow the same basic pattern of reducing to 
one of the first two forms given.  If you should happen to run into a different form than 
the first two, don’t worry about converting it to one of those forms, just be aware that it 
can be and so the test from this section can be used. 
 
Alternating Series Test 
Suppose that we have a series na∑  and either ( )1 n

n na b= −  or ( ) 11 n
n na b+= −  where 

0nb ≥  for all n.  Then if, 
 

1. lim 0nn
b

→∞
=  and, 

2. { }nb  is eventually a decreasing sequence 
 
the series na∑ is convergent. 
 
There are a couple of things to note about this test.  First, unlike the Integral Test and the 
Comparison/Limit Comparison Test, this test will only tell us when a series converges 
and not if a series will diverge. 
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Secondly, in the second condition all that we need to require is that the series terms, nb  
will eventually decreasing.  It is possible for the first few terms of a series to increase and 
still have the test be valid.  All that is required is that eventually we will have 1n nb b +≥  for 
all n after some point. 
 
To see why this is consider the following series, 

 ( )
1

1 n
n

n
b

∞

=

−∑  

Let’s suppose that for 1 n N≤ ≤  { }nb  is not a decreasing sequence and that for 1n N≥ +  

{ }nb  is a decreasing sequence.  The series can then be written as, 

 ( ) ( ) ( )
1 1 1

1 1 1
N

n n n
n n n

n n n N
b b b

∞ ∞

= = = +

− = − + −∑ ∑ ∑  

 
The first series is a finite series (no matter how large N is, it will still be a finite series) 
and so we can compute its value and it will be finite.  Therefore, the convergence of the 
series will depend solely on the convergence of the second (infinite) series.  If the second 
series has a finite value then the sum of two finite values is also finite and so the original 
series will converge to a finite value.  On the other hand if the second series is divergent 
either because its value is infinite or it doesn’t have a value then adding a finite number 
onto this will not change that fact and so the original series will be divergent. 
 
The point of all this is that we don’t need to require that the series terms be decreasing for 
all n.  We only need to require that the series terms will eventually be decreasing since 
we can always strip out the first few terms that aren’t actually decreasing and look only at 
the terms that are actually decreasing. 
 
Note that, in practice, we don’t actually strip out the terms that aren’t decreasing.  All we 
do is check that eventually the series terms are decreasing and then apply the test. 
 
Let’s work a couple of examples. 
  
Example 1  Determine if the following series is convergent or divergent. 

 ( ) 1

1

1 n

n n

+∞

=

−
∑  

Solution 
First, identify the bn for the test. 

 ( ) ( )
1

1

1 1

1 1 11
n

n
n

n n
b

n n n

+∞ ∞
+

= =

−
= − =∑ ∑  

 
Now, all that we need to do is run through the two conditions in the test. 
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 1lim lim 0nn n
b

n→∞ →∞
= =  

 1
1 1

1n nb b
n n += > =

+
 

 
Both conditions are met and so by the Alternating Series Test the series must converge. 
 
The series from the previous example is sometimes called the Alternating Harmonic 
Series. 
 
In the previous example it was easy to see that the series terms decreased since increasing 
n only increased the denominator for the term and hence made the term smaller.  In 
general however we will need to resort to Calculus I techniques to prove the series terms 
decrease.  We’ll see an example of this in a bit. 
 
Example 2  Determine if the following series is convergent or divergent. 

 ( ) 2

2
1

1
5

n

n

n
n

∞

=

−
+∑  

Solution 
First, identify the bn for the test. 

 ( ) ( )
2 2 2

2 2 2
1 1

1
1

5 5 5

n
n

n
n n

n n nb
n n n

∞ ∞

= =

−
= − ⇒ =

+ + +∑ ∑  

Let’s check the conditions. 

 
2

2lim lim 1 0
5nn n

nb
n→∞ →∞

= = ≠
+

 

So, the first condition isn’t met and so there is no reason to check the second.  Since this 
condition isn’t met we’ll need to use another test to check convergence.  In these cases 
where the first condition isn’t met it is usually best to use the divergence test. 

 

( ) ( )( )
( )( )( )

( )

2 2

2 2

1
lim lim 1 lim

5 5

lim 1 1

lim 1 doesn't exist

n
n

n n n

n

n

n

n

n n
n n→∞ →∞ →∞

→∞

→∞

− ⎛ ⎞
= − ⎜ ⎟+ +⎝ ⎠

= −

= −

 

 
This limit doesn’t exist and so by the Divergence Test this series diverges. 
 
Example 3  Determine if the following series is convergent or divergent. 

 ( ) 3

0

1
4

n

n

n
n

−∞

=

−
+∑  

Solution 
Notice that in this case the exponent on the “-1” isn’t n or n+1.  That won’t change how 
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the test works however so we won’t worry about that.  In this case we have, 

 
4n

nb
n

=
+

 

so let’s check the conditions. 
 
The first is easy enough to check. 

 lim lim 0
4nn n

nb
n→∞ →∞

= =
+

 

 
The second condition requires some work however.  It is not immediately clear that these 
terms will decrease.  Increasing n to n+1 will increase both the numerator and the 
denominator.  Increasing the numerator says the term should also increase while 
increasing the denominator says that the term should decrease.  Since its not clear which 
of these will win out we will need to resort to Calculus I techniques to show that the 
terms decrease. 
 
Let’s start with the following function and its derivative. 

 ( ) ( )
( )2

4
4 2 4

x xf x f x
x x x

−′= =
+ +

 

Now, there are three critical points for this function, x=-4, x=0, and x=4.  The first is 
outside the bound of our series so we won’t need to worry about that one.  Using the test 
points, 

 ( ) ( )3 51 5
50 810

f f′ ′= = −  

and so we can see that the function in increasing on 0 4x≤ ≤  and decreasing on 4x ≥ .  
Therefore, since ( ) nf n b=  we know as well that the bn are also increasing on 0 4n≤ ≤  
and decreasing on 4n ≥ .   
 
The bn are then eventually decreasing and so the second condition is met. 
 
Both conditions are met and so by the Alternating Series Test the series must be 
converging. 
 
As the previous example has shown, we sometimes need to do a fair amount of work to 
show that the terms are decreasing.  Do not just make the assumption that the terms will 
be decreasing and let it go at that. 
 
Let’s do one more example just to make a point. 
 
Example 4  Determine if the following series is convergent or divergent. 

 ( )
2

cos

n

n
n

π∞

=
∑  

Solution 
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The point of this problem is really just to acknowledge that it is in fact an alternating 
series.  To see this we need to acknowledge that, 
 ( ) ( )cos 1 nnπ = −  
and so the series is really, 

 ( ) ( )
2 2

cos 1 1
n

n
n n

n
b

n n n
π∞ ∞

= =

−
= ⇒ =∑ ∑  

 
Checking the two condition gives, 

 1lim lim 0nn n
b

n→∞ →∞
= =  

 1
1 1

1n nb b
n n +> =

+
 

 
The two conditions of the test are met and so by the Alternating Series Test the series is 
convergent. 
 
It should be pointed out that the rewrite we did in previous example only works because n 
is an integer and because of the presence of the π.  Without the π  we couldn’t do this and 
if n wasn’t guaranteed to be an integer we couldn’t do this.   
 
 

 Absolute Convergence 
When we first talked about series convergence we briefly mentioned a stronger type of 
convergence but didn’t do anything with it because we didn’t have any tools at our 
disposal that we could use to work problems involving it.  We now have some of those 
tools so it’s now time to talk about absolute convergence in detail. 
 
First, let’s go back over the definition of absolute convergence. 
 
A series na∑  is called absolutely convergent if na∑  is convergent.  If na∑ is 

convergent and na∑  is divergent we call the series conditionally convergent. 
 
We also have the following fact about absolute convergence. 
 
Fact 

If na∑  is absolutely convergent then it is also convergent. 
 
It is this fact that makes absolute convergence a “stronger” type of convergence.  Series 
that are absolutely convergent are guaranteed to be convergent.  However, series that are 
convergent may or may not be absolutely convergent. 
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Let’s take a quick look at a couple of examples of absolute convergence. 
 
Example 1  Determine if each of the following series are absolute convergent, 
conditionally convergent or divergent. 

(a) ( )
1

1 n

n n

∞

=

−
∑  

(b) ( ) 2

2
1

1 n

n n

+∞

=

−
∑  

(c) 3
1

sin
n

n
n

∞

=
∑  

Solution 
(a) This is the alternating harmonic series and we saw in the last section that it is a 
convergent series so we don’t need to check that here.  So, let’s see if it is an absolutely 
convergent series.  To do this we’ll need to check the convergence of.  

( )
1 1

1 1
n

n nn n

∞ ∞

= =

−
=∑ ∑  

This is the harmonic series and we know form the integral test section that it is divergent. 
 
Therefore, this series is not absolutely convergent.  It is however conditionally 
convergent since the series itself does converge. 
 
(b) In this case let’s just check absolute convergence first since if it’s absolutely 
convergent we won’t need to bother checking convergence as we will get that for free. 

( ) 2

2 2
1 1

1 1
n

n nn n

+∞ ∞

= =

−
=∑ ∑  

This series is convergent by the p-series test and so the series is absolute convergent.  
Note that this does say as well that it’s a convergent series. 
 
(c) In this part we need to be a little careful.  First, this is NOT an alternating series and 
so we can’t use any tools from that section. 
 
What we’ll do here is check for absolute convergence first again since that will also give 
convergence.  This means that we need to check the convergence of the following series. 

3 3
1 1

sinsin
n n

nn
n n

∞ ∞

= =

=∑ ∑  

 
To do this we’ll need to note that 

1 sin 1 sin 1n n− ≤ ≤ ⇒ ≤  
and so we have, 

3 3

sin 1n
n n

≤  
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Now we know that  

3
1

1
n n

∞

=
∑  

converges by the p-series test and so by the Comparison Test we also know that  

3
1

sin

n

n
n

∞

=
∑  

converges. 
 
Therefore the original series is absolutely convergent (and hence convergent). 
 
 

 Ratio Test 
In this section we are going to take a look at a test that we can use to see if a series is 
absolutely convergent or not.  Recall that if a series is absolutely convergent then we will 
also know that it’s convergent and so we will more often than not use it to simply 
determine the convergence of a series.  We may as well acknowledge that it will give us 
absolute convergence as well however. 
 
Before proceeding with the test let’s do a quick reminder of factorials.  This test will be 
particularly useful for series that contain factorials (and we will see some in the 
applications) so let’s make sure we can deal with them before we run into them in an 
example. 
 
If n is an integer such that 0n ≥ then n factorial is defined as, 
 

 
( )( ) ( )( )( )! 1 2 3 2 1 if 1

0! 1 by definition
n n n n n= − − ≥

=

"
 

 
Let’s compute a couple real quick. 

 
( )
( )( )
( )( )( )
( )( )( )( )

1! 1
2! 2 1 2

3! 3 2 1 6

4! 4 3 2 1 24

5! 5 4 3 2 1 120

=

= =

= =

= =

= =

 

 
In the last computation above, notice that we could rewrite the factorial in a couple of 
different ways.  For instance, 
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( )( )( )( )

( )( )( )( ) ( )
4!

3!

5! 5 4 3 2 1 5 4!

5! 5 4 3 2 1 5 4 3!

= = ⋅

= = ⋅

���	��


��	�

 

 
In general we can always “strip out” terms from a factorial as follows. 
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We will need to do this on occasion so don’t forget about it. 
 
Also, when dealing with factorials we need to be very careful with parenthesis.  For 
instance, ( )2 ! 2 !n n≠  as we can see if we write each of the following factorials out. 
 

 
( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )( )
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Again, we will run across factorials with parenthesis so don’t drop them.  This is often 
one of the more common mistakes that students make when the first run across factorials. 
 
Okay, we are now ready for the test. 
 
Ratio Test 
Suppose we have the series na∑ .  Define, 

 1lim n

n
n

aL
a

+

→∞
=  

Then, 
1. if 1L <  the series is absolutely convergent (and hence convergent). 
2. if 1L >  the series is divergent. 
3. if 1L =  the series may be divergent, convergent, or absolutely convergent. 

 
Notice that in the case of 1L =  the ratio test is pretty much worthless and we would need 
to resort to a different test to determine the convergence of the series. 
 
Also, the absolute value bars in the definition of L are absolutely required.  If they are not 
there it will be possible for us to get the incorrect answer. 
 
Let’s take a look at some examples. 
 
Example 1  Determine if the following series is convergent or divergent. 
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Solution 
With this first example let’s be a little careful and make sure that we have everything 
down correctly.  Here are the series terms an. 

 ( )
( )2 1

10
4 1

n

n na
n+

−
=

+
 

Recall that to compute an+1 all that we need to do is substitute n+1 for all the n’s in an.  
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Now, to define L we will use, 

 1
1lim nn

n

L a
a+→∞

= ⋅  

since this will be a little easier when dealing with fractions as we’ve got here.  So, 
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So, 1L <  and so by the Ratio Test the series converges absolutely and hence will 
converge. 
 
As seen in the previous example there is usually a lot of canceling that will happen in 
these.  Make sure that you do this canceling.  If you don’t do this kind of canceling it can 
make the limit fairly difficult. 
 
Example 2  Determine if the following series is convergent or divergent. 

 
0

!
5n

n

n∞

=
∑  

Solution 
Now that we’ve worked one in detail we won’t go into quite the detail with the rest of 
these.  Here is the limit. 

 ( ) ( )
1

1 ! 1 !5lim lim
5 ! 5 !

n

nn n

n n
L
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= =  
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In order to do this limit we will need to eliminate the factorials.  We simply can’t do the 
limit with the factorials in it.  To eliminate the factorials we will recall from our 
discussion on factorials above that we can always “strip out” terms from a factorial.  If 
we do that with the numerator (in this case because it’s the larger of the two) we get, 

 ( )1 !
lim

5 !n

n n
L

n→∞

+
=  

at which point we can cancel the n! for the numerator an denominator to get, 

 ( )1
lim 1

5n

n
L

→∞

+
= = ∞ >  

 
So, by the Ratio Test this series diverges. 
 
Example 3  Determine if the following series is convergent or divergent. 
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Solution 
In this case be careful in dealing with the factorials. 
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So, by the Ratio Test this series converges. 
 
Example 4  Determine if the following series is convergent or divergent. 

 
( ) 1

1

9
2

n

n
n n

∞

+
= −

∑  

Solution 
Do not mistake this for a geometric series.  The n in the denominator means that this isn’t 
a geometric series.  So, let’s compute the limit. 
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Therefore, by the Ratio Test this series is divergent. 
 
In the previous example the absolute value bars were required to get the correct answer.  

If we hadn’t used them we would have gotten 9 1
2

L = − <  which would have implied a 

convergent series! 
 
Now, let’s take a look at a couple of examples to see what happens when we get 1L = .  
Recall that the ratio test will not tell us anything about the convergence of these series.  In 
both of these examples we will first verify that we get 1L =  and then use other tests to 
determine the convergence. 
 
Example 5  Determine if the following series is convergent or divergent. 

 ( )
2
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1
1
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n n

∞

=

−
+∑  

Solution 
Let’s first get L. 

 ( )
( ) ( ) ( )

1 2 2

2 2

1 1 1lim lim 1
1 1 1 1 1
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So, as implied earlier we get 1L =  which means the ratio test is no good for determining 
the convergence of this series.  We will need to resort to another test for this series.  This 
series is an alternating series and so let’s check the two conditions from that test. 

 2

1lim lim 0
1nn n

b
n→∞ →∞

= =
+

 

 
( ) 122
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n nb b
n n
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+ + +

 

 
The two conditions are met and so by the Alternating Series Test this series is 
convergent. 
 
Example 6  Determine if the following series is convergent or divergent. 
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Solution 
Here’s the limit. 
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Again, the ratio test tells us nothing here.  We can however, quickly use the divergence 
test on this.  In fact that probably should have been our first choice on this one anyway. 

 2 1lim 0
2 7 2n

n
n→∞

+
= ≠

+
 

 
By the Divergence Test this series is divergent. 
 
So, as we saw in the previous two examples if we get 1L =  from the ratio test the series 
can be either convergent or divergent.   
 
There is one more thing that we should note about the ratio test before we move onto the 
next section.  The last series was a polynomial divided by a polynomial and we saw that 
we got 1L =  from the ratio test.  This will always happen with rational expression 
involving only polynomials or polynomials under radicals.  So, in the future it isn’t even 
worth it to try the ratio test on these kinds of problems since we now know that we will 
get 1L = . 
 
Also, in the second to last example we saw an example of a rational expression times 
( )1 n− .  In this example we also saw that we got 1L = .  Again, as long as it is minus one 
to a power (any power) this will happen as well and so again there really isn’t any use in 
even trying the ratio test on these kinds of problems.  Note however, if it had been 
( ) 13 n+−  or 8n  (i.e. anything other than “-1”) we wouldn’t have gotten 1L =  and so the 
ratio test would work. 
 
 

 Root Test 
This is the last test for series convergence that we’re going to be looking at.  As with the 
Ratio Test this test will also tell whether a series is absolutely convergent or not rather 
than simple convergence. 
 
Root Test 
Suppose that we have the series na∑ .  Define, 

 
1

lim limn n
n nn n

L a a
→∞ →∞

= =  

Then, 
4. if 1L <  the series is absolutely convergent (and hence convergent). 
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5. if 1L >  the series is divergent. 
6. if 1L =  the series may be divergent, convergent, or absolutely convergent. 

 
As with the ratio test, if we get 1L =  the root test will tell us nothing and we’ll need to 
use another test to determine the convergence of the series. 
 
We will also need the following fact in some of these problems. 
 
Fact   

1

lim 1n
n

n
→∞

=  

 
Let’s take a look at a couple of examples. 
 
Example 1  Determine if the following series is convergent or divergent. 

 1 2
1 3

n

n
n

n∞

+
=

∑  

Solution 
There really isn’t much to these problems other than computing the limit and then using 
the root test.  Here is the limit for this problem. 

 

1

11 2 22
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3 33

n n

nn n
n

n nL +→∞ →∞ +

∞
= = = = ∞ >  

 
So, by the Root Test this series is divergent. 
 
Example 2  Determine if the following series is convergent or divergent. 
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Solution 
Again, there isn’t too much to this series. 
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Therefore, by the Root Test this series converges absolutely and hence converges. 
 
Note that we had to keep the absolute value bars on the fraction until we’d taken the limit 
to get the sign correct. 
 
Example 3  Determine if the following series is convergent or divergent. 
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Solution 
Here’s the limit for this series. 

 ( )
1

1

12 12 12lim lim 12 1
1

n n

n n
n

L
n n

→∞ →∞

−
= = = = >  

 
After using the fact from above we can see that the Root Test tells us that this series is 
divergent. 
 
Note that if we get 1L =  from the ratio test then the root test will also give also 1L =  and 
so there isn’t any reason to try the root test on anything that gives 1L =  on the ratio test. 
 
 

 Strategy for Series 
Now that we’ve got all of our tests out of the way it’s time to think about organizing all 
of them into a general set of guidelines to help us determine the convergence of a series. 
 
Note that these are a general set of guidelines and because some series can have more 
than one test applied to them we will get a different result depending on the path that we 
take through this set of guidelines.  In fact, because more than one test may apply, you 
should always go completely through the guidelines and identify all possible tests that 
can be used on a given series.  Once this has been done you can identity the test that you 
feel will be the easiest for you to use. 
 
With that said here is the set of guidelines for determining the convergence of a series. 
 
 

1. With a quick glance does it look like the series terms don’t converge to zero in the 
limit, i.e. does lim 0nn

a
→∞

≠ ?  If so, use the Divergence Test.  Note that you should 

only do the divergence test if a quick glance suggests that the series terms may 
not converge to zero in the limit. 
 

2. Is the series a p-series ( 1
pn∑ ) or a geometric series (

0

n

n
ar

∞

=
∑  or 1

1

n

n
ar

∞
−

=
∑ )?  If so 

use the fact that p-series will only converge if 1p >  and a geometric series will 
only converge if 1r < .  Remember as well that often some algebraic 
manipulation is required to get a geometric series into the correct form. 
 

3. Is the series similar to a p-series or a geometric series?  If so, try the Comparison 
Test. 
 

4. Is the series a rational expression involving only polynomials or polynomials 
under radicals (i.e. a fraction involving only polynomials or polynomials under 
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radicals)?  If so, try the Comparison Test and/or the Limit Comparison Test.  
Remember however, that in order to use the Comparison Test and the Limit 
Comparison Test the series terms all need to be positive. 
 

5. Does the series contain factorials or constants raised to powers involving n?  If so, 
then the Ratio Test may work.  Note that if the series term contains a factorial 
then the only test that we’ve got that will work is the Ratio Test.  
 

6. Can the series terms be written in the form ( )1 n
n na b= −  or ( ) 11 n

n na b+= − ?  If so, 
then the Alternating Series Test may work. 
 

7. Can the series terms be written in the form ( )n
n na b= ?  If so, then the Root Test 

may work. 
 

8. If ( )na f n=  for some positive, decreasing function and ( )
a

f x dx
∞

∫  is easy to 

evaluate then the Integral Test may work. 
 
 
Again, remember that these are only a set of guidelines and not a set of hard and fast 
rules to use when trying to determine the best test to use on a series.  If more than one test 
can be used try to use the test that will be the easiest for you to use and remember that 
what is easy for someone else may not be easy for you! 
 
Also just so we can put all the tests into one place here is a quick listing of all the test that 
we’ve got. 
 
Divergence Test 
 If lim 0nn

a
→∞

≠  then na∑ will diverge 

 
Integral Test 
Suppose that f(x) is a positive, decreasing function on the interval [ ),k ∞  and that 

( ) nf n a=  then, 

1. If ( )
k

f x dx
∞

∫  is convergent so is n
n k

a
∞

=
∑ . 

2. If ( )
k

f x dx
∞

∫  is divergent so is n
n k

a
∞

=
∑ . 

 
Comparison Test 
Suppose that we have two series na∑  and nb∑  with , 0n na b ≥  for all n and n na b≤  for 
all n.  Then, 
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1. If nb∑  is convergent then so is na∑ . 

2. If na∑  is divergent then so is nb∑ . 
 
Limit Comparison Test 
Suppose that we have two series na∑  and nb∑  with , 0n na b ≥  for all n.  Define, 

 lim n

n
n

ac
b→∞

=  

If c is positive (i.e. 0c > ) and is finite (i.e. c < ∞ ) then either both series converge or 
both series diverge. 
 
Alternating Series Test 
Suppose that we have a series na∑  and either ( )1 n

n na b= −  or ( ) 11 n
n na b+= −  where 

0nb ≥  for all n.  Then if, 
 

1. lim 0nn
b

→∞
=  and, 

2. { }nb  is eventually a decreasing sequence 
 
the series na∑ is convergent 
 
Ratio Test 
Suppose we have the series na∑ .  Define, 

 1lim n

n
n

aL
a

+

→∞
=  

Then, 
1. if 1L <  the series is absolutely convergent (and hence convergent). 
2. if 1L >  the series is divergent. 
3. if 1L =  the series may be divergent, convergent, or absolutely convergent. 

 
Root Test 
Suppose that we have the series na∑ .  Define, 

 
1

lim limn n
n nn n

L a a
→∞ →∞

= =  

Then, 
1. if 1L <  the series is absolutely convergent (and hence convergent). 
2. if 1L >  the series is divergent. 
3. if 1L =  the series may be divergent, convergent, or absolutely convergent. 
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 Estimating the Value of a Series 
We have now spent quite a few sections determining the convergence of a series, 
however, with the exception of geometric and telescoping series, we have not talked 
about finding the value of a series.  This is usually a very difficult thing to do and we still 
aren’t going to talk about how to find the value of a series.  What we will do is talk about 
how to estimate the value of a series.  Often that is all that you need to know. 
 
