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1. Introduction
In the previous lesson we constructed the graphs of the basic sine and cosine functions,
and developed techniques for graphing more general waves related to these functions.
The current lesson is devoted to examining graphs of the remaining trigonometric
functions: the tangent, cotangent, secant, and cosecant.

The next two sections describe the graphs of these functions as well as presenting
strategies for graphing modified (co)tangent and (co)secant functions. These sections
contain information and examples that require a thorough understanding of the terms
period1 and phase shift (or translation), and their effect on the graphs of the sine and
cosine functions. The reader may wish to review these concepts as presented in Lesson
4 before proceeding.

1The (co)tangent and (co)secant functions do not possess the property referred to as amplitude.
However, premultiplication of these functions by constants does affect their values and graphs. This
effect is discussed in this lesson.



2. Graphs of tangent and cotangent waves
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Figure 5.1: Graph of
the tangent function
on [0, π/2).

We begin with the graph of the tangent function. Recall
that if (x, y) is the point on the unit circle determined by an
angle of radian measure t, then tan t = y/x provided that
x �= 0 (as is the case when t = π/2). Table 5.1 contains
values for the tangent function at some special angles. (Also
see Table 2.2 in Lesson 2.) Notice that the tangent function
increases from 0 to ∞ as t increases on the interval [0, π/2).
Carefully plotting the points in the table produces the graph
given in Figure 5.1.

The notation tan t → ∞ as t −→ π/2 with t < π/2 in
the last column of Table 5.1 means that the tangent function
approaches ∞, or increases without bound, as t approaches
π/2 from the left. Graphically, this means that y (t) = tan t
has a vertical asymptote at t = π/2.

Radians 0 π/6 π/4 π/3 t −→ π/2 with t < π/2

tan t 0
√

3/3 1
√

3 tan t −→ ∞
Table 5.1: Values of the tangent function on [0, π/2).
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Figure 5.2: Graph of the tan-
gent function on (−π/2, π/2).

Exercise 5 establishes that the tangent function
satisfies

tan(−t) = − tan t.

Such functions are called odd2 because their graphs
reflect about the origin. That is, if a point (a, b)
is on the graph of an odd function, then so is the
point (−a, −b). Such functions are often said to be
symmetric with respect to the origin. Hence,
the curve in Figure 5.1 can be reflected about the
origin to obtain the graph of the tangent function
on (−π/2, π/2) depicted in Figure 5.2. Observe that
the curve decreases from 0 to −∞ as t approaches
−π/2 from the right, demonstrating its asymptotic
symmetry about the origin. As with the graphs of
the sine and cosine functions, the reader should commit this graph to memory.

2Likewise, a function f (t) is even if f (−t) = −f (t) for all t in the domain of f. This means
that the graph of f is symmetric with respect to the y-axis.
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It was shown in Exercise 5 of Lesson 2 that the tangent function has period
π. Hence, the complete graph of this function is easily obtained by duplicating the
curve in Figure 5.2 on contiguous intervals of length π, beginning with the interval
(−π/2, π/2). Several such waves of the tangent function are given in Figure 5.3.

Observe that the vertical asymptotes occur at t =
(2k + 1)π

2
where k is any integer.
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Figure 5.3: Graph of the tangent function.
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As with the sine and cosine functions, the tangent function can be modified, for
example, by changing its period. The function y (t) = tan (at) has period π

|a| since
y

(
t + π

a

)
= y (t) for all t in its domain. The following example illustrates this type

of modification to the tangent function. While examining the graph in this (and the
next) example, readers should refer to the graph given in Figure 5.3 (reproduced
below for convenience) of the basic tangent function in an effort to understand why
the changes in the appearance of the curves occur.
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Example 1 Sketch a graph of the function y (t) = tan
(

t
2

)
Solution: The factor of 1

2 means that y (t) has a period of 2π = π
1/2 . Consequently, the

graph of a wave of this function is similar to that for the tangent function given in
Figure 5.3 except the vertical asymptotes are 2π units apart. These asymptotes occur
at t = (2k + 1)π where k is any integer, or twice as far apart as those for the basic
tangent function. The graph of three waves of y (t) appears in Figure (a).