Before we get into how to estimate the value of a series let’s remind ourselves how series 
convergence works.  It doesn’t make any sense to talk about the value of a series that 
doesn’t converge and so we will be assuming that the series we’re working with 
converges.  Also, as well see the main method of estimating the value of series will come 
out of this discussion. 
 

So, let’s start with the series
1

n
n

a
∞

=
∑  (the starting point is not important, but we need one to 

do the work) and let’s suppose that it converges to s.  Recall that this means that if we get 
the partial sums, 

 
1

n

n i
i

s a
=

= ∑  

then they will form a convergent sequence and its limit is s.  In other words, 
 lim nn

s s
→∞

=  

 
Now, just what does this mean for us?  Well, since this limit converges it means that we 
can make the partial sums, sn, as close to s as we want simply by taking n large enough.  
In other words, if we take n large enough then we can say that, 
 
 ns s≈  
 
This is one method of estimating the value of a series.  We can just take a partial sum and 
use that as an estimation of the value of the series.  There are now two questions that we 
should ask about this.   
 
First, how good is the estimation?  If we don’t have an idea of how good the estimation is 
then it really doesn’t do all that much for us as an estimation. 
 
Secondly, is there any way to make the estimate better?  Sometimes we can use this as a 
starting point and make the estimation better.  We won’t always be able to do this, but if 
we can that will be nice. 
 
So, let’s start with a general discussion about the determining how good the estimation is.  
Let’s first start with the full series and strip out the first n terms. 
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1 1 1

n

i i i
i i i n

a a a
∞ ∞

= = = +

= +∑ ∑ ∑  (1) 

 
Note that we converted over to an index of i in order to make the notation consistent with 
prior notation.  Recall that we can use any letter for the index and it won’t change the 
value. 
 
Now, notice that the first series (the n terms that we’ve stripped out) is nothing more than 
the partial sum sn.  The second series on the right (the one starting at 1i n= + ) is called 
the remainder and denoted by Rn.  Finally let’s acknowledge that we also know the value 
of the series since we are assuming it’s convergent.  Taking this notation into account we 
can rewrite (1) as, 
 n ns s R= +  
 
We can solve this for the remainder to get, 
 n nR s s= −  
 
So, the remainder tells us the difference, or error, between the exact value of the series 
and the value of the partial sum that we are using as the estimation of the value of the 
series. 
 
Of course we can’t get our hands on the actual value of the remainder because we don’t 
have the actual value of the series.  However, we can use some of the tests that we’ve got 
for convergence to get a pretty good estimate of the remainder provided we make some 
assumptions about the series.  Once we’ve got an estimate on the value of the remainder 
we’ll also have an idea on just how good a job the partial sum does of estimating the 
actual value of the series. 
 
There are several tests that will allow us to get estimates of the remainder.  We’ll go 
through each one separately. 
 
Integral Test 
Recall that in this case we will need to assume that the series terms are all positive and 
will eventually be decreasing.  We originally derived the integral test by using the fact 
that the series could be thought of as an estimation of the area under the curve of f(x) 
where ( ) nf n a= .  We can do something similar with the remainder. 
 
First, let’s recall that the remainder is, 

 1 2 3 4
1

n i n n n n
i n

R a a a a a
∞

+ + + +
= +

= = + + + +∑ "  

 
Now, if we start at x=n+1, take rectangles of width 1 and use the left endpoint as the 
height of the rectangle we can estimate the area under f(x) on the interval [ )1,n + ∞  as 
shown in the sketch below. 
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We can see that the remainder, Rn, is exactly this area estimation and it will over estimate 
the exact area.  So, we have the following inequality. 
 
 ( )

1n n
R f x dx

∞

+
≥ ∫  (2) 

 
Next, we could also estimate the area by starting at x=n, taking rectangles of width 1 
again and then using the right endpoint as the height of the rectangle.  This will give an 
estimation of the area under f(x) on the interval [ ),n ∞ .  This is shown in the following 
sketch. 

 
 
Again, we can see that the remainder, Rn, is again this estimation and in this case it will 
underestimate the area.  This leads to the following inequality, 
 

 ( )n n
R f x dx

∞
≤ ∫  (3) 

 
Combining (2) and (3) gives, 
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 ( ) ( )
1 nn n

f x dx R f x dx
∞ ∞

+
≤ ≤∫ ∫  

 
So, provided we can do these integrals we can get both an upper and lower bound on the 
remainder.  This will in turn give us an upper bound and a lower bound on just how good 
the partial sum, sn, is as an estimation of the actual value of the series. 
 
In this case we can also use these results to get a better estimate for the actual value of the 
series as well. 
 
First, we’ll start with the fact that 

n ns s R= +  
Now, if we use (2) we get, 

 ( )
1n n n n

s s R s f x dx
∞

+
= + ≥ + ∫  

Likewise if we use (3) we get, 

 ( )n n n n
s s R s f x dx

∞
= + ≤ + ∫  

 
Putting these two together gives us, 
 
  
 ( ) ( )

1n nn n
s f x dx s s f x dx

∞ ∞

+
+ ≤ ≤ +∫ ∫  (4)

 
 
This gives an upper and a lower bound on the actual value of the series.  We could then 
use as an estimate of the actual value of the series the average of the upper and lower 
bound. 
 
Let’s work an example with this. 
 

Example 1  Using n=15 to estimate the value of 2
1

1
n n

∞

=
∑ . 

Solution 
First, for comparison purposes, we’ll note that the actual value of this series is known to 
be, 

 
2

2
1

1 1.644934068
6n n

π∞

=

= =∑  

 
Using n=15 let’s first get the partial sum. 

 
15

15 2
1

1 1.580440283
i

s
i=

= =∑  
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Note that this is “close” to the actual value in some sense, but isn’t really all that close 
either. 
 
Now, let’s compute the integrals.  These are fairly simple integrals so we’ll leave it to 
you to verify the values. 

 2 2
15 16

1 1 1 1
15 16

dx dx
x x

∞ ∞

= =⌠ ⌠⎮ ⎮
⌡ ⌡

 

 
Plugging these into (4) gives us, 

 
1 11.580440283 1.580440283

16 15
1.642940283 1.647106950

s

s

+ ≤ ≤ +

≤ ≤
 

 
Both the upper and lower bound are now very close to the actual value and if we take the 
average of the two we get the following estimate of the actual value. 
 
 1.6450236165s ≈  
 
That is pretty darn close to the actual value. 
 
So, that is how we can use the Integral Test to estimate the value of a series.  Let’s move 
on to the next test. 
 
Comparison Test 
In this case, unlike with the integral test, we may or may not be able to get an idea of how 
good a particular partial sum will be as an estimate of the exact value of the series.  Much 
of this will depend on how the comparison test is used. 
 
First, let’s remind ourselves on how the comparison test actually works.  Given a series 

na∑  let’s assume that we’ve used the comparison test to show that it’s convergent.  

Therefore, we found a second series nb∑  that converged and n na b≤  for all n. 
 
What we want to do is determine how good of a job the partial sum, 

 
1

n

n i
i

s a
=

= ∑  

will do in estimating the actual value of the series na∑ .  Again, we will use the 
remainder to do this.  Let’s actually write down the remainder for both series. 

 
1 1

n i n i
i n i n

R a T b
∞ ∞

= + = +

= =∑ ∑  

 
Now, since n na b≤  we also know that  
 n nR T≤  
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When using the comparison test it is often the case that the bn are fairly nice terms and 
that we might actually be able to get an idea on the size of Tn.  For instance, if our second 
series is a p-series we can use the results from above to get an upper bound on Tn as 
follows, 
 

( ) ( )
1

where n n nn
R T g x dx g n b

∞

+
≤ ≤ =∫  

 
Also, if the second series is a geometric series then we will be able to compute Tn exactly. 
 
If we are unable to get an idea of the size of Tn then using the comparison test to help 
with estimates won’t do us much good. 
 
Let’s take a look at an example. 
 

Example 2  Using n=15 to estimate the value of 
0

2
4 1

n

n
n

∞

= +∑ . 

Solution 
To do this we’ll first need to go through the comparison test so we can get the second 
series.  So, 

 2 2 1
4 1 4 2

nn n

n n
⎛ ⎞≤ = ⎜ ⎟+ ⎝ ⎠

 

and  

 
0

1
2

n

n

∞

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

is a geometric series and converges because 1 1
2

r = < . 

 
Now that we’ve gotten our second series let’s get the estimate. 

 
15

15
0

2 1.383062486
4 1

n

n
n

s
=

= =
+∑  

 
So, how good is it?  Well we know that, 

 15 15
16

1
2

n

n

R T
∞

=

⎛ ⎞≤ = ⎜ ⎟
⎝ ⎠

∑  

will be an upper bound for the error between the actual value and the estimate.  Since our 
second series is a geometric series we can compute this directly as follows. 

 
15

0 0 16

1 1 1
2 2 2

n n n

n n n

∞ ∞

= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑ ∑  

The series on the left is in the standard form and so we can compute that directly.  The 
first series on the right has a finite number of terms and so can be computed exactly and 
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the second series on the right is the one that we’d like to have the value for.  Doing the 
work gives, 

 
( )

15

16 0 0

1
2

1 1 1
2 2 2

1 1.999969482
1
0.000030518

n n n

n n n

∞ ∞

= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= −
−

=

∑ ∑ ∑

 

 
So, according to this if we use 
 1.383062486s ≈  
as an estimate of the actual value we will be off from the exact value by no more than 
0.000030518  and that’s not too bad.   
 
In this case it can be shown that  

 
0

2 1.383093004
4 1

n

n
n

∞

=

=
+∑  

and so we can see that the actual error in our estimation is, 
 
 Error Actual Estimate 1.383093004 1.383062486 0.000030518= − = − =  
 
Note that in this case the estimate of the error is actually fairly close (and in fact exactly 
the same) as the actual error.  This will not always happen and so we shouldn’t expect 
that to happen in all cases.  The error estimate above is simply the upper bound on the 
error and the actual error will often be less than this value.  
 
Before moving on to the final part of this section let’s again note that we will only be able 
to determine how good the estimate is using the comparison test if we can easily get our 
hands on the remainder of the second term.  The reality is that we won’t always be able to 
do this. 
 
Alternating Series Test 
Both of the methods that we’ve looked at so far have required the series to contain only 
positive terms.  If we allow series to have negative terms in it the process is usually more 
difficult.  However, with that said there is one case where it isn’t too bad.  That is the 
case of an alternating series. 
 
Once again we will start of with a convergent series ( )1 n

n na b= −∑ ∑  which in this 
case happens to be an alternating series, so we know that 0nb ≥  for all n.  Also note that 
we could have any power on the “-1” we just used n for the sake of convenience.  We 
want to know how good of an estimation of the actual value will the partial sum sn be.  As 
with the prior cases we know that the remainder, Rn, will be the error in the estimation 
and so if we can get a handle on that we’ll know approximately how good the estimation 
is. 
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In this case the work is a little harder to justify so we’ll just give the relevant fact.  It can 
be shown that, 
 

1n n nR s s b += − ≤  
  
We needed absolute value bars because we won’t know ahead of time if the estimation is 
larger or smaller than the actual value and we know that the bn’s are positive. 
 
Let’s take a look at an example. 
 

Example 3  Using n=15 to estimate the value of ( )
2

1

1 n

n n

∞

=

−
∑ . 

Solution 
This is an alternating series and is does converge.  In this case the exact value is known 
and so for comparison purposes, 

 ( ) 2

2
1

1
0.8224670336

12

n

n n
π∞

=

−
= − = −∑  

 
Now, the estimation is, 

 ( )15

15 2
1

1
0.8245417574

n

n
s

n=

−
= = −∑  

 
From the fact above we know that  

 15 15 16 2

1 0.00390625
16

R s s b= − ≤ = =  

 
So, our estimation will have an error of no more than 0.00390625.  In this case the exact 
value is known and so the actual error is, 
 15 15 0.0020747238R s s= − =  
 
In the pervious example the estimation had only half the estimated error.  It will often be 
the case the actual error will be less than the estimated error.  Remember that this is only 
an upper bound for the actual error. 
 
Ratio Test 
This will be the final case that we’re going to look at for estimating series values and we 
are going to have to put a couple of fairly stringent restriction on the series terms in order 
to do the work.  One of the main restrictions we’re going to make is to assume that the 
series terms are positive.  Well also be adding on another restriction in a bit. 
 
In this case we’ve used the ratio test to show that na∑  is convergent.  To do this we 
computed  
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 1lim n

n
n

aL
a

+

→∞
=  

and found that 1L < . 
 
As with the previous cases we are going to use the remainder, Rn, to determine how good 
of an estimation of the actual value the partial sum, sn, is. 
 
 
To get an estimate of the remainder let’s first define the following sequence, 

 1n
n

n

ar
a

+=  

 
We now have two possible cases. 
 

1. If { }nr  is a decreasing sequence and 1 1nr + <  then, 

 1

11
n

n
n

aR
r
+

+

≤
−

 

 
2. If { }nr  is a increasing sequence then, 

 1

1
n

n
aR

L
+≤

−
 

 
Note that there are some restrictions on the sequence { }nr  and at least one of its terms in 
order to use these formulas.  If the restrictions aren’t met then the formulas can’t be used. 
 
Let’s take a look at an example of this. 
 

Example 4  Using n=15 to estimate the value of 
0 3n

n

n∞

=
∑ . 

Solution 
First, let’s use the ratio test to verify that this is a convergent series. 

 1

1 3 1 1lim lim 1
3 3 3

n

nn n

n nL
n n+→∞ →∞

+ +
= = = <  

So, it is convergent.  Now let’s get the estimate. 

 
15

15
0

0.7499994250
3n

n

ns
=

= ∑  

 
To determine an estimate on the remainder, and hence the error, let’s first get the 
sequence { }nr . 
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 1

1 3 1 1 11
3 3 3

n

n n

n nr
n n n+

+ + ⎛ ⎞= = = +⎜ ⎟
⎝ ⎠

 

 
The last rewrite was just to simplify some of the computations a little.  Now, notice that, 

 ( ) ( ) 2

1 1 11 0
3 3

f x f x
x x

⎛ ⎞ ′= + = − <⎜ ⎟
⎝ ⎠

 

 
Since this function is always decreasing and  ( ) nf n r=  and so, this sequence is 

decreasing.    Also note that ( )1 1
16 3 161 1r = + < . Therefore we can use the first case from 

the fact above to get, 

 
( )

16
16

16 3
15 1 1

16 3 16

0.0000005755187
1 1 1

aR
r

≤ = =
− − +

 

 
So, it looks like our estimate is probably quite good.  In this case the exact value is 
known. 

 
0

3
3 4n

n

n∞

=

=∑  

and so we can compute the actual error. 
 15 15 0.000000575R s s= − =  
 
This is less than the upper bound, but unlike in the previous example this actual error is 
quite close to the upper bound. 
 
In the last two examples we’ve seen that the upper bound computations on the error can 
sometimes be quite close to the actual error and at other times they can be off by quite a 
bit.  There is usually no way of knowing ahead of time which it will be and without the 
exact value in hand there will never be a way of determining which it will be. 
 
Notice that this method did require the series terms to be positive, but that doesn’t mean 
that we can’t deal with ratio test series if they have negative terms.  Often series that we 
used ratio test on are also alternating series and so if that is the case we can always resort 
to the previous material to get an upper bound on the error in the estimation, even if we 
didn’t use the alternating series test to show convergence. 
 
Note however that if the series does have negative terms, but doesn’t happen to be an 
alternating series then we can’t use any of the methods discussed in this section to get an 
upper bound on the error. 
 
 

 Power Series 
We’ve spent quite a bit of time talking about series now and with only a couple of 
exceptions we’ve spent most of that time talking about how to determine if a series will 
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converge or not.  It’s now time to start looking at some specific kinds of series and we’ll 
eventually reach the point where we can talk about applications of series. 
 
In this section we are going to start talking about power series.  A power series about a, 
or just power series, is any series that can be written in the form, 

 ( )
0

n
n

n
c x a

∞

=

−∑  

where a and cn are numbers.  The cn’s are often called the coefficients of the series.  The 
first thing to notice about a power series is that it is a function of x.  That is different from 
any other kind of series that we’ve looked at to this point.  In all the prior sections we’ve 
only allowed numbers in the series and now we are allowing variables to be in the series 
as well.  This will not change how things work however.  Everything that we know about 
series still holds. 
 
In the discussion of power series convergence is still a major question that we’ll be 
dealing with.  The difference is that the convergence of the series will now depend upon 
the value of x that we put into the series.  A power series may converge for some values 
of x and not for other values of x. 
 
Before we get too far into power series there is some terminology that we need to get out 
of the way.   
 
First, as we will see in our examples, we will be able to show that there is a number R so 
that the power series will converge for, x a R− < and will diverge for x a R− > .  This 
number is called the radius of convergence for the series.  Note that the series may or 
may not converge if x a R− = .  What happens at these points will not change the radius 
of convergence. 
 
Secondly, the interval of all x’s, including the end points if need be, for which the power 
series converges is called the interval of convergence of the series. 
 
These two concepts are fairly closely tied together.  If we know that the radius of 
convergence of a power series is R then we have the following. 
 

 
power series converges

and   power series diverges
a R x a R
x a R x a R

− < < +
< − > +

 

 
The interval of convergence must then contain the interval a R x a R− < < +  since we 
know that the power series will converge for these values.  We also know that the interval 
of convergence can’t contain x’s in the ranges x a R< −  and x a R> +  since we know 
the power series diverges for these value of x.  Therefore, to completely identify the 
interval of convergence all that we have to do is determine if the power series will 
converge for x a R= −  or x a R= + .  If the power series converges for one or both of 
these values then we’ll need to include those in the interval of validity. 
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Before getting into some examples let’s take a quick look at the convergence of a power 
series for the case of x a= .  In this case the power series becomes, 

 ( ) ( ) ( ) ( )0
0 0 0 0

0 0 1 1

0 0 0 0 0n n n
n n n

n n n n

c a a c c c c c c
∞ ∞ ∞ ∞

= = = =

− = = + = + = + =∑ ∑ ∑ ∑  

and so the power series converges.  Note that we had to strip out the first term since it 
was the only non-zero term in the series. 
 
It is important to note that no matter what else is happening in the power series we are 
guaranteed to get convergence for x a= .  The series may not converge for any other 
value of x, but it will always converge for x a= . 
 
Let’s work some examples.  We’ll put quite a bit of detail into the first example and then 
not put quite as much detail in the remaining examples. 
 
Example 1  Determine the radius of convergence and interval of convergence for the 
following power series. 

 ( ) ( )
1

1
3

4

n
n

n
n

n
x

∞

=

−
+∑  

Solution 
Okay, we know that this power series will converge for 3x = − , but that’s it at this point.  
To determine the remainder of the x’s for which we’ll get convergence we can use any of 
the tests that we’ve discussed to this point.  After application of the test that we choose to 
work with we will arrive at condition(s) on x that we can use to determine which values 
of x for which the power series will converge and which values of x for which the power 
series will diverge.  From this we can get the radius of convergence and most of the 
interval of convergence (with the possible exception of the endpoints. 
 
With all that said, the best tests to use here are almost always the ratio or root test.  Most 
of the power series that we’ll be looking at are set up for one or the other.  In this case 
we’ll use the ratio test. 
 

 

( ) ( )( )
( ) ( )( )

( )( )

1 1

1

1 1 3 4lim
4 1 3

1 3
lim

4

n n n

n nnn

n

n x
L

n x

n x
n

+ +

+→∞

→∞

− + +
=

− +

− + +
=

 

 
Before going any farther with the limit let’s notice that since x is not dependent on the 
limit and so it can be factored out of the limit.  Notice as well that in doing this well need 
to keep the absolute value bars on it since we need to make sure everything stays positive 
and x could well be a value that will make things negative.  The limit is then, 
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13 lim
4

1 3
4

n

nL x
n

x

→∞

+
= +

= +
 

So, the ratio test tells us that if 1L <  the series will converge, if 1L >  the series will 
diverge, and if 1L =  we don’t know what will happen.  So, we have, 

 

1 3 1 3 4 series converges
4
1 3 1 3 4 series diverges
4

x x

x x

+ < ⇒ + <

+ > ⇒ + >
 

 
We’ll deal with the 1L =  case in a bit.  Notice that we now have the radius of 
convergence for this power series.  These are exactly the conditions required for the 
radius of convergence.  The radius of convergence for this power series is 4R = . 
 
Now, let’s get the interval of convergence.  We’ll get most (if not all) of the interval by 
solving the first inequality from above. 

 
4 3 4

7 1
x

x
− < + <

− < <
 

 
So, most of the interval of validity is given by 7 1x− < < .  All we need to do is determine 
if the power series will converge or diverge at the endpoints of this interval.  Note that 
these values of x will correspond to the value of x that will give 1L = . 
 
The way to determine convergence at these points is to simply plug them into the original 
power series and see if the series converges or diverges using any test necessary. 
 

7x = − : 
In this case the series is, 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

2

1

1

1 1
4 1 4

4 4

1 1 1 1 1 1

n n
n n n

n n
n n

n n n n n

n

n

n n

n

n

∞ ∞

= =

∞

=

∞

=

− −
− = −

= − − − − = − =

=

∑ ∑

∑

∑

 

This series is divergent by the Divergence Test since lim 0
n

n
→∞

= ∞ ≠ . 

 
1x = : 

In this case the series is, 

 ( ) ( ) ( )
1 1

1
4 1

4

n
n n

n
n n

n
n

∞ ∞

= =

−
= −∑ ∑  
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This series is also divergent by the Divergence Test since ( )lim 1 n

n
n

→∞
−  doesn’t exist. 

 
So, in this case the power series will not converge for either endpoint.  The interval of 
convergence is then, 

7 1x− < <  
 
In the previous example the power series didn’t converge for either end point of the 
interval.  Sometimes that will happen, but don’t always expect that to happen.  The power 
series could converge at either both of the end points or only one of the end points. 
 
Example 2  Determine the radius of convergence and interval of convergence for the 
following power series. 

 ( )
1

2 4 8
n

n

n
x

n

∞

=

−∑  

Solution 
Let’s jump right into the ratio test. 

 

( )
( )

( )

112 4 8
lim

1 2 4 8

2 4 8
lim

1
24 8 lim

1
2 4 8

nn

nnn

n

n

x nL
n x

n x
n

nx
n

x

++

→∞

→∞

→∞

−
=

+ −

−
=

+

= −
+

= −

 

 
So we will get the following convergence/divergence information from this. 

 
2 4 8 1 series converges

2 4 8 1 series diverges

x

x

− <

− >
 

 
We need to be careful here in determining the interval of convergence. The interval of 
convergence requires x a R− < and x a R− > .  In other words, we need to factor a 4 out 
of the absolute value bars in order to get the correct radius of convergence.  Doing this 
gives, 

 

18 2 1 2 series converges
8
18 2 1 2 series diverges
8

x x

x x

− < ⇒ − <

− > ⇒ − >
 

 

So, the radius of convergence for this power series is 1
8

R = . 
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Now, let’s find the interval of convergence.  Again, we’ll first solve the inequality that 
gives convergence above. 

 

1 12
8 8
15 17
8 8

x

x

− < − <

< <
 

Now check the end points. 
 

15
8

x = : 

The series here is, 

 ( )

( )

1 1

1

1

2 15 2 18
2 2

12
2

1

n nn n

n n

nn

n
n

n

n

n n

n

n

∞ ∞

= =

∞

=

∞

=

⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−
=

−
=

∑ ∑

∑

∑

 

 
This is the alternating harmonic series and we know that it converges. 
 

17
8

x = : 

The series here is, 

 

1 1

1

1

2 17 2 18
2 2

2 1
2

1

n nn n

n n

n

n
n

n

n n

n

n

∞ ∞

= =

∞

=

∞

=

⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

=

∑ ∑

∑

∑

 

 
This is the harmonic series and we know that it diverges. 
 
So, the power series converges for one of the end points, but not the other.  This will 
often happen so don’t get excited about it when it does.  The interval of convergence for 
this power series is then, 

 15 17
8 8

x≤ <  

 
We now need to take a look at a couple of special cases with radius and intervals of 
convergence. 
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Example 3  Determine the radius of convergence and interval of convergence for the 
following power series. 

 ( )
0

! 2 1 n

n
n x

∞

=

+∑  

Solution 
Well start this example with the ratio test as we have for the previous ones. 

 

( ) ( )
( )

( ) ( )

( )

11 ! 2 1
lim

! 2 1

1 ! 2 1
lim

!

2 1 lim 1

n

nn

n

n

n x
L

n x

n n x
n

x n

+

→∞

→∞

→∞

+ +
=

+

+ +
=

= + +

 

 
At this point we need to be careful.  The limit is infinite, but there is that term with the x’s 

in front of the limit.  We’ll have 1L = ∞ >  provided 1
2

x ≠ − . 

 

So, this power series will only converge if 1
2

x = − .  If you think about it we actually 

already knew that however.  From our initial discussion we know that every power series 

will converge for x a=  and in this case 1
2

a = − .  Remember that we get a from ( )nx a− , 

and notice the coefficient of the x must be a one!. 
 
In this case we say the radius of convergence is 0R =  and the interval of convergence is 

1
2

x = − , and yes we really did mean interval of convergence even though it’s only a 

point. 
 
Example 4  Determine the radius of convergence and interval of convergence for the 
following power series. 

 ( )
1

6 n

n
n

x
n

∞

=

−
∑  

Solution 
In this example the root test seems more appropriate.  So, 
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( )
1

6
lim

6lim

16 lim

0

n n

nn

n

n

x
L

n

x
n

x
n

→∞

→∞

→∞

−
=

−
=

= −

=

 

 
So, since 0 1L = <  regardless of the value of x this power series will converge for every 
x. 
 
In these cases we say that the radius of convergence is R = ∞  and interval of 
convergence is x−∞ < < ∞ . 
 
So, let’s summarize the last two examples.  If the power series only converges for x a=  
then the radius of convergence is 0R =  and the interval of convergence is x a= .  
Likewise if the power series converges for every x the radius of convergence is R = ∞  
and interval of convergence is x−∞ < < ∞ . 
 
Let’s work one more example. 
 
Example 5  Determine the radius of convergence and interval of convergence for the 
following power series. 

 
( )

2

1 3

n

n
n

x∞

= −
∑  

Solution 
First notice that a=0 in this problem.  That’s not really important to the problem, but it’s 
worth pointing out so people don’t get excited about it. 
 
The important difference in this problem is the exponent on the x.  In this case it is 2n 
rather than the standard n.  As we will see some power series will have exponents other 
than an n and so we still need to be able to deal with these kinds of problems. 
 
This one seems set up for the root test again so let’s use that. 

 

( )

1
2

2

2

lim
3

lim
3

3

nn

nn

n

xL

x

x

→∞
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=
−

=
−

=
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So, we will get convergence if 

2
21 3

3
x x< ⇒ <  

The radius of convergence is NOT 3 however.  The radius of convergence requires an 
exponent of 1 on the x.  Therefore, 

 
2 3

3

x

x

<

<
 

 
Be careful with the absolute value bars!  In this case it looks like the radius of 
convergence is 3R = .  Notice that we didn’t bother to put down the inequality for 
divergence this time.  The inequality for divergence is just the interval for convergence 
that the test gives with the inequality switched and generally isn’t needed.  We will 
usually skip that part. 
 
Now let’s get the interval of convergence.  First from the inequality we get, 
 3 3x− < <  
 
Now check the end points. 
 

3x = − : 
Here the power series is, 
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( )

( )( )
( )
( )

( ) ( )
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1
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3 3

3
1 3

1

n
n

n n
n n

n

n n
n

n

n

∞ ∞

= =

∞

=

∞

=

−−
=

− −

=
−

= −

∑ ∑

∑

∑

 

This series is divergent by the Divergence Test since ( )lim 1 n

n→∞
−  doesn’t exist. 

 
3x = : 

Because we’re squaring the x this series will be the same as the previous step. 

 
( )
( )

( )
2

1 1

3
1

3

n

n
n

n n

∞ ∞

= =

= −
−

∑ ∑  

which is divergent. 
 
The interval of convergence is then, 

3 3x− < <  
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 Power Series and Functions 
We opened the last section by saying that we were going to start thinking about 
applications of series and then promptly spent the section talking about convergence 
again.  It’s now time to actually start with the applications of series. 
 
With this section we will start talking about how to represent functions with power series.  
The natural question of why we might want to do this will be answered in a couple of 
sections once we actually learn how to do this. 
 
Let’s start off with one that we already know how to do, although when we first ran 
across this series we didn’t think of it as a power series nor did we acknowledge that it 
represented a function. 
 
Recall that the geometric series is  

 
0

provided 1
1

n

n

aar r
r

∞

=

= <
−∑  

Don’t forget as well that if 1r ≥  the series diverges. 
 
Now, if we take a=1 and r=x this becomes, 

 
0

1 provided 1
1

n

n
x x

x

∞

=

= <
−∑  (1) 

 
Turning this around we can see that we can represent the function 

 ( ) 1
1

f x
x

=
−

 (2) 

with the power series 

 
0

provided 1n

n

x x
∞

=

<∑  (3) 

 
This provision is important.  We can clearly plug any number other than x=1 into the 
function, however, we will only get a convergent power series if 1x < .  This means the 

equality in (1) will only hold if 1x < .  For any other value of x the equality won’t hold.  
Note as well that we can also use this to acknowledge that the radius of convergence of 
this power series is 1R =  and the interval of convergence is 1x < . 
 
This idea of convergence is important here.  We will be representing many functions as 
power series and it will be important to recognize that the representations will often only 
be valid for a range of x’s and that there may be values of x that we can plug into the 
function that we can’t plug into the power series representation. 
 



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 237

In this section we are going to concentrate on representing functions with power series 
where the functions can be related back to (2). 
 
In this way we will hopefully become familiar with some of the kinds of manipulations 
that we will sometimes need to do when working with power series. 
 
So, let’s jump into a couple of examples. 
 
Example 1  Find a power series representation for the following function and determine 
it’s interval of convergence. 

 ( ) 3

1
1

g x
x

=
+

 

Solution 
What we need to do here is to relate this function back to (2).  This is actually easier than 
it might look.  Recall that the x in (2) is simply a variable and can represent anything.  So, 
a quick rewrite of g(x) gives, 

 ( ) ( )3

1
1

g x
x

=
− −

 

and so the 3x−  in g(x) holds the same place as the x in (2).  Therefore, all we need to do 
is replace the x in (3) and we’ve got a power series representation for g(x). 

 ( ) ( )3 3

0

provided 1
n

n

g x x x
∞

=

= − − <∑  

Notice that we replaced both the x in the power series and in the interval of convergence. 
 
All we need to do now is a little simplification. 

 ( ) ( ) 33

0
1 provided 1 1n n

n
g x x x x

∞

=

= − < ⇒ <∑  

 
So, in this case the interval of convergence is the same as the original power series.  This 
usually won’t happen.  More often than not the new interval of convergence will be 
different form the original interval of convergence. 
 
Example 2  Find a power series representation for the following function and determine 
it’s interval of convergence. 

 ( )
2

3

2
1

xh x
x

=
+

 

Solution 
This function is similar to the previous function.   The difference is the numerator and at 
first glance that looks to be an important difference.  Since (2) doesn’t have an x in the 
numerator it appears that we can’t relate this function back to that. 
 
However, now that we’ve worked the first example this one is actually very simple since 
we can use the result of the answer from that example.  To see how to do this let’s first 
rewrite the function a little. 
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 ( ) 2
3

12
1

h x x
x

=
+

 

Now, from the first example we’ve already got a power series for the second term so let’s 
use that to write the function as, 

 ( ) ( )2 3

0
2 1 provided 1n n

n
h x x x x

∞

=

= − <∑  

 
Notice that the presence of x’s outside of the series will NOT affect its convergence and 
so the interval of convergence remains the same. 
 
The last step is to bring the coefficient into the series and we’ll be done.  When we do 
this make sure and combine the x’s as well.  We typically only want a single x in a power 
series. 

( ) ( ) 3 2

0

2 1 provided 1n n

n

h x x x
∞

+

=

= − <∑  

 
As we saw in the previous example we can often use previous results to help us out.  This 
is an important idea to remember as it can often greatly simplify our work. 
 
Example 3  Find a power series representation for the following function and determine 
it’s interval of convergence. 

 ( )
5

xf x
x

=
−

 

Solution 
So, again, we’ve got an x in the numerator.  So, as with the last example let’s factor that 
out and see what we’ve got left. 

 ( ) 1
5

f x x
x

=
−

 

If we had a power series representation for 

 ( ) 1
5

g x
x

=
−

 

we could get a power series representation for f(x).   
 
So, let’s find one.  We’ll first notice that in order to use (4) we’ll need the number in the 
denominator to be a one.  That’s easy enough to get. 

 ( ) 1 1
5 1

5

g x x=
−

 

Now all we need to do to get a power series representation is to replace the x in (3) with 

5
x .  Doing this gives, 

 ( )
0

1 provided  1
5 5 5

n

n

x xg x
∞

=

⎛ ⎞= <⎜ ⎟
⎝ ⎠

∑  



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 239

Now let’s do a little simplification on the series. 

 
( )

0

1
0

1
5 5

5

n

n
n

n

n
n

xg x

x

∞

=

∞

+
=

=

=

∑

∑
 

 
The interval of convergence for this series is, 

 11 1 5
5 5
x x x< ⇒ < ⇒ <  

 
Okay, this was the work for the power series representation for g(x) let’s now find a 
power series representation for the original function.  All we need to do for this is to 
multiply the power series representation for g(x) by x and we’ll have it. 

 

( )

1
0

1

1
0

1
5

5

5

n

n
n

n

n
n

f x x
x
xx

x

∞

+
=

+∞

+
=

=
−

=

=

∑

∑

 

 
The interval of convergence doesn’t change and so it will be 5x < . 
 
So, hopefully we now have an idea on how to find the power series representation for 
some functions.  Admittedly all of the functions could be related back to (2) but it’s a 
start. 
 
We now need to look at some further manipulation of power series that we will need to 
do on occasion.  We need to discuss differentiation and integration of power series. 
 
Let’s start with differentiation of the power series, 

 ( ) ( ) ( ) ( ) ( )2 3
0 1 2 3

0

n
n

n
f x c x a c c x a c x a c x a

∞

=

= − = + − + − + − +∑ "  

 
Now, we know that if we differentiate a finite sum of terms all we need to do is 
differentiate each of the terms and then add them back up.  With infinite sums there are 
some subtleties involved that we need to be careful with, but are somewhat beyond the 
scope of this course.  While, we can always just differentiate all the terms in an infinite 
series is it not always guaranteed to be the power series representation of the derivative of 
the original function. 
 
Nicely enough for us however, it is known that if the power series representation of f(x) 
has a radius of convergence of 0R >  then the term by term differentiation of the power 
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series will also have a radius of convergence of R and (more importantly) will in fact be 
the power series representation of ( )f x′  provided x is in the interval of convergence of 
the original function. 
 
In other words, 

 ( ) ( ) ( ) ( )2 1
1 2 3

1
2 3 n

n
n

f x c c x a c x a nc x a
∞

−

=

′ = + − + − + = −∑"  

 
Note the initial value of this series.  It has been changed from n=0 to n=1.  This is an 
acknowledgement of the fact that the derivative of the first term is zero and hence isn’t in 
the derivative.  Notice however, that since the n=0 term of the above series is also zero, 
we could start the series at n=0 if it was required for a particular problem.  In general 
however, this won’t be done in this class. 
 
We can now find formulas for higher order derivatives as well now. 

 

( ) ( ) ( )

( ) ( )( ) ( )

2

2

3

3

1

1 2

.

n
n

n

n
n

n

f x n n c x a

f x n n n c x a

etc

∞
−

=

∞
−

=

′′ = − −

′′′ = − − −

∑

∑  

 
Once again, notice that the initial value of n changes with each differentiation in order to 
acknowledge that a term from the original series differentiated to zero. 
 
Let’s now briefly talk about integration.  Just as with the differentiation, when we’ve got 
an infinite series we need to be careful about just integration term by term.  As long as we 
are in the interval of convergence for the original function we can do the integration.  In 
this case we get, 

 ( ) ( ) 1

0 1

n

n
n

x a
f x dx C c

n

+∞

=

−
= +

+∑∫  

 
Notice that we pick up a constant of integration, C, that is outside the series here. 
 
Let’s summarize the differentiation and integration ideas before moving on to an example 
or two. 
 
Fact 

If ( ) ( )
0

n
n

n

f x c x a
∞

=

= −∑  has a radius of convergence of 0R >  then, 
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( ) ( )

( ) ( )

1

1
1

0 1

n
n

n
n

n
n

f x nc x a

x a
f x dx C c

n

∞
−

=

+∞

=

′ = −

−
= +

+

∑

∑∫
 

and both of these also have a radius of convergence of R. 
 
Now, let’s see how we can use these facts to generate some more power series 
representations of functions. 
 
Example 4  Find a power series representation for the following function and determine 
it’s interval of convergence. 

 ( )
( )2

1
1

g x
x

=
−

 

Solution 
To do this problem let’s notice that  

 
( )2

1 1
11

d
dx xx

⎛ ⎞= ⎜ ⎟−⎝ ⎠−
 

Then since we’ve got a power series representation for 

 1
1 x−

 

all that we’ll need to do is differentiate that power series to get a power series 
representation for g(x). 

 

( )
( )2

0

1

1

1
1

1
1

n

n

n

n

g x
x

d
dx x
d x
dx

nx

∞

=

∞
−

=

=
−

⎛ ⎞= ⎜ ⎟−⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

=

∑

∑

 

 
Then since the original power series had a radius of convergence of 1R =  the derivative, 
and hence g(x), will also have a radius of convergence of 1R = . 
 
Example 5  Find a power series representation for the following function and determine 
it’s interval of convergence. 
 ( ) ( )ln 5h x x= −  
Solution 
In this case we need to notice that 
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 ( )1 ln 5
5

dx x
x

= − −
−

⌠⎮
⌡

 

and the recall that we have a power series representation for  

 1
5 x−

 

 
Remember we found a representation for this in Example 3.  So, 
 

 

( )

( )

1
0

1

1
0

1ln 5
5

5

1 5

n

n
n

n

n
n

x dx
x
x dx

xC
n

∞

+
=

+∞

+
=

− = −
−

= −

= −
+

⌠⎮
⌡
⌠
⎮
⌡

∑

∑

 

 
We can find the constant of integration, C, by plugging in a value of x.  A good choice is 
x=0 since that will make the series easy to evaluate. 

 
( ) ( )

( )

1

1
0

0ln 5 0
1 5

ln 5

n

n
n

C
n

C

+∞

+
=

− = −
+

=

∑
 

 
So, the final answer is, 

 ( ) ( ) ( )
1

1
0

ln 5 ln 5
1 5

n

n
n

xx
n

+∞

+
=

− = −
+∑  

 
Note that it is okay to have the constant sitting outside of the series like this.  In fact, 
there is no way to bring it into the series so don’t get excited about it. 
 
 

 Taylor Series 
In the previous section we started looking at writing down a power series representation 
of a function.  The problem with the approach in that section is that everything came 
down to needing to be able to relate the function in some way to  

1
1 x−

 

and while there are many functions out there that can be related to this function there are 
many more that simply can’t be related to this. 
 
So, without taking anything away from the process we looked at in the previous section, 
we need to do is come up with a more general method for writing a power series 
representation for a function. 
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So, for the time being, let’s make two assumptions.  First, lets assume that the function 
f(x) does in fact have a power series representation about x=a, 
 

 ( ) ( ) ( ) ( ) ( ) ( )2 3 4
0 1 2 3 4

0

n
n

n
f x c x a c c x a c x a c x a c x a

∞

=

= − = + − + − + − + − +∑ "  

 
Next, we will need to assume that the function, f(x), has derivatives of every order and 
that we can in fact find them all. 
 
Now that we’ve assumed that a power series representation exists we need to determine 
what the coefficients, cn, are.  This is easier than it might at first appear to be.  Let’s first 
just evaluate everything at x=a.  This gives, 
 
 ( ) 0f a c=  
 
So, all the terms except the first are zero and we now know what c0 is.  Unfortunately, 
there isn’t any other value of x that we can plug into the function that will allow us to 
quickly find any of the other coefficients.  However, if we take the derivative of the 
function (and its power series) then plug in x=a we get, 

 
( ) ( ) ( ) ( )
( )

2 3
1 2 3 4

1

2 3 4f x c c x a c x a c x a

f a c

′ = + − + − + − +

′ =

"
 

and we now know c1. 
 
Lets’ continue with this idea and find the second derivative. 

 
( ) ( ) ( ) ( ) ( )
( )

2
2 3 4

2

2 3 2 4 3

2

f x c c x a c x a

f a c

′′ = + − + − +

′′ =

"
 

So, it looks like, 

 ( )
2 2

f a
c

′′
=  

Using the third derivative gives, 

 
( ) ( ) ( )( ) ( )

( ) ( ) ( )
( )

3 4

3 3

3 2 4 3 2

3 2
3 2

f x c c x a

f a
f a c c

′′′ = + − +

′′′
′′′ = ⇒ =

"
 

 
Using the fourth derivative gives, 

 

( ) ( ) ( )( ) ( )( )( ) ( )

( ) ( ) ( )( )
( ) ( )
( )( )

4
4 5

4
4

4 4

4 3 2 5 4 3 2

4 3 2
4 3 2

f x c c x a

f a
f a c c

= + −

= ⇒ =

"
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Hopefully by this time you’ve seen the pattern here.  It looks like, in general, we’ve got 
the following formula for the coefficients. 

 
( ) ( )

!

n

n

f a
c

n
=  

 
This even works for n=0 if you recall that 0! 1=  and define ( ) ( ) ( )0f x f x= . 
 
So, provided a power series representation for the function f(x) about x=a exists it will 
have the form, 
 

( )
( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

0

2 3

!

2! 3!

n
n

n

f a
f x x a

n
f a f a

f a f a x a x a x a

∞

=

= −

′′ ′′′
′= + − + − + − +

∑

"

 

 
This is called the Taylor Series for f(x) about x=a.  In the case that a=0, so the Taylor 
Series about x=0, we have, 
 

( )
( ) ( )

( ) ( ) ( ) ( )
0

2 3

0
!

0 0
0 0

2! 3!

n
n

n

f
f x x

n
f f

f f x x x

∞

=

=

′′ ′′′
′= + + + +

∑

"

 

 
This is called a Maclaurin Series for f(x). 
 
Before working any examples of Taylor Series we first need to address the assumption 
that a Taylor Series will in fact exist for a given function.  Let’s first get some notation 
out of the way first. 
 
We’ll first split the Taylor Series formula as follows, 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( )
0 0 1! ! !

n i in
n i i

n i i n

n n

f a f a f a
x a x a x a

n i i
T x R x

∞ ∞

= = = +

− = − + −

= +

∑ ∑ ∑  

where, 

 ( )
( ) ( ) ( )

0 !

in
i

n
i

f a
T x x a

i=

= −∑  

is called the nth degree Taylor Polynomial of f(x) and  

 ( )
( ) ( ) ( )

1 !

i
i

n
i n

f a
R x x a

i

∞

= +

= −∑  

is called the remainder. 
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Note that the Taylor polynomial really is a polynomial and its degree will be at most n.  
We’ll see a nice application of Taylor polynomials in the next section. 
 
We now have the following Theorem. 
 
Theorem 
Suppose that ( ) ( ) ( )n nf x T x R x= + .  Then if, 

 ( )lim 0nn
R x

→∞
=  

for x a R− <  then, 

 ( )
( ) ( ) ( )

0 !

n
n

n

f a
f x x a

n

∞

=

= −∑  

on x a R− < . 
 
In general showing that ( )lim 0nn

R x
→∞

=  is a somewhat difficult process and so we will be 

assuming that this can be done for some R in all of the examples that we’ll be looking at. 
 
Now let’s look at some examples. 
 
Example 1  Find the Taylor Series for ( ) xf x = e  about x=0. 
Solution 
This is actually one of the easier Taylor Series that we’ll be asked to compute.  To find 
the Taylor Series for a function we will need to determine a general formula for ( ) ( )nf a .  
This is one of the few functions where this is easy to do right from the start. 
 
To get a formula for ( ) ( )0nf  all we need to do is recognize that, 

 ( ) ( ) 0,1,2,3,n xf x n= =e …  
and so, 
 ( ) ( ) 00 1 0,1,2,3,nf n= = =e …  
 
Therefore, the Taylor series for ( ) xf x = e  about x=0 is, 

 
0 0

1
! !

n
x n

n n

xx
n n

∞ ∞

= =

= =∑ ∑e  

 
Example 2  Find the Taylor Series for ( ) xf x −= e  about x=0. 
Solution 
There are two ways to do this problem.  Both are fairly simple, however one of them 
requires significantly less work.  We’ll work both solutions since the longer one has some 
nice ideas that we’ll see in other examples. 
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Solution 1 
As with the first example we’ll need to get a formula for ( ) ( )0nf .  However, unlike the 
first one we’ve got a little more work to do.  Let’s first take some derivatives and 
evaluate them at x=0. 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0

1 1

2 2

3 3

0 1

0 1

0 1

0 1

1 0 1 0,1,2,3

x

x

x

x

n nn nx

f x f

f x f

f x f

f x f

f x f n

−

−

−

−

−

= =

= − = −

= =

= − = −

= − = − =

e

e

e

e

e

# #
 

 
After a couple of computations we were able to get general formulas for both ( ) ( )nf x  

and ( ) ( )0nf .  We often won’t be able to get a general formula for ( ) ( )nf x  so don’t get 
too excited about getting that formula.  Also, as we will see it won’t always be easy to get 
a general formula for ( ) ( )nf a . 
 
So, in this case we’ve got general formulas so all we need to do is plug these into the 
Taylor Series formula and be done with the problem. 

 ( )
0

1
!

n n
x

n

x
n

∞
−

=

−
= ∑e  

 
Solution 2 
The previous solution wasn’t too bad and we often have to do things in that manner.  
However, in this case there is a much shorter solution method.  In the previous section we 
used series that we’ve already found to help us find a new series.  Let’s do the same thing 
with this one.  We already know a Taylor Series for xe  about x=0 and in this case the 
only difference is we’ve got a “-x” in the exponent instead of just an x.   
 
So, all we need to do is replace the x in the Taylor Series that we found in the first 
example with “-x”. 

 ( ) ( )
0 0

1
! !

n n n
x

n n

x x
n n

∞ ∞
−

= =

− −
= =∑ ∑e  

 
This is a much shorter method of arriving at the same answer so don’t forget about using 
previously computed series where possible (and allowed of course). 
 
Example 3  Find the Taylor Series for ( ) 4 3 2xf x x −= e  about x=0. 
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Solution 
For this example we will take advantage of the fact that we already have a Taylor Series 
for xe  about x=0.  In this example, unlike the previous example, doing this directly 
would be significantly longer and more difficult. 
 

 

( )

( )

( )

2
4 3 4

0

2
4

0

2 4

0

2 3
!

3
!

3
!

n

n
n n

n

n n

n

x x
x x

n

x
x

n

x
n

∞
−

=

∞

=

+∞

=

−
=

−
=

−
=

∑

∑

∑

e

 

 
To this point we’ve only looked at Taylor Series about x=0 (also known as Maclaurin 
Series) so let’s take a look at a Taylor Series that isn’t about x=0.  Also, we’ll pick on the 
exponential function one more time since it makes some of the work easier.  This will be 
the final Taylor Series for exponentials in this section. 
 
Example 4  Find the Taylor Series for ( ) xf x −= e  about 4x = − . 
Solution 
Finding a general formula for ( ) ( )4nf −  is fairly simple. 