Example 2 Let y (t) = tan
(− t

2

)
. Since the tangent function is odd, y (t) can be

written as y (t) = − tan
(

t
2

)
. Hence, the graph of y (t) is a reflection of that for

Example 1 about the t-axis. Three waves of its graph is given in Figure (b). Compare
this graph with the one in Figure (a) and note the symmetry between the two.
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(a) y(t) = tan
(

t
2

)
��� �����

������ ��
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(b) y(t) = tan
(− t

2

)
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Example 3 Graph one wave of y1 (t) = tan
(

t
2 + π

4

)
and y2 (t) = 3

2 tan
(

t
2 + π

4

)
+ 1.

Note that both functions have period 2π. The graph of y1 (t) , pictured in Figure (a),
is essentially a shift of the function graphed in Example 1 to the left by π

2 units (since
t
2 + π

4 = 1
2(t + π

2 )). Multiplying y1 (t) by 3
2 stretches its graph vertically by 3

2 units. We
can then produce the graph of y2 (t) in Figure (b) by raising the graph of 3

2y1 (t) one
unit. Note that y1(t) crosses the y-axis at 1 = y1 (0) while y2 (t) crosses this axis at
2.5 = y2 (0) . If desired, additional waves of these curves can be obtained by exploiting
their periodic behavior.
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(a) y1 (t) = tan
(

t
2 + π

4

)
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(b) y2(t) = 3
2 tan

(
t
2 + π

4

)
+ 1
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Figure 5.4: y(t) = cot t

It is possible to generate the graph of the cotan-
gent function by applying techniques similar to those
utilized above for the tangent function. Table 5.2 gives
values of the cotangent function for some special angles.
Note that this function approaches ∞ as t approaches
0 from the right and it approaches −∞ as t approaches
π from the left. Table 5.2 and the fact that the cotan-
gent has period π can be used to produce the graph
given in Figure 5.4. The sketch leads us to believe that
the cotangent function is odd. This is addressed in
Exercise 5.

The reader should note the similarities and differ-
ences between the graphs of the basic tangent and
cotangent functions. (See Exercise 3.)

Radians 0
π

6
π

4
π

3
π

2
2π

3
3π

4
5π

6
π

cot ∞ √
3 1

√
3

3
0 −

√
3

3
−1 −√

3 −∞

Table 5.2: Values of the cotangent function on (0, π).
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Example 4 Graph two waves of the functions
(a) y1 (t) = cot(2t), (b) y2 (t) = cot

(
2t − π

2

)
, and (c) y3 (t) = −3

2 cot
(
2t − π

2

) − 1.

Solution: The factor of 2 in the argument of y1 (t) causes it to have period π/2.
Consequently, the graph of this function is similar to that in Figure 5.4 except the
vertical asymptotes would be π

2 units apart. A sketch of two waves of y1(t) is given
below. (This example is continued on the next page.)
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(a) y1 (t) = cot(2t)
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(Example 4 continued.) The graph of y2 (t) = cot
(
2t − π

2

)
is essentially a shift of

y1 (t) to the right by a factor of π
4 . A sketch of y2 (t) is given in Figure (b). Multiplying

y2(t) by −3/2 first stretches its graph vertically by 3/2 units and then reflects the result
about the t-axis. Lowering the resulting curve by one unit produces the graph of y3 (t),
which is given in Figure (c) below.
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(b) y2(t) = cot(2t − π
2 )
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(c) y3 = −3
2 cot(2t − π

2 ) − 1



3. Graphs of secant and cosecant
The graphs of the secant and cosecant functions appear below. These curves are
easily obtained by plotting points and exploiting their 2π periodic behavior. Note
that the distance between the vertical asymptotes of these functions is π, or half their
period. The graphs correctly suggest that the secant function is even and the cosecant
function is odd. (See Exercise 5.)

�

�
�

� �

�

�

�

��

�

� ��

�

��

(a) y = sec x
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(b) y = csc t

13
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Example 5 Sketch a portion of the graph of y (t) = sec
(

π
2 t − π

4

)
.