 ( ) ( ) ( ) ( ) ( ) ( ) 41 4 1n nn nxf x f−= − − = −e e  
 
The Taylor Series is then, 

 ( ) ( )
4

0

1
4

!

n
nx

n
x

n

∞
−

=

−
= +∑

e
e  

 
Okay, we now need to work some examples that don’t involve the exponential function 
since these will tend to require a little more work. 
 
Example 5  Find the Taylor Series for ( ) ( )cosf x x=  about x=0. 
Solution 
First we’ll need to take some derivatives of the function and evaluate them at x=0. 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0

1 1

2 2

3 3

4 4

5 5

6 6

cos 0 1

sin 0 0

cos 0 1

sin 0 0

cos 0 1

sin 0 0

cos 0 1

f x x f

f x x f

f x x f

f x x f

f x x f

f x x f

f x x f

= =

= − =

= − = −

= =

= =

= − =

= − = −

# #

 

In this example, unlike the previous ones, there is not an easy formula for either then 
general derivative or the evaluation of the derivative.  However, there is a clear pattern to 
the evaluations.  So, let’s plug what we’ve got into the Taylor series and see what we get, 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

N N N N N N N

0

4 5
2 3 4 5

2 4 6

0 1 3 5
2 4 6

0
cos

!

0 0 0 0
0 0

2! 3! 4! 5!
1 1 11 0 0 0
2! 4! 6!

n
n

n

n n n n
n n n

f
x x

n

f f f f
f f x x x x x

x x x

∞

=

= = = =
= = =

=

′′ ′′′
′= + + + + + +

= + − + + + − +

∑

"

"

 

 
So, we only pick up terms with even powers on the x’s.  This doesn’t really help us to get 
a general formula for the Taylor Series.  However, let’s drop the zeroes and “renumber” 
the terms as follows to see what we can get. 

 N N N N
2 4 6

0
1 2 3

1 1 1cos 1
2! 4! 6!

n
n n n

x x x x
=

= = =

= − + − +"  

 
By renumbering the terms as we did we can actually come up with a general formula for 
the Taylor Series and here it is, 

 ( )
( )

2

0

1
cos

2 !

n n

n

x
x

n

∞

=

−
= ∑  

 
This idea of renumbering the series terms as we did in the previous example isn’t used all 
that often, but occasionally is very useful.  There is one more series where we need to do 
it so let’s take a look at that so we can get one more example down of renumbering series 
terms. 
 
Example 6  Find the Taylor Series for ( ) ( )sinf x x=  about x=0. 
Solution 
As with the last example we’ll start off in the same manner. 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0

1 1

2 2

3 3

4 4

5 5

6 6

sin 0 0

cos 0 1

sin 0 0

cos 0 1

sin 0 0

cos 0 1

sin 0 0

f x x f

f x x f

f x x f

f x x f

f x x f

f x x f

f x x f

= =

= =

= − =

= − = −

= =

= =

= − =

# #

 

 
So, we get a similar pattern for this one.  Let’s plug the numbers into the Taylor Series. 

 

( ) ( )
0

3 5 7

0
sin

!
1 1 1 1
1! 3! 5! 7!

n
n

n

f
x x

n

x x x x

∞

=

=

= − + − +

∑

"
 

 
In this case we only get terms that have an odd exponent on x and as with the last 
problem once we ignore the zero terms there is a clear pattern and formula.  So 
renumbering the terms as we did in the previous example we get the following Taylor 
Series. 

 ( )
( )

2 1

0

1
sin

2 1 !

n n

n

x
x

n

+∞

=

−
=

+∑  

 
We really need to work another example or two in which isn’t about x=0. 
 
Example 7  Find the Taylor Series for ( ) ( )lnf x x=  about x=2. 
Solution 
Here are the first few derivatives and the evaluations. 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

1 1

2 2
2 2

3 3
3 3

4 4
4 4

5 5
5 5

1 1

ln 2 ln 2
1 12

2
1 12

2
2 22

2
2 3 2 3

2
2

2 3 4 2 3 4
2

2

1 1 ! 1 1 !
2 1,2,3,

2

n n
n n

n n

f x x f

f x f
x

f x f
x

f x f
x

f x f
x

f x f
x

n n
f x f n

x

+ +

= =

= =

= − = −

= =

= − = −

= =

− − − −
= = =

# #

…

 

 
Note that while we got a general formula here it doesn’t work for n=0.  This will happen 
on occasion so don’t worry about it when it does. 
 
In order to plug this into the Taylor Series formula we’ll need to strip out the n=0 term 
first. 

 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

0

1

1

1

1

1

2
ln 2

!

2
2 2

!

1 1 !
ln 2 2

! 2

1
ln 2 2

2

n
n

n

n
n

n

n
n

n
n

n
n

n
n

f
x x

n

f
f x

n

n
x

n

x
n

∞

=

∞

=

+∞

=

+∞

=

= −

= + −

− −
= + −

−
= + −

∑

∑

∑

∑

 

 
Notice that we simplified the factorials in this case.  You should always simplify them if 
there are more than one and it’s possible to simplify them.  
 
Also, do not get excited about the term sitting in front of the series.  Sometimes we need 
to do that when we can’t get a general formula that will hold for all values of n. 
 

Example 8  Find the Taylor Series for ( ) 2

1f x
x

=  about 1x = − . 

Solution 
Again, here are the derivatives and evaluations. 
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( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
( )

( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )

0 0
22

1 1
33
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44

3 3
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1 11 1
1

2 21 2
1

2 3 2 3
1 2 3

1

2 3 4 2 3 4
1 2 3 4

1

1 1 ! 1 1 !
1 1 !

1

n n
n n

nn

f x f
x

f x f
x

f x f
x

f x f
x

n n
f x f n

x ++

= − = =
−

= − − = − =
−

= − = =
−

= − − = − =
−

− + − +
= − = = +

−

# #

 

 
Notice that all the negatives signs will cancel out in the evaluation.  Also, this formula 
will work for all n, unlike the previous example. 
 
Here is the Taylor Series for this function. 

 

( ) ( ) ( )

( ) ( )

( )( )

2
0

0

0

11 1
!
1 !

1
!

1 1

n
n

n

n

n

n

n

f
x

x n
n

x
n

n x

∞

=

∞

=

∞

=

−
= +

+
= +

= + +

∑

∑

∑

 

 
Now, let’s work one of the easier examples in this section.  The problem for most 
students is that it may not appear to be that easy (or maybe it will appear to be too easy) 
at first glance. 
 
Example 9  Find the Taylor Series for ( ) 3 210 6f x x x= − +  about 3x = . 
Solution 
Here are the derivatives for this problem. 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 03 2

1 12

2 2

3 3

4

10 6 3 57

3 20 3 33

6 20 3 2

6 3 6

0 3 0 4n

f x x x f

f x x x f

f x x f

f x f

f x f n

= − + = −

= − = −

= − = −

= =

= = ≥

 

This Taylor series will terminate after n=3.  This will always happen when we are finding 
the Taylor Series of a polynomial.  Here is the Taylor Series for this one. 
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( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3 2

0

2 3

2 3

3
10 6 3

!
3 3

3 3 3 3 3 0
2! 3!

57 33 3 3 3

n
n

n

f
x x x

n
f f

f f x x x

x x x

∞

=

− + = −

′′ ′′′
′= + − + − + − +

= − − − − − + −

∑

 

 
When finding the Taylor Series of a polynomial we don’t do any simplification of the 
right hand side.  We leave it like it is.  In fact, if we were to multiply everything out we 
just get back to the original polynomial! 
 
While it’s not apparent that writing the Taylor Series for a polynomial is useful there are 
times where this needs to be done.  The problem is that they are beyond the scope of this 
course and so aren’t covered here.  For example, there is one application to series in the 
field of Differential Equations where this needs to be done on occasion. 
 
So, we’ve seen quite a few examples of Taylor Series to this point and in all of them we 
where able to find general formulas for the series.  This won’t always be the case.  To see 
an example of one that doesn’t have a general formula check out the last example in the 
next section. 
 
Before leaving this section there are three important Taylor Series that we’ve derived in 
this section that we should summarize up in one place.  In my class I will assume that you 
know these formulas from this point on. 
 

( )
( )

( )
( )

0

2

0

2 1

0

!

1
cos

2 !

1
sin

2 1 !

n
x

n
n n

n

n n

n

x
n

x
x

n

x
x

n

∞

=

∞

=

+∞

=

=

−
=

−
=

+

∑

∑

∑

e

 

 
 

 Applications of Series 
Now, that we know how to represent function as power series we can now talk about at 
least a couple of applications of series.   
 
There are in fact many applications of series, unfortunately most of them are beyond the 
scope of this course.  One application of power series (with the occasional use of Taylor 
Series) is in the field of Ordinary Differential Equations when finding Series Solutions to 
Differential Equations.  If you are interested in seeing how that works you can check out 
that chapter of my Differential Equations notes. 
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Another application of series arises in the study of Partial Differential Equations.  One of 
the more commonly used methods in that subject makes use of Fourier Series. 
 
Many of the applications of series, especially those in the differential equations fields, 
rely on the fact that functions can be represented as a series.  In these applications it is 
very difficult, if not impossible, to find the function itself.  However, there are methods 
of determining the series representation for the unknown function. 
 
While the differential equations applications are beyond the scope of this course there are 
some applications from a Calculus setting that we can look at. 
 
Example 1  Determine a Taylor Series about x=0 for the following integral. 

 sin x dx
x

⌠⎮
⌡

 

Solution 
To do this we will first need to find a Taylor Series about x=0 for the integrand.  This 
however isn’t terribly difficult.  We already have a Taylor Series for sine about x=0 so 
we’ll just use that as follows, 

 ( )
( )

( )
( )

2 1 2

0 0

1 1sin 1
2 1 ! 2 1 !

n nn n

n n

x xx
x x n n

+∞ ∞

= =

− −
= =

+ +∑ ∑  

 
We can now do the problem. 

 

( )
( )

( )
( ) ( )

2

0

2 1

0

1sin
2 1 !

1
2 1 2 1 !

n n

n

n n

n

xx dx dx
x n

x
C

n n

∞

=

+∞

=

−
=

+

−
= +

+ +

⌠⌠⎮ ⎮⌡ ⌡
∑

∑
 

 
So, while we can’t integrate this function in terms of known functions we can come up 
with a series representation for the integral. 
 
This idea of deriving a series representation for a function instead of trying to find the 
function itself is used quite often in several fields.  In fact, there are some fields where 
this is one of the main ideas used and without this idea it would be very difficult to 
accomplish anything in those fields. 
 
Another application of series isn’t really an application of infinite series.  It’s more an 
application of partial sums.  In fact, we’ve already seen this application in use once in this 
chapter.  In the Estimating the Value of a Series we used a partial sum to estimate the 
value of a series.  We can do the same thing with power series and series representations 
of functions.  The main difference is that we will now be using the partial sum to 
approximate a function instead of a single value. 
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We will look at Taylor series for our examples, but we could just as easily use any series 
representation here.  Recall that the nth degree Taylor Polynomial of f(x) is given by, 

 ( )
( ) ( ) ( )

0 !

in
i

n
i

f a
T x x a

i=

= −∑  

 
Let’s take a look at example of this. 
 
Example 2  For the function ( ) ( )cosf x x=  plot the function as well as ( )2T x , ( )4T x , 

and ( )8T x  on the same graph for the interval [-4,4]. 
 
 
Solution 
Here is the general formula for the Taylor polynomials for cosine. 

 ( ) ( )
( )

2

0

1
2 !

i in

n
i

x
T x

i=

−
= ∑  

 
The three Taylor polynomials that we’ve got are then, 

 

( )

( )

( )

2

2

2 4

4

2 4 6 8

8

1
2

1
2 24

1
2 24 720 40320

xT x

x xT x

x x x xT x

= −

= − +

= − + − +

 

 
Here is the graph of these three Taylor polynomials as well as the graph of cosine. 
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As we can see from this graph as we increase the degree of the Taylor polynomial it starts 
to look more and more like the function itself.  In fact by the time we get to ( )8T x  the 
only difference is right at the ends.  The higher the degree of the Taylor polynomial the 
better it approximates the function. 
 
Also the larger the interval the higher degree Taylor polynomial we need to get a good 
approximation for the whole interval. 
 
Before moving on let’s notice write down a couple more Taylor polynomials from the 
previous example.  Notice that because the Taylor series for cosine doesn’t contain any 
terms with odd powers on x we get the following Taylor polynomials. 
 

( )

( )

( )

2

3

2 4

5

2 4 6 8

9

1
2

1
2 24

1
2 24 720 40320

xT x

x xT x

x x x xT x

= −

= − +

= − + − +

 

 
These are identical to those used in the example.  Sometimes this will happen although 
that was not really the point of this.  The point is to notice that the nth degree Taylor 
polynomial may actually have a degree that is less than n.  It will never be more than n, 
but it can be less than n. 
 
The final example in this section really isn’t an application of series and probably 
belonged in the previous section.  However, the previous section was getting too long so 
the example is in this section.  This is an example of how to multiply series together and 
while this isn’t an application of series it is something that does have to be done on 
occasion in the applications.  So, in that sense it does belong in this section. 
 
Example 3  Find the first three non-zero terms in the Taylor Series for ( ) cosxf x x= e  
about x=0. 
Solution 
Before we start let’s acknowledge that the easiest way to do this problem is to simply 
compute the first 3-4 derivatives, evaluate them at x=0, plug into the formula and we’d 
be done.  However, as we noted prior to this example we want to use this example to 
illustrate how we multiply series. 
 
We will make use of the fact that we’ve got Taylor Series for each of these so we can use 
them in this problem. 

 ( )
( )

2

0 0

1
cos

! 2 !

n nn
x

n n

xxx
n n

∞ ∞

= =

⎛ ⎞−⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑e  
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We’re not going to completely multiply out these series.  We’re going to enough of the 
multiplication to get an answer.  The problem statement says that we want the first three 
non-zero terms.  That non-zero bit is important as it is possible that some of the terms 
will be zero.  If none of the terms are zero this would mean that the first three non-zero 
terms would be the constant term, x term, and x2 term.  However, because some might be 
zero let’s assume that if we get all the terms up through x4 we’ll have enough to get the 
answer.  If we’ve assumed wrong it will be very easy to fix so don’t worry about that. 
 
Now, let’s write down the first few terms of each series and we’ll stop at the x4 term in 
each. 

 
2 3 4 2 4

cos 1 1
2 6 24 2 24

x x x x x xx x
⎛ ⎞⎛ ⎞

= + + + + + − + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

e " "  

 
Note that we do need to acknowledge that these series don’t stop.  That’s the purpose of 
the “ +"” at the end of each.  Just for a second however, let’s suppose that each of these 
did stop and ask ourselves how we would multiply each out.  If this were the case we 
would take every term in the second and multiply by every term in the first.  In other 
words, we would first multiply every term in the second series by 1, then every term in 
the second series by x, then by x2 etc.   
 
By stopping each series at x4 we have now guaranteed that we’ll get all terms that have an 
exponent of 4 or less.  Do you see why?   
 
Each of the terms that we neglected to write down have an exponent of at least 5 and so 
multiplying by 1 or any power of x will result in a term with an exponent that is at a 
minimum 5.  Therefore, none of the neglected terms will contribute terms with an 
exponent of 4 or less and so weren’t needed. 
 
So, let’s start the multiplication process. 

 

2
2

3
6

2 3 4 2 4

2 4 3 5 2 4 6

Second Series  1 Second Series  Second Series  

3 5 7

Second Series  

cos 1 1
2 6 24 2 24

1
2 24 2 24 2 4 48

6 12 144

x

x

x

x

x x x x xx x

x x x x x x xx

x x x

× × ×

×

⎛ ⎞⎛ ⎞
= + + + + + − + +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

= − + + + − + + + − + +

+ − + +

e " "

" " "
���	��
 ���	��
 ���	��


"

4
24

4 6 8

Second Series  

24 48 576
x

x x x

×

+ − + + +" "
����	���
 ����	���


 

 
Now, collect like terms ignoring everything with an exponent of 5 or more since we 
won’t have all those terms and don’t want them either.  Doing this gives, 
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2 3 4

3 4

1 1 1 1 1 1 1cos 1
2 2 2 6 24 4 24

1
3 6

x x x x x x

x xx

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + − + + − + + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= + − − +

e "

"
 

 
There we go.  It looks like we over guessed and ended up with four non-zero terms, but 
that’s okay.  If we had under guessed and it turned out that we needed terms with x5 in 
them all we would need to do at this point is go back and add in those terms to the 
original series and do a couple quick multiplications.  In other words, there is no reason 
to completely redo all the work. 
 
 

 Binomial Series 
In this final section of this chapter we are going to look at another series representation 
for a function.  Before we do this let’s first recall the following theorem. 
 
Binomial Theorem 
If n is any positive integer then, 

 
( )

( )
0

1 2 2 11
2!

n
n n i i

i

n n n n n

n
a b a b

i

n n
a na b a b nab b

−
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− − −

⎛ ⎞
+ = ⎜ ⎟
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= + + + + +
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where, 

 

( )( ) ( )1 2 1
1, 2,3,

!

1
0

n n n n n i
i n

i i

n

− − − +⎛ ⎞
= =⎜ ⎟

⎝ ⎠
⎛ ⎞

=⎜ ⎟
⎝ ⎠

"
…

 

 
This is useful for expanding ( )na b+  for large n when straight forward multiplication 
wouldn’t be easy to do.  Let’s take a quick look at an example. 
 
Example 1  Use the Binomial Theorem to expand ( )42 3x −  
Solution 
There really isn’t much to do other than plugging into the theorem. 
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−
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= + − + − + − + −

= − + − +

∑

 

 
Now, the Binomial Theorem required that n be a positive integer.  There is an extension 
to this however that allows for any number at all. 
 
Binomial Series 
If k is any number and 1x <  then, 
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where, 
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= =⎜ ⎟

⎝ ⎠
⎛ ⎞

=⎜ ⎟
⎝ ⎠
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…

 

 
So, similar to the binomial theorem except that it’s an infinite series and we must have 

1x <  in order to get convergence. 
 
Let’s check out an example of this. 
 
Example 2  Write down the first four terms in the binomial series for  9 x−  
 
Solution 

So, in this case 1
2

k =  and we’ll need to rewrite the term a little to put it into the form 

required. 

 

11
22

9 3 1 3 1
9 9
x xx ⎛ ⎞⎛ ⎞ ⎛ ⎞− = − = + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

The first four terms in the binomial series is then, 
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 Vectors 
 

 Introduction 
This is a fairly short chapter.  We will be taking a brief look at vectors and some of their 
properties.  We will need some of this material in the next chapter and those of you 
heading on towards Calculus III will use a fair amount of this there as well. 
 
Here is a list of topics in this chapter. 
 
Vectors – The Basics – In this section we will introduce some of the basic concepts 
about vectors. 
 
Vector Arithmetic – Here we will give the basic arithmetic operations for vectors. 
 
Dot Product – We will discuss the dot product in this section as well as an application or 
two. 
 
Cross Product – In this section we’ll discuss the cross product and see a quick 
application. 
 
 

  Vectors – The Basics 
Let’s start this section off with a quick discussion on what vectors are used for.  Vectors 
are used to represent quantities that have both a magnitude and a direction.  Good 
examples of quantities that can be represented by vectors are force and velocity.  Both of 
these have a direction and a magnitude.   
 
Let’s consider force for a second.  A force of say 5 Newtons that is applied in a particular 
direction can be applied at any point in space.  In other words, the point where we apply 
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the force does not change the force itself.  Forces are independent of the point of 
application.  To define a force all we need to know is the magnitude of the force and the 
direction that the force is applied in. 
 
The same idea holds more generally with vectors.  Vectors only impart magnitude and 
direction.  They don’t impart any information about where the quantity is applied.  This is 
an important idea to always remember in the study of vectors. 
 
In a graphical sense vectors are represented by directed line segments.  The length of the 
line segment is the magnitude of the vector and the direction of the line segment is the 
direction of the vector.  However, because vectors don’t impart any information about 
where the quantity is applied any directed line segment with the same length and 
direction will represent the same vector. 
 
Consider the sketch below.   

 
Each of the directed line segments in the sketch represents the same vector.  In each case 
the vector starts at a specific point then moves 2 units to the left and 5 units up.  The 
notation that we’ll use for this vector is, 
 2,5v = −

G  
and each of the directed line segments in the sketch are called representations of the 
vector. 
 
Be careful to distinguish vector notation, 2,5− , from the notation we use for points, 

( )2,5− .  The vector denotes a magnitude and a direction of a quantity while the point 
denotes a location in space.  So don’t mix the notations up! 
 
A representation of the vector 1 2,v a a=

G  in two dimensional space is any directed line 

segment, AB
JJJG

, from the point ( ),A x y=  to the point ( )1 2,B x a y a= + + .  Likewise a 
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representation of the vector 1 2 3, ,v a a a=
G  in three dimensional space is any directed line 

segment, AB
JJJG

, from the point ( ), ,A x y z=  to the point ( )1 2 3, ,B x a y a z a= + + + .   
 
Note that there is very little difference between the two dimensional and three 
dimensional formulas above.  To get from the three dimensional formula to the two 
dimensional formula all we did is take out the third component/coordinate.  Because of 
this most of the formulas here are given only in their three dimensional version.  If we 
need them in their two dimensional form we can easily modify the three dimensional 
form. 
 
There is one representation of a vector that is special in some way.  The representation of 
the vector 1 2 3, ,v a a a=

G  that starts at the point ( )0,0,0A =  and ends at the point 

( )1 2 3, ,B a a a=  is called the position vector of the point ( )1 2 3, ,a a a .  So, when we talk 
about position vectors we are specifying the initial and final point of the vector.  These 
are useful if we ever need to (and we will on occasion need to) represent a point as a 
vector. 
 
Next we need to discuss briefly how to generate a vector given the initial and final points 
of the representation.  Given the two points ( )1 2 3, ,A a a a=  and ( )1 2 3, ,B b b b=  the vector 

with the representation AB
JJJG

is, 
 1 1 2 2 3 3, ,v b a b a b a= − − −

G  
Note that we have to be very careful with direction here.  This is the vector that starts at A 
and ends at B.  The vector that starts at B and ends at A, i.e. with representation BA

JJJG
 is, 

 1 1 2 2 3 3, ,w a b a b a b= − − −
G  

When determining the vector from the initial and final points we always subtract the 
initial point from the final point. 
 
Example 1  Give the vector for each of the following. 

(a) The vector from ( )2, 7,0−  to ( )1, 3, 5− − . 

(b) The vector from ( )1, 3, 5− −  to ( )2, 7,0− . 

(c) The position vector for ( )90, 4−  
Solution 
(a) Remember that to construct this vector we subtract coordinates of the starting point 
from the ending point. 
 ( )1 2, 3 7 , 5 0 1,4, 5− − − − − − = − −  
(b) Same thing here. 
 ( ) ( )2 1, 7 3 ,0 5 1, 4,5− − − − − − = −  
Notice that the only difference between the first two is the signs are all opposite.  This 
difference is important as it is this difference that tells us that the two vectors point in 
opposite directions. 
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(c) Not much to this one other than acknowledging that the position vector of a point is 
nothing more than a vector with the points coordinates as its components. 
 90, 4−  
 
We now need to start discussing some of the basic concepts that we will run into on 
occasion. 
 
Magnitude 
The magnitude, or length, of the vector 1 2 3, ,v a a a=

G  is given by, 

 2 2 2
1 2 3v a a a= + +  

 
Example 2  Determine the magnitude of each of the following vectors. 

(a) 3, 5,10a = −
G  

(b) 1 2,
5 5

u = −
G  

(c) 0,0w =
G  

(d) 1,0,0i =
G

 
Solution 
There isn’t too much to these other than plug into the formula. 
 
(a) 9 25 100 134a = + + =

G  
 

(b) 1 4 1 1
5 5

u = + = =
G  

 
(c) 0 0 0w = + =

G  
 
(d) 1 0 0 1i = + + =

G
 

 
We also have the following fact about the magnitude. 
 If 0  then  0a a= =

GG G  
 
This should make sense.  Because we square all the components the only way we can get 
zero out of the formula was for the components to be zero in the first place. 
 
Unit Vector 
Any vector with magnitude of 1, i.e. 1u =

G , is called a unit vector. 
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Example 3  Which of the vectors from the first example are unit vectors? 
 
Solution 
Both the second and fourth vectors had a length of 1 and so they are the only unit vectors 
from the first example. 
 
Zero Vector 
The vector 0,0w =

G  that we saw in the first example is called a zero vector since its 

components are all zero.  Zero vectors are often denoted by 0
G

.  Be careful to distinguish 
0 (the number) from 0

G
 (the vector).  The number 0 denote the origin in space, while the 

vector 0
G

 denotes a vector that has no magnitude of direction. 
 
Standard Basis Vectors 
The fourth vector from the second example, 1,0,0i =

G
, is called a standard basis 

vector.  In three dimensional space there are three standard basis vectors, 
 1,0,0 0,1,0 0,0,1i j k= = =

GG G
 

 
In two dimensional space there are two standard basis vectors, 
 1,0 0,1i j= =

G G
 

 
Note that standard basis vectors are also unit vectors. 
 
Warning 
We are pretty much done with this section however, before proceeding to the next section 
we should point out that vectors are not restricted to two dimensional or three 
dimensional space.  Vectors can exist in general n-dimensional space.  The general 
notation for a n-dimensional vector is, 
 1 2 3, , , , nv a a a a=

G …  
and each of the ai’s are called components of the vector.   
 
Because we will be working almost exclusively with two and three dimensional vectors 
in this course most of the formulas will be given for the two and/or three dimensional 
cases.  However, most of the concepts/formulas will work with general vectors and the 
formulas are easily (and naturally) modified for general n-dimensional vectors.  Also, 
because it is easier to visualize things in two dimensions most of the figures related to 
vectors will be two dimensional figures.  
 
So, we need to be careful to not get too locked into the two or three dimensional cases 
from our discussions in this chapter.  We will be working in these dimensions either 
because it’s easier to visualize the situation or because physical restrictions of the 
problems will enforce a dimension upon us. 
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 Vector Arithmetic 
In this section we need to have a brief discussion of vector arithmetic. 
 
We’ll start with addition of two vectors.  So, given the vectors 1 2 3, ,a a a a=

G  and 

1 2 3, ,b b b b=
G

 the addition of the two vectors is given by, 

1 1 2 2 3 3, ,a b a b a b a b+ = + + +
GG  

 
The following figure gives the geometric interpretation of the addition of two vectors. 

 
This is sometimes called the parallelogram law or triangle law. 
 
Computationally, subtraction is very similar.  Given the vectors 1 2 3, ,a a a a=

G  and 

1 2 3, ,b b b b=
G

 the difference of the two vectors is given by, 

1 1 2 2 3 3, ,a b a b a b a b− = − − −
GG  

 
Here is the geometric interpretation of the difference of two vectors. 
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Note that we can’t add or subtract two vectors unless they a have the same number of 
components.  If they don’t have the same number of components then addition and 
subtraction can’t be done. 
 
The next arithmetic operation that we want to look at is scalar multiplication.  Given the 
vector 1 2 3, ,a a a a=

G  and any number c the scalar multiplication is, 

1 2 3, ,ca ca ca ca=
G  

  
So, we multiply all the components by the constant c.  To see the geometric interpretation 
of scalar multiplication let’s take a look at an example. 
 

Example 1  For the vector 2, 4a =
G  compute 3aG , 1

2
aG  and 2a−

G .  Graph all four vectors 

on the same axis system. 
 
Solution 
Here are the three scalar multiplications. 

 13 6,12 1,2 2 4, 8
2

a a a= = − = − −
G G G  

Here is the graph. 
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In the previous example we can see that if c is positive all scalar multiplication will do is 
stretch (if 1c > ) or shrink (if 1c < ) the original vector, but it won’t change the direction.  
Likewise, if c is negative scalar multiplication will switch the direction so that the vector 
will point in exactly the opposite direction and it will again stretch or shrink the 
magnitude of the vector depending upon the size of c. 
 
There are several nice applications of scalar multiplication that we should now take a 
look at. 
 
The first is parallel vectors.  This is a concept that we will see quite a bit over the next 
couple of sections.  Two vectors are parallel if they have the same direction or are in 
exactly opposite directions.  Now, recall again the geometric interpretation of scalar 
multiplication.  When we performed scalar multiplication we generated new vectors that 
were parallel to the original vectors (and each other for that matter). 
 
So, let’s suppose that aG  and b

G
 are parallel vectors.  If they are parallel then there must 

be a number c so that, 
 a cb=

GG  
So, two vectors are parallel if one is a scalar multiple of the other. 
 
Example 2  Determine if the sets of vectors are parallel or not. 

(a) 2, 4,1 , 6,12, 3a b= − = − −
GG  
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(b) 4,10 , 2, 9a b= = −
GG  

Solution 
(a) These two vectors are parallel since, 
 3b a= −

G G  

(b) These two vectors aren’t parallel.  This can be seen by noticing that 14 2
2

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 and yet 

110 5 9
2

⎛ ⎞ = ≠ −⎜ ⎟
⎝ ⎠

.  In other words we can’t make aG  be a scalar multiple of b
G

. 

 
The next application is best seen in an example. 
 
Example 3  Find a unit vector that points in the same direction as 5, 2,1w = −

G . 
 
Solution 
Okay, what we’re asking for is a new parallel vector (points in the same direction) that 
happens to be a unit vector.  We can do this with a scalar multiplication since all scalar 
multiplication does is change the length of the original vector (along with possibly 
flipping the direction to the opposite direction). 
 
Here’s what we’ll do.  First let’s determine the magnitude of wG . 
 25 4 1 30w = + + =

G  
 
Now, let’s form the following new vector, 

 1 1 5 2 15,2,1 , ,
30 30 30 30

u w
w

= = − = −
G G

G  

 
The claim is that this is a unit vector.  That’s easy enough to check 

 25 4 1 30 1
30 30 30 30

u = + + = =
G  

 
This vector also points in the same direction as wG  since it is only a scalar multiple of wG  
and we used a positive multiple. 
 

So, in general, given a vector wG , wu
w

=
GG
G  will be a unit vector that points in the same 

direction as wG . 
 
Standard Basis Vectors Revisited 
In the previous section we introduced the idea of standard basis vectors without really 
discussing why they were important.  We can now do that.  Let’s start with the vector  

1 2 3, ,a a a a=
G  
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We can use the addition of vectors to break this up as follows, 

 1 2 3

1 2 3

, ,

,0,0 0, ,0 0,0,

a a a a

a a a

=

= + +

G
 

Using scalar multiplication we can further rewrite the vector as, 

 1 2 3

1 2 3

,0,0 0, ,0 0,0,

1,0,0 0,1,0 0,0,1

a a a a

a a a

= + +

= + +

G
 

 
Finally, notice that these three new vectors are simply the three standard basis vectors for 
three dimensional space. 

1 2 3 1 2 3, ,a a a a i a j a k= + +
GG G

 
 
So, we can take any vector and write it in terms of the standard basis vectors.  From this 
point on we will use the two notations interchangeably so make sure that you can deal 
with both notations. 
 
Example 4  If 3, 9,1a = −

G  and 8w i k= − +
GGG  compute 2 3a w−

G G . 
 
Solution 
In order to do the problem we’ll convert to one notation and then perform the indicated 
operations. 

 

2 3 2 3, 9,1 3 1,0,8

6, 18,2 3,0,24

9, 18, 22

a w− = − − −

= − − −

= − −

G G

 

 
 
We will leave this section with some basic properties of vector arithmetic. 
 
Properties 
If vG , wG  and uG  are vectors (each with the same number of components) and a and b are 
two numbers then we have the following properties. 
 

 

( ) ( )

( ) ( )
0 1

v w w v u v w u v w

v v v v
a v w av aw a b v av bv

+ = + + + = + +

+ = =

+ = + + = +

G G G G G G G G G G
GG G G G
G G G G G G G
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 Dot Product 
The next topic for discussion is that of the dot product.  Let’s jump right into the 
definition of the dot product.  Given the two vectors 1 2 3, ,a a a a=

G  and 1 2 3, ,b b b b=
G

 the 
dot product is, 
 1 1 2 2 3 3a b a b a b a b= + +

GGi  (1)
 
Sometimes the dot product is called the scalar product.  The dot product is also an 
example of an inner product and so on occasion you may hear it called an inner product. 
 
Example 1  Compute the dot product for each of the following. 

(a) 5 8 , 2v i j w i j= − = +
G G G GG G  

(b) 0,3, 7 , 2,3,1a b= − =
GG  

Solution 
Not much to do with these other than use the formula. 
(a) 5 16 11v w = − = −

G Gi  
 
(b) 0 9 7 2a b = + − =

GGi  
 
 
Here are some properties of the dot product. 
 
Properties 

( ) ( ) ( ) ( )

2

0 0

If 0 then 0

u v w u v u w cv w v cw c v w

v w w v v

v v v v v v

+ = + = =

= =

= = =

G G G G G G G G G G G G Gi i i i i i
GG G G G Gi i i

GG G G G G Gi i

 

 
There is also a nice geometric interpretation to the dot product.  First suppose that θ is the 
angle between aG  and b

G
 such that 0 θ π≤ ≤  as shown in the image below. 



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 270

 
then, 
 cosa b a b θ=

G GG Gi  (2)

 
This is, more often than not, used to determine the angle between two vectors as shown in 
the following example. 
 
Example 2  Determine the angle between 3, 4, 1a = − −

G  and 0,5,2b =
G

. 
 
Solution 
We will need the dot product as well as the magnitudes of each vector. 
 22 26 29a b a b= − = =

G GG Gi  

The angle is then, 

 

( )1

22cos 0.8011927
26 29

cos 0.8011927 2.5 radians=143.24 degrees

a b
a b

θ

θ

−
= = = −

= − =

GGi GG

 

 
The dot product gives us a very nice method for determining if two vectors are 
perpendicular and it will give another method for determining when two vectors are 
parallel.  Note as well that often we will use the term orthogonal in place of 
perpendicular. 
 
Now, if two vectors are orthogonal then we know that the angle between them is 90 
degrees.  From (2) this tells us that if two vectors are orthogonal then, 
 0a b =

GGi  
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Likewise, if two vectors are parallel then the angle between them is either 0 degrees 
(pointing in the same direction) or 180 degrees (pointing in the opposite direction).  Once 
again using (2) this would mean that one of the following would have to be true. 
 ( ) ( )0 OR 180a b a b a b a bθ θ= = ° = − = °

G G G GG G G Gi i  

 
Example 3  Determine if the following vectors are parallel, orthogonal, or neither. 

(a) 6, 2, 1 , 2,5,2a b= − − =
GG  

(b) 1 12 ,
2 4

u i j v i j= − = − +
G G G GG G  

Solution 
(a) First get the dot product to see if they are orthogonal. 
 12 10 2 0a b = − − =

GGi  
The two vectors are orthogonal. 
 
(b) Again, let’s get the dot product first. 

 1 51
4 4

u v = − − = −
G Gi  

So, they aren’t orthogonal.  Let’s get the magnitudes and see if they are parallel. 

 5 55
16 4

u v= = =
G G  

 
Now, notice that, 

 5 55
4 4

u v u v
⎛ ⎞

= − = − = −⎜ ⎟⎜ ⎟
⎝ ⎠

G G G Gi  

So, the two vectors are parallel. 
 
There are several nice applications of the dot product as well that we should look at. 
 
Projections 
The best way to understand projections is to see a couple of sketches.  So, given two 
vectors aG  and b

G
 we want to determine the projection of b

G
 onto aG .  The projection is 

denoted by proja bG
G

.  Here are a couple of sketches illustrating the projection. 
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So, to get the projection of b

G
 onto aG  we drop straight down from the end of b

G
until we 

hit (and form a right angle) with the line that is parallel to aG .  The projection is then the 
vector that is parallel to aG , starts at the same point both of the original vectors started at 
and ends where the dashed line hits the line parallel to aG . 
 
There is an nice formula for finding the projection of b

G
 onto aG .  Here it is, 

 

2proja
a bb a
a

=G

GGG i G
G  

 
Note that we also need to be very careful with notation here. The projection of aG  onto 
b
G

is given by 

 2projb
a ba b
b

=G

GG GiG
G  

We can see that this will be a totally different vector.  This vector is parallel to b
G

, while 
proja bG

G
 is parallel to aG .  So, be careful with notation and make sure you are finding the 

correct projection. 
 
Here’s an example. 
 
Example 4  Determine the projection of 2,1, 1b = −

G
 onto 1,0, 2a = −

G . 
 
Solution 
We need the dot product and the magnitude of aG . 
 24 5a b a= =

GG Gi  
 
The projection is then, 
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2proj

4 1,0, 2
5

4 8,0,
5 5

a
a bb a
a

=

= −

= −

G

GGG i G
G

 

 
For comparison purposes let’s do it the other way around as well. 
 
Example 5  Determine the projection of 1,0, 2a = −

G  onto 2,1, 1b = −
G

. 
 
Solution 
We need the dot product and the magnitude of b

G
. 

 
2

4 6a b b= =
G GGi  

 
The projection is then, 

 

2proj

4 2,1, 1
6
4 2 2, ,
3 3 3

b
a ba b
b

=

= −

= −

G

GG GiG
G

 

 
As we can see form the previous two examples the two projections are different so be 
careful. 
 
Direction Cosines 
This application of the dot product requires that we be in three dimensional space unlike 
all the other applications we’ve looked at to this point. 
 
Let’s start with a vector, aG , in three dimensional space.  This vector will form angles 
with the x-axis (α ), the y-axis (β ), and the z-axis (γ ).  These angles are called direction 
angles and the cosines of these angles are called direction cosines. 
 
Here is a sketch of a vector and the direction angles. 
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The formulas for the direction cosines are, 
 

31 2cos cos cos aa aa i a j a k
a a a a a a

α β γ= = = = = =
GG GG G Gi i i

G G G G G G  

where i
G

, j
G

 and k
G

 are the standard basis vectors. 
  
Let’s verify the first dot product above.  We’ll leave the rest to you to verify. 
 1 2 3 1, , 1,0,0a i a a a a= =

GGi i  
 
Here are a couple of nice facts about the direction cosines. 

1. The vector cos ,cos ,cosu α β γ=
G  is a unit vector.  

2. 2 2 2cos cos cos 1α β γ+ + =  
3. cos ,cos ,cosa a α β γ=

G G  
 
Example 6  Determine the direction cosines and direction angles for 2,1, 4a = −

G . 
 
Solution 
We will need the magnitude of the vector. 
 4 1 16 21a = + + =

G  
The direction cosines and angles are then, 
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2cos 1.119 radians 64.123 degrees
21
1cos 1.351 radians 77.396 degrees
21
4cos 2.632 radians 150.794 degrees
21

α α

β β

γ γ

= = =

= = =

−
= = =

 

 
 

 Cross Product 
In this final section of this chapter we will look at the cross product of two vectors.  We 
should note that the cross product requires both of the vectors to be three dimensional 
vectors.   
 
Also, before getting into how to compute these we should point out a major difference 
between dot products and cross products.  The result of a dot product is a number and the 
result of a cross product is a vector!  Be careful not to confuse the two. 
 
So, let’s start with the two vectors 1 2 3, ,a a a a=

G  and 1 2 3, ,b b b b=
G

 then the cross 
product is given by the formula, 
 

2 3 3 2 3 1 1 3 1 2 2 1, ,a b a b a b a b a b a b a b× = − − −
GG  

 
This is not an easy formula to remember.  There are two ways to derive this formula.  
Both of them use the fact that the cross product is really the determinant of a 3x3 matrix.  
If you don’t know what this is that is don’t worry about it.  You don’t need to know 
anything about matrices or determinants to use either of the methods.  The notation for 
the determinant is as follows, 
 

1 2 3

1 2 3

i j k
a b a a a

b b b
× =

GG G
GG  

  
The first row is the standard basis vectors and must appear in the order given here.  The 
second row is the components of aG  and the third row is the components of b

G
.  Now, let’s 

take a look at the different methods for getting the formula. 
 
The first method uses the Method of Cofactors.  If you don’t know the method of 
cofactors that is fine, the result is all that we need.  Here is the formula. 

 2 3 1 3 1 2

2 3 1 3 1 2

a a a a a a
a b i j k

b b b b b b
× = − +
G GG GG  
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where, 

 
a b

ad bc
c d

= −  

 
This formula is not as difficult to remember as it might at first appear to be.  First, the 
terms alternate in sign and notice that the 2x2 is missing the column below the standard 
basis vector that multiplies it. 
 
The second method is slightly easier; however, many textbooks don’t cover this method 
as it will only work on 3x3 determinants.  This method says to take the determinant as 
listed above and then copy the first two columns onto the end as shown below. 

 1 2 3 1 2

1 2 3 1 2

i j k i j
a b a a a a a

b b b b b
× =

GG G G G
GG  

 
We now have three diagonals that move from left to right and three diagonals that move 
from right to left.  We multiply along each diagonal and add those that move from left to 
right and subtract those that move from right to left. 
 
This is best seen in an example.  We’ll also use this example to illustrate a fact about 
cross products. 
 
Example 1  If 2,1, 1a = −

G  and 3,4,1b = −
G

 compute each of the following. 

(a) a b×
GG  

(b) b a×
G G  

Solution 
(a)  Here is the computation for this one. 

 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

2 1 1 2 1
3 4 1 3 4

1 1 1 3 2 4 2 1 1 4 1 3

5 11

i j k i j
a b

i j k j i k

i j k

× = −
− −

= + − − + − − − − −

= + +

GG G G G
GG

G GG G G G

GG G
 

(b) And here is the computation for this one. 

 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

3 4 1 3 4
2 1 1 2 1

4 1 1 2 3 1 3 1 1 1 4 2

5 11

i j k i j
b a

i j k j i k

i j k

× = − −
−

= − + + − − − − − −

= − − −

GG G G G
G G

G GG G G G

GG G
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Notice that switching the order of the vectors in the cross product simply changed all the 
signs in the result.  Note as well that this means that the two cross products will point in 
exactly opposite directions since they only differ by a sign.  We’ll formalize up this fact 
shortly when we list several facts. 
 
There is also a geometric interpretation of the cross product.  First we will let θ  be the 
angle between the two vectors aG  and b

G
and assume that 0 θ π≤ ≤ , then we have the 

following fact, 
 sina b a b θ× =

G GG G  (1) 

and the following figure. 

 
 
There should be a natural question at this point.  How did we know that the cross product 
pointed in the direction that we’ve given it here?   
 
First, as this figure, implies the cross product is orthogonal to both of the original vectors.  
This will always be the case with one exception that we’ll get to in a second. 
 
Second, we knew that it pointed in the upward direction (in this case) by the “right hand 
rule”.  This says that if we take our right hand, start at aG  and rotate our fingers towards 
b
G

our thumb will point in the direction of the cross product.  Therefore, if we’d sketched 
in b a×
G G  above we would have gotten a vector in the downward direction. 

 
Example 2  A plane is defined by any three points that are in the plane.  If a plane 
contains the points ( )1,0,0P = , ( )1,1,1Q =  and ( )2, 1,3R = −  find a vector that is 
orthogonal to the plane. 
 
Solution 
The one way that we know to get an orthogonal vector is to take a cross product.  So, if 
we could find two vectors that we knew where in the plane and took the cross product of 
these two vectors we know that the cross product would be orthogonal to both the 
vectors.  However, since both the vectors are in the plane the cross product would then 
also be orthogonal to the plane. 
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So, we need two vectors that are in the plane.  This is where the points come into the 
problem. Since all three points lie in the plane any vector between them must also be in 
the plane.  There are many ways to get two vectors between these points.  We will use the 
following two, 

 
1 1,1 0,1 0 0,1,1

2 1, 1 0,3 0 1, 1,3

PQ

PR

= − − − =

= − − − − = −

JJJG

JJJG  

 
The cross product of these two vectors will be orthogonal to the plane.  So, let’s find the 
cross product. 

 
0 1 1 0 1
1 1 3 1 1

4

i j k i j
PQ PR

i j k

× =
− −

= + −

GG G G G
JJJG JJJG

GG G

 

 
So, the vector 4i j k+ −

GG G
 will be orthogonal to the plane containing the three points. 

 
Now, let’s address the one time where the cross product will not be orthogonal to the 
original vectors.  If the two vectors, aG  and b

G
, are parallel then the angle between them is 

either 0 or 180 degrees.  From (1) this implies that, 
 0a b× =

GG  

 
From a fact about the magnitude we saw in the first section we know that this implies 

0a b× =
G GG  

In other words, it won’t be orthogonal to the original vectors since we have the zero 
vector.  This does give us another test for parallel vectors however. 
 
Fact 
If 0a b× =

G GG  then aG  and b
G

 will be parallel vectors. 
 
Let’s also formalize up the fact about the cross product being orthogonal to the original 
vectors. 
 
Fact 
Provided 0a b× ≠

G GG  then a b×
GG  is orthogonal to both aG  and b

G
. 

 
Here are some nice properties about the cross product. 
 
Properties 
If uG , vG  and wG  are vectors and c is a number then, 
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( ) ( ) ( )

( ) ( ) ( )

( )
1 2 3

1 2 3

1 2 3

u v v u cu v u cv c u v

u v w u v u w u v w u v w

u u u
u v w v v v

w w w

× = − × × = × = ×

× + = × + × × = ×

× =

G G G G G G G G G G
G G G G G G G G G G G G Gi i

G G Gi

 

 
The determinant in the last fact is computed in the same way that the cross product is 
computed.  We will see an example of this computation shortly. 
 
There are a couple of geometric applications to the cross product as well.  Suppose we 
have three vectors aG , b

G
 and cG  and we form the three dimensional figure shown below. 

 
 
The area of the parallelogram (two dimensional front of this object) is given by, 
 
 Area a b= ×

GG  

 
and the volume of the parallelpiped (the whole three dimensional object) is given by, 
 

( )Volume a b c= ×
GG Gi  

 
Note that the absolute value bars are required since the quantity could be negative and 
volume isn’t negative. 
 
We can use this volume fact to determine if three vectors lie in the same plane or not.  If 
three vectors lie in the same plane then the volume of the parallelpiped will be zero. 
 
Example 3  Determine if the three vectors 1, 4, 7a = −

G , 2, 1, 4b = −
G

 and 0, 9,18c = −
G  
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lie in the same plane or not. 
 
Solution 
So, as we noted prior to this example all we need to do is compute the volume of the 
parallelpiped formed by these three vectors.  If the volume is zero they lie in the same 
plane and if the volume isn’t zero they don’t lie in the same plane. 
 

 

( )

( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )

1 4 7 1 4
2 1 4 2 1
0 9 18 0 9

1 1 18 4 4 0 7 2 9

4 2 18 1 4 9 7 1 0
18 126 144 36

0

a b c
−

× = − −
− −

= − + + − − −

− − − − −

= − + − +
=

GG Gi

 

 
So, the volume is zero and so they lie in the same plane. 
 
 
 

 Three Dimensional Space 
 

 Introduction 
In this chapter we will start taking a more detailed look at three dimensional space (3-D 
space or 3\ ).  This is a very important topic in Calculus III since a good portion of 
Calculus III is done in three (or higher) dimensional space. 
 
We will be looking at the equations of graphs in 3-D space as well as vector valued 
functions and how we do calculus with them.  We will also be taking a look at a couple of 
new coordinate systems for 3-D space.  
 
This is the only chapter that exists in two places in my notes.  When I originally wrote 
these notes all of these topics were covered in Calculus II however, we have since moved 
several of them into Calculus III.  So, rather than split the chapter up I have kept it in the 
Calculus II notes and also put a copy in the Calculus III notes.  Many of the sections not 
covered in Calculus III will be used on occasion there anyway and so they serve as a 
quick reference for when we need them. 
  