Solution: The period of y (t) is 4 = 2π
π/2 so the distance between its vertical asymptotes

is 2 units or half its period. The graph is translated or shifted to the right by a factor
of 1

2 (because
(

π
2 t − π

4

)
= π

2

(
t − 1

2

)
) so the asymptotes occur at t = −1/2 + 2k where

k is any integer. We can use this information to produce the portion of the graph of
y (t) given in the figure below.
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y = sec(π
2 t − π

4 )



4. Exercises
Exercise 1. Graph one wave of each of the following functions:
(a) y1 (t) = tan

(
π
2 t

)
(b) y2 (t) = tan

(
π
2 t + π

4

)
(c) y3 (t) = −1

2 tan
(

π
2 t + π

4

) − 1.

Exercise 2. Graph one wave of each of the following functions:
(a) y1 (t) = cot

(
π
2 t

)
(b) y2 (t) = cot

(
π
2 t + π

4

)
(c) y3 (t) = −1

2 cot
(

π
2 t + π

4

) − 1

Exercise 3. Verify graphically that cot t = − tan
(
t − π

2

)
.

Exercise 4. Sketch a graph of y (t) = −1
2 csc

(
π
2 t + π

4

)
.

Exercise 5. Use the definitions and other properties of the four trigonometric func-
tions discussed in this lesson to verify their even or odd behavior.

The next exercise requires that we find a trigonometric function whose graph is
given. There are, of course, infinitely many solutions to this problem. Although an
infinity of functions that graph the given curve are presented in the solution, the
problem requires only one.

Exercise 6. One wave of the graph of a trigonometric function y (t) appears in the
graph below. Find a formula for the function if y

(
1
6

)
= 1

2 .

15
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Solutions to Exercises
Exercise 1(a) Graph one wave of y1 (t) = tan

(
π
2 t

)
.

Solution: The period of this function is 2 = π
π/2 . Consequently, the graph of a wave of

y1 (t) , given in Figure (a), is essentially the same as the basic tangent function with
asymptotes located at odd integers.
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(a) y1 (t) = tan
(

π
2 t

)

�
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Exercise 1(b) Graph one wave of y2 (t) = tan
(

π
2 t + π

4

)
.

Solution: The period of this functions is 2 and it has a shift of 1
2 unit to the left.

Figure (b) is a graph of a wave of y2 (t) . It can be obtained by shifting the graph of
y1 (t) in Figure (a) 1

2 unit to the left.
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(a) y1 (t) = tan
(

π
2 t

)
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(b) y2 (t) = tan
(

π
2 t + π

4

)

�
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Exercise 1(c) Graph one wave of y3 (t) = −1
2 tan

(
π
2 t + π

4

) − 1.
Solution: To graph y3 (t) first reflect the graph of r y2 (t) in Figure (b) about the
t-axis and then compress the resulting graph. This accounts for the factor of −1/2
in y3 (t) . Now lower this last curve by one unit because of the factor −1. The desired
graph is given in Figure (c). Note that y3 (0) = −1.5.
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(a) y1 (t) = tan
(

π
2 t

)
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(b) y2 (t) = tan
(

π
2 t + π

4

)

�

�
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(c) y3 (t) = −1
2 tan(π

2 t + π
4 ) − 1

�
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Exercise 2(a) Graph one wave of y1 (t) = cot
(

π
2 t

)
.

Solution: Observe that the period of y1 (t) is 2 so is graph its similar to that for
the basic cotangent function except the asymptotes are located at the even integers.
Figure (a) traces one wave of y1 (t).

�

�
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(a) y1 (t) = cot
(

π
2 t

)

�
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Exercise 2(b) Graph one wave of y2 (t) = cot
(

π
2 t + π

4

)
.

Solution: The period of this function is 2 and it has a shift of 1
2 unit to the left.

Figure (b) is a graph of a wave of y2 (t) . It can be obtained by shifting the graph of
y1 (t) in Figure (a) 1

2 unit to the left.
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(a) y1 (t) = cot
(

π
2 t

)

�

�
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(b) y2 (t) = cot
(

π
2 t + π

4

)

�
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Exercise 2(c) Graph one wave of y3 (t) = −1
2 cot

(
π
2 t + π

4

) − 1.
Solution: To graph y3 (t) first reflect the graph of y2 (t) in Figure (b) about the t-axis
and then compress the resulting graph. This accounts for the factor of −1/2 in y3 (t) .
Now lower this last curve by one unit because of the factor −1. The desired graph is
given in Figure (c). Note that y3 (0) = −1.5.
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(a) y1 (t) = cot
(

π
2 t

)
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(b) y2 (t) = cot
(

π
2 t + π

4

)
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(c) y3 (t) = −1
2 cot

(
π
2 t + π

4

) − 1
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Exercise 3. Begin with the function y (t) = − tan
(
t − π

2

)
which has period π. The

graph of y (t) can be obtained from that of the basic tangent function by shifting it
π
2 units to the left and then reflecting the result about the t-axis. The graph of this
curve, given below, is the same as that for the cotangent function given in Figure 5.4.