Here is a list of topics in this chapter. 
 
The 3-D Coordinate System – We will introduce the concepts and notation for the three 
dimensional coordinate system in this section. 
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Equations of Lines – In this section we will develop the various forms for the equation 
of lines in three dimensional space. 
 
Equations of Planes – Here we will develop the equation of a plane. 
 
Quadric Surfaces – In this section we will be looking at some examples of quadric 
surfaces. 
 
Functions of Several Variables – A quick review of some important topics about 
functions of several variables. 
 
Vector Functions – We introduce the concept of vector functions in this section.  We 
concentrate primarily on curves in three dimensional space.  We will however, touch 
briefly on surfaces as well. 
 
Calculus with Vector Functions – Here we will take a quick look at limits, derivatives, 
and integrals with vector functions. 
 
Tangent, Normal and Binormal Vectors – We will define the tangent, normal and 
binormal vectors in this section. 
 
Arc Length with Vector Functions – In this section we will find the arc length of a 
vector function. 
 
Velocity and Acceleration – In this section we will revisit a standard application of 
derivatives.  We will look at the velocity and acceleration of an object whose position 
function is given by a vector function.  
 
Curvature – We will determine the curvature of a function in this section. 
 
Cylindrical Coordinates – We will define the cylindrical coordinate system in this 
section.  The cylindrical coordinate system is an alternate coordinate system for the three 
dimensional coordinate system. 
 
Spherical Coordinates – In this section we will define the spherical coordinate system.  
The spherical coordinate system is yet another alternate coordinate system for the three 
dimensional coordinate system. 
 
 

 The 3-D Coordinate System 
We’ll start the chapter off with a fairly short discussion introducing the 3-D coordinate 
system and the conventions that we’ll be using.  We will also take a brief look at how the 
different coordinate systems can change the graph of an equation. 
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Let’s first get some basic notation out of the way.  The 3-D coordinate system is often 
denoted by 3\ .  Likewise the 2-D coordinate system is often denoted by 2\  and the 1-D 
coordinate system is denoted by \ .  Also, as you might have guessed then a general n 
dimensional coordinate system is often denoted by n\ . 
 
Next, let’s take a quick look at the basic coordinate system. 

 
 
This is the standard placement of the axes in this class.  It is assumed that only the 
positive directions are shown by the axes.  If we need the negative axis for any reason we 
will put them in as needed. 
 
Also note the various points on this sketch.  The point P is the general point sitting out in 
3-D space.  If we start at P and drop straight down until we reach a z-coordinate of zero 
we arrive that the point Q.  We say that Q sits in the xy-plane.  The xy-plane corresponds 
to all the points which have a zero z-coordinate.  We can also start at P and move in the 
other two directions as shown to get points in the xz-plane (this is S with a y-coordinate of 
zero) and the yz-plane (this is R with an x-coordinate of zero).   
 
Collectively, the xy, xz, and yz-planes are sometimes called the coordinate planes.  In the 
remainder of this class you will need to be able to deal with the various coordinate planes 
so make sure that you can. 
 
Also, the point Q is often referred to as the projection of P in the xy-plane.  Likewise, R is 
the projection of P in the yz-plane and S is the projection of P in the xz-plane. 
 
Many of the formulas that you are used to working with in 2\  have natural extensions in 

3\ .  For instance the distance between two points in 2\  is given by, 

 ( ) ( ) ( )2 2
1 2 2 1 2 1,d P P x x y y= − + −  

While the distance between any two points in 3\  is given by, 

 ( ) ( ) ( ) ( )2 2 2
1 2 2 1 2 1 2 1,d P P x x y y z z= − + − + −  
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Likewise, the general equation for a circle with center ( ),h k  and radius r is given by, 

 ( ) ( )2 2 2x h y k r− + − =  

and the general equation for a sphere with center ( ), ,h k l  and radius r is given by, 

 ( ) ( ) ( )2 2 2 2x h y k z l r− + − + − =  
 
With that said we do need to be careful about just translating everything we know about 

2\  into 3\  and assuming that it will work the same way.  A good example of this is in 
graphing to some extent.  Consider the following example. 
 
Example 1  Graph 3x =  in \ , 2\  and 3\ . 
 
Solution 
In \  we have a single coordinate system and so 3x =  is a point in a 1-D coordinate 
system. 
 
In 2\  the equation 3x =  tells us to graph all the points that are in the form ( )3, y .  This 
is a vertical line in a 2-D coordinate system. 
 
In 3\  the equation 3x =  tells us to graph all the points that are in the form ( )3, ,y z .  If 
you go back and look at the coordinate plane points this is very similar to the coordinates 
for the yz-plane except this time we have 3x =  instead of 0x = .  So, in a 3-D coordinate 
system this is a plane that will be parallel to the yz-plane 
 
Here are the graphs of each of these. 
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Note that at this point we can now write down the equations for each of the coordinate 
planes as well using this idea. 

 
0 plane
0 plane
0 plane

z xy
y xz
x yz

= −
= −
= −

 

 
Let’s take a look at a slightly more general example. 
 
Example 2  Graph 2 1y x= −  in 2\  and 3\ . 
 
Solution 
Of course we had to throw out \ for this example since there are two variables which 
means that we can’t be in a 1-D space. 
 
In 2\  this is a line with slope 2 and a y intercept of -1. 
 
However, in 3\ this is not necessarily a line.  Because we have not specified a value of z 
we are forced to let z take any value.  This means that at any particular value of z we will 
get a copy of this line.  So, the graph is then a vertical plane that lies over the line given 
by 2 1y x= −  in the xy-plane. 
 
Here are the graphs for this example. 
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Notice that if we look to where the plane intersect the xy-plane we will get the graph of 
the line in 2\  as noted in the above graph.   
 
Let’s take a look at one more example of the difference between graphs in the different 
coordinate systems. 
 
Example 3  Graph 2 2 4x y+ =  in 2\  and 3\ . 
 
Solution 
As with the previous example this won’t have a 1-D graph since there are two variables. 
 
In 2\  this is a circle centered at the origin with radius 2. 
 
In 3\  however, as with the previous example, this may or may not be a circle.  Since we 
have not specified z in any way we must assume that z can take on any value.  In other 
words, at any value of z this equation must be satisfied and so at any value z we have a 
circle of radius 2 centered on the z-axis.  This means that we have a cylinder of radius 2 
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centered on the z-axis. 
 
Here are the graphs for this example. 

 
Notice that again, if we look to where the cylinder intersects the xy-plane we will again 
get the circle from 3\ . 
 
We need to be careful with the last two examples.  It would be tempting to take the 
results of these and say that we can’t graph lines or circles in 3\  and yet that doesn’t 
really make sense.  There is no reason for the graph of a line or a circle in 3\ .  Let’s 
think about the example of the circle.  To graph a circle in 3\  we would need to do 
something like 2 2 4x y+ =  at 5z = .  This would be a circle of radius 2 centered on the z-
axis at the level of 5z = .  So, as long as we specify a z we will get a circle and not a 
cylinder. We will see an easier way to specify circles in a later section. 
 
We could do the same thing with the line from the second example.  However, we will be 
looking at line in more generality in the next section and so we’ll see a better way to deal 
with lines in 3\  there. 
 
The point of the examples in this section is to make sure that we are being careful with 
graphing equations and making sure that we always remember which coordinate system 
that we are in. 
 
Another quick point to make here is that, as we’ve seen in the above examples, many 
graphs of equations in 3\  are surfaces.   That doesn’t mean that we can’t graph curves in 

3\ .  We can and will graph curves in  3\  as well as we’ll see later in this chapter. 
 
 

 Equations of Lines 
In this section we need to take a look at the equation of a line in 3\ .  As we saw in the 
previous section the equation y mx b= +  does not describe a line in 3\ , instead it 
describes a plane.  
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This doesn’t mean however that we can’t write down an equation for a line in 3-D space.  
To see how to do this let’s think about what we need to write down the equation of a line 
in 2\ .  In two dimensions we need the slope (m) and a point that was on the line in order 
to write down the equation. 
 
In 3\  that is still all that we need except in this case the “slope” won’t be a simple 
number as it was in two dimensions.  In this case we will need to acknowledge that a line 
can have a three dimensional slope.  So, we need something that will allow us to describe 
a direction that is potentially in three dimensions.  We already have a quantity that will 
do this for us.  Vectors give directions and can be three dimensional objects.   
 
So, let’s start with the following information.  Suppose that we know a point that is on 
the line, ( )0 0 0 0, ,P x y z= , and that , ,v a b c=

G  is some vector that is parallel to the line.  
Note, in all likelihood, vG  will not be on the line itself.  We only need vG  to be parallel to 
the line.  Finally, let ( ), ,P x y z=  be any point on the line. 
 
Now, since our “slope” is a vector let’s also turn the two points into vectors as well.  Of 
course, we don’t actually turn them into vectors, we instead use position vectors to 
represent them.  So, let 0r

JG
 and rG  be the position vectors for P0 and P respectively.  Also, 

for no apparent reason, let’s define aG to be the vector with representation 0P P
JJJG

. 
 
We now have the following sketch with all these vectors. 
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At this point, notice that we can write rG  as follows, 
 0r r a= +

JGG G  
If you’re not sure about this go back and check out the sketch for vector addition in the 
vector arithmetic section.  Now, notice that the vectors aG  and vG  are parallel.  Therefore 
there is a number, t, such that  
 a t v=

G G  
 
We now have, 

0 0 0 0, , , ,r r t v x y z t a b c= + = +
JGG G  

 
This is called the vector form of the equation of a line.  The only part of this equation 
that is not known is the t.  Notice that t vG  will be a vector that lies along the line and it 
tells us how far from the original point that we should move.  If t is positive we move to 
the right of the original point and if t is negative we move to the left of the original point.  
As t varies over all possible values we will completely cover the line. 

 
 
There are several other forms of the equation of a line.  To get the first alternate form 
let’s start with the vector form and do a slight rewrite. 

 0 0 0

0 0 0

, , , ,

, , , ,

r x y z t a b c

x y z x ta y tb z tc

= +

= + + +

G
 

 
The only way for two vectors to be equal is for the components to be equal. In other 
words, 
 



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 289

0

0

0

x x ta
y y tb
z z tc

= +
= +
= +

 

 
This set of equations is called the parametric form of the equation of a line.  Notice as 
well that this is really nothing more than an extension of the parametric equations we’ve 
seen previously.  The only difference is that we are now working in three dimensions 
instead of two dimensions. 
 
To get a point on the line all we do is pick a t and plug into either form of the line.  In the 
vector form of the line we get a position vector for the point and in the parametric form 
we get the actual coordinates of the point. 
 
There is one more form of the line that we want to look at.  If we assume that a, b, and c 
are all non-zero numbers we can solve each of the equations in the parametric form of the 
line for t.  We can then set all of them equal to each other since t will be the same number 
in each.  Doing this gives the following, 
 

0 0 0x x y y z z
a b c
− − −

= =  

 
This is called the symmetric equations of the line.   
 
If one of a, b, or c does happen to be zero we can still write down the symmetric 
equations.  To see this let’s suppose that b=0.  In this case t will not exist in the 
parametric equation for y and so we will only solve the parametric equations for x and z 
for t.  We then set those equal and acknowledge the parametric equation for y as follows, 

0 0
0

x x z z y y
a c
− −

= =  

 
Let’s take a look at an example. 
 
Example 1  Write down the equation of the line that passes through the points ( )2, 1,3−  

and ( )1, 4, 3− .  Write down all three forms of the equation of the line. 
 
Solution 
To do this we need the vector vG  that will be parallel to the line.  This can be any vector 
as long as it’s parallel to the line.  In general, vG  won’t lie on the line itself.  However, in 
this case it will.  All we need to do is let vG  be the vector that starts at the second point 
and ends at the first point.  Since these two points are one the line the vector between 
them will also lie on the line and will hence be parallel to the line.  So, 
 1, 5,6v = −

G  
Note that the order of the points was chosen to reduce the number of minus signs in the 
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vector.  We just have easily gone the other way. 
 
Once we’ve got vG  there really isn’t anything else to do.  To use the vector form we’ll 
need a point on the line.  We’ve got two and so we can use either one.  We’ll use the first 
point.   Here is the vector form of the line. 
 2, 1,3 1, 5,6 2 , 1 5 ,3 6r t t t t= − + − = + − − +

G  
 
Once we have this equation the other two forms follow.  Here are the parametric 
equations of the line. 

 
2

1 5
3 6

x t
y t
z t

= +
= − −
= +

 

 
Here is the symmetric form. 

2 1 3
1 5 6

x y z− + −
= =

−
 

 
Example 2  Determine if the line that passes through the point ( )0, 3,8−  and is parallel to 
the line given by 10 3x t= + , 12y t=  and 3z t= − −  passes through the xz-plane.  If it 
does give the coordinates of that point. 
 
Solution 
To answer this we will first need to write down the equation of the line.  We know a point 
on the line and just need a parallel vector.  We know that the new line must be parallel to 
the line given by the parametric equations in the problem statement.  That means that any 
vector that is parallel to the given line must also be parallel to the new line. 
 
Now recall that in the parametric form of the line the numbers multiplied by t are the 
components of the vector that is parallel to the line.  Therefore, the vector, 
 3,12, 1v = −

G  
is parallel to the given line and so must also be parallel to the new line. 
 
The equation of new line is then, 
 0, 3,8 3,12, 1 3 , 3 12 ,8r t t t t= − + − = − + −

G  
 
If this line passes through the xz-plane then we know that the y-coordinate of that point 
must be zero.  So, let’s set the y component of the equation equal to zero and see if we 
can solve for t.  If we can, this will give the value of t for which the point will pass 
through the xz-plane. 

13 12 0
4

t t− + = ⇒ =  

 
So, the line does pass through the xz-plane.  To get the complete coordinates of the point 
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all we need to do is plug 1
4

t =  into any of the equations.  We’ll use the vector form. 

 1 1 1 3 313 , 3 12 ,8 ,0,
4 4 4 4 4

r ⎛ ⎞ ⎛ ⎞= − + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

G  

 
Recall that this vector is the position vector for the point on the line and so the 

coordinates of the point here the line will pass through the xz-plane are 3 31,0,
4 4

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
 

 Equations of Planes 
In the first section of this chapter we saw some equations of planes.  However, none of 
those equations had three variables in them and were really extensions of graphs that we 
could look at in two dimensions.  We would like a more general equation for planes. 
 
So, let’s start by assuming that we know a point that is on the plane, ( )0 0 0 0, ,P x y z= .  
Let’s also suppose that we have a vector that is orthogonal (perpendicular) to the plane, 

, ,n a b c=
G .  This vector is called the normal vector.  Now, assume that ( ), ,P x y z=  is 

any point in the plane.  Finally, since we are going to be working with vectors initially 
we’ll let 0r

JG
 and rG  be the position vectors for P0 and P respectively.   

 
Here is a sketch of all these vectors. 
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Notice that we added in the vector 0r r−
JGG  which will lie completely in the plane.  Also 

notice that we put the normal vector on the plane, but there is actually no reason to expect 
this to be the case.  We put it here to illustrate the point.  It is completely possible that the 
normal vector does not touch the plane in any way. 
 
Now, because nG  is orthogonal to the plane, it’s also orthogonal to any vector that lies in 
the plane.  In particular it’s orthogonal to 0r r−

JGG .  Recall from the Dot Product section 
that two orthogonal vectors will have a dot product of zero.  In other words, 
 ( )0 00n r r n r n r− = ⇒ =

JG JGG G G G Gi i i  

This is called the vector equation of the plane. 
 
The vector equation of the plane is not a very useful equation in some ways.  Let’s get a 
much more useful form of the equations.  Let’s start with the first form of the vector 
equation. 

 
( )0 0 0

0 0 0

, , , , , , 0

, , , , 0

a b c x y z x y z

a b c x x y y z z

− =

− − − =

i

i
 

 
Now, actually compute the dot product. 
 ( ) ( ) ( )0 0 0 0a x x b y y c z z− + − + − =  
 
This is called the scalar equation of plane.  Often this will be written as, 
 ax by cz d+ + =  
where 0 0 0d ax by cz= + + . 
 
This second form is often how we are given equations of planes.  Notice that if we are 
given the equation of a plane in this form we can quickly get a normal vector for the 
plane.  A normal vector is, 
 , ,n a b c=

G  
 
Let’s work a couple of examples. 
 
Example 1  Determine the equation of the plane that contains the points ( )1, 2,0P = − , 

( )3,1, 4Q =  and ( )0, 1,2R = − . 
 
Solution 
In order to write down the equation of plane we need a point (we’ve got three so we’re 
cool there) and a normal vector.  We need to find a normal vector.  Recall however, that 
we saw how to do this in the Cross Product section. 
 
We can form the following two vectors from the given points. 
 2,3,4 1,1,2PQ PR= = −

JJJG JJJG
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These two vectors will lie completely in the plane since we formed them from points that 
were in the plane.  Notice as well that there are many possible vectors to use here, we just 
chose two of the possibilities. 
 
Now, we know that the cross product of two vectors will be orthogonal to both of these 
vectors.  Since both of these are in the plane any vector that is orthogonal to both of these 
will also be orthogonal to the plane.  Therefore, we can use the cross product as the 
normal vector. 

 2 3 4 2 3 2 8 5
1 1 2 1 1

i j k i j
n PQ PR i j k= × = = − +

− −

GG G G G
JJJG JJJG GG GG  

 
The equation of the plane is then, 

 
( ) ( ) ( )2 1 8 2 5 0 0

2 8 5 18
x y z

x y z
− − + + − =

− + =
 

 
We used P for the point, but could have used any of the three points. 
 
Example 2  Determine if the plane given by 2 10x z− + =  and the line given by 

5, 2 ,10 4r t t= − +
G  are orthogonal, parallel or neither. 
 
Solution 
This is not as difficult a problem as it may at first appear to be.  We can pick off a vector 
that is normal to the plane.  This is 1,0, 2n = −

G .  We can also get a vector that is parallel 

to the line.  This is 0, 1, 4v = − . 
 
Now, if these two vectors are parallel then the line and the plane will be orthogonal.  If 
you think about it this makes some sense.  If nG  and vG  are parallel, then vG  is orthogonal 
to the plane, but vG  is also parallel to the line.  So, if the two vectors are parallel the line 
and plane will be orthogonal. 
 
Let’s check this. 

 1 0 2 1 0 2 4 0
0 1 4 0 1

i j k i j
n v i j k× = − − = + + ≠

− −

GG G G G
G GG GG G  

 
So, the vectors aren’t parallel and so the plane and the line are not orthogonal. 
 
Now, let’s check to see if the plane and line are parallel.  If the line is parallel to the plane 
then any vector parallel to the line will be orthogonal to the normal vector of the plane.  
In other words, if nG  and vG  are orthogonal then the line and the plane will be parallel. 
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Let’s check this. 
0 0 8 8 0n v = + + = ≠

G Gi  
 
The two vectors aren’t orthogonal and so the line and plane aren’t parallel. 
 
So, the line and the plane are neither orthogonal nor parallel. 
 
 

 Quadric Surfaces 
In the previous two sections we’ve looked at lines and planes in three dimensions (or 3\ )  
and while these are used quite heavily at times in a Calculus class there are many other 
surfaces that are also used fairly regularly and so we need to take a look at those.   
 
In this section we are going to be looking at quadric surfaces.  Quadric surfaces are the 
graphs of any equation that can be put into the general form 
 2 2 2 0Ax By Cz Dxy Exz Fyz Gx Hy Iz J+ + + + + + + + + =  
where A,…J are constants. 
 
There is no way that we can possibly list all of them, but there are some standard 
equations so here is a list of some of the more common quadric surfaces. 
 
Ellipsoid 
Here is the general equation of an ellipsoid. 

 
2 2 2

2 2 2 1x y z
a b c

+ + =  

Here is a sketch of a typical ellipsoid. 

 
 
If a=b=c then we will have a sphere. 
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Notice that we only gave the equation for the ellipsoid that has been centered on the 
origin.  Clearly ellipsoids don’t have to be centered on the origin.  However, in order to 
make the discussion in this section a little easier we have chosen to concentrate on 
surfaces that are “centered” on the origin in one way or another. 
 
Cone 
Here is the general equation of a cone. 

 
2 2 2

2 2 2

x y z
a b c

+ =  

Here is a sketch of a typical cone. 

 
 
Note that this is the equation of a cone that will open along the z-axis.  To get the 
equation of a cone that opens along one of the other axes all we need to do is make a 
slight modification of the equation.  This will be the case for the rest of the surfaces that 
we’ll be looking at in this section as well. 
 
In the case of a cone the variable that sits by itself on one side of the equal sign will 
determine the axis that the cone opens up along.  For instance, a cone that opens up along 
the x-axis will have the equation, 

 
2 2 2

2 2 2

y z x
b c a

+ =  

 
For most of the following surfaces we will not give the other possible formulas.  We will 
however acknowledge how each formula needs to be changed to get a change of 
orientation for the surface. 
 
Cylinder 
Here is the general equation of a cylinder. 
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 2 2 2x y r+ =  
Here is a sketch of typical cylinder. 

 
The cylinder will be centered on the axis corresponding to the variable that does not 
appear in the equation. 
 
Be careful to not confuse this with a circle.  In two dimensions it is a circle, but in three 
dimensions it is a cylinder. 
 
Hyperboloid of One Sheet 
Here is the equation of a hyperboloid of one sheet. 

 
2 2 2

2 2 2 1x y z
a b c

+ − =  

Here is a sketch of a typical hyperboloid of one sheet. 
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The variable with the negative in front of it will give the axis along which the graph is 
centered. 
 
Hyperboloid of Two Sheets 
Here is the equation of a hyperboloid of two sheets. 

 
2 2 2

2 2 2 1x y z
a b c

− − + =  

Here is a sketch of a typical hyperboloid of two sheets. 

 
 
 
The variable with the positive in front of it will give the axis along which the graph is 
centered. 
 
Notice that the only difference between the hyperboloid of one sheet and the hyperboloid 
of two sheets is the signs in front of the variables.  They are exactly the opposite signs. 
 
Elliptic Paraboloid 
Here is the equation of an elliptic paraboloid. 

 
2 2

2 2

x y z
a b c

+ =  

Here is a sketch of a typical elliptic paraboloid. 
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In this case the variable that isn’t squared determines the axis upon which the paraboloid 
opens up.  Also, the sign of c will determine the direction that the paraboloid opens.  If c 
is positive then it opens up and if c is negative then it opens down. 
 
Hyperbolic Paraboloid 
Here is the equation of a hyperbolic paraboloid. 

 
2 2

2 2

x y z
a b c

− =  

Here is a sketch of a typical hyperbolic paraboloid. 

 
As with the elliptic paraoloid the sign of c will determine the direction in which the 
surface “opens up”.  The graph above is shown for c positive. 
 
With the both of the paraboloids the surface can be easily moved up or down by 
adding/subtracting a constant from the left side. 
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For instance  
 2 2 6z x y= − − +  
is an elliptic paraboloid that opens downward and starts at z=6 instead of z=0. 
 
Here is a sketch of this surface. 

 
 
 
 

 Functions of Several Variables 
In this section we want to go over some of the basic ideas about functions of more than 
one variable.   
 
First, remember that graphs of functions of two variables, ( ),z f x y=  are surfaces in 

three dimensional space.  For example here is the graph of  2 2 6z x y= + − . 
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This is an elliptic parabaloid and is an example of a quadric surface.  We saw several of 
these in the previous section.  We will be seeing quadric surfaces fairly regularly later on 
in the semester. 
 
Another common graph that we’ll be seeing quite a bit in this course is the graph of a 
plane.  We have a convention for graphing planes that will make them a little easier to 
graph and hopefully visualize. 
 
Recall that the equation of a plane is given by 
 
 ax by cz d+ + =  
 
or in terms of function notation this would be given by, 
 
 ( ),f x y ax by c= + +  
 
To graph a plane we will generally find the intersection points with the three axes and the 
graph the triangle that connects those three points.  This triangle will be a portion of the 
plane and it will give us a fairly decent idea on what the plane itself should look like.  For 
example let’s graph the plane given by, 
 
 ( ), 12 3 4f x y x y= − −  
 
For purposes of graphing this it would probably be easier to write this as, 
 12 3 4 3 4 12z x y x y z= − − ⇒ + + =  
 
Now, each of the intersection points with the three main coordinate axes is defined by the 
fact that two of the coordinates are zero.  For instance, the intersection with the z-axis is 
defined by 0x y= = .  So, the three intersection points are, 
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( )
( )
( )

axis : 4,0,0

axis : 0,3,0

axis : 0,0,12

x

y

z

−

−

−

 

Here is the graph of the plane. 

 
 
 
Now, to extend this out, graphs of functions of the form ( ), ,w f x y z=  would be four 
dimensional surfaces.  Of course we can’t graph them, but it doesn’t hurt to point this out. 
 
We next want to talk about the domains of functions of more than one variable.  Recall 
that domains of functions of a single variable, ( )y f x= , consisted of all the values of x 
that we could plug into the function and get back a real number.  Now, if we think about 
it, this means that the domain of a function of a single variable is an interval (or intervals) 
of values from the number line, or one dimensional space. 
 
The domain of functions of two variables, ( ),y f x y= , are regions from two dimensional 

space and consist of all the coordinate pairs, ( ),x y , that we could plug into the function 
and get back a real number. 
 
Example 1  Determine the domain of each of the following. 

(a) ( ),f x y x y= +  

(b) ( ),f x y x y= +  

(c) ( ) ( )2 2, ln 9 9f x y x y= − −  
Solution 
(a) In this case we know that we can’t take the square root of a negative number so this 
means that we must require, 
 0x y+ ≥  



 Calculus II 

© 2005 Paul Dawkins  http://tutorial.math.lamar.edu/terms.asp 302

Here is a sketch of the graph of this region. 

 
 
(b) This function is different from the function in the previous part.  Here we must 
require that, 
 0 and 0x y≥ ≥  
and they really do need to be separate inequalities.  There is one for each square root in 
the function.  Here is the sketch of this region. 

 
 
(c) In this final part we know that we can’t take the logarithm of a negative number or 
zero.  Therefore we need to require that, 

 
2

2 2 29 9 0 1
9
xx y y− − > ⇒ + <  

and upon rearranging we see that we need to stay interior to an ellipse for this function.  
Here is a sketch of this region. 
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Note that domains of functions of three variables, ( ), ,w f x y z= , will be regions in three 
dimensional space. 
 
Example 2  Determine the domain of the following function, 

 ( )
2 2 2

1, ,
16

f x y z
x y z

=
+ + −

 

Solution 
In this case we have to deal with the square root and division by zero issues.  These will 
require, 
 2 2 2 2 2 216 0 16x y z x y z+ + − > ⇒ + + >  
 
So, the domain for this function is the set of points that lies completely outside a sphere 
of radius 4 centered at the origin. 
 
The next topic that we should look at is that of level curves or contour curves.  The 
level curves of the function ( ),f x y  are two dimensional curves with equation 

( ),f x y k=  where k is any number.   
 
You’ve probably seen level curves (or contour curves, whatever you want to call them) 
before.  If you’ve ever seen the elevation map for a piece of land, this is nothing more 
than the contour curves for the function that gives the elevation of the land in that area.  
Of course, we probably don’t have the function that gives the elevation, but we can at 
least graph the contour curves. 
 
Example 3  Identify the level curves of ( ) 2 2,f x y x y= + .  Sketch a few of them. 
 
Solution 
First, for the sake of practice, let’s identify what this surface given by ( ),f x y  is.  To do 
this let’s rewrite it as, 
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 2 2z x y= +  
Now, this equation is not listed in the Quadric Surfaces section, but if we square both 
sides we get, 
 2 2 2z x y= +  
and this is listed in that section.  So, we have a cone, or at least a portion of a cone.  Since 
we know that square roots will only return positive numbers, it looks like we’ve only got 
the upper half of a cone. 
 
Note that this was not required for this problem.  It was done for the practice of 
identifying the surface and this may come in handy down the road. 
 
Now on to the real problem.   The level curves (or contour curves) for this surface are 
given by the equation, 
 2 2 2 2 2k x y x y k= + ⇒ + =  
where k is any number.  This is the equation of a circle of radius k with center at the 
origin. 
 
We can graph these in one of two ways.  We can either graph them on the surface itself or 
we can graph them in a two dimensional axis system.  Here is each graph for some values 
of k. 
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Note that we can think of contours in terms of the intersection of the surface that is given 
by ( ),z f x y=  and the plane z k= .  The contour will represent the intersection of the 
surface and the plane. 
 
For functions of the form ( ), ,f x y z  we will occasionally look at level surfaces.  The 

equations of level surfaces are given by ( ), ,f x y z k=  where k is any number. 
 
The final topic in this section is that of traces.  In some ways these are similar to 
contours.  As noted above we can think of contours as the intersection of the surface 
given by ( ),z f x y=  and the plane z k= .  Traces of surfaces are curves that represent 
the intersection of the surface and the plane given by x a=  or y b= . 
 
Let’s take a quick look at an example of traces. 
 
Example 4  Sketch the traces of ( ) 2 2, 10 4f x y x y= − −  for the plane 1x =  and 2y = . 
Solution 
We’ll start with 1x = .  We can get an equation for the trace by plugging 1x =  into the 
equation.  Doing this gives, 
 ( ) ( )2 2 21, 10 4 1 6z f y y z y= = − − ⇒ = −  
and this will be graphed in the plane given by 1x = . 
 
Below are two graphs.  The graph on the left is a graph showing the intersection of the 
surface and the plane given by 1x = .  On the right is a graph of the surface and the trace 
that we are after in this part. 
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For 2y =  we will do pretty much the same thing that we did with the first part.  Here is 
the equation of the trace, 
 ( ) ( )22 2, 2 10 4 2 6 4z f x x z x= = − − ⇒ = −  
and here are the sketches for this case. 

 
 
 

 Vector Functions 
To this point, with the exception of lines, we only looked at graphing surfaces in 3\ .  
However, as we saw with lines, not every graph in 3\  needs to be a surface.  We can 
graph curves (sometimes called space curves) that are three dimensional as well.  To do 
this we use vector-valued function or vector functions.   
 
Note that we can also use vector functions to represent surfaces as well as we’ll see at the 
end of this section.  With that being said however we will spend most of this section 
talking about curves instead of surfaces. 
 
The vector form of the equation of a line is a good example a vector function. 
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( ) 0r t r tv= +
JGG G  

Vector functions take real numbers as arguments, t in this case, and return vectors that are 
the position vector for points on the curve (or surface).  The general form of a three 
dimensional vector function for a curve is, 

( ) ( ) ( ) ( ), ,r t f t g t h t=
G  

where f(t), g(t), and h(t) are sometimes called the component functions. 
 
The domain of a vector function is the set of all t’s for which all the component functions 
are defined. 
 
Example 1  Determine the domain of the following function. 
 ( ) ( )cos , ln 4 , 1r t t t t= − +

G  

Solution 
The first component is defined for all t’s.  The second component is only defined for 

4t < .  The third component is only defined for 1t ≥ − .  Putting all of these together gives 
the following domain. 
 [ )1, 4−  
This is the largest possible interval for which all three components are defined. 
 
We now need to think about how to get the graph of a space curve from a vector function.  
There are two ways to do this.  The first is to think of the graph as the set of points 
( ), ,x y z  where, 

 ( ) ( ) ( )x f t y g t z h t= = =  
Note that these are also the parametric equations for the curve.  We’ve seen parametric 
equations before and the only difference is that we are now working with them in three 
dimensions instead of the two dimensions that we used the last time we worked with 
them. 
 
The second way of thinking of the graph is to think of ( ) ( ) ( ) ( ), ,r t f t g t h t=

G  as the 

position vector of the point ( ) ( ) ( )( ), ,f t g t h t .  
 
Either of these two ways of thinking of the graph will work and each has its uses.  We 
will mostly use the first way of thinking of the graph of a vector function. 
 
Let’s take a look at a couple of graphs of vector functions. 
 
Example 2  Sketch the graph of the following vector function. 
 ( ) 2 4 ,1 2 , 3r t t t t= − + − −

G  
Solution 
Notice that this is nothing more than a line.  It might help if we rewrite it a little. 
 ( ) 2,1, 3 4, 2, 1r t t= − + − −

G  
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In this form we can see that this is the equation of a line that goes through the point 
( )2,1, 3−  and is parallel to the vector 4, 2, 1v = − −

G . 
 
To graph this line all that we need to do is plot the point and then sketch in the parallel 
vector.  In order to get the sketch will assume that the vector is on the line and will start 
at the point in the line.  To sketch in the line all we do this is extend the parallel vector 
into a line. 
 
Here is a sketch. 

 
 
Example 3  Sketch the graph of the following vector function. 
 ( ) 2cos , 2sin ,5r t t t=

G  
Solution 
In this case to see what we’ve got for a graph let’s get the parametric equations for the 
curve. 

 
2cos
2sin
5

x t
y t
z

=
=
=

 

 
If we ignore the z equation for a bit we’ll recall (hopefully) that the parametric equations 
for x and y give a circle of radius 2 centered on the origin (or about the z-axis since we 
are in 3\ ). 
 
Now, all the parametric equations here tell us is that no matter what is going on in the 
graph all the z coordinates must be 5.  So, we get a circle of radius 2 centered on the z-
axis and at the level of z=5. 
 
Here is a sketch. 
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Note that it is very easy to modify the above vector function to get a circle centered on 
the x or y-axis as well.  For instance, 
 ( ) 10sin , 3,10cosr t t t= −

G  
will be a circle of radius 10 centered on the y-axis and at y=-3. 
 
In other words, as long as two of the terms are a sine and a cosine (with the same 
coefficient) and the other is a fixed number then we will have a circle that is centered on 
the axis that is given by the fixed number. 
 
Example 4  Sketch the graph of the following vector function. 
 ( ) 4cos , 4sin ,r t t t t=

G  
Solution 
If this one had a constant in the z component we would have another circle.  However, in 
this case we don’t have a constant.  Instead we’ve got a t and that will change the curve.  
However, because the x and y component functions are still a circle in parametric 
equations our curve should have a circular nature to it in some way. 
 
In fact, the only change is in the z component and as t increases the z coordinate will 
increase.  Also, as t increases the x and y coordinates will continue to form a circle 
centered on the z-axis.  Putting these two ideas together tells us that at we increase t the 
circle that is being traced out in the x and y directions should be also be rising. 
 
Here is a sketch of this curve. 
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So, we’ve got a helix here. 
 
As with circles the component that has the t will determine the axis that the helix rotates 
about.  For instance, 

( ) ,6cos ,6sinr t t t t=
G  

is a helix that rotates around the x-axis. 
 
Also note that if we allow the coefficients on the sine and cosine for both the circle and 
helix to be different we will get ellipses. 
 
For example, 
 ( ) 9sin , , 2sinr t t t t=

G  
will be a helix that rotates about the y-axis and is in the shape of an ellipse. 
 
There is a nice formula that we should derive before moving onto representing surfaces 
with vector functions. 
 
Example 5  Determine the vector equation for the line segment starting at the point  

( )1 1 1, ,P x y z=  and ending at the point ( )2 2 2, ,Q x y z= . 
Solution 
It is important to note here that we only want the equation of the line segment that starts 
at P and ends at Q.  We don’t want any other portion of the line and we do want the 
direction of the line segment preserved as we increase t.  With all that said, let’s not 
worry about that and just find the vector equation of the line that passes through the two 
points.  Once we have this we will be able to get what we’re after. 
 
So, we need a point on the line.  We’ve got two and we will use P.  We need a vector that 
is parallel to the line and since we’ve got two points we can find the vector between 
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them.  This vector will lie on the line and hence be parallel to the line.  Also, let’s 
remember that we want to preserve the starting and ending point of the line segment so 
let’s construct the vector using the same “orientation”. 
 
 2 1 2 1 2 1, ,v x x y y z z= − − −

G  
 
Using this vector and the point P we get the following vector equation of the line. 
 
 ( ) 1 1 1 2 1 2 1 2 1, , , ,r t x y z t x x y y z z= + − − −

G  
 
While this is the vector equation of the line, let’s rewrite the equation slightly. 
 

( )
( )

1 1 1 2 2 2 1 1 1

1 1 1 2 2 2

, , , , , ,

1 , , , ,

r t x y z t x y z t x y z

t x y z t x y z

= + −

= − +

G
 

 
This is the equation of the line that contains the points P and Q.  We of course just want 
the line segment that starts at P and ends at Q.  We can get this by simply restricting the 
values of t. 
 
Notice that  
 ( ) ( )1 1 1 2 2 20 , , 1 , ,r x y z r x y z= =

G G  
 
So, if we restrict t to be between zero and one we will cover the line segment and we will 
start and end at the correct point. 
 
So the vector equation of the line segment that starts at ( )1 1 1, ,P x y z=  and ends at 

( )2 2 2, ,Q x y z=  is, 

 ( ) ( ) 1 1 1 2 2 21 , , , , 0 1r t t x y z t x y z t= − + ≤ ≤
G  

 
As noted at the beginning of this section we can also use vector functions for surfaces as 
well.  So, to make sure that we don’t forget that let’s work an example with that as well. 
 
Example 6  Identify the surface that is described by ( ) ( )2 2,r x y x i y j x y k= + + +

GG GG . 
Solution 
First, notice that in this case the vector function will in fact be a function of two 
variables.  This will always be the case when we are using vector functions to represent 
surfaces. 
 
To identify the surface let’s go back to parametric equations. 
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2 2

x x
y y
z x y

=
=

= +

 

 
The first two are really only acknowledging that we are picking x and y for free and then 
determining z form our choices of these two.  The last equation is the one that we want.  
We should recognize that function from the section on quadric surfaces.  The third 
equation is the equation of an elliptic paraboloid and so the vector function represents an 
elliptic paraboloid. 
 
As a final topic for this section let’s generalize the idea from the previous example and 
note that given any function of one variable ( ( )y f x=  or ( )x h y= ) or any function of 

two variables ( ( ),z g x y= , ( ),x g y z= , or ( ),y g x z= ) we can always write down a 
vector form of the equation. 
 
For a function of one variable this will be, 

 
( ) ( )
( ) ( )

r x x i f x j

r y h y i y j

= +

= +

G GG
G GG  

and for a function of two variables the vector form will be, 

 

( ) ( )
( ) ( )
( ) ( )

, ,

, ,

, ,

r x y x i y j g x y k

r y z g y z i y j z k

r x z x i g x z j z k

= + +

= + +

= + +

GG GG
GG GG
GG GG

 

depending upon the original form of the function. 
 
For example the hyperbolic paraboloid 2 22 5y x z= −  can be written as the following 
vector function. 
 ( ) ( )2 2, 2 5r x z x i x z j z k= + − +

GG GG  
 
This is a fairly important idea and we will be doing quite a bit of this kind of thing in the 
later portions of this class. 
 
 

 Calculus with Vector Functions 
In this section we need to talk briefly about limits, derivatives and integrals of vector 
functions.  As you will see, these behave in a fairly predictable manner.  We will be 
doing all of the work in 3\  but we can naturally extend the formulas/work in this section 
to n\  (i.e. n-dimensional space). 
 
Let’s start with limits.  Here is the limit of a vector function. 
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

lim lim , ,

lim , lim , lim

lim lim lim

t a t a

t a t a t a

t a t a t a

r t f t g t h t

f t g t h t

f t i g t j h t k

→ →

→ → →

→ → →

=

=

= + +

G

GG G
 

  
So, all that we do is take the limit of each of the components functions and leave it as a 
vector. 
 

Example 1  Compute ( )
1

lim
t

r t
→

G  where ( ) ( )3 2sin 3 3
, ,

1
tt

r t t
t

−
=

−
eG . 

Solution 
There really isn’t all that much to do here. 

 

( ) ( )

( )

3 2

1 1 1 1

3 2

1 1 1

2

sin 3 3
lim lim , lim , lim

1

3cos 3 3
lim , lim , lim

1

1,3,

t

t t t t

t

t t t

t
r t t

t

t
t

→ → → →

→ → →

−
=

−

−
=

=

e

e

e

G

 

 
Notice that we had to use L’Hospital’s Rule on the y component.  
 
Now let’s take care of derivatives and after seeing how limits work it shouldn’t be to 
surprising that we have the following for derivatives. 
 

( ) ( ) ( ) ( )
( ) ( ) ( )

, ,r t f t g t h t

f t i g t j h t k

′ ′ ′ ′=

′ ′ ′= + +

G
GG G  

 
Example 2  Compute ( )r t′G  for ( ) ( ) ( )6 sin 2 ln 1r t t i t j t k= + − +

GG GG . 
Solution 
There really isn’t too much to this problem other than taking the derivatives. 

 ( ) ( )5 16 2cos 2
1

r t t i t j k
t

′ = + −
+

GG GG  

 
Most of the basic facts that we know about derivatives still hold however, just to make it 
clear here are some facts about derivatives of vector functions. 
 
Facts 
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( )

( )

( ) ( )( ) ( ) ( ) ( )

( )

( )

( )( )( ) ( ) ( )( )

d u v u v
dt

cu cu
d f t u t f t u t f t u
dt
d u v u v u v
dt
d u v u v u v
dt
d u f t f t u f t
dt

′ ′+ = +

′ ′=

′ ′= +

′ ′= +

′ ′× = × + ×

′ ′=

G G G G

G G

G G G

G G G G G Gi i i

G G G G G G

G G

 

 
There is also one quick definition that we should get out of the way so that we can use it 
when we need to. 
 
A smooth curve is any curve for which ( )r t′G  is continuous and ( ) 0r t′ ≠

G  for any t.  A 
helix is a smooth curve, for example. 
 
Finally, we need to discuss integrals of vector functions.  Using both limits and 
derivatives as a guide it shouldn’t be too surprising that we also have the following for 
integration for indefinite integrals 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,r t f t dt g t dt h t dt c

r t f t dt i g t dt j h t dt k c

= +

= + + +

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

G G

GG GG G  

  
and the following for definite integrals. 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,
b b b b

a a a a

b b b b

a a a a

r t dt f t dt g t dt h t dt

r t dt f t dt i g t dt j h t dt k

=

= + +

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

G

GG GG  

 
With the indefinite integrals we put in a constant of integration to make sure that it was 
clear that the constant in this case needs to be a vector instead of a regular constant. 
 
Also, for the definite integrals we will sometimes write it as follows, 

 
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

, ,
bb

a a
bb

a a

r t dt f t dt g t dt h t dt

r t dt f t dt i g t dt j h t dt k

=

= + +

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

G

GG GG
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In other words, we will do the indefinite integral and then do the evaluation of the vector 
as a whole instead of on a component by component basis. 
 
Example 3  Compute ( )r t dt∫

G  for ( ) ( )sin ,6,4r t t t=
G . 

Solution 
All we need to do is integrate each of the components and be done with it. 
 ( ) ( ) 2cos ,6 ,2r t dt t t t c= − +∫

G G  
 

Example 4  Compute ( )
1

0
r t dt∫
G  for ( ) ( )sin ,6,4r t t t=

G . 

Solution 
In this case all that we need to do is reuse the result from the previous example and then 
do the evaluation. 

 

( ) ( )( )
( )

( )

11 2

0 0
cos ,6 , 2

cos 1 ,6,2 1,0,0

1 cos 1 ,6,2

r t dt t t t= −

= − − −

= −

∫
G

 

 
 

 Tangent, Normal and Binormal Vectors 
In this section we want to look at an application of derivatives for vector functions.  
Actually, there are a couple of applications, but they all come back to needing the first 
one. 
 
In the past we’ve used the fact that the derivative of a function was the slope of the 
tangent line.  With vector functions we get exactly the same result, with one exception. 
 
Given the vector function, ( )r tG , we call ( )r t′G  the tangent vector provided it exists and 

provided ( ) 0r t′ ≠
GG .  The tangent line to ( )r tG  at P is then the line that passes through the 

point P and is parallel to the tangent vector, ( )r t′G .  Note that we really do need to require 

( ) 0r t′ ≠
GG  in order to have a tangent vector.  If we had ( ) 0r t′ =

GG we would have a vector 
that had not magnitude and so couldn’t give us the direction of the tangent. 
 
Also, provided ( ) 0r t′ ≠

GG , the unit tangent vector to the curve is given by, 

( ) ( )
( )

r t
T t

r t
′

=
′

GG
G  
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While, the components of the unit tangent vector can be somewhat messy on occasion 
there are times when we will need to use the unit tangent vector instead of the tangent 
vector. 
 
Example 1  Find the general formula for the tangent vector and unit tangent vector to the 
curve given by ( ) 2 2sin 2cosr t t i t j t k= + +

GG GG . 
 
Solution 
First, by general formula we mean that we won’t be plugging in a specific t and so we 
will be finding a formula that we can use at a later date if we’d like to find the tangent at 
any point on the curve.  With that said there really isn’t all that much to do at this point 
other than to do the work. 
 
Here is the tangent vector to the curve. 
 ( ) 2 2cos 2sinr t t i t j t k′ = + −

GG GG  
 
To get the unit tangent vector we need the length of the tangent vector. 

 
( ) 2 2 2

2

4 4cos 4sin

4 4

r t t t t

t

′ = + +

= +

G
 

 
The unit tangent vector is then, 

 
( ) ( )2

2 2 2

1 2 2cos 2sin
4 4

2 2cos 2sin
4 4 4 4 4 4

T t t i t j t k
t

t t ti j k
t t t

= + −
+

= + −
+ + +

GG G G

GG G  

 
Example 2  Find the vector equation of the tangent line to the curve given by 

( ) 2 2sin 2cosr t t i t j t k= + +
GG GG  at 

3
t π

= . 

Solution 
First we need the tangent vector and since this is the function we were working with in 
the previous example we can just reuse the tangent vector from that example and plug in 

3
t π

= . 

 2 22cos 2sin 3
3 3 3 3 3

r i j k i j kπ π π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ = + − = + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

G GG G G GG  

 

We’ll also need the point on the line at 
3

t π
=  so, 

 
2

3
3 9

r i j kπ π⎛ ⎞ = + +⎜ ⎟
⎝ ⎠

GG GG  
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The vector equation of the line is then, 

 ( )
2 2, 3,1 ,1, 3

9
r t tπ π

= + −
3

G  

 
Before moving on let’s note a couple of things about the previous example.  First, we 
could have used the unit tangent vector had we wanted to for the parallel vector.  
However, that would have made for a more complicated equation for the tangent line. 
 
Second, notice that we used ( )r tG  to represent the tangent line despite the fact that we 

used that as well for the function.  Do not get excited about that.  The ( )r tG  here is much 
like y is with normal functions.  With normal functions, y is the generic letter that we 
used to represent functions and ( )r tG  tends to be used in the same way with vector 
functions. 
 
Next we need to talk about the unit normal and the binormal vectors. 
 
The unit normal vector is defined to be, 

( ) ( )
( )

T t
N t

T t

′
=

′

G
G

G  

  
The unit normal is orthogonal (or normal) to the unit tangent vector and hence to the 
curve as well. 
 
The binormal vector is defined to be, 

( ) ( ) ( )B t T t N t= ×
G G G

 
  
The binormal vector is orthogonal to both the tangent vector and the normal vector. 
 
Example 3  Find the normal and binormal vectors for ( ) ,3sin ,3cosr t t t t=

G . 
Solution 
We first need the unit tangent vector so first get the tangent vector and its magnitude. 