�

�
��������

Exercise 3
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Exercise 4. Sketch a graph of y (t) = −1
2 csc

(
π
2 t + π

4

)
.

Solution: The graph of y (t) can be obtained by first noting that its period is 4.
The factor of π

4 in the argument of y (t) results in a shift to the left of 1
2 unit because

π
2 t+ π

4 = π
2

(
t + 1

2

)
. Finally, the factor of −1

2 in front of the cosecant causes a reflection
about the t-axis as well as a scaling. The graph of y (t) is given below.
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Exercise 4
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Exercise 5. In section 4 of Lesson 2 it was noted that if (x, y) is the point on the
unit circle determined by an angle of radian measure t, then (x, −y) corresponds to
the point determined by the angle (−t) radians. Consequently,

tan (−t) =
−y

x
= −y

x
= − tan t

which verifies that the tangent function is odd. The cotangent function is also odd
since

cot (−t) =
1

tan (−t)
=

1
− tan t

= − 1
tan t

= − cot t.

The secant function is even because

sec (−t) =
1
x

= sec t.

This also proves that the cosine function is even since cos t = 1/ sec t. Finally, the
cosecant function is odd because

csc (−t) =
1

−y
= −1

y
= − csc t.

Note that this also means that the sine function is odd. Exercise 5
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Exercise 6. One wave of the graph of a trigonometric function y (t) appears in the
graph below. Find a formula for the function if y

(
1
6

)
= 1

2 .

�

�
���

Solution: The sketched portion of the function has the shape of a secant or cosecant
function and can be solved using either. We restrict our attention to the secant
function. Consequently, we may assume that the curve has the form

y (t) = A sec(at + b).

The curve completes one wave in 2 units suggesting the desired function has period
2. Since the period of the secant function is 2π we solve the equation 2π

a
= 2 for a.
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Thus, a = π. so y (t) = A sec(πt + b) where A and b are to be determined. Next,
we find b. The curve ỹ (t) = sec(πt) has a vertical asymptote at t = −1

2 while y
has what appears to be a concomitant asymptote at t = −1. This suggests we solve
π(−1

2) = π(−1) + b for b, yielding b = π
2 . Thus, y (t) = A sec(πt + π

2 ). Finally, to
determine A we note that we are given 1

2 = y(−1
6) so

1
2

= y(−1
6

) = A sec(−π

6
+

π

2
) = A sec(

π

3
) = 2A.

It follows that A = 1
4 . Consequently, the curve is given by y (t) = 1

4 sec
(
πt + π

2

)
.

The curve has an infinite number of representations using the secant function. In
the above solution we used the vertical asymptote t = −1. We could have used any of
the vertical asymptotes located at t = (2k + 1) where k denotes any integer, positive
or negative.. (Why could we not use the asymptotes at 2k where k is an integer?.
Hint: Use the asymptote t = 0, construct the resulting graph, and compare it with
the given sketch.). If we use the asymptote t = (2k + 1), k an integer, we find the
general solution by solving π(−1

2) = π(2k + 1) + b for b. This gives b = −(2k + 3
2)π

yielding the solution y = 1
4 sec(πt − (2k + 3

2)π) = 1
4 sec(πt + 3

2π − 2k) for any integer
k. This simply reflects the periodic nature of the secant function.

A solution using the cosecant function is y (t) = −1
4 csc(πt). To verify this analyt-
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ically recall that csc (−t) = csc t and csc t = sec
(

π
2 − t

)
. Hence,

−1
4

csc(πt) =
1
4

csc(−πt) =
1
4

sec
(π

2
− (−πt)

)
=

1
4

sec
(
πt +

π

2

)
.

Exercise 6