 
( )

( ) 2 2

1,3cos , 3sin

1 9cos 9sin 10

r t t t

r t t t

′ = −

′ = + + =

G

G  

 
The unit tangent vector is then, 

 ( ) 1 3 3, cos , sin
10 10 10

T t t t= −
G

 

The unit normal vector will now require the derivative of the unit tangent and its 
magnitude. 
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( )

( ) 2 2

3 30, sin , cos
10 10

9 9 9 3sin cos
10 10 10 10

T t t t

T t t t

′ = − −

′ = + = =

G

G
 

The unit normal vector is then, 

 ( ) 10 3 30, sin , cos 0, sin , cos
3 10 10

N t t t t t= − − = − −
G

 

 
Finally, the binormal vector is, 

 

( ) ( ) ( )

2 2

1 3 3 1 3cos sin cos
10 10 10 10 10
0 sin cos 0 sin

3 1 1 3cos sin cos sin
10 10 10 10
3 1 1cos sin
10 10 10

B t T t N t

i j k i j

t t t

t t t

t i t k t j t i

i t j t k

= ×

= −

− − −

= − − + −

= − + −

G G G

GG G G G

GG G G

GG G

 

 
 

 Arc Length with Vector Functions 
In this section we’ll recast an old formula into terms of vector functions.  We want to 
determine the length of a vector function, 

( ) ( ) ( ) ( ), ,r t f t g t h t=
G  

on the interval a t b≤ ≤ . 
 
We actually already know how to do this.  Recall that we can write the vector function 
into the parametric form, 
 ( ) ( ) ( )x f t y g t z h t= = =  
 
Also, recall that with two dimensional parametric curves the arc length is given by, 

 ( ) ( )2 2b

a
L f t g t dt′ ′= +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⌠

⌡  

 
There is a natural extension of this to three dimensions.  So, the length of the curve ( )r tG  
on the interval a t b≤ ≤  is, 

 ( ) ( ) ( )2 2 2b

a
L f t g t h t dt′ ′ ′= + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⌠

⌡  
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There is a nice simplification that we can make for this.  Notice that the integrand (the 
function we’re integrating) is nothing more than the magnitude of the tangent vector, 

 ( ) ( ) ( ) ( )2 2 2
r t f t g t h t′ ′ ′ ′= + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦
G  

 
Therefore, the arc length can be written as, 

( )
b

a
L r t dt′= ∫

G  

  
 
Example 1  Determine the length of the curve ( ) ( ) ( )2 ,3sin 2 ,3cos 2r t t t t=

G  on the 
interval 0 2t π≤ ≤ . 
 
Solution 
We will first need the tangent vector and its magnitude. 

 
( ) ( ) ( )

( ) ( ) ( )2 2

2,6cos 2 , 6sin 2

4 36cos 2 36sin 2 4 36 2 10

r t t t

r t t t

′ = −

′ = + + = + =

G

G  

 
The length is then, 

 

( )
2

0
2 10

4 10

b

a
L r t dt

dt
π

π

′=

=

=

∫

∫

G

 

 
We need to take a quick look at another concept here.  We define the arc length function 
as, 

( ) ( )
0

t
s t r t du′= ∫

G  

  
Before we look at why this might be important let’s work a quick example. 
 
Example 2  Determine the arc length function for ( ) ( ) ( )2 ,3sin 2 ,3cos 2r t t t t=

G . 
 
Solution 
From the previous example we know that, 
 ( ) 2 10r t′ =

G  
 
The arc length function is then, 

 ( ) ( )0 0
2 10 2 10 2 10

tt
s t du u t= = =∫  
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Okay, just why would we want to do this?  Well let’s take the result of the example above 
and solve it for t. 

 
2 10

st =  

 
Now, taking this and plugging it into the original vector function and we can 
reparameterize the function into the form, ( )( )r t sG .  For our function this is, 

 ( )( ) ,3sin ,3cos
10 10 10
s s sr t s ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

G  

 
So, why would we want to do this?  Well with the reparameterization we can now tell 
where we are on the curve after we’ve traveled a distance of s along the curve.  Note as 
well that we will start the measurement of distance from where we are at t=0. 
 
Example 3  Where on the curve ( ) ( ) ( )2 ,3sin 2 ,3cos 2r t t t t=

G  are we after traveling for 

a distance of 10
3

π ? 

Solution 
To determine this we need the reparameterization, which we have from above. 
 

 ( )( ) ,3sin ,3cos
10 10 10
s s sr t s ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

G  

 

Then, to determine where we are all that we need to do is plug in 10
3

s π
=  into this and 

we’ll get our location. 

 10 3 3 3,3sin ,3cos , ,
3 3 3 3 3 2 2

r t π π π π π⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

G  

 

So, after traveling a distance of 10
3

π  along the curve we are at the point 3 3 3, ,
3 2 2
π⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠

. 

 
 

 Velocity and Acceleration 
In this section we need to take a look at the velocity and acceleration of a moving object.   
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From Calculus I we know that given the position function of an object that the velocity of 
the object is the first derivative of the position function and the acceleration of the object 
is the second derivative of the position function.  
 
So, given this it shouldn’t be too surprising that if the position function of an object is 
given by the vector function ( )r tG  then the velocity and acceleration of the object is given 
by, 
 ( ) ( ) ( ) ( )v t r t a t r t′ ′′= =

G G G G  
 
Notice that the velocity and acceleration are also going to be vectors as well. 
 
In the study of the motion of objects the acceleration is often broken up into a tangential 
component, aT, and a normal component, aN.  The tangential component is the part of 
the acceleration that is tangential to the curve and the normal component is the part of the 
acceleration that is normal (or orthogonal) to the curve.  If we do this we can write the 
acceleration as, 
 T Na a T a N= +

G GG  

where T
G

 and N
G

 are the unit tangent and unit normal for the position function. 
 
If we define ( )v v t=

G  then the tangential and normal components of the acceleration are 
given by, 

( ) ( )
( )

( ) ( )
( )

2
T N

r t r tr t r t
a v a v

r t r t
κ

′ ′′×′ ′′
′= = = =

′ ′

G GG Gi
 

where κ  is the curvature for the position function.  The curvature is actually given in the 
next section, but isn’t really needed for the computations here.  We just wanted to 
acknowledge the first form for the normal acceleration. 
 
There are two formulas to use here for each acceleration and while the second formula 
may seem overly complicated it is often the easier of the two.  In the tangential 
component, v, may be messy and computing the derivative may be unpleasant.   In the 
normal component we will already be computing both of these quantities in order to get 
the curvature and so the second formula in this case is definitely the easier of the two. 
 
Example 1  If the acceleration of an object is given by 2 6a i j tk= + +

GG GG  find the objects 
velocity and position functions given that the initial velocity is ( )0v j k= −

GGG  and the 

initial position is ( )0 2 3r i j k= − +
GG GG . 

 
Solution 
We’ll first get the velocity.  To do this all (well almost all) we need to do is integrate the 
acceleration. 
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( ) ( )

2

2 6

2 3

v t a t dt

i j tk dt

t i t j t k c

=

= + +

= + + +

∫
∫

G G

GG G

GG G G
 

To completely get the velocity we will need to determine the “constant” of integration.  
We can use the initial velocity to get this. 
 ( )0j k v c− = =

GG G G  
 
The velocity of the object is then, 

 
( )

( ) ( )
2

2

2 3

2 1 3 1

v t t i t j t k j k

t i t j t k

= + + + −

= + + + −

G GG G GG
GG G  

 
We will find the position function by integrating the velocity function. 

 

( ) ( )
( ) ( )

( ) ( )

2

2 2 3

2 1 3 1

1
2

r t v t dt

t i t j t k dt

t i t t j t t k c

=

= + + + −

= + + + − +

∫
∫

G G

GG G

GG G G

 

 
Using the initial position gives us, 
 ( )2 3 0i j k r c− + = =

GG G G G  
 
So, the position function is, 

 ( ) ( ) ( )2 2 31 1 2 3
2

r t t i t t j t t k⎛ ⎞= + + + − + − +⎜ ⎟
⎝ ⎠

GG GG  

 
Example 2  For the object in the previous example determine the tangential and normal 
components of the acceleration. 
 
Solution 
There really isn’t much to do here other than plug into the formulas.  To do this we’ll 
need to notice that, 

 
( ) ( ) ( )
( )

22 1 3 1

2 6

r t t i t j t k

r t i j tk

′ = + + + −

′′ = + +

GG GG

GG GG  

 
Let’s first compute the dot product and cross product that we’ll need for the formulas. 
 ( ) ( ) ( ) ( )2 32 2 1 6 3 1 18 2r t r t t t t t t t′ ′′ = + + + − = − +

G Gi  
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( ) ( )

( )( ) ( ) ( ) ( )
( ) ( )

2

2 2 2

2 2

2 1 3 1 2 1
1 2 6 1 2

6 2 1 3 1 2 6 2 3 1 2 1

6 6 2 3 1

i j k i j
r t r t t t t t t

t

t t i t j tk t j t i t k

t t i t j k

′ ′′× = + − +

= + + − + − − − − +

= + + − + −

GG G G G
G G

G GG G G G

GG G
 

 
Next, we also need a couple of magnitudes. 

 
( ) ( ) ( )
( ) ( ) ( ) ( )

222 2 4 2

2 22 2 4 3 2

2 1 3 1 9 4 2

6 6 2 3 1 1 45 72 66 24 6

r t t t t t t t

r t r t t t t t t t t

′ = + + + − = − + +

′ ′′× = + + + + + = + + + +

G

G G
 

 
The tangential component of the acceleration is then, 

 
3

4 2

18 2
9 4 2

T
t ta

t t t
− +

=
− + +

 

 
The normal component of the acceleration is, 

 
4 3 2 4 3 2

4 24 2

45 72 66 24 6 45 72 66 24 6
9 4 29 4 2

N
t t t t t t t ta

t t tt t t
+ + + + + + + +

= =
− + +− + +

 

 
 
 

 Curvature 
In this section we want to briefly discuss the curvature of a smooth curve (recall that for 
a smooth curve we require ( )r t′G  is continuous and  ( ) 0r t′ ≠

G ).  The curvature measures 
how fast a curve is changing direction at a given point. 
 
There are several formulas for determining the curvature for a curve.  The formal 
definition of the curve is, 

 d T
ds

κ =
G

 

where T
G

 is the unit tangent and s is the arc length.  Recall that we saw in a previous 
section how to reparameterize a curve to get it into terms of the arc length. 
 
In general the formal definition of the curvature is not easy to use so there are two 
alternate formulas that we can use.  Here they are. 
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( )
( )

( ) ( )
( ) 3

T t r t r t
r t r t

κ κ
′ ′ ′′×

= =
′ ′

G G G
G G  

 
These may not be particularly easy to deal with either, but at least we don’t need to 
reparameterize the unit tangent. 
 
Example 1  Determine the curvature for ( ) ,3sin ,3cosr t t t t=

G . 
Solution 
Back in the section when we introduced the tangent vector we computed the tangent and 
unit tangent vectors for this function.  These were, 

 
( )

( )

1,3cos , 3sin

1 3 3, cos , sin
10 10 10

r t t t

T t t t

′ = −

= −

G

G  

 
The derivative of the unit tangent is, 

 ( ) 3 30, sin , cos
10 10

T t t t′ = − −
G

 

 
The magnitudes of the two vectors are, 

 
( )

( )

2 21 9cos 9sin 10

9 9 9 3
10 10 10 10

r t t t

T t

′ = + + =

′ = + = =

G

G  

 
The curvature is then, 

 
( )
( )

3
310

1010

T t

r t
κ

′
= = =

′

G

G  

 
In this case the curvature is constant.  This means that the curve is changing direction at 
the same rate at every point along it.  Recalling that this curve is a helix this result makes 
sense. 
 
Example 2  Determine the curvature of  ( ) 2r t t i t k= +

GGG . 
Solution 
In this case the second form of the curvature would probably be easiest.  Here are the first 
couple of derivatives. 
 ( ) ( )2 2r t t i k r t i′ ′′= + =

GG GG G  
 
Next, we need the cross product. 
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( ) ( ) 2 0 1 2 0

2 0 0 2 0

2

i j k i j
r t r t t t

j

′ ′′× =

=

GG G G G
G G

G

 

 
The magnitudes are, 
 ( ) ( ) ( ) 22 4 1r t r t r t t′ ′′ ′× = = +

G G G  
 
The curvature at any value of t is then, 

 
( )

3
2 2

2

4 1t
κ =

+
 

 
There is a special case that we can look at here as well.  Suppose that we have a curve 
given by ( )y f x=  and we want to find its curvature. 
 
As we saw when we first looked at vector functions we can write this as follows, 
 ( ) ( )r x x i f x j= +

G GG  
 
If we then use the second formula for the curvature we will arrive at the following 
formula for the curvature. 

 
( )

( )( )
3

2 21

f x

f x
κ

′′
=

′+ ⎡ ⎤⎣ ⎦

 

 
 

 Cylindrical Coordinates 
As with two dimensional space the standard ( ), ,x y z  coordinate system is called the 
Cartesian coordinate system.  In the last two sections of this chapter we’ll be looking at 
some alternate coordinates systems for three dimensional space. 
 
We’ll start off with the cylindrical coordinate system.  This one is fairly simple as it is 
nothing more than an extension of polar coordinates into three dimensions.  Not only is it 
an extension of polar coordinates, but we extend it into the third dimension just as we 
extend Cartesian coordinates into the third dimension.  All that we do is add a z on as the 
third coordinate.  The r and θ are the same as with polar coordinates. 
 
Here is a sketch of a point in 3\ . 
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The conversions are the same conversions that we used back in when we were looking at 
polar coordinates.  So, if we have a point in cylindrical coordinates the Cartesian 
coordinates can be found by using the following conversions. 
 

cos
sin

x r
y r
z z

θ
θ

=
=
=

 

  
The third equation is just an acknowledgement that the z-coordinate of a point in 
Cartesian and polar coordinates is the same. 
 
Likewise, if we have a point in Cartesian coordinates the cylindrical coordinates can be 
found by using the following conversions. 
 

2 2 2 2 2

1

OR

tan

r x y r x y
y
x

z z

θ −

= + = +

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

 

 
Let’s take a quick look at some surfaces in cylindrical coordinates. 
 
Example 1  Identify the surface for each of the following equations. 

(a) 5r =  
(b) 2 2 100r z+ =  
(c) z r=  

 
Solution 
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(a)  In two dimensions we know that this is a circle of radius 5.  Since we are now in 
three dimensions and there is no z in equation this means it is allowed to vary freely.  So, 
for any given z we will have a circle of radius 5 centered on the z-axis.  
 
In other words, we will have a cylinder of radius 5 centered on the z-axis. 
 
(b) This equation will be easy to identify once we convert back to Cartesian coordinates. 

 
2 2

2 2 2

100
100

r z
x y z

+ =

+ + =
 

 
So, this is a sphere centered at the origin with radius 10. 
 
(c) Again, this one won’t be too bad if we convert back to Cartesian.  For reasons that 
will be apparent eventually, we’ll first square both sides, then convert. 

 
2 2

2 2 2

z r
z x y

=

= +
 

 
From the section on quadric surfaces we know that this is the equation of a cone. 
 
 

 Spherical Coordinates 
In this section we will introduce spherical coordinates.  Spherical coordinates can take a 
little getting used to.  It’s probably easiest to start things off with a sketch. 

 
 
Spherical coordinates consist of the following three quantities.   
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First there is ρ .  This is the distance from the origin to the point and we will require 
0ρ ≥ .   

 
Next there is θ .  This is the same angle that we saw in polar/cylindrical coordinates.  It is 
the angle between the positive x-axis and the line above denoted by r (which is also the 
same r as in polar/cylindrical coordinates).  There are no restrictions on θ . 
 
Finally there is ϕ .  This is the angle between the positive z-axis and the line from the 
origin to the point.  We will require 0 ϕ π≤ ≤ . 
 
In summary, ρ  is the distance from the origin of the point, ϕ  is the angle that we need to 
rotate down from the positive z-axis to get to the point and θ  is how much we need to 
rotate around the z-axis to get to the point. 
 
We should first derive some conversion formulas.  Let’s first start with a point in 
spherical coordinates and ask what the cylindrical coordinates of the point are.  So, we 
know ( ), ,ρ θ ϕ  and what to find ( ), ,r zθ .  Of course we really only need to find r and z 
since θ  is the same in both coordinate systems. 
 
We will be able to do all of our work by looking at the right triangle shown above in our 
sketch.  With a little geometry we see that the angle between z and ρ  is ϕ  and so we can 
see that, 

 
cos
sin

z
r

ρ ϕ
ρ ϕ

=
=

 

and these are exactly the formulas that we were looking for.   So, given a point in 
spherical coordinates the cylindrical coordinates of the point will be, 
 

sin

cos

r

z

ρ ϕ
θ θ

ρ ϕ

=
=
=

 

 
Note as well that, 

( )2 2 2 2 2 2 2 2 2 2cos sin cos sinr z ρ ϕ ρ ϕ ρ ϕ ϕ ρ+ = + = + =  
Or, 

2 2 2r zρ = +  
 
Next, let’s find the Cartesian coordinates of the same point.  To do this we’ll start with 
the cylindrical conversion formulas from the previous section. 
 

 
cos
sin

x r
y r
z z

θ
θ

=
=
=
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Now all that we need to do is use the formulas from above for r and z to get, 
 

sin cos
sin sin
cos

x
y
z

ρ ϕ θ
ρ ϕ θ
ρ ϕ

=
=
=

 

 
Also note that since we know that 2 2 2r x y= +  we get, 
 

2 2 2 2x y zρ = + +  
 
Converting points from Cartesian or cylindrical coordinates into spherical coordinates is 
usually done with the same conversion formulas.  To see how this is done let’s work an 
example of each. 
 
Example 1  Perform each of the following conversions. 

(a) Convert the point 6, , 2
4
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 from cylindrical to spherical coordinates. 

(b) Convert the point ( )1,1, 2− −  from Cartesian to spherical coordinates. 

Solution 
(a) We’ll start by acknowledging that θ  is the same in both coordinate systems and so we 
don’t need to do anything with that. 
 
Next, let’s find ρ . 

2 2 6 2 8 2 2r zρ = + = + = =  
 
Finally, let’s get ϕ .  To do this we can use either the conversion for r or z.   We’ll use the 
conversion for z. 

 12 1cos cos cos
2 32 2

zz πρ ϕ ϕ ϕ
ρ

− ⎛ ⎞= ⇒ = = ⇒ = =⎜ ⎟
⎝ ⎠

 

Notice that there are many possible values of ϕ  that will give 1cos
2

ϕ = , however, we 

have restricted ϕ  to the range 0 ϕ π≤ ≤  and so this is the only possible value in that 
range. 
 

So, the spherical coordinates of this point will are 2 2, ,
4 3
π π⎛ ⎞

⎜ ⎟
⎝ ⎠

. 

 
(b) The first thing that we’ll do here is find ρ . 

 2 2 2 1 1 2 2x y zρ = + + = + + =  
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Now we’ll need to find ϕ .  We can do this using the conversion for z. 

 12 2 3cos cos cos
2 2 4

zz πρ ϕ ϕ ϕ
ρ

− ⎛ ⎞− −
= ⇒ = = ⇒ = =⎜ ⎟⎜ ⎟

⎝ ⎠
 

As with the last parts this will be the only possible ϕ  in the range allowed. 
 
Finally, let’s find θ .  To do this we can use the conversion for x or y.  We will use the 
conversion for y in this case. 

 1 1 2 3sin or
sin 2 4 4222

2

y π πθ θ θ
ρ ϕ

= = = = ⇒ = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Now, we actually have more possible choices for θ  but all of them will reduce down to 
one of the two angles above since they will just be one of these two angles with one or 
more complete rotations around the unit circle added on.   
 
We will however, need to decide which one is the correct angle since only one will be.   
To do this let’s notice that, in two dimensions, the point with coordinates 1x = −  and 

1y =  lies in the second quadrant.  This means that θ  must be angle that will put the point 

into the second quadrant.  Therefore, the second angle, 3
4
πθ = , must be the correct one. 

 

The spherical coordinates of this point are then 3 32, ,
4 4
π π⎛ ⎞

⎜ ⎟
⎝ ⎠

. 

 
Now, let’s take a look at some equations and identify the surfaces that they represent. 
 
Example 2  Identify the surface for each of the following equations. 

(a) 5ρ =  

(b) 
3
πϕ =  

(c) 2
3
πθ =  

(d) sin 2ρ ϕ =  
Solution 
(a)  There are a couple of ways to think about this one.   
 
First, think about what this equation is saying.  This equation says that, no matter what θ  
and ϕ  are, the distance from the origin must be 5.  So, we can rotate as much as we want 
away from the z-axis and around the z-axis, but we must always remain at a fixed 
distance from the origin.  This is exactly what a sphere is.  So, this is a sphere of radius 5 
centered at the origin. 
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The other way to think about it is to just convert to Cartesian coordinates. 

 2

2 2 2

5
25
25x y z

ρ

ρ

=

=

+ + =

 

 
Sure enough a sphere of radius 5 centered at the origin. 
 
(b) In this case there isn’t an easy way to convert to Cartesian coordinates so we’ll just 
need to think about this one a little.  This equation says that no matter how far away from 
the origin that we move and no matter how much we rotate around the z-axis the point 

must always be at an angle of 
3
π  from the z-axis. 

 
This is exactly what happens in a cone.  All of the points on a cone are a fixed angle from 

the z-axis.  So, we have a cone whose points are all at an angle of 
3
π  from the z-axis. 

 
(c) As with the last part we won’t be able to easily convert to Cartesian coordinates here.  
In this case no matter how far from the origin we get or how much we rotate down from 

the positive z-axis the points must always form an angle of 2
3
π  with the x-axis. 

 
Points in a vertical plane will do this.  So, we have a vertical plane that forms an angle of 
2
3
π  with the positive x-axis. 

 
(d) In this case we can convert to Cartesian coordinates so let’s do that.  There are 
actually two ways to do this conversion.  We will look at both since both will be used on 
occasion. 
 
Solution 1 
In this solution method we will convert directly to Cartesian coordinates.  To do this we 
will first need to square both sides of the equation. 
 2 2sin 4ρ ϕ =  
 
Now, for no apparent reason add 2 2cosρ ϕ  to both sides. 

 ( )
( )

2 2 2 2 2 2

2 2 2 2 2

22

sin cos 4 cos

sin cos 4 cos

4 cos

ρ ϕ ρ ϕ ρ ϕ

ρ ϕ ϕ ρ ϕ

ρ ρ ϕ

+ = +

+ = +

= +

 

 
Now we can convert to Cartesian coordinates. 
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2 2 2 2

2 2

4
4

x y z z
x y

+ + = +

+ =
 

 
So, we have a cylinder of radius 2 centered on the z-axis.   
 
This solution method wasn’t too bad, but it did require some not so obvious steps to 
complete. 
 
Solution 2 
This method is much shorter, but also involves something that you may not see the first 
time around.  In this case instead of going straight to Cartesian coordinates we’ll first 
convert to cylindrical coordinates. 
 
This won’t always work, but in this case all we need to do is recognize that sinr ρ ϕ=  
and we will get something we can recognize.  Using this we get, 

 sin 2
2r

ρ ϕ =
=

 

 
At this point we know this is a cylinder (remember that we’re in three dimensions and so 
this isn’t a circle!).  However, let’s go ahead and finish the conversion process out. 

 
2

2 2

4
4

r
x y

=

+ =
 

 
So, as we saw in the last part of the previous example it will sometimes be easier to 
convert equations in spherical coordinates into cylindrical coordinates before converting 
into Cartesian coordinates.  This won’t always be easier, but it can make some of the 
conversions quicker and easier. 
 
The last thing that we want to do in this section is generalize the first three parts of the 
previous example. 
 

 
sphere of radius  centered at the origin
cone that makes and angle of  with the positive axis
vertical plane that makes and angle of  with the positive axis

a a
z

x

ρ
ϕ α α
θ β β

=
= −
= −
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